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ABSTRACT 

 

Data classification is an important data mining problem that aims to determine 

the membership of different instances to a number of different sets.  Traditional 

approaches that are based on partitioning the data sets into two groups need some 

modifications for multi-class data classification problems.  These modifications affect 

the efficiency and make the models more complex.  In this thesis, a novel mixed 

integer programming based hyper-box enclosure approach is presented for multi-

class data classification problems.  In order to deal with large data sets, a three-stage 

mathematical programming based approach is developed for training part analysis of 

hyper-box enclosure method.  Training set is preprocessed to identify the 

observations that are more difficult to classify, and seed finding and sub grouping 

algorithms are applied in the first stage.  Then, optimization model is formulated 

considering these observations and seeds.  Finally, assignments of non-problematic 

instances, intersection elimination and box combination algorithms are carried out.  

After training analysis with this three stage approach, the efficiency of the method is 

tested by the simple distance based testing algorithm.  The efficiency of the proposed 

three-stage method is tested on two separate benchmark problems; the protein folding 

type prediction problem and the UCI Repository data sets.  The computational results 

on the illustrative example and the benchmark problems show the accuracy of the 

proposed method.  
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ÖZET 

 

Veri Sınıflandırma, farklı özelliklere sahip örneklerin bilinen sınıflara olan üyeliğini 

belirlemeye çalışan önemli bir veri madenciliği problemidir.  Veri setini iki gruba ayıran 

geleneksel yöntemleri çok sınıflı veri sınıflandırma problemlerine uygulayabilmek için bazı 

düzenlemelere gerek vardır.  Yapılan bu değişiklikler kullanılan yöntemin verimliliğini 

etkilemekte ve modeli daha karmaşık bir hale getirmektedir.  Bu tezde çok gruplu veri 

sınıflandırma problemi için geliştirilmiş tamsayı karışık programlamaya dayalı yeni çok 

boyutlu kutu yaklaşımı anlatılmaktadır.  Büyük veri kümeleri ile çalışabilmek için çok 

boyutlu kutu yaklaşımının eğitici bölümünde kullanılmak üzere üç aşamalı matematiksel 

programlamaya dayalı bir yöntem geliştirilmiştir.  Birinci aşamada, eğitici kümedeki 

sınıflandırması zor olan örnekler belirlenerek, tohum bulma ve alt küme oluşturma 

algoritmaları uygulanmaktadır.  Daha sonra edinilen bu gözlem ve tohumlar kullanılarak 

eniyileme modeli çözülmektedir.  Son olarak da problemsiz örneklerin kutulara atanması, 

kesişme engelleme ve kutu birleştirme algoritmaları uygulanmaktadır.  Bu üç aşamalı 

eğitici çalışmalar sonrasında, metodun verimliliği uzaklığa dayalı basit bir test algoritması 

ile ölçülmüştür.  Bu üç aşamalı modelin verimliliği veri sınıflandırılmasında çok bilinen ve 

çok kullanılan veri setleri üzerinde test edilmiştir. Bunlar protein katlanma tahmin problemi 

ve UCI veri havuzu problemleridir.  Örnek problem ve bilenen veri setleri kullanılarak elde 

edilen sonuçlar önerilen yöntemin çok sınıflı veri sınıflandırma problemine önemli bir 

katkıda bulunduğunu kanıtlamaktadır. 

 

 

 

 

 



 
 
 
 

vi 

ACKNOWLEDGEMENTS 

 

Pursuing a Ph.D. thesis is both painful and enjoyable experience.  It is just like 

climbing a high peak, step by step, accompanied with bitterness, hardships, encouragement, 

trust and with so many people’s kind help.  When I found myself at the top enjoying the 

beautiful scenery, I realized that there are many people whose enormous contribution enabled 

the completion of this journey.   

First of all, I would like to express my gratitude to my Ph.D. advisor Assoc. Prof. 

Metin Türkay for providing me the opportunity to work in such an exciting and inspiring 

project.  He taught me how to write academic papers, made me a data mining person and 

had confidence in me.  More importantly, he taught me how to work hard and play hard by 

myself.    

Besides my advisor, I would like to thank the rest of my Ph.D. thesis committee: 

Assist. Prof. Deniz Yüret who asked me hard questions and gave insightful comments and 

guidance through my progress report presentations, Assos. Prof. Ceyda Oğuz for her 

supportive comments and participation in my follow up committee. I also thank Prof. Dr. 

Kuban Altınel and Prof. Dr. Serpil Sayın for participation in my PhD thesis committee, for 

their comments and future extensions on my Ph.D. thesis.   

I also thank my lab members who made the Systems Lab a wonderful workplace for 

the past four years: Uğur Kaplan for his knowledge, interesting discussions, advices and 

brotherhood, Ali Öztürk for being my fellow sufferer and for his intelligent discussions, 

Pınar Kahraman-Öztürk for her close friendship and providing support.  I am also grateful 

to all my friends, Bora, Pelin, Eda, Ethem, Selim, Can, Özge and Fatih for being funny & 

good classmates and officemates.  I hope there will be other chances to work together 

again.  



 
 
 
 

vii 

I want to give very warm wishes to my colleagues Semra and Caner who have 

followed my adventure from afar, in Gainesville, Florida: thanks for always being there 

and helpful advices.  I especially thank to our valuable family friends Zeynep and Berkin 

for enjoyable dinners and brunches.  I also thank my life long friends Selma and Feray for 

providing support and friendship that I needed.   

 Finally, I am very grateful to my large family: my parents, my brothers and their 

family, my mother-in-law, my father-in-law, my brother-in-law for their invaluable support 

and understanding.  I am very lucky to be part of such a wonderful family.  Last, but not 

least, I am greatly indebted to my devoted husband, Gökhan, for always believing in me 

and for his support at every step of my life.  He was always there to listen and to give 

advice on any topic.  I can not do anything without his patience, assistance, encouragement 

and love.  I dedicate my Ph.D. thesis to my husband, Gökhan, and my family, to honor 

their love, patience, and support during these four years. 

This thesis was completed with the support of the TUBITAK scholarship.   

