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ABSTRACT 

 

 Protein-protein interactions (PPI) are of crucial importance at all levels of biological 

processes. The experimentally identified PPI are deposited in several databases. These 

databases contain diverse information about PPI; but their coverage is low when we 

consider full processes in cells. Thus, reliable, accurate computational methods are needed 

to improve the coverage. Many research groups have developed PPI prediction algorithms 

with varying accuracies based on different data and methods. However, to develop a new 

PPI prediction method with high accuracy is challenging.  

 This study aims to assess existing sequence based PPI prediction methods and to 

propose a new algorithm with improved accuracies. The predictions are made via Support 

Vector Machines (SVM), which is a machine learning algorithm. SVM creates models 

based on training sets and predicts interactions via those models. In this study, positive 

training sets contain experimental PPI and negative training sets contain computational 

non-interacting proteins. In order to represent interaction data in SVM, n-gram frequencies 

of proteins are calculated according to their amino acid sequences. It is shown that SVM 

performance is strongly affected by interactions in training datasets, amino acid 

categorization techniques, n-gram frequencies, and γ values used. SVM models are created 

for eight datasets and the critical assessment of those datasets is made via their SVM 

scores. Based on those scores, combined training datasets are created that make accurate 

prediction of interactions in every dataset. Then, the best feature set that leads to the 

highest SVM scores is found. Finally, the best SVM models are utilized to eliminate false 

positives in putative protein interactions predicted by PRISM (Protein Interactions by 

Structural Matching) algorithm. 
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ÖZET 

 

Protein-protein etkileşimleri (PPE) biyolojik süreçlerin her seviyesinde çok önemlidir. 

Deneysel olarak kanıtlanmış PPE farklı veritabanlarına koyulmaktadır. Bu veritabanları 

PPE hakkında çeşitli bilgiler içermektedir, fakat hücrelerdeki tüm süreçler göz önüne 

alındığında, kapsamları düşüktür. Bu yüzden, PPE kapsamını genişletmek için güvenilir, 

daha doğru hesaplamalı metotlar gerekmektedir. Birçok araştırma grubu farklı bilgi ve 

metotlara dayanan çeşitli doğrulukta PPE tahmin algoritmaları geliştirmiştir. Ancak, 

yüksek doğrulukta bir PPE tahmin etme metodu geliştirmek ilgi çekicidir.  

Bu çalışma, var olan dizilim tabanlı PPE tahmin etme metotlarını değerlendirmeyi ve 

doğruluk oranları geliştirilmiş yeni bir metot önermeyi hedeflemektedir. Tahminler bir 

makine öğrenimi algoritması olan Destek Vektör Makineleri (DVM) ile yapılmaktadır. 

DVM, öğrenim etkileşim veri kümelerine göre kalıplar oluşturur ve etkileşimleri bu 

kalıplar ile tahmin eder. Bu çalışmada, pozitif öğrenim veri kümeleri deneysel PPE'leri, 

negatif öğrenim veri kümeleri hesaplanmış etkileşmeyen proteinleri içermektedir. Etkileşim 

bilgisini DVM'de betimlemek için, proteinlerin amino asit dizilim sıralarına göre n-gram 

frekansları hesaplanmıştır. DVM performansının, öğrenim veri kümelerindeki 

etkileşimlerden, farklı amino asit sınıflandırması tekniklerinden, n-gram frekanslarından ve 

γ değerlerinden fazlaca etkilendiği gösterilmiştir. Sekiz öğrenim veri kümesi için DVM 

kalıpları oluşturulmuştur ve DVM skorları ile detaylı karşılaştırmaları yapılmıştır. Bu 

skorlara göre, her veri kümesindeki etkileşimleri iyi tahmin eden birleştirilmiş öğrenim veri 

kümeleri oluşturulur. Daha sonra, en yüksek DVM skorunu elde etmeyi sağlayan en 

belirleyici nitelikler kümesi bulunur. Son olarak, en iyi DVM kalıpları, YUPE (Yapısal 

Uyumlu Protein Etkileşimleri) algoritması tarafından tahmin edilen PPE içindeki yanlış 

pozitiflerin elenmesi için kullanılır. 
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Chapter 1 
 

INTRODUCTION 
 

 Almost all biological processes are controlled by interactions between proteins [1]. To 

elucidate the protein interactions, several experiments have been performed and their 

results are deposited into protein interaction databases. Although these databases contain 

diverse information about protein – protein interactions, they are still not complete [2]. 

Thus, besides the experimental methods, there is a need for computational methods to 

predict new protein interactions. Several groups have developed protein interaction 

prediction algorithms that perform well but the most important drawback of these methods 

is their high false positive rates, besides the true positive predictions. Thus, a novel PPI 

prediction method is required for minimizing the number of false positives [3]. 

 In recent years, learning based methods get popular for PPI prediction. Especially, 

Support Vector Machines (SVM), Bayesian Networks, and Decision Trees are commonly 

used [4]. However, SVM is found to be the best performing machine learning algorithm in 

several studies [3, 4]. In order to use SVM for PPI prediction algorithm, a reliable, diverse 

and non-redundant training set should be supplied, which contains positive and negative 

protein interactions.  So, construction of gold standard positive and negative sets is crucial 

to develop high performance prediction algorithms. For positive interaction set, there are 

several resources which contain verified PPI. However, to generate these sets, different 

experimental techniques are used on different organisms. Thus, it is hard to generate a gold 

standard dataset for positive interactions which is reliable and sufficiently diverse that 

covers every organism. For negative interaction set, this problem is more complicated. In 
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literature, an experimental non-interacting protein set is not available [5]. Therefore, 

negative interaction sets are created via computational methods. But there are many 

different computational methods and each of them has some drawbacks [6]. Therefore, a 

careful analysis of the datasets in literature should be done in order to select the best 

training set for SVM and make reliable predictions. 

 In this thesis work, we aimed to present a new, accurate, SVM-based method to predict 

protein interactions. For this purpose, the questions: which features are important for PPI 

prediction to obtain best prediction performance; what are the optimum parameters and 

functions in SVM; how to construct a reliable, diverse and non-redundant training set with 

high coverage to make accurate predictions are challenging. To address these questions, we 

present the comparative assessment of eight datasets in literature via their SVM 

performances. Our prediction method is solely sequence-based. The sequence information 

is stored in vectors of the same size. As a result, the performance of the algorithm is 

directly related with the information stored in these vectors. The main focus of the work is 

to discover the best features for representing residue sequences of PPI in vectors and to find 

the optimum parameters and functions in SVM. The effects of these features are found by 

the comparison of SVM performances. The goal is to find the features leading to the best 

SVM performance and to create combined datasets that predict interactions in every dataset 

accurately. Two combined datasets are created from the eight datasets in literature and 

SVM models are generated for all these datasets. The assessment of those models is made 

via the prediction scores across datasets. Following that, the best features are used for 

structure and sequence information based PPI prediction on PRISM (Protein Interactions 

by Structural Matching) server [7]. 

 The outline of this thesis study is as follows: 

 In Chapter 2, related studies in the literature are demonstrated.  Initially, the 

computational techniques to predict protein – protein interactions are introduced. Following 
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that, n-gram representation, categorization of amino acids, and the machine learning tool 

WEKA are reviewed which are utilized also in Chapter 4 to develop our method. Then, 

protein interaction databases are introduced. Next, computational negative PPI creation 

methods are illustrated. Finally, statistical measures used for SVM performance evaluation 

are explained. 

 Chapter 3 contains the materials of this study and the methods to find the best features 

for SVM. The description of eight datasets selected from literature and two combined sets 

created from them are introduced. Following that, the features affecting the SVM 

performance are analyzed in detail. For each feature, the SVM results are given and the 

comparative assessment of datasets is done via those results. Finally, the SVM model 

generated from each training set is used to predict the PPI in other datasets.  

 Chapter 4 includes the improved version of the PRISM algorithm which predicts PPI by 

spatial similarity. Here, the prediction steps of new PRISM are explained. First, the 

prediction algorithm by structural matching is presented. Then, the procedure to check the 

collision in the predicted protein complexes is explained. In the next step, the biological 

relevancy and the interaction type of the predicted protein complexes are found by 

NOXclass [8]. Finally, the best SVM model generation technique found in Chapter 3 is 

integrated into the last step of PRISM algorithm to label the predicted interactions as 

positive or negative. 

 This thesis ends with a chapter which includes the summary of the presented work, 

discussion of the results, future directions and concluding remarks. 

 The Appendix chapter includes the in depth analysis of datasets used during this study. 

For each dataset, the PFAM families of all interacting proteins are found [9]. A detailed 

analysis of all interactions based on PFAM families is made in order understand the effect 

of families in SVM classification. Following that, the n-gram frequencies are analyzed for 

each dataset. The most and least frequent n-gram frequencies in positive and negative sets 
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are compared to each other and also with other datasets in order to find the most important 

ones. Finally, the classification of interactions using energy parameters and different types 

of amino acid categorizations are presented. 



 
 
 
 

 

 

Chapter 2 

 

BACKGROUND  
 

This chapter summarizes the detailed literature review about the studies and methods 

used in this thesis. In Section 2.1, the works related to PPI prediction are presented. In this 

section, the general aspects of these works, the prediction methods and their advantages 

and drawbacks are illustrated. In the next section, Section 2.2, amino acids representation 

with n-gram frequencies is explained in detail. Several n-gram frequencies might be 

generated based on the categorization of amino acids. Section 2.3 lists the categorization 

techniques based on specific amino acid properties.  

In Section 2.4, the machine learning tool, WEKA, is introduced which is utilized to 

perform SVM on n-gram frequency vectors. Following that, the features affecting the 

performance of SVM are explained. This study uses the interactions extracted from several 

databases, which contain experimental PPI. Section 2.5 gives detailed information about 

those databases. Afterwards, in Section 2.6 some computational methods are introduced 

related to negative interaction sets construction. This part consists of purely computational 

techniques because an experimental noninteracting set of interactions does not exist. 

Finally in Section 2.7, the statistical measures used for evaluating the performance of SVM 

are explained. In this section, the formulas and classification terms used in assessments are 

given. 
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2.1 Prediction of Protein-Protein Interactions 

PPI are important to elucidate the cellular machinery [10]. The data extracted from 

these interactions are used for various studies such as drug discovery and understanding 

cellular operations [3, 11]. There are several experimental techniques developed for 

discovering PPI such as yeast two-hybrid based methods and mass spectrometry. But the 

number of interactions found via those methods is limited and covers only a small part of 

all interactions [2]. In addition, these are time and labor demanding techniques [12]. Thus, 

computational PPI prediction methods are needed. Several PPI prediction methods are 

established, which are used for determining the PPI networks of the organisms [13]. The 

common drawback of these computational methods is the prediction of many false positive 

interactions besides the true positive ones [11]. This section summarizes the detailed 

literature review about several PPI prediction methods, most of which use machine learning 

tools. The detail of these methods, their drawbacks, and performance are presented. In 

general, there are two methods used for PPI prediction: (i) structure based methods and (ii) 

sequence based methods. During this study, we performed purely sequence based analysis 

for prediction of PPI while making assessment of datasets. Several distinct approaches, 

used for protein sequence based predictions, are given in order to get a better understanding 

of the methods used in this thesis study and compare their performances.  

The most remarkable work about sequence based PPI prediction is preformed by Shen 

et al. (2007) [3]. In this study, a method is established for PPI prediction that uses only 

sequence information of proteins. First, the amino acids are grouped into seven classes 

based on the dipoles and volumes of side chains. Following that, “conjoint triplet method” 

is used in order to create input vectors for SVM. The positive interactions used in training 

set are human PPI taken from HPRD. The negative interaction set is created by a new 

method, which is introduced in following sections. 16.000 positive and 16.000 negative 

interactions are classified via SVM with 5-fold cross validation technique. It is stated that 
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the obtained positive precision is about 84%. In addition, the model created by SVM is 

used for PPI network prediction and satisfactory results are achieved. 

 In the study of Bock et al. (2001), PPI are predicted using SVM. Their method is based 

solely on protein sequence information  and associated physicochemical residue properties 

[14]. The positive interaction set is taken from DIP database and the diversity of 

interactions is shown by mapping to PFAM. For negative interaction set, a computational 

approach is followed which uses randomized protein sequences similar to DIP proteins. 

Positive and negative interactions are represented by adding charge, hydrophobicity, and 

surface tension of each residue combined with sequential charge and surface tension. As a 

result of the analysis, an average accuracy about 80% is achieved.  

 Yan et al. (2003) shows that, SVM might be also used to predict binding site residues 

[15]. In this study, the surface residues on interaction sites are predicted with 67% 

sensitivity using the identity of target residues and their 10 neighbors in sequence. It is 

claimed that the prediction results would be improved by creating model for different 

protein-protein complexes. It is also stated that the models created by this method would be 

a way to predict PPI in future work. There is a similar study to this one that also tries to 

predict interaction sites from residue sequence for identification of pharmacological targets 

and drug discovery  [16]. In that study, the success rate of classification is about 59-80% 

for the two datasets used. 

In another work, Yan et al (2004) predict binding site residues using two classifiers 

based on protein sequences [17]. Besides the SVM classification in their previous study, 

Bayesian classifier is used at the second step. The probability of being an interface residue 

is calculated for the neighbors of interface residues. Two step classification is used based 

on the information that interface residues are likely to form clusters, which is claimed in 

another study [18]. The generated model is tested on CAPRI (Critical Assessment of 

PRedicted Interactions) targets [19]. In addition, the predictions are verified by comparing 
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3D structures of proteins. This two-step classification is compared to previous work and it 

is pointed out that the accuracy of prediction increases from 66% to 72%.  

