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ABSTRACT

In this thesis, we consider the optimal portfolio selection problem in multiple period and

continuous time settings where the investor maximizes the expected utility of the terminal

wealth in a stochastic market. The utility function has the structure of the HARA family

and the market states change according to a Markov chain. The states of the market describe

the prevailing economic, �nancial, social and other conditions that a¤ect the deterministic

and probabilistic parameters of the model.

In �rst part we assumed a discrete time market and discuss the stochastic structure

of the wealth process under the optimal policy and determine various quantities of interest

including its Fourier transform. The exponential, power and logarithmic return-risk frontiers

of the terminal wealth is shown to have a linear form.

In the second part we investigated the case where the investor does not have perfect

information about the market. The unobserved stochastic market is a Markov chain and it

emits signals, or provides information, that is observed by the market players. The optimal

portfolio policy under imperfect information is constructed and the di¤erences between the

perfect and imperfect information cases are presented.

In the last part, we analyzed a Black-Scholes type continuous time models where the

market parameters are driven by Markov processes. The problem of maximizing the ex-

pected utility from terminal wealth is investigated. We found explicit solutions for optimal

policy and the associated value functions. We also constructed the optimal wealth process

explicitly and discussed some of its properties.
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ÖZETÇE

Bu tezde çoklu zamanda ve sürekli zamanda rassal markette dönem sonu servetininin

beklenen de¼gerininin fayda fonksiyonunu en büyükleyen bir yat¬r¬mc¬n¬n en iyi portföy seçimi

problemi incelenmi̧stir. Fayda fonksiyonunun tipi HARA olarak al¬nm¬̧s ve marketin durum-

lar¬bir Markov zincirine ba¼gl¬olarak de¼gi̧smektedir. Marketin de¼gi̧sik durumlar¬karş¬laş¬lan

ekonomik, �nansal, sosyal, ve di¼ger şartlar¬göstererek modelin belirli ve olas¬l¬ksal paramet-

relerini etkilemektedir.

Tezin ilk k¬sm¬nda ayr¬k zamanl¬ bir market varsay¬lm¬̧st¬r ve problem olarak dönem

sonundaki servetininin beklenen fayda de¼gerini enbüyükleyen bir yat¬r¬mc¬ ele al¬nm¬̧st¬r.

Eniyi yat¬r¬m politikas¬kullan¬ld¬¼g¬nda oluşan varl¬k sürecinin yap¬s¬ile Fourier transformu

da dahil olmak üzere de¼gi̧sik özellikleri bulunmuştur. Üstel, güç, ve logaritmik kazanç-risk

e¼grileri hesaplanm¬̧s ve bunlar¬n do¼grusal oldu¼gu sonucu bulunmuştur. Normal ve üstel

da¼g¬l¬mlar gibi baz¬özel durumlar incelenerek say¬sal örnekler verilmi̧stir.

Tezin ikinci k¬sm¬nda yat¬r¬mc¬n¬n marketin durumu hakk¬nda tam bilgi sahibi olmad¬¼g¬

durum incelenmi̧stir. Gözlenemeyen marketin durumu bir Markov zincirine ba¼gl¬hareket

eder ve yat¬r¬mc¬lara baz¬sinyaller gönderir. Rassal marketin durumu ile gözlemlerin aras¬n-

daki ili̧ski iki de¼gi̧sik method ile aç¬klanm¬̧st¬r. Birincisi sakl¬Markov modelleri, ikincisi ise

yeterli istatistik yöntemidir. K¬smi gözlemlere dayanan durum için en iyi portföy yönetimi

politikalar¬ ç¬kar¬lm¬̧s ve bu durumun tam bilgi ak¬̧s¬n¬n oldu¼gu durum ile farklar¬ göste-

rilmi̧stir.

Tezin son k¬sm¬nda ise Black-Scholes modeli kullan¬larak sürekli zamanda market para-

metrelerinin bir Markov sürecine ba¼gl¬oldu¼gu portföy eniyileme problemi incelenmi̧stir. En

iyi yat¬r¬m politikas¬n¬n aç¬k çözümleri bulunmuş ve karş¬l¬k gelen de¼ger fonksiyonu incelen-

mi̧stir. Ayr¬ca en iyi politikaya karş¬l¬k gelen servet süreci aç¬k olarak hesaplanm¬̧s ve baz¬

özellikleri aç¬klanm¬̧st¬r. Özellikle risk-kazanç e¼grilerinin do¼grusall¬¼g¬gösterilmi̧stir.
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Chapter 1: INTRODUCTION 1

Chapter 1

INTRODUCTION

Portfolio selection problem seeks the best allocation of wealth among di¤erent investment

opportunities in a market consisting of risky assets. Determination of optimal portfolios is

a rather complex problem depending on the objective of the investor. The classical mean-

variance model build by Markowitz [43] is undoubtedly the most celebrated one within the

vast area of portfolio management where the objective is to minimize the variance of the

terminal wealth for a desired level of expected return. In a survey paper, Steinbach [65]

reviews the mean-variance models in �nancial portfolio analysis. This survey refers to 208

papers which shows the diversity of di¤erent models and approaches used to analyze this

problem for both single period and multi-period cases. There are many that consider the

multiperiod problem including, for example, Mossin [50], Samuelson [60], Chen et al. [12],

Elton and Gruber [27], Bodily and White [8], Dumas and Luciano [21], Ehrlich and Hamlen

[23], and Li and Ng [41], among many others.

In most of the multiperiod problems, the rates of return of the assets during consecutive

periods are assumed to be uncorrelated. In a realistic setting, this is not correct and the

dependence among the rates of return in consecutive periods should also be considered. This

dependence or correlation is often achieved through a stochastic market process that a¤ects

all deterministic and probabilistic parameters of the model. A tractable and realistic ap-

proach is provided by using a Markov chain that represents the economic, �nancial, social,

political and other factors which a¤ect the returns of the assets. The use of a modulat-

ing stochastic process as a source of variation in the model parameters and of dependence

among the model components has proved to be quite useful in operations research and

management science applications. The concept was introduced by Ç¬nlar and Özekici [13]

in a reliability setting where the failure rate and hazard functions of a device depend on

the prevailing environmental conditions. There is now considerable amount of literature on
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modulation in a variety of applications. An example in queueing is provided by Prabhu and

Zhu [55] where customer arrival and service rates are modulated by a Markov process. Song

and Zipkin [63] consider an inventory model with a demand process that �uctuates with

respect to stochastically changing economic conditions. A general discussion on the idea

can be found in Özekici [54]. The interested reader is referred to Asmussen [2] and Rolski

et al. [59] for further applications in queueing, insurance and �nance. Çakmak and Özekici

[10] have applied the idea to multiperiod mean-variance portfolio optimization problem. In

their setting, the correlation among returns in di¤erent periods is formulated by a stochastic

market representing the underlying factors that form a Markov chain. Considering a market

with one riskless and m risky assets, a multiperiod mean-variance formulation is developed.

An auxiliary problem generating the same e¢ cient frontier is used to eliminate nonsepara-

bility in the sense of dynamic programming. The analytical optimal solution is obtained

for the auxiliary problem using dynamic programming. Following their work, Çelikyurt and

Özekici [11] analyze the multiperiod mean-variance model by considering the safety-�rst

approach, coe¢ cient of variation of the terminal wealth and quadratic utility functions.

Using dynamic programming, e¢ cient frontiers and optimal portfolio management policies

are obtained.

Another line of research in portfolio optimization follows utility theory and expected util-

ity maximization. In this setting, the objective of the investor is to maximize the expected

value of a utility function of the terminal wealth. The risk preferences of the investor is

given and measured by the utility function. The most widely used measures of risk-aversion

were introduced by Pratt [56] and Arrow [1]. Mossin [50] examined some utility functions

and discovered the utility functions that leads to myopic policies. Bertsekas [5] also ex-

amines a special cases of utility functions and derives the multiperiod optimal policies for

these cases. Merton [46] considered special utility functions with logarithmic and power

structures. Hakansson [32], in discrete time setting, investigates the optimization of loga-

rithmic and power utility in a random market. More recently, Dokuchaev [20] considers a

model where the expected utility of the terminal wealth with power and logarithmic utility

functions are maximized in a discrete-time market with serial correlations. Also, Breuer

and Gürtler [9] investigate the performance of funds using di¤erent utility functions. In

our work we will extend the utility based approach to multiperiod portfolio optimization by
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considering an investor with exponential utility where we suppose that the asset returns all

depend on a stochastic market depicted by a Markov chain.

Even though hidden Markov models (HMM) are one of the important tools used in

areas like speech recognition, bioinformatics, and gene prediction; they have not been used

in portfolio optimization until very recently. Elliott et al. [25] use a HMM to describe

stock price movements in order to �nd optimal portfolio trading strategy that maximizes

the expected terminal wealth. Dericio�glu and Özekici [18] has applied the HMM to mean-

variance portfolio selection problem in a Markovian market. They solved the problem with

dynamic programming and obtained an explicit optimal solution to represent the e¢ cient

frontier.

1.1 Preliminaries

In this section we will give some preliminary information about the model and outline the

tools that we will use for the solution. Analysis and solution to the model will be provided

in later sections.

1.1.1 Utility Functions

A utility function is a non-decreasing real valued function U de�ned on the real numbers.

Once a utility function is de�ned, all alternative random wealth levels can be ranked by

evaluating their expected utility values. For a given utility function U; certainty equivalent

CE is de�ned as a certain amount of money that is equivalent to the uncertain payout such

that

U(CE) = E [U (X)] :

An investor compares two random wealths X and Y by comparing the corresponding cer-

tainty equivalents CE(X) and CE(Y ) and prefers the larger one. Utility functions describe

risk preferences of the investor. An investor is called risk averse (risk seeking) if the cer-

tainty equivalent of the uncertain payout is smaller (larger) than the expected income from

payout. Between these two stands the risk neutral behavior where CE = E[X]: The utility

function of risk averse investor is concave, risk seeking investor is convex and risk neutral

investor is linear.
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Pratt [56] and Arrow [1] suggests the risk aversion function

r(x) = �U
00(x)

U 0(x)
(1.1)

which is called the Pratt-Arrow ratio as a measure of absolute risk aversion. Notice that

r(x) > 0 if U is monotonically increasing and strictly concave. Naturally, r(x) = 0 for

the risk-neutral individual with a linear utility function, and r(x) > 0 for the risk seeking

individual with a strictly convex utility function.

As we can see, the Arrow-Pratt measure of absolute risk aversion cannot capture a

situation as the agent switches from risk averse, to risk seeking and then back to risk averse

for di¤erent wealth levels. Thus, an alternative would be to weigh the measure of risk

aversion by the level of wealth x. In this case we obtain the Arrow-Pratt measure of relative

risk aversion, which is de�ned as

r�(x) = �U
00(x)x

U 0(x)
: (1.2)

In both of these measures if the ratio is equal to zero, then the second derivative of the

utility function need to be zero, which means the utility function is linear

U (x) = c1 + c2x:

If the utility function is linear then the risk preference of the investor is de�ned as risk neutral

behavior and expected utility maximization for linear utility is the same as maximization

of the expected terminal wealth. Therefore risk neutral behavior is not interesting and will

not be investigated.

If the ratio in (1.1) is constant, meaning r(x) = c 6= 0; the utility function is called

constant absolute risk aversion(CARA) type function and this can be interpreted as

�U
00(x)

U 0(x)
= c

which can be solved to �nd

U(x) = c1 + c2 exp(�cx):

So the CARA type functions are the exponential functions. On the other hand if the ratio

in (1.2) is constant, meaning r�(x) = c 6= 0; the utility function is called constant relative

risk aversion(CRRA) type function and this type of functions satisfy

�U
00(x)x

U 0(x)
= c
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a = 0 (CRRA) a 6= 0

b = 0 (CARA) U (x) = c U(x) = c1 + c2 exp(�x=a)

b = 1 U(x) = c2 + c1 ln(x) U(x) = c1 + c2 ln(x+ a)

b 6= 0; b 6= 1 U(x) = c1 + c2

 
x1�(1=b)

1� (1=b)

!
U(x) = c1 + c2

 
(x+ (a=b))1�(1=b)

1� (1=b)

!

Table 1.1: Utility functions for di¤erent values of a; b

which can be solved to �nd out

U(x) =

8<: c1 + c2 ln(x)

c1 + c2

�
x1�c

1�c

� c = 1

c 6= 1
:

A more general case can be used if we de�ne the ratio as

�U
00(x)

U 0(x)
=

1

a+ bx

where it can be seen that a = 0 refers to the CRRA case where b = 1=c; and b = 0 refers

to the CARA case where a = 1=c. This general case of utility functions are called the

hyperbolic absolute risk aversion (HARA) type function. In this thesis we will concentrate

on HARA functions. If we analyze the case where both a 6= 0 and b 6= 0, we can see that

�U
00(x)

U 0(x)
=

1

a+ bx
(1.3)

leads to

(lnU 0(x))0 = �1
b

�
1

x+ (a=b)

�
which after integration, gives

U 0(x) =
c2

(x+ (a=b))1=b

and this can be solved to �nd

U(x) =

8>><>>:
c1 + c2

 
(x+ (a=b))1�(1=b)

1� (1=b)

!
b 6= 1

c1 + c2 ln(x+ (a=b)) b = 1

as summarized at Table 1.1.
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Bertsekas [5] has proven that in a deterministic environment where the market parame-

ters are known, if the utility function satis�es (1.3) then the optimal portfolio is given by

the linear policy

u�(x0) = �(a+ bsx0)

where s is the interest rate, � is some constant and x0 is the initial wealth.

1.1.2 Return Distributions

In this section we will summarize some of the return distributions that we used in our

research.

Multivariate Normal Distributions

The multivariate normal distribution is a speci�c probability distribution which is the gen-

eralization to higher dimensions of the one-dimensional normal distribution. A random

vector X = [X1; � � � ; Xn] follows a multivariate normal distribution if it has the following

joint probability density function

fX(x1; � � � ; xn) =
1

(2�)n=2 j�j1=2
exp

�
�1
2
(x� �)0��1(x� �)

�
where � is the mean vector, � is the covariance matrix and j�j is the determinant of �

Unless otherwise stated a vector y is a column vector so that its transpose, denoted by y0,

is always a row vector. If X is a random vector with multivariate normal distribution then

every linear combination Y = a1X1 + � � � + amXm is normally distributed. The Fourier

transform of X is

E
�
exp

�
jz0X

��
= exp

�
jz0�� 1

2
z0�z

�
for any vector z = (z1; z2; � � � ; zn) of real numbers where j =

p
�1.

Let Z = [Z1; � � � ; Zn] be a random vector whose components are independent standard

normal random variables and A be the Cholesky decomposition of the symmetric, positive

semide�nite matrix �. Then, the random vector X = �+ AZ has the multivariate normal

distribution with mean vector � and covariance matrix �.
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Multivariate Exponential Distribution

A number of multivariate exponential distributions are known. A trivial case is the one

where the random variables are independent. Also there are other cases where the marginal

distributions are exponential but the random variables are not independent. Here we will

concentrate on two of them for which meaningful moment generating functions can be

obtained. The �rst one has been suggested by Marshall and Olkin [44] and the second one

is the generalized case of the distribution suggested by Gumbel [31].

Marshall-Olkin�s Bivariate Exponential Distribution Marshall and Olkin [44] de-

�ned a bivariate exponential distribution where the survival function is de�ned as

�F (s; t) = P fX > s; Y > tg = exp [��1s� �2t� �12max(s; t)] : (1.4)

The underlying idea of the model is explained with a "fatal shock" model where �1 is the

rate of shocks e¤ecting the �rst component, �2 is the rate of shocks e¤ecting the second

component, and �12 is the rate of shocks e¤ecting both components. Using the survival

function in (1.4), the Laplace transform can be found as

E [exp (� (sX + tY ))] =
(�+ s+ t) (�1 + �12) (�2 + �12) + st�12
(�+ s+ t) (�1 + �12 + s) (�2 + �12 + t)

(1.5)

where � = �1+ �2+ �12 is the total shock rate. Using the marginal distributions, it can be

easily computed that

E [X] =
1

�1 + �12
; Var (X) =

1

(�1 + �12)
2 ;

E [Y ] =
1

�2 + �12
; Var (Y ) =

1

(�2 + �12)
2

and

E [XY ] =
1

�

�
1

�1 + �12
+

1

�2 + �12

�
:

Hence, the covariance is given by

Cov(X;Y ) =
�12

� (�1 + �12) (�2 + �12)
;

and the correlation is �(X;Y ) = �12=�: Note that 0 � �(X;Y ) � 1: This is an unwanted

case in our model since we want our assets be negatively as well as positively correlated.
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Marshall-Olkin�s Multivariate Exponential Distribution The multivariate exten-

sion of the bivariate exponential distribution de�ned above is given by

�F (x1; � � � ; xn) = exp

264 �
nP
i=1
�ixi �

P
i<j
�ij max (xi; xj)�

P
i<j<k

�ijkmax (xi; xj ; xk)

� � � � � �12���nmax (x1; x2; � � � ; xn)

375 :
It is possible but too complex to calculate the Laplace transform of the multivariate case.

So we will use two asset models with bivariate exponential distribution in our analysis.

Gumbel�s Bivariate Exponential Distribution Gumbel [31] suggested the use of a

bivariate exponential distribution with the joint survival function

�F (s; t) = P fX > s; Y > tg = exp (�s� t� �st) :

But, in this model the expected returns for both X and Y are equal. So we are suggesting

using a bivariate exponential distribution where the joint survival function is

�F (s; t) = exp [��1s� �2t� �12st] :

Using the marginal distributions

P fX > sg = exp (��1s) ; P fY > tg = exp (��2t)

we can calculate
E [X] =

1

�1
; Var (X) =

1

�21
;

E [Y ] =
1

�2
; Var (Y ) =

1

�22

:

1.1.3 The Stochastic Market

The returns of risky assets in a market are random. While we do not know the exact distri-

bution of the returns in general, we are often aware of the factors of variation a¤ecting their

distributions, means, variances and covariances with each other. These are the underlying

economic, social, political and other factors that a¤ect the parameters in one way or an-

other. As the state of a market changes over time, the returns will change accordingly. It is

fair to say that in today�s �nancial markets most of the risks, or variances of asset returns,

are due to the changes in local or global factors. Investment decisions are a¤ected by these
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factors as well as the correlation among asset returns. Modeling a stochastic �nancial mar-

ket by a Markov chain is a reasonable approach and this idea dates back to Pye [57]. In the

continuous time setting, Norberg [53] considers an interest rate model that is modulated by

a Markov process. Recently there is growing interest in the literature to use a stochastic

market process in order to modulate various parameters of the �nancial model to make

it more realistic. Hernández-Hernández and Marcus [34], Bielecki et al. [6], Bielecki and

Pliska [7], Di Massi and Stettner [45], Stettner ([66], [67]), and Nagai and Peng [51] provide

examples on risk-sensitive portfolio optimization with observed, unobserved and partially

observed states in Markovian markets. Continuous-time Markov chains with a discrete state

space are used in a number of papers including, for example, Bäuerle and Rieder [3], Yin

and Zhou [72], and Zhang [74] to modulate model parameters in portfolio selection and

stock trading problems. Zariphopoulou [73], Fleming and Hernández-Hernández [28] use

di¤usion processes for modulating purposes. There are also models where only one of the

parameters in modulated. Models of stochastic interest rates with some sort of a Markovian

structure are also quiet common as in Korn and Kraft [39] and Elliott and Mamon [26],

among others.

Let R(i) denote the random vector of asset returns in any period given that the stochastic

market is in state i. The means, variances and covariances of asset returns depend only

on the current state of the stochastic market. The market consists of one riskless asset

with known return rf (i) and standard deviation �f (i) = 0 and m risky assets with random

returns R(i) = (R1(i); R2(i); � � � ; Rm(i)) in state i. We let rk(i) = E [Rk(i)] denote the

mean return of the kth asset in state i and �kj(i) = Cov(Rk(i); Rj(i)) denote the covariance

between kth and jth asset returns in state i. The excess return of the kth asset in state i

is Rek(i) = Rk(i)� rf (i). It follows that

rek(i) = E [Rek(i)] = rk(i)� rf (i) (1.6)

�kj(i) = Cov(Rek(i); R
e
j(i)): (1.7)

Our notation is such that r(i) = (r1(i); r2(i); � � � ; rm(i)) and re(i) = (re1(i); re2(i); � � � ; rem(i))

are column vectors and rf (i) is a scalar for all i. For any column vector z, z0 denotes the

row vector representing its transpose.
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We de�ne the matrix

V (i) = E
�
Re(i)Re (i)0

�
= � (i) + re (i) re (i)0 (1.8)

for any state i. Note that the covariance matrix � (i) is positive de�nite for all i so one can

easily see that V (i) is also positive de�nite.

We de�ne Xn as the amount of investor�s wealth at period n and correspondingly XT de-

notes the �nal wealth at the end of the investment horizon. The vector u = (u1; u2; � � � ; um)

gives the amounts invested in risky assets (1; 2; � � � ;m). Given any investment policy, the

stochastic evolution of the investor�s wealth follows the so-called wealth dynamics equation

Xn+1 (u) = R (Yn)
0 u+

�
Xn � 10u

�
rf (Yn)

= rf (Yn)Xn +R
e (Yn)

0 u (1.9)

where 1 = (1; 1; � � � ; 1) is the column vector consisting of 1�s.

We will use the notation Ei[Z] = E [Z j Y0 = i] and Vari(Z) = Ei[Z2]�Ei[Z]2 to denote

the conditional expectation and variance of any random variable Z given that the initial

market state is i.

The assumptions regarding the model formulation can be summarized as follows: (a)

There is unlimited borrowing and lending at the prevailing return of the riskless asset in

any period, (b) Short selling is allowed for all assets in all periods, (c) No capital additions

or withdrawals are allowed throughout the investment horizon, and (d) Transaction costs

and fees are negligible.

1.1.4 Dynamic Programming Formulation

Dynamic programming is the method used in the derivation of the optimal solution of the

multiperiod portfolio selection problem

max
u

Ei [U(YT ; XT )]

where the investor maximizes his expected utility of the terminal wealthXT at some terminal

time T . Let gn (i; x; u) denote the expected utility using the investment policy u in period

n and the optimal policies from period n+ 1 to period T given that the market is in state

i and the amount of money available for investment is x at period n. De�ne

vn(i; x) = max
u
gn(i; x; u)
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as the optimal expected utility using the optimal policy given that the market is in state i

and the amount of money available for investment is x at period n. Then, according to the

dynamic programming principle

gn(i; x; un) = E [vn+1 (Yn+1; Xn+1(un))]

and we can write the dynamic programming equation (DPE) as

vn(i; x) = max
u
E [vn+1 (Yn+1; Xn+1(u))]

which can be rewritten as

vn(i; x) = max
u

X
j2E

Q (i; j)E
�
vn+1

�
j; rf (i)x+R

e (i)0 u
��

(1.10)

for n = 0; 1; � � � ; T �1 with the boundary condition vT (i; x) = U(i; x) for all i. The solution

for this problem is found by solving the DPE recursively.
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Chapter 2

MODELS WITH PERFECT INFORMATION

In this chapter we will assume that the state of the world as well as the transition

probabilities are known by the investor. We analyzed the cases where the utility of the

investor is HARA function. Both the exponential utility case and the other HARA utility

cases are completed and are summarized in two distinct papers.

2.1 Exponential Utility Function

We assume that the utility of the investor in state i is given by the exponential function

U(i; x) = K(i)� C(i) exp(�x=�) (2.1)

with � > 0; C (i) > 0 where we can easily see that Pratt-Arrow�s measure of absolute risk

aversion is simply equal to the constant �U 00(i; x)=U 0(i; x) = 1=� for all i. So, if we check

Table 1.1, this is the case where b = 0, a = �: The exponential utility function is one of the

most widely used ones to represent investors attitude towards risk in portfolio optimization.

It has constant absolute risk aversion given by 1=� which means that the investor has the

same risk preferences for random outcomes independent of his wealth. In continuous time,

Merton [46] addressed the problem of utility maximization and showed that if the utility

of the investor is exponential, then the value function for any time is also exponential.

Samuelson [60] worked on the discrete time version of Merton [46] and showed that similar

conclusions apply for the discrete time market. Bertsekas [5] analyzed the multiperiod

portfolio optimization problem and showed that, for well-known utility functions, the value

function in the dynamic programming algorithm is the same type as the utility function of

the investor. In a more recent paper, Tehranchi [71] shows that similar results apply for the

exponential utility optimization problem in an incomplete market. Hu, Imkeller and Muller

[36] examines the exponential utility maximization problem in an incomplete market when

there is a liability to be paid at terminal time and shows that a similar result can be found.
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Note from (2.1) that � is that same for all market states so that risk classi�cation of the

investor does not depend on the stochastic market. Similarly, we assume that the return

for the riskless asset is same for all market states so that rf (i) = rf for all i.

Theorem 1 Let the utility function of the investor be the exponential function (2.1) and

suppose that the riskless asset return does not depend on the market state. Then, the optimal

solution of the dynamic programming equation (1.10) is

vn(i; x) = Kn (i)� Cn(i)e�x=�n (2.2)

and the optimal portfolio is

u�n(i; x) = �(i)�n+1 (2.3)

where

�n =
�

rT�nf

; Kn (i) = Q
T�nK (i) ; Cn (i) = Q̂

T�nC (i) (2.4)

and

Q̂(i; j) = Q(i; j)E
�
exp(�Re(i)0� (i))

�
(2.5)

for all n = 0; 1; � � � ; T � 1; and �(i) satis�es

E
�
Rek(i) exp(�Re(i)0�(i))

�
= 0 (2.6)

for all assets k = 1; 2; � � � ;m and all i.

Proof. We use induction starting with the boundary condition for exponential utility as

vT (i; x) = K(i)� C(i) exp(�x=�) and obtain

gT�1(i; x; u) =
X
j2E

Q(i; j)E[U(j; rfx+R
e(i)0u)]

= � exp (�rfx=�)QC(i)E[exp(�Re(i)0u=�)] +QK(i):

Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky asset so that

vT�1(i; x) = max
u
gT�1(i; x; u) = gT�1(i; x; u

�):

Taking the derivative of gT�1 with respect to uk we obtain the gradient vector with entries

rkgT�1(i; x; u) =
@gT�1(i; x; u)

@uk
= exp(�rfx=�)QC (i)E

�
Rek(i) exp(�Re(i)0u=�)

�
=�

(2.7)
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for all k: If we take the second derivatives of gT�1, we can �nd the Hessian matrix with

entries

Hk;l(i; x; u) =
@2gT�1(i; x; u)

@uk@ul
= � exp(�rfx=�)QC (i)E

�
Rek(i)R

e
l (i) exp(�Re(i)0u=�)

�
=�2:

Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then, one

can see that zTH (i) z is equal to

zTH (i) z = �QC(i)
�2

E
h
(z1R

e
1 (i) + z2R

e
2 (i) + � � �+ zmRem (i))

2 exp(�(rfx+Re(i)0u)=�)
i

which is always smaller than or equal to zero since all C(i) are positive. Thus, H (i) is

negative semi-de�nite and we can �nd the optimal solution by setting the gradient (2.7)

equal to zero to obtain the optimality condition

E
�
Re(i) exp(�Re(i)0u�(i; x)=�)

�
= 0: (2.8)

Since there is no dependence on x in (2.8), u�(i; x) does not depend on x and u�(i; x) = u�(i).

Letting � (i) = u� (i) =�, we obtain u�T�1(i; x) = � (i)�: When the value function at time

T � 1 is rewritten for the optimal policy, we obtain

vT�1(i; x) = QC(i) exp(�rfx=�)E[� exp(�Re(i)0u�(i; x)=�)] +QK(i)

= KT�1(i)� CT�1(i) exp(�x=�T�1):

and the value function is still exponential like the utility function and CT�1(i) is positive

for all values of i: This shows that the induction hypothesis holds for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(i; x; u) =
X
j2E

Q(i; j)E[vn(j; rfx+R
e(i)0u)]

= � exp (�rfx=�n)QCn(i)E [exp (�Re(i)u=�n)] +QKn(i):

One can easily see that the Hessian matrix of gn�1 (i; x; u) is negative semi-de�nite as for

gT�1 (i; x; u) : Letting u�n�1(i; x) be the optimal policy such that

vn�1(i; x) = max
u
gn�1(i; x; u) = gn�1(i; x; u

�):

If we take the derivative of gn�1(i; x; u) with respect to uk and set it equal to 0, we get the

optimality condition

E
�
Re(i) exp(�Re(i)0u�n�1(i; x)=�n)

�
= 0: (2.9)
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Since there is no dependence on x in (2.9), u�n�1(i; x) does not depend on x and u
�
n�1(i; x) =

u�n�1(i). Letting �(i) = u
�
n�1(i)=�n we obtain u

�
n�1(i; x) = �(i)�n and

E [Rek(i) exp (�Re(i)�(i))] = 0

If we insert the optimal policy in the value function, we can see that

vn�1(i; x) =
X
j2E

Q(i; j)E[�Cn(j) exp (�(rfx=�n +Re(i)�(i))) +Kn (j)]

= � exp (�rfx=�n)QCn(i)E [exp (�Re(i)�(i))] +QKn(i)

= Kn�1 (i)� Cn�1(i) exp(�x=�n�1)

and this completes the proof.

In Theorem 1, we have found a closed-form solution for the optimal portfolio. We

can further characterize the optimal policy by noting from (2.6) that the optimal solution

satis�es

E
�
(Rk (i)� rf ) exp

�
� (R (i)� rf )0 � (i)

��
= 0

which implies

E
�
(Rk (i)� rf ) exp

�
�R (i)0 � (i)

��
= 0

and

E
�
Rk (i) exp

�
�R (i)0 � (i)

��
= rfE

�
exp

�
�R (i)0 �(i)

��
or

E
�
Rk (i) exp

�
�R (i)0 � (i)

��
E
�
exp

�
�R (i)0 � (i)

�� = rf (2.10)

for all assets k = 1; 2; � � � ;m:

A signi�cant characterization implied by the optimal solution (2.3) is that the optimal

distribution of wealth invested on the risky assets depend only on the state of the market

independent of time. Moreover, it is quite amazing that it is also independent of the wealth

level. If the market is in state i in period n, then the total amount of money invested on

the risky assets is

10u�n(i; x) = 1
0�(i)�n+1 =

�

r
T�(n+1)
f

mX
k=1

�k(i)

which does not depend on the current wealth level x. Moreover, the proportion on wealth

allocated for asset k is

wk(i) =
�k(i)
mP
k=1

�k(i)

(2.11)
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which is totally independent of both time n and wealth x. The exponential investor therefore

decides by considering the state of the market only. The intuition in this amazing result

is in the exponential utility function. Like the memorylessness property of the exponential

distribution that is associated with time, the exponential utility function implies a similar

property associated with the wealth of the investor. The investor is memoryless in the sense

that his current wealth level does not a¤ect how he chooses to allocate his money among

the risky assets. However, note that there is randomness involved in this choice due to the

randomly changing market conditions. Our results are of course consistent with similar work

in the literature on exponential utility functions, but our stochastic market approach makes

our model more realistic without causing substantial di¢ culty in the analysis. Another

important observation is that the structure of the optimal portfolio is not a¤ected by the

transition matrix Q of the stochastic market. It only depends on the joints distribution of

the risky asset returns as prescribed by (2.10). This further implies that the exponential

investor is not only memoryless about his wealth, he is also myopic since he does not care

much about future states of the market in choosing his portfolios.

2.1.1 Evolution of Wealth and the Exponential Frontier

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rfXn +R
e(Yn)

0u�n(Yn; Xn)

= rfXn +R
e(Yn)

0�(Yn)�n+1

= rfXn + r
n+1�T
f Re(Yn)

0�(Yn)�: (2.12)

De�ne A (i) as the random variable

A (i) = Re(i)0� (i) (2.13)

with mean

�� (i) = E [A (i)] = E
�
Re(i)0� (i)

�
= re(i)0� (i) = r (i)0 a (i)� rf10� (i) (2.14)

and second moment

~� (i) = E
h
A (i)2

i
= E

�
� (i)0Re(i)Re(i)0� (i)

�
= � (i)0 V (i)� (i) (2.15)
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which gives the variance

Var (A (i)) = ~� (i)� �� (i)2 : (2.16)

The Fourier transform of the random vector Re (i) = (Re1 (i) ; R
e
2 (i) ; � � � ; Ren (i)) is denoted

by

Fi (z) = E
�
exp

�
jz0Re (i)

��
(2.17)

for z = (z1; z2; � � � ; zn) :

Now, we will show that the wealth process is given by

Xn = r
n
fX0 + r

n�T
f �

n�1X
k=0

A (Yk) (2.18)

using the induction method where the sum on the right-hand side is set to zero when n = 0.

The induction hypothesis holds trivially for n = 0. Suppose (2.18) holds for some n � 0. If

we write Xn+1 using the wealth dynamics equation (2.12)

Xn+1 = rfXn + r
n+1�T
f A(Yn)�

= rn+1f X0 + r
n+1�T
f �

n�1X
k=0

A (Yk) + r
n+1�T
f A(Yn)�

= rn+1f X0 + r
n+1�T
f �

nX
k=0

A (Yk)

we see that the induction hypothesis also holds for n + 1: So, we can conclude that the

wealth process can be written as in (2.18) and for n = T we can �nd the terminal wealth as

XT = r
T
f X0 + �

T�1X
k=0

A (Yk) : (2.19)

Given X0 = x0, the expected value of the terminal wealth satis�es

Ei [XT ] = r
T
f x0 +m (i; T )� (2.20)

where

m (i; T ) =
T�1X
k=0

Qk (i; j) �� (j) =
T�1X
k=0

Qk�� (i) (2.21)

and the variance of the terminal wealth satis�es

Vari (XT ) = �
2Vari

 
T�1X
k=0

A (Yk)

!
= v2 (i; T )�2 (2.22)
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where

v2 (i; T ) =

T�1X
k=0

T�1X
m=0

Covi (A (Yk) ; A (Ym))

=
T�1X
k=0

Vari (A (Yk)) + 2
T�1X
k=0

T�1X
m=k+1

Covi (A (Yk) ; A (Ym))

=
T�1X
k=0

�
Ei

h
A (Yk)

2
i
� Ei [A (Yk)]2

�
+2

T�1X
k=0

T�1X
m=k+1

(Ei [A (Yk)A (Ym)]� Ei [A (Yk)]Ei [A (Ym)]) (2.23)

=
T�1X
k=0

�
Qk~� (i)�

�
Qk�� (i)

�2�
(2.24)

+2
T�1X
k=0

T�1X
m=k+1

0@X
j2E

X
s2E

Qk (i; j)Qm�k (j; s) �� (j) �� (s)�Qk�� (i)Qm�� (i)

1A :
We can see that both the return and the standard deviation of XT depends linearly on �.

This shows that the exponential frontier is a line with formula

Ei [XT ] = r
T
f x0 +

�
m (i; T )

v (i; T )

�
SDi (XT ) (2.25)

where SDi (XT )) =
p
Vari (XT ): Also, we can see it cuts the zero-risk line at Ei [XT ] = rTf x0

as expected. The reason for this is that for zero-risk level investor puts all of his money on

the risk free asset. The return of the risk free asset until the terminal time T is rT : So the

wealth at the terminal time will be rTf x0 for sure. The risk premium for the exponential

investor is given by the ratio m(i; T )=v(i; T ).

We also calculated the e¢ cient frontier for the mean-variance problem discussed in Çak-

mak and Özekici [10] where the problem is solved by considering an alternative formulation

with the linear-quadratic objective function

Max Ei
�
�X2

T + XT
�

de�ned parametrically for real . They use the stochastic market where both the risky and

the riskless assets return distributions depend on the underlying market states that change

according to a Markov chain. Since riskless asset returns are independent of the market

state in our model, we have taken the returns of the riskless asset the same for all of the
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market states in their model as a special case. With this additional restriction, it is possible

to show that in mean-variance models

Ei [XT ] = r
T
f c (i; T )x0 + 0:5 (1� c(i; T ))  = rTf x0 +

�
0:5 � rTf x0

�
(1� c(i; T )) (2.26)

and

Vari (XT ) = c(i; T ) (1� c(i; T ))
�
0:5 � rTf x0

�2
(2.27)

where

c (i; T ) = Ei

"
T�1Y
k=0

(1� h(Yk))
#

(2.28)

and h (i) = re (i)0 V (i)�1re (i) : Putting (2.26) and (2.27) together we obtain the mean-

variance e¢ cient frontier

Ei [XT ] = r
T
f x0 +

 p
1� c(i; T )p
c(i; T )

!
SDi(XT ): (2.29)

From (2.29), it can be seen that the mean of the �nal wealth depends linearly on the standard

deviation and, for the zero-risk level, the expected wealth is equal to Ei [XT ] = rTf x0 as

expected. Note that the risk premium is now given by the ratio
p
1� c(i; T )=

p
c(i; T ):

Both exponential and e¢ cient frontiers are linear with the same intercept rTf x0, but with

di¤erent risk premiums.

The distribution of the �nal wealth other than just the mean and variance is also im-

portant. To derive this distribution we will �nd the Fourier transform

Ei [exp (jXT )] = exp
�
jrTf x0

�
Ei

"
exp

 
j�

T�1X
k=0

A (Yk)

!#

using the fact that

E

"
exp

 
j�

T�1X
k=0

A (Yk)

!�����Y0; Y1; � � � ; YT�1
#
=

T�1Y
k=0

E [exp (j�A (Yk)) jYk] (2.30)

=

T�1Y
k=0

FYk (�� (Yk)) : (2.31)

Therefore, the Fourier transform of the �nal wealth can be written as

Ei [exp (jXT )] = exp
�
jrTf x0

�
Fi (�� (i)) (2.32)

�
X

i1;i2;��� ;iT�1

Q (i; i1)Q (i1; i2) � � �Q (iT�2; iT�1)
T�1Y
k=1

Fik (�� (ik)) :
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In order to get some insight and demonstrate how our results can be used, we consider

special cases where asset return distributions are multivariate normal and exponential.

Multivariate Normal Asset Returns

Suppose that portfolio returns have a multivariate normal distribution with mean vector

� (i) and covariance matrix � (i) in market state i. The Fourier transform of Re(i) �

N(� (i)� rf ; � (i)) is

Fi(z) = E
�
exp

�
jz0Re(i)

��
= exp

�
jz0 (� (i)� rf )�

1

2
z0� (i) z

�
so that

E
�
exp

�
Re(i)0� (i)

��
= exp

�
� (� (i)� rf )0 � (i) +

1

2
� (i)0 �� (i)

�
: (2.33)

It follows from (2.19) and (2.30) that, given the stochastic market process Y , the termi-

nal wealth XT has the normal distribution. This is also obviously the case if Y changes

deterministically so that the market has a dynamic structure as already known from other

models in the literature. However, if the market is stochastic as in our case, then (2.30)

implies that the terminal wealth distribution is no longer normal; it is a now a mixture of

normal distributions.

If we take the derivative of each side of (2.33) with respect to �k (i) we get

E
�
Rek (i) exp

�
Re(i)0� (i)

��
=

0@X
j2E

�kj (i)�j (i)� (�k (i)� rf )

1A (2.34)

exp

�
� (� (i)� rf )0 � (i) +

1

2
� (i)0 �� (i)

�
(2.35)

and, since left-hand side of (2.34) is equal to zero for optimality, we can write the optimality

condition X
j2E

�kj (i)�j (i) = �k (i)� rf

or

� (i) = �(i)�1(� (i)� rf ) = �(i)�1re(i) (2.36)

and the optimality policy is

u�n(i; x) = � (i)�n+1 = �(i)
�1(� (i)� rf )

�

rT�n�1f

(2.37)

in period n: We can see that the ratios of wealth invested in risky assets in (2.36) are equal

to the ratios in the one-fund theorem for the single period problem with T = 1 and n = 0.
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This tells us that if the returns are normally distributed, the portfolios we generate are on

the e¢ cient frontier and the portfolio of risky assets is equal to the fund for each period and

in any market state. The ratio that is put in the risk-free asset depends on the environment

as well as the number of periods till period T and �.

For the multivariate normal distribution case, we can calculate

��(i) = re(i)0�(i) = re(i)0�(i)�1re(i) (2.38)

and

~� (i) = � (i)0 V (i)� (i) =
�
�(i)�1re (i)

�0 �
�(i) + re (i) re (i)0

�
�(i)�1re (i)

= re (i)0 �(i)�1re (i) + re (i)0 �(i)�1re (i) re (i)0 �(i)�1re (i)

= ��(i)(1 + ��(i)) (2.39)

where re(i) = � (i)� rf :

Multivariate Exponential Returns

A number of multivariate exponential distributions are known. A trivial case is the one

where the random variables are independent. If the returns of the assets are independent

and exponential with parameters �k (i) for asset k in state i, then

E
�
Rk (i) exp

�
�R (i)0 � (i)

��
E
�
exp

�
�R (i)0 � (i)

�� =

E [Rk (i) exp (�Rk (i)�k (i))]
Q
j 6=k

E [exp (�Rj (i)�j (i))]

mQ
j=1

E [exp (�Rj (i)�j (i))]

=
E [Rk (i) exp (�Rk (i)�k (i))]
E [exp (�Rk (i)�k (i))]

= rf (2.40)

so that the optimality condition (2.10) can be written as

L0k (�k (i))
Lk (�k (i))

= �rf

where

Lk (�k (i)) = E [exp (�Rk (i)�k (i))] =
�k (i)

�k (i) + �k (i)

is the Laplace transform of Rk (i) ; and

L0k (�k (i)) = �E
�
Rk (i) exp

�
�R (i)0 � (i)

��
= � �k (i)

(�k (i) + �k (i))
2 :

Therefore,
L0k (�k (i))
Lk (�k (i))

= � 1

�k (i) + �k (i)
= �rf :
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and the optimality policy is given as

�k (i) =
�k (i)� rf
�k (i) rf

(2.41)

where �k (i) = 1=�k (i) is the mean return.