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

viii 

TABLE OF CONTENTS 

 

Abstract          iv 

 

Özet                       v 

 

Acknowledgements         vi 

 

List of Tables                    xii 

 

List of Figures                   xvi 

 

Nomenclature                   xix 

 

Chapter 1: Introduction          1 

1.1 Data Classification.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1 

1.2 Data Classification Methods.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .4 

1.2.1 Neural Networks.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5 

1.2.2 Support Vector Machines.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5 

1.2.3 Mathematical Programming Approaches.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7 

1.2.4 Decision Trees.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8 

1.2.5 K-Nearest Neighbor Algorithm.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9 

1.2.6 Logistic Regression.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   11 

1.2.7 Bayesian Networks.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .12 

1.2.8 Other Methods.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12 

1.3 Performance Evaluation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  13 



 
 
 
 

ix

1.3.1 Training and Test Sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  13 

1.3.2 Cross-validation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   14 

1.3.3 Sensitivity and Specificity.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  14 

1.3.4 Mathews Correlation Coefficient.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .16 

1.3.5 Performance with Respect to Random Prediction.  .  .  .  .  .  .  .  .  .  .  .  17 

1.3.6 P-value Analysis.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .17 

1.4 Ideal Characteristics of Classification Methods.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .17 

1.5 Contributions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19 

1.6 Outline.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .20 

 

Chapter 2: Literature Review          22 

2.1 Literature Review on Data Classification Methods.  .  .  .  .  .  .  .  .  .  .  .  .  .22 

2.2 Literature Review on Mathematical Programming Based Methods.  .  .  .  .  27 

2.3 Literature Review on Protein Folding Type Prediction.  .  .  .  .  .  .  .  .  .  .  .30 

 

Chapter 3: MILP Based Hyper-Box Enclosure Approach          38 

3.1 Training Algorithm: MILP Formulation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  39 

3.2 Three-Stage Approach.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  42 

3.2.1 Preprocessing.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 44 

3.2.2 Threshold Value for the Number of Problematic Instances.  .  .  .  .  .  .  44 

3.2.3 Sub Grouping Algorithm.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46 

3.2.4 Seed Finding Algorithm.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  51 

3.2.5 MILP Model.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  55 

3.2.6 Final assignment and Intersection Elimination.  .  .  .  .  .  .  .  .  .  .  .  .  .55 

3.2.7 Box Combination.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .55 

3.3 Testing Algorithm.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  61 



 
 
 
 

x

3.3.1 Original Testing Algorithm.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61 

3.3.2 Improved Testing Algorithm.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  63 

3.3.3 Comparison of Original and Improved Testing Algorithms.  .  .  .  .  .  .  64 

3.3.4 Computational Complexities of the Original and Improved 

Testing Algorithms.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68 

3.4 Illustrative Example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .69 

3.4.1 Training Part.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  69 

3.4.2 Testing.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .74 

3.4.3 The Original and Improved Testing Algorithms’ Performances on New  

Thyroid Data Set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  77 

 

Chapter 4: Computational Results on Protein Folding Type Prediction   79 

4.1  Protein Folding Type Prediction Problem.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  79 

4.2 Protein Folding Type Data Sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .79 

4.3 Classification Algorithms.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81 

4.4 Results for Independent Data Sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  83 

4.5 Results for Self-consistency Tests.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  86 

4.6 Results for Leave-one-out Tests.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  87 

4.7 Results for 10-Fold Cross-validation Tests.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92 

4.8 Statistical Analysis of the Results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .94 

4.9 Problematic Instance Analysis.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .110 

 

Chapter 5: Computational Results on UCI Repository Data Sets           116 

5.1 UCI Repository Data Sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .116 

5.1.1 Johns Hopkins University Ionosphere Database.  .  .  .  .  .  .  .  .  .  .  .  116 

5.1.2 Pima Indians Diabetes Database.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  117 



 
 
 
 

xi

5.1.3 Blood Transfusion Service Center Data Set.  .  .  .  .  .  .  .  .  .  .  .  .  .   118 

5.1.4 Wisconsin Diagnostic Breast Cancer (WDBC).  .  .  .  .  .  .  .  .  .  .  .  . 118 

5.1.5 Liver Disorders Data Set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  118 

5.1.6 Wine Recognition Data.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118 

5.1.7 Iris Data Set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119 

5.1.8 Thyroid Gland Data.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119 

5.1.9 Glass Identification Database.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120 

5.1.10 Ecoli Data Set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120 

5.1.11 Yeast Data Set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .120 

5.2 Classification Algorithms.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120 

5.3 10-Fold Cross-validation Results for Two-Class Data Sets.  .  .  .  .  .  .  .  .  .122 

5.4 10-Fold Cross-validation Results for Two-Class Data Sets.  .  .  .  .  .  .  .  .  .126 

5.5 Statistical Analysis of the Results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132 

5.6 Problematic Instance Analysis.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .150 

 

Chapter 6: Conclusion                      157 

 
Bibliography                   162 
 
Appendix A: Protein Folding Type Prediction Data Sets             174 
 
Vita                                         210 

 

 

 

 

 

 



 
 
 
 

xii

LIST OF TABLES  

 

Table 1.1 A representative confusion matrix for a four-grouped data classification 

problem.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  15 

Table 2.1 List of amino acids, their three-letter and single-letter representations.  .   32 

Table 2.2 Definitions of Protein Structural Classes.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33 

Table 3.1 A comparison of MILP model with and without seeds.  .  .  .  .  .  .  .  .  .  .53 

Table 3.2. Computational complexities of two testing algorithms.  .  .  .  .  .  .  .  .  .  69 

Table 3.3 Problem characteristics for illustrative example.  .  .  .  .  .  .  .  .  .  .  .  .  . 74 

Table 3.4 Accuracies of different data classification methods for illustrative  

example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  76 

Table 3.5 Prediction results for Thyroid dataset for original and new testing  

algorithm.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .78 

Table 4.1 Summary of the applied classification algorithms of WEKA.  .  .  .  .  .  .  82 

Table 4.2 Optimal parameter values of LibSVM for each of the data sets.  .  .  .  .  . 81 