 MULTIPROSPECTOR uses the threading algorithm PROSPECTOR (Protein Structure 

Predictor Employing Combined Threading to Optimize Results), interfacial energies of 

PPI, some empirical indicators, and sequence information to make PPI prediction [20]. The 

prediction success rate is over 90% for the test cases composed of homodimers, 

heterodimers, and monomers. On the other hand, when a test is made on 2.457 MIPS 

interactions between 1.872 proteins, only the 15.7% is predicted. It is claimed that the low 

prediction rate is due to interaction creation method of MIPS and to the limited dimer 

database used. Marcotte et al. (1999) aims to predict PPI using the sequence similarity of 

protein interactions in different organisms [21]. In this study, the main focus is to find 

proteins whose sequences are similar to the sequence of a protein in different organisms. 

The possible interactions found by domain fusion analysis are tested. As a result of the 

study, 6.809 Escherichia Coli and 45.502 yeast interactions are found. In Escherichia Coli, 

the predictions result in 47% true positive and 65% false positive rate. 

A different approach for prediction of protein-protein binding sites is proposed in the 

study of Bradford at al. [22]. The starting point is the discovery of common properties of 

binding sites that are different from rest of the protein. Six surface properties are used 

while classifying non-homolog interactions extracted from PDB. One of those properties is 

based on the sequence of proteins. As a result of SVM classification with surface patch 

analysis, interacting and non-interacting surface patches of transient and obligate interfaces 

are predicted with 76% accuracy.  

 A comparative study of learning methods for PPI prediction is in introduced in another 

report [23]. A method called “Mixture-of-Feature-Effects” (MFE) is used in order to 

predict interactions. In this method, the features of yeast are grouped into four and the 

features of human are grouped into three. While representing yeast protein interactions, 162 
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features taken from 17 sources are used. For human protein interactions, 17 features found 

from 8 sources are used. Sequence similarity is a feature of both human and yeast protein 

interactions. In order to have a gold standard dataset, 2.900 yeast interactions are extracted 

from DIP and 15.000 interactions are extracted from HPRD. For training the set, a 

computational negative interaction list is created. While creating the negative set, randomly 

selected two proteins are selected as a negative interaction if that interaction does not exist 

in the verified interaction list. In order to test the performance of MFE, the results are 

compared with 4 commonly used learning methods. Those methods are Logistic 

Regression, Naïve Bayes, Support Vector Machines, and Random Forest. In most of the 

evaluation criteria, MFE performs better than the other 4 learning methods. Thus, in further 

study, this method is desired to be applied on important human proteins whose interactions 

are not identified experimentally yet.  

 Espadalar et al. (2005) present a study which uses the similarity of both structure and 

sequence patches of proteins to predict PPI [24]. The basic idea of this prediction method is 

that close homologs interact using similar patterns. Using sequence search method, 12.225 

sequences are found, 8.552 of which is also defined in DIP. In addition 132.627 

interactions are predicted by SSIP method. When structural similarity is used, 2.636 human 

proteins are found and 74.598 interactions are predicted by SSIP. HPRD interactions are 

used in order to validate the predictions but only <5% of the interactions are verified. On 

the other hand, the analysis shows that this method increases the probability of predicting a 

human protein interaction from 0.09% to 0.17%.  
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2.2 N-gram Representation of Residue Sequences 

 The protein-protein interactions should be represented with some numeric features for 

classification via SVM. In this study, protein-protein interactions are characterized by the 

sequence information of the proteins. There are several methods to describe the properties 

of the protein sequences. One of them is “conjoint triplet” method that records three 

consecutive amino acids in the protein as a unit [3].  

Conjoint triplet method can be explained best with an example. In the example given 

below, amino acids are assumed to be clustered into 7 groups based on their common 

properties. The first line lists the amino acids and the second line lists the groups of the 

amino acids on the first line. The last line shows the triplets resulting from the sample 

sequence. 

 

Amino Acids: Ala  Leu  Tyr  His  Met  Asp  Cys  Glu 

          Groups:      1         5         3      4         3       2       7      6 

  

     

           Triplets:      1-5-3,  5-3-4,  3-4-3,  4-3-2,  3-2-7,  2-7-6 

 

In this method, every triplet in the sequence is found. Triplets are found by sliding the 

window containing three residues one residue at each step. When a triplet is recorded, the 

second amino acid of that triplet is taken as the first amino acid of the next triplet. Thus, 

each time the first amino acid of the triplets is shifted to the right by one. That means, the 

triplets are composed of the amino acids with indexes 1-3 in the first triplet; 2-4 in the 

second triplet; 3-5 in the third triplet; k-(k+2) in the kth triplet where k is the index of the 

amino acid in protein sequence. In this way, m-2 triplets are created where m is the number 

of amino acids in the protein sequence.  
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Conjoint amino acids technique might generate different number of possible 

combinations based on the number of amino acids groups. For instance, if triplets are 

created according to 7-group clustering, the number of possible combinations is 7*7*7 = 

343, where there are 8*8*8 = 512 combinations for 8-group clustering. That is because 

each group might be represented on each slot of a triplet. In brief, the number of possible 

combinations can be generalized in this way: if n is the number of amino acid groups, the 

number of possible combinations is n3. Notice that n3 is only an upper bound on the number 

of possible combinations and that many triplets might not exist in each sequence.  

When classifying protein-protein interactions via SVM, each protein is represented by a 

frequency vector that is created based on the conjoint amino acids. Triplets might generate 

at most n3 possible combinations and all these combinations are elements of a vector of size 

n3 where each element is initially set to 0. For each triplet in residue sequence, the element 

of the vector corresponding to that triplet is incremented by one. When all the triplets in the 

whole sequence are recorded, each element in the vector has a value between 0 and m-2. 

The sum of all triplet frequencies in the vector will be m-2, since there are m-2 triplets in 

the protein sequences. But in this way, the frequencies will be high for proteins with long 

sequence and low for proteins with short sequence. In order to have vectors of same scale 

while classifying interactions, the frequencies of amino acids are normalized. Assume the 

case when there are n3 triplets and the frequencies of those triplets are represented by fi, 

where i stands for the index of the triplet. The normalized values of triplets, represented by 

di, is found by decrementing the minimum f value from current f value and then dividing 

by the maximum f value in the vector. That normalizes the frequencies in range 0 and 1 and 

makes two proteins of different sequence lengths comparable [3]. The formula of 

normalization is: 

   di = (fi - min {f1, f2, . . .. . ., fn^3}) / max {f1, f2, . . .. . ., f n^3}    (2.1) 
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 When classifying an interaction, the normalized vectors of conjoint amino acids are 

generated for both proteins. As a result, there are two vectors of length n3. In addition, the 

type of the interaction, either positive or negative, is added to the end of those vectors as a 

separate element. Thus, the feature vector size of a protein-protein interaction is 2*n3+1 for 

triplets where n is the number of amino acid groups. The calculation of feature vectors of 

different lengths is given below for a residue sequence of length m and amino acid 

categorization of group count n: 

Singlets: Singlets are computed by adding up the frequency of each amino acid. There 

are normalized vectors of length n. Thus, the size of the feature vector is; 

2*n+1                               (2.2) 

Since the amino acids are taken one by one, the sum of frequencies would be m. 

Doublets: While calculating doublet frequencies, the same approach used in triplet 

calculation is followed. The only difference is doublets are created from two consecutive 

amino acids where triplets created from three. As a result, the size of the feature vector 

turns out to be; 

2*n2+1                               (2.3) 

The first doublet is generated from the amino acids at indexes 1-2 and the last doublet is 

generated from the amino acids at indexes (m-1)-m. Thus, the sum of doublet frequencies 

is m-1. 

Triplets: The calculation of triplets is explained above with examples. Each time 

consecutive three amino acids are taken. Thus, the size of the feature vector is;  

2*n3+1                              (2.4) 

The first triplet is created from the first three amino acids (indexes 1-3) and the last triplet 

is created from the last three amino acids (indexes (m-2)-m). As a result, the sum of triplet 

frequencies is m-2. 
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Quadruplets: Quadruplets record consecutive four amino acids as a unit. There are n 

possibilities for each amino acid slot in and there are four amino acids in each quadruplet. 

That results in a feature vector of size; 

2*n4+1                     (2.5) 

The quadruplets start from the amino acids at indexes 1-4 and end with the amino acids at 

indexes (m-3)-m. Thus, there are m-3 quadruplets in total. 

 

2.3 Amino Acid Categorization Techniques 

In this study, 20 natural amino acids are used and the rest of the amino acids are labeled 

as “Unknown”. So, there are 21 amino acid types to be used in classification. If those 

amino acids are recorded as triplets for SVM classification, a vector space of dimension 

2*213+1=18.523 is generated according to Equation (2.4). This large dimension creates 

sparse graph which is hard to classify. In order to reduce the size of the vectors generated, 

three amino acid categorization methods from literature are used. Those methods cluster 

amino acids based on their chemical and physical properties. The methods, which are used 

during this study, are given below.  

2.3.1 Shen Categorization:  

This categorization groups amino acids into 7 based on their dipoles and side chain 

volumes [3]. The groups of amino acids are shown in below in Table 2.1.  

  

Table 2.1 Shen Categorization 

a Dipole scale (Debye): -, Dipole<1.0; +, 1.0<Dipole<2.0; ++, 2.0<Dipole<3.0; ++, Dipole>3.0; +'+'+', 
Dipole>3.0 with opposite orientation. 

b Volume scale (Å3): -, Volume<50; +, Volume> 50. 

c Cys is separated from class 3 because of its ability to form disulfide bonds. 
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Group # Dipole scalea Volume scaleb Amino Acids 

1 - - ALA, GLY, VAL 

2 - + ILE, LEU, PHE, PRO 

3 + + TYR, MET, THR, SER 

4 ++ + HIS, ASN, GLN, TPR 

5 +++ + ARG, LYS 

6 +'+'+' + ASP, GLU 

7 + c + CYS 

 

2.3.2 Sandberg Categorization:  

In this categorization, amino acids are represented by their 26 physicochemical 

descriptor variables. These 26 variables are composed of experimentally verified properties 

(i.e. nuclear magnetic resonance) and basic properties of amino acids (i.e. molecular 

weight) [25]. Unlike Shen Categorization, “z-scales” are given for amino acids instead of 

group ids. In order to have comparable classes with Shen Categorization, the amino acids 

are clustered into 7 for each z-scale based on the z-scale values. Initially, the minimum and 

maximum z-scale values are found in order to group the amino acids. The difference of 

these values gives the overall range of z-scales. Then, z-scale interval for each group is 

found by dividing the difference value by the number of groups desired. For instance, for z1 

scale the minimum scale is -4.36 and maximum scale is 3.98 when the 20 natural amino 

acids are considered. So, the range of z-scale is 3.98 - (-4.36) = 8.34. If 10 groups will be 

created, the interval of groups will be 8.34 / 10 = 0.834. Thus, the amino acids with z-scale 

between -4.36 and (-4.36+0.834) are in the first group, the ones with z-scale between (-

4.36+0.834) and (-4.36+2*0.834) are in the second group and so on. In order to assign a 

group to unnatural amino acids, the average of natural amino acid z-scales is used. The 

average is found by adding z-scales of the 20 natural amino acids and then dividing the 

sum by 20. The group that the average value falls in is the group of the unnatural amino 
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acids. The 5 different z-scales are explained below and the categorization of amino acids 

based on these scales is given in Table 2.2.  

I. z1 scale is a descriptor of lipophilicity. The scales range between -4.36 and 3.98.  

Lipophilic amino acids have large negative values where polar and hydrophilic 

amino acids have large positive values [25]. 

II. z2 scale describes molecular weight and surface area of amino acids. Negative z2 

corresponds to amino acids with low molecular weight and small surface area [25]. 

III. z3 is the descriptor of polarity. 

IV. z4 and z5 scales are created according to electro negativity, heat of formation, 

electrophilicity, hardness, and NMR. 

 

Table 2.2 Categorization of Amino Acids based on z-scales 
 

 z-scale categorization 

Group # z1 z2 z3 z4 z5 

1 PHE, ILE, LEU, 
TRP GLY LYS, ARG GLU, ASP CYS 

2 MET, VAL, TYR ALA, ARG, THR, 
VAL 

ILE, LEU, GLN, 
VAL 

ASN, GLN, SER, 
THR TRP, TYR 

3 PRO CYS, ILE, LEU, 
SER THR ALA, GLY, ILE, 

LEU, VAL MET 

4 ALA, UNK GLU, MET, GLN, 
PRO, UNK 

ALA, GLU, GLY, 
HIS, MET, UNK, 

TRP, TYR 

CYS, PHE, PRO, 
UNK, TYR 

GLU, GLY, 
PHE, ARG, 

UNK, THR, VAL

5 CYS, THR ASP, LYS, ASN PHE, ASN, SER LYS ILE, HIS, LYS, 
GLN, SER 

6 GLY, HIS, LYS, 
GLN, SER PHE, HIS, TYR ASP, PRO MET, ARG ALA, ASP, LEU

7 GLU, ASP, ASN, 
ARG TRP CYS HIS, TRP ASN, PRO 
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2.3.3 Murphy Categorization: 

This categorization is made based on the physiochemical properties of amino acids. The 

categorization is made in 5 steps. The number of categories generated is 15, 10, 8, 4, and 2 

[26].  During this study two of them are used: 

2.3.3.1 8-Group Categorization 

Previously given two categorizations use 7 groups. So, in order to have a similar size 

feature vector, 8 group clustering is used while creating triplet frequencies. These 8 groups 

are found by detecting structural homology using sequence alignments [26]. The amino 

acids and their groups are below given in Table 2.3. 

 

Table 2.3 Murphy 8-group Amino Acid Categorization 
 

Group # Amino Acids 

1 LEU, VAL, ILE, MET, CYS 

2 ALA, GLY 

3 SER, THR 

4 PRO 

5 PHE, TYR, TRP 

6 GLU, ASP, ASN, GLN 

7 LYS, ARG 

8 HIS 

 
 

2.3.3.2 2-Group Categorization: 

While creating quadruplet frequencies, if clustering into 7 or 8 were used, the size of 

the feature vector would have been very large (2*74+1 = 4803). Thus, in order to reduce the 

size of the feature vector, grouping into 2 is used that is introduced as the most basic 
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clustering [26]. In this method, amino acids are separated as hydrophobic/small and 

hydrophilic. The list of amino acids in these groups is given in Table 2.4. 