There are other cases of the multivariate exponential distribution where the marginal

distributions are exponential but the random variables are not independent. Marshall and

Olkin [44] de�ned a bivariate exponential distribution where the survival function is de�ned

as

�F (x1; x2) = P fX1 > x1; X2 > x2g = exp [��1x1 � �2x2 � �12max(x1; x2)] : (2.42)

The underlying idea of the model is explained with a "fatal shock" model where �1 is the

rate of shocks e¤ecting the �rst component, �2 is the rate of shocks e¤ecting the second

component, and �12 is the rate of shocks e¤ecting both components. Using the survival

function in (2.42), the Laplace transform can be found as

E [exp (� (sX1 + tX2))] =
(�+ s+ t) (�1 + �12) (�2 + �12) + st�12
(�+ s+ t) (�1 + �12 + s) (�2 + �12 + t)

(2.43)

where � = �1 + �2 + �12 is the total shock rate. If we assume that there are two assets and

the returns of the assets have the Marshall and Olkin [44] bivariate exponential distribution

in each state, then using (2.43) we can write

E
�
exp

�
�R (i)0 � (i)

��
=

[(� (i) + �1 (i) + �2 (i)) (�1 (i) + �12 (i)) (�2 (i) + �12 (i))] + �1 (i)�2 (i)�12 (i)

(� (i) + �1 (i) + �2 (i)) (�1 (i) + �12 (i) + �1 (i)) (�2 (i) + �12 (i) + �2 (i))

and taking the derivative with respect to �k (i)

E
�
Rk (i) exp

�
�R (i)0 � (i)

��
=

[(�1 (i) + �12 (i)) (�2 (i) + �12 (i)) + �2 (i)�2 (i)�12 (i) =�k (i)]

(� (i) + �1 (i) + �2 (i)) (�1 (i) + �12 (i) + �1 (i)) (�2 (i) + �12 (i) + �2 (i))

�

[� (i) + �1 (i) + �2 (i) + �k (i) + �k (i) + �12 (i)]
Y
j=1;2

(�1 (i) + �12 (i))

(� (i) + �1 (i) + �2 (i))
Y

j=1;2;k

(�j (i) + �12 (i) + �j (i))

��1 (i)�2 (i)�12 (i) [� (i) + �1 (i) + �2 (i) + �i (i) + �k (i) + �12 (i)]
(� (i) + �1 (i) + �2 (i))

2
Y

j=1;2;k

(�j (i) + �12 (i) + �j (i))
:
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for k = 1; 2 and solve the system of nonlinear equations using (2.10).

The multivariate extension of the bivariate exponential distribution is given by

�F (x1; � � � ; xn) = exp

264 �
nP
i=1
�ixi �

P
i<j
�ij max (xi; xj)�

P
i<j<k

�ijkmax (xi; xj ; xk)

� � � � � �12���nmax (x1; x2; � � � ; xn)

375
and one can use a similar approach to obtain a complex system of nonlinear equations in

order to determine the optimal policy.

2.2 Logarithmic Utility Function

In this section, we assume that the utility of the investor in state i is given by the logarithmic

function

U(i; x) =

8<: K(i) + C(i) log(x+ �) x+ � > 0

�1 x+ � � 0
(2.44)

with C (i) > 0 where we can easily see that Pratt-Arrow�s measure of absolute risk aversion

is simply equal to r(x) = 1=(� + x) > 0 for all i so that b = 1 and a = � in Table 1.1. Note

that � is the same for all market states so that risk classi�cation of the investor does not

depend on the stochastic market. Similarly, we assume that the return for the riskless asset

is the same for all market states so that rf (i) = rf for all i.

We will �rst consider an optimization problem of the form

max
u
E
�
log
�
Re0u+ c

��
(2.45)

where c > 0 is any constant and Re is any random vector. Now, let

A(c) =
�
u : P

�
Re0u+ c > 0

	
= 1
	

be the set of all investment policies that gives �nite expected utility so that jE [log (Re0u+ c)]j

< +1 for u 2 A (c). It can be seen that u = (u1; u2; � � � ; un) = (0; 0; � � � ; 0) 2 A (c) satis�es

this condition trivially for all c > 0. So, A (c) is not empty. Also, let u, w 2 A (c), then

Re0u+ c > 0, and Re0w + c > 0 implies that

�Re0u+ (1� �)Re0w + c > 0

so that �u+(1� �)w 2 A (c) for all 0 � � � 1: Therefore, the solution set A (c) is nonempty

and convex. The gradient vector of the objection function g (u) = E [log (Re0u+ c)] is given
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by

5kg (u) =
@g (u)

@uk
= E

�
Rek

Re0k u+ c

�
while the Hessian matrix is

52
k;lg (u) =

@2g (u)

@uk@ul
= �E

"
RekR

e
l�

Re0k u+ c
�2
#

for all k; l.

The �rst order optimality condition to �nd the optimal solution of (2.45) is obtained by

setting the gradient vector equal to zero so that

E

�
Rek

Re0u+ c

�
= 0 (2.46)

for all k.

Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then,

one can see that

z0 52 g (u) z = �E
h
(z1R

e
1 + z2R

e
2 + � � �+ zmRem)

2 =
�
Re0u+ c

�2i � 0:
Thus, the Hessian matrix52g (u) is negative semi-de�nite and if there is a solution u 2 A (c)

satisfying the �rst order condition (2.46), it must be optimal. Throughout this section, we

assume that the excess returns are such that there is a solution of the �rst order condition

(2.46) in A(c) for all fRe (i)g and c > 0.

We shall not dwell with the implications of our assumption on asset returns; but to get

some insight, we consider the case when there is only a single risky asset. Let

ml = supfy;P fRe � yg = 0g

and

mh = inffy;P fRek � yg = 1g

so that P fRe 2 [ml;mh]g = 1. This also implies that the condition Reu+ c > 0 is satis�ed

if and only if u 2 (�c=mh;�c=ml). It should be noted that ml � 0 � mh must be satis�ed;

otherwise, there exists arbitrage opportunity in the market either by shortselling the riskless

asset (if ml > 0) or by shortselling the risky asset (if mh < 0). We know that 52g is always

negative and g is concave on A (c) : Another observation is that the optimal solution found

from the �rst order condition is u = 0 if and only if re = 0. So, if re = 0 we can always
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solve the optimization problem trivially. In the following analysis we will consider the cases

when re 6= 0. There are four possible cases depending on the support of the distribution

of Re as analyzed below.

Case 1 (ml = �1;mh = +1): In this case u 6= 0 implies that PfRe0u + c < 0g > 0

and E[log (Re0u+ c)] = �1, thus A (c) = f0g and the only solution with �nite objective

function value is u = 0. Therefore, u = 0 is also the optimal solution which does not

necessarily satisfy the �rst order condition (2.46) except for the case re = 0 as mentioned

earlier.

Case 2 (ml = �1;mh < +1): In this case u > 0 or u � �c=mh implies that PfRe0u+

c < 0g > 0 and E [log (Re0u+ c)] = �1. So, A (c) = (�c=mh; 0] and for the solution of the

�rst order condition (2.46) to be in the interior of A (c) ; we need to have 5g (0) < 0 and

5g (�c=mh) > 0: This requires re < 0 and E [Re= (mh �Re)] > 0. However, if re � 0; then

the optimal solution is at the boundary u = 0. Similarly, if E [Re= (mh �Re)] � 0; then the

optimal solution is at the other boundary u = �c=mh.

Case 3 (ml > �1;mh = +1): In this case u < 0 or u � �c=ml implies that PfRe0u+

c < 0g > 0 and E [log (Re0u+ c)] = �1. So, A (c) = [0;�c=ml) and for the solution of the

�rst order condition (2.46) to be in the interior of A (c) ; we need to have 5g (0) > 0 and

5g (�c=ml) < 0: This requires re > 0 and E [Re= (ml �Re)] < 0. However, if re < 0; then

the optimal solution is at the boundary u = 0. Similarly, if E [Re= (mh �Re)] � 0; then the

optimal solution is at the other boundary u = �c=ml.

Case 4 (ml > �1;mh < +1): In this case u � �c=mh or u � �c=ml implies that

PfRe0u + c < 0g > 0 and E [log (Re0u+ c)] = �1. So, A (c) = (�c=mh;�c=ml) for the

solution of the �rst order condition to be interior of A (c) ; we need to have 5g (�c=mh) > 0

and 5g (�c=ml) < 0: This requires E [Re= (mh �Re)] > 0 and E [Re= (ml �Re)] < 0.

However, if E [Re= (mh �Re)] � 0; then the optimal solution is at the boundary u = �c=mh:

Similarly, if E [Re= (mh �Re)] � 0; then the optimal solution is at the other boundary

u = �c=ml.

We will now show that the log utility function is meaningful for an investor with xn +

�=rT�nf > 0 at period n where xn is the wealth in period n. Suppose xn+�=rT�nf � 0; then

using the strategy of only buying risk-free bonds in each period, the investor will have a

terminal wealth of rT�nf xn with utility equal to�1 since rT�nf xn+� = r
T�n
f (xn+�=r

T�n
f ) �
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0: For any other strategy, the �nal wealth should satisfy

PfXT � rT�nf xng > 0

according to no arbitrage condition. Otherwise, if the probability P
n
XT � rT�nf xn

o
= 0

(or P
n
XT > r

T�n
f xn

o
= 1), then an arbitrage opportunity exists by selling bonds. We can

therefore write

PfXT + � � rT�nf xn + �g > 0

and

PfXT + � � 0g > 0

which means that the investor has �1 terminal utility for any investment strategy and any

policy is therefore optimal.

At the beginning, if x0 + �=rTf � 0, then any policy leads to �1 utility. We therefore

suppose that x0 + �=rTf > 0: Then, the policy of investing only on the risk-free asset for n

periods leads to xn = x0rnf and

xn +
�

rT�nf

= x0r
n
f +

�

rT�nf

= rnf

 
x0 +

�

rTf

!
> 0:

Since the investor selects a policy optimally to maximize the expected terminal utility, we

can assume without loss of generality that xn + �=rT�nf > 0 (or rT�nf xn + � > 0) for any

n = 0; 1; � � � ; T:

Theorem 2 Let the utility function of the investor be the logarithmic function (2.44) and

suppose that the riskless asset return does not depend on the market state. Then, the optimal

solution of the dynamic programming equation (1.10) is

vn(i; x) = Kn(i) + Cn(i) log(x+ �n)

and the optimal portfolio is

u�n(i; x) = �(i)(rfx+ �n+1) (2.47)

where

�n =
�

rT�nf

; Kn = Q
T�nK +

 
T�n�1X
m=0

QmQ̂�Q
T�n�1�m

!
C;Cn = Q

T�nC (2.48)
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and

Q̂�(i; j) = E
�
log(rf

�
1 +Re(i)0�(i)

�
)
�
Q(i; j)

for n = 0; 1; � � � ; T � 1; where �(i) satis�es

E

�
Rek(i)

1 +Re(i)0�(i)

�
= 0 (2.49)

for all assets k = 1; 2; � � � ;m and all i.

Proof. We use induction starting with the boundary condition vT (i; x) = C(i) log(x+�)+

K(i) and obtain

gT�1(i; x; u) =
X
j2E

Q(i; j)E[U(j; rfx+R
e(i)0u)]

= QK(i) +QC(i)E[log(rfx+R
e(i)0u+ �)]

for all available investment strategies. Let u� be the optimal amount of money that should

be invested in the risky asset so that

vT�1(i; x) = max
u
gT�1(i; x; u) = gT�1(i; x; u

�):

One can see that the objection function gT�1(i; x; u) is in the form of the objection function

in (2.45) where c = rfx + � > 0. So, the objective function is concave since QC(i) =P
j2E Q(i; j)C(j) > 0 and, with our assumption on fRe (i)g ; the optimal policy can be

found using the �rst order condition

E

�
Rek(i)

rfx+Re(i)0u�T�1 (i; x) + �

�
= 0

for all k = 1; 2; � � � ;m:De�ning the vector function �(i; x) = (�1(i; x); �2(i; x); � � � ; �m(i; x))

such that �(i; x) = u�(i; x)= (rfx+ �) we obtain u�T�1(i; x) = �(i; x) (rfx+ �) so the opti-

mality condition can be rewritten as

E

�
Re(i)

rfx+Re(i)0�(i; x) (rfx+ �) + �

�
= E

�
Re(i)

(rfx+ �) (1 +Re(i)0�(i; x))

�
= 0

and, since rfx+ � > 0; we have

E

�
Rek(i)

1 +Re(i)0�(i; x)

�
= 0: (2.50)
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Since (2.50) holds for every x we can say that � does not depend on x and �k(i; x) = �k(i)

for all k = 1; 2; � � � ;m. We can write the optimal policy as u�T�1(i; x) = �(i) (rfx+ �)

where �(i) satis�es

E

�
Rek(i)

1 +Re(i)0�(i)

�
= 0

for all k = 1; 2; � � � ;m. When the value function at time T � 1 is rewritten for the optimal

policy, we obtain

vT�1(i; x) =
X
j2E

Q(i; j)E[K(j) + C(j) log(rfx+R
e(i)0�(i) (rfx+ �) + �)]

= QK(i) +QC(i)
�
E
�
log
�
rf (1 +R

e(i)0�(i))
��
+ log(x+ �=rf )

�
= QK(i) + Q̂�C(i) +QC(i) log(x+ �=rf )

= KT�1(i) + CT�1(i) log(x+ �T�1)

and the value function is still logarithmic like the utility function. This follows by noting

that KT�1 = QK+Q̂�C and CT�1 = QC in (2.48). This completes the proof for n = T �1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(i; x; u) =
X
j2E

Q(i; j)E[vn(j; rfx+R
e(i)0u+ �n)]

= QKn(i) +QCn (i)E[log(rfx+R
e(i)0u+ �n)]: (2.51)

Let u� be the optimal policy such that

vn�1(i; x) = max
u
gn�1(i; x; u) = gn�1(i; x; u

�):

It is clear, once again, that the objective function gn�1(i; x; u) is in the form of the objection

function in (2.45) with c = rfxn + �n > 0 and it is concave since QCn = QT�n+1C > 0:

The optimal solution can be found by using the �rst order condition

E

�
Rek(i)

rfx+Re(i)0u�n�1(i; x) + �n

�
= 0

for k = 1; 2; � � � ;m:

Letting �(i; x) = u�n�1(i; x)= (rfx+ �n) we obtain u
�
n�1(i; x) = �(i; x) (rfx+ �n) and

E

�
Rek(i)

1 +Re(i)0�(i; x)

�
= 0
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where �(i; x) does not depend on the period n and on x as in equation (2.50). Therefore,

we can write �(i; x) = �(i) and the optimal policy is u�n�1(i; x) = �(i) (rfx+ �n) where

�(i) satis�es

E

�
Rek(i)

1 +Re(i)0�(i)

�
= 0

for all k = 1; 2; � � � ;m. If we insert the optimal policy in the value function using (2.51), we

can see that

vn�1(i; x) = QKn(i) +QCn(i)E[log(rfx+R
e(i)0�(i) (rfx+ �n) + �n)]

= QKn(i) +QCn(i)
�
E
�
log
�
rf (1 +R

e(i)0�(i))
��
+ log(x+ �n=rf )

�
= QKn(i) + Q̂�Cn(i) +QCn(i) log(x+ �n=rf )

= Kn�1(i) + Cn�1(i) log(x+ �n�1)

and the value function is still logarithmic. Note that the recursions Kn�1 = QKn + Q̂�Cn

and Cn�1 = QCn with boundary values KT = K and CT = C give the explicit solutions in

(2.48). This completes the proof.

In Theorem 2, we have found a closed-form solution (2.47) for the optimal portfolio. We

can further characterize the optimal policy if the return distributions are discrete. Suppose

that there is a single risky asset and the return distribution is such that excess return of

the asset is equal to u (i) with probability p (i) and d (i) with probability (1� p (i)) with

d (i) < 0 < u (i). This assumption is required for the no-arbitrage requirement to hold.

From (2.49), the optimality condition is

p (i)

�
u (i)

1 + u (i)� (i)

�
+ (1� p (i))

�
d (i)

1 + d (i)� (i)

�
= 0

which can be solved to �nd

� (i) = �d (i) + p (i) (u (i)� d (i))
d (i)u (i)

= � re (i)

d (i)u (i)
:

Then, we can see that � (i) = 0 if and only if re (i) = 0: Also, � (i) > 0 if re (i) > 0 and

� (i) < 0 if re (i) < 0:

Suppose that there is a single risky asset and the excess return of the asset is equal to

ak (i) with probability pk (i) for k = 1; 2; � � � ; ni in state i where
Xni

k=1
pk (i) = 1: Then,

from (2.49), the optimality condition is
niX
k=1

pk (i)

�
ak (i)

1 + ak (i)� (i)

�
= 0: (2.52)
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It is clear that (2.52) is a polynomial equation with power ni, and solving this will give the

optimal � (i) values.

Note that the structure of the optimal solution in (2.47) is such that the optimal dis-

tribution of wealth invested in the risky assets depend only on the state of the market

independent of time. If the market is in state i in period n, then the total amount of money

invested on the risky assets is

10u�n(i; x) = 1
0�(i)(rfx+ �n+1) =

0@rfx+ �

r
T�(n+1)
f

1A mX
k=1

�k(i)

and the proportion on wealth allocated for asset k in the risky portfolio is

wk(i) =
�k(i)
mP
k=1

�k(i)

(2.53)

which is totally independent of both time n and wealth x. The optimal policy speci�ed by

(2.47) is not static in time since it depends on n, and it is not memoryless in wealth since

it depends on x. However, (2.53) clearly indicates that the composition of the risky part of

the optimal portfolio only depends on the market state. The risky portfolio composition is

both static and memoryless. It satis�es the separation property in the sense that it repre-

sents the single fund of risky assets that logarithmic investors choose. The amount of total

wealth allocated for risky assets depend on the level of wealth, but the composition of the

risky assets depend only on the market state. This composition, however, is random due

to the randomly changing market conditions in time. Our results are of course consistent

with similar work in the literature on logarithmic utility functions, but the stochastic mar-

ket approach makes our model more realistic without causing substantial di¢ culty in the

analysis. Another important observation is that the structure of the optimal portfolio is

not a¤ected by the transition matrix Q of the stochastic market. It only depends on the

joint distribution of the risky asset returns as prescribed by (2.49) in a given market state,

irrespective of future expectations on the stochastic market.



Chapter 2: MODELS WITH PERFECT INFORMATION 31

2.2.1 Evolution of Wealth and the Logarithmic Frontier

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rfXn +R
e(Yn)

0u�n(Yn; Xn)

= rfXn +R
e(Yn)

0�(Yn)
�
rfXn + �n+1

�
= rfXn (1 +A(Yn)) + r

n+1�T
f A(Yn)� (2.54)

where we de�ne A (i) as the random variable

A (i) = Re(i)0� (i) =
mX
k=1

�k (i)R
e
k(i) (2.55)

for any state i:

Note that the wealth process satis�es

Xn+1 + �n+1 = (1 +A (Yn)) rf (Xn + �n)

since �n+1 = rf�n: Recall that we initially assumed that X0+�0 = x0+�=r
T
f > 0 since the

objective function value is �1 for any policy otherwise. Now, suppose that Xn + �n > 0

for some n. According to our assumption on excess returns we know that the optimal

investment policy u� 2 A(c) satis�es the condition

P
n
Re

0
(Yn)u

� + c > 0
o
= 1

with c = rfXn + �n+1 = rf (Xn + �n) > 0: Since u
� = � (Yn)

�
rfXn + �n+1

�
; we get

P
n
Re

0
(Yn)� (Yn)

�
rfXn + �n+1

�
+ rfXn + �n+1 > 0

o
= 1

and

P f(1 +A (Yn)) rf (Xn + �n) > 0g = PfXn+1 + �n+1 > 0 = 1:

This argument clearly shows that if X0 + �0 > 0 as we initially assume, then Xn + �n > 0

for all n using the optimal policy. We are therefore justi�ed in supposing implicitly that

this condition is always satis�ed before the statement of Theorem 2.

It is clear that A (i) is a linear combination of the excess returns of the risky assets with

mean

a(i) = E [A(i)] = re(i)0� (i) (2.56)
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and second moment

s(i) = E
h
A (i)2

i
= E

�
� (i)0Re(i)Re(i)0� (i)

�
= � (i)0 V (i)� (i) (2.57)

which gives the variance

Var (A (i)) = � (i)0 V (i)� (i)� � (i)0 re(i)re(i)0� (i) = � (i)0 �(i)� (i) :

As a computational formula that we will use frequently in the following analysis, we

de�ne

Ei[hn(g(Y0); g(Y1); � � � ; g(Yn))] =
X

i1;��� ;in2E
Q(i; i1) � � �Q(in�1; in)hn (g(i); g(i1); � � � ; g(in))

(2.58)

which provides an explicit expression to compute expectations for any deterministic func-

tions hn and g of the random vector Y n = (Y0; Y1; � � � ; Yn) of Markovian states. For nota-

tional simpli�cation in our analysis, we will let

g
�
Y n
�
= (g(Y0); g(Y1); � � � ; g(Yn))

for any function g de�ned on E. We will use the representation (2.58) whenever necessary

to economize on the notation and note that this provides an exact computational formula.

In particular, if hn (x0; x1; � � � ; xn) =
Yn

k=0
xk, then letting fn (i) = Ei

�
hn
�
g
�
Y n
���

we

obtain

fn (i) = Ei

"
nY
k=0

g
�
Y k
�#
= g (i)

X
j2E

Q (i; j) fn�1 (j)

=
X
j2E

Qg (i; j) fn�1 (j)

= Qgfn�1 (j) (2.59)

where we de�ne the matrix Qg such that Qg (i; j) = g (i)Q (i; j) for all i; j. Using the

boundary condition f0 (i) = g (i) and the recursion (2.59), the explicit solution is

fn (i) = Ei

"
nY
k=0

g (Yk)

#
= Qng g(i) (2.60)

and fn = Qng g is simply the product of the matrix Q
n
g by the vector g. For computational

analysis we use (2.60) whenever appropriate.
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De�ne

Cn (x1; x2; � � � ; xn) =
nY
k=1

(1 + xk)� 1

as the sum of all combinations of the products of n variables for n � 1; and set C0 = 0:

Note that using (2.60) we can compute

Ei
�
Cn
�
h
�
Y n�1

���
= Ei [Cn (h (Y0) ; h (Y1) ; � � � ; h (Yn�1))] = Qn�1g g (i)� 1

explicitly for n � 1 and any function h by setting g (i) = 1 + h (i).

Now, we will show that the wealth process is

Xn = r
n
fX0

n�1Y
k=0

(1 +A (Yk)) + r
n�T
f �Cn

�
A
�
Y n�1

��
(2.61)

using induction where the product on the right hand side is set to 1 when n = 0. The

induction hypothesis holds trivially for n = 0. Suppose (2.61) holds for some n � 0. If we

write Xn+1 using the wealth dynamics equation (2.54)

Xn+1 = rfXn (1 +A(Yn)) + r
n+1�T
f A(Yn)�

= rn+1f X0

nY
k=0

(1 +A (Yk)) + r
n+1�T
f �

�
(1 +A(Yn))Cn

�
A
�
Y n�1

��
+A(Yn)

�
= rn+1f X0

nY
k=0

(1 +A (Yk)) + r
n+1�T
f �Cn+1

�
A
�
Y n
��

and we see that the induction hypothesis also holds for n + 1: So, we conclude that the

wealth process can be written as in (2.61) and, for n = T; we can �nd the terminal wealth

as

XT = rTf X0

T�1Y
k=0

(1 +A (Yk)) + �CT
�
A
�
Y T�1

��
= rTf X0 +

�
rTf X0 + �

�
CT
�
A
�
Y T�1

��
: (2.62)

It is clear from (2.61) and (2.62) that the random variables fA(i)g will play a key role

in any probabilistic analysis involving the wealth process X. Given X0 = x0, the expected

value of the terminal wealth satis�es

Ei [XT ] = r
T
f x0 +

�
rTf x0 + �

�
ml (i; T ) (2.63)

where

ml (i; T ) = Ei
�
CT
�
A
�
Y T�1

���
(2.64)
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and the variance of the terminal wealth satis�es

Vari (XT ) =
�
rTf x0 + �

�2
v2l (i; T ) (2.65)

where

v2l (i; T ) = Vari
�
CT
�
A
�
Y T�1

���
: (2.66)

Using the fact that Y is a Markov chain with transition matrix Q and the distributions

of the random variables fA(i)g; one can easily obtain computational formulas. In particular,

ml (i; T ) = Ei

"
T�1Y
k=0

(1 +A (Yk))� 1
#
= Ei

"
Ei

"
T�1Y
k=0

(1 +A (Yk))� 1
�����Y1; � � � ; YT�1

##

and, since the returns in di¤erent periods are independent given the market states, we obtain

ml (i; T ) = Ei

"
T�1Y
k=0

(1 + a (Yk))� 1
#
= Ei

�
CT
�
a
�
Y T�1

���
= QT�1g g (i)� 1 (2.67)

with g (i) = 1 + a (i) :

To determine v2l (i; T ) ; we �rst calculate the second moment

Ei

h
CT
�
A
�
Y T�1

��2i
= Ei

24Ei
24 T�1Y

k=0

(1 +A (Yk))� 1
!2������Y1; � � � ; YT�1

3535
= Ei

"
Ei

"
T�1Y
k=0

(1 +A (Yk))
2

� 2

T�1Y
k=0

(1 +A (Yk)) + 1

�����Y1; � � � ; YT�1
##

= Ei

"
T�1Y
k=0

(1 + 2a (Yk) + s (Yk))� 1� 2
 
T�1Y
k=0

(1 + a (Yk))� 1
!#

= Ei
�
CT
�
2a
�
Y T�1

�
+ s(Y T�1)

�
)
�
� 2Ei

�
CT
�
a
�
Y T�1

���
(2.68)

since the returns in di¤erent periods are independent given the market states. Therefore,

we can write

Ei

h
CT
�
A
�
Y T�1

��2i
= Ei

�
CT
�
2a
�
Y T�1

�
+ s

�
Y T�1

���
� 2Ei

�
CT
�
a
�
Y T�1

���
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and the variance can be found as

v2l (i; T ) = Ei
�
CT
�
2a
�
Y T�1

�
+ s

�
Y T�1

���
�2Ei

�
CT
�
a
�
Y T�1

���
� Ei

�
CT
�
a
�
Y T�1

���2
(2.69)

= QT�1g1 g1 (i)�
�
QT�1g g (i)

�2
(2.70)

where g1 (i) = 1+2a (i)+s (i) and g (i) = 1+a (i) : The mean (2.63) and variance (2.65) of the

terminal wealth can thus be computed explicitly using (2.67) and (2.70) where f(a (i) ; s (i))g

are determined from (2.56) and (2.57). The distribution of the �nal wealth other than just

the mean and variance is also important. Using (2.62), this distribution can be characterized

through its Fourier transform

Ei [exp (j�XT )] = exp
�
j�rTf x0

�
Ei
�
exp

�
j�
�
rTf x0 + �

�
CT
�
A
�
Y T�1

����
= exp

�
j�rTf x0

�
Ei
�
FT
�
Y0; Y1; � � � ; YT�1;�

�
rTf x0 + �

���
where

FT (i; i1; � � � ; iT�1; ) = E [exp (jCT (A (i) ; A (i1) ; � � � ; A (iT�1)))]

is the Fourier transform of CT (A (i) ; A (i1) ; � � � ; A (iT�1)) for independent random variables

A (i) ; A (i1) ; � � � ; A (iT�1) : When T = 2, for example, this transform becomes

Ei [exp (j�X2)] = exp
�
j�r2fx0

�X
k2E

Q(i; k)F2
�
i; k;�

�
r2fx0 + �

��
where F2 (i; k; ) = E[exp (j (A(i) +A(k) +A(i)A(k)))] for independent random variables

A(i) and A(k): The mean, variance and Fourier transform of the �nal wealth can be com-

puted once the means, variances and Fourier transforms of the product of any combination

of independent random variables in fA(i)g are known.

We can clearly see from (2.63) and (2.65) that both the return and the standard deviation

of XT depends linearly on �. This shows that the logarithmic frontier is the straight line

Ei [XT ] = r
T
f x0 +

�
ml (i; T )

vl (i; T )

�
SDi (XT ) (2.71)

where SDi (XT )) =
p
Vari (XT ): In other words, the expected value and standard deviation

of the terminal wealth fall on this straight line when they are calculated and plotted for

di¤erent values of �: Also, it cuts the zero-risk line at Ei [XT ] = rTf x0 as expected. The
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reason for this is that for zero-risk level investor puts all of his money on the riskless asset.

The return of the riskless asset until the terminal time T is rTf ; and the wealth at the

terminal time will be rTf x0 for sure. The risk premium for the logarithmic investor is given

by the ratio ml (i; T ) =vl (i; T ).

The case with exponential utility is considered in 2.1.1 where the utility function U(i; x) =

K(i)� C(i) exp(�x=�) and the optimal solution has the simpler structure

u�n(i; x) = �(i)�n+1 (2.72)

where �n = �=r
T�n
f and �(i) satis�es

E
�
Re(i) exp(�Re(i)0�(i))

�
= 0: (2.73)

The optimal portfolio is separable in the sense that the amounts of money invested in the

risky assets by exponential investors are independent of their wealth levels. For computa-

tional purposes we only need to �nd �(i) for any market state i to determine the single fund

of risky assets. The total investment also depends only on the period n in a simple way as

prescribed by (2.72): They also show that the terminal wealth is on the exponential frontier

represented by the straight line

Ei [XT ] = r
T
f x0 +

�
me (i; T )

ve (i; T )

�
SDi (XT ) (2.74)

where

me (i; T ) = Ei

"
T�1X
k=0

A (Yk)

#
=

T�1X
k=0

X
j2E

Qk(i; j)a (i) =

T�1X
k=0

Qka (i) (2.75)

and

v2e (i; T ) =
T�1X
k=0

�
Qks (i)�

�
Qka (i)

�2�
(2.76)

+2
T�1X
k=0

T�1X
m=k+1

0@X
j2E

X
l2E

Qk (i; j)Qm�k (j; l) a (j) a (l)�Qka (i)Qma (i)

1A :
Therefore, in all cases involving logarithmic, and exponential utility functions the relation-

ship between the expected value and standard deviation of the terminal wealth is represented

by a linear frontier. These are given by (2.71), and (2.74) respectively for these two cases.



Chapter 2: MODELS WITH PERFECT INFORMATION 37

2.2.2 Simple Logarithmic Utility Function

We now consider the special case of a simple logarithmic utility function with � = 0 so that

U(i; x) = C(i) log(x) +K(i) (2.77)

with C (i) > 0 where we can easily see that r(x) = 1=x. However, we remove the restriction

that rf (i) = rf and the riskless return depends on the market state.

Theorem 3 Let the utility function of the investor be the simple logarithmic function

(2.77). Then, the optimal solution of the dynamic programming equation (1.10) is

vn(i; x) = Kn(i) + Cn(i) log(x)

and the optimal portfolio is

u�n(i; x) = �(i)rf (i)x (2.78)

where

Cn = Q
T�nC;Kn = Q

T�nK +

 
T�n�1X
m=0

QmQ̂�Q
T�n�1�m

!
C

and

Q̂�(i; j) = E
�
log(rf (i)

�
1 +Re(i)0�(i))

��
Q(i; j)

for all n = 0; 1; � � � ; T � 1; and �(i) satis�es

E

�
Rek(i)

1 +Re(i)0�(i)

�
= 0 (2.79)

for all assets k = 1; 2; � � � ;m independent of period n and all i:

Proof. We use induction starting with the boundary condition vT (i; x) = C(i) log(x)+K(i)

and obtain

gT�1(i; x; u) =
X
j2E

Q(i; j)E[U(j; rf (i)x+R
e(i)0u)]

= QC(i)E[log(rf (i)x+R
e(i)0u)] +QK(i)

where

(rf (i)x+R
e(i)0u) > 0
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for all available investment strategies. Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of

money that should be invested in the risky asset so that

vT�1(i; x) = max
u
gT�1(i; x; u) = gT�1(i; x; u

�):

Taking the derivative of gT�1 with respect to uk we obtain the gradient vector with entries

rkgT�1(i; x; u) =
@gT�1(i; x; u)

@uk
= QC(i)E

�
Rek(i)

rf (i)x+Re(i)0u

�
(2.80)

for all k. If we take the second derivatives of gT�1, we can �nd the Hessian matrix with

entries

Hk;l(i; x; u) = r2kgT�1(i; x; u) =
@2gT�1(i; x; u)

@uk@ul
= �QC(i)E

�
Rek(i)R

e
l (i)

rf (i)x+Re(i)0u

�
:

Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then one

can see that zTH (i) z is equal to

�QC(i)E
h
(z1R

e
1 (i) + z2R

e
2 (i) + � � �+ zmRem (i))

2 =
�
rf (i)x+R

e(i)0u
�i

which is always smaller than or equal to zero since all C(i) are positive and (rf (i)x+Re(i)0u)

is positive. Thus, H (i) is negative semi-de�nite and we can �nd the optimal solution by

setting the gradient (2.80) equal to zero to obtain the optimality condition

E

�
Rek(i)

rf (i)x+Re(i)0u� (i; x)

�
= 0

for any asset k = 1; 2; � � � ;m: De�ning the vector function �(i; x) = (�1(i; x); � � � ; �m(i; x))

such that �(i; x) = u�(i; x)=rf (i)x we obtain u�(i; x) = �(i; x)rf (i)x so the optimality

condition can be rewritten as

E

�
Re(i)

rf (i)x+Re(i)0�(i; x)rfx

�
= E

�
Re(i)

rf (i)x (1 +Re(i)0�(i; x))

�
= 0 (2.81)

and since rf (i)x 6= 0, we have

E

�
Rek(i)

1 +Re(i)0�(i; x)

�
= 0: (2.82)

Since the equation (2.82) holds for every x we can say that � does not depend on x which

can be concluded as d�k(i; x)=dx = 0 for all k = 1; 2; � � � ;m. So we can write the optimal

policy as u�(i; x) = �(i)rf (i)x where �(i) satis�es

E

�
Rek(i)

1 +Re(i)0�(i)

�
= 0 (2.83)
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for all k = 1; 2; � � � ;m. When the value function at time T � 1 is rewritten for the optimal

policy, we obtain

vT�1(i; x) =
X
j2E

Q(i; j)E[C(j) log(rfx+R
e(i)0�(i)rf (i)x) +K(j)]

= QC(i) log(x) +QC(i)
�
log(rf (i)) + E

�
log(1 +Re(i)0�(i))

��
+QK(i)

= CT�1(i) log(x) +KT�1(i)

and the value function is still logarithmic like the utility function and CT�1(i) is positive

for all values of i: This completes the proof for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(i; x; u) =
X
j2E

Q(i; j)E[vn(j; rf (i)x+R
e(i)0u)]

= QCn (i)E[log(rf (i)x+R
e(i)0u)] +QKn(i): (2.84)

One can easily see that the Hessian matrix of gn�1(i; x; u) is negative semi-de�nite as for

gT�1(i; x; u): Letting u�n�1(i; x) be the optimal policy such that

vn�1(i; x) = max
u
gn�1(i; x; u) = gn�1(i; x; u

�):

If we take the derivative of gn�1(i; x; u) with respect to uk and set it equal to 0, we get the

optimality condition

E

�
Rek(i)

rf (i)x+Re(i)0u�(i; x)

�
= 0: (2.85)

Letting �(i; x) = u�n�1(i; x)=rf (i)x we obtain u
�
n�1(i; x) = �(i; x)rf (i)x and

E

�
Rek(i)

1 +Re(i)0�(i; x)

�
= 0

where �n�1(i; x) does not depend on the period and on x as in equation (2.50) so that we

can write �n�1(i; x) = �(i) and we can write the optimal policy as u�(i; x) = �(i)rf (i)x

where �(i) satis�es

E

�
Rek(i)

1 +Re(i)0�(i)

�
= 0 (2.86)

for all k = 1; 2; � � � ;m. If we insert the optimal policy in the value function, we can see that

vn�1(i; x) =
X
j2E

Q(i; j)E[C(j) log(rf (i)x+R
e(i)0�(i)rf (i)x) +Kn(j)]

= QCn(i) log(x) +QCn(i)(log(rf (i)) + E
�
log(1 +Re(i)0�(i))

�
) +QKn(i)

= Cn�1(i) log(x) +Kn�1(i)
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and this completes the proof.

In this special case with � = 0; it is clear that the optimal policy in (2.78) is myopic

since there is no dependence on n. At any time n, the total amount of money invested in

the risky assets depends only on the market state i and wealth x. Since the total risky

investment is 10u�n(i; x) = 1
0�(i)rf (i)x; it follows that rf (i)

Pm
k=1 �k(i) is the proportion of

total wealth that is invested in the risky assets if the market is in state i. Moreover, as in

the general logarithmic case, the composition of the risky portfolio (2.53) also depends only

on the market state i independent of the available wealth x.

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rf (Yn)Xn +R
e(Yn)

0u�(Yn; Xn)

= Xnrf (Yn) (1 +A(Yn)) = XnB(Yn)

where B(i) = rf (i) (1 +A(i)) : Clearly, the solution is

Xn = X0

n�1Y
k=0

B(Yk) (2.87)

for n � 1; and this simple structure can be exploited to analyze the terminal wealth XT : In

particular, given X0 = x0

Ei[XT ] = x0 (1 + Ei [CT (b (Y0)� 1; b (Y1)� 1; � � � ; b (YT�1)� 1)]) = x0QT�1g g (i) (2.88)

where b(i) = rf (i) (1 + a(i)) and g (i) = b (i)� 1: The second moment is

Ei[X
2
T ] = x

2
0 (1 + Ei [CT (b2 (Y0)� 1; b2 (Y1)� 1; � � � ; b2 (YT�1)� 1)]) = x20QT�1f f (i)

(2.89)

where b2(i) = rf (i)2E[(1 +A(i))
2] = rf (i)

2(1+2a(i)+ s(i)), f (i) = b2 (i)�1 and Vari(XT )

is the di¤erence of (2.89) and the square of (2.88).

The log-return at the terminal time T is

ln (XT =X0) =
T�1X
k=0

ln(B(Yk))

so that the mean is

Ei [ln (XT =X0)] =

T�1X
k=0

Qk(i; j)E [ln(B(j))] =
T�1X
k=0

Qk(i; j) (ln (rf (j)) + E [ln(1 +A(j))])
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which can be determined using the distributions of fA (i) = Re(i)0� (i)g: The simple struc-

ture of (2.87) can be exploited to determine various quantities of interest associated with

the terminal wealth.

2.3 Power Utility Function

Suppose that the utility function is the power function

U(i; x) = K (i) + C (i)
(x� �)


(2.90)

and Pratt-Arrow ratio can be calculated as r(x) = (1 � )= (x� �) for all i so that b =

1=(1 � ) and a = �=( � 1) in Table 1.1. In this chapter, we assume that the utility

function (2.90) is well-de�ned for all possible values of x: For example, if (x� �) < 0 is

possible, then we exclude  = 1=2 in our analysis. If we need to include these values of ;

we can de�ne the utility function to be �1 whenever (2.90) is not well-de�ned and make

appropriate assumptions on excess returns fRe (i)g as in Section 2.2. For U(i; x) to be

a legitimate utility function some additional restrictions may be imposed, but we do not

dwell with such technical issues here. Note that  and � is the same for all market states so

that risk classi�cation of the investor does not depend on the stochastic market. Similarly,

we assume that the return for the riskless asset is the same for all market states so that

rf (i) = rf for all i.

We will �rst consider an optimization problem of the form

max
u
c0E

�
(Re0u� c)



�
(2.91)

where Re is any random vector. The gradient vector of the objection function g (u) is given

by

5kg (u) =
@g (u)

@uk
= c0E

h
Rek
�
Re0u� c

��1i
while the Hessian matrix is

52
k;lg (u) =

@2g (u)

@uk@ul
= ( � 1)c0E

h
RekR

e
l

�
Re0u� c

��2i
for all k; l.

The �rst order optimality condition to �nd the optimal solution of (2.91) is obtained by

setting the gradient vector equal to zero so that

E
h
Rek
�
Re0u� c

��1i
= 0 (2.92)
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for all k = 1; 2; � � � ;m. Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are

real numbers. Then, one can see that

z0 52 g (u) z = ( � 1) c0E
h
(z1R

e
1 + z2R

e
2 + � � �+ zmRem)

2 �Re0u� c��2i : (2.93)

Throughout this chapter, we assume that the excess returns fRe (i)g and the parameters

of the utility function are such that there is always an optimal solution of (2.91) that satis�es

the �rst order conditions (2.92). Note that this requirement does not necessarily impose

concavity restriction on the objective function. We only require that the optimal solution

is at an interior point which satis�es the necessary conditions of optimality (2.92). Our

purpose is to identify the structure of the optimal policy and we will not dwell will these

technical details on optimization. This is of course an important issue and we do not intend

to undermine its signi�cance. We now consider some possible cases to illustrate how one can

approach this technical problem. If  � 2 is even, then the Hessian matrix 52g in (2.93) is

negative semi-de�nite provided that ( � 1) c0 � 0 and the optimal solution satis�es (2.92)

since we have an unconstrained concave maximization problem. If  � 2 is not even and

( � 1) c0 � 0, then the objective function is concave over the set

A(c) =
n
u : P

n�
Re0u� c

��2 � 0o = 1o (2.94)

and we need additional restrictions on the excess returns fRe (i)g ; like the existence of a

solution of the �rst order condition (2.92) in A(c) for all c. In case ( � 1) c0 � 0, it su¢ ces

to reverse the inequality in (2.94).