Table 4.3 Characteristics of the MILP model for 225 training samples.  .  .  .  .  .  .  .83 

Table 4.4 Performance results for the 510 protein domains in the test set.  .  .  .  .  .  84 

Table 4.5 Performance results for the 2438 protein domain in the test set.  .  .  .  .  . 85 

Table 4.6 Self-consistency test results for 138, 253, 359 and 1601 Domains.  .  .  .  86 

Table 4.7 Self-consistency test results for 277 and 498 Domains.  .  .  .  .  .  .  .  .  .  87 

Table 4.8 LOO test results for 138 protein domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  88 

Table 4.9 LOO test results for 253 protein domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  89 

Table 4.10 LOO test results for 359 protein domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .90 

Table 4.11 LOO test results for 277 protein domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .91 

Table 4.12 LOO test results for 498 protein domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .92 

Table 4.13 10FCV test results for 1189 protein domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93 



 
 
 
 

xiii 

Table 4.14 10FCV test results for 25PDB protein domains.  .  .  .  .  .  .  .  .  .  .  .  .   94 

Table 4.15 Values of performance measures for the 138 protein domains.  .  .  .  .  . 95 

Table 4.16 Values of performance measures for the 253 protein domains.  .  .  .  .  . 96 

Table 4.17 Values of performance measures for the 359 protein domains.  .  .  .  .  . 97 

Table 4.18 Values of performance measures for the 277 protein domains.  .  .  .  .  . 98 

Table 4.19 Values of performance measures for the 498 protein domains.  .  .  .  .  . 99 

Table 4.20 Values of performance measures for the 510 protein domains.  .  .  .  .  100 

Table 4.21 Values of performance measures-1 for the 2438 protein domains.  .  .   101 

Table 4.22 Values of performance measures-2 for the 2438 protein domains.  .  .   102 

Table 4.23 Values of performance measures for the 1189 protein domains.  .  .  .   103 

Table 4.24 Values of performance measures for the 25PDB protein domains.  .  .  103 

Table 4.25 The results of P-value analyses.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  104 

Table 4.26 The results of P-test.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  105 

Table 4.27 Number of problematic instances for each of the protein folding type  

data sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   111 

Table 5.1 Two-class UCI Repository data sets and their characteristics.  .  .  .  .  .  .117 

Table 5.2 Multi-class UCI Repository data sets and their characteristics.  .  .  .  .  . 119 

Table 5.3 Summary of the applied classification algorithms of WEKA.  .  .  .  .  .  .121 

Table 5.4 Optimal parameter values of LibSVM for each of the data sets.  .  .  .  .  122 

Table 5.5 10FCV results for Ionosphere data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  123 

Table 5.6 10FCV results for Pima data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .124 

Table 5.7 10FCV results for Blood data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125 

Table 5.8 10FCV results for WDBC data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  125 

Table 5.9 10FCV results for Liver data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  126 

Table 5.10 10FCV results for Wine data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .127 

Table 5.11 10FCV results for Iris data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .128 



 
 
 
 

xiv

Table 5.12 10FCV results for Thyroid data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  129 

Table 5.13 10FCV results for Glass data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .130 

Table 5.14 10FCV results for Ecoli data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .131 

Table 5.15 10FCV results for Yeast data set.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  131 

Table 5.16 Values of performance measures for the Ionosphere data set.  .  .  .  .  .133 

Table 5.17 Values of performance measures for the Pima data set.  .  .  .  .  .  .  .  . 134 

Table 5.18 Values of performance measures for the Blood data set.  .  .  .  .  .  .  .  135 

Table 5.19 Values of performance measures for the WDBC data set.  .  .  .  .  .  .  .135 

Table 5.20 Values of performance measures for the Liver data set.  .  .  .  .  .  .  .  .136 

Table 5.21 Values of performance measures for the Wine data set.  .  .  .  .  .  .  .  .136 

Table 5.22 Values of performance measures for the Iris data set.  .  .  .  .  .  .  .  .  . 137 

Table 5.23 Values of performance measures for the Thyroid data set.  .  .  .  .  .  .  137 

Table 5.24 Values of performance measures for the Glass data set.  .  .  .  .  .  .  .   138 

Table 5.25 Values of performance measures I for the Ecoli data set.  .  .  .  .  .  .  . 138 

Table 5.26 Values of performance measures II for the Ecoli data set.  .  .  .  .  .  .   139 

Table 5.27 Values of performance measures I for the Yeast data set.  .  .  .  .  .  .    139 

Table 5.28 Values of performance measures II for the Yeast data set.  .  .  .  .  .  .   140 

Table 5.29 The results of P-value analyses for two-class data sets.  .  .  .  .  .  .  .  .  141 

Table 5.30 The results of P-test for two-class data sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 142 

Table 5.31 The results of P-value analyses for multi-class data sets.  .  .  .  .  .  .  .  143 

Table 5.32 The results of P-test for multi-class data sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  144 

Table 5.33 Number of problematic instances for each of UCI repository data sets 151 

Table A.1 The 138 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  174 

Table A.2 The 253 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  175 

Table A.3 The 359 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  176 

Table A.4 The 1601 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .178 



 
 
 
 

xv

Table A.5 The 225 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  184 

Table A.6 The 510 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  185 

Table A.7 The 2438 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   187 

Table A.8 The 277 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  196 

Table A.9 The 498 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  198 

Table A.10 The 1189 Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 200 

Table A.11 The 25PDB Protein Domains.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .204 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

xvi

LIST OF FIGURES 

 

Figure 3.1 Schematic representation of multi-class data classification using  

hyper-boxes.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   39 

Figure 3.2 Flowchart of the decomposition algorithm for solving multi-class  

classification algorithm using hyper-boxes.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   43 

Figure 3.3 The graph of problem size versus CPU time.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45 

Figure 3.4 Illustrative example for sub grouping algorithm.  .  .  .  .  .  .  .  .  .  .  .  . 49 

Figure 3.5 Sub Group 1 of given illustrative example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50 

Figure 3.6 Sub Group 2 of given illustrative example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51 