 

Table 2.4 Murphy 2-group Amino Acid Categorization 
 

Group Amino Acids 

Hyrophobic/Small LEU, VAL, ILE, MET, CYS, ALA, GLY, SER, THR, PRO, PHE, TYR, TRP 

Hyrophilic GLU, ASP, ASN, GLN, LYS, ARG, HIS 

 
 

2.4 A Machine Learning Tool: WEKA 

WEKA (Waikato Environment for Knowledge Analysis) is the software implemented at 

University of Waikato in New Zealand. It contains libraries for machine learning and data 

mining algorithms. The libraries are developed in Java in order to enable platform 

independent usage [27].  WEKA provides packages for association, attribute selection, 

classification, clustering, etc. In this study, the learning scheme part, which contains 

classification methods, is mostly used. There are several classification methods given in 

learning scheme part such us Naïve Bayes, Decision Table, SMO, j48, and Linear 

Regression.  SMO implements “Sequential Minimal Optimization” algorithms for SVM, 

which are introduced as a tool for binary classification problems [27, 28]. Currently there 

are many studies for extending classification to multiclasses [29]. In SVM, each input 

instance is represented in a high dimensional space nonlinearly using the selected features 

[30]. Then, the best surface is created that separates the two groups in classification 

problem, which is called optimal hyperplane [31]. Separation via optimal hyperplane is 

simple when the number of dimensions is few. The classification is harder for non-

separable data in high dimensions. In order to classify instances successfully, Radial Basis 

Function kernels (RBF) that handles nonlinear polynomials can be used [32]. While using 

RBF, selection of parameters can improve the performance of classification [33]. A 
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common technique is to make adjustments on the γ (gamma) parameter that determines the 

RBF width [34]. For instance, in the study of Shen et al. (2007), the best results are reached 

when γ parameter is set to 0.25. Due to its high performance, SMO will be used throughout 

this study. 

 

2.5 Protein Interaction Databases 

Several experimental techniques are used for identification of protein interactions in 

different organisms. The PPI found via those techniques are deposited in many different 

biological interaction databases. In this study, six different databases are used, which are 

commonly cited in literature. Descriptions of these databases are given below. 

2.5.1 Human Protein Reference Database (HPRD) 

HPRD contains the interactions of health and disease related human proteins. 

Nonredundant human proteins taken out from hundred thousands of articles gives 

information about experimental PPI, posttranslational modifications, enzyme/substrate 

relationships, disease associations, tissue expression, and subcellular localizations  [35, 36].  

2.5.2 Database of Interacting Proteins (DIP)   

DIP provides experimentally verified protein-protein interactions of various organisms.  

The goal of DIP database is to merge the result of more than 20 experimental techniques. 

The protein interaction networks are also given in the database [37, 38]. 

2.5.3 Munich Information Center for Protein Sequences (MIPS)  

MIPS contains a combined set of interactions of several organisms such as mammals, 

fungi, plants and microorganisms. Separate interaction lists for each organism is also 
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provided in the database. In addition, MIPS presents a functional classification of proteins 

used in the database. All the interactions listed in the database are experimental [39, 40]. 

2.5.4 Biomolecular Interaction Network Database (BIND)  

BIND contains interaction, molecular pathways, and pathway descriptions. BIND 

provides the experimental interactions that belong to various organisms. The interacting 

molecules might be proteins, nucleic acids, or small molecules. It is a useful database for 

learning protein interaction networks [41, 42].  

2.5.5 Yeast Proteome Database (YPD)  

YPD contains experimental protein-protein interactions taken from scientific resources. 

In addition to the interaction information of proteins, YPD gives biochemical function, 

localization, regulation, domain, and motif information. The proteins given in YPD belong 

to yeast organism [43, 44]. 

2.5.6 Interface Dataset  

This dataset contains a list of interactions of proteins whose structural data are known. 

That means the binding sites of interacting proteins are identified. The interaction list is 

derived from PDB [45]. There are 49.000 interactions in the dataset. 17.210 of those 

interactions are classified as biological interactions and 10.545 are classified as crystal 

interactions [46]. 

 

2.6 Negative Dataset Creation Techniques 

There are many experimental interaction sets are available but the difficulty appears at 

selection of negative dataset because a set of experimental non-interacting proteins does 

not exist [5]. Since verified negative set is not available, a gold standard negative set can be 
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used instead in order to get a high precision of classification via SVM [47]. There are many 

studies in which computational negative sets are used. But even though those negative sets 

lead to high accuracy in classification, they have some drawbacks. Four of these methods, 

Jansen, Benhur, Shen, and Gough are given below. 

2.6.1 Jansen Method: 

This is one of the most common techniques used for creating negative interactions. In 

this method,  interactions are created from proteins that have different subcellular locations 

[47]. While using this approach, first the locations of the proteins in the cell are found. 

Then, two proteins are randomly selected and if the selected proteins are from different 

locations in the cell, they are recorded as a negative interaction. For instance; a protein 

from nucleus and a protein from mitochondria is a sample negative interaction. But this is a 

biased approach since location constraint is applied on the interactions [6]. 

2.6.2 Benhur Method:  

This approach is based on selecting random non-interacting protein pairs [48]. In this 

method, if randomly selected two proteins do not exist in positive interaction set, they are 

taken as a negative interaction. In another study, where a similar approach is used, it is 

claimed that only 1 of 600 possible yeast interactions is an actual interaction [23]. The ratio 

of real interactions to possible interactions is lower while using human proteins: only 1 of 

several thousands. The drawback of this approach is that since the protein-protein 

interaction networks are not complete, the protein pairs that are taken as negative 

interaction indeed might be interacting but has not been discovered yet [6].  

2.6.3 Shen Method:  

The third technique is used by Shen et al. (2007) and the main idea is to get the 

complement of positive interactions. In this method, two positive interactions are taken 
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randomly and the cross list of the proteins in these interactions are taken as possible 

negative interactions. Then, if those possible negative interactions do not exist in the 

positive list, they are recorded as negative interactions. For instance, if AB and CD are 

positive interactions; AC, AD, BC, and BD are taken as negative interactions if they do not 

appear in positive set. The drawback is; the created interactions might be interacting in real. 

This method and its drawback are similar to Benhur method in a sense.  

2.6.4 Gough Method 

The last method for creating a negative list is introduced by Bock et al. (2001) [14]. In 

this method, random residue sequences are taken from DIP database and negative 

interactions are created by conserving the amino acid composition and n-gram frequencies 

of residue sequences. Random residue sequences are created via Shufflet method [49]. This 

method is different from the previous ones since artificial protein sequences are used. 

 

2.7 Performance Evaluation of SVM Classification 

The result of classification done by SVM is given using a few classification terms. 

Those classification terms are;  

True Positive (TP): the interaction is positive and classified as positive. 

True Negative (TN): the interaction is negative and classified as negative. 

False Positive (FP): the interaction is negative but classified as positive. 

False Negative (FN): the interaction is positive but classified as negative. 

These terms are also summarized in Table 2.5. 

 When all the interactions are classified using the terms given in the table, the success of 

the classification is given using some statistical measures whose definitions are given 

below. Those terms are accuracy, precision, sensitivity, and f-measure. 
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Table 2.5 Classification Terms 
 

Condition Given 
 

TRUE FALSE 

Positive True Positive (TP) False Positive (FP) 
Test Outcome 

Negative False Negative (FN) True Negative (TN) 

 

 

          
FNTNFPTP

TNTP  
+++

+
=Accuracy                (2.6) 

  

FPTP
TP  Pr
+

=ecisionPositive                (2.7) 
 

FNTN
TN  Pr 
+

=ecisionNegative                 (2.8) 
 

FNTP
TP   
+

=ySensitivitPositive           (2.9) 
 

FPTN
TN   
+

=ySensitivitNegative                 (2.10) 
 

FNFPTP*2
TP*2  

++
=−MeasureF                 (2.11) 

 

Where positive precision represents the ratio of the number of correctly classified positive 

interactions to the number of all interactions classified as positive interaction; negative 

precision is the ratio of the number of correctly classified negative interactions to the 

number of all interactions classifies as negative interaction; positive sensitivity is the 

proportion of number of correctly classified positive interactions to the all positive 

interactions and finally, negative sensitivity is the ratio of the number of correctly classified 

negative interactions to the number of all negative interactions. Here, F-Measure checks 

the balance between positive precision and positive sensitivity. 



 
 
 
 

 

 

Chapter 3 
 

ASSESSMENT of DATASETS 
 

Currently, there are several experimental methods for discovering PPI such as yeast 

two-hybrid and mass spectrometry. These techniques are time and resource demanding.  

Therefore, the complete protein interaction network has not been formed yet [2]. 

Computational PPI prediction methods have been developed in order to use the predictions 

in studies where the verified interactions are not sufficient. While making predictions, 

firstly SVM, a machine learning algorithm, is applied on positive and negative interaction 

sets. Then, the interaction pattern learned from the training sets is used to make PPI 

predictions. The main focus of this chapter is to find the features that make SVM perform 

the best in terms of accuracy, by critical assessment of datasets selected from literature. 

Then, these features will be used to create combined datasets that predict interactions in 

every dataset accurately.  

Section 3.1 introduces the ten datasets that are used for assessment in this study. For 

each dataset, the database, from which the positive interactions are taken, is given. 

Following that, the methods that are used while creating negative interactions and the total 

number of interactions are given. 

The assessment of the ten datasets is made in Section 3.2. The features affecting the 

SVM performance are analyzed in detail. Several n-gram analyses, amino acid 

categorization methods, complete and partial residue sequences, datasets of different sizes, 

and a few negative set creation techniques are analyzed in order to achieve the best 
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performance in SVM. Following that, the effects of using turn around interaction lists in 

training sets, different RBF and γ parameters, and combination of n-gram frequencies are 

questioned in order to improve the performance of SVM. 

The features, which are found to be the best for SVM, are used to create models from 

each dataset. In Section 3.3, these models are used to predict the interactions in other 

datasets. By comparing the prediction scores of these models, the model that makes the 

most accurate PPI prediction is found. 

 

3.1 Datasets 

During this research, ten different datasets are used for comparison of SVM 

performances. The six verified interaction databases, which are previously introduced, are 

the source of positive interaction sets in these datasets. A dataset might contain verified 

interactions taken from one or more of those databases. On the other hand, the negative 

interactions in the datasets are obtained via computational methods. The datasets are 

composed as following: 

 

1. Shen Dataset: The positive interactions of Shen dataset are extracted from HPRD 

version 2005_0913 [3, 35]. It contains 16.443 nonredundant experimental 

interactions in the positive set. The negative set also contains 16.443 interactions 

which are created computationally via Shen method. 

 

2. Jansen Dataset: The Jansen dataset uses the positive interactions taken from MIPS 

database published in 2002 [50, 51]. The negative interactions are created 

computationally using the Jansen method. The positive set contains 8.617 

interactions where as negative set contains 2.705.844 interactions. That many 

negative interactions are created in order to have a nonbiased interaction set. 
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3. Peri Dataset: Peri dataset contains positive interactions extracted from HPRD 

version 2007_0901 [35]. There are 37.107 interactions in the positive set. The 

negative interactions of Jansen dataset are used also in this dataset since no negative 

interactions are provided in HPRD [51]. 

 

4. Benhur - BIND Dataset: In the positive set, there are 10.517 interactions taken 

from MIPS dataset [52]. The computational negative interactions are created using 

the Benhur method and contains 10.517 interactions [48]. 

 

5. Benhur - DIP-MIPS Dataset: This dataset contains a combined list of 

experimental interactions taken from DIP and MIPS databases [39, 53]. There are 

4.837 interactions in the positive set. The negative set is created computationally 

via Jansen method and contains 9.674 interactions [48].  

 

6. Deane Dataset: Deane dataset contains the last published experimental interaction 

set in DIP database [37]. There are 6.459 PPI in the positive set. The negative 

interactions are the ones in Jansen dataset since there are no negative interactions in 

DIP [51]. 

 

7. von Mering Dataset: The positive set of this dataset is a combination of the 

interactions taken from MIPS and YPD. There are 80.000 interactions in the 

positive set and they are listed in sorted order of confidence [1, 44, 50]. The article 

does not provide any negative interaction set. Thus, the negative Jansen dataset is 

used also in this dataset [51]. 
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8. Tuncbag Dataset: There are 17.210 interactions in Structural Interface Dataset but 

there are many redundant interactions in it [46]. So, redundancy elimination is made 

on those interactions resulting in a set of 2.607 biological nonredundant 

interactions, which are used in positive interaction list. Instead of using the crystal 

interactions, which are not proven to be non-interacting, a new computational 

negative dataset is created. This negative set is created using the proteins in positive 

set. Similar to Benhur Method, two random proteins are selected from positive 

interaction list and recorded as a negative interaction if that interaction does not 

exist in positive interaction sets of Deane and Peri Datasets. In this way, 250.000 

interactions are created and after redundancy elimination, 203.495 negative 

interactions are left.  

 

9. Combined Dataset – 2 Clusters: This dataset is a combination of some of the 

datasets given above. It is called 2 Clusters because positive set is composed using 

two datasets. Positive and negative sets of this dataset is created as following: 

a. Positive Set: In this set, half of the interactions are randomly selected from 

Shen positive set and the other half is randomly selected from the Deane 

positive set. 

b. Negative Set: As in positive set, half of the interactions are randomly 

selected from the Shen dataset. Then, the intersection set of Jansen, Benhur - 

BIND, and Benhur - DIP-MIPS negative datasets is found. The second half 

of the negative interactions is randomly selected from the intersection set. 