Theorem 4 Let the utility function of the investor be the power utility function (2.90) and

suppose that the riskless asset return does not depend on the market state. Then, the optimal

solution of the dynamic programming equation (1.10) is

vn(i; x) = Kn (i) + Cn(i)
(x� �n)



and the optimal portfolio is

u�n(i; x) = �(i)
�
rfx� �n+1

�
(2.95)

where

�n =
�

rT�nf

; Cn = Q̂
T�n
� C;Kn = Q

T�nK (2.96)
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and

Q̂�(i; j) = E
�
(rf
�
1 +Re(i)0�(i)

�
)
�
Q(i; j)

for all n = 0; 1; � � � ; T � 1; and �(i) satis�es

E
h
Rek(i)

�
1 +Re(i)0�(i)

��1i
= 0 (2.97)

for all assets k = 1; 2; � � � ;m and all i.

Proof. We will use dynamic programming for the proof of the theorem. We use induction

starting with the boundary condition vT (i; x) = K (i) + C (i) (x� �) = and obtain

gT�1(i; x; u) =
X
j2E

Q(i; j)E[U(j; rfx+R
e(i)0u)]

= QK (i) +
QC (i)E[(rfx+R

e(i)0u� �) ]


:

Let u� be the optimal amount of money that should be invested in the risky asset so that

vT�1(i; x) = max
u
gT�1(i; x; u) = gT�1(i; x; u

�):

One can see that gT�1(i; x; u) is in the form of (2.91) where c = �� rfx and c0 = QC(i)=.

Our assumption implies that the optimal policy can be found using the �rst order condition

E
�
Rek(i)(rfx+R

e(i)0u�T�1(i; x)� �)�1
�
= 0

for all k = 1; 2; � � � ;m:De�ning the vector function �(i; x) = (�1(i; x); �2(i; x); � � � ; �m(i; x))

such that �(i; x) = u�T�1(i; x)= (rfx� �) we obtain u�T�1(i; x) = �(i; x) (rfx� �) so that

the optimality condition can be rewritten as

E
�
Rek(i)(rfx+R

e(i)0�(i; x) (rfx� �)� �)�1
�
= 0

(rfx� �)�1E
�
Rek(i)(1 +R

e(i)0�(i; x))�1
�
= 0

or

E
�
Rek(i)(1 +R

e(i)0�(i; x))�1
�
= 0: (2.98)

Since (2.98) holds for every x we can say that � does not depend on x and �k(i; x) = �k(i)

for all k = 1; 2; � � � ;m. So, we can write the optimal policy as u�T�1(i; x) = �(i) (rfx� �)

where �(i) satis�es

E
h
Rek(i)

�
1 +Re(i)0�(i)

��1i
= 0
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for all k = 1; 2; � � � ;m. When the value function at time T � 1 is rewritten for the optimal

policy, we obtain

vT�1(i; x) = QK (i) +
QC (i)E[(rfx+R

e(i)0�(i) (rfx� �)� �) ]


= QK (i) +QC (i)

�
E [(rf (1 +R

e(i)0�(i))) ] (x� �=rf )



�
= QK (i) + Q̂�C (i)

(x� �=rf )



= KT�1 (i) + CT�1(i)

�
x� �T�1

�


and the value function is still a power function like the utility function. This follows by

noting thatKT�1 = QK and CT�1 = Q̂�C in (2.96). This completes the proof for n = T�1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(i; x; u) =
X
j2E

Q(i; j)E[vn(j; rfx+R
e(i)0u)]

= QKn (i) +
QCn (i)E[(rfx+R

e(i)0u� �n) ]


: (2.99)

Once again, the objective function gn�1(i; x; u) is in the form of (2.91) where c = �n � rfx

and c0 = QCn(i)=. Our assumption implies that the optimal policy can be found using

the �rst order condition

E
�
Rek(i)(rfx+R

e(i)0u�n�1(i; x)� �n)�1
�
= 0

and, letting �(i; x) = u�n�1(i; x)= (rfx� �n) or u�n�1(i; x) = �(i; x) (rfx� �n) ;we obtain

(rfx� �n)E
�
Rek(i)(1 +R

e(i)0�(i; x))�1
�
= 0

which implies

E
�
Rek(i)(1 +R

e(i)0�(i; x))�1
�
= 0

for all k = 1; 2; � � � ;m.: Since �(i; x) does not depend on the period n and on x as in equation

(2.98), we can write �(i; x) = �(i) and the optimal policy is u�n�1(i; x) = �(i) (rfx� �n)

where �(i) satis�es

E
�
Rek(i)(1 +R

e(i)0�(i))�1
�
= 0
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for all k = 1; 2; � � � ;m. If we insert the optimal policy in the value function, we can see that

vn�1(i; x) = QKn (i) +
QCn (i)E[(rfx+R

e(i)0�(i) (rfx� �n)� �n) ]


= QKn (i) +QCn (i)

�
E[(rf (1 +R

e(i)0�(i))) ] (x� �n=rf ))


�
= QKn (i) + Q̂�Cn (i)

�
x� �n�1

�


= Kn�1 (i) + Cn�1(i)

�
x� �T�1

�


and the value function is a power function. Note that the recursions Kn�1 = QKn and

Cn�1 = Q̂�Cn with boundary values KT = K and CT = C give the explicit solutions in

(2.96). This completes the proof.

Note that the wealth dynamics equation for the power utility function is not the same

as the wealth dynamics equation (2.54) for the logarithmic case since the structure of the

optimal policy in (2.47) and (2.95) are di¤erent where for the latter � has a minus sign.

However, using a similar analysis as in Section 2.2.1 we can easily determine

Ei [XT ] = r
T
f x0 +

�
� � rTf x0

�
m (i; T ) (2.100)

and

Vari (XT ) =
�
� � rTf x0

�2
v2 (i; T ) (2.101)

where

m (i; T ) = �Ei
�
CT
�
A
�
Y T�1

���
(2.102)

and

v2 (i; T ) = Vari
�
CT
�
A
�
Y T�1

���
: (2.103)

Likewise, similar interpretations can be made on the structure of the optimal policy. In

particular, the optimal policy is not myopic, but the risky composition of the portfolio is

both myopic and memoryless. Moreover, this composition only depends on the state of the

market. Although we obtain similar characterizations and interpretations, note that the

optimal policies for logarithmic and power cases are not identical since (2.49) and (2.97)

have di¤erent solutions. In particular, the solution of (2.97) clearly depends on the risk

aversion coe¢ cient :
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For the power utility case, (2.100) and (2.101) imply that we can also write

Ei [XT ] = r
T
f x0 +

�
m (i; T )

v (i; T )

�
SDi (XT ) (2.104)

to represent the power frontier with slope or risk premium m (i; T ) =v (i; T ) :

If  = 1; then the utility function (2.90) becomes linear and the investor tries to maximize

the expected terminal wealth. The optimal solution then is uninteresting and trivial since

the investor will invest an in�nite amount of money on the asset (including the riskless

asset) with the highest expected return in any market state.

More interestingly, when  = 2; the utility function (2.90) has a quadratic form. In

this case, the assumption is satis�ed and there is a unique solution satisfying the �rst order

condition (2.97), which simpli�es to

E [Re(i)] + E
�
Re(i)Re(i)0�(i)

�
= 0

and the optimal solution can be found explicitly as

�(i) = �V (i)�1re (i) (2.105)

where V (i) = E
�
Re(i)Re(i)0

�
= � (i) + re (i) re (i)0 is the matrix of second moments, and

re(i) = E [Re(i)] is the expected value of the return vector in state i. Furthermore, it follows

form (2.55) that A(i) = �Re(i)0V (i)�1re (i) which gives

a(i) = �E[Re(i)0V (i)�1re (i)] = �re(i)0V (i)�1re (i) (2.106)

and m2(i; T ) can be computed using (2.106) in (2.67) with g (i) = 1 � re (i)0 V (i)�1 re (i).

Note from (2.57) that

s(i) = � (i)0 V (i)� (i) = re(i)0V (i)�1V (i)V (i)�1re (i)] = re(i)0V (i)�1re (i) = �a(i)

and (2.68) becomes

Ei

h
CT
�
A
�
Y T�1

��2i
= Ei

�
CT (a

�
Y T�1

�
)
�
� 2Ei

�
CT
�
a
�
Y T�1

���
= �Ei

�
CT (a

�
Y T�1

�
)
�
= m2(i; T )

so that the variance term is

v22 (i; T ) = m2(i; T )�m2(i; T )
2 = m2(i; T )(1�m2(i; T )):
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Therefore, for the quadratic model with  = 2, we obtain the mean-variance e¢ cient frontier

using (2.104) given by the straight line

Ei [XT ] = r
T
f x0 +

 s
m2(i; T )

1�m2(i; T )

!
SDi(XT ) (2.107)

where the slope, or the risk premium, ism2(i; T )=v2(i; T ): Çakmak and Özekici [10] discussed

the mean-variance problem where the objective is to maximize the linear-quadratic objective

function Ei
�
�X2

T + �XT
�
parametrized by �:

When  = 3; (2.97) implies that the optimal � (i) satis�es E
h
Rek (i)

�
1 +Re (i)0 � (i)

�2i
=

0; or

E
�
Rek (i) + 2R

e
k (i)R

e (i)0 � (i) +Rek (i) (R
e (i)0 � (i))2

�
= 0 (2.108)

for all k = 1; 2; � � � ;m: This is a system of m quadratic equations with m unknowns which

can be solved using numerical methods. Note that the solution of (2.108) is not necessarily

unique, but the optimal value can be found by calculating the objective function one at this

point.

2.3.1 Quadratic Utility Function

Quadratic utility function is a special case of the power utility function where  = 2 and

� = ��=2!. Then, if C(i) = �2! and K(i) = �2=4!; the utility function (2.90) take the

linear quadratic form

U(i; x) = �!x2 + �x

which is the utility function of the auxiliary problem de�ned by Çakmak and Özekici [10].

They have found that the value functions for periods n = 1; 2; � � � ; T � 1 the value function

also has the linear quadratic form. In their study the risk free rate of return rf depends on

the market state. To compare our solution with theirs, if we take the risk-free return to be

same at all market conditions so that rf (i) = rf for quadratic optimization problem, then

one can show that

vn (i; x) = �
1

2
Cn (i)x

2 + �nCn (i)x+Kn (i) +
�2n
2
Cn (i) (2.109)

where Cn; �n; and Kn are as de�ned in Theorem 4 and the corresponding optimal policy is

un (i; x) =

"
1

2

�
�

!

�
1

rT�n�1f

� rf (i)x
#
V �1 (i) re (i) : (2.110)
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If we compare the solutions found by them and the solution of our power utility function

we see that they are the same for rf independent of the market condition. A strange

observation is that if rf is independent of the market condition then the optimal portfolio

policy only depends on the current market state - not on the market dynamics matrix Q.

Also if we check the e¢ cient frontier we see that for rf independent of market condition the

e¢ cient frontier is a linear line which cuts zero risk level at E [XT ] = rTf : The formula for

the e¢ cient frontier is found at section 2.1.1 at (2.107).

As a special case, suppose now that the utility function is the CRRA (constant relative

risk aversion) function with � = 0 so that

U(i; x) =
C (i)


x +K (i) (2.111)

We can easily see that �U 0(i; x)=U 00(i; x) = (1 � )x. We remove the restriction that

rf (i) = rf and the riskless return depends on the market state.

2.3.2 CRRA Utility Function

As a special case, suppose now that the utility function is the CRRA (constant relative risk

aversion) function with � = 0 so that

U(i; x) = K (i) + C (i)

�
x



�
(2.112)

We can easily see that r(x) = (1�)=x where a = 0; b = 1=(1�). in Table 1.1. We remove

the restriction that rf (i) = rf and the riskless return depends on the market state.

Theorem 5 Let the utility function of the investor be the CRRA function (2.112). Then,

the optimal solution of the dynamic programming equation (1.10) is

vn(i; x) =
Cn(i)


x +Kn (i)

and the optimal portfolio is

u�n(i; x) = �(i)rf (i)x (2.113)

where

Kn = Q
T�nK; Cn = Q

T�nC (2.114)

and

Q̂(i; j) = Q(i; j)rf (i)
E
�
(1 +Re(i)0�(i))

�
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for all n = 0; 1; � � � ; T � 1; and �(i) satis�es

E
h
Rek(i)

�
1 +Re(i)0�(i)

��1i
= 0 (2.115)

for all assets k = 1; 2; � � � ;m independent of period n and all i:

Proof. We use induction starting with the boundary condition VT (i; x) = C (i) (x)
 = +

K (i). and obtain

gT�1(i; x; u) =
X
j2E

Q(i; j)E[U(j; rf (i)x+R
e(i)0u)]

= QC (i)E[(rf (i)x+R
e(i)0u) ]= +QK (i) =

where

(rf (i)x+R
e(i)0u) > 0

for all available investment strategies. Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of

money that should be invested in the risky asset so that

vT�1(i; x) = max
u
gT�1(i; x; u) = gT�1(i; x; u

�):

Taking the derivative of gT�1 with respect to uk we obtain the gradient vector with entries

rkgT�1(i; x; u) =
@gT�1(i; x; u)

@uk
= QC (i)E

�
(rf (i)x+R

e(i)0u(i; x))�1Rek(i)
�

(2.116)

for all k and if we take the second derivatives of gT�1, we can �nd the Hessian matrix as

with entries

r2kgT�1(i; x; u) =
@2gT�1(i; x; u)

@uk@ul

= QC(i) ( � 1)E
�
(rf (i)x+R

e(i)0u(i; x))�2Rek(i)R
e
l (i)
�
:

Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then one

can see that zTH (i) z is equal to

QC(i) ( � 1)E
h
(z1R

e
1 (i) + z2R

e
2 (i) + � � �+ zmRem (i))

2 (rf (i)x+R
e(i)0u(i; x))�1

i
which is always negative since all C (i) ( � 1) are negative and (rf (i)x + Re(i)0u(i; x))

is positive. Thus, H (i) is negative semi-de�nite and we can �nd the optimal solution by

setting the gradient 2.116 equal to zero to obtain the optimality condition

E
�
(rf (i)x+R

e(i)0u� + �)�1Rek(i)
�
= 0
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for any asset k = 1; 2; � � � ;m: De�ning the vector function �(i; x) = (�1(i; x); � � � ; �m(i; x))

such that �(i; x) = u�(i; x)=rf (i)x we obtain u�(i; x) = rf (i)x�(i; x) so the optimality

condition can be rewritten as

E
�
(rfx+R

e(i)0�(i; x)rf (i)x)
�1Rek(i)

�
= 0

(rf (i)x)
�1E

�
(1 +Re(i)0�(i; x))�1Rek(i)

�
= 0 (2.117)

and since rf (i)x 6= 0, we have

E
�
(1 +Re(i)0�(i; x))�1Rek(i)

�
= 0: (2.118)

Since the equation (2.118) holds for every x we can say that � does not depend on x which

can be concluded as d�k(i; x)=dx = 0 for all k = 1; 2; � � � ;m. So we can write the optimal

policy as u�(i; x) = �(i)rf (i)x where �(i) satis�es

E
h
Rek(i)

�
1 +Re(i)0�(i)

��1i
= 0 (2.119)

for all k = 1; 2; � � � ;m. When the value function at time T � 1 is rewritten for the optimal

policy, we obtain

vT�1(i; x) =
X
j2E

Q(i; j)E

�
C (j)


(rf (i)x+R

e(i)0�(i)rfx)
 +K (j)

�

= QC (i)
rf (i)

 E [(1 +Re(i)0�(i)) ]


x +QK (i)

= CT�1(i)
x


+KT�1 (i) (2.120)

and the value function is still power function like the utility function and CT�1(i) has the

same sign with C (i) for all values of i: This completes the proof for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(i; x; u) =
X
j2E

Q(i; j)E[vn(j; rf (i)x+R
e(i)0u)]

= QCn (i)E[(rf (i)x+R
e(i)0u) ]= +QKn (i) = (2.121)

One can easily see that the Hessian matrix gn�1(i; x; u) is positive de�nite as for gT�1(i; x; u).

Letting u�n�1(i; x) be the optimal policy such that

vn�1(i; x) = max
u
gn�1(i; x; u) = gn�1(i; x; u

�):
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If we take the derivative of gn�1 (i; x; u) with respect to uk and set it equal to 0, we get the

optimality condition

E
�
(rf (i)x+R

e(i)0u�(i; x))�1Rek(i)
�
= 0 (2.122)

and letting �(i; x) = u�n�1(i; x)=rf (i)x we obtain u
�
n�1(i; x) = �(i; x)rf (i)x and

(rf (i)x)
 E

�
(1 +Re(i)0�(i; x))�1Rek(i)

�
= 0

for all k where �(i; x) does not depend on the period and on x as in equation (2.118) so that

we can write �(i; x) = �(i) and we can write the optimal policy as u�(i; x) = �(i)rf (i)x

where �(i) satis�es

E
�
(1 +Re(i)0�(i; x))�1Rek(i)

�
= 0 (2.123)

for all k = 1; 2; � � � ;m. If we insert the optimal policy in the value function, we can see that

vn�1(i; x) =
X
j2E

Q(i; j)E

�
Ck(j)


(rf (i)x+R

e(i)0�(i)rf (i)x)


�
+
X
j2E

Q(i; j)Kn (j)

= QCk(i)rf (i)
 E[(1 +Re(i)0�(i)) ]

x


+QKn (i)

=
Cn�1(i)


x +Kn�1 (i)

and this completes the proof.

Note that the structure of the optimal policy (2.113) is identical to (2.78). Therefore, the

results and interpretations presented for the simple logarithmic case also hold. The optimal

policies are of course di¤erent since the solutions of (2.79) and (2.115) are not identical.

2.4 Illustrations for Discrete Time

In this section three di¤erent illustrations for

2.4.1 Example 1

Consider a market with three risky assets and one riskless asset where the returns of the risky

assets follow the multivariate normal distribution. Assume that the market is modulated

by a Markov chain that has four states. Suppose the return of the riskless asset and the

expected return of each risky asset for each state are as given in the following table.



Chapter 2: MODELS WITH PERFECT INFORMATION 52

i rf �1(i) �2(i) �3(i)

1 1.0028 0.9162 0.8558 0.8751

2 1.0028 0.9690 0.9970 0.9691

3 1.0028 1.0318 1.0668 1.0802

4 1.0028 1.1160 1.1704 1.1297

Assume further that the covariance matrix for each state is given as follows

�(1) =

26664
2:927 �0:513 �0:361

�0:513 8:979 1:304

�0:361 1:304 4:365

37775 ; �(2) =
26664

9:762 �2:506 �1:553

�2:506 9:461 �2:309

�1:553 �2:309 6:649

37775

�(3) =

26664
12:641 �3:664 �3:492

�3:664 14:714 8:258

�3:492 8:258 15:136

37775 ; �(4) =
26664
8:202 3:119 2:282

3:119 18:438 5:821

2:282 5:821 10:355

37775 :
Note that these values are obtained by multiplying the actual values by 1,000 to simplify

the values. The expected returns and covariance matrices are estimated using data obtained

during October 1997 to October 2002 from monthly return information of three assets (IBM,

Dell and Microsoft) traded in New York Stock Exchange; and yield information of 3-month

US treasury bonds where the expected return for the bonds at all market states are assumed

to be constant. The states of the Markov chain are classi�ed according to the number of

assets whose values increased in a given period. If the values of all three assets increase in

a given period the state for this period is taken to be 4, if the values of exactly two assets

increase the state for this period is assumed to be 3, and so on. Using the historical data

the transition probability matrix Q of the Markov chain is obtained as

Q =

26666664
0:23 0:18 0:12 0:47

0:23 0:23 0:08 0:46

0:30 0 0:30 0:40

0:37 0:37 0:21 0:05

37777775 :

We consider the problem of an investor whose current wealth is x0 = 1 and who wants

to maximize the expected value of terminal utility where he has an exponential utility

function and the time horizon is T = 4 periods. We calculated both the exponential and
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mean-variance e¢ cient frontiers. Numerical values m (i; T ) ; v(i; T ); and c (i; T ) are found

to be

m (i; T ) =
h
19:601 11:724 12:050 13:885

i
v (i; T ) =

h
12:955 18:367 19:230 18:144

i
c(i; T ) =

h
0:0045 0:0304 0:0232 0:0134

i
and the slopes, or the risk premiums, are

m (i; T )

v(i; T )
=
h
1:5130 0:6383 0:6266 0:7653

i
p
1� c(i; T )p
c(i; T )

=
h
14:8884 5:6453 6:4876 8:5648

i
:

As expected, the risk premiums for the mean-variance frontier are higher. The exponential

frontier and the e¢ cient frontier faced by an investor at time zero is given in Figure 2.1 for

Y0 = 1:

In order to determine the optimal portfolio, we �rst compute

�(i) =

26664
�35:5436 �5:7427 4:3883 9:8410

�14:3492 �4:0410 2:8887 5:1560

�27:9083 �7:8131 4:5500 7:1878

37775
which implies that it is optimal to short sell the risky assets in market state 1 while just

the opposite is true in state 4. By the way that the market states are classi�ed, the market

becomes more attractive to invest in the risky assets as its state increases from 1 to 4.

This is clearly re�ected in the optimal portfolio since the investment amounts increase from

negative (shortselling) to positive values. Furthermore, the proportions of the risky assets

in the risky part of the portfolio are

w(i) =

26664
0:46 0:33 0:37 0:44

0:18 0:23 0:24 0:23

0:36 0:44 0:39 0:33

37775
obtained by normalizing �(i) values. The exact amounts to be invested can easily be

determined using (2.37) by simply multiplying the �(i) values by the discounted value of �:
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Illustrations for Power Utility

We address the computational issues and demonstrate how our results can be put to work

by considering a numerical example for the power utility case. The numerical case is the

same as the one used in Section 2.4.1. We consider the problem of an investor whose current

wealth is x0 = 1 and who wants to maximize the expected value of terminal utility where

he has an power utility function with  = 3 and the time horizon is T = 4 periods. Here,

since the returns are multivariate normal, the excess returns are also multivariate normal.

For any multivariate normal vector (X1; X2; � � � ; Xn) with mean vector � and correlation

matrix � we can write

E [XiXj ] = �ij + �i�j (2.124)

and

E [XiXjXk] = �ij�k + �jk�i + �ik�j + �i�j�k: (2.125)

Note that (2.124) follows trivially and (2.125) is obtained using the fact that

E
h
(X1 � �1)k1 (X2 � �2)k2 � � � (Xn � �n)kn

i
= 0

if k1+k2+ � � �+kn is odd. It su¢ ces to take k1 = k2 = k3 = 1 in our case with n = 3 assets:

Using (2.124) and (2.125) with (2.108) we determined the optimal � (i) values numerically

using MATLAB. The optimal solution is

�(i) =

26664
�27:41 �6:96

�21:46 �3:04

�36:34 �7:15

2:58 6:96

1:53 7:66

6:13 10:23

37775
which implies that it is optimal to shortsell the risky assets in market state 1 while just the

opposite is true in state 4. By the way that the market states are classi�ed, the market

becomes more attractive to invest in the risky assets as its state increases from 1 to 4.

This is clearly re�ected in the optimal portfolio since the investment amounts increase from

negative (shortselling) to positive values. Furthermore, the proportions of the risky assets

in the risky part of the portfolio are

w(i) =

26664
0:32 0:40 0:25 0:28

0:25 0:18 0:15 0:31

0:43 0:42 0:60 0:41

37775
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obtained by normalizing �(i) values. The exact amounts to be invested can easily be

determined using (2.95) by simply multiplying the �(i) values by the discounted value of �:

We determined the power frontier (2.104) with  = 3 using the coe¢ cients m3 (i; T ) and

v3(i; T ), and the explicit formulas (2.67) and (2.70). Note that the mean-variance e¢ cient

frontier is also the power frontier with the quadratic utility function with  = 2: Numerical

values are

m3 (i; T ) =
h
0:9978 0:9561 0:9431 0:9750

i
v3 (i; T ) =

h
0:1473 0:2048 0:2316 0:1561

i
m2 (i; T ) =

h
0:9955 0:9696 0:9768 0:9866

i
v2 (i; T ) =

h
0:0669 0:1717 0:1506 0:1152

i
me (i; T ) =

h
19:601 11:724 12:050 13:885

i
ve (i; T ) =

h
12:955 18:367 19:230 18:144

i
and the slopes, or the risk premiums, are

m3 (i; T ) =v3(i; T ) =
h
6:7739 4:6688 4:0724 6:2481

i
m2 (i; T ) =v2(i; T ) =

h
14:8884 5:6453 6:4876 8:5648

i
me (i; T ) =ve(i; T ) =

h
1:5130 0:6383 0:6266 0:7653

i
:

The exponential frontier, the e¢ cient frontier and the power frontier for  = 3 faced by an

investor at time zero is given in Figure 2.1 for Y0 = 4:

Investors with quadratic, logarithmic, and power (with  = 3) utility functions will have

di¤ering risk preferences measured by � in their utility functions. The return and risk of

the terminal wealth for these investors will be on the respective frontier in Figure 2.1. The

slopes measure the risk premiums and, as expected, the risk premiums for the mean-variance

frontier are highest.



Chapter 2: MODELS WITH PERFECT INFORMATION 56

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 103

1.01

1.012

1.014

1.016

1.018

1.02

1.022

1.024

Standard  Deviation SDi[XT]

M
ea

n
E i[X

T]

Efficient Frontier
Power Frontier γ=3
Exponential Frontier

Figure 2.1: E¢ cient and Exponential Frontiers for i = 4; T = 4

2.4.2 Example 2

Exponential Utility

Consider a market with three risky assets and one riskless asset where the returns of

the risky assets follow the multivariate normal distribution. Assume that the market is

modulated by a Markov chain that has four states. Suppose the return of the riskless asset

and the expected return of each risky asset for each state are as given in the following table.

i rf �1(i) �2(i) �3(i)

1 1.0008 1.0105 1.0094 0.9997

2 1.0008 1.0071 1.0097 1.0061

3 1.0008 1.0039 1.0114 1.0052

4 1.0008 1.0010 1.0038 0.9994
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Assume further that the covariance matrix for each state is given as follows

�(1) =

26664
2:408 1:797 0:602

1:797 5:952 0:676

0:602 0:676 1:883

37775 ; �(2) =
26664
2:046 1:310 0:542

1:310 4:855 0:906

0:542 0:906 1:657

37775

�(3) =

26664
2:109 1:417 1:074

1:417 4:663 1:169

1:074 1:169 1:982

37775 ; �(4) =
26664
1:738 1:353 0:445

1:353 4:375 0:494

0:445 0:494 1:499

37775 :
Note that these values are obtained by multiplying the actual numbers by 1,000 for simpli-

�cation. The expected returns and covariance matrices are estimated using data obtained

during January 1991 to December 2006 from weekly return information of three assets

(IBM, Dell and Microsoft) traded in New York Stock Exchange; and the daily e¤ective

federal funds rate. The states of the market are classi�ed by considering whether the SP500

index went up or down during the previous 2 weeks. Therefore, there are 4 states labeled as

1 � (down, down), 2 � (down, up), 3 � (up, down), and 4 � (up, up). The weekly interest

rates for all states were approximately equal to 0.08% and our assumption is satis�ed. Using

the historical data the transition probability matrix Q of the Markov chain is obtained as

Q =

26666664
0:410 0 0:590 0

0:388 0 0:612 0

0 0:445 0 0:555

0 0:492 0 0:508

37777775 :

We consider the problem of an investor whose current wealth is x0 = 1 and who wants

to maximize the expected value of terminal utility where he has an exponential utility

function and the time horizon is T = 4 periods. We calculated both the exponential and

mean-variance e¢ cient frontiers. Numerical values m (i; T ) ; v(i; T ); and c (i; T ) are found

to be

m (i; T ) =
h
0:1304 0:1138 0:0925 0:0725

i
v (i; T ) =

h
0:3716 0:3519 0:3143 0:2868

i
c(i; T ) =

h
0:8803 0:8945 0:9134 0:9315

i
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Figure 2.2: E¢ cient and Exponential Frontiers for i = 1; T = 4

and the slopes, or the risk premiums, are

m (i; T )

v(i; T )
=
h
0:3509 0:3234 0:2942 0:2530

i
s
1� c(i; T )
c(i; T )

=
h
0:3687 0:3434 0:3080 0:2712

i
:

As expected, the risk premiums for the mean-variance frontier are higher. The exponential

frontier and the e¢ cient frontier faced by an investor at time zero is given in Figure 2.2 for

Y0 = 1:

In order to determine the optimal portfolio, we �rst compute

�(i) =

26664
4:2455 1:9527 �0:6093 �0:2846

0:4107 0:9175 2:1325 0:9073

�2:1075 2:0552 1:2760 �1:1765

37775
and, furthermore, the proportions of the risky assets in the risky part of the portfolio are

w(i) =

26664
1:67 0:40 �0:22 0:51

0:16 0:19 0:76 �1:64

�0:83 0:42 0:46 2:12

37775
obtained by normalizing �(i) values. The exact amounts to be invested can easily be

determined using (2.37) by simply multiplying the �(i) values by the discounted value of �:
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Note that the total amount invested in the risky assets is positive for state 1� (down, down),

while it is negative for state 4 � (up, up). This implies that shortselling stocks 1 and 3 is

optimal if the index increased in the previous two weeks while no stock is sold short in state

2 � (down, up). These results clearly indicate that the composition of the risky portfolio

depends very much on the market state. While it is optimal to shortsell the third stock in

favor of the �rst one in state 1 � (down, down), it is optimal to shortsell the second stock

in favor of the third one in state 4 � (up, up).

Other HARA Cases

In this section, we address the computational issues and demonstrate how our results can

be put to work by considering a numerical illustration for the logarithmic, power ( = 0:5; 2

(quadratic); and 4) cases. Consider a market with three risky assets and one riskless asset

where the returns of the risky assets follow an arbitrary multivariate distribution. The

illustration is based on data obtained during January 1991 to December 2006 from weekly

return information of three assets (IBM, Dell and Microsoft) traded in New York Stock

Exchange; and the daily e¤ective federal funds rate. The states of the market are classi�ed

by considering whether the SP500 index went up or down during the previous 2 weeks.

Therefore, there are 4 states labeled as 1 � (down, down), 2 � (down, up), 3 � (up, down),

and 4 � (up, up). The weekly interest rates for all states were approximately equal to 0.08%

and our assumption is satis�ed. Using historical data the transition probability matrix Q

of the Markov chain is obtained as

Q =

26666664
0:410 0 0:590 0

0:388 0 0:612 0

0 0:445 0 0:555

0 0:494 0 0:506

37777775 :

The return of the riskless asset and the expected return of each risky asset for each state

are

i rf �1(i) �2(i) �3(i)

1 1.0008 1.0105 1.0096 0.9995

2 1.0008 1.0071 1.0097 1.0061

3 1.0008 1.0039 1.0114 1.0052

4 1.0008 1.0011 1.0033 0.9990
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and the covariance matrices for each state are

�(1) =

26664
2:425 1:809 0:607

1:809 5:990 0:684

0:607 0:684 1:893

37775 ; �(2) =
26664
2:046 1:310 0:542

1:310 4:855 0:906

0:542 0:906 1:657

37775

�(3) =

26664
2:109 1:417 1:074

1:417 4:663 1:169

1:074 1:169 1:982

37775 ; �(4) =
26664
1:607 1:229 0:430

1:229 4:556 0:486

0:430 0:486 1:446

37775 :
Note that these values are obtained by multiplying the actual numbers by 1,000 for simpli-

�cation.

We consider the problem of investors with initial wealth x0 = 1 who want to maximize

the expected utility of terminal wealth. We consider cases with logarithmic, power ( = 0:5;

2 and 4) and exponential utility functions where the time horizon is T = 4 periods.

It is di¢ cult to calculate optimal � values numerically for an arbitrary distribution us-

ing (2.49), (2.6) and (2.40). Our approach is to use Taylor series expansion of the utility

function around the expected value �W = E [W ] of the terminal wealth W = XT . The

reader is referred to Jondeau and Rockinger [37] for a detailed discussion on the bene�ts,

advantages and disadvantages of using Taylor series expansion in optimal portfolio alloca-

tion. In particular, they give a convincing argument for using the �rst 4 moments in the

approximation. When we checked our data we recognized that the return distributions have

non-zero skewness and excess kurtosis, so we decided to use the �rst four moments. Taylor

series expansion is

U (W ) =

+1X
j=0

U (j)
�
�W
� �W � �W

�j
j!

where U (j)
�
�W
�
is the jth derivative of the utility function at �W . Taking expectations we

can write

E [U (W )] = U
�
�W
�
+
1

2!
U (2)

�
�W
�
�2p +

1

3!
U (3)

�
�W
�
�3p +

1

4!
U (4)

�
�W
�
�4p + E

�
R4
�
W; �W

��
(2.126)

where R4
�
W; �W

�
is the remainder for the �rst 4 moments and �np is the nth moment of the

portfolio de�ned as

�np = E
��
W � �W

�n�
:
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Using the de�nitions in Jondeau and Rockinger [37] for any market state, the second moment

can be expressed as

�2p = �
0M2�

where M2 = � is the covariance matrix. Similarly,

�3p = �
0M3 (�
 �)

where 
 is the Kronecker product, and M3 is the 3� 9 co-skewness matrix de�ned as

M3 =

26664
s111 s112 s113

s121 s122 s123

s131 s132 s133

���������
s211 s212 s213

s221 s222 s223

s231 s232 s233

���������
s311 s312 s313

s321 s322 s323

s331 s332 s333

37775
with

sijk = E
�
(Ri � �i)

�
Rj � �j

�
(Rk � �k)

�
for i; j; k = 1; 2; 3. Finally,

�4p = �
0M4 (�
 �
 �)

where M4 is the 3� 27 co-kurtosis matrix with elements

kijkl = E
�
(Ri � �i)

�
Rj � �j

�
(Rk � �k) (Rl � �l)

�
for i; j; k; l = 1; 2; 3.

For the logarithmic utility function U (x) = log (x) ; we can write (2.126) as

E [U (W )] �= log
�
�W
�
� 1

2 �W 2
�2p +

1

3 �W 3
�3p �

1

4 �W 4
�4p:

According to [42], Taylor series for power and logarithmic functions converge for 0 < W <

2 �W and we suppose that this is indeed the case here. For the logarithmic utility case

in Theorem 2, the optimal policy � has the same solution for the maximization problem

maxE
h
log
�
1 +Re

0
� (i)

�i
. Therefore, it su¢ ces to take W = 1+Re0� in the Taylor series

expansion (2.126). If we check our data, both covariances and expected excess returns are

in the order of 0:01: So, for W =
�
1 +Re

0
� (i)

�
, we can suppose that 0 < W < 2 �W and

the series converges most of the time. We can therefore use the Taylor series expansion

E
h
U
�
1 +Re

0
�
�i
�= log

�
1 + re

0
�
�
� 1

2 (1 + re0�)
2�

2
p +

1

3 (1 + re0�)
3�

3
p �

1

4 (1 + re0�)
4�

4
p:

(2.127)
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If we take the gradient of (2.127) with respect to �, and set it equal to zero, we �nd the

�rst order condition

re

(1 + re0�)
+

re

(1 + re0�)
3�

2
p �

re

(1 + re0�)
4�

3
p +

re

(1 + re0�)
5�

4
p

� 1

(1 + re0�)
2M2�+

1

(1 + re0�)
3M3 (�
 �)�

1

(1 + re0�)
4M4 (�
 �
 �) = 0:

We determined the optimal � values numerically using MATLAB for each market state

and the optimal solution is

�l =

26664
4:258 1:968 �0:590 0:033

0:528 0:931 2:069 0:771

�2:196 2:053 1:406 �1:469

37775
where the rows correspond to 3 assets and the columns correspond to 4 market states.

Furthermore, the proportions of the risky assets in the risky part of the portfolio are

wl =

26664
1:644 0:397 �0:205 �0:050

0:203 0:188 0:717 �1:161

�0:847 0:415 0:488 2:211

37775
obtained by normalizing � values. The exact amounts to be invested can easily be deter-

mined using (2.37) by simply multiplying the � values by the discounted value of �:

When we make a similar analysis through Taylor series approximation (2.126) for the

power utility function U (x) = x0:5; we obtain

E
h
U
�
1 +Re

0
�
�i

�=
�
1 + re

0
�
�0:5

� 1
8

�
1 + re

0
�
��1:5

�2p +
3

48

�
1 + re

0
�
��2:5

�3p

� 15

384

�
1 + re

0
�
��3:5

�4p (2.128)

which give the optimality condition

1

2
re
�
1 + re

0
�
��0:5

+
3

16
re
�
1 + re

0
�
��2:5

�2p �
1

4

�
1 + re

0
�
��1:5

M2�

�15
96
re
�
1 + re

0
�
��3:5

�3p +
9

48

�
1 + re

0
�
��2:5

M3 (�
 �)

+
105

768

�
1 + re

0
�
��4:5

�4p �
15

96

�
1 + re

0
�
��3:5

M4 (�
 �
 �) = 0

by setting the gradient of (2.128) equal to zero.

The optimal � values are computed numerically using MATLAB so that
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�0:5 =

26664
7:886 3:655 �1:092 0:116

1:115 1:785 3:874 1:486

�4:031 3:789 2:809 �2:859

37775 :
For the power utility function U (x) = x2 case, Taylor series expansion (2.126) is exact

with

E
h
U
�
1 +Re

0
�
�i
=
�
1 + re

0
�
�2
+ �2p

which now gives the optimality condition

2re
�
1 + re

0
�
�
+ 2M2� = 0

or

� = �V �1re

which is equal to (2.105) since V =M2 + r
ere0. The optimal solution is

�2 =

26664
�4:032 �1:893 0:594 0:022

�0:431 �0:893 �2:075 �0:803

2:090 �1:990 �1:244 1:481

37775 :
For the power utility function U (x) = x4; we can write

E
h
U
�
1 +Re

0
�
�i
=
�
1 + re

0
�
�4
+ 6

�
1 + re

0
�
�2
�2p + 4

�
1 + re

0
�
�
�3p + �

4
p

and, by taking the gradient, the �rst order conditions are

4re
�
1 + re

0
�
�3
+ 12re

�
1 + re

0
�
�
�2p + 12

�
1 + re

0
�
�2
M2�+

12re�3p + 12
�
1 + re

0
�
�
M3 (�
 �) + 4M4 (�
 �
 �) = 0:

We determined the optimal � values numerically using MATLAB. The optimal solution is

�4 =

26664
�0:727 �0:334 0:103 0:002

�0:076 �0:156 �0:360 �0:133

0:377 �0:352 �0:218 0:249

37775 :
For the exponential utility function U (x) = exp (�x) ; the Taylor series approximation

becomes

E
h
U
�
1 +Re

0
�
�i
�= exp

�
�
�
1 + re

0
�
���

1 +
1

2
�2p +�

1

6
�3p +

1

24
�4p

�
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and the optimality condition is

exp
�
�
�
1 + re

0
�
��
� re

�
1 +

1

2
�2p �

1

6
�3p +

1

24
�4p

�
+M2��

1

2
M3 (�
 �) +

1

6
M4 (�
 �
 �)

�
= 0

or

�re
�
1 +

1

2
�2p �

1

6
�3p +

1

24
�4p

�
+M2��

1

2
M3 (�
 �) +

1

6
M4 (�
 �
 �) = 0:

Using MATLAB, the optimal solution is

�e =

26664
4:409 2:031 �0:615 0:005

0:474 0:940 2:144 0:791

�2:292 2:133 1:352 �1:489

37775 :
We determined the logarithmic frontier, power frontier (2.104) with  = 0:5, 2, and 4,

and the exponential frontier using the explicit formulas (2.67), (2.70), (2.21), (2.22), (2.102),

and (2.103). Note that the mean-variance e¢ cient frontier is also the power frontier with

the quadratic utility function with  = 2: Numerical values are computed to be

ml (i; T ) =
h
0:140 0:121 0:097 0:076

i
vl (i; T ) =

h
0:418 0:383 0:338 0:294

i
m0:5 (i; T ) =

h
0:276 0:236 0:189 0:147

i
v0:5 (i; T ) =

h
0:906 0:817 0:709 0:603

i
m2 (i; T ) =

h
0:120 0:106 0:087 0:069

i
v2 (i; T ) =

h
0:326 0:308 0:282 0:254

i
m4 (i; T ) =

h
0:022 0:019 0:016 0:012

i
v4 (i; T ) =

h
0:061 0:057 0:051 0:046

i
me (i; T ) =

h
0:137 0:118 0:096 0:076

i
ve (i; T ) =

h
0:387 0:365 0:324 0:297

i
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Figure 2.3: HARA frontiers for i = 1; T = 4

and the slopes, or the risk premiums, are

ml (i; T ) =vl(i; T ) =
h
0:336 0:316 0:287 0:258

i
m0:5 (i; T ) =v0:5(i; T ) =

h
0:305 0:289 0:267 0:244

i
m2 (i; T ) =v2(i; T ) =

h
0:371 0:344 0:309 0:273

i
m4 (i; T ) =v4(i; T ) =

h
0:364 0:339 0:305 0:270

i
me (i; T ) =ve(i; T ) =

h
0:352 0:324 0:294 0:254

i
:

Investors with di¤erent utility functions will have di¤ering risk preferences measured by

� in their utility functions. The return and risk of the terminal wealth for these investors

will be on the respective frontier in Figure 2.3. The slopes measure the risk premiums and,

as expected, the risk premiums for the mean-variance frontier are highest.