Figure 3.7 Seeds found by IP-Seed are circled by blue on an illustrative example.  53 

Figure 3.8 Hyper-box intersection check via the centers and lengths of  

hyper-boxes.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57 

Figure 3.9 Artificial example for IP-Box Combine analysis.  .  .  .  .  .  .  .  .  .  .  .  . 59 

Figure 3.10 Combined hyper-boxes after the first run of IP-Box Combine model.   60 

Figure 3.11 Combined hyper-boxes after the second run of IP-Box Combine  

model.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60  

Figure 3.12 The possible positions of an instance with respect to a hyper-box.  .  .  65  

Figure 3.13 Data points in the illustrative example and their graphical  

representation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .70 

Figure 3.14 Maximum and minimum attribute values for each class.  .  .  .  .  .  .  .  70 

Figure 3.15 Problematic instances are enclosed by dashed points and seeds with  

circles.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71 

Figure 3.16 Constructed hyper-boxes for problematic instances.  .  .  .  .  .  .  .  .  .  . 71 

Figure 3.17 Defined and constructed hyper-boxes for illustrative example.  .  .  .  .  72 

Figure 3.18 Hyper-boxes after intersection elimination for illustrative example.  .   72 



 
 
 
 

xvii

Figure 3.19 Final solution for illustrative example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73 

Figure 3.20 Test instances for illustrative example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   75 

Figure 4.1 P-value graph of MILP versus LibSVM.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .107 

Figure 4.2 P-value graph of MILP versus IB1.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  108 

Figure 4.3 P-value graph of MILP versus SMO.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   108 

Figure 4.4 P-value graph of MILP versus Logistic.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109 

Figure 4.5 P-value graph of MILP versus RBF Network.  .  .  .  .  .  .  .  .  .  .  .  .   109 

Figure 4.6 P-value graph of MILP versus Random Forest.  .  .  .  .  .  .  .  .  .  .  .  . 110 

Figure 4.7 The number of problematic instances for 138 data set.  .  .  .  .  .  .  .  .  112 

Figure 4.8 The number of problematic instances for 253 data set.  .  .  .  .  .  .  .  .  112 

Figure 4.9 The number of problematic instances for 359 data set.  .  .  .  .  .  .  .  .  113 

Figure 4.10 The number of problematic instances for 277 data set.  .  .  .  .  .  .  .   113 

Figure 4.11 The number of problematic instances for 498 data set.  .  .  .  .  .  .  .  .114 

Figure 4.12 The number of problematic instances for 1189 data set.  .  .  .  .  .  .    114 

Figure 4.13 The number of problematic instances for 25PDB data set.  .  .  .  .  .   115 

Figure 5.1 P-value graph of MILP versus LibSVM for UCI Benchmark data sets 145 

Figure 5.2 P-value graph of MILP versus SMO for UCI Benchmark data sets.  .  146 

Figure 5.3 P-value graph of MILP versus IB1 for UCI Benchmark data sets.  .  .  147 

Figure 5.4 P-value graph of MILP versus J48 for UCI Benchmark data sets.  .  .   147 

Figure 5.5 P-value graph of MILP versus Random Forest for UCI Benchmark 

data sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148 

Figure 5.6 P-value graph of MILP versus RBF Network for UCI Benchmark  

data sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    148 

Figure 5.7 P-value graph of MILP versus JRip for UCI Benchmark data sets.  .  . 149 

Figure 5.8 P-value graph of MILP versus Naïve Bayes for UCI Benchmark  

data sets.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149 



 
 
 
 

xviii 

Figure 5.9 P-value graph of MILP versus Logistic for UCI Benchmark data sets. 150 

Figure 5.10 The number of problematic instances for Ionosphere data set.  .  .  .  .151 

Figure 5.11 The number of problematic instances for Pima data set.  .  .  .  .  .  .    152 

Figure 5.12 The number of problematic instances for Blood data set.  .  .  .  .  .  .  152 

Figure 5.13 The number of problematic instances for WDBC data set.  .  .  .  .  .   153 

Figure 5.14 The number of problematic instances for Liver data set.  .  .  .  .  .  .  . 153 

Figure 5.15 The number of problematic instances for Wine data set.  .  .  .  .  .  .    154 

Figure 5.16 The number of problematic instances for Iris data set.  .  .  .  .  .  .  .  . 154 

Figure 5.17 The number of problematic instances for Thyroid data set.  .  .  .  .  .  155 

Figure 5.18 The number of problematic instances for Glass data set.  .  .  .  .  .  .  .155 

Figure 5.19 The number of problematic instances for Ecoli data set.  .  .  .  .  .  .  .156 

Figure 5.20 The number of problematic instances for Yeast data set.  .  .  .  .  .  .  156 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

xix

NOMENCLATURE 

 

CRM Customer Relationship Management 

NN Neural Networks 

SVM Support Vector Machines 

DAG Direct Acyclic Graph 

MP Mathematical Programming 

LP Linear Programming 

MILP Mixed Integer Linear Programming 

K-NN K-Nearest Neighbor 

RST Rough Set Theory 

LOO Leave-one-out 

10FCV 10 Fold Cross-validation 

k Class type 

Ck Number of correctly classified instances in class k 

NCk Number of correctly classified instances not in class k 

Uk Number of under-predicted instances in class k 

Ok Number of over-predicted instances in class k 

MCC Mathews Correlation Coefficient 

FFNN Feed Forward Neural Network 

RBF Radial Basis Function 

SOM Self Organizing Maps 

ART Adaptive Resonance Theory 

MSD Minimization of the Sum of the Deviations 

MMD Maximization of the Minimum Deviation 

D&C Divide and Conquer 



 
 
 
 

xx

NMR Nuclear Magnetic Resonance 

PDB Protein Data Bank 

SCOP Structural Classification Of Proteins 

i Training samples (i=Sample1, Sample2, …, SampleI) 

j Test samples (j=Sample1, Sample2, …, SampleI) 

k Class types (k=Class1, Class2, …, ClassK) 

l Hyper-box that enclose a number of data points belonging to a class 

(l=1,..,L) 

m Attributes (m=1,..,M) 

n Bounds (n=lo, up) 