 

10. Combined Dataset – 4 Clusters: This dataset is a combination of all the datasets 

given above. It is labeled as 4 Clusters because the datasets are clustered into four 
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as shown in Figure 3.1 based on their average prediction scores. Positive and 

negative sets of this dataset is created as following: 

a. Positive Set: In this set, equal number of interactions is taken from each 

positive dataset cluster. If there are more than one dataset in a cluster, equal 

number of interaction is taken from each dataset in that cluster. For instance 

1/8 of the interactions are taken from Shen dataset, 1/8 from Peri dataset, 1/4 

from Jansen dataset and so on. 

b. Negative Set: As in positive set, equal number of interaction is taken from 

each cluster. For the datasets where no negative set exists, the negative set 

of the other datasets in the cluster is used. For instance, von-Mering dataset 

is single in its cluster, so the negative Jansen dataset is used for that cluster.  

 

 
Figure 3.1 Clustering of Datasets 
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Table 3.1 Datasets Used 

Name of the Dataset # of Positive Interactions # of Negative Interactions Reference 

Shen 16.443 16.443 [3] 

Jansen 8.617 2.705.844 [51] 

Peri 37.107 2.705.844 [36, 51] 

Ben-Hur, BIND 10.517 10.517 [48, 52] 

Ben-Hur, DIP-MIPS 4.837 9.674 [39, 48, 53] 

Deane 6.549 2.705.844 [37, 51] 

von Mering 80.000 2.705.844 [1, 37, 44, 50, 51] 

Tuncbag 2.607 203.495 [46] 

Combined - 2 Clusters 5.000 5.000 - 

Combined - 4 Clusters 5.000 5.000 - 

 

3.2 Features Affecting SVM Classification Performance 

 In this section, the aim is to find out the best features for SVM in order to generate a 

model from datasets that make predictions with minimum number of false positives. To 

achieve that, the effect of training sets and several key features on SVM performance is 

analyzed. In each subsection, a feature or property is studied in detail and the improvement 

on SVM performance is examined. Firstly, the best value for n in n-gram analysis is 

questioned. SVM classification is applied on several datasets and performances are 

compared. Following that, the outcome of using different amino acid categorizations is 

analyzed. The categorization that performs the best is desired to be selected for the rest of 

the study.  Another important feature is the sequences of amino acids. PDB gives the 

sequence of structurally known part of the proteins where Swiss-Prot gives the complete 

sequence. In order to understand which one works better, SVM classification is applied on 

several datasets for both sequences. Then, the effect of the dataset size on SVM 
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performance is examined. It is checked whether large or small size datasets are better 

classified. 

 Following that, new negative datasets are created via several computational methods. 

SVM is applied on positive and negative sets in order to find which computational method 

improves SVM performance the most. Then, the turn around of each interaction (i.e. B-A is 

the turn around interaction of A-B) is added to training set and the change of SVM 

performance for the new dataset is analyzed.  The output of this analysis might be useful 

for small datasets where the number of interactions is desired to be incremented. In another 

section, the outcome of combining n-gram frequencies is analyzed. It is checked if using a 

single n-gram frequency works better or worse then using the combination of n-gram 

frequencies. The last section is different from previous sections because it focuses on SVM 

rather than inputs of SVM. In that section, the performance of the SVM algorithm is tried 

to be improved by using RBF and different γ parameters. Finally, the best function and 

parameter values are presented.  

3.2.1 N-gram Frequencies 

The sequence of proteins can be represented using n-gram frequency vectors. In order 

to find the best value for n, SVM classifications are made on Shen, Jansen, Benhur – 

BIND, and Benhur – DIP-MIPS datasets. These datasets are selected for testing because 

they are taken from articles where positive and negative sets are published together. 

Table 3.2 shows the results of 5-fold cross validated SVM classification for each 

dataset. The results show that triplet and doublet frequencies are much better than singlet 

and quadruplet frequencies when amino acids are grouped via Shen Categorization. That is 

because the size of singlet frequency vectors is too small and the size of quadruplet 

frequency vectors is too large for classification. In singlet frequencies, there are 15 (2*7+1) 

elements in each vector and each interaction has very similar frequencies. So, the 

classification is very hard. In quadruplet frequencies, the frequency vector sizes are too 
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large; thus sparse vector spaces of dimension 4.803 (2*74+1) are created. Classification of 

such a large space happens to be very hard. The accuracies for each dataset are a little 

higher than 50% when quadruplet frequencies are used. This is almost the same as 

randomly classifying the interactions because random classification is expected to have 

50% accuracy in theory according to probability rules. 

 The difficult task is to make a selection between doublet and triplet frequencies. In 

Shen and Benhur – BIND datasets, triplet frequency vectors are better classified by SVM 

where in Benhur – DIP-MIPS dataset doublet frequency vectors work better. In Jansen 

dataset, triplet and doublet frequency vectors classification results are very close to each 

other. Thus, to find which one performs better, the number of interactions is increased and 

a new test is done to have a better idea about doublets and triplets.  

 

Table 3.2 SVM Results of Different N-Gram Frequency Vectors of 2000 Interactions 

Dataset Freqs Accuracy Pos. Prec. Neg. Prec. Pos. Sen. Neg. Sen. # interactions

Singlet 57,35% 0,58 0,57 0,53 0,62 2000 

Doublet 60,30% 0,61 0,60 0,58 0,63 2000 

Triplet 63,05% 0,71 0,59 0,44 0,82 2000 
Shen 

Quadruplet 54,95% 0,95 0,53 0,11 0,99 2000 

Singlet 76,00% 0,89 0,69 0,59 0,93 2000 

Doublet 81,90% 0,91 0,76 0,71 0,93 2000 

Triplet 81,35% 0,94 0,74 0,67 0,96 2000 
Jansen 

Quadruplet 56,45% 0,95 0,53 0,14 0,99 2000 

Singlet 60,75% 0,61 0,61 0,61 0,61 2000 

Doublet 62,80% 0,64 0,62 0,60 0,66 2000 

Triplet 66,85% 0,71 0,64 0,57 0,77 2000 
Benhur - BIND 

Quadruplet 52,80% 0,80 0,51 0,08 0,98 2000 

Singlet 54,70% 0,55 0,55 0,54 0,56 2000 Benhur - DIP-
MIPS 

Doublet 59,40% 0,59 0,60 0,60 0,59 2000 
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Triplet 56,45% 0,59 0,55 0,43 0,70 2000 

Quadruplet 51,20% 0,53 0,51 0,24 0,79 2000 

 
 

Table 3.3 shows that as the number of interactions increase, triplet frequency vectors 

are classified more accurately than doublet frequency vectors for all datasets except Jansen. 

In Jansen dataset, accuracies are very similar but positive precision is better when triplet 

frequency vectors are used. As positive precision increases, the number of false positives 

decreases in predictions. Thus, triplet frequency vectors can also be used in Jansen dataset. 

So, it can be concluded that triplet frequency vectors work better than other frequency 

vectors and they will be used for the rest of the analyses.  

 
Table 3.3 SVM Results of Different N-Gram Frequency Vectors of 4000 Interactions 

 
Dataset Freqs Accuracy Pos. Prec. Neg. Prec. Pos. Sen. Neg. Sen. # interactions 

Doublet 62,80% 0,63 0,62 0,61 0,65 4000 
Shen 

Triplet 65,93% 0,74 0,62 0,49 0,83 4000 

Doublet 85,03% 0,93 0,80 0,76 0,94 4000 
Jansen 

Triplet 84,30% 0,97 0,77 0,71 0,97 4000 

Doublet 64,30% 0,65 0,64 0,63 0,66 4000 
Benhur - BIND 

Triplet 68,95% 0,75 0,65 0,57 0,81 4000 

Doublet 60,70% 0,61 0,60 0,58 0,63 4000 Benhur - DIP-
MIPS Triplet 62,38% 0,66 0,60 0,50 0,74 4000 

 

3.2.2 Amino Acid Categorization 

During this study, 21 types of amino acids are used in classification. 20 of them are the 

natural amino acids in nature where the 21st represents the rest of the amino acids. 21 

amino acids lead to a huge vector space that is very hard and time consuming to classify 

when triplet frequencies are used (2*213+1=18.523). Thus, in order to reduce the size of 
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the vectors generated for SVM, amino acids are categorized based on their pyhsico-

chemical properties. To understand the effect of categorizing amino acids on SVM 

performances, three categorization techniques are used for testing. In addition, those three 

methods are also compared with the case where amino acids are not categorized. 

In Shen Categorization, amino acids are grouped into 7. On the other hand, the 

Sandberg Categorization does not provide any groups but instead gives z-scales [25]. 

Initially z1, z2, and z3 scales are used for testing since they are reported as the most 

informative scales [25]. For these three z-scales, categorization of amino acids into 5, 7, 

and 10 are tested in order to find the best grouping performance. Amino acids are grouped 

into 5 and 10 in the same way they are grouped into 7. Table 3.4 gives the results of SVM 

classification for z1, z2, and z3 scales for groups of 5, 7, and 10 for randomly selected 1.000 

positive and 1.000 negative interactions from Shen Dataset. The results show that grouping 

into 7 works better than grouping into 5 and 10 in all z-scales used. The performance of 

using 5 groups is worse than 7 groups but better than 10 groups. In addition, z3 scale has 

the best performance and z1 scale is as successful as the z3 scale. 

 

Table 3.4 SVM Classification Results of z1, z2, and z3 scales according to groups of 
size 5, 7, and 10 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

5 62,15% 0,62 0,62 0,64 0,61 2000 

7 63,85% 0,61 0,68 0,75 0,53 2000 z1 

10 59,50% 0,64 0,57 0,44 0,75 2000 

5 61,05% 0,61 0,61 0,61 0,61 2000 

7 62,90% 0,62 0,65 0,69 0,57 2000 z2 

10 56,15% 0,57 0,55 0,49 0,64 2000 

5 60,60% 0,61 0,61 0,60 0,61 2000 

7 63,90% 0,64 0,64 0,64 0,64 2000 

Shen 

z3 

10 60,20% 0,69 0,57 0,37 0,84 2000 
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In order to improve SVM performance, frequency vectors of these three z-scales are 

united for testing. In this test, the frequency vector of each z-scale is computed and added 

one after another, resulting in a vector of size 3*(2n3+1), where n is the number of amino 

acid groups. The union of frequency vectors is tested via SVM for grouping into 5 and 7. 

This test is not done for grouping into 10 because of its poor performance in the previous 

test. Table 3.5 summarizes the results of united z-scale vectors. In order to make results 

comparable with the previous test, the interaction lists in previous test are used. The table 

shows that uniting the z-scale vectors is not an efficient method because in 5 group case, 

the performance of united vectors is almost the same as the individual performance of z1 

scale vector. In addition, in 7 group case, the performance of combined list is much worse 

than the individual scores of z-scales. This might be due to the large size of the frequency 

vectors generated by uniting the three separate vectors (3*(2*73+1) = 2059). 

  

Table 3.5 SVM Classification Results of Union of 5 and 7 groups of Z-Scales 
 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. Pos. Sen. Neg. 

Sen. # interactions

5 62,80% 0,61 0,66 0,73 0,53 2000 
Shen z1-z2-z3 

7 55,05% 0,53 0,76 0,95 0,15 2000 

 

The analyses that are done so far show the effect of z-scale categorization on SVM 

performance. In another study, frequency vectors are created for interactions where amino 

acids are not categorized into groups. Then, the same interaction lists are used to create 

frequency vectors based on Sandberg and Shen categorizations. Table 3.6 makes a 

comparison of these vectors based on SVM performances. The results show that grouping 

works better than the case where no categorization is applied. That is because when amino 

acids are not grouped, the vector space gets too large (2*213+1 = 18.523), which is hard to 

classify for SVM. When categorization scores are compared, it can be concluded that z4 

performs the best, and z5 performs the worst. 
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Table 3.6 SVM Classification Results of Shen Dataset for Shen and Sandberg 
Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

None 21 62,55% 0,63 0,62 0,61 0,65 2000 

Shen 7 63,05% 0,71 0,59 0,44 0,82 2000 

z1 7 63,85% 0,61 0,68 0,75 0,53 2000 

z2 7 62,90% 0,62 0,65 0,69 0,57 2000 

z3 7 63,90% 0,64 0,64 0,64 0,64 2000 

z4 7 64,65% 0,68 0,63 0,56 0,73 2000 

Shen 

z5 7 62,85% 0,62 0,64 0,68 0,58 2000 

 

The tests on Shen and Sandberg categorizations are also done for Tuncbag Dataset in 

order to find the training set that eliminates false positive interactions the most. The tests 

are applied on randomly selected 1.000 positive and 1.000 negative nonredundant 

interactions. The results of those tests are presented in Table 3.7. Unlike the case in Shen 

Dataset, z5 performs the best in Tuncbag Dataset. Two more tests are applied on Tuncbag 

Dataset. In the first test, a binary classification of amino acids is obtained using the first 

three z-scales. The binary classification is done as following: The average score for each z-

scale is computed and the amino acids above the average are labeled as 1, the ones below 

the average are labeled as 0. When these labels are found for each amino acid based on 

three z-scales, each amino acid had 3 labels that might generate 8 (2*2*2) different groups 

since there are two possibilities for each z-scale. The group numbers are computed just like 

binary number computation. For instance, if an amino acid is labeled as 1, 0, 1 in z1, z2, z3 

respectively, it is recorded in group 5 (1*22 + 0*21 + 1*20 = 5). The result of this 

classification is also given in Table 3.7 and it performs much worse than individual z-

scales.  

The tests given in Table 3.5 show that union of the z-scale vectors do not improve 

performance. Thus, in the second test, instead of uniting z-scale vectors, a z-scale is 
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combined with the Shen Categorization. In this test, z3 is used because it is the most 

successful one in Table 3.4. The result of this test is also given in Table 3.7. This is the 

worst score for Tuncbag dataset when compared to other tests in the table. Consequently, 

union of the categorizations or applying binary categorization does not help to improve 

SVM classification accuracy. 