We considered the exponential utility case and obtained the exponential frontier by

solving the optimality condition (2.6) directly under the assumption that the asset returns

follow a multivariate normal distribution. They obtained the frontier to be

me (i; T ) =ve (i; T ) =
h
0:353 0:324 0:295 0:255

i
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which is very close to our approximate values. However, note that Taylor series approxima-

tion does not require knowledge on the asset return distributions.
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Chapter 3

MODELS WITH IMPERFECT INFORMATION

In this chapter, the market still depends on the environment driven by a Markov chain,

however, the market process is hidden. Imperfect information �ow is set up through a

probabilistic relationship between the observed and unobserved market processes. The

unobserved stochastic market is a Markov chain and it emits signals, or provides information,

that are observed by the market players. Models of this type, where the random market

environment is represented by a Markov chain and the true state of this Markov chain cannot

be observed directly (however, there is another process which gives partial information about

the true state) are called �Partially Observed Markov Decision Processes� (POMDP). A

general discussion about these models can be found in Elliott et al. [24].

Partially observed Markov decision processes in portfolio optimization have been used

in the last ten years. More recently, Elliott et al. [25] use a hidden market model (HMM)

to describe stock price movements in order to �nd optimal portfolio trading strategy that

maximizes the expected terminal wealth. Even though HMMs are one of the important

tools used in areas like speech recognition, bioinformatics, and gene prediction; they have

not been used in portfolio optimization until quite recently. Sass and Haussmann [61]

discuss a model in continuous time where the interest rate and rates of returns of the risky

assets depend on a continuous time Markov process. Rieder and Bauerle [58] extended their

research where the drift rate of the stock depends on the Markov process and the only

observation is the stock prices. Corsi et al. [14] study a numerical approximation method

to solve hidden Markov models using quantization methods. Dericio�glu and Özekici [18]

applied the imperfect information concept to mean-variance portfolio selection problem in

a Markovian market. They solved the problem with dynamic programming and obtained

an explicit optimal solution to represent the e¢ cient frontier.

Imperfect information is also a rather interesting concept in �nance like HMMs. This

concept appears in game theory and is used for sequential games where a player does not
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know exactly what actions other players take. Stiglitz [69] focuses on imperfect informa-

tion and emphasizes that obtaining information is imperfect, costly and there are major

information asymmetries. Moreover, he believes that understanding imperfect information

is one of the most important breaks from the past, and provides explanations to some of

the basic characteristics of a market economy. The study on credit rationing by Stiglitz

and Weiss [70] presents the �rst theoretical justi�cation of true credit rationing by consid-

ering the e¤ect of imperfect information in markets. In addition, Stiglitz [68]explains the

observed phenomena of price dispersions and advertising e¤ects at the equilibrium of prod-

uct markets, which cannot be explained by traditional models of competition with perfect

information.

3.1 Hidden Markov Model

We let Zn denote the state of the stochastic market in period n, and assume that Z =

fZn; n = 0; 1; 2; � � � g is a Markov chain with some possibly time-dependent transition

matrix

Qn(a; b) = PfZn+1 = bjZn = ag

and discrete state space F = fa; b; c; � � � g. The states of the market are not observable

and the Markov chain Z is hidden. This implies that information available to investors

is not perfect. The imperfect observations on the state of the market are given by an

observation process Y = fYn; n = 0; 1; 2; � � � g with some discrete state space E = fi; j; � � � g

where Yn is the information available in period n. The market functions according to the

unobserved process Z whose states depend on various economic factors; however, investors

in the market can only see the observed process Y . Moreover, they base their decisions on

what they observe.

The relationship between the stochastic market and the random returns is such that the

distribution of the return of risky assets in a period depends only on the unobserved state

of the market in that period. The market consists of m risky assets with random returns

R(n; a) = (R1(n; a); R2(n; a); � � � ; Rm(n; a)) whenever the state of the market is a in period

n. We let rk(n; a) = E [Rk(n; a)] denote the mean return of the kth asset and �kl(n; a) =

Cov(Rk(n; a); Rl(n; a)) denote the covariance between kth and lth asset returns in state a

and period n. There is also a riskless asset which is typically a cash bond and the return of



Chapter 3: MODELS WITH IMPERFECT INFORMATION 69

the cash bond depends on the observed state of the market since it is known to the investor

with certainty. This allows us to assume that riskless lending or borrowing is possible with

return rf (i) if the observed market state is i. In such a case, the excess return of the kth

asset is

Rk(n;Zn)� rf (Yn) (3.1)

in period n. As in perfect information case, Xn gives the wealth and the vector u =

(u1; u2; � � � ; um) gives the amounts invested in risky assets (1; 2; � � � ;m) at period n: As a

result the wealth dynamics equation

Xn+1 (u) = rf (Yn)Xn +R
e
n(Yn; Zn)

0
u

is still valid where

Ren(i; a) = R(n; a)� rf (i):

We let

ren (i; a) = E [R
e
n (i; a)] = r(n; a)� rf (i) (3.2)

denote the mean vector of the excess return and

Vn (i; a) = E
�
Ren (i; a)R

e
n (i; a)

0� = � (n; a) + re (i; a) re (i; a)0
denote the matrix of second moments as before. Note that the covariance matrix � (n; a) is

positive de�nite so one can easily see that Vn (i; a) is also positive de�nite.

We will use the notation Ei[Z] = E [Z j Y0 = i] and Vari(Z) = Ei[Z2]�Ei[Z]2 to denote

the conditional expectation and variance of any random variable Z given that the initial

market state is i.

It is clear that the observed process Y is not necessarily a Markov chain and the state

of the stochastic market Z depends on all of the past observations of Y . The relationship

between the two processes Y and Z is made formal by enlarging the state spaces E and

F so that En+1 = E � E � � � � � E = f(i0; i1; i2; � � � ; in) : ik 2 Eg and Fn+1 = F � F �

� � � � F = f(a0; a1; a2; � � � ; an) : ak 2 Fg: We also simplify our notation by letting �{n =

(i0; i1; i2; � � � ; in) 2 En+1; �an = (a0; a1; a2; � � � ; an) 2 Fn+1 denote elements of En+1 and

Fn+1; and �Yn = (Y0; Y1; Y2; � � � ; Yn) and �Zn = (Z0; Z1; Z2; � � � ; Zn) denote the information

gathered and the past history of the market until period n respectively. The probabilistic
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evolution of Y depends purely on the state of Z such that

PfYn = ijZn = ag = Gn(a; i)

independent of all previous states of Z and Y in any period n: Here, G is often called the

emission matrix as in the signal processing context from which the idea of HMM is driven.

Simple probabilistic arguments give

On(�{n; a) = PfZn = aj �Yn = �{ng

=

P
�bn�12Fn

PfZ0 = b0gG0(b0; i0)Q0(b0; b1)G1(b1; i1) � � �Qn�1(bn�1; a)Gn(a; in)P
�bn2Fn+1

PfZ0 = b0gG0(b0; i0)Q0(b0; a1)G1(b1; i1) � � �Qn�1(bn�1; bn)Gn(bn; in)

for n � 1, while

O0 (i; a) = P fZ0 = ajY0 = i0g =
P fZ0 = agG0 (a; i0)P

b02F
P fZ0 = b0gG0 (b0; i0)

for n = 0. We can now write

Pn (�{n; j; a) = P
�
Yn+1 = j; Zn = aj �Yn = �{n

	
= On (�{n; a)

X
b2F

Qn (a; b)Gn (b; j) :

Note that fPng; and fOng can easily be determined once the transition matrices fQng,

emission matrices fGng and the initial distribution of the true state of the market are

known.

3.1.1 Dynamic Programming Formulation

In order to solve the portfolio selection problem, we de�ne gn (�{n; x; u) as the expected utility

using the investment policy u in period n and the optimal policies from period n + 1 to

period T given that the observed market state is �{n and the amount of money available for

investment is x at period n. Then,

vn(�{n; x) = max
u
gn(�{n; x; u)

is the optimal expected utility using the optimal policy given observation vector �{n and

the amount of money x available for investment at period n. According to the dynamic

programming principle

gn(�{n; x; u) = E
�
vn+1

�
�Yn+1; Xn+1(u)

� �� �Yn = �{n; Xn = x�
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and we can write the dynamic programming equation (DPE) as

vn(�{n; x) = max
u
E
�
vn+1

�
�Yn+1; Xn+1(u)

� �� �Yn = �{n; Xn = x� (3.3)

which can be rewritten as

vn (�{n; x) = max
u

X
a2F

X
j2E

Pn (�{n; j; a)E
h
vn+1

�
(�{n; j); rf (in)x+R

e
n(in; a)

0
u
�i

(3.4)

for n = 0; 1; � � � ; T � 1 with the boundary condition vT (�{T ; x) = U(iT ; x) for all �{T 2 ET+1.

The solution for this problem is found by solving the DPE recursively.

3.1.2 Exponential Utility

In this section, we assume that the utility of the investor in state i is given by the exponential

function

U (i; x) = K(i)� C(i) exp (�x=�) (3.5)

with C (i) > 0. Note that as in the case of perfect information � is that same for all market

states so that risk classi�cation of the investor does not depend on the stochastic market.

Similarly, we assume that the return for the riskless asset is same for all market states so

that rf (i) = rf for all i. Then,

Ren (i; a) = R
e
n (a) = R (n; a)� rf

so that both vector ren and matrix Vn do not depend on the observed state. To simplify the

notation, we can write ren (i; a) = ren (a) = r (n; a) � rf and Vn (i; a) = Vn (a) = � (n; a) +

ren (a) r
e
n (a)

0.

Theorem 6 Let the utility function of the investor be the exponential function (3.5) and

suppose that the riskless asset return does not depend on the market state. Then, the optimal

solution of the dynamic programming equation (3.4) is

vn(�{n; x) = Kn (�{n)� Cn(�{n)e�x=�n

and the optimal portfolio is

u�n(�{n; x) = �n(�{n)�n+1 (3.6)
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where

�n =
�

rT�nf

; Kn (�{n) =
X
a2F

X
j2E

Pn(�{n; j; a)Kn+1 ((�{n; j)) ;

Cn (�{n) =
X
a2F

X
j2E

Pn(�{n; j; a)E
�
exp

�
�Ren (a)

0 �n(�{n)
��
Cn+1 ((�{n; j))

and �n(�{n) satis�esX
a2F

X
j2E

Pn(�{n; j; a)Cn+1((�{n; j))E
�
Ren;k (a) exp

�
�Ren (a)

0 �n(�{n)
��
= 0 (3.7)

for all assets k = 1; 2; � � � ;m, �{n 2 En+1; and n = 0; 1; � � � ; T � 1 with boundary conditions

KT (�{T ) = K (iT ) ; CT (�{T ) = C (iT ) :

Proof. We use induction starting with the boundary condition vT (�{T ; x) = K(iT ) �

C(iT ) exp (�x=�) and obtain

gT�1(�{T�1; x; u) =
X
a2F

X
j2E

PT�1(�{T�1; j; a)E[U(j; rfx+R
e
T�1 (a)

0 u)]

= � exp (�rfx=�)
X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)E[exp(�ReT�1 (a)
0 u=�)]

+
X
a2F

X
j2E

PT�1(�{T�1; j; a)K(j):

Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky assets so that

vT�1(�{T�1; x) = max
u
gT�1(�{T�1; x; u) = gT�1(�{T�1; x; u

�)

as in the perfect information case. The entries of the gradient vector of the objective function

are

@gT�1 (�{T�1; x; u)

@uk
= exp (�rfx=�)

X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)

�E
�
ReT�1;k (a) exp(�ReT�1 (a)

0 u=�)
�
=� (3.8)

and the Hessian matrix H (�{T�1; x; u) entries are

@2gT�1 (�{T�1; x; u)

@uk@ul
= � 1

�2
exp (�rfx=�)

X
a2F

X
j2E

PT�1 (�{T�1; j; a)C(j)

�E
�
ReT�1;k (a)R

e
l;T�1 (a) exp(�ReT�1 (a)

0 u=�)
�
:
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Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then, one

can see that

zTH (�{T�1; x; u) z = � 1

�2
exp (�rfx=�)

X
a2F

X
j2E

PT�1 (�{T�1; j; a)C(j)

�E

24 mX
k=1

zkR
e
T�1;k (a)

!2
exp(�(rfx+ReT�1(a)0u)=�)

35
which is always less than or equal to zero since all PT�1 (�{T�1; j; a) and C(j) are all positive.

Thus, H (�{T�1; x; u) is negative semi-de�nite and we can �nd the optimal solution by setting

the gradient (3.8) equal to zero to obtain the optimality condition

X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)E
�
ReT�1;k (a) exp(�ReT�1 (a)

0 u�=�)
�
=� = 0 (3.9)

for all k = 1; 2; � � � ;m. Since there is no dependence on x in (3.9), u�T�1(�{T�1; x) does not

depend on x and u�T�1(�{T�1; x) = u�T�1(�{T�1). Letting �T�1 (�{T�1) = u�T�1 (�{T�1) =�, we

obtain u�T�1(�{T�1; x) = �T�1 (�{T�1)� and this gives optimality condition (3.7). When the

value function at time T � 1 is rewritten for the optimal policy, we obtain

vT�1(�{; x) =
X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j) exp(�rfx=�)E[� exp
�
�ReT�1 (a)

0 �T�1 (�{T�1)
�
]

+
X
a2F

X
j2E

PT�1 (�{T�1; j; a)K(j)

= KT�1(�{T�1)� CT�1(�{T�1) exp(�x=�T�1)

and the value function is still exponential like the utility function: This shows that the

induction hypothesis holds for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(�{n�1; x; u) =
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)E[vn((�{n�1; j) ; rfx+R
e
n�1 (a)

0 u)]

= � exp (�rfx=�n)
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Cn((�{n�1; j))

�E
�
exp

�
�Ren�1 (a)

0 u=�n
��

+
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Kn ((�{n�1; j)) :
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One can easily see that the Hessian matrix of gn�1 (�{n�1; x; u) is negative semi-de�nite like

the Hessian matrix of gT�1 (�{T�1; x; u) : Let u�n�1(�{n�1; x) be the optimal policy such that

vn�1(�{n�1; x) = max
u
gn�1(�{n�1; x; u) = gn�1(�{n�1; x; u

�
n�1):

If we take the gradient of gn�1(�{n�1; x; u) with respect to u and set it equal to 0, we get the

optimality condition

X
a2F

X
j2E

Pn�1(�{n; j; a)Cn((�{n�1; j))E
�
Ren�1;k (a) exp(�Ren�1 (a)

0 u�n�1=�n)
�
= 0: (3.10)

Since there is no dependence on x in (3.10), u�n�1(�{n�1; x) does not depend on x and

u�n�1(�{n�1; x) = u
�
n�1(�{n�1). Letting �n�1(�{n) = u

�
n�1(�{n�1)=�n we obtain u

�
n�1(�{n�1; x) =

�n�1(�{n�1)�n and this gives optimality condition (3.7). If we insert the optimal policy in

the value function, we can see that

vn�1(�{n�1; x) = �
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Cn ((�{n�1; j))

�E
�
exp

�
�
�
rfx=�n +R

e
n�1 (a)

0 �n�1(�{n�1)
���

+
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Kn ((�{n�1; j))

= � exp (�rfx=�n)
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Cn ((�{n�1; j))

�E
�
exp

�
�Ren�1 (a)

0 �n�1(�{n�1)
��

+
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Kn ((�{n�1; j))

= Kn�1 (�{n�1)� Cn�1(�{n�1) exp(�x=�n�1)

and this completes the proof.

In Theorem 6, we have found a closed-form solution for the optimal portfolio. We

can further characterize the optimal policy by noting from (3.7) that the optimal solution

satis�es

X
a2F

X
j2E

Pn(�{n; j; a)Cn+1((�{n; j))E
�
(Rn;k (a)� rf ) exp

�
� (Rn (a)� rf )0 �n(�{n)

��
= 0

which implies

X
a2F

X
j2E

Pn(�{n; j; a)Cn+1((�{n; j))E
�
(Rn;k (a)� rf ) exp

�
�Rn (a)0 �n(�{n)

��
= 0
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and P
a2F

P
j2E Pn(�{n; j; a)Cn+1((�{n; j))E

�
Rn;k (a) exp

�
�Rn (a)0 �n(�{n)

��P
a2F

P
j2E Pn(�{n; j; a)Cn+1((�{n; j))E

�
exp

�
�Rn (a)0 �n(�{n)

�� = rf (3.11)

for all assets k = 1; 2; � � � ;m:

A signi�cant characterization implied by the optimal solution (3.6) is that the optimal

distribution of wealth invested on the risky assets depend on the state of the market, but

it is independent of the wealth level. If the market is in state �{n in period n, then the total

amount of money invested on the risky assets is

10u�n(�{n; x) = 1
0�n(�{n)�n+1 =

�

r
T�(n+1)
f

mX
k=1

�n;k(�{n)

which does not depend on the current wealth level x. Moreover, the proportion on wealth

allocated for asset k is

wn;k(�{n) =
�n;k(�{n)
mP
k=1

�n;k(�{n)

(3.12)

which is also totally independent of wealth x. But if we examine the optimality condition

(3.7) we see that the optimal portfolio policy depends on the fCng values contrarily to the

perfect information case. This is a very interesting observation. In the perfect information

case, the optimal policy of the investor is independent of the transition matrix fQng of the

stochastic market, but if the state of the market cannot be observed the investor must take

the transition matrix into consideration.

The memorylessness property of the exponential utility function is still valid. Like the

memorylessness property of the exponential distribution that is associated with time, the

exponential utility function implies a similar property associated with the wealth of the

investor. The investor is memoryless in the sense that his current wealth level does not

a¤ect how he chooses to allocate his money among the risky assets. However, note that

there is randomness involved in this choice due to the randomly changing market conditions.
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Evolution of Wealth

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rfXn +R
e
n(Zn)

0u�n( �Yn; Xn)

= rfXn +R
e
n(Zn)

0�n( �Yn)�n+1

= rfXn + r
n+1�T
f Ren(Zn)

0�n( �Yn)�: (3.13)

De�ne the random variable

An (�{n; a) = R
e
n(a)

0�n (�{n) (3.14)

with mean

��n (�{n; a) = E [An (�{n; a)] = E
�
Ren(a)

0�n (�{n)
�

(3.15)

= ren(a)
0�n (�{n)

and second moment

~�n (�{n; a) = E
h
An (�{n; a)

2
i
= E

�
�n (�{n)

0Ren(a)R
e
n(a)

0�n (�{n)
�

(3.16)

= �n (�{n)
0 Vn (a)�n (�{n)

which gives the variance

Var (An (�{n; a)) = ~�n (�{n; a)� ��n (�{n; a)2 : (3.17)

Now, we will show that the wealth process is given by

Xn = r
n
fX0 + r

n�T
f �

n�1X
k=0

Ak
�
�Yk; Zk

�
(3.18)

using the induction method where the sum on the right-hand side is set to zero when n = 0.

The induction hypothesis holds trivially for n = 0. Suppose (3.18) holds for some n � 0. If

we write Xn+1 using the wealth dynamics equation (3.13)

Xn+1 = rfXn + r
n+1�T
f An

�
�Yn; Zn

�
�

= rn+1f X0 + r
n+1�T
f �

n�1X
k=0

Ak
�
�Yk; Zk

�
+ rn+1�Tf An

�
�Yn; Zn

�
�

= rn+1f X0 + r
n+1�T
f �

nX
k=0

Ak
�
�Yk; Zk

�
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we see that the induction hypothesis also holds for n + 1: So, we can conclude that the

wealth process can be written as in (3.18), and the terminal wealth is

XT = r
T
f X0 + �

T�1X
k=0

Ak
�
�Yk; Zk

�
(3.19)

for n = T:

Given X0 = x0, the expected value of the terminal wealth satis�es

Ei [XT ] = r
T
f x0 +m (i; T )�

where

m (i; T ) =
T�1X
k=0

Ei
�
Ak
�
�Yk; Zk

��
(3.20)

and the variance of the terminal wealth satis�es

Vari (XT ) = v
2 (i; T )�2

where

v2 (i; T ) = Vari

 
T�1X
k=0

Ak
�
�Yk; Zk

�!
: (3.21)

We see that both the return and the standard deviation of XT depends linearly on �. This

shows that the exponential frontier is the line

Ei [XT ] = r
T
f x0 +

�
m (i; T )

v (i; T )

�
SDi (XT )

where SDi (XT )) =
p
Vari (XT ). Note that m (i; T ) and v (i; T ) can easily be computed

through linear operations. The computational process is outlined next.

Computational Formulas

De�ne transition probabilities of the process
�
�Y ;Z

�
such that

Tn;k ((�{n; a) ; (�{n+k; b)) = P
�
�Yn+k = �{n+k; Zn+k = bj �Yn = �{n; Zn = a

	
where �{n+k = (�{n; in+1; in+2; � � � ; in+k). We can determine Tn;k using a recursive algorithm

with initial condition

Tn;1 ((�{n; a) ; ((�{n; in+1); b)) = P
�
Yn+1 = in+1; Zn+1 = bj �Yn = �{n; Zn = a

	
= Qn (a; b)Gn+1 (b; in+1)
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and the recursion

Tn;k ((�{n; a) ; (�{n+k; b)) =
X

bk�12F
Tn;k�1 ((�{n; a) ; (�{n+k�1; bk�1))

�Qn+k�1 (bk�1; b)Gn+k (b; in+k)

for k � 2.

It follows that these transition probabilities can be computed directly using

Tn;k ((�{n; a) ; (�{n+k; b)) =
X

b1;b2;��� ;bk�12F
Qn (a; b1)Gn+1 (b1; in+1)Qn+1 (b1; b2)

Gn+2 (b2; in+2) � � �Qn+k�1 (bk�1; b)Gn+k (b; in+k)

for �{n+k = (�{n; in+1; � � � in+k).

We can also determine the distribution of
�
�Yk; Zk

�
using

Tk (i; (�{k; b)) = P
�
�Yk = �{k; Zk = bjY0 = i

	
=

X
a2F

P
�
�Yk = �{k; Zk = b jY0 = i; Z0 = a

	
P fZ0 = a jY0 = ig

=
X
a2F

T0;k ((i; a) ; (�{k; b))O0 (i; a)

=
X

a;b1;b2;��� ;bk�12F
O0 (i; a)Q0 (a; b1)G1 (b1; i1)Q1 (b1; b2)G2 (b2; i2)

� � �Qk�1 (bk�1; b)Gk (b; ik)

for k � 1 and �{k = (i; i1; � � � ; ik). Note that T0;0 ((i; a) ; (i0; b)) = I (i; i0) I (a; b) trivially.

Using these results we can rewrite (3.20) as

m (i; T ) =

T�1X
k=0

X
i1;i2;��� ;ik2E;b2F

P fYk = �{k; Zk = bjY0 = ig ��k (�{k; b)

=

T�1X
k=0

X
i1;i2;��� ;ik2E;b2F

Tk (i; (�{k; b)) ��k (�{k; b) :

where i0 = i.



Chapter 3: MODELS WITH IMPERFECT INFORMATION 79

Similarly, (3.21) becomes

v2 (i; T ) = Vari

 
T�1X
k=0

Ak
�
�Yk; Zk

�!

=

T�1X
k=0

T�1X
m=0

Covi
�
A
�
�Yk; Zk

�
; A
�
�Ym; Zm

��
=

T�1X
k=0

Vari
�
Ak
�
�Yk; Zk

��
+ 2

T�1X
k=0

T�1X
m=k+1

Covi
�
Ak
�
�Yk; Zk

�
; Am

�
�Ym; Zm

��
=

T�1X
k=0

�
Ei

h�
Ak
�
�Yk; Zk

��2i� Ei �Ak � �Yk; Zk��2�
+2

T�1X
k=0

T�1X
m=k+1

�
Ei
�
Ak
�
�Yk; Zk

�
Am

�
�Ym; Zm

��
�Ei

�
Ak
�
�Yk; Zk

��
Ei
�
Am

�
�Ym; Zm

�� �
and we can write

v2 (i; T ) =
T�1X
k=0

0@ X
i1;i2;��� ;ik2E;b2F

Tk (i; (�{k; b)) ~�k (�{k; b)

�

0@ X
i1;i2;��� ;ik2E;b2F

Tk (i; (�{k; b)) ��k (�{k; b)

1A21A
+2

T�1X
k=0

T�1�nX
m=k+1

0@ X
i1;i2;��� ;ik2E;b2F

Tk (i; (�{k; b)) ��k (�{k; b)

�
X

ik+1;���im2E;c2F
Tk;m�k ((�{k; b) ; (�{m; c)) ��m (�{m; c)

1A
�2

T�1X
k=0

T�1X
m=k+1

0@ X
i1;i2;��� ;ik2E;b2F

Tk (i; (�{k; b)) ��k (�{k; b)

1A
�

0@ X
i1;i2;��� ;im2E;b2F

Tm (i; (�{m; b)) ��m (�{m; b)

1A
where i0 = i.
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3.1.3 Logarithmic Utility

In this section, we assume that the utility of the investor in state i is given by the logarithmic

function

U(i; x) =

8<: K(i) + C(i) log(x+ �) x+ � > 0

�1 x+ � � 0
(3.22)

with C (i) > 0 where we can easily see that Pratt-Arrow�s measure of absolute risk aversion

is simply equal to r(x) = 1=(� + x) > 0 for all i so that b = 1 and a = � in Table 1.1. Note

that � is the same for all market states so that risk classi�cation of the investor does not

depend on the stochastic market. Similarly, we assume that the return for the riskless asset

is the same for all market states so that rf (i) = rf for all i.

We will �rst consider a generic optimization problem of the form

max
u

X
a2F

�aE
�
log
�
Re (a)0 u+ c

��
(3.23)

where c > 0 is any constant, � is any measure on F , and Re (a) is a random vector for any

a 2 F . Now, let

A(c) =
�
u : P

�
Re (a)0 u+ c > 0

	
= 1
	

be the set of all possible investment policies that gives �nite expected utility so that��E �log �Re (a)0 u+ c���� < +1 for u 2 A (c). It can be seen that u = (u1; u2; � � � ; um) =

(0; 0; � � � ; 0) 2 A (c) satis�es this condition trivially for all c > 0. So, A (c) is not empty.

Also, let u, w 2 A (c), then Re (a)0 u+ c > 0, and Re (a)0w + c > 0 implies that

�Re (a)0 u+ (1� �)Re (a)0w + c > 0

so that �u + (1� �)w 2 A (c) for all 0 � � � 1: Therefore, the solution set A (c) is

nonempty and convex. The gradient vector of the objection function g (u) can be de�ned

as g (u) =
P
a2F �aE

�
log
�
Re (a)0 u+ c

��
and is given by

5kg (u) =
@g (u)

@uk
=
X
a2F

�aE

�
Rek (a)

Re (a)0 u+ c

�
while the Hessian matrix is

52
k;lg (u) =

@2g (u)

@uk@ul
= �

X
a2F

�aE

"
Rek (a)R

e
l (a)�

Re (a)0 u+ c
�2
#

for all k; l.
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The �rst order optimality condition to �nd the optimal solution of (3.23) is obtained by

setting the gradient vector equal to zero so thatX
a2F

�aE

�
Rek (a)

Re (a)0 u+ c

�
= 0 (3.24)

for all k.

Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then,

one can see that

z0 52 g (u) z = �
X
a2F

�aE

2666664

 
mX
k=1

zkR
e
k (a)

!2
�
Re (a)0 u+ c

�2
3777775 � 0:

Thus, the Hessian matrix52g (u) is negative semi-de�nite and if there is a solution u 2 A (c)

satisfying the �rst order condition (3.24), it must be optimal. Throughout this chapter, we

assume that the excess returns are such that there is a solution of the �rst order condition

(3.24) in A(c) for all fRen (a)g and c > 0.

Theorem 7 Let the utility function of the investor be the logarithmic function (3.22) and

suppose that the riskless asset return does not depend on the market state. Then, the optimal

solution of the dynamic programming equation (3.4) is

vn(�{n; x) = Kn (�{n) + Cn(�{n) log(x+ �n)

and the optimal portfolio is

u�n(�{n; x) = �n(�{n)
�
rfx+ �n+1

�
(3.25)

where

�n =
�

rT�nf

; Cn (�{n) =
X
a2F

X
j2E

Pn (�{n; j; a)Cn+1 ((�{n; j)) ;

Kn (�{n) =
X
a2F

X
j2E

Pn (�{n; j; a)
�
Kn+1 ((�{n; j))

+Cn+1 (�{n; j)E
�
log
�
rf
�
1 +Ren (a)

0 �n(�{n)
��� �

and �n(�{n) satis�esX
a2F

X
j2E

Pn(�{n; j; a)Cn+1((�{n; j))E

"
Ren;k (a)

1 +Ren (a)
0 �n(�{n)

#
= 0 (3.26)
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for all assets k = 1; 2; � � � ;m, �{n 2 En+1; and n = 0; 1; � � � ; T � 1 with boundary conditions

KT (�{T ) = K (iT ) ; CT (�{T ) = C (iT ) :

Proof. We use induction starting with the boundary condition vT (�{T ; x) = K(iT ) +

C(iT ) log (x+ �) and obtain

gT�1(�{T�1; x; u) =
X
a2F

X
j2E

PT�1 (�{T�1; j; a)E[U(j; rfx+R
e
T�1 (a)

0 u)]

=
X
a2F

X
j2E

PT�1 (�{T�1; j; a)C (j)E[log(rfx+R
e
T�1 (a)

0 u+ �)]

+
X
a2F

X
j2E

PT�1(�{T�1; j; a)K(j):

Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky assets so that

vT�1(�{T�1; x) = max
u
gT�1(�{T�1; x; u) = gT�1(�{T�1; x; u

�)

as in the perfect information case. One can see that the optimization problem of maximizing

the objective function gT�1(�{T�1; x; u) is similar to the optimization problem (3.23) where

the coe¢ cients �a =
P
j2E PT�1 (�{T�1; j; a)C (j) and c = rfx + �. Therefore, using our

assumption, we can write the optimality condition (3.24) asX
a2F

X
j2E

PT�1 (�{T�1; j; a)C (j)E

"
ReT�1 (a)

rfx+R
e
T�1 (a)

0 u� + �

#
= 0

for all k = 1; 2; � � � ;m. De�ne �T�1 (�{T�1; x) = u�T�1 (�{T�1; x) = (rfx+ �). The optimality

condition can now be rewritten asX
a2F

X
j2E

PT�1 (�{T�1; j; a)C (j)E

"
ReT�1 (a)

1 +ReT�1 (a)
0 �T�1 (�{T�1; x)

#
= 0

which is the condition (3.26) for n = T � 1 since there is no dependence on x and

�T�1 (�{T�1; x) = �T�1 (�{T�1).

When the value function at time T � 1 is rewritten for the optimal policy, we obtain

vT�1(�{T�1; x) =
X
a2F

X
j2E

PT�1 (�{T�1; j; a)
�
K(j)

+ C(j)E[log
�
rf
�
1 +ReT�1 (a)

0 �T�1 (�{T�1)
��
]
�

+
X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j) log(x+ �=rf )

= KT�1 (�{T�1) + CT�1(�{T�1) log(x+ �T�1)
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and the value function is still logarithmic like the utility function: This completes the proof

for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(�{n�1; x; u) =
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)E[vn((�{n�1; j) ; rfx+R
e
n�1 (a)

0 u)]

=
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Cn((�{n�1; j))E[log(rfx+R
e
n�1 (a)

0 u+ �n)]

+
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Kn((�{n�1; j)):

Let u�n�1(�{n�1; x) be the optimal policy such that

vn�1(�{n�1; x) = max
u
gn�1(�{n�1; x; u) = gn�1(�{n�1; x; u

�
n�1):

It is clear, once again, that the objective function gn�1(�{n�1; x; u) is in the form of the generic

objective function in (3.23) with �a =
P
j2E Pn�1 (�{n�1; j; a)Cn((�{n�1; j)) and c = rfx+�n.

Therefore, the optimal solution can be found using the �rst order condition

X
a2F

X
j2E

Pn�1(�{n�1; j; a)Cn((�{n�1; j))E

"
Ren�1 (a)

rfx+R
e
n�1 (a)

0 u� + �

#
= 0

and de�ning �n�1 (�{n�1; x) = u� (�{n�1; x) = (rfx+ �) we get

X
a2F

X
j2E

Pn�1(�{n�1; j; a)Cn((�{n�1; j))E

"
Ren�1 (a)

1 +Ren�1 (a)
0 �n�1 (�{n�1; x)

#
= 0: (3.27)

Since there is no dependence on x in (3.27), � (�{n�1; x) does not depend on x and � (�{n�1; x) =

�(�{n�1). So, u�n�1(�{n�1; x) = �(�{n�1) (rfx+ �n) and this gives the optimality condition

(3.26).

If we insert the optimal policy in the value function, we can see that

vn�1(�{n�1; x) =
X
a2F

X
j2E

Pn�1 (�{n�1; j; a) (Kn ((�{n�1; j))

+Cn ((�{n�1; j))E
�
log
�
rf
�
1 +Ren�1 (a)

0 �n�1(�{n�1)
����

+
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Cn ((�{n�1; j)) log(x+ �n=rf )

= Kn�1 (�{n�1) + Cn�1(�{n�1) log(x+ �n�1)
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and this completes the proof.

Note that the structure of the optimal solution in (3.25) is such that the optimal dis-

tribution of wealth invested in the risky assets depend only on the state of the market

independent of time. If the market is in state i in period n, then the total amount of money

invested on the risky assets is

10u�n(�{n; x) = 1
0�n(�{n)(rfx+ �n+1) =

0@rfx+ �

r
T�(n+1)
f

1A mX
k=1

�n;k(�{n)

and the proportion on wealth allocated for asset k in the risky portfolio is

wn;k(�{n) =
�n;k (�{n)
mP
k=1

�n;k (�{n)

(3.28)

which is totally independent of wealth x. The optimal policy speci�ed by (3.25) is not

static in time since it depends on n, and it is not memoryless in wealth since it depends on

x. However, (3.28) clearly indicates that the composition of the risky part of the optimal

portfolio only depends on the market state and time. The risky portfolio composition is

memoryless. It satis�es the separation property in the sense that it represents the single fund

of risky assets that logarithmic investors choose. The amount of total wealth allocated for

risky assets depend on the level of wealth, but the composition of the risky assets depend only

on the market state and time. This composition, however, is random due to the randomly

changing market conditions in time. Our results are of course consistent with similar work

in the literature on logarithmic utility functions, but the stochastic market approach makes

our model more realistic without causing substantial di¢ culty in the analysis. Another

important observation is that the structure of the optimal portfolio is not a¤ected by the

transition matrix fQng of the stochastic market. It only depends on the joint distribution

of the risky asset returns as prescribed by (3.26) in a given market state, irrespective of

future expectations on the stochastic market.
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Evolution of Wealth

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rfXn +R
e(Zn)

0u�n( �Yn; Xn)

= rfXn +R
e(Zn)

0�n( �Yn)
�
rfXn + �n+1

�
= rfXn

�
1 +An

�
�Yn; Zn

��
+ rn+1�Tf An

�
�Yn; Zn

�
� (3.29)

where An (�{n; a) is de�ned in (3.14).

De�ne

Cn (x1; x2; � � � ; xn) =
nY
k=1

(1 + xk)� 1

as the sum of all combinations of the products of n variables for n � 1; and set C0 = 0:

Now, we will show that the wealth process is

Xn = r
n
fX0

n�1Y
k=0

�
1 +Ak

�
�Yk; Zk

��
+ rn�Tf �Cn

�
A0
�
�Y0; Z0

�
; � � � ; An�1

�
�Yn�1; Zn�1

��
(3.30)

using induction where the product on the right hand side is set to 1 when n = 0. The

induction hypothesis holds trivially for n = 0. Suppose (3.30) holds for some n � 0. If we

write Xn+1 using the wealth dynamics equation (3.29)

Xn+1 = rfXn
�
1 +An( �Yn; Zn)

�
+ rn+1�Tf An( �Yn; Zn)�

= rn+1f X0

nY
k=0

�
1 +Ak

�
�Yk; Zk

��
+ rn+1�Tf �

��
1 +An( �Yn; Zn)

�
� Cn

�
A0
�
�Y0; Z0

�
; A1

�
�Y1; Z1

�
; � � � ; An�1

�
�Yn�1; Zn�1

��
+An( �Yn; Zn)

�
= rn+1f X0

nY
k=0

�
1 +Ak

�
�Yk; Zk

��
+ rn+1�Tf �Cn+1

�
A0
�
�Y0; Z0

�
; � � � ; An

�
�Yn; Zn

��
and we see that the induction hypothesis also holds for n + 1: So, we conclude that the

wealth process can be written as in (3.30) and, for n = T; we can �nd the terminal wealth

as

XT = rTf X0

T�1Y
k=0

�
1 +Ak

�
�Yk; Zk

��
+ �CT

�
A0
�
�Y0; Z0

�
; � � � ; AT�1

�
�YT�1; ZT�1

��
= rTf X0 +

�
rTf X0 + �

�
CT
�
A0
�
�Y0; Z0

�
; A1

�
�Y1; Z1

�
; � � � ; AT�1

�
�YT�1; ZT�1

��
:
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Given X0 = x0, the expected value of the terminal wealth satis�es

Ei [XT ] = r
T
f x0 +

�
rTf x0 + �

�
ml (i; T ) (3.31)

where

ml (i; T ) = Ei
�
CT
�
A0
�
�Y0; Z0

�
; A1

�
�Y1; Z1

�
; � � � ; AT�1

�
�YT�1; ZT�1

���
(3.32)

and the variance of the terminal wealth satis�es

Vari (XT ) =
�
rTf x0 + �

�2
v2l (i; T ) (3.33)

where

v2l (i; T ) = Vari
�
CT
�
A0
�
�Y0; Z0

�
; A1

�
�Y1; Z1

�
; � � � ; AT�1

�
�YT�1; ZT�1

���
: (3.34)

We can clearly see from (3.31) and (3.33) that both the return and the standard deviation

of XT depends linearly on �. This shows that the logarithmic frontier is the straight line

Ei [XT ] = r
T
f x0 +

�
ml (i; T )

vl (i; T )

�
SDi (XT )

where SDi (XT )) =
p
Vari (XT ): In other words, the expected value and standard deviation

of the terminal wealth fall on this straight line when they are calculated and plotted for

di¤erent values of �: Also, it cuts the zero-risk line at Ei [XT ] = rTf x0 as expected. The

reason for this is that for zero-risk level investor puts all of his money on the riskless asset.

The return of the riskless asset until the terminal time T is rTf ; and the wealth at the

terminal time will be rTf x0 for sure. The risk premium for the logarithmic investor is given

by the ratio ml (i; T ) =vl (i; T ).

Computational Formulas

The computation of ml (i; T ) and vl (i; T ) are possible although they are not as simple as

their counterparts for the exponential utility case. We will use the de�nition (2.60) whenever

appropriate. Note that,

ml (i; T ) = Ei

"
T�1Y
k=0

�
1 +Ak

�
�Yk; Zk

��
� 1
#

= Ei

"
Ei

"
T�1Y
k=0

�
1 +Ak

�
�Yk; Zk

��
� 1
����� �ZT�1; �YT�1

##
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and, since the returns in di¤erent periods are independent given the market states, we obtain

ml (i; T ) = Ei

"
T�1Y
k=0

�
1 + ��k

�
�Yk; Zk

��
� 1
#

(3.35)

= Ei
�
CT
�
��0
�
�Y0; Z0

�
; ��1

�
�Y1; Z1

�
; � � � ; ��T�1

�
�YT�1; ZT�1

���
Given Y0 = i, the conditional joint distribution of �YT�1; �ZT�1 is

P
�
�YT�1 = �{T�1; �ZT�1 = �aT�1

��Y0 = i	 = I (i; i0)O0 (i; a0) (3.36)

�
T�2Y
k=0

Qk (ak; ak+1)Gk+1 (ak+1; ik+1)

where the product on the right-hand side of (3.36) is set to be equal to 1 when T � 1; and

the expected return of terminal wealth(3.35) can be found by using this distribution so that

ml (i; T ) =
X

�aT�12FT

X
�{T�12ET

I (i; i0)O0 (i; a0)
T�2Y
k=0

Qk (ak; ak+1)Gk+1 (ak+1; ik+1)(3.37)

�CT (��0 (i; a0) ; ��1 (�{1; a1) ; � � � ; ��T�1 (�{T�1; aT�1)) :

To determine the variance v2l (i; T ) ; we �rst calculate the second moment as

sl (i; T ) = Ei

"
T�1Y
k=0

��
1 +Ak

�
�Yk; Zk

��
� 1
�2#

= Ei

24Ei
24 T�1Y

k=0

�
1 +Ak

�
�Yk; Zk

��
� 1
!2������ �ZT�1; �YT�1

3535
= Ei

"
Ei

"
T�1Y
k=0

�
1 +Ak

�
�Yk; Zk

��2�
2
T�1Y
k=0

�
1 +Ak

�
�Yk; Zk

��
+ 1

����� �ZT�1; �YT�1
##

= Ei

"
T�1Y
k=0

�
1 + 2��k

�
�Yk; Zk

�
+ ~�k

�
�Yk; Zk

��
�1� 2

T�1Y
k=0

�
1 + ��k

�
�Yk; Zk

��
� 2
#

= Ei

24CT
0@ 2��0

�
�Y0; Z0

�
+ ~�0

�
�Y0; Z0

�
;

� � � ; 2��T�1
�
�YT�1; ZT�1

�
+ ~�T�1

�
�YT�1; ZT�1

�
1A35

�2Ei
�
CT
�
��0
�
�Y0; Z0

�
; ��1

�
�Y1; Z1

�
; � � � ; ��T�1

�
�YT�1; ZT�1

���
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which can be found using the conditional distribution (3.36) as in (3.37). Finally, the

variance becomes v2l (i; T ) = sl (i; T )�ml (i; T )
2 :

3.1.4 Simple Logarithmic Utility

In this section, we assume that the utility of the investor in state i is given by the simple

logarithmic function

U(i; x) =

8<: K(i) + C(i) log(x) x > 0

�1 x � 0
(3.38)

with C (i) > 0 and � = 0. In this part, we can relax the assumption on risk free rate as

rf (i) now depends on the observed market state. Note that this structure implies Ren (i; a) =

R (n; a)�rf (i) which depends on a as well as i. We still need the assumptions on the return

distributions as in Section 3.1.3. Therefore, for an optimization problem of the form

max
u

X
a2F

�aE
�
log
�
Re (i; a)0 u+ c

��
(3.39)

we assume that the excess returns are such that the solution to the �rst order condition is

in the feasible set. We therefore suppose that for any measure � on F , any state i 2 E, and

any period n, the following equationX
a2F

�aE

�
Ren (i; a)

1 +Ren (i; a)
0 �

�
= 0 (3.40)

has a unique solution � 2 Rm.