ε arbitrarily small positive number 

Q Large parameter 

M Total number of attributes 

L Total number of hyper-boxes 

I Total number of instances 

N Total number of bounds 

K Total number of classes 

aim value of the attribute m for the sample i 

Dik class k that the data point i belong to 

ybl Binary variable to indicate whether the box l is used or not 

ypbil Binary variable to indicate whether the data point i is in box l or not 

ybclk Binary variable to indicate whether box l represent class k or not 

ypbik Binary variable to indicate whether the data point i is assigned to class k or 

not 

ypbnilmn Binary variable to indicate whether the data point i is within the bound n 

with respect to attribute m of box l or not 



 
 
 
 

xxi

ypbmilm Binary variable to indicate whether the data point i is within the bounds of 

attribute m of box l or not 

ypik Boolean variable to indicate the misclassification of data point i to class k 

Xlmn the continuous variable that models bounds n for box l on attribute m 

XDl,k,m,n the continuous variable that models bounds n for box l of class k on attribute 

m 

DPI Determination of Problematic Instances 

D Data Set 

NIk Number of instances in class k 

DBii’ Distance between two instances i and i' 

Si Similarity of instance i 

DSi Dissimilarity of instance i 

SPi Binary variable to indicate whether the instance i is selected for this sub 

group or not 

SS Number of instances that exist in each of the constructed sub groups 

TS Number of subgroups 

PPii’ Distance between instance i and i' 

YPi Binary variable that indicates whether instance i is selected as seed or not 

l’ Hyper-boxes that are obtained by combinations of the existing hyper-boxes 

BClk Class k of hyper-box l belongs to 

NXl’mn Bounds n of hyper-box l’ for attribute m 

NBCl’k Class k of hyper-box l’ belongs to 

Clm Center of hyper-box l for attribute m 

Cl’m Center of hyper-box l’ for attribute m 

Llm Length of hyper-box l for attribute m 

Ll’m Length of hyper-box l’ for attribute m 



 
 
 
 

xxii

IN1ll’m Binary variable to indicate the intersection of hyper-box l with hyper-box l’ 

for attribute m 

IN2ll’m Binary variable to indicate the intersection of hyper-box l’ with hyper-box l 

for attribute m 

IOll’ Binary variable that represents the intersection of hyper-box l and hyper-box 

l’ 

COl’ Binary variable that represents an intersection related to hyper-box l’ 

SOl’ Binary variable that indicates that hyper-box l’ could be obtained without 

causing any intersection  

SIll’ Binary parameter that gives the relationship with hyper-box l and hyper-box 

l’ 

SNl’l’’ Binary parameter that represents the relationship between hyper-box l’ and 

hyper-box l’’ 

DHil Minimum distance between instance i and the normal of hyper-box l 

EPlj Extreme point j of hyper-box l 

EPlt Extreme point t of hyper-box l 

EPP Set of extreme point combinations 

ljmep  The value of attribute m for extreme point j of hyper-box l 

ltmep  The value of attribute m for extreme point t of hyper-box l 

iljtmw  Difference between aim and ljmep  

iljtmv  Difference vector between ljmep  and 
ltmep    

iljtmC1  Dot product of 
iljtmw  and 

iljtmv  

iljtmC2  Dot product of iljtmv  by itself 

iljtmb   Ratio of iljtmC1  to iljtmC2  



 
 
 
 

xxiii 

iljtmpb  Point where aim is perpendicular to the edge between two extreme points 

DEDil Minimum distance between instance i and the edges of hyper-box l 

DEPil Minimum distance between instance i and the extreme points of hyper-box l 

NDistil Minimum distance from instance i to hyper-box l 

  



 
 
Chapter 1: Introduction     1 

  
 

 

 

Chapter 1 

 

INTRODUCTION 

 

Customer information becomes very important for companies as it is necessary to 

achieve power and success in the market.  Due to recent advances in sophisticated 

hardware and software technologies, large quantities of data can be acquired, processed and 

stored.  However, the amount of collected data frequently increases and constitutes large 

complicated databases.  As a result of these structures, database management and data 

mining studies receive considerable attention.  Data mining is the process of investigating 

and extracting implicit, previously unknown and potentially useful information form large 

data by using one or more computer-based learning techniques.  The objective of data 

mining is to discover general patterns and similar characteristics of available data.  Many 

different data mining methods exist; for example clustering, classification, association 

analysis, feature selection and characterization.  Of these methods, data classification is the 

most important and widely studied topic [1]. 

1.1 Data Classification 

Data classification, sometimes referred as pattern recognition or discriminant 

analysis, is a supervised learning strategy that analyzes the organization and categorization 

of data in distinct classes [2].  Generally, a training set, in which all objects are already 

associated with known class labels, is used by classification methods.  The data 

classification algorithm works on this set by using the input attributes and builds a model to 

classify new objects.  In other words, the algorithm predicts output attribute values.  Output 
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attribute of the developed model is categorical.  For instance, a bank could attempt to 

understand the behavior of its customers via credit analysis, and customers can be assigned 

one of three possible labels; “safe”, “risky”, and “very risky”.  The generated model could 

be used either to accept or reject future credit requests [1]. 

Classification has several significant differences from clustering, a related data 

mining technique.  The class labels and the number of classes are not known in clustering.  

On the other hand, the class labels and the number of classes are known a priori for 

classification.  In addition, there is no output attribute in clustering, thus, clustering 

algorithms attempt to group instances into two or more classes by using some measure of 

cluster quality [3].  Unlike clustering, prediction has an output attribute.  However, the 

purpose of prediction is to determine future outcome rather than current behavior.  In 

classification, an output attribute is categorical, whereas the output attribute of a predictive 

model can be either categorical or numerical.  In summary, classification places emphasize 

on building models that are able to assign new instances to one of a set of well-defined 

classes [2]. 