 

Table 3.7 SVM Classification Results of Tuncbag Dataset for Shen and Sandberg 
Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

Shen 7 67,65% 0,76 0,63 0,52 0,84 2000 

z1 7 65,20% 0,76 0,61 0,45 0,86 2000 

z2 7 68,20% 0,77 0,64 0,51 0,85 2000 

z3 7 72,60% 0,80 0,68 0,61 0,85 2000 

z4 7 71,90% 0,75 0,70 0,66 0,77 2000 

z5 7 74,60% 0,78 0,72 0,68 0,81 2000 

z1-z2-z3 binary 8 (7) 62,60% 0,73 0,59 0,40 0,85 2000 

Tuncbag 

Shen-z3 7 60,35% 0,76 0,56 0,31 0,90 2000 

 

The comparison of Sandberg and Shen Categorization for other datasets is given in 

Table 3.8 to Table 3.14: 

Table 3.8 summarizes the SVM results for Jansen Dataset. In this dataset, z4 performs 

the best where z3 and Shen categorizations also perform well. In addition, the performance 

of each categorization is better in Jansen dataset than the performances in Shen and 

Tuncbag datasets. 
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Table 3.8 SVM Classification Results of Jansen Dataset for Shen and Sandberg 
Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

Shen 7 81,35% 0,94 0,74 0,67 0,96 2000 

z1 7 76,15% 0,73 0,80 0,83 0,69 2000 

z2 7 78,10% 0,94 0,71 0,60 0,96 2000 

z3 7 81,75% 0,91 0,76 0,71 0,93 2000 

z4 7 83,60% 0,89 0,80 0,77 0,90 2000 

Jansen 

z5 7 80,45% 0,90 0,75 0,69 0,92 2000 

 
 

In Table 3.9, classification of randomly selected 1.000 interactions from Peri Dataset is 

presented. Similar to Jansen Dataset, the accuracy values are higher than Shen and Tuncbag 

datasets. On the other hand, in contrast to Jansen dataset, Shen categorization performs the 

worst. When z-scales are compared, z2 performs the best. 

 

Table 3.9 SVM Classification Results of Peri Dataset for Shen and Sandberg 
Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

Shen 7 76,60% 0,87 0,71 0,63 0,91 2000 

z1 7 81,50% 0,78 0,87 0,89 0,75 2000 

z2 7 83,85% 0,96 0,77 0,70 0,97 2000 

z3 7 82,00% 0,92 0,76 0,70 0,94 2000 

z4 7 82,75% 0,91 0,77 0,73 0,93 2000 

Peri 

z5 7 82,95% 0,88 0,79 0,76 0,90 2000 

 

Classification of Benhur – BIND dataset is given in Table 3.10 and the results are not 

similar to previous datasets. Shen categorization performs the best and z4 performs as well 
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as that. Overall accuracy values are not as high as Peri dataset but nearly the same as the 

accuracy values of Shen dataset.   

 

Table 3.10 SVM Classification Results of Benhur - BIND Dataset for Shen and Sandberg 
Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

Shen 7 66,85% 0,71 0,64 0,57 0,77 2000 

z1 7 64,80% 0,69 0,62 0,54 0,75 2000 

z2 7 65,45% 0,72 0,62 0,50 0,81 2000 

z3 7 63,50% 0,66 0,62 0,55 0,72 2000 

z4 7 66,30% 0,70 0,64 0,57 0,76 2000 

Benhur - 
BIND 

z5 7 65,65% 0,69 0,63 0,57 0,74 2000 

 

 When randomly selected 1.000 interactions from Benhur – DIP-MIPS dataset are 

classified via Shen and Sandberg categorizations, the worst accuracies are achieved when 

compared to other datasets. z1 and z4 performs the best and z5 performs as well as those 

two. Similar to the case in Peri dataset, Shen categorization performs the worst. The results 

are given in Table 3.11. 

 

Table 3.11 SVM Classification Results of Benhur – DIP-MIPS Dataset for Shen and 
Sandberg Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

Shen 7 56,45% 0,59 0,55 0,43 0,70 2000 

z1 7 59,75% 0,61 0,59 0,53 0,67 2000 

z2 7 58,60% 0,62 0,57 0,46 0,72 2000 

z3 7 57,50% 0,59 0,57 0,50 0,65 2000 

z4 7 59,75% 0,62 0,58 0,50 0,69 2000 

Benhur - 
DIP-
MIPS 

z5 7 59,45% 0,61 0,58 0,51 0,68 2000 
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 In Deane dataset, similar to Peri and Benhur – DIP-MIPS datasets, Shen Categorization 

performs the worst. z4 and z5 performs the best and z3 also has a high accuracy. The results 

for Deane Dataset are given in Table 3.12. 

 

Table 3.12 SVM Classification Results of Deane Dataset for Shen and Sandberg 
Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

Shen 7 66,10% 0,73 0,62 0,51 0,82 2000 

z1 7 67,05% 0,71 0,64 0,58 0,76 2000 

z2 7 67,15% 0,73 0,64 0,54 0,80 2000 

z3 7 68,50% 0,75 0,65 0,56 0,81 2000 

z4 7 69,00% 0,73 0,66 0,60 0,78 2000 

Deane 

z5 7 69,00% 0,73 0,66 0,60 0,78 2000 

 

Performance of categorizations in von Mering dataset is similar to Deane Dataset. z3 

performs the best and Shen, z1 and z2 Categorizations have poor accuracy values. The 

interesting point in this dataset is the similar positive precisions, which are given in Table 

3.13.  

 

Table 3.13 SVM Classification Results of von Mering Dataset for Shen and Sandberg 
Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

Shen 7 65,20% 0,72 0,62 0,50 0,81 2000 

z1 7 65,85% 0,73 0,62 0,50 0,82 2000 

z2 7 65,70% 0,72 0,62 0,51 0,81 2000 

z3 7 68,45% 0,74 0,65 0,57 0,80 2000 

z4 7 67,60% 0,73 0,64 0,57 0,79 2000 

von 
Mering 

z5 7 66,80% 0,72 0,64 0,55 0,79 2000 
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 Table 3.14 summarizes the SVM results for Combined Dataset – 2 Clusters. This 

dataset has high accuracies when compared to Benhur – BIND and Benhur – DIP-MIPS 

datasets. Different from the previous datasets, z1 performs better than other categorizations. 

Z2 performs as well as z1, where Shen Categorization has the worst performance.  

 

 Table 3.14 SVM Classification Results of Combined Dataset – 2 Clusters for Shen and 
Sandberg Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions

Shen 7 69,85% 0,82 0,64 0,51 0,88 2000 

z1 7 74,45% 0,73 0,76 0,78 0,71 2000 

z2 7 74,00% 0,87 0,68 0,56 0,92 2000 

z3 7 71,20% 0,84 0,65 0,52 0,90 2000 

z4 7 70,70% 0,80 0,66 0,55 0,86 2000 

Combined 
Set – 2 
Clusters 

z5 7 72,85% 0,79 0,69 0,63 0,83 2000 

 

When the accuracies for nine datasets are compared, it can be concluded that there is no 

best categorization. Shen categorization performs the best in Benhur – BIND dataset but 

performs the worst in Benhur – DIP-MIPS dataset. In general, one of the z-scales performs 

the best but the type of the best z-scale is dependent on the dataset used.  

At the end of this section, Murphy categorization is applied on datasets in order to 

understand the effect of categorization by comparing the results with the case where no 

categorization is applied. For this test, the datasets used for Table 3.2 are used. The 

classification accuracy values of the datasets are given in Table 3.15. The table shows that 

Shen or Murphy categorizations always perform better than uncategorized amino acids in 

every dataset. Besides, the size of frequency vectors generated for uncategorized amino 

acids is huge (2*213+1). That causes SVM to take too much time to train data when 

compared to categorized cases. When all these results are considered, it can be concluded 

that categorizing amino acids is much better than uncategorizing. 
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Table 3.15 SVM Classification Results of 4 datasets for Shen, Murphy Categorizations and 
Uncategorized Amino Acids 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. Pos. Sen. Neg. Sen. # 

interactions 
Shen 7 63,05% 0,71 0,59 0,44 0,82 2000 

Murphy 8 65,20% 0,70 0,62 0,54 0,76 2000 Shen 

No Classes 21 62,55% 0,63 0,62 0,61 0,65 2000 

Shen 7 81,35% 0,94 0,74 0,67 0,96 2000 

Murphy 8 75,30% 0,72 0,80 0,83 0,68 2000 Jansen 

No Classes 21 78,80% 0,80 0,78 0,77 0,81 2000 

Shen 7 66,85% 0,71 0,64 0,57 0,77 2000 

Murphy 8 63,95% 0,69 0,61 0,50 0,78 2000 Benhur - 
BIND 

No Classes 21 61,10% 0,61 0,62 0,63 0,59 2000 

Shen 7 56,45% 0,59 0,55 0,43 0,70 2000 

Murphy 8 58,65% 0,61 0,57 0,47 0,71 2000 Benhur - 
DIP-MIPS 

No Classes 21 58,40% 0,59 0,58 0,54 0,63 2000 

  

 

In the two datasets given in Table 3.15 Shen Categorization performs better than 

Murphy Categorization and in the remaining the opposite works. In order to understand 

which one is better, another test is made to compare performances of Shen dataset. 

Randomly selected 5.000 positive and 5.000 negative interactions from Shen Dataset are 

classified using Shen and Murphy categorizations. The results are given in Table 3.16. The 

results show that although Murphy Categorization works better then Shen Categorization 

for a random set of 2.000 interactions, they perform almost the same when the interaction 

size gets larger. In addition, SVM classification takes less time for Shen Categorization 

since it has seven groups (frequency vector size = 2*73+1) where Murphy Categorization 

has eight groups (frequency vector size = 2*83+1). Thus, Shen Categorization is preferred 

over Murphy Categorization since its positive precision value is better and the frequency 

vector size is smaller.  



 
 
Chapter 3: Assessment of Datasets    41 
 

 
  

Table 3.16 SVM Classification Results of Shen dataset for Shen and Murphy 
Categorizations 

 
Dataset Categorization # of 

Groups Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions

Shen 7 71,64% 0,80 0,67 0,58 0,86 9971 
Shen 

Murphy 8 71,67% 0,77 0,68 0,62 0,81 9971 

 

3.2.3 Complete versus Partial Residue Sequences 

The interactions in Tuncbag Dataset are given with PDB ids. There are two sequence 

choices for those proteins. The first choice is getting the residue sequences of the 

structurally known part of the proteins, which are FASTA sequences provided in PDB [45]. 

The second choice is getting the complete residue sequence of proteins that are given in 

Swiss-Prot database [54] [55]. Since sequences in PDB consist of structurally known part 

of the proteins, they are shorter than the sequences in Swiss-Prot database.  

Tuncbag Dataset is used in SVM classification in order to find which sequence is more 

distinctive. The tests are done using Shen Categorization on both randomly selected 1.000 

interactions and full list of interactions. The results are shown in Table 3.17 and indicate 

that using the complete sequence of proteins provided in Swiss-Prot database works better 

in SVM classification. It is concluded that the structurally unknown part of the proteins is 

important in classification. 

 

Table 3.17 SVM Classification Results of Tuncbag Dataset Comparing PDB and Swiss-
Prot Sequences 

 
 

Dataset Sequence Accuracy Pos. Prec. Neg. 
Prec. Pos. Sen. Neg. Sen. # 

interactions 
67,65% 0,76 0,63 0,52 0,84 2000 Tuncbag 

Swiss-Prot Sequnce 
74,05% 0,85 0,68 0,58 0,90 5214 
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63,75% 0,74 0,60 0,43 0,85 2000 
Pdb Sequence 

72,80% 0,81 0,68 0,59 0,86 5214 

 

3.2.4 Dataset Size 

The SVM classification tests made in previous sections are mostly made on randomly 

selected sets of 1.000 positive and 1.000 negative interactions. Because, the results are 

taken quickly when a small size set is used in SVM. However, all datasets have more than 

1.000 interactions and those interactions can be used in classification to improve 

performance because more interactions help SVM to learn better.  

Table 3.18 summarizes the results of SVM classification for interaction sets of different 

sizes taken from the same dataset. In this test, Shen dataset is used in order to compare the 

obtained results with the published results [3]. The first 4 interaction sets are composed of 

randomly selected interactions from Shen dataset. In all tests, 5-fold cross validation is 

used with the same parameters. The results show that as the number of interactions 

increases, the accuracy and precision values also increase. The SVM classification on full 

dataset results in 88% positive precision which is better than published average result 

which is 84.21%.   

 

Table 3.18 SVM results for test sets of different sizes from Shen Dataset 

 

Dataset Accuracy Pos. Prec. Neg. Prec. Pos. Sen. Neg. Sen. # interactions 

61,90% 0,68 0,59 0,46 0,78 1995 

66,57% 0,74 0,63 0,50 0,83 3990 

71,64% 0,80 0,67 0,58 0,86 9971 

76,30% 0,85 0,71 0,64 0,89 19944 

Shen 

79,58% 0,88 0,74 0,68 0,91 32336 
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 The results in Table 3.18 show the importance of input size for classification. It can be 

summarized that, to obtain the best SVM performance and have the best models of each 

dataset; classifications should be made using maximum number of interactions. However, 

in all datasets, the number of positive interactions is less than the number of negative 

interactions. The reason is, positive interactions are experimental and there are not many 

verified interactions. On the other hand, infinite number of negative interactions can be 

generated using different computational methods. Thus, the number of positive interactions 

is the limiting factor in training set size. 

Table 3.19 gives the results of classifications for each dataset where all interactions are 

used in SVM. The best accuracy values are achieved for Peri dataset. It is followed by 

Jansen Dataset. The worst performing dataset is Benhur – DIP-MIPS, which performs 

almost 30% worse than Peri Dataset in terms of accuracy. It can be noticed from the table 

that, the selection of training datasets is as effective as to the number of interactions in the 

datasets. For instance, von Mering Dataset performs better than Benhur – DIP-MIPS 

Dataset although its size is almost half the size of Benhur – DIP-MIPS Dataset. 