Theorem 8 Let the utility function of the investor be the logarithmic function (3.38).

Then, the optimal solution of the dynamic programming equation (3.4) is

vn(�{n; x) = Kn (�{n) + Cn(�{n) log(x)

and the optimal portfolio is

u�n(�{n; x) = �n(�{n)rf (in)x

where

Cn (�{n) =
X
a2F

X
j2E

Pn (�{n; j; a)Cn+1 ((�{n; j)) ;

Kn (�{n) =
X
a2F

X
j2E

Pn (�{n; j; a)
�
Kn+1 ((�{n; j))

+Cn+1 (�{n; j)E
�
log
�
rf (in)

�
1 +Ren (in; a)

0 �n(�{n)
��� �
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and �n(�{n) satis�es

X
a2F

X
j2E

Pn(�{n; j; a)Cn+1((�{n; j))E

"
Ren;k (in; a)

1 +Ren (in; a)
0 �n(�{n)

#
= 0 (3.41)

for all assets k = 1; 2; � � � ;m, �{n 2 En+1, and n = 0; 1; � � � ; T � 1 with boundary conditions

KT (�{T ) = K (iT ) ; CT (�{T ) = C (iT ) :

Proof. We will show that the recursion is true by induction starting with the boundary

condition vT (�{T ; x) = K(iT ) + C(iT ) log (x) and obtain

gT�1(�{T�1; x; u) =
X
a2F

X
j2E

PT�1 (�{T�1; j; a)E[U(j; rf (iT�1)x+R
e
T�1 (iT�1; a)

0 u)]

=
X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)E[log(rf (iT�1)x+R
e
T�1 (iT�1; a)

0 u)]

+
X
a2F

X
j2E

PT�1(�{T�1; j; a)K(j):

Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky assets so that

vT�1(�{T�1; x) = max
u
gT�1(�{T�1; x; u) = gT�1(�{T�1; x; u

�)

as in the perfect information case.

Note that the optimization problem of maximizing the objective function gT�1(�{T�1; x; u)

is similar to the optimization problem of (3.39) where �a =
P
j2E PT�1 (�{T�1; j; a)C (j) and

c = rf (iT�1)x. Therefore, similar to Theorem 7, we can �nd the optimal portfolio by setting

the gradient equal to zero so that (3.41) becomes

X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)E

"
ReT�1;k (iT�1; a)

rf (iT�1)x+ReT�1 (iT�1; a)
0 u�

#
= 0

for all k = 1; 2; � � � ;m: De�ne �T�1(�{T�1; x) = u�T�1(�{T�1; x)=rf (iT�1)x. The optimality

condition can now be rewritten as

X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)E

"
ReT�1;k (iT�1; a)

1 +ReT�1 (iT�1; a)
0 � (�{T�1; x)

#
= 0: (3.42)

Since there is no dependence on x in (3.42), � (�{T�1; x) does not depend on x and therefore

� (�{T�1; x) = � (�{T�1). So, we obtain u�T�1(�{T�1; x) = �T�1 (�{T�1) rf (iT�1)x where �T�1
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satis�es (3.41). When the value function at time T � 1 is rewritten for the optimal policy,

we obtain

vT�1(�{T�1; x) =
X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j) log (x) +
X
a2F

X
j2E

PT�1(�{T�1; j; a) (K(j)

+C(j)E
�
log
�
rf (iT�1)

�
1 +ReT�1 (iT�1; a)

0 � (�{T�1)
����

= KT�1 (�{T�1) + CT�1(�{T�1) log(x)

and the value function is still logarithmic like the utility function: This completes the proof

for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(�{n�1; x; u) =
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)E[vn((�{n�1; j) ; rf (in�1)x+R
e
n�1 (in�1; a)

0 u)]

=
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Cn ((�{n�1; j))E[log(rf (in�1)x

+Ren�1 (iT�1; a)
0 u)] +

X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Kn ((�{n�1; j)) :

Let u�n�1(�{n�1; x) be the optimal policy such that

vn�1(�{n�1; x) = max
u
gn�1(�{n�1; x; u) = gn�1(�{n�1; x; u

�
n�1): (3.43)

Note that this optimization problem de�ned in (3.43) is similar to the problem in (3.39)

with �a =
P
j2E Pn�1 (�{n�1; j; a)Cn ((�{n�1; j)) and c = rf (in�1)x: If we take the gradient

of gn�1(�{n�1; x; u) with respect to u and set it equal to 0, we get the optimality condition

X
a2F

X
j2E

Pn�1(�{n�1; j; a)Cn ((�{n�1; j))E

"
Ren�1 (in�1; a)

1 +Ren�1 (in�1; a)
0 � (�{n�1; x)

#
= 0 (3.44)

after taking u�n�1(�{n�1; x) = �(�{n�1; x)rf (in�1)x. Since there is no dependence on x

in (3.44), � (iT�1; x) does not depend on x and � (in�1; x) = �(�{n�1) and we obtain

u�n�1(�{n�1; x) = �(�{n�1)rf (in�1)x which gives (3.41). If we insert the optimal policy in
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the value function, we can see that

vn�1(�{n�1; x) =
X
a2F

X
j2E

Pn�1(�{n�1; j; a)Cn((in�1;j)) log (x)

+
X
a2F

X
j2E

PT�1(�{n�1; j; a) (Kn((in�1; j))

+Cn((in�1; j))E
�
log
�
rf (in�1)

�
1 +Ren�1 (in�1; a)

0 � (�{n�1)
����

= Kn�1 (�{n�1) + Cn�1(�{n�1) log(x)

and this completes the proof.

In this special case with � = 0; at any time n, the total amount of money invested in the

risky assets depends on the observed market states �{n and wealth x. Since the total risky

investment is 10u�n(�{n; x) = 1
0�n(�{n)rf (in)x; it follows that 10�n(�{n)rf (in) is the proportion

of total wealth that is invested in the risky assets. Moreover, as in the general logarithmic

case, the composition of the risky portfolio also depends only on �{n independent of the

available wealth x.

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rf (Yn)Xn +R
e
n(Yn; Zn)

0u�n( �Yn; Xn)

= Xnrf (Yn)
�
1 +An

�
�Yn; Zn

��
= XnBn

�
�Yn; Zn

�
where Bk(�{k; a) = rf (ik) (1 +Ak(�{k; a)) : Clearly, the solution is

Xn = X0

n�1Y
k=0

Bk
�
�Yk; Zk

�
(3.45)

for n � 1; and this simple structure can be exploited to analyze the terminal wealth XT : In

particular, given X0 = x0

ml (i; T ) = Ei[XT ] = x0
�
1 + Ei

�
CT
�
b0
�
�Y0; Z0

�
� 1; � � � ; bT�1

�
�YT�1; ZT�1

�
� 1
���

(3.46)

where bk (�{k; a) = E [Bk (�{k; a)] = E [rf (ik) (1 +Ak(�{k; a))] = rf (ik) (1 + ��k (�{k; a)) : Note

that the expected value of terminal wealth (3.46) can be calculated using the joint distrib-

ution (3.36) as in (3.37). The second moment is

sl (i; T ) = Ei[X
2
T ] = x

2
0

�
1 + Ei

�
CT
�
�b0
�
�Y0; Z0

�
� 1; � � � ;�bT�1

�
�YT�1; ZT�1

�
� 1
���

(3.47)
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where �bk (�{k; a) = E
h
Bk (�{k; a)

2
i
= rf (ik)

2E[(1 +Ak(�{k; a))
2] = rf (ik)

2(1 + 2��(�{k; a) +

~�(�{k; a)), which can also be calculated using the joint distribution (3.36.) Finally, the

variance is Vari (XT ) = v2l (i; T ) = sl (i; T )�ml (i; T )
2 :

The log-return at the terminal time T is

ln (XT =X0) =

T�1X
k=0

ln(Bk
�
�Yk; Zk

�
)

so that the mean is

Ei [ln (XT =X0)] =

T�1X
k=0

X
�aT�12FT

X
�{T�12ET

I (i; i0)O0 (i; a0)

�
k�1Y
n=0

Qn (an; an+1)Gn+1 (an+1; in+1)E [ln(Bk (�{k; ak))] :

3.1.5 Power Utility

In this section, we assume that the utility of the investor in state i is given by the logarithmic

function

U(i; x) = K (i) + C (i)
(x+ �)


(3.48)

with C (i) > 0 and rf (i) = rf still holds. Note that Pratt-Arrow ratio can be calculated as

r(x) = (1 � )= (x� �) for all i so that b = 1=(1 � ) and a = �=( � 1) in Table 1.1. In

this chapter, we assume that the utility function (3.48) is well-de�ned for all possible values

of x: For example, if (x� �) < 0 is possible, then we exclude  = 1=2 in our analysis. If

we need to include these values of ; we can de�ne the utility function to be �1 whenever

(3.48) is not well-de�ned and make appropriate assumptions on excess returns fRen (a)g as

in Section 3.1.3. For U(i; x) to be a legitimate utility function some additional restrictions

may be imposed, but we do not dwell with such technical issues here. Note that  and � is

the same for all market states so that risk classi�cation of the investor does not depend on

the stochastic market.

We will �rst consider an optimization problem of the form

max
u

X
a2F

�aE

"�
Re (a)0 u+ c

�


#
(3.49)

where Re (a) is a random vector, and � is any measure on F for any a. The gradient vector
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of the objection function g (u) is given by

5kg (u) =
@g (u)

@uk
=
X
a2F

�aE
h
Rek (a)

�
Re (a)0 u+ c

��1i
while the Hessian matrix is

52
k;lg (u) =

@2g (u)

@uk@ul
= ( � 1)

X
a2F

�aE
h
Rek (a)R

e
l (a)

�
Re (a)0 u+ c

��2i
for all k; l.

The �rst order optimality condition to �nd the optimal solution of (3.49) is obtained by

setting the gradient vector equal to zero so that

X
a2F

�aE
h
Rek (a)

�
Re (a)0 u+ c

��1i
= 0 (3.50)

for all k = 1; 2; � � � ;m. Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are

real numbers. Then, one can see that

z0 52 g (u) z = ( � 1)
X
a2F

�aE

24 mX
k=1

zkR
e (a)

!2 �
Re (a)0 u+ c

��235 : (3.51)

Throughout this chapter, we assume that the excess returns fRen (a)g and the parameters

of the utility function are such that there is always an optimal solution of (3.49) that satis�es

the �rst order conditions (3.50). Note that this requirement does not necessarily impose

concavity restriction on the objective function. We only require that the optimal solution

is at an interior point which satis�es the necessary conditions of optimality (3.50). Our

purpose is to identify the structure of the optimal policy and we will not dwell will these

technical details on optimization. This is of course an important issue and we do not intend

to undermine its signi�cance.

We now consider some possible cases to illustrate how one can approach this technical

problem. If  � 2 is even, then the Hessian matrix 52g in (3.51) is negative semi-de�nite

provided that  � 1 and the optimal solution satis�es (3.50) since we have an unconstrained

concave maximization problem. If  � 2 is not even and  � 1, then the objective function

is concave over the set

A(c) =
n
u : P

n�
Re (a)0 u+ c

��2 � 0o = 1o (3.52)
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and we need additional restrictions on the excess returns fRe (a)g ; like the existence of a

solution of the �rst order condition (3.50) in A(c) for all c. In case  � 1, it su¢ ces to

reverse the inequality in (3.52).

Theorem 9 Let the utility function of the investor be the power function (3.48) and suppose

that the riskless asset return does not depend on the market state. Then, the optimal solution

of the dynamic programming equation (3.4) is

vn(�{n; x) = Kn (�{n) + Cn(�{n)
(x+ �n)





and the optimal portfolio is

u�n(�{n; x) = �n(�{n)
�
rfx+ �n+1

�
(3.53)

where

�n =
�

rT�nf

; Kn (�{n) =
X
a2F

X
j2E

Pn (�{n; j; a)Kn+1 ((�{n; j)) ;

Cn (�{n) =
X
a2F

X
j2E

Pn (�{n; j; a)Cn+1 ((�{n; j))E
��
rf
�
1 +Ren (a)

0 �n (�{n)
���

and �n(�{n) satis�esX
a2F

X
j2E

Pn(�{n; j; a)Cn+1((�{n; j))E
h
Ren;k (a)

�
1 +Ren (a)

0 �n(�{n)
��1i

= 0 (3.54)

for all assets k = 1; 2; � � � ;m, �{n 2 En+1 and n = 0; 1; � � � ; T � 1 with boundary conditions

KT (�{T ) = K (iT ) ; CT (�{T ) = C (iT ) :

Proof. We use induction starting with the boundary condition vT (�{T ; x) = K(iT ) +

C(iT )(x+ �)
= and obtain

gT�1(�{T�1; x; u) =
X
a2F

X
j2E

PT�1 (�{T�1; j; a)E[U(j; rfx+R
e
T�1 (a)

0 u)]

=
X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)E[(rfx+R
e
T�1 (a)

0 u+ �)=]

+
X
a2F

X
j2E

PT�1(�{T�1; j; a)K(j):

Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky assets so that

vT�1(�{T�1; x) = max
u
gT�1(�{T�1; x; u) = gT�1(�{T�1; x; u

�)
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as in the perfect information case. One can see that gT�1(�{T�1; x; u) is in the form of (3.49)

where �a =
P
j2E PT�1(�{T�1; j; a)C(j) and c = rfx + �. Our assumption implies that the

optimal policy can be found using the �rst order condition (3.50) which can be rewritten asX
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)E
h
ReT�1;k (a)

�
rfx+R

e
T�1 (a)

0 u� + �
��1i

= 0

for all k = 1; 2; � � � ;m: De�ning �T�1(�{T�1; x) = u�T�1(�{T�1; x)= (rfx+ �) one can see that

u�T�1(�{T�1; x) = �T�1(�{T�1; x) (rfx+ �) : The optimality condition can now be rewritten asX
a2F

X
j2E

PT�1(�{T�1; j; a)C (j)E
h
ReT�1;k (a)

�
1 +ReT�1 (a)

0 �T�1 (�{T�1)
��1i

= 0 (3.55)

which is the condition (3.54) for n = T � 1 since there is no dependence on x and

�T�1 (�{T�1; x) = �T�1 (�{T�1). When the value function at time T � 1 is rewritten for

the optimal policy, we obtain

vT�1(�{T�1; x) =
X
a2F

X
j2E

PT�1 (�{T�1; j; a)K(j) +
X
a2F

X
j2E

PT�1(�{T�1; j; a)C(j)

� E
��
rf
�
1 +ReT�1 (a)

0 �T�1 (�{T�1)
���

(x+ �=rf )


= KT�1 (�{T�1) + CT�1(�{T�1)(x+ �T�1)
=

and the value function is still logarithmic like the utility function: This completes the proof

for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(�{n�1; x; u) =
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)E[vn((�{n�1; j) ; rfx+R
e
n�1 (a)

0 u)]

=
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Cn((�{n�1; j))E[(rfx+R
e
n�1 (a)

0 u+ �n)
 ]

+
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Kn((�{n�1; j)):

Let u�n�1(�{n�1; x) be the optimal policy such that

vn�1(�{n�1; x) = max
u
gn�1(�{n�1; x; u) = gn�1(�{n�1; x; u

�
n�1):

Note that this optimization problem is also similar to (3.49) where the parameter �a =P
j2E Pn�1 (�{n�1; j; a)Cn ((�{n�1; j)) and c = rfx+�: If we take the gradient of gn�1(�{n�1; x; u)
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with respect to u and set it equal to 0, we get the optimality conditionX
a2F

X
j2E

Pn�1(�{n�1; j; a)Cn((�{n�1; j))E
h
Ren�1 (a)

�
rfx+R

e
n�1 (a)

0 u� + �
��1i

= 0

and de�ning �n�1 (�{n�1; x) = u� (�{n�1; x) = (rfx+ �) we getX
a2F

X
j2E

Pn�1(�{n�1; j; a)Cn((�{n�1; j))E
h
Ren�1 (a)

�
1 +Ren�1 (a)

0 �n�1 (�{n�1; x)
��1i

= 0:

(3.56)

Since there is no dependence on x in (3.56), � (�{n�1; x) does not depend on x and � (�{n�1; x) =

�(�{n�1) and we obtain u�n�1(�{n�1; x) = �(�{n�1) (rfx+ �n) and this gives the optimality con-

dition (3.54). If we insert the optimal policy in the value function, we can see that

vn�1(�{n�1; x) =
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Kn ((�{n�1; j))

+
X
a2F

X
j2E

Pn�1 (�{n�1; j; a)Cn ((�{n�1; j))

� E
��
rf
�
1 +Ren�1 (a)

0 �n�1 (�{n�1)
���

(x+ �n=rf )
=

= Kn�1 (�{n�1) + Cn�1(�{n�1)(x+ �n�1)
=

and this completes the proof.

Note that the wealth dynamics equation for the power utility case is the same as the

wealth dynamics equation (3.29) for the logarithmic utility case although the structure of

the optimal policy in (3.23) and (3.49) are di¤erent. Therefore, using a similar analysis

as in Section 3.1.3 we can easily determine the evolution of the wealth process. Likewise,

similar interpretations can be made on the structure of the optimal policy. In particular,

the optimal policy is not myopic, but the risky composition of the portfolio is myopic.

Moreover, this composition only depends on the state of the market. Although we obtain

similar characterizations and interpretations, note that the optimal policies for logarithmic

and power cases are not identical.

3.2 Su¢ cient Statistics

The main problem about our formulation of the problem with imperfect information in

Section 3.1 is that the state space is of increasing dimension. A new observation at period

n causes an increase in the dimension of the information vector �Yn: This clearly creates
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some problems as the number of periods increases since it is computationally di¢ cult to

keep track of this much information. A common approach used under these circumstances

is to use su¢ cient statistics or a process that represents the probabilistic structure of the

information �ow.

De�ne �an = P
�
Zn = a

�� �Yn � so that �an is the probability that the true state of the
environment at time n is a given all observations �Yn until that time. The vector �n =�
�an;�

b
n; � � �

�
denotes the conditional distribution of Zn given �Yn where

P
a2F �

a
n = 1 and

�an � 0 for all a 2 F: Additional information that we obtain at each period is the new state

of the observed process Y . Therefore, information at time n + 1 is information at time n

plus Yn+1 so that �Yn+1 =
�
�Yn; Yn+1

�
: The conditional distribution of the true state of the

market at time n+ 1 is speci�ed by

�bn+1 = P
�
Zn+1 = bj �Yn+1

	
= T bn (�n; Yn+1)

where we can write

T bn (�; j) =
P
a2F �

aQn(a; b)Gn+1(b; j)P
a;c2F �

aQn(a; c)Gn+1(c; j)
(3.57)

for n � 0 using Bayesian updating. Note that �0 is either known at the beginning or it can

be determined from

�b0 =
P [Z0 = b]G0(b; Y0)P
a2F P [Z0 = a]G0(a; Y0)

(3.58)

using the initial observation Y0. The most important property of (3.57) is that calculation

of the conditional distribution of the true state of the environment after time n+1 requires

only �n; conditional probability of the true state of the environment after time n; and

Yn+1; the new observation on the true state of the environment at time n+1. Therefore, �n

summarizes the information up to time n and represents a su¢ cient statistic for the complete

past history of �Yn. This result is also stated in Smallwood and Sondik [62], Monahan [49],

and Bell [4]. Moreover, it is stated in Monahan [49] that � = f�n;n � 0g is a Markov chain.

As a result, our problem can be modeled as a completely observable Markov decision chain

where �n is the state of this Markov chain at time n. The unobservable environmental

process Z is de�ned on the �nite state space F whereas the Markov chain � is de�ned on

a continuous state space DF which is the set of all probability distributions on F .

Expression in (3.57) is a transformation from �n to �n+1 if the observations �Yn become

�Yn+1 = (�Yn; Yn+1); and the transformation is �n+1 = Tn (�n; Yn+1) for n � 0. Clearly,
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Tn (�; j) =
�
T bn (�; j) ; b 2 F

	
is a probability distribution with

P
b2F T bn (�; j) = 1 and

T bn (�; j) � 0 for all b 2 F: Note that �0 is again either known as an initial condition or

it can be found by (3.58). In this case; we assume that P [Z0 = a] is externally speci�ed

so that it is initially known. In practice, P [Z0 = a] can be determined via preliminary

analysis of the unobserved environment. Then, using P [Z0 = a] ; we can determine �0 by

(3.58) since we already know G0.

The evolution of Y is now described probabilistically by

P kn (�n; j) = P
�
Yn+k = j

�� �Yn � =X
a2F

�an	
k
n (a; j) (3.59)

for k � 1; where 	kn is de�ned as

	kn (a; j) = P [Yn+k = jjZn = a]

=
X

bn+1;��� ;bn+k2F
Qn(a; bn+1) � � �Qn+k�1(bn+k�1; bn+k)Gn+k(bn+k; j) (3.60)

for k � 1. Moreover, we use Pn and 	n instead of P kn and 	kn respectively when k = 1. We

then have the simpler representation

	n (a; j) =
X
b2F

Qn (a; b)Gn+1 (b; j)

and

Pn (�; j) =
X
a;b2F

�aQn (a; b)Gn+1 (b; j) :

If the hidden Markov chain is stationary such that Qn = Q and Gn = G for any n =

0; 1; � � �T � 1; then

	n = 	 = QG

and

Pn = P = �QG:

In addition, we can write the recursion

P k+1n (�; j) =
X
l2E

Pn (�; l)P
k
n+1(Tn (�; l) ; j) (3.61)

for all � and j.
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For any function f on DF , let

	nf (�; a) =
X
j2E

	n (a; j) f (Tn (�; j))

for n = 0; 1; � � � ; T � 2; and similarly, for any function g on E, de�ne

	T�1g (a) =
X
j2E

	T�1 (a; j) g (j) :

Note that fPng can easily be determined once the conditional distribution of true state

of environment f�ng, the transition matrices fQng, emission matrices fGng and the initial

distribution of true state of the environment are known. Here, we assume that fQng, fEng

and f	ng are time-dependent for single and multiple period analyses.

3.2.1 Dynamic Programming Formulation

In order to solve the portfolio selection problem, we de�ne gn (�; x; u) as the expected utility

using the investment policy u in period n and the optimal policies from period n + 1 to

period T given that the probability distribution about the state of the market state is �,

and the amount of money available for investment is x at period n. Then,

vn (�; x) = max
u
gn (�; x; u)

is the optimal expected utility using the optimal policy given that the probability distri-

bution about the state of the market state is �, and the amount of money available for

investment is x at period n: According to the dynamic programming principle

gn (�; x; u) = E [vn+1 (�n+1; Xn+1(u)) j�n = �;Xn = x ]

and we can write the dynamic programming equation (DPE) as

vn (�; x) = max
u
E [vn+1 (�n+1; Xn+1(u)) j�n = �;Xn = x ] (3.62)

which can be rewritten as

vn (�; x) = max
u
E
h
vn+1

�
Tn (�; Yn+1) ; rfx+Ren(Zn)

0
u
�
j�n = �;Xn = x

i
and

vn (�; x) = max
u

X
a2F

X
j2E

�a	n (a; j)E
h
vn+1

�
Tn (�; j) ; rfx+Ren(a)

0
u
�i

(3.63)
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for n = 0; 1; � � � ; T � 1 with the boundary condition vT (TT�1 (�; j) ; x) = U(j; x) for all

� 2 DF and j 2 E. The solution for this problem is found by solving the DPE recursively.

It should be noted that in this analysis we assume rf does not depend neither on real market

state nor observed market state.

3.2.2 Exponential Utility

In this section, we assume that the utility of the investor in state i is given by the exponential

function

U (i; x) = K(i)� C(i) exp (�x=�) (3.64)

with C (i) > 0. Note that as in the case of perfect information � is that same for all market

states so that risk classi�cation of the investor does not depend on the stochastic market.

Similarly, we assume that the return for the riskless asset is same for all market states so

that rf (i) = rf for all i. Then,

Ren (i; a) = R
e
n (a) = R (n; a)� rf

so that both vector ren and matrix Vn do not depend on the observed state. To simplify the

notation, we can write ren (i; a) = ren (a) = r (n; a) � rf and Vn (i; a) = Vn (a) = � (n; a) +

ren (a) r
e
n (a)

0.

Theorem 10 Let the utility function of the investor be the exponential function (3.64) and

suppose that the riskless asset return does not depend on the market state. Then, the optimal

solution of the dynamic programming equation (3.63) is

vn (�; x) = Kn (�)� Cn(�)e�x=�n

and the optimal portfolio is

u�n(�) = �n (�)�n

where

�n =
�

rT�nf

; Kn (�) =
X
a2F

�a	nKn+1 (�; a) ;

Cn (�) =
X
a2F

�a	nCn+1 (�; a)E
�
exp

�
�Ren (a)

0 �n(�)
��
;
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and �n(�) satis�esX
a2F

�a	nCn+1 (�; a)E
�
Ren (a) exp

�
�Ren (a)

0 �n(�)
��
= 0 (3.65)

for all n = 0; 1; � � � ; T � 2 and

X
a2F

�a	T�1C (a)E
�
ReT�1 (a) exp

�
�ReT�1 (a)

0 �T�1(�)
��
= 0

for n = T � 1 with boundary conditions

KT�1(�) =
X
a2F

�a	T�1K (a) ;

CT�1(�) =
X
a2F

�a	T�1C (a)E
�
exp

�
�ReT�1 (a)

0 �T�1(�)
��
:

Proof. We will show that the recursion is true by induction starting with the fact that

U (i; x) = K(i)� C(i) exp (�x=�). Note that

gT�1 (�; x; u) =
X
a2F

�a
X
j2E

	T�1 (a; j)E
�
U(j; rfx+R

e
T�1 (a)

0 u)
�

=
X
a2F

�a
X
j2E

	T�1 (a; j)K (j)

�
X
a2F

�a
X
j2E

	T�1 (a; j)C (j)E
�
exp

�
�
�
ReT�1 (a)

0 u=� + rfx
�
=�
��
:

Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky assets so that

vT�1 (�; x) = max
u
gT�1 (�; x; u) = gT�1 (�; x; u

�)

as in the perfect information case. The gradient of gT�1 is

@gT�1
@uk

= exp (�rfx=�)
X
a2F

�a
X
j2E

	T�1 (a; j)C (j)E
�
ReT�1;k (a) exp

�
�ReT�1 (a)

0 u=�
��
=�

(3.66)

and the entries of the Hessian matrix H (�; x; u) are

@2gT�1
@uk@ul

= � exp (�rfx=�)
X
a2F

�a
X
j2E

	T�1 (a; j)C (j)

�E
�
ReT�1;k (a)R

e
T�1;l (a) exp

�
�ReT�1 (a)

0 u=�
��
=�2: (3.67)
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Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then, one

can see that zTH (�; x; u) z is equal to

zTH (�; x; u) z = � 1

�2
exp (�rfx=�)

X
a2F

�a
X
j2E

	T�1 (a; j)C (j)

�E

24 mX
k=1

zkR
e
T�1;k (a)

!2
exp

�
�ReT�1 (a)

0 u=�
�35

which is always less than or equal to zero since �a;	T�1 (a; j) ; C (j) are all positive. Thus,

H (�; x; u) is negative semi-de�nite and we can �nd the optimal solution by setting the

gradient (3.66) equal to zero to obtain the optimality condition

exp (�rfx=�)
X
a2F

�a
X
j2E

	T�1 (a; j)C (j)E
�
ReT�1;k (a) exp

�
�ReT�1 (a)

0 u�=�
��
=� = 0

which can be rewritten asX
a2F

�a	T�1C (a)E
�
ReT�1;k (a) exp

�
�ReT�1 (a)

0 u�=�
��
= 0: (3.68)

Since there is no dependence on x in (3.68), u�T�1(�; x) does not depend on x and the policy

u�T�1(�; x) = u
�
T�1(�). Letting �T�1 (�) = u

�
T�1 (�) =�, we obtain u

�
T�1(�; x) = �T�1 (�)�

and this gives optimality condition (3.65). When the value function at time T�1 is rewritten

for the optimal policy, we obtain

vT�1 (�; x) =
X
a2F

�a	T�1K (a)� exp (�rfx=�)
X
a2F

�a	T�1C (a)

� E
�
exp

�
�ReT�1 (a)

0 �T�1 (�)
��

= KT�1(�)� CT�1(�) exp(�x=�T�1)

and the value function is still exponential like the utility function: This completes the proof

for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1 (�; x; u) =
X
a2F

�a
X
j2E

	n�1 (a; j)E
�
vn(Tn�1 (�; j) ; rfx+Ren�1 (a)

0 u)
�

=
X
a2F

�a
X
j2E

	n�1 (a; j) (Kn(Tn�1 (�; j))

�Cn(Tn�1 (�; j))E
�
exp

�
�
�
rfx+R

e
n�1 (a)

0 u
�
=�n

���
:
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One can easily see that the Hessian matrix of gn�1 (�{n�1; x; u) is negative semi-de�nite as

for gT�1 (�{T�1; x; u) : Let u�n�1(�{n�1; x) be the optimal policy such that

vn�1 (�; x) = max
u
gn�1 (�; x; u) = gn�1 (�; x; u

�) :

If we take the gradient of gn�1 (�; x; u) with respect to u and set it equal to 0, we get the

optimality condition

� exp (�rfx=�n)
X
a2F

�a
X
j2E

	n�1 (a; j)Cn(Tn�1 (�; j))

�E
�
Ren�1;k (a) exp

�
�Ren�1 (a)

0 u�=�n
��
=�n = 0

which can be rewritten as

X
a2F

�a	n�1Cn (�; a)E
�
Ren�1;k (a) exp

�
�Ren�1 (a)

0 u�=�n
��
= 0 (3.69)

for all k = 1; 2; � � � ;m. Since there is no dependence on x in (3.69), u�n�1(�; x) does not

depend on x and u�n�1(�; x) = u�n�1(�{n�1). Letting �n�1(�) = u�n�1(�)=�n we obtain

u�n�1(�; x) = �n�1(�)�n and this gives optimality condition (3.65). If we insert the optimal

policy in the value function, we can see that

vn�1 (�; x) =
X
a2F

�a
X
j2E

	n�1 (a; j)Kn (Tn�1 (�; j))� exp (�rfx=�n)
X
a2F

�a
X
j2E

	n�1 (a; j)

� Cn (Tn�1 (�; j))E
�
exp

�
�Ren�1 (a)

0 �n�1 (�)
��

= Kn�1(�)� Cn�1(�) exp(�x=�n�1):

and this completes the proof.

Evolution of Wealth

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rfXn +R
e
n(Zn)

0u�n(�n; Xn)

= rfXn +R
e
n(Zn)

0�n(�n)�n+1

= rfXn + r
n+1�T
f Ren(Zn)

0�n(�n)�: (3.70)
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De�ne the random variable

An (�; a) = R
e
n(a)

0�n (�) (3.71)

with mean

��n (�; a) = E [An (�; a)] = E
�
Ren(a)

0�n (�)
�

(3.72)

= ren(a)
0�n (�)

and second moment

~�n (�; a) = E
h
An (�; a)

2
i
= E

�
�n (�)

0Ren(a)R
e
n(a)

0�n (�)
�

(3.73)

= �n (�)
0 Vn (a)�n (�)

which gives the variance

Var (An (�; a)) = ~�n (�; a)� ��n (�; a)2 : (3.74)

Now, we will show that the wealth process is given by

Xn = r
n
fX0 + r

n�T
f �

n�1X
k=0

Ak (�k; Zk) (3.75)

using the induction method where the sum on the right-hand side is set to zero when n = 0.

The induction hypothesis holds trivially for n = 0. Suppose (3.75) holds for some n � 0. If

we write Xn+1 using the wealth dynamics equation (3.70)

Xn+1 = rfXn + r
n+1�T
f An (�n; Zn)�

= rn+1f X0 + r
n+1�T
f �

n�1X
k=0

Ak (�k; Zk) + r
n+1�T
f An (�n; Zn)�

= rn+1f X0 + r
n+1�T
f �

nX
k=0

Ak (�k; Zk)

and we see that the induction hypothesis also holds for n+1: So, we can conclude that the

wealth process can be written as in (3.75) and for n = T we can �nd the terminal wealth as

XT = r
T
f X0 + �

T�1X
k=0

Ak (�k; Zk) : (3.76)

Given X0 = x0, the expected value of the terminal wealth satis�es

E [XT j�0 = �] = rTf x0 +me (�; T )� (3.77)
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where

me (�; T ) =

T�1X
k=0

E [Ak (�k; Zk) j�0 = �] (3.78)

and the variance of the terminal wealth satis�es

Var (XT j�0 = �) = �2Var
 
T�1X
k=0

Ak (�k; Zkj�0 = �)
!
= v2e (�; T )�

2: (3.79)

We see that both the return and the standard deviation of XT depends linearly on �. This

shows that the exponential frontier is the line

E [XT j�0 = �] = rTf x0 +
�
me (�; T )

ve (�; T )

�
SD (XT j�0 = �) (3.80)

where SD(XT )) =
p
Var (XT ). We now show how m (�; T ) and v (�; T ) can be computed.

Computational Formulas

De�ne the transition densities of the process (�; Z) such that

Tn;k ((�n; a) ; (d�n+k; b)) = P f�n+k 2 d�n+k; Zn+k = bj�n = �n; Zn = ag :

We can determine Tn;k using a recursive algorithm with initial condition

Tn;1 ((�n; a) ; (d�n+1; b)) = P f�n+1 2 d�n+1; Zn+1 = bj�n = �n; Zn = ag

=
X
j2E

Qn (a; b)Gn+1 (b; j) 1fTn(�n;j)2d�n+1g

and the recursion

Tn;k ((�n; a) ; (d�n+k; b)) =
X

bk�12F

Z
DF
Tn;k�1 ((�n; a) ; (d�; bk�1)) 1fTn+k�1(�;j)2d�n+kg

for k � 2. This can be solved to �nd

Tn;k ((�n; a) ; (d�n+k; b)) =
X

a1;��� ;ak2F

X
j1;��� ;jk2E

Qn (a; a1)Gn+1 (a1; j1) � � �Qn (ak�1; ak)

�Gn+k (ak; jk) 1fTn+k(Tn+k�1(���(Tn(�n;j1))��� ;jk))2d�n+kg:

We can also determine

P f�k = d�k; Zk = bj�0 = �0g =
X
a2F

P f�k 2 d�k; Zk = bj�0 = �0; Z0 = ag

�P fZ0 = aj�0 = �0g

=
X
a2F

T0;k ((�0; a) ; (d�k; b))�
a
0:
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Using these relationships, we can write (3.78) as

me (�; T ) =
T�1X
k=0

Z
DF

X
b2F

P f�k 2 d�k; Zk = bj�0 = �g ��k (�k; b)

T�1X
k=0

Z
DF

X
a;b2F

T0;k ((�; a) ; (d�k; b))�
a��k (�k; b)

can be calculated using matrix operations.

Similarly,

v2e (�; T ) = Var

 
T�1X
k=0

Ak (�k; Zk)

������0 = �
!

=
T�1X
k=0

T�1X
m=0

Cov (Ak (�k; Zk) ; Am (�m; Zm) j�0 = �)

=
T�1X
k=0

Var (Ak (�k; Zk) j�0 = �)

+2

T�1X
k=0

T�1X
m=k+1

Cov (Ak (�k; Zk) ; Am (�m; Zm) j�0 = �)

=
T�1X
k=0

�
E
h
Ak (�k; Zk)

2 j�0 = �
i
� E [Ak (�k; Zk) j�0 = �]2

�
+2

T�1X
k=0

T�1X
m=k+1

(E [Ak (�k; Zk)Am (�m; Zm) j�0 = �]

�E [Ak (�k; Zk) j�0 = �]E [Am (�m; Zm) j�0 = �])
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and we can write

v2e (�; T ) =

T�1X
k=0

0@Z
DF

X
a;b2F

T0;k ((�; a) ; (d�k; b))�
a~�k (�k; b)

�

0@Z
DF

X
a;b2F

T0;k ((�; a) ; (d�k; b))�
a��k (�k; b)

1A21A
+2

T�1X
k=0

T�1X
m=k+1

0@Z
DF

X
a;b2F

T0;k ((�; a) ; (d�k; b))�
a��k (�k; b)

�
Z
DF

X
c2F

Tk;m�k ((�k; b) ; (d�m; c)) ��m (�m; c)

!

�2
T�1X
k=0

T�1X
m=k+1

0@Z
DF

X
a;b2F

T0;k ((�; a) ; (d�k; b))�
a��k (�k; b)

1A
�

0@Z
DF

X
a;b2F

T0;m ((�0; a) ; (d�m; b))�
a
0��m (�m; b)

1A
3.2.3 Logarithmic Utility

In this section, we assume that the utility of the investor in state i is given by the logarithmic

function

U(i; x) =

8<: K(i) + C(i) log(x+ �) x+ � > 0

�1 x+ � � 0
(3.81)

with C (i) > 0 where we can easily see that Pratt-Arrow�s measure of absolute risk aversion

is simply equal to r(x) = 1=(� + x) > 0 for all i so that b = 1 and a = � in Table 1.1. Note

that � is the same for all market states so that risk classi�cation of the investor does not

depend on the stochastic market. Similarly, we assume that the return for the riskless asset

is the same for all market states so that rf (i) = rf for all i.

We will �rst consider a generic optimization problem of the form

max
u

X
a2F

�aE
�
log
�
Re (a)0 u+ c

��
(3.82)

where c > 0 is any constant, � is any measure on F , and Re (a) is a random vector for any

a 2 F . Now, let

A(c) =
�
u : P

�
Re (a)0 u+ c > 0

	
= 1
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be the set of all policies with �nite expected utility so that
��E �log �Re (a)0 u+ c���� < +1

for u 2 A (c). It can be seen that u = (u1; u2; � � � ; um) = (0; 0; � � � ; 0) 2 A (c) satis�es

this condition trivially for all c > 0. So, A (c) is not empty. Also, let u, w 2 A (c), then

Re (a)0 u+ c > 0, and Re (a)0w + c > 0 implies that

�Re (a)0 u+ (1� �)Re (a)0w + c > 0

so that �u+ (1� �)w 2 A (c) for all 0 � � � 1: So, the solution set A (c) is nonempty and

convex. The gradient vector of the objection function g (u) =
P
a2F �aE

�
log
�
Re (a)0 u+ c

��
is given by

5kg (u) =
@g (u)

@uk
=
X
a2F

�aE

�
Rek (a)

Re (a)0 u+ c

�
while the Hessian matrix is

52
k;lg (u) =

@2g (u)

@uk@ul
= �

X
a2F

�aE

"
Rek (a)R

e
l (a)�

Re (a)0 u+ c
�2
#

for all k; l.

The �rst order optimality condition to �nd the optimal solution of (3.82) is obtained by

setting the gradient vector equal to zero so that

X
a2F

�aE

�
Rek (a)

Re (a)0 u+ c

�
= 0 (3.83)

for all k.

Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then,

one can see that

z0 52 g (u) z = �
X
a2F

�aE

2666664

 
mX
k=1

zkR
e
k (a)

!2
�
Re (a)0 u+ c

�2
3777775 � 0:

Thus, the Hessian matrix52g (u) is negative semi-de�nite and if there is a solution u 2 A (c)

satisfying the �rst order condition (3.83), it must be optimal. Throughout this chapter, we

assume that the excess returns are such that there is a solution of the �rst order condition

(3.83) in A(c) for all fRen (a)g and c > 0.
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Theorem 11 Let the utility function of the investor be the logarithmic function (3.81) and

suppose that the riskless asset return does not depend on the market state. Then the optimal

solution of the dynamic programming equation (3.63) is

vn (�; x) = Kn (�) + Cn(�) log (x+ �)

and the optimal portfolio is

u�n(�; x) = �n(�)
�
rfx+ �n+1

�
(3.84)

where

�n =
�

rT�nf

; Cn�1 (�) =
X
a2F

�a
X
j2E

	n�1 (a; j)Cn (Tn (�; j))

Kn�1 (�) =
X
a2F

�a

0@X
j2E

	n�1 (a; j)Kn (Tn (�; j))

+
X
j2E

	n�1 (a; j)Cn (Tn (�; j))E
�
log
�
1 +Ren�1 (a)

0 � (�)
��1A ;

and �n(i) satis�es X
a2F

�a	n�1Cn (a)E

"
Ren;k (a)

1 +Ren (a)
0 � (�n ; x)

#
= 0 (3.85)

for all n = 0; 1; � � � ; T � 1 with boundary conditions

KT�1(�) =
X
a2F

�a

0@X
j2E

	T�1 (a; j)K (j)

+E
�
log
�
1 +Ren�1 (a)

0 � (�)
��X
j2E

	T�1 (a; j)C (j)

1A
CT�1(�) =

X
a2F

�a
X
j2E

	T�1 (a; j)C (j)

for all i.

Proof. We will show that the recursion is true by induction starting with the boundary

condition U(i; x) = K(i) + C(i) log (x+ �). Note that

gT�1 (�; x; u) = E

24X
a2F

�a
X
j2E

	T�1 (a; j)U(j; rfx+R
e
T�1 (a)

0 u)

35
= E

24X
a2F

�a
X
j2E

	T�1 (a; j)
�
K (j) + C (j) log

�
ReT�1 (a)

0 u+ rfx+ �
��35
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Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky assets so that

vT�1 (�; x) = max
u
gT�1 (�; x; u) = gT�1 (�; x; u

�)

as in the perfect information case.

Note that the optimization problem of maximizing the objective function gT�1 (�; x; u)

is similar to the optimization problem (3.82) where �a = �a
P
j2E 	T�1 (a; j)C (j) and

c = rfx + �: Therefore, using the assumption on return distributions we can �nd the

optimal portfolio by setting the gradient equal to zero so that

@gT�1
@uk

=
X
a2F

�a
X
j2E

	T�1 (a; j)C (j)E

"
ReT�1;k (a)

ReT�1 (a)
0 u� + rfx+ �

#
= 0

for any asset k = 1; 2; � � � ;m where 	T�1C (a) =
P
j2E 	n (a; j)C (j) : De�ning the vector

function �
�
�T�1 ; x

�
= (�1

�
�T�1 ; x

�
; �2

�
�T�1 ; x

�
; � � � ; �m

�
�T�1 ; x

�
) such that �

�
�T�1 ; x

�
=

u�
�
�T�1 ; x

�
= (rfx+ �) we obtain u�(a; x) = �(a; x) (rfx+ �) so the optimality condition

can be rewritten as

X
a2F

�a	T�1C (a)E

"
ReT�1;k (a)

1 +ReT�1 (a)
0 �
�
�T�1 ; x

�# = 0 (3.86)

for all k = 1; 2; � � �m: Since there is no dependence on x in (3.86), � (�; x) does not depend

on x and � (�; x) = � (�). When the value function at time T � 1 is rewritten for the

optimal policy, we obtain

vT�1 (�; x) =
X
a2F

�a	T�1K (a)

+
X
a2F

�a	T�1C (a)
�
log(rfx+ �) + E

�
log
�
1 +ReT�1 (a)

0 � (�)
���

= KT�1(�)� CT�1(�) log (rfx+ �) :

and the value function is still exponential like the utility function: This completes the proof

for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,
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for period n� 1,

gn�1 (�; x; u) = E

24X
a2F

�a
X
j2E

	n (a; j) vn(Tn�1 (�; j) ; rfx+Ren�1 (a)
0 u)

35
=

X
a2F

�a
X
j2E

	n (a; j)Cn(Tn�1 (�; j))E
�
log
�
Ren�1 (a)

0 u+ rfx+ �n
��

+
X
a2F

�a
X
j2E

	n (a; j)Kn(Tn�1 (�; j))

Let u�n�1(�{n�1; x) be the optimal policy such that

vn�1 (�; x) = max
u
gn�1 (�; x; u) = gn�1 (�; x; u

�) :

It is clear, once again, that the objective function gn�1(�n�1; x; u) is in the form of the

generic objective function in (3.82) with �a = �a
P
j2E 	n (a; j)Cn(Tn�1 (�; j)) and c =

rfx + �n. If we take the gradient of gn�1 (�; x; u) with respect to u and set it equal to 0,

we get the optimality condition

@gn�1
@uk

=
X
a2F

�a
X
j2E

	n�1 (a; j)Cn (Tn�1 (�n�1; j))E
"

Ren�1;k (a)

Ren�1 (a)
0 u� + rfx+ �

#
= 0 (3.87)

and X
a2F

�a	n�1Cn (Tn�1 (�n�1; j))E
"

Ren�1;k (a)

Ren�1 (a)
0 u� + rfx+ �

#
= 0 (3.88)

for all k = 1; 2; � � �m are the optimality conditions. De�ning the vector function � (�n�1; x)

such that � (�n�1; x) = u� (�n�1; x) = (rfx+ �) we obtain u�n�1(a; x) = �(a; x) (rfx+ �) so

the optimality condition can be rewritten asX
a2F

�a	n�1Cn (Tn�1 (�n�1; j))E
"

Ren�1;k (a)

1 +Ren�1 (a)
0 � (�n�1; x)

#
= 0: (3.89)

for all k = 1; 2; � � �m are the optimality conditions. Since there is no dependence on x and

i in (3.89), � does not depend on x and i and u�n�1 = �n�1 (�n�1) (rfx+ �). When the

value function at time n� 1 is rewritten for the optimal policy, we obtain

vn�1 (�; i; x) =
X
a2F

�a
X
j2E

	n�1Kn (Tn�1 (�; j)) log (rfx+ �n)

�
X
a2F

�a
X
j2E

	n�1Cn (Tn�1 (�; j)) (log (rfx+ �n)

+E
�
log
�
1 +Ren�1 (a)

0 � (�)
���

= Kn�1(�)� Cn�1(�) log (rfx+ �n) :
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and this completes the proof.

Note that the structure of the optimal solution in (3.84) is such that the optimal dis-

tribution of wealth invested in the risky assets depend only on the state of the market

independent of time. If the market is in state i in period n, then the total amount of money

invested on the risky assets is

10u�n(�; x) = 1
0�n(�)(rfx+ �n+1) =

0@rfx+ �

r
T�(n+1)
f

1A mX
k=1

�n;k(�)

and the proportion on wealth allocated for asset k in the risky portfolio is

wn;k(�) =
�n;k (�)
mP
k=1

�n;k (�)

(3.90)

which is totally independent of wealth x. The optimal policy speci�ed by (3.84) is not

static in time since it depends on n, and it is not memoryless in wealth since it depends on

x. However, (3.90) clearly indicates that the composition of the risky part of the optimal

portfolio only depends on the market state and time. The risky portfolio composition is

memoryless. It satis�es the separation property in the sense that it represents the single fund

of risky assets that logarithmic investors choose. The amount of total wealth allocated for

risky assets depend on the level of wealth, but the composition of the risky assets depend only

on the market state and time. This composition, however, is random due to the randomly

changing market conditions in time. Our results are of course consistent with similar work

in the literature on logarithmic utility functions, but the stochastic market approach makes

our model more realistic without causing substantial di¢ culty in the analysis. Another

important observation is that the structure of the optimal portfolio is not a¤ected by the

transition matrix fQng of the stochastic market. It only depends on the joint distribution

of the risky asset returns as prescribed by (3.85) in a given market state, irrespective of

future expectations on the stochastic market.
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Evolution of Wealth

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rfXn +R
e(Zn)

0u�n(�n; Xn)

= rfXn +R
e(Zn)

0�n(�n)
�
rfXn + �n+1

�
= rfXn (1 +An (�n; Zn)) + r

n+1�T
f An (�n; Zn)� (3.91)

where An (�; a) is de�ned in (3.71).

De�ne

Cn (x1; x2; � � � ; xn) =
nY
k=1

(1 + xk)� 1

as the sum of all combinations of the products of n variables for n � 1; and set C0 = 0:

Now, we will show that the wealth process is

Xn = r
n
fX0

n�1Y
k=0

(1 +Ak (�k; Zk)) + r
n�T
f �Cn (A0 (�0; Z0) ; � � � ; An�1 (�n�1; Zn�1)) (3.92)

using induction where the product on the right hand side is set to 1 when n = 0. The

induction hypothesis holds trivially for n = 0. Suppose (3.92) holds for some n � 0. If we

write Xn+1 using the wealth dynamics equation (3.91)

Xn+1 = rfXn (1 +An(�n; Zn)) + r
n+1�T
f An(�n; Zn)�

= rn+1f X0

nY
k=0

(1 +Ak (�k; Zk)) + r
n+1�T
f � [(1 +An(�n; Zn))

� Cn (A0 (�0; Z0) ; A1 (�1; Z1) ; � � � ; An�1 (�n�1; Zn�1)) +An(�n; Zn)]

= rn+1f X0

nY
k=0

(1 +Ak (�k; Zk)) + r
n+1�T
f �Cn+1 (A0 (�0; Z0) ; � � � ; An (�n; Zn))

and we see that the induction hypothesis also holds for n + 1: So, we conclude that the

wealth process can be written as in (3.92) and, for n = T; we can �nd the terminal wealth

as

XT = rTf X0

T�1Y
k=0

(1 +Ak (�k; Zk)) + �CT (A0 (�0; Z0) ; � � � ; AT�1 (�T�1; ZT�1))

= rTf X0 +
�
rTf X0 + �

�
CT (A0 (�0; Z0) ; A1 (�1; Z1) ; � � � ; AT�1 (�T�1; ZT�1)) :

Given X0 = x0, the expected value of the terminal wealth satis�es

E [XT j�0 = �] = rTf x0 +
�
rTf x0 + �

�
ml (�; T ) (3.93)
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where

ml (�; T ) = E [CT (A0 (�0; Z0) ; A1 (�1; Z1) ; � � � ; AT�1 (�T�1; ZT�1)) j�0 = �] (3.94)

and the variance of the terminal wealth satis�es

Var (XT j�0 = �) =
�
rTf x0 + �

�2
v2l (�; T ) (3.95)

where

v2l (�; T ) = Var (CT (A0 (�0; Z0) ; A1 (�1; Z1) ; � � � ; AT�1 (�T�1; ZT�1)) j�0 = �) : (3.96)

We can clearly see from (3.93) and (3.95) that both the return and the standard deviation

of XT depends linearly on �. This shows that the logarithmic frontier is the straight line

E [XT j�0 = �] = rTf x0 +
�
ml (�; T )

vl (�; T )

�
SD (XT j�0 = �)

where SD(XT j�0 = �)) =
p
Var (XT j�0 = �): In other words, the expected value and stan-

dard deviation of the terminal wealth fall on this straight line when they are calculated and

plotted for di¤erent values of �: Also, it cuts the zero-risk line at E [XT j�0 = �] = rTf x0 as

expected. The reason for this is that for zero-risk level investor puts all of his money on

the riskless asset. The return of the riskless asset until the terminal time T is rTf ; and the

wealth at the terminal time will be rTf x0 for sure. The risk premium for the logarithmic

investor is given by the ratio ml (�; T ) =vl (�; T ).

Computational Formulas

The computation of ml (�; T ) and vl (�; T ) are possible although they are not as simple as

their counterparts for the exponential utility case. We will use the de�nition (2.60) whenever

appropriate. Note that,

ml (�; T ) = E

"
T�1Y
k=0

(1 +Ak (�k; Zk))� 1
������0 = �

#

= E

"
E

"
T�1Y
k=0

(1 +Ak (�k; Zk))� 1
����� �ZT�1;�1; � � ��T�1;�0 = �

##
and, since the returns in di¤erent periods are independent given (�; Z), we obtain

ml (�; T ) = E

"
T�1Y
k=0

(1 + ��k (�k; Zk))� 1
������0 = �

#
= E [CT (��0 (�0; Z0) ; ��1 (�1; Z1) ; � � � ; ��T�1 (�T�1; ZT�1)) j�0 = �] : (3.97)
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Given �0 = �; the conditional joint distribution of �1; � � � ;�T�1; �ZT�1 is

P
�
�1 2 d�1;�2 2 d�2; � � � ;�T�1 2 d�T�1; �ZT�1 = �aT�1

���0 = �	 (3.98)

= �a0T0;1 ((�; a0) ; (d�1; a1)) � � �TT�2;1 ((�T�2; aT�2) ; (d�T�1; aT�1))

and the expected return of terminal wealth (3.97) can found by using this distribution so

that

ml (�; T ) =
X

�aT�12FT

Z
DF
� � �
Z
DF
�a0T0;1 ((�; a0) ; (d�1; a1)) � � � (3.99)

�TT�2;1 ((�T�2; aT�2) ; (d�T�1; aT�1))

�CT (��0 (�; a0) ; ��1 (�1; a1) ; � � � ; ��T�1 (�T�1; aT�1)) :

To determine the variance v2l (�; T ) ; we �rst calculate the second moment as

sl (�; T ) = E

"
T�1Y
k=0

((1 +Ak (�k; Zk))� 1)2
������0 = �

#

= E

"
E

"
T�1Y
k=0

((1 +Ak (�k; Zk))� 1)2
����� �ZT�1;�1; � � ��T�1;�0 = �

##

= E

"
E

"
T�1Y
k=0

(1 +Ak (�k; Zk))
2 � 2

T�1Y
k=0

(1 +Ak (�k; Zk))

+1j �ZT�1;�1; � � ��T�1;�0 = �
��

= E

"
T�1Y
k=0

(1 + 2��k (�k; Zk) + ~�k (�k; Zk))� 1

�2
 
T�1Y
k=0

(1 + ��k (�k; Zk))� 1
!������0 = �

#
= E[CT (2��0 (�0; Z0) + ~�0 (�0; Z0) ; � � � ;

2��T�1 (�T�1; ZT�1) + ~�T�1 (�T�1; ZT�1))j�0�]

�2E [CT (��0 (�0; Z0) ; ��1 (�1; Z1) ; � � � ; ��T�1 (�T�1; ZT�1)) j�0 = �]

which can be found using the conditional distribution (3.98) as in (3.99). Finally, the

variance becomes v2l (�; T ) = sl (�; T )�ml (�; T )
2 :
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3.2.4 Simple Logarithmic Utility

In this section, we assume that the utility of the investor in state i is given by the simple

logarithmic function

U(i; x) =

8<: K(i) + C(i) log(x) x > 0

�1 x � 0
(3.100)

with C (i) > 0 and � = 0. In this part, we can relax the assumption on risk free rate as

rf (i) now depends on the observed market state. Note that this structure implies Ren (i; a) =

R (n; a)�rf (i) which depends on a as well as i. We still need the assumptions on the return

distributions as in Section 3.2.3. Therefore for an optimization problem of the form

max
u

X
a2F

�aE
�
log
�
Re (i; a)0 u+ c

��
(3.101)

we assume that the excess returns are such that the solution to the �rst order condition is

in the feasible set. We therefore suppose that for any measure � on F , any state i 2 E, and

any period n, the following equationX
a2F

�aE

�
Ren (i; a)

1 +Ren (i; a)
0 �

�
= 0 (3.102)

has a unique solution � 2 Rm.

Theorem 12 Let the utility function of the investor be the logarithmic function (3.100).

Then, the optimal solution of the dynamic programming equation (3.63) is

vn(�; x) = Kn (�) + Cn(�) log(x)

and the optimal portfolio is

u�n(�; in; x) = �n(�)rf (in)x

where

Cn�1 (�) =
X
a2F

�a
X
j2E

	n�1 (a; j)Cn (Tn�1 (�; j))

Kn�1 (�) =
X
a2F

�a

0@X
j2E

	n�1 (a; j)Kn (Tn�1 (�; j))

+
X
j2E

	n�1 (a; j)Cn (Tn�1 (�; j))E
�
log
�
1 +Ren�1 (in; a)

0 �n�1 (�)
��1A
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and �n(�) satis�es X
a2F

�a	n�1Cn (a)E

"
Ren;k (in; a)

1 +Ren (in; a)
0 �n(�)

#
= 0 (3.103)

for all assets k = 1; 2; � � � ;m, �{n 2 En+1, and n = 0; 1; � � � ; T � 1 with boundary conditions

KT�1(�) =
X
a2F

�a

0@X
=j2E

	T�1 (a; j)K (j)

+E
�
log
�
1 +Ren�1 (a)

0 �T�1 (�)
��X
j2E

	T�1 (a; j)C (j)

1A
CT�1(�) =

X
a2F

�a
X
j2E

	T�1 (a; j)C (j) :

Proof. We will show that the recursion is true by induction starting with the boundary

condition vT (�{T ; x) = K(iT ) + C(iT ) log (x) and obtain

gT�1(�; x; u) =
X
a2F

�a
X
j2E

	T�1 (a; j)E[U(j; rf (iT�1)x+R
e
T�1 (iT�1; a)

0 u)]

=
X
a2F

�a
X
j2E

	T�1 (a; j)C(j)E[log(rf (iT�1)x+R
e
T�1 (iT�1; a)

0 u)]

+
X
a2F

�a
X
j2E

	T�1 (a; j)K(j):

Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky assets so that

vT�1(�; x) = max
u
gT�1(�; x; u) = gT�1(�; x; u

�)

as in the perfect information case.

Note that the optimization problem of maximizing the objective function gT�1(�; x; u)

is similar to the optimization problem of (3.101) where �a = �
a
P
j2E 	T�1 (a; j)C(j) and

c = rf (iT�1)x. Therefore similar to Theorem 11, we can �nd the optimal portfolio by

setting the gradient equal to zero so thatX
a2F

�a
X
j2E

	T�1 (a; j)C(j)E

"
ReT�1;k (iT�1; a)

rf (iT�1)x+ReT�1 (iT�1; a)
0 u�

#
= 0

for all k = 1; 2; � � � ;m: De�ning �T�1(�; x) = u�T�1(�; iT�1; x)=rf (iT�1)x one can see that

u�T�1(�; iT�1; x) = �T�1(�; x)rf (iT�1)x. The optimality condition can now be rewritten asX
a2F

�a
X
j2E

	T�1 (a; j)C(j)E

"
ReT�1;k (iT�1; a)

1 +ReT�1 (iT�1; a)
0 �T�1 (�; x)

#
= 0: (3.104)
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Since there is no dependence on x in (3.104), �T�1 (�; x) does not depend on x and

�T�1 (�; x) = �T�1 (�). So, we obtain u�T�1(�; iT�1; x) = �T�1 (�) rf (iT�1)x where �T�1

satis�es (3.103). When the value function at time T � 1 is rewritten for the optimal policy,

we obtain

vT�1(�{T�1; x) =
X
a2F

�a
X
j2E

	T�1 (a; j)C(j) log (x) +
X
a2F

�a
X
j2E

	T�1 (a; j) (K(j)

+C(j)E
�
log
�
rf (iT�1)

�
1 +ReT�1 (iT�1; a)

0 �T�1 (�)
����

= KT�1 (�) + CT�1(�) log(x)

and the value function is still logarithmic like the utility function: This completes the proof

for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1(�; x; u) =
X
a2F

�a
X
j2E

	n (a; j) vn(Tn�1 (�; j) ; rf (in�1)x+Ren�1 (in�1; a)
0 u)]

=
X
a2F

�a
X
j2E

	n (a; j)Cn(Tn�1 (�; j))E[log(rf (in�1)x+Ren�1 (iT�1; a)
0 u)]

+
X
a2F

�a
X
j2E

	n (a; j)Kn(Tn�1 (�; j)):

One can easily see that the Hessian matrix of gn�1 (�{n�1; x; u) is negative semi-de�nite as

for gT�1 (�; x; u) : Let u�n�1(�; x) be the optimal policy such that

vn�1(�; x) = max
u
gn�1(�; x; u) = gn�1(�; x; u

�
n�1):

If we take the gradient of gn�1(�; x; u) with respect to u and set it equal to 0, we get the

optimality condition

@gn�1
@uk

=
X
a2F

�a
X
j2E

	n�1 (a; j)Cn (Tn�1 (�; j))E
"

Ren�1;k (in�1; a)

Ren�1 (in�1; a)
0
u� + rf (in�1)x

#
= 0

(3.105)

and X
a2F

�a	n�1Cn (Tn�1 (�; j))E
"

Ren�1;k (in�1; a)

Ren�1 (in�1; a)
0 u� + rf (in�1)x

#
= 0 (3.106)

for all k = 1; 2; � � �m. De�ning the vector function �n�1 (�n�1; x) such that �n�1 (�n�1; x) =

u� (�n�1; in�1; x) =rf (in�1)x we obtain u�n�1(a; in�1; x) = �n�1(a; x)rf (in�1)x so the opti-



Chapter 3: MODELS WITH IMPERFECT INFORMATION 119

mality condition can be rewritten as

X
a2F

�a	n�1Cn (Tn�1 (�; j))E
"

Ren�1;k (in�1; a)

1 +Ren�1 (in�1; a)
0 �n�1 (�n�1; x)

#
= 0: (3.107)

for all k = 1; 2; � � �m. Since there is no dependence on x and i in (3.107), �n�1 does not

depend on x and i and u�n�1 = �n�1 (�) rf (in�1)x. When the value function at time n� 1

is rewritten for the optimal policy, we obtain

vn�1 (�; i; x) =
X
a2F

�a
X
j2E

	n�1Kn (a) log (rf (in�1)x)�
X
a2F

�a
X
j2E

	n�1

� Cn (Tn�1 (�; j))
�
log (rf (in�1)x) + E

�
log
�
1 +Ren�1 (in�1; a)

0 �n�1 (�)
���

= Kn�1(�)� Cn�1(�) log (rf (in�1)x) :

and this completes the proof.

In this special case with � = 0; at any time n, the total amount of money invested in

the risky assets depends only on the information vector �n and wealth x. Since the total

risky investment is 10u�n(�; in; x) = 1
0�n(�)rf (in)x; it follows that rf (i)

Pm
k=1 �n;k(�{k) is the

proportion of total wealth that is invested in the risky assets if the su¢ cient statistics is

�n. Moreover, as in the general logarithmic case, the composition of the risky portfolio also

depends only on �n independent of the available wealth x.

The evolution of the wealth process X using the optimal policy can be analyzed by the

wealth dynamics equation

Xn+1 = rf (Yn)Xn +R
e
n(Zn)

0u�n(�n; Yn; Xn)

= Xnrf (Yn) (1 +An (�n; Zn)) = XnBn (�n; Zn)

where Bk(�k; a) = rf (ik) (1 +Ak(�k; a)) : Clearly, the solution is

Xn = X0

n�1Y
k=0

Bk (�k; Zk) (3.108)

for n � 1; and this simple structure can be exploited to analyze the terminal wealth XT : In

particular, given X0 = x0

E[XT ] = x0 (1 + E [CT (b0 (�0; Z0)� 1; b1 (�1; Z1)� 1; � � � ; bT�1 (�T�1; ZT�1)� 1)])

(3.109)
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where bk (�k; a) = rf (ik) (1 + ak (�k; a)) :

The log-return at the terminal time T is

ln (XT =X0) =

T�1X
k=0

ln(Bk (�k; Zk))

so that the mean is

E [ln (XT =X0) j�0 = �] =
T�1X
k=0

�aQ0Q1 � � �Qk�1(a; b)E [ln(Bk (�k; b))] :

The simple structure of (3.108) can be exploited to determine various quantities of interest

associated with the terminal wealth.

3.2.5 Power Utility

In this section, we assume that the utility of the investor in state i is given by the logarithmic

function

U(i; x) = K (i) + C (i)
(x+ �)


(3.110)

with C (i) > 0 and rf (i) = rf still holds. Note that Pratt-Arrow ratio can be calculated as

r(x) = (1�)= (x+ �) for all i so that b = 1=(1�) and a = �=(�1) in Table 1.1. In this

chapter, we assume that the utility function (3.110) is well-de�ned for all possible values

of x: For example, if (x� �) < 0 is possible, then we exclude  = 1=2 in our analysis. If

we need to include these values of ; we can de�ne the utility function to be �1 whenever

(3.110) is not well-de�ned and make appropriate assumptions on excess returns fRen (a)g as

in Section 3.2.3. For U(i; x) to be a legitimate utility function some additional restrictions

may be imposed, but we do not dwell with such technical issues here. Note that  and � is

the same for all market states so that risk classi�cation of the investor does not depend on

the stochastic market.

We will �rst consider an optimization problem of the form

max
u

X
a2F

�aE

"�
Re (a)0 u+ c

�


#
(3.111)

where Ren (a) is any random vector, and � is any measure on F with �a � 0 for any a. The

gradient vector of the objection function g (u) is given by

5kg (u) =
@g (u)

@uk
=
X
a2F

�aE
h
Rek (a)

�
Re (a)0 u+ c

��1i
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while the Hessian matrix is

52
k;lg (u) =

@2g (u)

@uk@ul
= ( � 1)

X
a2F

�aE
h
Rek (a)R

e
l (a)

�
Re (a)0 u+ c

��2i
for all k; l.

The �rst order optimality condition to �nd the optimal solution of (3.111) is obtained

by setting the gradient vector equal to zero so that

X
a2F

�aE
h
Rek (a)

�
Re (a)0 u+ c

��1i
= 0 (3.112)

for all k = 1; 2; � � � ;m. Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are

real numbers. Then, one can see that

z0 52 g (u) z = ( � 1)E

24 mX
k=1

zkR
e
k (a)

!2 �
Ren (a)

0 u+ c
��235 : (3.113)

Throughout this chapter, we assume that the excess returns fRen (a)g and the parameters

of the utility function are such that there is always an optimal solution of (3.111) that

satis�es the �rst order conditions (3.112). Note that this requirement does not necessarily

impose concavity restriction on the objective function. We only require that the optimal

solution is at an interior point which satis�es the necessary conditions of optimality (3.112).

Our purpose is to identify the structure of the optimal policy and we will not dwell will

these technical details on optimization. This is of course an important issue and we do not

intend to undermine its signi�cance. We now consider some possible cases to illustrate how

one can approach this technical problem. If  � 2 is even, then the Hessian matrix 52g

in (3.113) is negative semi-de�nite provided that  � 1 and the optimal solution satis�es

(3.112) since we have an unconstrained concave maximization problem. If � 2 is not even

and  � 1, then the objective function is concave over the set

A(c) =
n
u : P

n�
Ren (a)

0 u+ c
��2 � 0o = 1o (3.114)

and we need additional restrictions on the excess returns fRe (i)g ; like the existence of a

solution of the �rst order condition (3.112) in A(c) for all c. In case  � 1, it su¢ ces to

reverse the inequality in (3.114).
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Theorem 13 Let the utility function of the investor be the power function (3.110) and

suppose that the riskless asset return does not depend on the market state. Then the optimal

solution of the dynamic programming equation (3.63) is

vn (�; x) = Kn (�) + Cn(�)
(x+ �n)





and the optimal portfolio is

u�n(�; x) = �n(�)
�
rfx+ �n+1

�
where

�n =
�

rT�nf

; Kn�1 (�) =
X
a2F

�a
X
j2E

	n�1 (a; j)Kn (Tn�1 (�; j)) ;

Cn�1 (�) =
X
a2F

�a
X
j2E

	n�1 (a; j)Cn (Tn�1 (�; j))E
�
rf
�
1 +Ren (a)

0 � (�n ; x)
��

and �n(i) satis�esX
a2F

�a	n�1Cn (a)E
h
Ren;k (a)

�
1 +Ren (a)

0 � (�n ; x)
��1i

= 0

for all n = 0; 1; � � � ; T � 1 with boundary conditions

KT�1(�) =
X
a2F

�a
X
=j2E

	T�1 (a; j)K (j)

CT�1(�) =
X
a2F

�a
X
j2E

	T�1 (a; j)C (j)E
�
rf
�
1 +ReT�1 (a)

0 � (�n ; x)
��

for all i.

Proof. We will show that the recursion is true by induction starting with the boundary

condition vT (iT ; x) = K(iT ) + C(iT )(x+ �)=. Note that

gT�1 (�; x; u) = E

24X
a2F

�a
X
j2E

	T�1 (a; j)U(j; rfx+R
e
T�1 (a)

0 u)

35
= E

24X
a2F

�a
X
j2E

	T�1 (a; j)
�
K (j) + C (j)

�
ReT�1 (a)

0 u+ rfx+ �
�
=
�35

Let u� = (u�1; u
�
2; � � � ; u�m) be the optimal amount of money that should be invested in the

risky assets so that

vT�1 (�; x) = max
u
gT�1 (�; x; u) = gT�1 (�; x; u

�)
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as in the perfect information case. The gradient of gT�1 is

@gT�1
@uk

=
X
a2F

�a
X
j2E

	T�1 (a; j)C (j)E
h
ReT�1;k (a)

�
ReT�1 (a)

0 u+ rfx+ �
��1i

and the entries of the Hessian matrix H (�; x; u) as

@2gT�1
@uk@ul

=
X
a2F

�a
X
j2E

	T�1 (a; j)C (j) ( � 1) (3.115)

�E
h
ReT�1;k (a)R

e
T�1;l (a)

�
ReT�1 (a)

0 u+ rfx+ �
��2i

: (3.116)

Let z = (z1; � � � ; zm) be any non-zero column vector where zi�s are real numbers. Then, one

can see that zTH (�; x; u) z is equal to

X
a2F

�a
X
j2E

	T�1 (a; j)C (j)E

24 mX
k=1

zkR
e
T�1;k (iT�1; a)

!2 �
ReT�1 (a)

0 u+ rfx+ �
��235 :
(3.117)

In (3.117) �a;	n (a; j) ; C (j) are positive. Inside of the expectation is also positive. So the

Hessian matrix is negative semide�nite because of the negative sign and we can �nd the

optimal portfolio policy by taking the derivative of gT�1: So if we set the gradient equal to

zero,

@gT�1
@uk

=
X
a2F

�a
X
j2E

	T�1 (a; j)C (j)E
h
ReT�1;k (a)

�
ReT�1 (a)

0 u� + rfx+ �
��1i

= 0

for any asset k = 1; 2; � � � ;m where 	T�1C (a) =
P
j2E 	n (a; j)C (j) : De�ning the vector

function �
�
�T�1 ; x

�
= (�1

�
�T�1 ; x

�
; �2

�
�T�1 ; x

�
; � � � ; �m

�
�T�1 ; x

�
) so that �

�
�T�1 ; x

�
=

u�
�
�T�1 ; x

�
= (rfx+ �) we obtain u�(a; x) = �(a; x) (rfx+ �) so the optimality condition

can be rewritten as

X
a2F

�a	T�1C (a)E
h
ReT�1;k (a)

�
1 +ReT�1 (a)

0 �
�
�T�1 ; x

���1i
= 0: (3.118)

for all k = 1; 2; � � �m are the optimality conditions. Since there is no dependence on x in

(3.118), � (�; x) does not depend on x and � (�; x) = � (�). When the value function at

time T � 1 is rewritten for the optimal policy, we obtain

vT�1 (�; x) =
X
a2F

�a	T�1K (a) +
X
a2F

�a	T�1C (a)
�
(rfx+ �)

 E
��
ReT�1 (a)

0 �(a; x) + 1
��

=
�

= KT�1(�) + CT�1(�)
�
x+ �T�1

�
=:
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and the value function is still exponential like the utility function: This completes the proof

for n = T � 1.

Suppose now that the induction hypothesis holds for periods T; T�1; T�2; � � � ; n: Then,

for period n� 1,

gn�1 (�; x; u) = E

24X
a2F

�a
X
j2E

	n (a; j) vn(Tn�1 (�; j) ; rfx+Ren�1 (a)
0 u)

35
= E

24 P
a2F �

a
P
j2E 	n (a; j)Kn(Tn�1 (�; j))

+Cn(Tn�1 (�; j))
�
Ren�1 (a)

0 u+ rfx+ �n
�
=

35
One can easily see that the Hessian matrix of gn�1 (�; x; u) is negative semi-de�nite as for

gT�1 (�; x; u) : Let u�n�1(�{n�1; x) be the optimal policy such that

vn�1 (�; x) = max
u
gn�1 (�; x; u) = gn�1 (�; x; u

�) :

If we take the gradient of gn�1 (�; x; u) with respect to u and set it equal to 0, we get the

optimality condition

@gn�1
@uk

=
X
a2F

�a
X
j2E

	n�1 (a; j)Cn (Tn�1 (�; j))

�E
h
ReT�1;k (a)

�
ReT�1 (a)

0 u� + rfx+ �
��1i

= 0

and X
a2F

�a	n�1C (a)E
h
ReT�1;k (a)

�
ReT�1 (a)

0 u� + rfx+ �
��1i

= 0

for all k = 1; 2; � � �m are the optimality conditions. De�ning the vector function �
�
�n�1 ; x

�
such that �

�
�n�1 ; x

�
= u�

�
�n�1 ; x

�
= (rfx+ �) we obtain u�n�1(a; x) = �(a; x) (rfx+ �) so

the optimality condition can be rewritten as

X
a2F

�a	n�1C (a)E
h
ReT�1;k (a)

�
1 +ReT�1 (a)

0 �
�
�n�1 ; x

���1i
= 0: (3.119)

for all k = 1; 2; � � �m are the optimality conditions. Since there is no dependence on x and

i in (3.119), � does not depend on x and i and u�n�1 = �n�1 (�) (rfx+ �). When the value
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function at time n� 1 is rewritten for the optimal policy, we obtain

vn�1 (�; i; x) =
X
a2F

�a
X
j2E

	n�1Kn (a)

+
X
a2F

�a
X
j2E

	n�1C (a) (rfx+ �n)


�
E
��
1 +ReT�1 (a)

0 �
�
�n�1 ; x

���
=
�

= Kn�1(�) + Cn�1(�):

and this completes the proof.

Note that the wealth dynamics equation for the power utility case is the same as the

wealth dynamics equation (3.91) for the logarithmic utility case although the structure of

the optimal policy in (3.82) and (3.111) are di¤erent. Therefore, using a similar analysis

as in Section 3.2.3 we can easily determine the evolution of the wealth process. Likewise,

similar interpretations can be made on the structure of the optimal policy. In particular,

the optimal policy is not myopic, but the risky composition of the portfolio is myopic.

Moreover, this composition only depends on the state of the market. Although we obtain

similar characterizations and interpretations, note that the optimal policies for logarithmic

and power cases are not identical.
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Chapter 4

CONTINUOUS-TIME PORTFOLIO OPTIMIZATION

Beginning with the fundamental work by Merton [47], a number of very sophisticated

stochastic control models have been proposed for making optimal investment decisions. A

typical approach takes di¤usion process models of securities and looks for the trading strat-

egy which maximizes the expected utility of consumption and/or terminal wealth over a

�nite planning horizon. The optimal strategy is obtained by solving the dynamic program-

ming equation, which is a PDE that is also called the Hamilton-Jacobi-Bellman equation in

stochastic control theory. There have been many research papers related to Merton�s classi-

cal portfolio optimization problem. Bielecki and Pliska [7], and Fleming and Sheu [29] con-

sidered the cases in which there is no consumptions and the goal is to maximize the long term

growth rate of the utility based on the wealth. There are also some models involving stochas-

tic volatility instead of constant volatility, such as Fleming and Hernandez-Hernandez [28]

and Zariphopoulou [73]. Bäuerle and Rieder [3] uses continuous-time Markov chains with a

discrete state space as a market driving process in their research. Recently, Detemple and

Rindisbacher [19] discussed the optimal portfolio selection problem with stochastic interest

rate and investment constraints. The problem they considered is also de�ned on a �nite

time horizon and the utility function is the power utility function based on the terminal

wealth. Sotomayor and Cadenillas [64] examined the consumption-investment problem in a

regime switching market where they assumed the utility function, as well as the market pa-

rameters, depend on the regime of the market. Honda [35] studied an optimal consumption

problem in a setting where the mean asset returns depend on a regime variable which is ob-

served by the investor using past and current market prices. Sass and Haussmann [?] solved

the utility of terminal wealth optimization problem in continuous-time setting numerically.

They considered a case where the investor observes the stock prices rather than the market

regime which depends on the continuous-time Markov chain. Nagai and Runggaldier [52]

also studied utility maximization in regime switching models.
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In this chapter, we will analyze optimal portfolio strategies for HARA utility cases which

basically includes exponential, logarithmic and power functions. This will also extend the

work done by Bäuerle and Rieder [3] to the multiasset case.

4.1 The Stochastic Market

The returns of risky assets in a �nancial market are random and there are various underly-

ing economic, �nancial, social, political and other factors that a¤ect their distributions in

one way or another. As the state of a market changes over time, the returns will change

accordingly. It is fair to say that in today�s �nancial markets most of the risks, or variances

of asset returns, are due to the changes in local or global factors. Investment decisions

are a¤ected by these factors as well as the correlation among asset returns. The previous

studies on stochastic processes e¤ecting the variables of �nancial market are usually under

the concept of regime switching in �nancial markets.

Modeling a stochastic �nancial market by a Markov chain is a reasonable approach and

this idea dates back to Pye [57]. Hamilton [33] is one of the �rst papers that suggested

use of regime switching for explaining business cycles. He suggests that the state of the

business can be described by a state variable which can be parameterized as a �rst-order

Markov process. Gray [30] uses the regime switching approach for short term interest

rates. He �rst examines di¤erent models with both single regime and multiple regimes and

proposes a new model called generalized regime switching. It is concluded in the paper that

generalized regime switching model outperforms simple single-regime models in an out-of-

sample forecasting experiment. In a more recent work, Costa and Araujo [15] worked on the

continuous-time generalized mean-variance optimization in the case of a Markov modulated

market. They have de�ned the problem as optimization of a utility function of mean and

variance of the terminal wealth. They derived both the necessary and su¢ cient conditions

for the optimal solution.

We consider a �nancial market with one riskless asset (bond) and m risky assets. Let

(
; F;F ; P ) be a �ltered probability space with �ltration F = fFt; 0 � t � Tg and F = FT .

The bond process B = fB (t) ; t � 0g evolves according to

dB (t) = rf (Yt; t)B (t) dt
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where rf (i; t) is the risk free interest rate at time t given that the state of the market is i.

The stock price process for the kth asset Sk = fSk (t) ; t � 0g evolves according to

dSk (t) = �k (Yt; t)Sk (t) dt+ Sk (t)

dX
j=1

�kj (Yt; t) dWj (t)

where fW1;W2; � � � ;Wmg are independent Wiener processes. Here for the remaining of the

thesis we will suppose that the market is complete and d = m. Further discussion about

the complete markets can be found in Karatzas and Shreve [38].

Here, we suppose that Y = fYt; t � 0g is a Markov process with a �nite state space E

and in�nitesimal generator, or transition rate matrix,

A (i; j) =

8<: �� (i) j = i

� (i)Q (i; j) j 6= i
:

Moreover, Y is assumed to be independent of the Wiener processes fW1;W2; � � � ;Wmg.

The process Y represents the stochastic evolution of the �nancial, economic, and other

factors that a¤ect the prices of all assets in a market. De�ne the �ltration Y = � (Y )

as the minimal � -algebra generated by Y . We further suppose that the �ltration F =

� (W1;W2; � � � ;Wm; Y ) is the minimal �-algebra generated by (W1;W2; � � � ;Wm; Y ). Note

that Y � F .

Denote the times of the jumps of the Markov processes Y as 0 = T0 < T1 < T2 < � � � ;

and it is well-known that

P fTn+1 � Tn � tjYTn = ig = 1� e��(i)t

so that the amount of time spent in state i is exponentially distributed with rate � (i). The

sequence of states fYTng visited by Markov process Y is a Markov chain with transition

matrix Q. De�ne R = [�1;1) to denote the set of real numbers, and R+ = (0;1) to

denote the set of positive real numbers.

Let �rf (s; t) denote the total compound factor from time s to time t de�ned as

�rf (s; t) = e
R t
s rf (Yz ;z)dz

for s � t: Note that �rf (s; t) is random since rf depends on Y . However, if rf (i; t) = rf (t)

independent of i; then

�rf (s; t) = e
R t
s rf (z)dz
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is a deterministic quantity. Furthermore, if the interest rate is constant rf (i; t) = rf , then

�rf (s; t) = e
rf (t�s) trivially.

We assume that all of the market functions �, �, and rf are bounded. We also de�ne

V (i; t) = �0 (i; t)� (i; t)

and

�e (i; t) = � (i; t)� rf (i; t)

for all i 2 E, and 0 � t � T . We further suppose without loss of generality that � is positive

de�nite. It also follows that V is also positive de�nite, the inverses ��1 and V �1 both exist

and they are also positive de�nite.

In this chapter, we let class H2 denote the set of all measurable adapted functions or

random variables f : 
� [0; T ]! R that satisfy the integrability constraint

E

�Z T

0
f2 (t) dt

�
= E

�Z


P (d!)

Z T

0
f2 (!; t) dt

�
<1:

Note that while de�ning a portfolio policy, it is possible to either decide on the ratios

of current wealth � that will be invested in each asset or the amount of money u that will

be invested in each asset. If x is the wealth level, the dependence between the two can be

written as u = �x provided that x 6= 0. However, for a given policy u; the � values become

bigger and bigger as x approaches to zero. Therefore, we have constructed the optimality

conditions and wealth dynamics equations for both � and u separately in the following

sections.