There are many applications of data classification in finance [2, 3], health care [2], 

sports [2], engineering [2, 4], and science [4].  In finance, especially in risk management, 

data classification is applied to determine insurance rates, manage investment portfolios, 

and differentiate between individuals who have good or poor credit risks [3].  Furthermore, 

financial institutions use data classification to detect which customers are using which 

products so they can offer the right mix of products and services to better meet customer 

needs.  Another application used by financial institutions is fraud detection in credit card 

and large cash transactions [2]. 

Additionally, several health care studies such as medical diagnoses and treatment 

effectiveness can be analyzed by the help of classification [2].  For instance, information 

about patients who have had or not yet had a heart attack is collected.  A person’s risk for 
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heart attack can be predicted using data classification methods.  By considering these risk 

values, precautions are taken and certain medical treatments are applied to high risk 

patients [2].  

In case of sports, data classification studies are carried out for horse racing and 

lottery.  Data related to past matches between the teams are collected.  Then, while playing 

chance games, gamblers use these past data and estimate the result of the future match and 

the winner [2]. 

Customer Relationship Management (CRM) is a well-known application of data 

classification in business that involves the management of interactions with customers [3]. 

For this purpose, information related to each customer is collected and this data are used to 

increase the efficiency of interaction with the customers in all stages.  In CRM, 

classification is generally used to assign a score to a particular customer or prospect 

indicating the likelihood that the individual will behave in such a way that revenues and 

customer satisfaction levels are improved.  For example, the inclination to respond to a 

particular offer or to switch to a product from a competitor could be measured by a score. 

Moreover, characterization of customer segmentation into groups with similar behavior, 

such as buying a particular product, can be identified by classification.  Consequently, data 

classification models can add tremendous value to organizations both in finance and 

business [2, 3]. 

Data classification has a wide range of security related applications as well: 

fingerprint and facial recognition are the most studied topics.  Another widely used 

application of data classification is in the area of bioinformatics; classification methods are 

being used in order to get valuable information on the characteristics of genes and proteins.  

Many classification methods are used in micro array analysis to predict sample phenotypes 

based on gene expression patterns [4].  Another problem in bioinformatics that attracted a 

lot of attention in the literature is the prediction of secondary structure of a protein from its 
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amino acid sequence [4].  Moreover, protein folding type prediction is also studied with 

different classification methods [4].  In conclusion, data classification is an important 

problem that has applications in a diverse set of areas ranging from finance to 

bioinformatics. 

1.2 Data Classification Methods 

Typical classification algorithms have three basic steps; model construction, model 

evaluation, and model use [1].  Each instance in training set is assumed to belong to a 

predefined class.  By examining input attributes of the training samples, a classification 

model defining the general characteristics of existing classes is obtained during the model 

construction step.  Depending on the solution approach, the model can be represented in 

different forms such as mathematical formulae, rule, or a computer program.  The next 

step, model evaluation, is the accuracy estimation of the model based on a test set.  In this 

evaluation part, known labels of each of the test samples are compared with the results of 

the model.  The percentage of test set samples that are correctly classified by the model 

constitutes the accuracy value of the method.  Selecting the instances of the test set is very 

critical: the test set must be independent of training set in order to obtain reliable results. 

Finally, if the accuracy of the developed model is preferable, then it is used to classify the 

unseen samples by assigning labels for them. 

A broad range of methods exists for data classification problems including Neural 

Networks (NN), Support Vector Machines (SVM), Mathematical Programming, Decision 

Trees, K-nearest Neighbor, Logistic Regression, Bayesian Networks, Genetic algorithms, 

Rough Set Theory, and Fuzzy Sets.  An overall view of classification methods is published 

by Weiss and Kulikowski [5].  In this study, available classification and prediction methods 

from statistics, neural networks, machine learning and expert systems are reviewed.  

 Widely studied data classification methods are explained briefly in the following 

subtitles.  
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1.2.1 Neural Networks 

A neural network is a data structure that attempts to simulate the behavior of 

neurons in a biological brain.  While the human brain consists of billions of neurons, a 

typical neural network is composed of layers of interconnected nodes up to 100.  From one 

unit to another, messages are passed along these connections.  Through this transfer, a 

message can change based on the weight of the connection and the value in the node.  

Neural networks operate in two phases; learning and output.  During the network learning, 

attribute values of the training instances enter the network at the input layer.  The network 

connection weights and attribute values are practiced to compute the output for each 

training instance.  These output values are compared with the desired network output and 

any error between these two values is calculated to modify the weights of the 

interconnections.  Learning phase terminates after a predetermined number of iterations or 

minimum error rate is achieved.  Finally, network weights are fixed and the network is 

used to compute output values for new instances in the output phase [2]. 

A major shortcoming of the neural network approach is a lack of explanation of 

established model.  Moreover, converting categorical values to numerical ones could be a 

challenging issue.  In addition, although the prediction accuracy is generally high, neural 

networks need long training times [4, 6].  Moreover, the training procedures can lead to 

both over fitting problem [7, 8] and gets stuck at a local optimum of the cost function. 

1.2.2 Support Vector Machines 

Support Vector Machines (SVM) is a new classification technique developed by 

Vapnik and his group [9].  They operate by finding a hyper surface that will split the 

classes so that the distance between the hyper surface and the nearest of the points in the 

groups has the largest value.  The main goal is to generate a separating hyper surface which 

maximizes the margin and produces good generalization ability [4].  In recent years, SVM 
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has been considered one of the most efficient methods for two-class classification problems 

[10]. 

On the other hand, the SVM has some important drawbacks.  First, a combination 

of SVMs has to be used in order to solve the multi-group classification problems.  Second, 

some approximation algorithms are used in order to reduce the computational time for 

SVMs while learning the large scale of data.  However, this computational improvement 

could cause less efficient performance values.  Additionally, choice of the Kernel Function 

and the values of parameters are important decisions that directly affect the performance. 

To overcome the above problems, many variants of SVM have been suggested 

including the use of SVM ensemble with bagging or boosting rather than the use of a single 

SVM [11].  Hsu et al. [12] compared the performance values of “all-together” and binary 

classification based methods such as “one-against-all”, “one-against-one” and direct 

acyclic graph (DAG) SVM. 