 

Table 3.19 Overall Accuracies of Datasets 
 

Dataset Accuracy Pos. Prec. Neg. Prec. Pos. Sen. Neg. Sen. # interactions 

Shen 79,58% 0,88 0,74 0,68 0,91 32336 

Jansen 88,10% 0,98 0,83 0,77 0,98 15697 

Peri 95,55% 0,99 0,93 0,93 0,99 33005 

Benhur - BIND 75,52% 0,84 0,71 0,64 0,88 19308 

Benhur - DIP-MIPS 66,20% 0,71 0,63 0,56 0,77 9581 

Deane 78,76% 0,88 0,73 0,67 0,91 12842 

von Mering 71,28% 0,77 0,67 0,61 0,81 4910 

Tuncbag 74,05% 0,85 0,68 0,58 0,90 5214 

Combined - 2 Clusters 69,75% 0,78 0,65 0,54 0,85 10000 

Combined - 4 Clusters 78,00% 0,71 0,92 0,95 0,61 10000 
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3.2.5 Negative Set Creation 

There are several negative set creation methods, two of which are Shen and Jansen 

methods. In order to analyze the effect of negative set creation method on SVM 

performance, negative sets are created using both methods for four datasets. Table 3.20 

shows the results of SVM classification using these methods. For each dataset, the results 

are given for three negative sets where the positive set is kept constant. The first result 

gives the accuracy of using original negative set given in dataset. The second one is the 

result of using Shen Method for creating negative set and the third one is the result of using 

Jansen Method. In Shen and Jansen datasets, there are two rows instead of three because in 

Shen dataset, original negative set is created using Shen method and in Jansen dataset 

original negative set is created using Jansen method. Thus, there is no need to duplicate 

result rows.  

The accuracies show that Jansen method works better than both the original negative 

sets of the datasets and the Shen method except for the Shen dataset. In Benhur - DIP-

MIPS dataset, both methods work better than the original set, which shows the weakness of 

the original negative set. In Benhur - BIND dataset, Jansen Method and original dataset 

have similar performance but better than Shen method. In Jansen and Shen datasets, 

original sets work better than new techniques applied. The precision values make Jansen 

method attractive but there are some criticisms about Jansen method, which is about 

creating a biased interaction set [6].  

 

Table 3.20 Affect of different negative set creation methods 
 

Dataset Neg. Set Creation Method Accuracy Pos. 
Prec. 

Neg. 
Prec. Pos. Sen. Neg. 

Sen. 
# 

interactions
Original Set = Shen 

Method 63,05% 0,71 0,59 0,44 0,82 2000 
Shen 

Jansen Method 61,00% 0,60 0,63 0,68 0,54 2000 

Jansen Original Set = Jansen 
Method 81,35% 0,94 0,74 0,67 0,96 2000 
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Shen Method 74,05% 0,87 0,68 0,57 0,92 2000 

Original Set 66,85% 0,71 0,64 0,57 0,77 2000 

Shen Method 63,25% 0,66 0,61 0,54 0,73 2000 Benhur - BIND 

Jansen Method 67,35% 0,65 0,70 0,74 0,61 2000 

Original Set 56,45% 0,59 0,55 0,43 0,70 2000 

Shen Method 59,30% 0,61 0,58 0,51 0,67 2000 Benhur - DIP-
MIPS 

Jansen Method 62,90% 0,62 0,63 0,65 0,61 2000 

 

3.2.6 Turn Around of Interactions  

Analysis in Section 3.2.4 proves that the increase in the number of interactions used in 

classification improves the SVM performance. The more interactions used in training set, 

the higher the accuracy. But in some datasets, there are not many experimental interactions. 

Thus, in order to have a better learning scheme for SVM, the turn around of the interactions 

can be used in classification. In databases, the interactions are given in the form A-B where 

A and B represent the protein ids. But there is no difference between saying A interacts 

with B and B interacts with A. So, that means A-B and B-A interactions are the same. As a 

consequence, number of interactions in datasets can be doubled using turn around of 

interaction lists.  

In order to test the effect of using turn around of interaction lists, classifications are 

made on the datasets used in Table 3.2. The results are given in Table 3.21. The first row 

for each dataset is the accuracy value for randomly selected 1.000 positive and 1.000 

negative interactions. The second row is the accuracy that is achieved when the turn around 

of the interactions in the first row are added to training set. That means the second row is 

the result of training 2.000 positive and 2.000 negative interactions. The table shows that 

using the same interaction set, the SVM performance can be increased when the turn 

around of the interactions are used. But the amount of performance increase in is not the 
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same in all datasets. For instance, in Benhur – DIP-MIPS dataset performance increases 4% 

where the increase is only 0.23% in Jansen dataset. These results are in parallel with the 

results given in Section 3.2.4. Unfortunately, some databases do not have as many verified 

interactions as in HPRD or DIP. Therefore, in order to get a better performance, the turn 

around of interaction lists can be used in training sets for the databases with few 

interactions.  

Table 3.21 Accuracies of Datasets for Turn Around of Interaction Lists 
 

Dataset Inter. List Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions

Org. List 63,05% 0,71 0,59 0,44 0,82 2000 
Shen 

Org. & Turn Arn. List 63,50% 0,72 0,60 0,44 0,83 4000 

Org. List 81,35% 0,94 0,74 0,67 0,96 2000 
Jansen 

Org. & Turn Arn. List 81,58% 0,94 0,75 0,67 0,96 4000 

Org. List 66,85% 0,71 0,64 0,57 0,77 2000 Benhur - 
BIND Org. & Turn Arn. List 69,08% 0,74 0,66 0,59 0,80 4000 

Org. List 56,45% 0,59 0,55 0,43 0,70 2000 Benhur - DIP-
MIPS Org. & Turn Arn. List 60,48% 0,64 0,58 0,47 0,74 4000 

 

3.2.7 Multiple Frequency Vectors 

 Instead of using only the triplet frequencies, union of several frequency vectors might 

be used to improve the SVM performance. Two tests are made in this section in order to 

analyze the effect of uniting frequency vectors on SVM performance. In the first test, the 

frequencies of amino acids without classification are united with triplet frequencies. There 

are 20 natural amino acids and the rest of amino acids are taken as the 21st amino acid. So, 

the new vector contains 42 (21*2) elements for singlets and 686 (73*2) for triplets which 

adds up to a vector of size 728 (42+686+1) where the last element classifies the interaction 

class (positive or negative). 
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In the second test, singlet, doublet, triplet, and quadruplet frequencies are united. The 

singlet frequencies are obtained as in the first test. The doublet and triplet frequencies are 

found using the Shen Categorization that creates a vector of 49 (72*2) for doublets and 686 

for triplets. For quadruplet frequencies, 2 group classification of Murphy categorization is 

used where the groups are created based on hydrophobicity. Since there are two groups, a 

vector of size 32 (24*2) is added for quadruplets. While calculating the doublet and 

quadruplet frequencies, the same method used for triplet calculation is used. The only 

difference is the number of consecutive amino acids taken each time for frequency 

calculation. In triplets, consecutive 3 amino acids are taken where 2 amino acids are taken 

in doublets and 4 amino acids in quadruplets. In total, the size of the vector used in the 

second test is 859 ((21+72+73+24)*2 = 1). 

The tests explained above are performed on the datasets that are used in previous 

sections and the results are given in Table 3.22. The results show that classification 

performance is the best when only triplet frequencies are used for all the datasets tested. 

These results are similar to the results given in Section 3.2.2.  

 

Table 3.22 Affect of using multiple frequency vectors in classification 
 

Dataset Input Vector Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions

Triplet 63,05% 0,71 0,59 0,44 0,82 2000 

Singlet-Triplet 62,25% 0,69 0,59 0,45 0,80 2000 Shen 
Singlet-Doublet-Triplet-

Quadruplet 61,45% 0,70 0,58 0,40 0,83 2000 

Triplet 81,35% 0,94 0,74 0,67 0,96 2000 

Singlet-Triplet 76,85% 0,91 0,70 0,60 0,94 2000 Jansen 
Singlet-Doublet-Triplet-

Quadruplet 76,75% 0,92 0,70 0,58 0,95 2000 

Triplet 66,85% 0,71 0,64 0,57 0,77 2000 

Singlet-Triplet 65,90% 0,70 0,63 0,55 0,77 2000 Benhur - BIND 
Singlet-Doublet-Triplet-

Quadruplet 59,15% 0,65 0,57 0,41 0,78 2000 
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Triplet 56,45% 0,59 0,55 0,43 0,70 2000 

Singlet-Triplet 55,80% 0,57 0,55 0,47 0,65 2000 Benhur - DIP-
MIPS 

Singlet-Doublet-Triplet-
Quadruplet 55,50% 0,58 0,54 0,39 0,72 2000 

 

3.2.8 RBF and γ (Gamma) Parameter 

In order to find the best γ value for SVM, a few tests are made on randomly selected 

1.000 positive and 1.000 negative interactions from Shen and Benhur - BIND datasets. In 

addition, using linear polynomial kernels instead of RBF is tested in this section. The Table 

3.23 and Table 3.24 show the accuracy and precision values for different γ parameters for 

Shen and Benhur – BIND datasets respectively. The results show that using RBF is much 

better than using linear polynomial kernels. Using γ = 0.25 with RBF instead of linear 

polynomial kernels increments classification accuracy from 56.20% to 63.05% in Shen 

dataset and from 61.45% to 66.85% in Benhur - BIND dataset. The comparison of different 

γ parameters shows that 0.25 is better than the others. For instance, using 0.25 instead of 

0.01 (default parameter for RBF in WEKA) improves accuracy from 50% to 60.05% in 

Shen dataset and from 63.45% to 66.85% in Benhur - BIND dataset. Besides, when the γ 

parameter gets closer to 1, positive sensitivity gets closer to 0 except the case where γ is 1 

in Benhur - BIND dataset. 

 

Table 3.23 Comparison of γ parameters and RBF for Shen Dataset 
 

Dataset RBF Gamma Accuracy Pos. Prec. Neg. Prec. Pos. Sen. Neg. Sen. # interactions

- - 56,20% 0,56 0,56 0,57 0,56 2000 

+ 0,01 (default) 50,00% 0,67 0,38 0,44 0,61 2000 

+ 0,25 63,05% 0,71 0,59 0,44 0,82 2000 

+ 0,4 61,20% 0,76 0,57 0,33 0,89 2000 

Shen 

+ 0,6 59,75% 0,85 0,56 0,24 0,96 2000 
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+ 0,8 59,85% 0,90 0,56 0,22 0,98 2000 

+ 1 50,00% 0,98 0,46 0,12 1,00 2000 

 

Table 3.24 Comparison of γ parameters and RBF for Benhur - BIND Dataset 
 

Dataset RBF Gamma Accuracy Pos. Prec. Neg. Prec. Pos. Sen. Neg. Sen. # interactions

- - 61,45% 0,61 0,62 0,63 0,60 2000 

+ 0,01 (default) 63,45% 0,64 0,63 0,60 0,67 2000 

+ 0,25 66,85% 0,71 0,64 0,57 0,77 2000 

+ 0,4 59,35% 0,76 0,56 0,27 0,92 2000 

+ 0,6 54,70% 0,76 0,53 0,14 0,96 2000 

+ 0,8 54,55% 0,80 0,52 0,12 0,97 2000 

Benhur - BIND 

+ 1 52,50% 0,55 0,52 0,26 0,79 2000 

 

3.3 Applying SVM Models on All Datasets 

When SVM classification is applied on a training set, it creates a model based on the 

positive and negative interactions in the training set. That model can be applied on other 

interaction sets. When a model is applied on another dataset, it categorizes the given 

interactions as positive or negative and then compares its predictions with the actual type of 

the interactions given in that dataset. Error! Reference source not found. gives the 

prediction results achieved by applying the models of each dataset on others. The first ten 

datasets given in the table are the ones introduced at the beginning. The last two datasets 

are created using the cross datasets of Combined – 2 Clusters and Combined – 4 Clusters 

datasets in order to evaluate the combination of datasets. Combined 2 Clusters Pos – 4 

Clusters Neg dataset is created using the positive set of Combined – 2 Clusters and the 

negative set of Combined – 4 Clusters. On the other hand, Combined 4 Clusters Pos – 2 

Clusters Neg dataset is created using the positive set of Combined – 4 Clusters and the 

negative set of Combined – 2 Clusters.  
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Table 3. 25 Applying dataset models on each other 
 

Model Set Test Set Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. # interactions

Jansen 51,53% 0,43 0,52 0,09 0,89 15697 

Peri 69,00% 0,82 0,63 0,50 0,89 33365 
Benhur - 

BIND 51,28% 0,54 0,51 0,19 0,83 19308 

Benhur - DIP-
MIPS 53,53% 0,59 0,52 0,25 0,83 9581 

Deane 57,14% 0,69 0,54 0,26 0,89 12842 

von Mering 51,38% 0,56 0,50 0,20 0,84 4910 

Tuncbag 62,50% 0,71 0,59 0,43 0,82 5214 
Combined - 2 

Clusters 77,85% 0,90 0,71 0,63 0,93 10000 

Combined - 4 
Clusters 58,29% 0,67 0,55 0,32 0,84 10000 

Shen 

Average 59,17% 65,70% 56,55% 31,77% 86,28%  

Shen 50,71% 0,78 0,50 0,02 0,99 32336 

Peri 49,14% 0,51 0,49 0,02 0,98 33365 
Benhur - 

BIND 51,05% 0,60 0,51 0,06 0,96 19308 

Benhur - DIP-
MIPS 58,53% 0,81 0,55 0,23 0,95 9581 

Deane 55,36% 0,88 0,53 0,12 0,98 12842 

von Mering 54,32% 0,71 0,52 0,17 0,93 4910 

Tuncbag 53,61% 0,75 0,52 0,11 0,96 5214 
Combined - 2 

Clusters 52,86% 0,87 0,51 0,07 0,99 10000 

Combined - 4 
Clusters 66,07% 0,95 0,60 0,34 0,98 10000 

Jansen 

Average 54,63% 0,76 0,53 0,13 0,97  

Shen 53,90% 0,52 0,69 0,94 0,14 32336 

Jansen 57,16% 0,91 0,55 0,10 0,99 15697 
Benhur - 

BIND 47,28% 0,40 0,48 0,11 0,84 19308 

Benhur - DIP-
MIPS 51,16% 0,56 0,50 0,13 0,89 9581 

Deane 59,32% 0,94 0,55 0,20 0,99 12842 

Peri 

von Mering 49,19% 0,50 0,49 0,19 0,81 4910 
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Tuncbag 50,44% 0,50 0,51 0,71 0,30 5214 
Combined - 2 