4.2 Dynamic Programming Formulation I

Our objective is to �nd the policy that maximizes the expected utility of the terminal wealth

at time T . A portfolio management policy is denoted by � = f� (t) = (�1 (t) ; �2 (t) ; : : : ;

�m (t)); 0 � t � Tg where �k (t) is the ratio of current wealth invested on asset k at time t.

For any admissible policy �, we let X� = fX�
t ; 0 � t � Tg denote the corresponding wealth

process.

De�nition 14 A portfolio management policy � is called admissible if

i. � takes values in a given measurable subset of Rm;
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ii. � is measurable and adapted to F ;

iii.
R t
0 � (s)

0 V (Ys; s)� (s) ds < 1; and
R t
0 � (s)

0 �e (Ys; s) ds < 1 almost surely for any

0 � t � T .

iv. P fX�
T > X

�
0 �rf (0; T )g < 1:

Note that condition (iv) of De�nition 14 implies that there is no free lunch or arbitrage

opportunity. In other words, the return X�
T =X

�
0 during [0; T ] cannot exceed the risk free

return �rf (0; T ) with certainty. It is clear that this condition excludes the optimality of so

called doubling strategies which yield terminal wealth levels that exceed any desired value

almost surely. It is quite common to put additional restrictions on admissibility policies

that create arbitrage opportunities. This may be achieved by putting bounds on policies,

line of credit, or lower bounds on wealth levels. Dybvig and Huang [22] show that a lower

bound on wealth precludes arbitrage opportunities. Kreps [40], on the other hand, uses

bounds on the portfolio positions while Delbaen and Schachermayer [17] imposes bounds on

line of credit. We prefer condition (iv) of De�nition 14 since it is quite intuitive, practical,

and easy to verify for the HARA class of utility functions that we consider in this chapter.

More details about the doubling strategies can be found in Karatzas and Shreve [38, Chap.

1].

Let the set A denote the set of all admissible policies which satisfy De�nition 14. For a

self �nancing policy � 2 A; the wealth process satis�es the wealth dynamics equation

dX�
t = X�

t

mX
k=1

�k (t)
dSk (t)

Sk (t)
+X�

t

 
1�

mX
k=1

�k (t)

!
dB (t)

B (t)

= X�
t

"
rf (Yt; t) +

mX
k=1

�k (t) (�k (Yt; t)� rf (Yt; t))
#
dt

+X�
t

mX
k=1

mX
j=1

�k (t)�kj (Yt; t) dWj (t)

= X�
t

�
rf (Yt; t) + � (t)

0 �e (Yt; t)
�
dt+X�

t � (t)
0 � (Yt; t) dW (t) (4.1)

with X�
0 = x > 0 being the initial wealth.
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For any admissible policy �, the stochastic di¤erential equation (4.1) has a unique solu-

tion. Using Itô calculus, we can solve the stochastic di¤erential equation (4.1) as

X�
t = X�

0 exp

�Z t

0

�
rf (Ys; s) + � (s)

0 �e (Ys; s)�
1

2
� (s)0 V (Ys; s)� (s)

�
ds

+

Z t

0
� (s)0 � (Ys; s) dW (s)

�
: (4.2)

Note from (4.2), that X�
t and X

�
0 will have the same sign, which implies that if the starting

wealth of the investor is positive, then X�
t > 0 for all 0 � t � T: Using � as the portfolio

policy therefore implies that X�
t > 0 for all 0 � t � T: One example where this is handy is

the case where the investor has simple logarithmic or power utility. The detailed analysis

is given in Section 4.5.

Our optimization problem is to �nd a policy �� over all admissible policies such that

E
h
U
�
YT;X

��
T

�
jY0 = i;X0 = x

i
= sup
u2A

E [U (YT;X
�
T ) jY0 = i;X�

0 = x] (4.3)

where U (i; x) is the utility function.

To keep track of time properly, let Z = fZt; t � 0g be the process de�ned trivially by

Zt = Z0 + t. Then (4.1) becomes

dX�
t = X

�
t

�
rf (Yt; Zt) + � (Zt)

0 �e (Yt; Zt)
�
dt+X�

t � (Zt)
0 � (Yt; Zt) dW (t)

for any given policy � 2 A. Throughout this section, we will set X = X� for the given

policy � to simplify the notation. We will also let

Ei;x;t [R] = E [R jYt = i;Xt = x ]

and

Êi;x;t [R] = E [R jY0 = i;X0 = x;Z0 = t ]

denote the conditional expectations of any random variable R given the stated conditions.

We let C2;1p denote the set of all continuous functions f (i; x; t) : E � R+ � [0; T ] ! R

with polynomial growth in x that are continuously di¤erentiable in t and twice continuously

di¤erentiable in x with a �nite �rst order derivative with respect to x. Therefore, for

f 2 C2;1, we let ft (i; x; t) = @f (i; x; t) =@t; fx (i; x; t) = @f (i; x; t) =@x, and fxx (i; x; t) =

@2f (i; x; t) =@x2 denote partial derivatives, and we further impose the �niteness condition

jfx (i; x; t)j <1 for any i 2 E, x 2 R+ and 0 � t � T .
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The generator for the trivariate Markov process (Y;X;Z) is de�ned as

Gf(i; x; t) = lim
s#0

 
Êi;x;t [f(Ys; Xs; Zs)� f(i; x; t)]

s

!
(4.4)

for any f 2 C2;1p .

Note that for any policy � 2 A, � (t) 2 Ft implies that � (t) = � (i; x; t) on fYt =

i;Xt = x; Zt = tg 2 Ft since (Y;X;Z) satis�es the Markov property. Therefore, on the set

fYt = i;Xt = x;Zt = tg ; the policy � (t) = � (i; x; t) is in fact not a random variable, but a

function of i, x, and t. The reader should keep this in mind throughout the remainder of

this chapter. To identify the generator G, if we set

h (i; x; t; s) = Êi;x;t [f(Ys; Xs; Zs)]

then, it satis�es

h (i; x; t; s) = e��(i)sÊi;x;t [f (i;Xs; Zs)]

+

Z s

0
� (i) e��(i)udu

X
j2E

Q (i; j) Êi;x;t [h (j;Xu; Zu; s� u)]

= e��(i)sÊi;x;t [f (i;Xs; Zs)] (4.5)

+e��(i)s
Z s

0
� (i) e��(i)(u�s)du

X
j2E

Q (i; j) Êi;x;t [h (j;Xu; Zu; s� u)]

by conditioning on the time of the �rst jump of Y . Note that X satis�es the stochastic

di¤erential equation (4.1) with Yt = i for t � T1 ^ T . From the de�nition of the genera-

tor Gf (i; x; t) in (4.4), we see that both the denominator and numerator go to zero as s

approaches zero. If we use Itô�s formula, for f 2 C2;1, we obtain

f (i;Xs; Zs) = f (i;X0; Z0) +

Z s

0
ft (i;Xv; Zv) dv +

Z s

0
fx (i;Xv; Zv) dXv

+
1

2

Z s

0
fxx (i;Xv; Zv) (dXv)

2

= f (i;X0; Z0) +

Z s

0
fx (i;Xv; Zv)Xv� (Zv)

0 � (i; Zv) dW (v)

+

Z s

0
[ft (i;Xv; Zv) +fx (i;Xv; Zv)Xv

�
rf (i; Zv) + � (Zv)

0 �e (i; Zv)
��
dv

+

Z s

0

1

2
fxx (i;Xv; Zv)X

2
v� (Zv)

0 V (i; Zv)� (Zv) dv: (4.6)
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In applying Itô�s formula, note from (4.1) that (dXv)
2 = X2

v� (Zv)
0 V (i; Zv)� (Zv) dv. In

(4.6), the stochastic integral is a martingale using f 2 C2;1p and Assumption 14. Therefore,

Êi;x;t [f (i;Xs; Zs)] = Êi;x;t [f (i;X0; Z0)] + Êi;x;t

�Z s

0
(ft (i;Xv; Zv)

+fx (i;Xv; Zv)Xv
�
rf (i; Zv) + � (Zv)

0 �e (i; Zv)
��
dv

+
1

2

Z s

0
fxx (i;Xv; Zv)X

2
v� (Zv)

0 V (i; Zv)� (Zv) dv

�
Now, it follows that

lim
s#0

dÊi;x;t [f (i;Xs; Zs)]

ds
= lim

s#0
Êi;x;t [ft (i;Xs; Zs)

+fx (i;Xs; Zs)Xs
�
rf (i; Zs) + � (Zs)

0 �e (i; Zs)
�

+
1

2
fxx (i;Xs; Zs)X

2
s� (Zs)

0 V (i; Zs)� (Zs)

�
= ft (i; x; t) + fx (i; x; t)x

�
rf (i; t) + � (t)

0 �e (i; t)
�

+
1

2
fxx (i; x; t)x

2� (t)0 V (i; t)� (t) : (4.7)

If we di¤erentiate (4.5) and evaluate it at s = 0;

lim
s#0

dh (i; x; t; s)

ds
= �� (i) f (i; x; t) + lim

s#0

dÊi;x;t [f (i;Xs; Zs)]

ds

+� (i)
X
j2E

Q (i; j) Êi;x;t [f (j; x; t)]

= lim
s#0

dÊi;x;t [f (i;Xs; Zs)]

ds
+
X
j2E

A (i; j) f (j; x; t)

and, using (4.7), we get

lim
s#0

dh (i; x; t; s)

ds
= ft (i; x; t) + fx (i; x; t)x

�
rf (i; t) + � (t)

0 �e (i; t)
�

+
1

2
fxx (i; x; t)x

2� (t)0 V (i; t)� (t) +
X
j2E

A (i; j) f (j; x; t) :

In (4.4), both the denominator and numerator are zero at s = 0; so if we apply L�Hopital�s

rule, the denominator is equal to one and taking the derivative of the numerator with respect

to s, and taking the limit as s goes to 0, we obtain

Gf (i; x; t) = lim
s#0

dh (i; x; t; s)

ds

= ft (i; x; t) + fx (i; x; t)x
�
rf (i; t) + � (t)

0 �e (i; t)
�

+
1

2
fxx (i; x; t)x

2� (t)0 V (i; t)� (t) +
X
j2E

A(i; j)f (j; x; t) :
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For a given policy � 2 A, we let

v� (i; x; t) = Ei;x;t [U (YT ; X
�
T )]

where U is the utility function and the optimization problem becomes

v (i; x; t) = sup
u2A

v� (i; x; t) :

Note that we can also write

v� (i; x; t) = E
�
v�
�
Yt+h; X

�
t+h; Zt+h

�
jYt = i;X�

t = x;Zt = t
�

for all t+ h < T . Rearranging the terms and dividing by h, we obtain

1

h
E [v� (Yt+h; Xt+h; Zt+h)� v� (i; x; t) jYt = i;X�

t = x;Zt = t] = 0:

Taking the limit as h goes down to zero, we obtain

Gv� (i; x; t) = 0

which implies that v� can now be characterized as the solution of the linear system of second

order partial di¤erential equations

v�t (i; x; t) + v
�
x (i; x; t) rf (i; t)x+ � (t)

0 �e (i; t)x

+
1

2
v�xx (i; x; t)� (t)

0 V (i; t)� (t)x2 +
X
j2E

A (i; j) v� (j; x; t) = 0

for 0 � t < T with the boundary condition v� (i; x; T ) = U (i; x) :

The optimal portfolio selection problem can therefore be formulated by the dynamic

programming equation

vt (i; x; t) + sup
�2Rm

(
vx (i; x; t)x

�
rf (i; t) + �

0�e (i; t)
�

+
1

2
vxx (i; x; t)x

2�0V (i; t)� +
X
j2E

A (i; j) v (j; x; t)

)
= 0: (4.8)

for 0 � t < T with the boundary condition v (i; x; t) = U (i; x).
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4.2.1 Veri�cation Theorem

The optimality condition of the dynamic programming equation (4.8) is not su¢ cient if

a veri�cation theorem is not proven. The veri�cation theorem connects the dynamic pro-

gramming equation (4.8) to the control problem of maximizing the expected value of the

terminal wealth de�ned in (4.3).

Theorem 15 (Veri�cation) Suppose g 2 C2;1p is a solution of (4.8), then

a) g (i; x; t) � v (i; x; t) for all i 2 E, x 2 R+, and 0 � t � T ,

b) If �� 2 A is a maximizer of (4.8), then g (i; x; t) = v (i; x; t) = v�
�
(i; x; t) for all i 2 E,

x 2 R+, and 0 � t � T . In particular, �� is an optimal portfolio policy.

Proof. Let � 2 A be a policy and X� be the corresponding wealth process. Using Itô�s

formula for local martingales with discrete parts, we can write g (YT ; X�
T ; T ) as

g (YT ; X
�
T ; T ) = g (Yt; X

�
t ; t) +

Z T

t
[gt (Ys; X

�
s ; s) + gx (Ys; X

�
s ; s)X

�
s (rf (Ys; s)

+� (s)0 �e (Ys; s)
�
+
1

2
gxx (Ys; X

�
s ; s) (X

�
s )
2 �� (s)0 V (Ys; s)� (s)�� ds

+

Z T

t
gx (Ys; X

�
s ; s)� (s)

0 � (Ys; s) dW (s)

+
X

t�Tn<T

�
g
�
YTn ; X

�
Tn ; Tn

�
� g

�
YTn�; X

�
Tn�; Tn�

��
: (4.9)

Since g satis�es (4.8), we can write

gt (i; x; t) + gx (i; x; t)x (rf (i; t) + �
0�e (i; t))

+1
2gxx (i; x; t)x

2�0V (i; t)� +
P
j2E A (i; j) g (j; x; t) � 0

(4.10)

for all i 2 E, x 2 R, 0 � t � T , and � 2 Rm. This implies that we can also write

gt (Ys; X
�
s ; s) + gx (Ys; X

u
s ; s)X

�
s

�
rf (Ys; s) + � (s)

0 �e (Ys; s)
�

+1
2gxx (Ys; X

u
s ; s) (X

�
s )
2 � (s)0 V (Ys; s)� (s) +

P
j2E A (Ys; j) g (j;X

�
s ; s) � 0

(4.11)

for all s 2 [0; T ]. Therefore, the integral of the left-hand side of (4.11) from t to T is

nonpositive. If we subtract this integral from the right-hand side of (4.9), we get

g (YT ; XT ; T ) � g (Yt; X
�
t ; t) +

Z T

t
gx (Ys; X

�
s ; s)X

�
s � (s)

0 � (Ys; s) dW (s)

+
X

t�Tn<T

�
g
�
YTn ; X

�
Tn ; Tn

�
� g

�
YTn�; X

�
Tn�; Tn�

��
�
Z T

t

X
j2E

A (Ys; j) g (j;X
�
s ; s) ds
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and taking the conditional expectation given fYt = i;X�
t = xg 2 Ft we obtain

Ei;x;t [g (YT ; X
�
T ; T )] � g (i; x; t) + Ei;x;t

�Z T

t
gx (Ys; X

�
s ; s)X

�
s � (s)

0 � (Ys; s) dW (s)

�

+Ei;x;t

24 X
t�Tn<T

�
g
�
YTn ; X

�
Tn ; Tn

�
� g

�
YTn�; X

�
Tn�; Tn�

��

�
Z T

t

X
j2E

A (Ys; j) g (j;X
�
s ; s) ds

35
where Ei;x;t [g (YT ; X�

T ; T )] = Ei;x;t [U (YT ; X
�
T )] : Since g 2 C2;1p and � 2 A, we have

gx (Ys; X
�
s ; s)X

�
s � (s)

0 � (s; Ys) 2 H2. Therefore, the �rst integral is a martingale and

Ei;x;t

�Z T

t
gx (Ys; X

�
s ; s)X

�
s � (s)

0 � (s; Ys) dW (s)

�
= 0:

Due to the growth condition

Ei;x;t

24 X
t�Tn<T

��g �YTn ; X�
Tn ; Tn

���35 <1
and the last part is equal to zero since it is also a martingale according to Theorem 26.12

in Davis [16, Chap. 2]. So, we see that

g (i; x; t) � Ei;x;t [g (YT ; X�
T ; T )] = Ei;x;t [U (YT ; X

�
T )] = v

� (i; x; t) (4.12)

for all � 2 A which further implies that

g (i; x; t) � sup
�2A

v� (i; x; t) = v (i; x; t) : (4.13)

If �� 2 A is a maximizer of (4.8), then it satis�es

gt (i; x; t) + gx (i; x; t)x
�
rf (i; t) + �

� (t)0 �e (i; t)
�

+
1

2
gxx (i; x; t)x

2�� (t)0 V (i; t)�� (t) +
X
j2E

A (i; j) g (j; x; t) = 0

and (4.13) is satis�ed with equality so that

g (i; x; t) = v (i; x; t) = v�
�
(i; x; t) = Ei;x;t

h
U
�
YT ; X

��
T

�i
:
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4.3 Dynamic Programming Formulation II

In this section, a portfolio management policy is denoted by u = fu (t) = (u1 (t) ; : : : ; um (t));

0 � t � Tg where uk (t) is the amount of wealth invested on asset k at time t. For any

admissible policy u; we let Xu = fXu
t ; 0 � t � Tg denote the corresponding wealth process.

De�nition 16 A portfolio management policy u is called admissible if

i. u takes values in a given measurable subset of Rm;

ii. u is measurable and adapted to F ;

iii.
R t
0 u (s)

0 V (Ys; s)u (s) ds < 1; and
R t
0 u (s)

0 �e (Ys; s) < 1 almost surely for any 0 �

t � T .

iv. P fXu
T > X

u
0 �rf (0; T )g < 1:

Condition (iv) of De�nition 16 is analogous to the condition (iv) of De�nition 14 and

it implies that it is not possible to exceed the risk free return with certainty. Let the set

A denote the set of all admissible policies. For a self �nancing policy u 2 A; the wealth

process satis�es the wealth dynamics equation

dXu
t =

mX
k=1

uk (t)
dSk (t)

Sk (t)
+

 
Xu
t �

mX
k=1

uk (t)

!
dB (t)

B (t)

=

"
Xu
t rf (Yt; t) +

mX
k=1

uk (t) (�k (Yt; t)� rf (Yt; t))
#
dt

+

mX
k=1

mX
j=1

uk (t)�kj (Yt; t) dWj (t)

=
�
Xu
t rf (Yt; t) + u (t)

0 �e (Yt; t)
�
dt+ u (t)0 � (Yt; t) dW (t) (4.14)

with Xu
0 being the initial wealth.
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For any admissible policy u, the stochastic di¤erential equation (4.14) has unique solu-

tion. Using Itô calculus, we can write the wealth process as

Xu
t = X0e

R t
0 rf (Ys;s)ds + e

R t
0 rf (Ys;s)ds

Z t

0
e�

R s
0 rf (Yz ;z)dzu (s)0 �e (Ys; s) ds

+e
R t
0 rf (Ys;s)ds

Z t

0
e�

R s
0 rf (Yz ;z)dzu (s)0 � (Ys; s) dW (s)

= X0�rf (0; t) +

Z t

0
�rf (s; t)u (s)

0 �e (Ys; s) ds

+

Z t

0
�rf (s; t)u (s)

0 � (Ys; s) dW (s) :

Our optimization problem is to �nd a policy u� over all admissible policies such that

E
h
U
�
YT;X

u�
T

�
jY0 = i;X0 = x

i
= sup
u2A

E [U (YT;X
u
T ) jY0 = i;X0 = x] (4.15)

where U (i; x) is the utility function. Note that for any policy u 2 A, u (t) 2 Ft implies

that u (t) = u (i; x; t) on fYt = i;Xt = x;Zt = tg 2 Ft since (Y;X;Z) satis�es the Markov

property. Therefore, on the set fYt = i;Xt = x;Zt = tg ; the policy u (t) = u (i; x; t) is in

fact not a random variable, but a function of i, x, and t. The reader should keep this in

mind throughout the remainder of this chapter. It is clear that Xu
t 2 R and the wealth

level is not necessarily positive as it was in Section 4.2. We therefore extend the de�nition

of C2;1p to include functions f (i; x; t) : E � R � [0; T ] ! R with the same properties. The

domain R+ of x is simply extended to R now since Xu
t 2 R.

We de�ne the generator as in (4.4), and recall the de�nition of h in (4.5) to obtain

f (i;Xs; Zs) = f (i;X0; Z0) +

Z s

0
ft (i;Xv; Zv) dv +

Z s

0
fx (i;Xv; Zv) dXv

+
1

2

Z s

0
fxx (i;Xv; Zv) (dXv)

2

= f (i;X0; Z0) +

Z s

0
fx (i;Xv; Zv)u (Zv)

0 � (i; Zv) dW (v)

+

Z s

0
[ft (i;Xv; Zv) +fx (i;Xv; Zv)

�
Xvrf (i; Zv) + u (Zv)

0 �e (i; Zv)
��
dv

+

Z s

0

1

2
fxx (i;Xv; Zv)u (Zv)

0 V (i; Zv)u (Zv) dv: (4.16)
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In applying Itô�s formula, note from (4.14) that (dXv)
2 = u (Zv)

0 V (i; Zv)u (Zv) dv. In

(4.16), the stochastic integral is a martingale using f 2 C2;1p and Assumption 16. Therefore,

Êi;x;t [f (i;Xs; Zs)] = Êi;x;t [f (i;X0; Z0)] + Êi;x;t

�Z s

0
(ft (i;Xv; Zv)

+fx (i;Xv; Zv)
�
Xvrf (i; Zv) + u (Zv)

0 �e (i; Zv)
��
dv

+
1

2

Z s

0
fxx (i;Xv; Zv)u (Zv)

0 V (i; Zv)u (Zv) dv

�
Now, it follows that

lim
s#0

dÊi;x;t [f (i;Xs; Zs)]

ds
= lim

s#0
Êi;x;t [ft (i;Xs; Zs)

+fx (i;Xs; Zs)
�
Xsrf (i; Zs) + u (Zs)

0 �e (i; Zs)
�

+
1

2
fxx (i;Xs; Zs)u (Zs)

0 V (i; Zs)u (Zs)

�
= ft (i; x; t) + fx (i; x; t)

�
xrf (i; t) + u (t)

0 �e (i; t)
�

+
1

2
fxx (i; x; t)u (t)

0 V (i; t)u (t) : (4.17)

If we di¤erentiate (4.5) and evaluate it at s = 0; and use (4.17), we now get

lim
s#0

dh (i; x; t; s)

ds
= ft (i; x; t) + fx (i; x; t)

�
xrf (i; t) + u (t)

0 �e (i; t)
�

+
1

2
fxx (i; x; t)u (t)

0 V (i; t)u (t) +
X
j2E

A (i; j) f (j; x; t) :

If we apply L�Hopital�s rule to the generator, the denominator is equal to one and taking

the derivative of the numerator with respect to s, and taking the limit as s goes to 0, we

obtain

Gf (i; x; t) = lim
s#0

dh (i; x; t; s)

ds

= ft (i; x; t) + fx (i; x; t)
�
rf (i; t)x+ u (t)

0 �e (i; t)
�

+
1

2
fxx (i; x; t)u (t)

0 V (i; t)u (t) +
X
j2E

A(i; j)f (j; x; t) :

For a given policy u 2 A, we let

vu (i; x; t) = Ei;x;t [U (YT ; X
u
T )]

where U is the utility function and the optimization problem becomes

v (i; x; t) = sup
u2A

vu (i; x; t) :



Chapter 4: CONTINUOUS-TIME PORTFOLIO OPTIMIZATION 140

Note that we can write

vu (i; x; t) = E
�
vu
�
Yt+h; X

u
t+h; Zt+h

�
jYt = i;Xu

t = x;Zt = t
�

for all t+ h < T . Rearranging the terms and dividing by h, we obtain

1

h
E [vu (Yt+h; Xt+h; Zt+h)� vu (i; x; t) jYt = i;Xu

t = x;Zt = t] = 0:

Taking the limit as h goes down to zero, we obtain

Gvu (i; x; t) = 0

which implies that vu can now be characterized as the solution of the linear system of second

order partial di¤erential equations

vut (i; x; t) + v
u
x (i; x; t) rf (i; t)x+ u (t)

0 �e (i; t)

+
1

2
vuxx (i; x; t)u (t)

0 V (i; t)u (t) +
X
j2E

A (i; j) vu (j; x; t) = 0

for 0 � t < T with the boundary condition vu (i; x; T ) = U (i; x) :

The optimal portfolio selection problem can therefore be formulated by the dynamic

programming equation

vt (i; x; t) + sup
u2Rm

(
vx (i; x; t)

�
rf (i; t)x+ u

0�e (i; t)
�

+
1

2
vxx (i; x; t)u

0V (i; t)u+
X
j2E

A (i; j) v (j; x; t)

9=; = 0 (4.18)

for 0 � t < T with the boundary condition v (i; x; t) = U (i; x).

4.3.1 Veri�cation Theorem

The optimality condition of the dynamic programming equation (4.18) is not su¢ cient

if a veri�cation theorem is not proven. The veri�cation theorem connects the dynamic

programming equation (4.18) to the control problem of maximizing the expected value of

the terminal wealth de�ned in (4.15).

Theorem 17 (Veri�cation) Suppose g 2 C2;1p is a solution of (4.18), then

a) g (i; x; t) � v (i; x; t) for all i 2 E, x 2 R, and 0 � t � T ,

b) If u� 2 A is a maximizer of (4.18), then g (i; x; t) = v (i; x; t) = vu
�
(i; x; t) for all i 2 E,

x 2 R, and 0 � t � T . In particular, u� is an optimal portfolio policy.
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Proof. Let u 2 A be any policy and Xu be the corresponding wealth process. Using Itô�s

formula for local martingales with discrete parts, we can write g (YT ; Xu
T ; T ) as

g (YT ; X
u
T ; T ) = g (Yt; X

�
t ; t) +

Z T

t
[gt (Ys; X

u
s ; s) + gx (Ys; X

u
s ; s) (rf (Ys; s)X

u
s

+u (s)0 �e (Ys; s)) +
1

2
gxx (Ys; X

u
s ; s)

�
u (s)0 V (Ys; s)u (s)

��
ds

+

Z T

t
gx (Ys; X

u
s ; s)u (s)

0 � (Ys; s) dW (s)

+
X

t�Tn<T

�
g
�
YTn ; X

u
Tn ; Tn

�
� g

�
YTn�; X

u
Tn�; Tn�

��
:(4.19)

Since g satis�es (4.18), we can write

gt (i; x; t) + gx (i; x; t) rf (i; t)x+ u
0�e (i; t) (4.20)

+
1

2
gxx (i; x; t)u

0V (i; t)u+
X
j2E

A (i; j) g (j; x; t) � 0

for all i 2 E, x 2 R, 0 � t � T , and u 2 Rm. This implies that we can also write

gt (Ys; X
u
s ; s) + gx (Ys; X

u
s ; s)

�
rf (Ys; s)X

u
s + u (s)

0 �e (Ys; s)
�

+1
2gxx (Ys; X

u
s ; s)u (s)

0 V (Ys; s)u (s) +
P
j2E A (Ys; j) g (j;X

u
s ; s) � 0

(4.21)

for all s 2 [0; T ]. Therefore, the integral of the left-hand side of (4.21) from t to T is

nonpositive. If we subtract this integral from the right-hand side of (4.19), we get

g (YT ; XT ; T ) � g (Yt; X
�
t ; t) +

Z T

t
gx (Ys; X

u
s ; s)u (s)

0 � (Ys; s) dW (s)

+
X

t�Tn<T

�
g
�
YTn ; X

u
Tn ; Tn

�
� g

�
YTn�; X

u
Tn�; Tn�

��
�
Z T

t

X
j2E

A (Ys; j) g (j;X
u
s ; s) ds

and taking the conditional expectation given fYt = i;Xu
t = xg 2 Ft we obtain

Ei;x;t [g (YT ; X
u
T ; T )] � g (i; x; t) + Ei;x;t

�Z T

t
gx (Ys; X

u
s ; s)u (s)

0 � (Ys; s) dW (s)

�

+Ei;x;t

24 X
t�Tn<T

�
g
�
YTn ; X

u
Tn ; Tn

�
� g

�
YTn�; X

u
Tn�; Tn�

��

�
Z T

t

X
j2E

A (Ys; j) g (j;X
u
s ; s) ds

35
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where Ei;x;t [g (YT ; Xu
T ; T )] = Ei;x;t [U (YT ; X

u
T )] : Since g 2 C

2;1
p and u 2 A, we therefore get

gx (Ys; X
�
s ; s)X

�
s � (s)

0 � (s; Ys) 2 H2: Therefore, the �rst integral is a martingale and

Ei;x;t

�Z T

t
gx (Ys; X

u
s ; s)u (s)

0 � (s; Ys) dW (s)

�
= 0:

Due to the growth condition

Ei;x;t

24 X
t�Tn<T

g
�
YTn ; X

u
Tn ; Tn

�35 <1
and the last part is equal to zero since it is also a martingale according to Theorem 26.12

in Davis [16, Ch. 2]. So, we see that

g (i; x; t) � Ei;x;t [g (YT ; Xu
T ; T )] = Ei;x;t [U (YT ; X

u
T )] = v

u (i; x; t) (4.22)

for all u 2 A which further implies that

g (i; x; t) � sup
u2A

vu (i; x; t) = v (i; x; t) : (4.23)

If u� 2 A is a maximizer of (4.18), then it satis�es

gt (i; x; t) + gx (i; x; t) rf (i; t)x+ u
� (t)0 �e (i; t)

+
1

2
gxx (i; x; t)u

� (t)0 V (i; t)u� (t) +
X
j2E

A (i; j) g (j; x; t) = 0

and (4.23) is satis�ed with equality so that

g (i; x; t) = v (i; x; t) = vu
�
(i; x; t) = Ei;x;t

h
U
�
YT ; X

u�
T

�i
:

At this point, we want to point out that the utility function that we will consider later

in this chapter will require certain restriction on the wealth level. In some cases, the set

C2;1p will consist of function f (i; x; t) de�ned for all i 2 E, 0 � t � T , and x 2 Rt � R

where Rt is some subinterval of R. Theorem 17 still holds provided that R is replaced by

Rt in a) and b)

4.4 Exponential Utility Model

We assume that the utility of the investor in state i is given by the exponential function

U (i; x) = K(i)� C(i) exp(�x=�) (4.24)
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with � > 0, and C (i) > 0 where we can easily see that Pratt-Arrow�s measure of absolute

risk aversion is simply equal to the constant �U 00
(i; x) =U

0
(i; x) = 1=� for all i.

In this section we will assume that the risk free interest rate rf does not depend

on the state of the market i. Therefore, rf (i; t) = rf (t) for all i 2 E and �rf (s; t) =

exp
�R t
s rf (z) dz

�
is not random.

Note that for the optimization problem with the exponential utility function (4.24), we

can write the value function as

v (i; x; t) = sup
u2A

Ei;x;t

h
K (YT )� C (YT ) e�X

u
T =�
i

= Ei;x;t [K (YT )] + Ei;x;t

�
sup
u2A

�C (YT ) e�X
u
T =�

�
:

It is clear that the optimal policy u� is independent of K: Let Û (i; x) = �C (i) exp(�x=�) =

U (i; x)�K (i) ; then the optimal policy for U (i; x) will also be optimal for Û (i; x) since u�

does not depend on K: Therefore, if v̂ (i; x; t) is de�ned as

v̂ (i; x; t) = sup
u2A

Ei;x;t

h
�C (YT ) e�X

u
T =�
i

= sup
u2A

Ei;x;t

h
Û (YT ; X

u
T )
i

(4.25)

then

v (i; x; t) = Ei;x;t [K (YT )] + v̂ (i; x; t) : (4.26)

If we can �nd v̂ (i; x; t), we can easily determine v (i; x; t) using (4.26) and the fact that

Ei;x;t [K (YT )] = E [K (YT ) jYt = i] = K (i; t) = eA(T�t)K (i) (4.27)

independent of x. Here, eMs is the matrix exponential

eMs =
+1X
n=0

sn

n!
Mn = lim

n!1

�
I +

Ms

n

�n
de�ned for any matrix M and scalar s 2 R+. Therefore, K (�; t) denotes the multiplication

of the matrix exponential exp (A (T � t)) by the vector K. The matrix exponential can be

computed in many ways. Nineteen di¤erent techniques are summarized by Moler and Van

Loan [48]. The matrix exponential will take an important part throughout this chapter. It

is quite clear that the derivative is

d

ds
eMs =MeMs = eMsM:
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Moreover, we can also show that (4.27) yields the di¤erential equation

Kt (i; t) =
d

ds
K (i; t) = �AeA(T�t)K (i) = �eA(T�t)AK (i)

or equivalently

Kt (i; t) = �AK (i; t) = �
X
j2E

A (i; j)K (j; t)

with the boundary condition K (i; T ) = K (i). These representations will be used through-

out this chapter.

Theorem 18 Let the utility function of the investor be the exponential function (4.24)

and suppose that the riskless asset return does not depend on the market state so that

rf (i; t) = rf (t). Then, the optimal solution of the dynamic programming equation (4.18) is

v (i; x; t) = K (i; t)� C (i; t) e�x=�t (4.28)

and the optimal portfolio is

u�(i; x; t) = �tV (i; t)
�1 �e (i; t) (4.29)

where

�t =
�

�rf (t; T )
; K (i; t) = eA(T�t)K (i) ; (4.30)

and C (i; t) is the solution of the linear system of �rst order di¤erential equations

dC (i; t)

dt
= Ct (i; t) = � (i; t)C (i; t)�

X
j2E

A (i; j)C (j; t)

with the boundary condition C (i; T ) = C (i) where

� (i; t) =
1

2
�e (i; t)0 V (i; t)�1 �e (i; t)

for all i 2 E and 0 � t � T .

Proof. We will focus on the optimization problem (4.25) by examining v̂ (i; x; t). For any

� 2 R, if u 2 A is an admissible policy for x0 = x; i0 = i then it is also admissible for

x0 = x + �; i0 = i. If the same policy u is used for both x0 = x and x0 = x + � then the

di¤erence between the terminal wealths will be ��rf (t; T ) since the excess amount in the

second case is invested in the risk free asset. This observation can be expressed as

E
h
�C (YT ) e�X

u
T =� jYt = i;Xt = x+ �

i
= E

h
�C (YT ) e�(X

u
T+��rf (t;T ))=� jYt = i;Xt = x

i
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and

E
h
�C (YT ) e�X

u
T =� jYt = i;Xt = x+ �

i
= e(��=�)�rf (t;T )E

h
C (YT ) e

�Xu
T =� jYt = i;Xt = x

i
which means

Ei;x+�;t

h
�C (YT ) e�X

u
T =�
i
= e(��=�)�rf (t;T )Ei;x;t

h
�C (YT ) e�X

u
T =�
i

(4.31)

for any � 2 R and u 2 A.

Let �u be the optimal policy when x0 = x; i0 = i; then (4.31) implies

Ei;x+�;t

h
�C (YT ) e�X

�u
T =�
i
= e(��=�)�rf (t;T )Ei;x;t

h
�C (YT ) e�X

�u
T =�
i

(4.32)

and, since �u is optimal,

Ei;x;t

h
�C (YT ) e�X

�u(T )=�
i
� Ei;x;t

h
�C (YT ) e�X

u(T )=�
i

(4.33)

for all u 2 A. If we multiply both sides with e(��=�)�r(t), then using (4.31) we can write

Ei;x+�;t

h
�C (YT ) e�X

�u
T =�
i
� Ei;x+�;t

h
�C (YT ) e�X

u
T =�
i

for any admissible policy u 2 A. So, �u is also optimal for x0 = x+ �; i0 = i: We therefore

conclude that

v̂ (i; x; t) = e�x�rf (t;T )=� sup
u2A

Ei;0;t

h
�C (YT ) e�X

u
T =�
i

= e�x=�t v̂ (i; 0; t) :

by taking x = 0; � = x in (4.31). De�ne C (i; t) = �v̂ (i; 0; t) so that v̂ (i; x; t) =

�e�x=�tC (i; t).

Therefore,

v̂x (i; x; t) = (1=�t) e
�x=�tC (i; t) (4.34)

and

v̂xx (i; x; t) = � (1=�t)2 e�x=�tC (i; t) : (4.35)

Also, if we take the derivative with respect to t

v̂t (i; x; t) = �rf (t) (x=�t) e�x=�tC (i; t)� e�x=�tCt (i; t) : (4.36)
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Using (4.18), the optimal policy can be found by

u� (t) = argmax
u

 
v̂x (i; x; t)

�
rf (t)x+ u

0�e (i; t)
�
+
1

2
v̂xx (i; x; t)u

0V (i; t)u

+
X
j2E

A (i; j) v̂ (j; x; t)

!

= argmax
u

�
v̂x (i; x; t)u

0�e (i; t) +
1

2
v̂xx (i; x; t)u

0V (i; t)u

�
and setting the gradient equal to zero, we obtain

u� (t) = � v̂x (i; x; t)
v̂xx (i; x; t)

V (i; t)�1 �e (i; t)

and �nally,

u� (t) = �tV (i; t)
�1 �e (i; t) : (4.37)

If we plug in the optimal policy in (4.18)

v̂t (i; x; t) + v̂x (i; x; t) rf (t)x+ u
� (t)0 �e (i; t)

+
1

2
v̂xx (i; x; t)u

� (t)0 V (i; t)u� (t) +
X
j2E

A (i; j) v̂ (j; x; t) = 0

and, using (4.34), (4.35), and (4.36), we have

� rf (t)
x

�t
e�x=�tC (i; t)� e�x=�tCt (i; t) +

1

�t
e�x=�tC (i; t)

�
rf (t)x+ u

� (t)0 �e (i; t)
�

� 1
2

1

�2t
e�x=�tC (i; t)u� (t)0 V (i; t)u� (t)� e�x=�t

X
j2E

A (i; j)C (j; t) = 0:

If we cancel e�x=�t and insert the policies u� (t)0 �e (i; t) = �t�
e (i; t)0 V (i; t)�1 �e (i; t)

and u� (t)0 V (i; t)u� (t) = �2t�
e (i; t)0 V (i; t)�1 �e (i; t), we have

�Ct (i; t) + C (i; t)�e (i; t)0 V (i; t)�1 �e (i; t)

�1
2
C (i; t)�e (i; t)0 V (i; t)�1 �e (i; t)�

X
j2E

A (i; j)C (j; t) = 0:

After rearranging the terms we obtain

Ct (i; t) = � (i; t)C (i; t)�
X
j2E

A (i; j)C (j; t) (4.38)

with the boundary condition C (i; T ) = �v̂ (i; 0; T ) = C(i) where � (i; t) is de�ned as

� (i; t) = 1
2�

e (i; t)0 V (i; t)�1 �e (i; t) :
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To complete the proof, it now su¢ ces to show that the optimal policy (4.29) is admissible

and the exponential value function (4.28) satis�es the condition of the veri�cation Theorem

17. Note that

jvx (i; x; t)j =
C (i; t)

�t
e�x=�t <1

for all x 2 R and v 2 C2;1p : The optimal policy (4.29) is clearly admissible in view of the

fact that the optimal wealth process is given by (4.41) since the sum of the two integrals in

(4.41) is not necessarily positive.

If one examines the di¤erential equation (4.38), it can be rewritten as

Ct (i; t) =
X
j2E

~A (i; j; t)C (j; t) (4.39)

where

~A (i; j; t) =

8<: �� (i)Q (i; j) i 6= j

� (i; t) + � (i) i = j
:

If the market functions �, �, and rf do not depend on time so that � (i; t) = � (i),

� (i; t) = � (i), and rf (t) = rf , then

� (i; t) = � (i) =
1

2
(� (i)� rf )0 V (i)�1 (� (i)� rf )

is independent of time and the di¤erential equation (4.39) can be rewritten as

Ct (i; t) =
X
j2E

~A (i; j)C (j; t) (4.40)

where

~A (i; j) =

8<: �� (i)Q (i; j) i 6= j

� (i) + � (i) i = j
:

The solution of (4.40) is the matrix exponential

C (i; t) = e�
~A(T�t)C (i) :

4.4.1 Evolution of Wealth

The wealth dynamics equation is

Xu
t = Xu

0 �rf (0; t) +

Z t

0
�rf (s; t)u (s)

0 �e (Ys; s) ds

+

Z t

0
�rf (s; t)u (s)

0 � (Ys; s) dW (s)
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and if we insert the optimal policy

u�(i; x; t) = �tV (i; t)
�1 �e (i; t)

we see that the optimal wealth process X� is given explicitly by

X�
t = X�

0 �rf (0; t) + �t

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
: (4.41)

Note that the Riemann integral in (4.41) is nonnegative since V (i; t)�1 is positive de�nite

for all i 2 E and 0 � t � T . However, the stochastic integral in (4.41) takes negative as well

as positive values except for trivial cases. Therefore, one can easily see that the optimal

policy is admissible since X�
T is not greater than X

�
0 �rf (0; T ) almost surely.

To simplify the notation we now let Ei [R] = E [RjY0 = i] ; and Vari (R) = Var (RjY0 = i)

for any random variable R given Y0 = i. Supposing X�
0 = x is given, if we take the

expectation

Ei [X
�
t ] = x�rf (0; t) + �t

�
Ei

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
+Ei

�Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dW (s)

��
we see that the last part is a martingale; therefore,

Ei [X
�
t ] = x�rf (0; t) + �tEi

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
: (4.42)

It clearly follows from (4.42) that Ei [X�
t ] � Ei [X�

0 �rf (0; t)] for all 0 � t � T since �t > 0

and

Ei

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
� 0

because V (i; t)�1 is positive de�nite for all i 2 E and 0 � t � T:

For the terminal time T; we can write the expected value of optimal wealth as

Ei [X
�
T ] = x�rf (0; T ) + �me (i; T )

where

me (i; T ) = Ei

�Z T

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
since �T = � as in the discrete time case.