The one-against-all method is the earliest used implementation for SVM multi-class 

classification.  It constructs k SVM models where k is the number of classes.  The ith SVM 

is trained with all of the examples in the ith class with positive labels, and all other 

examples with negative labels.  One piece at a time each class is separated from the others. 

Conversely, one-against-one method constructs k(k-1)/2 classifiers where each one 

is trained on data from two classes.  In the testing part, if sign of the model says x is in the 

ith class, then the vote for the ith class is added by one.  Otherwise, the jth is increased by 

one.  Finally, x is predicted to be in the class with the largest vote. 

Direct acyclic graph SVM method’s training phase is the same as the one-against-

one method by solving k(k-1)/2 binary SVMs.  However, in the testing phase, it uses a 

rooted binary directed acyclic graph which has k(k-1)/2 internal nodes and k leaves.  Each 

node is a binary SVM of ith and jth classes.  Given a test sample x, starting at root node, the 

binary decision function is evaluated.  It then moves either left or right depending on the 
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output value.  Therefore, it goes through a path before reaching a leaf node which indicates 

the predicted class. 

Hsu et al. [12] conclude that “one-against-one” and DAG binary classification 

methods are more suitable for practical use than the other methods.  Nevertheless, for 

solving multi-class SVM in one step, a much larger optimization problem is required so 

experiments are limited to small data sets. 

1.2.3 Mathematical Programming Approaches 

The mathematical programming approach to linear discriminant analysis was first 

introduced in early 1980’s.  Since then, numerous mathematical programming models have 

appeared in literature.  As an extension of complement to these, Erenguc and Koehler made 

a comprehensive review [13].  In their research, they formulate a typical mathematical 

programming (MP) approach as follows: 

minimize f(w,c)        (1.1) 

subject to: X1 w ≤ c1       (1.2) 

   X2 w ≥ (c + ε)1      (1.3) 

   w ≠ 0        (1.4) 

By this general formulation MP approach tries to determine a scalar c and a non-

zero vector wЄR
p
 such that the hyper plane w’x = c partitions the m-dimensional (m: the 

number of attributes) Euclidean space Rm into a closed half-space w’x ≤ c and an open half-

space w’x > c.  In the formulation, ε represents an arbitrarily small positive number.  An 

interior and exterior deviation term for each group are defined for MP approaches.  An 

interior deviation is the deviation from the hyper plane of a properly classified point.  An 

exterior deviation is the deviation from the hyper plane of an improperly classified point. 

Many distinct MP methods with different objective functions are developed in 

literature.  These include; minimizing the maximum exterior deviation, minimizing the 
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weighted sum of exterior deviations, minimizing a measure of exterior deviations while 

maximizing a measure of interior deviations, minimizing the number of misclassifications, 

and minimizing a generalized distance measure.  Most of these methods modeled data 

classification as linear programming (LP) problems which optimize a distance function. 

Contrary to LP problems, mixed-integer linear programming (MILP) problems with 

minimizing the misclassifications on the design data set are also widely studied [12]. 

MP methods have certain advantages over the parametric ones.  For instance, they 

are free from parametric assumptions and weights to be adjusted.  Moreover, varied 

objectives and more complex problem formulations can easily be accommodated by using 

MP methods.  On the other hand, obtaining a solution without any discriminating power, 

unbounded solutions and excessive computational effort requirement are some of the 

problems in MP based methods. 

1.2.4 Decision Trees 

Decision Trees are one of the most popular top-down induction techniques in data 

classification.  One of the main reasons behind this popularity appears to be their 

transparency and relative advantage in terms of interpretability.  Moreover, there exist two 

powerful implementations of decision trees; CART [14] and C4.5 [15].  Most decision tree 

induction algorithms construct a tree in a top-down manner by selecting attributes one at a 

time and splitting the data according to the values of those attributes.  The most important 

attribute is selected as the top split node, and so forth.  For example, in C4.5 attributes are 

chosen to maximize the information gain ratio in the split [15].  The basic steps of a 

decision tree algorithm are as follows [2]: 

1. Let T be the set of training instances.  

2. Choose an attribute that best differentiates the instances contained in T. 

3. Create a tree node whose value is the chosen attribute.  Create child links 

from this node where each link represents a unique value for the chosen 
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attribute.  Use the child link values to further subdivide the instances into 

subclasses. 

4. For each subclass created in step 3: 

a. If the instances in the subclass satisfy predefined criteria or if the set 

of remaining attribute choices for this path of the tree is null, specify 

the classification for new instances following the decision path. 

b. If the subclass does not satisfy the predefined criteria and there is at 

least one attribute to further subdivide the path of the tree, let T be 

the current set of subset classes and return to step 2. 

Existing decision tree algorithms are computationally efficient and practically 

successful.  However, the fact that they are limited to constructing axis-parallel separating 

planes limits their effectiveness in applications where some combinations of attributes are 

highly predictive of the class [16].   A further drawback lies in the fact that continuous 

variables are implicitly discretized by the splitting process, losing information along the 

way.  Moreover, most decision tree algorithms are known to be unstable when dealing with 

a large data set where it can be impractical to access all data at once and construct a single 

decision tree [17]. 

1.2.5 K-Nearest Neighbor Algorithm 

The nearest neighbor method is a non-parametric classification technique proposed 

by Fix and Hodges [18] and then modified by Cover and Hart [19].  The K-nearest 

neighbor (K-NN) classifies unlabeled samples based on their similarity with the 

observations in the training set.  Thus, for a given unlabeled sample, we find the “K-

closest” labeled observations in the training set and assign the unlabeled samples to  class 

that appears most frequently within k subset.  Experimental studies show that K-nearest 

neighbor is computationally expensive for a large data set, but it is simple and running 
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faster than other classification methods.  Moreover, the misclassification rate of K-NN rule 

approaches the optimal error rate asymptotically as k increases. 