Clusters 56,72% 0,57 0,57 0,57 0,56 10000 

Combined - 4 
Clusters 54,04% 0,56 0,53 0,38 0,70 10000 

Average 53,24% 0,61 0,54 0,37 0,69  

Shen 51,22% 0,79 0,51 0,03 0,99 32336 

Jansen 52,72% 0,49 0,53 0,11 0,90 15697 

Peri 45,77% 0,23 0,47 0,03 0,90 33365 
Benhur - DIP-

MIPS 62,01% 0,69 0,59 0,45 0,80 9581 

Deane 62,14% 0,78 0,58 0,34 0,90 12842 

von Mering 50,31% 0,54 0,50 0,15 0,87 4910 

Tuncbag 51,98% 0,78 0,51 0,06 0,98 5214 
Combined - 2 

Clusters 56,07% 0,74 0,53 0,19 0,93 10000 

Combined - 4 
Clusters 54,24% 0,61 0,53 0,23 0,85 10000 

Benhur - BIND 

Average 54,05% 0,63 0,53 0,18 0,90  

Shen 55,02% 0,75 0,53 0,15 0,95 32336 

Jansen 57,50% 0,63 0,56 0,23 0,88 15697 

Peri 49,85% 0,53 0,49 0,14 0,87 33365 
Benhur - 

BIND 58,93% 0,70 0,56 0,32 0,86 19308 

Deane 70,72% 0,81 0,66 0,54 0,87 12842 

von Mering 57,80% 0,67 0,55 0,34 0,82 4910 

Tuncbag 57,73% 0,71 0,55 0,27 0,89 5214 
Combined - 2 

Clusters 62,35% 0,77 0,58 0,35 0,90 10000 

Combined - 4 
Clusters 59,97% 0,67 0,57 0,39 0,81 10000 

Benhur - DIP-MIPS 

Average 58,87% 0,69 0,56 0,30 0,87  

Shen 56,64% 0,63 0,54 0,32 0,81 32336 

Jansen 47,08% 0,70 0,43 0,19 0,89 15697 

Peri 59,93% 0,78 0,56 0,30 0,91 33365 
Benhur - 

BIND 57,36% 0,60 0,56 0,46 0,69 19308 

Deane 

Benhur - DIP-
MIPS 64,24% 0,63 0,66 0,71 0,57 9581 
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von Mering 58,15% 0,60 0,57 0,53 0,63 4910 

Tuncbag 58,36% 0,66 0,56 0,34 0,83 5214 
Combined - 2 

Clusters 75,12% 0,80 0,71 0,67 0,84 10000 

Combined - 4 
Clusters 64,35% 0,70 0,61 0,51 0,78 10000 

Average 60,14% 0,68 0,58 0,45 0,77  

Shen 50,55% 0,68 0,50 0,02 0,99 32336 

Jansen 55,63% 0,65 0,55 0,12 0,94 15697 

Peri 46,86% 0,22 0,48 0,02 0,94 33365 
Benhur - 

BIND 51,65% 0,62 0,51 0,09 0,95 19308 

Benhur - DIP-
MIPS 53,87% 0,64 0,52 0,20 0,89 9601 

Deane 56,54% 0,76 0,54 0,19 0,94 12842 

Tuncbag 51,42% 0,91 0,51 0,03 1,00 5214 
Combined - 2 

Clusters 52,54% 0,67 0,51 0,10 0,95 10000 

Combined - 4 
Clusters 64,89% 0,88 0,59 0,34 0,95 10000 

von Mering 

Average 53,77% 0,67 0,52 0,12 0,95  

Shen 57,43% 0,67 0,55 0,28 0,86 32336 

Jansen 49,31% 0,41 0,51 0,18 0,77 15697 

Peri 51,09% 0,54 0,50 0,26 0,77 33365 
Benhur - 

BIND 51,96% 0,53 0,51 0,31 0,73 19308 

Benhur - DIP-
MIPS 52,47% 0,54 0,52 0,36 0,69 9581 

Deane 56,50% 0,61 0,55 0,36 0,77 12842 

von Mering 52,02% 0,55 0,51 0,32 0,73 4910 
Combined - 2 

Clusters 56,05% 0,62 0,54 0,32 0,81 10000 

Combined - 4 
Clusters 54,07% 0,58 0,53 0,28 0,80 10000 

Tuncbag 

Average 53,43% 0,56 0,52 0,30 0,77  

Shen 73,75% 0,80 0,69 0,63 0,85 32336 

Jansen 55,11% 0,18 0,88 0,58 0,55 15697 

Peri 66,21% 0,80 0,61 0,45 0,88 33365 

Combined - 2 Clusters 

Benhur - 
BIND 54,09% 0,56 0,53 0,36 0,73 19308 
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Benhur - DIP-
MIPS 61,12% 0,64 0,59 0,53 0,69 9581 

Deane 80,45% 0,86 0,76 0,73 0,88 12842 

von Mering 53,89% 0,57 0,52 0,39 0,70 4910 

Tuncbag 59,30% 0,65 0,57 0,41 0,78 5214 
Combined - 4 

Clusters 60,41% 0,65 0,58 0,45 0,76 10000 

Average 62,70% 0,63 0,64 0,50 0,76  

Shen 59,87% 0,56 0,70 0,86 0,34 32336 

Jansen 56,41% 0,52 0,93 0,98 0,19 15697 

Peri 52,92% 0,52 0,56 0,85 0,19 33365 
Benhur - 

BIND 57,22% 0,55 0,64 0,82 0,32 19308 

Benhur - DIP-
MIPS 56,09% 0,54 0,65 0,87 0,25 9581 

Deane 52,55% 0,52 0,58 0,86 0,19 12842 

von Mering 56,50% 0,54 0,87 0,98 0,13 4910 

Tuncbag 53,26% 0,52 0,72 0,96 0,11 5214 
Combined - 2 

Clusters 56,42% 0,54 0,65 0,85 0,28 10000 

Combined - 4 Clusters 

Average 55,69% 0,53 0,70 0,89 0,22  

Shen 56,34% 0,53 0,97 1,00 0,13 32336 

Jansen 49,88% 0,48 0,81 0,98 0,07 15697 

Peri 53,92% 0,52 0,92 0,99 0,07 33365 
Benhur - 

BIND 52,82% 0,52 0,63 0,92 0,13 19308 

Benhur - DIP-
MIPS 54,18% 0,52 0,71 0,95 0,13 9581 

Deane 52,56% 0,51 0,81 0,98 0,07 12842 

von Mering 51,81% 0,51 0,65 0,98 0,04 4910 

Tuncbag 50,44% 0,50 1,00 1,00 0,01 5214 

Combined 2 Clusters 
Pos - 4 Clusters Neg 

Average 52,23% 0,51 0,79 0,97 0,07  

Shen 61,39% 0,86 0,57 0,27 0,96 32336 

Jansen 69,78% 0,84 0,65 0,44 0,92 15697 

Peri 55,82% 0,73 0,53 0,21 0,92 33365 

Combined 4 Clusters 
Pos - 2 Clusters Neg 

Benhur - 
BIND 57,67% 0,65 0,55 0,33 0,83 19308 
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Benhur - DIP-
MIPS 61,35% 0,67 0,59 0,46 0,76 9581 

Deane 67,45% 0,85 0,62 0,42 0,92 12842 

von Mering 70,53% 0,70 0,71 0,74 0,67 4910 

Tuncbag 58,50% 0,69 0,55 0,30 0,87 5214 

Average 63,01% 0,73 0,60 0,42 0,84  

 

The results show that the accuracies are around 60% or less for most of the datasets. On 

the other hand, the positive precision values go up to 90% and most of the times positive 

precisions are higher than the negative precisions. In the table, the number of false 

positives is very low where positive negative numbers are very high. This means the 

negative sensitivity is much better than positive sensitivity. When the average accuracy 

values are considered, it is seen that the best performance is achieved for Combined 4 

Clusters Pos – 2 Clusters Neg dataset. In addition, when the models created by similar 

datasets are applied on each other, the predictions are more accurate. For example, when 

Benhur - BIND Dataset model is applied on Deane dataset, the obtained accuracy is about 

62% and positive precision is 78%. These are the highest values obtained for Benhur - 

BIND dataset model. Both datasets contains yeast interactions and this might be the reason 

of high accuracy. In contrast, when Benhur - BIND Dataset model is applied on Peri 

Dataset, the accuracy is about 45% and positive precision is 23%. These are the lowest 

values obtained for Benhur - BIND dataset model application. Peri dataset contains human 

protein interactions where Benhur - BIND Dataset contains yeast and some other 

organisms. This might be the reason of low accuracy in the test. In conclusion, when the 

highest and lowest accuracies are taken into consideration, it is easy to say that dataset 

models work better when they are applied on datasets coming from similar organisms. 



 
 
 
 

 

 

 

Chapter 4 
 

Structure and Sequence Based Prediction of Protein-Protein Interactions 
 

The website PRISM (Protein Interactions by Structural Matching) is used for analysis 

of protein interfaces and putative protein-protein interactions [7, 56]. This chapter explains 

the steps of PPI prediction done by PRISM server. First, the structural prediction method is 

given briefly. Following that, the collision detection method for predicted interactions is 

explained. Then, the prediction details of noncolliding interactions via NOXclass is given  

[8]. Finally, the method of creating a model for sequential prediction of interactions and its 

application on noncolliding interactions is described. 

 

4.1 Prediction of Protein-Protein Interactions 

 The protein-protein interactions are predicted for a target protein dataset based on the 

template protein dataset interfaces. First, these two datasets and interfaces are introduced in 

order to explain the algorithm. 

4.1.1 Interfaces and Hotspots 

 Proteins interact through their interfaces. Interfaces can be defined as the region where 

two polypeptide chains are linked via non-covalent interactions. Energies are not 

homogenously distributed along these regions. Some critical residues account for the 

majority of the binding energy, called “hot spots” [57]. 



 
 
Chapter 4: Structure and Sequence Based Prediction of Protein-Protein Interactions   56 
 

 
  

4.1.2 Template Dataset 

 Template dataset contains a subset of non-redundant unique protein-protein interfaces 

architectures. These interfaces are found by applying redundancy elimination of all 

interfaces extracted. Using these interfaces as template, new putative protein interactions 

are predicted. Currently, 158 interfaces are available in the template dataset.  

 

 
Figure 4.1 Flowchart of Template Dataset Generation 



 
 
Chapter 4: Structure and Sequence Based Prediction of Protein-Protein Interactions   57 
 

 
  

 

In Figure 4.1 template set construction steps are illustrated. Here, the structurally 

clustered interface dataset is considered [58] which contains 49512 interfaces clustered into 

8205 clusters. These structurally distinct interface clusters contain some homologous 

complexes. These are next eliminated in each cluster (homology cutoff = 80%, using the 

ClustalW [59] sequence alignment) following the procedure applied by Keskin et al [60]. 

Then, crystal contacts are eliminated from each cluster using NOXclass. To construct a 

non-obligate template set we considered non-obligate interfaces: if the size of a cluster is at 

least two, the representative interface of that cluster joins the non-obligate set, leading to 

158 template interfaces. A similar procedure is followed for the generation of the obligate 

template set, leading to 330 interfaces which are not used in current PRISM.  

4.1.3 Target Dataset 

 Target dataset is the set of monomers and complexes that will be used in prediction 

algorithm for structural comparison with the interfaces in template dataset. %50 sequence 

identity elimination is applied on all proteins in PDB [57]. That results in a set of 10.193 

nonredundant proteins. In prediction algorithm, the surfaces of these proteins extracted via 

NACCESS are used to find the structural similarity with interfaces in template dataset [61]. 

Residues having a relative surface accessibility greater than 5% are recorded in residues list 

of surfaces [62]. 

4.1.4 Structural Prediction Algorithm 

 The structural prediction algorithm is based on finding the targets similar to the 

complementary partners of the interfaces. Firstly, the surface of each protein in the target 

dataset is found. Then, the similarity of those surfaces with the interfaces in the template 

set is computed. The ones satisfying the residue and hotspot match thresholds (these 

thresholds are explained in the coming sections) are recorded. In this way, all the targets 
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that are similar to the left or right chains of the interfaces are found. The cross list of the 

targets similar to the left chain and the targets similar to the right chain construct the 

structural PPI prediction set. Figure 4.2 shows an outline of the structural prediction 

algorithm [57]. In the previous algorithm used in PRISM, the target surfaces are eliminated 

based on only the similarity score. However, in this version a few new constraints are 

applied on the target proteins for similarity such as residue match and hotspot match 

percentages.  