Chapter 4: CONTINUOUS-TIME PORTFOLIO OPTIMIZATION 149

The numerical calculations can be made by using the transition probability function

Pij (t) = P fYt = jjY0 = ig

of the Markov process Y so that

me (i; T ) =
X
j2E

Z T

0
Pij (s)�

e (j; s)0 V (j; s)�1 �e (j; s) ds:

Note that if the market functions �, �, and rf do not depend on time, then

me (i; T ) =
X
j2E

Z T

0
Pij (s)�

e (j)0 V (j)�1 �e (j) ds

=
X
j2E

�e (j)0 V (j)�1 �e (j)

Z T

0
Pij (s) ds

where
R T
0 Pij (s) ds is the expected time spent in state j until time T given that the initial

state is i. Finally, note that the transition function P (t) is given by the matrix exponential

P (t) = eAt

which is quite handy for computational purposes.

In (4.41) if we want to calculate the variance of the optimal wealth we can see that

Vari (X
�
T ) = �

2v2e (i; T )

where

v2e (i; T ) = Vari

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
and the exponential frontier is a line with formula

Ei [X
�
T ] = x�rf (0; T ) +

�
me (i; T )

ve (i; T )

�
SDi (X�

t )

as in the discrete time case, where SDi (X�
T ) =

q
Vari

�
X�
T

�
= �ve (i; T ).
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4.5 Simple Logarithmic Utility Model

We now assume that the utility of the investor in state i is given by the logarithmic function

U(i; x) =

8<: K(i) + C(i) log(x) x > 0

�1 x � 0
(4.43)

with C (i) > 0 where we can easily see that Pratt-Arrow�s measure of absolute risk aversion

is simply equal to �U 00
(i; x) =U

0
(i; x) = 1=x > 0 for all i.

For convenience, we will be using � rather than u as the policy that is used by the

investor. Since u = �x, it is always possible to determine one from the other provided that

x > 0. One should note the important di¤erence between using u and � as the policy. Using

u allows negative values for the wealth process, whereas using � as a policy guarantees the

that the wealth always stays positive provided that X�
0 > 0. For the logarithmic utility

case, it is intuitive to observe that the optimal policy should result with positive terminal

wealth since if X (T ) < 0 with positive probability then the utility function is �1:

For the optimization problem with the logarithmic utility function (4.43), we can write

the value function as

v (i; x; t) = sup
�2A

Ei;x;t [K (YT ) + C (YT ) log (X
�
T )]

= Ei;x;t [K (YT )] + sup
�2A

Ei;x;t [C (YT ) log (X
�
T )] :

It is clear that the optimal policy �� is independent of K: Let Û (i; x) = C (i) log(x) =

U (i; x)�K (i) ; then the optimal policy for U (i; x) will also be optimal for Û (i; x) since ��

does not depend on K: Therefore, if v̂ (i; x; t) is de�ned as

v̂ (i; x; t) = sup
�2A

Ei;x;t [C (YT ) log (X
�
T )]

= sup
�2A

Ei;x;t

h
Û (YT ; X

�
T )
i

(4.44)

then

v (i; x; t) = Ei;x;t [K (YT )] + v̂ (i; x; t) (4.45)

and, if we can �nd v̂ (i; x; t), we can easily determine v (i; x; t) using (4.45) and the fact that

Ei;x;t [K (YT )] = Ei [K (YT )] = e
A(T�t)K (i) :
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Theorem 19 Let the utility function of the investor be the logarithmic function (4.43)..

Then, the optimal solution of the dynamic programming equation (4.8) is

v (i; x; t) = K (i; t) + C (i; t) log (x) (4.46)

and the optimal portfolio is

��(i; x; t) = V (i; t)�1 �e (i; t) (4.47)

where

C (i; t) = eA(T�t)C (i) ; K (i; t) = eA(T�t)K (i) + P (i; t)

and P (i; t) is the solution of the linear system of �rst order di¤erential equations

dP (i; t)

dt
= Pt (i; t) = �� (i; t)�

X
j2E

A (i; j)P (j; t)

with the boundary condition P (i; T ) = 0; where

� (i; t) =

�
rf (i; t) +

1

2
�e (i; t)0 V (i; t)�1 �e (i; t)

�
C (i; t) (4.48)

for all i 2 E and 0 � t � T .

Proof. We will focus on the optimization problem (4.44) by examining v̂ (i; x; t). For any

� 2 R, if � 2 A is an admissible policy for x0 = x; i0 = i then it is also admissible for

x0 = �x; i0 = i. So, we can write

E [C (YT ) log (X
�
T ) jYt = i;X�

t = �x ] = E [C (YT ) log (�X
�
T ) jYt = i;X�

t = x]

and

E [C (YT ) log (X
�
T ) jYt = i;X�

t = �x ] = E [log (�)C (YT ) jYt = i;X�
t = x ]

+E [C (YT ) log (X
�
T ) jYt = i;X�

t = x ]

which means

Ei;�x;t [C (YT ) log (X
�
T )] = Ei;x;t [log (�)C (YT )] + Ei;x;t [C (YT ) log (X

�
T )] (4.49)

for any � 2 R and � 2 A.
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Let �� be the optimal policy when x0 = x; i0 = i; then (4.49) implies

Ei;�x;t

h
C (YT ) log

�
X��
T

�i
= Ei;x;t [log (�)C (YT )] + Ei;x;t

h
C (YT ) log

�
X��
T

�i
(4.50)

and, since �� is optimal,

Ei;x;t

h
C (YT ) log

�
X��
T

�i
� Ei;x;t [C (YT ) log (X�

T )] (4.51)

for all � 2 A. If we add Ei;x;t [log (�)C (YT )] to both sides of (4.51), then using (4.49) we

can write

Ei;�x;t

h
C (YT ) log

�
X��
T

�i
� Ei;�x;t [C (YT ) log (X�

T )]

for any admissible policy � 2 A. So, �� is also optimal for x0 = �x; i0 = i: We therefore

conclude that

v̂ (i; x; t) = Ei;x;t [log (x)C (YT )] + sup
�2A

Ei;1;t [C (YT ) log (X
�
T )]

= Ei;x;t [log (x)C (YT )] + v̂ (i; 1; t)

by taking x = 1; � = x in (4.49). Note that the �rst term is given by

Ei;x;t [log (x)C (YT )] = Ei [C (YT )] log (x) = e
A(T�t)C (i) log (x) = C (i; t) log (x) :

De�ne the function P (i; t) = v̂ (i; 1; t) so that

v̂ (i; x; t) = C (i; t) log (x) + P (i; t) :

Note that this clearly implies (4.46) via (4.45) and P (i; T ) = 0. Therefore,

v̂x (i; x; t) =
1

x
C (i; t) (4.52)

and

v̂xx (i; x; t) = �
1

x2
C (i; t) : (4.53)

Also, if we take the derivative with respect to t

v̂t (i; x; t) = � log (x) eA(T�t)AC (i) + Pt (i; t) : (4.54)

Using (4.8), the optimal policy can be found by

�� (t) = argmax
�

 
v̂x (i; x; t)x

�
rf (i; t) + �

0�e (i; t)
�
+
1

2
v̂xx (i; x; t)x

2�0V (i; t)�

+
X
j2E

A (i; j) v̂ (j; x; t)

!

= argmax
�

�
v̂x (i; x; t)x�

0�e (i; t) +
1

2
v̂xx (i; x; t)x

2�0V (i; t)�

�
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and setting the gradient equal to zero, we obtain

�� (t) = � v̂x (i; x; t)

xv̂xx (i; x; t)
V (i; t)�1 �e (i; t)

and, �nally,

�� (t) = V (i; t)�1 �e (i; t) : (4.55)

If we plug in the optimal policy in (4.8)

v̂t (i; x; t) + v̂x (i; x; t)x
�
rf (i; t) + �

� (t)0 �e (i; t)
�

+
1

2
v̂xx (i; x; t)x

2�� (t)0 V (i; t)�� (t) +
X
j2E

A (i; j) v̂ (j; x; t) = 0

and, using (4.52),(4.53), and (4.54), we have

� log (x) eA(T�t)AC (i) + Pt (i; t) + C (i; t)
�
rf (i; t) + �

� (t)0 �e (i; t)
�

�1
2
C (i; t)�� (t)0 V (i; t)�� (t) + log (x) eA(T�t)AC (i) +

X
j2E

A (i; j)P (j; t) = 0:

If we cancel similar terms and insert �� (t)0 �e (t; i) = �e (i; t)0 V (i; t)�1 �e (i; t) and

�� (t)0 V (i; t)u� (t) = �e (i; t)0 V (i; t)�1 �e (i; t), we have

Pt (i; t) + C (i; t)
�
rf (i; t) + �

e (i; t)0 V (i; t)�1 �e (i; t)
�

�1
2
C (i; t)�e (i; t)0 V (i; t)�1 �e (i; t) +

X
j2E

A (i; j)P (j; t) = 0:

After rearranging the terms, we obtain

Pt (i; t) = �� (i; t)�
X
j2E

A (i; j)P (j; t) (4.56)

with the boundary condition P (i; T ) = 0 where � (i; t) is de�ned by (4.48).

To complete the proof, it now su¢ ces to show that the optimal policy (4.47) is admissible

and the logarithmic value function (4.46) satis�es the condition of the veri�cation Theorem

17. Recall that X�
t > 0 for all � 2 A and 0 � t � T: It is therefore clear that v 2 C

2;1
p since

jv̂x (i; x; t)j =
1

x
C (i; t) <1

for all i 2 E, x 2 R+, and 0 � t � T: Moreover, � 2 A trivially since it satis�es condition

(iv) of De�nition 14 by (4.57).
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4.5.1 Evolution of Wealth

If we analyze the evolution of the wealth process X� when the optimal policy (4.47) is used

we see that

X�
t = X�

0 exp

�Z t

0

�
rf (Ys; s) + � (s)

0 �e (Ys; s)�
1

2
� (s)0 V (Ys; s)� (s)

�
ds

+

Z t

0
� (s)0 � (Ys; s) dW (s)

�
= X�

0 exp

�Z t

0

�
rf (Ys; s) + �

e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s)

�1
2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s)

�
ds+

Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
= X�

0 exp

�Z t

0

�
rf (Ys; s) +

1

2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s)

�
ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
= X�

0 �rf (0; t) exp

�Z t

0

1

2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
: (4.57)

Note that once again the Riemann integral in (4.57) is nonnegative but the stochastic

integral in (4.57) takes negative as well as positive values except for trivial cases. Therefore,

the optimal policy is admissible.

The expected value of the wealth satis�es

Ei [X
�
t ] = xEi

�
�rf (0; t) exp

�Z t

0

1

2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dWs

��
when X�

0 = x and, given Y;

E [X�
t jY] = x�rf (0; t) exp

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
�E
�
exp

�Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dWs

�1
2

Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�����Y�
= x�rf (0; t) exp

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�



Chapter 4: CONTINUOUS-TIME PORTFOLIO OPTIMIZATION 155

since exp
�R t
0 �

e (Ys; s)
0 � (Ys; s)

�1 dWs� 1
2

R t
0 �

e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds
�
is a mar-

tingale given Y. Therefore,

Ei [X
�
t ] = xEi

�
�rf (0; t) exp

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

��
(4.58)

It clearly follows from (4.58) that Ei [X�
t ] � Ei [X�

0 �rf (0; t)] for all 0 � t � T since �t > 0

and

Ei

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
� 0

because V (i; t)�1 is positive de�nite for all i 2 E and 0 � t � T:

Similarly, if we consider the square of the wealth

(X�
t )
2 = (X�

0 )
2 �rf (0; t)

2 exp

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

+2

Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dWs

�
and, when X�

0 = x;

E
h
(X�

t )
2 jY

i
= x2�rf (0; t)

2 exp

�Z t

0
3�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
E

�
exp

�Z t

0
2�e (Ys; s)

0 � (Ys; s) dWs

�2
Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�����Y�
= x2�rf (0; t)

2 exp

�Z t

0
3�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
since exp

�R t
0 2�

e (Ys; s)
0 � (Ys; s) dWs� 2�e (Ys; s)0 V (Ys; s)�1 �e (Ys; s) ds

�
is a martingale

given Y. Therefore,

Ei

h
(X�

t )
2
i
= x2Ei

�
�rf (0; t)

2 exp

�Z t

0
3�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

��
:

The variance can be found through the formula

Vari (X
�
t ) = Ei

h
(X�

t )
2
i
� Ei [X�

t ]
2 :

4.6 Logarithmic Utility Model

We now assume that the utility of the investor in state i is given by the logarithmic function

U(i; x) =

8<: K(i) + C(i) log(x+ �) x > ��

�1 x � �
(4.59)
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with � > 0, and C (i) > 0 where we can easily see that Pratt-Arrow�s measure of absolute

risk aversion is simply equal to �U 00
(i; x) =U

0
(i; x) = 1= (x+ �) > 0 for all i. Note that in

this section we will assume that the risk free interest rate does not depend on the market

state i.

We �rst make some intuitive analysis. One can see that the utility of the investor will

be �nite if the terminal wealth is greater than ��. If Xu
T � ��; then the utility will be

�1. If the wealth level at time t is Xt > ��t = ��=�rf (t; T ) ; then the policy u (s) = 0 for

t � s � T will result with Xu
T > �� and the utility U (YT ; XT ) will be �nite. Therefore, for

an investor with wealth level greater than ��t; it is always possible to have �nite utility.

Actually, according to our analysis in the discrete time model, ��t seems to be a critical

level under which there is in�nite disutility. Similar to the discrete case, if Xt < ��t then

P fXu
T < ��g > 0 according to the no arbitrage principle for any policy u.

To see this, assume that when Xt = x < ��t and there is a policy �u such that X �u
T � ��:

For an investor with wealth equal to 0 at time t; consider the policy of borrowing x at the

risk free rate and applying the policy �u up to time T . The wealth level at time T will be

X �u
T � x�rf (t; T ) and

X �u
T � x�rf (t; T ) � �� � x�rf (t; T )

> �� + �t�rf (t; T ) = 0

so that X �u
T > x�rf (t; T ) : But the investor had wealth equal to 0 at time t and this is a

contradiction to condition (iv) of De�nition 16. We therefore suppose that X0 > ��0 =

��=�rf (0; T ).

Since the wealth level Xu
t at any time t satis�es X

u
t > �t, we modify C

2;1
p in veri�cation

Theorem 16 so that it now includes functions f (i; x; t) de�ned for i 2 E; 0 � t � T , and

x > ��t or x 2 Rt = (�t;+1) :

Theorem 20 Let the utility function of the investor be the logarithmic function (4.59) and

suppose that rf (i; t) = rf (t) for all i 2 E; and 0 � t � T . Then, the optimal solution of the

dynamic programming equation (4.8) is

v (i; x; t) = K (i; t) + C (i; t) log (x+ �t) (4.60)

and the optimal portfolio is

u�(i; x; t) = (x+ �t)V (i; t)
�1 �e (i; t) (4.61)
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where

C (i; t) = eA(T�t)C (i) ; K (i; t) = eA(T�t)K (i) + P (i; t) (4.62)

and P (i; t) is the solution of the linear system of �rst order di¤erential equations

dP (i; t)

dt
= Pt (i; t) = �� (i; t)�

X
j2E

A (i; j)P (j; t)

with the boundary condition P (i; T ) = 0; where

� (i; t) =

�
rf (t) +

1

2
�e (t; i)0 V (i; t)�1 �e (i; t)

�
C (i; t)

for all i 2 E and 0 � t � T .

Proof. Suppose that a candidate solution for the dynamic programming equation can be

written as

g (i; x; t) = K (i; t) + C (i; t) log (x+ �t)

where K (i; t), and C (i; t) are as de�ned at (4.62). Then, we can calculate the partial

derivatives as

gt (i; x; t) = Kt (i; t) + Ct (i; t) log (x+ �t) +
C (i; t)�trf (t)

x+ �t

gx (i; x; t) =
C (i; t)

x+ �t

and

gxx (i; x; t) = �
C (i; t)

(x+ �t)
2 :

Using the dynamic programming equation (4.18)

gt (i; x; t) + sup
u2Rm

(
gx (i; x; t)

�
rf (t)x+ u

0�e (i; t)
�

+
1

2
gxx (i; x; t)u

0V (i; t)u+
X
j2E

A (i; j) g (j; x; t)

9=; = 0

we see that

u� (t) = �V �1 (i; x; t)�e (i; t) gx (i; x; t)
gxx (i; x; t)

= (x+ �t)V
�1 (i; x; t)�e (i; t)
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is the maximizer of the equation. If we insert the optimal policy in the dynamic program-

ming equation then

gt (i; x; t) + gx (i; x; t)
�
rf (t)x+ u (t)

�0 �e (i; t)
�

+
1

2
gxx (i; x; t)u (t)

�0 V (i; t)u (t)� +
X
j2E

A (i; j) g (j; x; t)

= Kt (i; t) + Ct (i; t) log (x+ �t) +
C (i; t)

x+ �t
�trf (t) +

C (i; t)

x+ �t
rf (t)x

+C (i; t)
1

2
�e (i; t)V �1 (i; x; t)�e (i; t) +

X
j2E

A (i; j) (K (j; t) + C (j; t) log (x+ �t))

= �eA(T�t)AK (i) + Pt (i; t)� eA(T�t)AC (i) log (x+ �t) + C (i; t) � (i; t)

+eA(T�t)AK (i) +
X
j2E

A (i; j)P (j; t) + eA(T�t)AC (i) log (x+ �t)

= Pt (i; t) + C (i; t) � (i; t) +
X
j2E

A (i; j)P (j; t)

= 0:

Therefore, g (i; x; t) solves the dynamic programming equation (4.18) and the corresponding

optimal policy is given by (4.61).

To complete the proof, we will need to show that the optimal policy (4.61) is admissible

and the logarithmic value function (4.60) satis�es the conditions of the veri�cation Theorem

16. Note again thatXu
t > ��t for all u 2 A and 0 � t � T . It therefore follows that v 2 C

2;1
p

since

jvx (i; x; t)j =
C (i; t)

x+ �t
<1

for all i 2 E, x > �t, and 0 � t � T: Moreover, the optimal policy (4.61) is admissible since

condition (iv) of De�nition 16 is satis�ed by (4.63).

4.6.1 Evolution of wealth

If we write the wealth dynamics equation

dXu
t =

�
Xu
t rf (t) + u (t)

0 �e (Yt; t)
�
dt+ u (t)0 � (Yt; t) dW (t)

and insert u�(t) = (X�
t + �t)V (Yt; t)

�1 �e (Yt; t) ; we get

dX�
t = X�

t rf (t) dt+ (X
�
t + �t)�

e (Yt; t)
0 V (Yt; t)

�1 �e (Yt; t) dt

+(X�
t + �t)�

e (Yt; t)
0 � (Yt; t)

�1 dW (t) :
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Adding d�t = �trf (t) dt to both sides

dX�
t + d�t = (X�

t + �t)
h
rf (t) + �

e (Yt; t)
0 V (Yt; t)

�1 �e (Yt; t)
i
dt

+(X�
t + �t)�

e (Yt; t)
0 � (Yt; t)

�1 dW (t)

or

d (X�
t + �t) = (X�

t + �t)
h�
rf (t) + �

e (Yt; t)
0 V (Yt; t)

�1 �e (Yt; t)
�
dt

+�e (Yt; t)
0 � (Yt; t)

�1 dW (t)
i
:

Using Itô calculus, we can determine the wealth process explicitly as

X�
t + �t = (X�

0 + �0) exp

�Z t

0

�
rf (s) +

1

2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s)

�
ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
= (X�

0 + �0) �rf (0; t)

�
exp

�Z t

0

�
1

2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s)

�
ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s) dW (s)

��
: (4.63)

We can rewrite the wealth process as

X�
t = X�

0rf (0; t) + (X
�
0rf (0; t) + �t)

�
exp

�Z t

0

�
1

2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s)

�
ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s) dW (s)

�
� 1
�

(4.64)

since �t = �0�rf (0; t). In (4.64) the Riemann integral is nonnegative but the stochastic

integral takes negative as well as positive values except for trivial cases. This implies the

admissibility of the optimal policy.

If we take the conditional expectation given X�
0 = x and Y, we obtain

E [X�
t jY] = (x+ �0) �rf (0; t) exp

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
E

�
exp

�Z t

0
�e (Ys; s)

0 � (Ys; s)
�1 dWs

�1
2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�����Y�� �t
= (x+ �0) �rf (0; t) exp

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
� �t
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since the term exp
�R t
0 �

e (Ys; s)
0 � (Ys; s)

�1 dWs� 1
2

R t
0 �

e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds
�
is

a martingale given Y. Therefore,

Ei [X
�
t ] = x�rf (0; t) + (x�rf (0; t) + �t)Ei

�
exp

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
� 1
�
:

It can easily be observed that Ei [X�
t ] � Ei [X�

0 �rf (0; t)] for all 0 � t � T since �t > 0 and

V �1 is positive de�nite. If we de�ne

ml (i; t) = Ei

�
exp

�Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
� 1
�

we get

Ei [X
�
t ] = x�rf (0; t) + (x�rf (0; t) + �t)ml (i; t)

Using (4.64), the variance of X�
t can be written as

Vari (X
�
t ) = (xrf (0; t) + �t)

2 v2l (i; t)

where

v2l (i; t) = Vari

�
exp

�Z t

0

�
1

2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s)

�
ds

+

Z t

0
�e (Ys; s)

0 � (Ys; s) dW (s)

�
� 1
�
:

Therefore, the logarithmic frontier is a line with formula

Ei [X
�
T ] = x�rf (0; T ) +

�
ml (i; T )

vl (i; T )

�
SDi (X�

t ) :

as in the discrete time case.

4.7 CRRA Utility Model

We now assume that the utility of the investor in state i is given by the power function

U(i; x) = K(i) + C(i)
x


(4.65)

with  < 1, and C (i) > 0 where we can easily see that Pratt-Arrow�s measure of absolute

risk aversion is simply equal to �U 00
(i; x) =U

0
(i; x) = (1� ) =x > 0 for all i.

As in the Section 4.5, we will be using � rather than u as the policy that is used by the

investor. Later in Theorem 21, it is veri�ed that this policy is convenient since it will result
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with a wealth process where X�
t > 0 provided that X

�
0 > 0. This is actually necessary since

for negative wealth levels the utility function could be unde�ned for some values of . The

structure of the optimal solution prevents problems that can result from negative wealth

levels in the utility function.

For the optimization problem with the power utility function (4.65), we can write the

value function as

v (i; x; t) = sup
�2A

Ei;x;t [K (YT ) + C (YT ) (X
�
T )
 =]

= Ei;x;t [K (YT )] + sup
�2A

Ei;x;t [C (YT ) (X
�
T )
 =] :

It is clear that the optimal policy �� is independent of K: Let Û (i; x) = C (i)x= =

U (i; x)�K (i) ; then the optimal policy for U (i; x) will also be optimal for Û (i; x) since ��

does not depend on K: Therefore, if v̂ (i; x; t) is de�ned as

v̂ (i; x; t) = sup
�2A

Ei;x;t [C (YT ) (X
�
T )
 =]

= sup
u2A

Ei;x;t

h
Û (YT ; X

�
T )
i

(4.66)

then

v (i; x; t) = Ei;x;t [K (YT )] + v̂ (i; x; t) (4.67)

and, if we can �nd v̂ (i; x; t), we can easily determine v (i; x; t) using (4.67) and the fact that

Ei;x;t [K (YT )] = Ei [K (YT )] = e
A(T�t)K (i) :

Theorem 21 Let the utility function of the investor be the power function (4.65).. Then,

the optimal solution of the dynamic programming equation (4.8) is

v (i; x; t) = K (i; t) + P (i; t)x= (4.68)

and the optimal portfolio is

��(i; x; t) =
1

1� V (i; t)
�1 �e (i; t) (4.69)

where

K (i; t) = eA(T�t)K (i)

and P (i; t) is the solution of the linear system of �rst order di¤erential equations

dP (i; t)

dt
= Pt (i; t) = �� (i; t)P (i; t)�

X
j2E

A (i; j)P (j; t)
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with the boundary condition P (i; T ) = C (i) ; where

� (i; t) =


1� 

�
(1� ) rf (i; t) +

1

2
�e (i; t)0 V (i; t)�1 �e (i; t)

�
(4.70)

for all i 2 E and 0 � t � T .

Proof. We will focus on the optimization problem (4.66) by examining v̂ (i; x; t). For any

� 2 R, if � 2 A is an admissible policy for x0 = x; i0 = i then it is also admissible for

x0 = �x; i0 = i. So, we can write

E [C (YT ) (X
�
T )
 = jYt = i;X�

t = �x ] = E [C (YT ) (�X
�
T )
 =jYt = i;X�

t = x]

and

E [C (YT ) (X
�
T )
 = jYt = i;X�

t = �x ] =
�


E [C (YT ) (X

�
T )
 = jYt = i;X�

t = x ]

which means

Ei;�x;t [C (YT ) (X
�
T )
 =] =

�


Ei;x;t [C (YT ) (X

�
T )
 =] (4.71)

for any � 2 R and � 2 A.

Let �� be the optimal policy when x0 = x; i0 = i; then (4.71) implies

Ei;�x;t

h
C (YT )

�
X��
T

�
=
i
=
�


Ei;x;t

h
C (YT )

�
X��
T

�
=
i

(4.72)

and, since �� is optimal,

Ei;x;t

h
C (YT )

�
X��
T

�
=
i
� Ei;x;t [C (YT ) (X�

T )
 =] (4.73)

for all � 2 A. If we multiply both sides of (4.73) with�= then using (4.71) we can write

Ei;�x;t

h
C (YT )

�
X��
T

�
=
i
� Ei;�x;t [C (YT ) (X�

T )
 =]

for any admissible policy � 2 A. So, �� is also optimal for x0 = �x; i0 = i: We therefore

conclude that

v̂ (i; x; t) =
x


sup
�2A

Ei;1;t [C (YT ) (X
�
T )
 =]

=
x


v̂ (i; 1; t)

by taking x = 1; � = x in (4.71). De�ne the function P (i; t) = v̂ (i; 1; t) so that

v̂ (i; x; t) =
x


P (i; t) :
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Note that this clearly implies (4.68) via (4.67) and P (i; T ) = C (i). Therefore,

v̂x (i; x; t) = x
�1P (i; t) (4.74)

and

v̂xx (i; x; t) = ( � 1)x�2P (i; t) : (4.75)

Also, if we take the derivative with respect to t

v̂t (i; x; t) =
x


Pt (i; t) : (4.76)

Using (4.8), the optimal policy can be found by

�� (t) = argmax
�

 
v̂x (i; x; t)x

�
rf (i; t) + �

0�e (i; t)
�
+
1

2
v̂xx (i; x; t)x

2�0V (i; t)�

+
X
j2E

A (i; j) v̂ (j; x; t)

!

= argmax
�

�
v̂x (i; x; t)x�

0�e (i; t) +
1

2
v̂xx (i; x; t)x

2�0V (i; t)�

�
and setting the gradient equal to zero, we obtain

�� (t) = � v̂x (i; x; t)

xv̂xx (i; x; t)
V (i; t)�1 �e (i; t)

and �nally,

�� (t) =
1

1� V (t; i)
�1 �e (i; t) : (4.77)

If we plug in the optimal policy in (4.8)

v̂t (i; x; t) + v̂x (i; x; t)x
�
rf (i; t) + �

� (t)0 �e (i; t)
�

+
1

2
v̂xx (i; x; t)x

2�� (t)0 V (i; t)�� (t) +
X
j2E

A (i; j) v̂ (j; x; t) = 0

and, using (4.74),(4.75), and (4.76), we have

x


Pt (i; t) + x


�
rf (i; t) + �

� (t)0 �e (i; t)
�
P (i; t)

+
1

2
x ( � 1)�� (t)0 V (i; t)�� (t) + x





X
j2E

A (i; j)P (j; t) = 0:
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If we cancel similar terms and insert �� (t)0 �e (t; i) = 1�e (i; t)0 V (i; t)�1 �e (i; t) = (1� )

and �� (t)0 V (i; t)u� (t) = �e (i; t)0 V (i; t)�1 �e (i; t) = (1� )2, we have

Pt (i; t) +


1� 

�
(1� ) rf (i; t) + �e (i; t)0 V (i; t)�1 �e (i; t)

�
P (i; t)

�1
2



1� �
e (i; t)0 V (i; t)�1 �e (i; t)P (i; t) +

X
j2E

A (i; j)P (j; t) = 0:

After rearranging the terms we obtain

Pt (i; t) = �� (i; t)P (i; t)�
X
j2E

A (i; j)P (j; t) (4.78)

with the boundary condition P (i; T ) = 0 where � (i; t) is given by (4.70).

To complete the proof, it now su¢ ces to show that the optimal policy (4.69) is admissible

and the logarithmic value function (4.68) satis�es the condition of the veri�cation Theorem

17. Recall that X�
t > 0 for all � 2 A and 0 � t � T: It is therefore clear that v 2 C

2;1
p since

jv̂x (i; x; t)j = x�1P (i; t) <1

for all i 2 E, x 2 R+, and 0 � t � T: Moreover, � 2 A trivially since it satis�es condition

(iv) of De�nition 14 by (4.80).

4.7.1 Evolution of wealth

If we analyze the evolution of the wealth process X� when the optimal policy (4.69) is used

we see that

X�
t = X�

0 exp

�Z t

0

�
rf (Ys; s) + � (s)

0 �e (Ys; s)�
1

2
� (s)0 V (Ys; s)� (s)

�
ds

+

Z t

0
� (s)0 � (Ys; s) dW (s)

�
= X�

0 exp

�Z t

0

�
rf (Ys; s) +

1

1� �
e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s)

�1
2

1

(1� )2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s)

�
ds

+

Z t

0

1

1� �
e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
(4.79)

= X�
0 �rf (0; t) exp

�Z t

0

1� 2
2 (1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds

+

Z t

0

1

1� �
e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
: (4.80)
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Here, in (4.80), the stochastic integral can take any positive or negative value. Therefore,

the exponent can be smaller or greater than 1 with positive probabilities. So, the optimal

policy is admissible.

The expected value of the wealth satis�es

Ei [X
�
t ] = xEi

�
�rf (0; t) exp

�Z t

0

1� 2
2 (1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds (4.81)

+

Z t

0

1

1� �
e (Ys; s)

0 � (Ys; s)
�1 dWs

��
when X�

0 = x and, given Y;

E [X�
t jY] = x�rf (0; t) exp

�Z t

0

1

1� �
e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
�E
�
exp

�Z t

0

1

1� �
e (Ys; s)

0 � (Ys; s)
�1 dWs

�1
2

1

(1� )2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�����Y�
= x�rf (0; t) exp

�Z t

0

1

1� �
e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
since exp

�
1
1�

R t
0 �

e (Ys; s)
0 � (Ys; s)

�1 dWs� 1
2(1�)2

R t
0 �

e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds
�
is

a martingale given Y. Therefore,

Ei [X
�
t ] = xEi

�
�rf (0; t) exp

�
1

1� 

Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

��
: (4.82)

Note that in (4.82), since  < 1 the exponent is positive and we can see that Ei [X�
t ] �

Ei [X
�
0 �rf (0; t)] :

If we take the square of the wealth process

X�
t = (X�

0 )
2 �rf (0; t)

2 exp

�Z t

0

1� 2
(1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds

+

Z t

0

2

(1� )�
e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
= (X�

0 )
2 �rf (0; t)

2 exp

�Z t

0

3� 2
(1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds

�
Z t

0

2

(1� )2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

+

Z t

0

2

(1� )�
e (Ys; s)

0 � (Ys; s)
�1 dW (s)

�
and taking the expectation given X�

0 = x and Y we obtain

E
h
(X�

t )
2 jY

i
= x2�rf (0; t)

2 exp

�Z t

0

3� 2
(1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds

�
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since the second part is martingale. Therefore,

Ei

h
(X�

t )
2
i
= x2Ei

�
�rf (0; t)

2 exp

�
3� 2
(1� )2

Z t

0
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

��
(4.83)

and Vari (X�
t ) = Ei

h
(X�

t )
2
i
� Ei [(X�

t )]
2 can be found by using (4.81) and (4.83).

4.8 Power Utility Model

We now assume that the utility of the investor in state i is given by the power function

U(i; x) = K(i) + C(i)
(x+ �)


(4.84)

with � > 0,  < 1, and C (i) > 0 where we can easily see that Pratt-Arrow�s measure of

absolute risk aversion is simply equal to �U 00
(i; x) =U

0
(i; x) = (1� ) = (x+ �) > 0 for all

i. Note that in this section we will assume that the risk free interest rate does not depend

on the market state i.

Similar to our analysis in Section 4.6, if Xt < ��t then P fXu
T < ��g > 0 and the utility

function can be unde�ned. Moreover, Xt < ��t clearly implies the existence of arbitrage

opportunities. We therefore suppose that X0 > ��0 = ��=�rf (0; T ) which further implies

that Xt > ��t for all 0 � t � T and u 2 A.

Since the wealth level Xu
t at any time t satis�es X

u
t > �t, we modify C

2;1
p in veri�cation

Theorem 16 so that it now includes functions f (i; x; t) de�ned for i 2 E; 0 � t � T , and

x > ��t or x 2 Rt = (�t;+1) :

Theorem 22 Let the utility function of the investor be the logarithmic function (4.84) and

rf (i; t) = rf (t).. Then, the optimal solution of the dynamic programming equation (4.8) is

v (i; x; t) = K (i; t) + P (i; t) (x+ �t)
 = (4.85)

and the optimal portfolio is

u�(i; x; t) =
(x+ �t)

1�  V (i; t)�1 �e (i; t) (4.86)

where

K (i; t) = eA(T�t)K (i) (4.87)
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and P (i; t) is the solution of the linear system of �rst order di¤erential equations

dP (i; t)

dt
= Pt (i; t) = �� (i; t)P (i; t)�

X
j2E

A (i; j)P (j; t) (4.88)

with the boundary condition P (i; T ) = 0; where

� (i; t) =


1� 

�
(1� ) rf (t) +

1

2
�e (i; t)0 V (i; t)�1 �e (i; t)

�
for all i 2 E and 0 � t � T .

Proof. Suppose that a candidate solution for the dynamic programming equation can be

written as

g (i; x; t) = K (i; t) + P (i; t) (x+ �t)
 =

where K (i; t), and P (i; t) are as de�ned at (4.87) and (4.88). Then, we can calculate the

partial derivatives as

gt (i; x; t) = Kt (i; t) + Pt (i; t) (x+ �t)
 = + P (i; t)�trf (t) (x+ �t)

�1

gx (i; x; t) = P (i; t) (x+ �t)
�1

and

gxx (i; x; t) = � (1� )P (i; t) (x+ �t)�2

where Kt (i; t) = dK (i; t) =dt = �AK (i; t). Using the dynamic programming equation (4.8)

gt (i; x; t) + sup
u2Rm

(
gx (i; x; t)

�
rf (t)x+ u

0�e (i; t)
�

+
1

2
gxx (i; x; t)u

0V (i; t)u+
X
j2E

A (i; j) g (j; x; t)

9=; = 0

we see that

u� (t) = �V �1 (i; x; t)�e (i; t) gx (i; x; t)
gxx (i; x; t)

=
(x+ �t)

1�  V �1 (i; x; t)�e (i; t)
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is the maximizer of the equation. It is the policy that we have analyzed before. If we insert

u in the dynamic programming equation then

gt (i; x; t) + gx (i; x; t)
�
rf (t)x+ u (t)

0 �e (i; t)
�

+
1

2
gxx (i; x; t)u (t)

0 V (i; t)u (t) +
X
j2E

A (i; j) g (j; x; t)

= Kt (i; t) + Pt (i; t)
(x+ �t)




+ P (i; t)�trf (t) (x+ �t)

�1

+P (i; t) (x+ �t)
�1 rf (t)x+ P (i; t)

(x+ �t)


1�  �e (i; t)V �1 (i; x; t)�e (i; t)

�1
2
P (i; t)

(x+ �t)


1�  �e (i; t)V �1 (i; x; t)�e (i; t)

+
X
j2E

A (i; j)

�
K (j; t) + P (j; t)

(x+ �t)




�

=

�
Pt (i; t)


+ P (i; t) rf (t) +

P (i; t)

2 (1� )�
e (i; t)V �1 (i; x; t)�e (i; t)

+
X
j2E

A (i; j)
P (j; t)



1A (x+ �t)
= 0

by (4.88). Therefore, g (i; x; t) solves the dynamic programming equation and the corre-

sponding optimal policy is given by (4.86).

To complete the proof, we will need to show that the optimal policy (4.86) is admissible

and the logarithmic value function (4.85) satis�es the conditions of the veri�cation Theorem

16. Note again thatXu
t > ��t for all u 2 A and 0 � t � T . It therefore follows that v 2 C

2;1
p

since

jvx (i; x; t)j = P (i; t) (x+ �t)�1 <1

for all i 2 E, x > �t, and 0 � t � T: Moreover, the optimal policy (4.86) is admissible since

condition (iv) of De�nition 16 is satis�ed by (4.89).

4.8.1 Evolution of wealth

If we write the wealth dynamics equation

dXu
t =

�
Xu
t rf (t) + u (t)

0 �e (Yt; t)
�
dt+ u (t)0 � (Yt; t) dW (t)
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and insert u�(t) = (x+ �t)V (Yt; t)
�1 �e (Yt; t) = (1� ) ; we get

dX�
t = X�

t rf (t) dt+
(X�

t + �t)

1�  �e (Yt; t)
0 V (Yt; t)

�1 �e (Yt; t) dt

+
(X�

t + �t)

1�  �e (Yt; t)
0 � (Yt; t)

�1 dW (t) :

Adding d�t = �trf (t) dt to both sides

dX�
t + d�t = (X�

t + �t) rf (t) dt+
(X�

t + �t)

1�  �e (Yt; t)
0 V (Yt; t)

�1 �e (Yt; t) dt

+
(X�

t + �t)

1�  �e (Yt; t)
0 � (Yt; t)

�1 dW (t)

= (X�
t + �t)

" 
rf (t) +

�e (Yt; t)
0 V (Yt; t)

�1 �e (Yt; t)

1� 

!
dt

+
�e (Yt; t)

0 � (Yt; t)
�1

1�  dW (t)

#
:

Using Itô calculus, we can determine the wealth process explicitly as

X�
t + �t = (X�

0 + �0) �rf (0; t) exp

�Z t

0

1� 2
2 (1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds

+

Z t

0

1

(1� )�
e (Ys; s)

0 � (Ys; s) dW (s)

�
:

We can also rewrite the wealth process as

X�
t = (X�

0 + �0) �rf (0; t) exp

�Z t

0

1� 2
2 (1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds

+

Z t

0

1

(1� )�
e (Ys; s)

0 � (Ys; s) dW (s)

�
� �t (4.89)

= X�
0rf (0; t) + (X

�
0rf (0; t) + �t)

�
�
exp

�Z t

0

1� 2
2 (1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds

+

Z t

0

1

(1� )�
e (Ys; s)

0 � (Ys; s) dW (s)

�
� 1
�
: (4.90)

Here, in (4.90), the stochastic integral can take any positive or negative value. Therefore,

the exponent can be smaller or greater than 1 with positive probabilities. So, the optimal

policy is admissible.
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If we take the expectation given X�
0 = x and Y, we obtain

E [X�
t jY] + �t = (x+ �0) �rf (0; t) exp

�Z t

0

1

(1� )�
e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
E

�
exp

�Z t

0

1

(1� )�
e (Ys; s)

0 � (Ys; s) dWs

� 1

2 (1� )2
�e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�����Y�
= (x+ �0) �rf (0; t) exp

�Z t

0

1

(1� )�
e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
since exp

�R t
0

1
(1�)�

e (Ys; s)
0 � (Ys; s) dWs� 1

2(1�)2
R t
0 �

e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds
�
is

a martingale given Y. Therefore,

E [X�
t ] = x�rf (0; t) + (x�rf (0; t) + �t)

�Ei
�
exp

�Z t

0

1

(1� )�
e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
� 1
�
: (4.91)

Note that in (4.91), since  < 1 the exponent is positive and we can see that Ei [X�
t ] �

Ei [X
�
0 �rf (0; t)] : If we de�ne

mp (i; t) = Ei

�
exp

�Z t

0

1

(1� )�
e (Ys; s)

0 V (Ys; s)
�1 �e (Ys; s) ds

�
� 1
�

we get

Ei [X
�
t ] = x�rf (0; t) + (x�rf (0; t) + �t)mp (i; t) :

We also see from (4.90) that the variance of X�
t can be written as

Vari (X
�
t ) = (xrf (0; t) + �t)

2 v2p (i; t)

where

v2p (i; t) = Vari

�
exp

�Z t

0

1� 2
2 (1� )2

�e (Ys; s)
0 V (Ys; s)

�1 �e (Ys; s) ds

+

Z t

0

1

(1� )�
e (Ys; s)

0 � (Ys; s) dW (s)

�
� 1
�
:

Therefore, the power frontier is a line with formula

Ei [X
�
T ] = x�rf (0; T ) +

�
mp (i; T )

vp (i; T )

�
SDi (X�

t ) :

as in the discrete time case.
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