 

 
Figure 4.2 Outline of Prediction Algorithm 
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4.1.4.1 Residue Match Percentage 

 Target proteins and the interface partners are compared via MULTIPROT (Multiple 

Protein Structural Alignment Algorithm) software using geometric hashing on the 

coordinates of atoms of the proteins compared [63]. MULTIPROT gives the 10 best 

alignments of the proteins independent of protein sequences [57]. In this study, the first 

alignment is taken that has the largest number of aligned residues. In addition, different 

from the previous PRISM algorithm, the template interface is taken as the reference 

molecule in alignment. For a target to be regarded as similar to the interface chain, the 

similarity ratio should be at least 50%. That means the residues of the target should match 

with at least half of the interface residues. If the size of the interface is less than 20, targets 

should match minimum 10 residues of the interface.  

 

4.1.4.2 Complex Target Match 

 The second constraint for residue matches is the one applied for complex protein 

structures. Besides the individual chains, the overall protein structure is also considered in 

the structural matching. But sometimes only one chain of this protein complex might be 

aligned with the interface. In order to eliminate this redundancy, when protein complexes 

are aligned with interface, each result of MULTIPROT is analyzed. If the alignment 

includes only the residues of one chain of the protein complex, it is not taken because it is 

already recorded. On the other hand, if the aligned complex contains the residues of more 

than one chain and the residues of those chains include at least 30% of aligned ones, that 

complex is recorded as a similar target.  

Consider the example given in Figure 4.3. In this example, the template interface chain 

is 1a93A (shown in yellow in the middle) and the protein complex aligned is 1v37. The 

chains A (shown in blue on the left) and B (shown in red on the right) of 1v37 are aligned 

to the interface. In total, 19 residues are aligned, 11 residues (58%) from A chain, 8 
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residues (42%) from B chain. Since the chains fit minimum residue contribution constraint, 

1v37 is recorded in the similar target list of the interface 1a93A. 

 

 
Figure 4.3 Alignment of 1a93A with complex 1v37 

 

4.1.4.3 Hotspot Match 

In addition to the residue matches, another constraint is applied on the alignments. The 

matching target and the interface should have at least one hotspot in common, which helps 

to eliminate dissimilar proteins. The hotspots in template interfaces are predicted by 

Hotsprint [ref]. 

 

4.2 Collision Detection  

The cross list of the targets similar to the left and right chain forms the predicted 

protein-protein interaction set. But although the targets are similar to the interfaces, they 

might interpenetrate in each other when transformed on the partner chains of the template 
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interfaces. In order to check this possibility, each target is rotated based on the 

MULTIPROT alignments, which are recorded while determining similarity. The output of 

MULTIPROT gives the rotation matrix for the target protein. That matrix is used to rotate 

the whole protein which is similar to the interface. Following that, all carbon alpha (CA) 

atoms of the target proteins are extracted. For each PPI prediction, the distances between 

the CA atoms are computed. If there are more than 5 colliding CA atoms between the 

rotated left and right targets, those interactions are directly eliminated. In this study, the CA 

atoms whose coordinates are closer than 3 Å are taken as colliding.  

Consider the example given in Figure 4.4. This is an example of collision between the 

similar targets of 1as4AB interface. The target on the left (shown in blue), 1hleA, is similar 

to interface chain 1as4A and the target on the right (shown in red), 2ix2C, is similar to 

interface chain 1as4B. This interaction is not recorded because as shown in the figure, there 

are many colliding CA atoms.  

 

 
Figure 4.4 Collusion of 1hleA with 2ix2C 
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4.3 NOXclass Prediction 

NOXclass is a support vector machine algorithm based classifier enabling the 

discrimination of biological and crystal interactions, also, obligate and non-obligate 

interactions. The classifier is created from a training set composed of nonredundant 

obligate, non-obligate, and crystal interactions. Six properties of interactions are used in 

feature vectors: interface area, interface area ratio, amino acid composition, correlation of 

surface and interface regions, gap volume index, and conservation score of the interface. 

91.8% accuracy is achieved for the classification of training set when leave one-out cross-

validation procedure is used. As a result, the software distinguishing obligate, non-obligate, 

and crystal packing interactions is generated [8]. 

NOXclass is used to make predictions for the interactions that pass the collusion 

detection step. The noncolliding interactions found by rotating the targets and computing 

the distances of CA atoms are recorded for each interface. NOXclass is applied on those 

recorded interactions. The inputs of NOXclass are the rotated forms of the target proteins 

generated. The interactions that are more than 80% biological are recorded in NOXclass 

prediction set.  In addition, the output file of each interface also contains obligate 

percentage of the interactions.  

 

4.4 Sequence Based Prediction 

In this step, PPI predictions will be made for the noncolliding interactions based on the 

SVM models created using nonredundant interactions. Sandberg Categorization is found to 

be the best categorization technique for different datasets. There are 5 different z-scales 

used in SVM algorithm. The false positive and false negative predictions made by SVM 

models differ based on the z-scale used. Thus, in order to classify the PPI predictions, 

majority voting method based on 5 z-scale categorizations is applied on noncolliding 

interactions. In this method, the class of the interaction is found based on the majority of 
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the predictions made by models. For instance, in the case where there are 5 models, an 

interaction that is classified as positive by 3 or more models is recorded as a positive 

interaction. In other cases, that interaction is recorded as negative.  

In order to test the performance of majority voting, two tests are done on Shen and 

Tuncbag datasets. The first test is made on Shen dataset using the model generated from 

random 2.000 interactions. Then, a new random set of 1.000 positive and 1.000 negative 

interactions are selected from Shen Dataset and they are classified using the models built 

from 5 z-scale categorizations. Table 4.1 lists the classification results based on those 

models.  

 

Table 4.1 Classification Results for Shen Test Set 
 

Dataset Categorization Accuracy Pos. 
Prec. 

Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. TP FP TN FN # 

interactions 
z1 63,40% 0,61 0,67 0,74 0,53 741 473 527 259 2000 

z2 63,45% 0,61 0,66 0,72 0,55 724 455 545 276 2000 

z3 64,05% 0,64 0,64 0,65 0,63 649 368 632 351 2000 

z4 64,80% 0,68 0,63 0,56 0,73 562 266 734 438 2000 

Shen 

z5 62,80% 0,62 0,64 0,67 0,59 668 412 588 332 2000 

 

The majority voting is done by combining the prediction result of each categorization 

method for each interaction. Table 4.2 lists the percentages of number of positive votes for 

the positive interactions and negative votes for the negative interactions. For instance, the 

first column in Table 4.2 (labeled as 5) for positive interactions means that 31.7% of 

positive interactions are classified as positive by 5 categorization methods. The last column 

of positive interaction row (labeled 0) means that 7.5% of positive interactions are not 

classified as positive by any of the categorization methods. 
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Table 4.2 Voting of Randomly Selected Shen Dataset Interactions 
 

Dataset Class \ # of Votes 5 4 3 2 1 0 # interactions 

Positive 31,7% 22,8% 17,0% 12,7% 8,3% 7,5% 1000 
Shen 

Negative 26,4% 18,2% 18,0% 15,6% 12,6% 9,2% 1000 

 

The same test is also done for Tuncbag Dataset. Random 1.000 positive and 1.000 

negative interactions are tested using the model generated by another random 1.000 

positive and 1.000 negative interactions. Table 4.3 gives the classification results of each 

categorization technique and Table 4.4 gives the vote percentages for the interactions.  

 

   Table 4.3 Classification Results for Tuncbag Test Set 
 

Dataset Categorization Accuracy Pos. 
Prec.

Neg. 
Prec.

Pos. 
Sen.

Neg. 
Sen. TP FP TN FN # 

interactions 
z1 67,50% 0,74 0,64 0,55 0,80 547 197 803 453 2000 

z2 68,10% 0,74 0,65 0,57 0,80 566 204 796 434 2000 

z3 74,60% 0,80 0,71 0,66 0,83 661 169 831 339 2000 

z4 71,80% 0,73 0,71 0,69 0,74 693 257 743 307 2000 

Tuncbag 

z5 77,95% 0,75 0,82 0,84 0,72 836 277 723 164 2000 

 

Table 4.4 Voting of Tuncbag Test Set Interactions 
 

Dataset Class \ # of Votes 5 4 3 2 1 0 # interactions 

Positive 25,0% 30,2% 15,8% 13,3% 10,5% 5,2% 1000 
Tuncbag 

Negative 37,4% 31,4% 18,9% 8,7% 2,9% 0,7% 1000 

 

The results in Table 4.3 and Table 4.4 show that if the interactions that take more than 

two votes are classified as positive, 72% of positive interactions in Shen Dataset and 71% 

of positive interactions in Tuncbag Dataset will be classified correctly. In addition, 63% of 

negative interactions in Shen Dataset and 88% of negative interactions in Tuncbag Dataset 

will also be classified correctly. Table 4.5 shows the accuracy and precision values for 
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Shen and Tuncbag datasets when majority voting method is applied. The overall accuracy 

of Tuncbag Dataset is 79% and much better than Shen Dataset, which has 67% accuracy.  

 

Table 4.5 Results of Majority Voting on Shen and Tuncbag Test Sets 
 

Dataset Accuracy Pos. 
Prec. 

Neg. 
Prec. Pos. Sen. Neg. 

Sen. TP FP TN FN # 
interactions 

Shen 67,05% 0,66 0,69 0,72 0,63 715 374 626 285 2000 

Tuncbag 79,35% 0,85 0,75 0,71 0,88 710 123 877 290 2000 

 

 

The accuracy and sensitivity values show that using majority voting on interactions 

work very well for Tuncbag Dataset. Thus, in order to make sequential predictions on 

noncolliding interactions, larger training sets for each z-scale are used to generate SVM 

models. While creating models, all nonredundant positive interactions and same number of 

randomly selected negative interactions are used. FASTA sequences are recorded while 

generating feature vectors. The SVM results for the models created for each z-scale is 

given in Table 4.6. 

 

Table 4.6 SVM Classification Results for each z-scale 
 

Dataset Categorization # of 
Groups Accuracy Pos. 

Prec. 
Neg. 
Prec. 

Pos. 
Sen. 

Neg. 
Sen. 

# 
interactions 

z1 7 76,05% 0,84 0,71 0,64 0,88 6709 

z2 7 76,97% 0,86 0,71 0,64 0,90 6709 

z3 7 82,65% 0,88 0,79 0,76 0,89 6709 

z4 7 83,41% 0,82 0,85 0,85 0,82 6709 

Tuncbag 

z5 7 84,13% 0,86 0,83 0,82 0,86 6709 

 
All noncolliding interactions from each interface is collected in a set and the input files 

for each z-scale is created for classification. Then, majority voting method is applied on the 



 
 
Chapter 4: Structure and Sequence Based Prediction of Protein-Protein Interactions   66 
 

 
  

set interactions. The classification results for each z-scale are combined in a file. In this 

file, the interaction and the number of z-scales that classify that interaction as positive is 

given. The interactions that are classified as positive by more than 2 z-scale models are the 

ones that pass the majority voting test based on sequence information. In total, there are 

1.276.038 interactions and 112.380 of them are classified as positive by 3 or more z-scales. 

Finally, those 112.380 interactions are deposited as the sequential prediction of PRISM 

server. 



 
 
 
 

 

 

 

Chapter 5 
 

CONCLUSION 
  

There are several databases that contain experimental protein-protein interactions of 

various organisms. But the number of experimentally verified interactions is very few 

compared to total protein-protein interactions in cells. Thus, in order to predict interactions 

that are not discovered yet, several computational methods are established. One of those 

methods is to predict PPI by using the sequence information of proteins. PPI prediction 

using residue sequences can be done in a few ways. The approach used in this study is to 

calculate the triplet frequencies of residues to create feature vectors of interactions. The 

generated feature vectors are used for classification via SVM. SVM generates a model 

from training sets and that model is used to predict interactions.  

 In order to make accurate prediction of PPI, several datasets containing verified 

interactions are compared to each other via different characteristics of sequences. For each 

comparison multiple datasets are tested in order to find the optimum SVM parameters and 

residue characteristics. Firstly, several n-gram frequencies are tested. The results show that 

triplet frequencies work the best in most of the cases. Following that, the effect of different 

types of amino acid categorizations is analyzed. It is found that the best categorization 

depends on the dataset but generally one of the Sandberg categorizations (z-scales) works 

the best. To calculate triplet frequencies, there are two ways to extract sequence 

information. The first one is getting the complete residue sequence of proteins from 

Swissprot and the second choice is getting sequence records of PDB. It is found that using 
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sequences taken from Swissprot results in better predictions.  The reason is determined to 

be the incomplete sequences of PDB.  

Then, it is verified that the SVM performance increases as the dataset size increases. 

Based on this result, in order to increment the number interactions in small datasets, the 

turn around of each interaction is also put in training set. It is confirmed that this method 

has a positive impact on SVM performances.  

There are several computational negative set creation methods and these methods are 

tested via SVM. It is shown that, Jansen method works better than the other methods within 

the training sets. But Jansen method has the drawback of creating a biased interaction set.  

Combination of different n-gram frequency vectors is tested as well.  The results reveal 

that combining different n-grams does not improve the predictions 

The last analysis is on optimizing SVM parameters and kernel functions (RBF and γ 

values). The tests prove that 0.25 is the optimum value for γ parameter when used with 

RBF.  

 The resulting sequence based prediction model is integrated into PRISM server. In the 

previous version, the cross list of the structurally similar targets are listed as the predictions 

In this study, new criteria are added to eliminate the unlikely predictions. a) The distances 

between proteins that are transformed according to the interfaces are calculated one by one 

in order to eliminate predictions in which proteins collide. b) Crystal contacts are 

eliminated via NOXclass. c) SVM models are further used to filter interactions based on 

sequential information. 

 In conclusion, the analysis of datasets show that the classification accuracies are high 

within the training sets but not across datasets. The analyses show that the prediction 

accuracies are high when the training set and test set contain interactions originating from 

similar organisms. In future work, detailed analysis of protein sequences for each dataset 

might be done in order to find why predictions across datasets have a poor performance. In 
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addition, the residue sequence based intersection of datasets might be used to generate 

combined datasets that have better prediction accuracies on each interaction set.  
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