The K-NN algorithm uses the metric properties of the data space.  The most 

commonly used metrics in measuring the distance of a sample from a given training set 

[ ]mxxxX L,, 21≡  are as follows: 

• Euclidean Distance: 
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The major weakness of K-nearest neighbors lays in both choices the value of k and 

calculation of case neighborhood: for this one, one needs to define a metric that measures 

the distance between data items.  In most application areas, it is not clear how to, other than 

by trial and error, define a metric in such a way that the relative importance of data 

components is reflected in the metric.  Furthermore, as the size of the training set becomes 

large, distance calculation process becomes very expensive.  Moreover, it needs a large 

storage, because it runs using the entire training set and highly sensitive to the curse of 

dimensionality. 
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1.2.6 Logistic Regression 

Logistic Regression is a nonlinear regression technique that associates a conditional 

probability score with each data instance [2].  It is useful when the dependent variable is 

either binomial or multinomial values.  Binomial logistic regression is a form of regression 

which is used when the dependent variable is a binary and the independent variables are 

continuous, categorical or both.  On the other hand, multinomial logistic regression exists 

to handle the case of more than two dependent variables [20].     

Generally, logistic regression produces a formula that predicts the probability of the 

dependent variable as a function of the independent variables.  It produces Odds Ratios 

(Equation 1.8) by the help of the term p(k=1|x), the probability of seeing the class 

associated with k = 1 given the values contained in the feature vector x.  As it is producing 

odds ratios as functions of predictors, the regression coefficient in the logistic regression 

model has no interpretation of the linear correlation. 

)|1(1

)|1(

xkp

xkp
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=

      (1.8) 

For any feature vector x, the odds indicate how often the class associated with k = 1 

is seen relative to the frequency in which the class associated with k = 0 is observed for the 

binomial case.  After taking the natural log of this odds ratio and some transformations, 

logistic regression model given in Equation 1.9 will be obtained.  The method iteratively 

tries to determine the coefficient values for the exponent term ax+c in Equation 1.9.  

Convergence occurs when the logarithmic summation is close to zero or when the value 

does not change from one iteration to the next [2]. 

cax

cax

e

e
xkp

+

+

+
==
1

)|1(      (1.9) 

 



 
 
Chapter 1: Introduction     12 

  
 

1.2.7 Bayesian Networks  

 Bayes classifier is a simple but powerful data classification technique.  The model 

assumes all input attributes to be of equal importance and independent of one another.  The 

classifier is based on Bayes Theorem given in Equation 1.10 where H is a hypothesis to be 

tested and E is evidence associated with hypothesis.  Hypothesis is the dependent variable 

and represents the class.  The evidence is determined by input attributes. P(E|H) is the 

conditional probability that H is true given evidence E.  P(H) is an a priori probability, 

which denotes the probability of the hypothesis before any evidence is given [2].  

)(

)()|(
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HPHEP
EHP =      (1.10) 

A Bayesian network is a directed acyclic graph G that model probabilistic 

relationships among a set of random variables where each variable has specific classes.  

Each node in the graph represents a random variable and each edge captures the direct 

dependencies between variables.  The network encodes the conditional independence 

relationships that each node is independent of its non-descendants given its parents [21].  

The popular Bayesian network implementation is Naïve Bayes method. 

1.2.8 Other Methods 

Genetic Algorithms are used in data classification problems that are difficult to 

solve using conventional methods.  It is based on Darwinian principle of natural selection; 

crossover and mutation are the most widely used genetic operators.  In a basic genetic 

learning algorithm, a population P of n elements is initialized which often referred to as 

chromosomes.  A fitness function is used to evaluate each element of current solution.  If 

an element passes fitness criteria, it remains in P.  By using genetic operators new elements 

are created and added to the population. This procedure is carried on until a specified 

termination condition is satisfied [4]. 
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Rough Set Theory (RST) can be approached as an extension of the Classical Set 

Theory [2].  Rough sets are considered as the sets with fuzzy boundaries, in other words the 

sets that cannot be precisely characterized using the available set of attributes.  In data 

classification, it is inconvenient to describe the similarity among data with the 

indiscerniblity relation because two data x and z cannot be guaranteed in the same class 

even though a couple of data x and y are contained in the same class and another couple of 

data y and z are also contained in the same class.  In other words, the transitivity property is 

not always useful in the problem of data classification.  This non-transitivity property is 

more salient for the data within the boundary region.  For this reason, a tolerant relation 

appropriate for the data classification problem is studied by some researchers. 

In contrast, Fuzzy Sets are based on Fuzzy Logic [4].  Fuzzy logic is an extension of 

Boolean logic (YES or NO) dealing with the concept of partial truth.  Whereas, classical 

logic holds that everything can be expressed in binary terms (0 or 1, yes or no), fuzzy logic 

replaces Boolean truth values with degrees of truth.   

1.3 Performance Evaluation 

In evaluating the performances of classification methods, the percentage of 

correctly classified instances, accuracies, are estimated and compared.  Accuracies 

estimated on the training set are called as self-consistency results.  It is widely known that 

self-consistency test results tend to be biased.  Hence, two different error estimation 

methods are recommended to have unbiased performance evaluation. 

1.3.1 Training and Test Sets 

Training set is a sample of data that is used to build classification rules and 

functions.  In order to test the performance of the classification method, another 

independent data set, test set, is used.  True classes of the instances in that test set are 

known but are not shown to the classifier.  Finally, predicted and true classes of test set 
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instances are compared and classification performance is estimated by the number of 

correctly classified instances.  As test set instances are unseen by the classifier, this 

performance estimate is unbiased.  When a data set is given, conventionally a 2/3 of the 

data set is selected randomly and used as test set.  The classifier is trained on the remaining 

data and then tested on the test data.  There exists a small loss of efficiency due to not use 

the full sample as training but this is not a major problem for large data sets.  Generally, 

this type of performance evaluation is adopted when the number of instances are much 

larger than 1000 [22]. 

1.3.2 Cross-validation 

For moderate size samples, the cross validation is preferred.  In cross-validation, 

data set is divided into m equal-sized sub samples randomly.  Each sub sample is treated as 

a test set and predicted via the classification rule constructed from the remaining (m-1) sub 

samples.  The classification performance is estimated by taking the average of these m sub 

samples.  In this way, the classification rate is calculated efficiently and in an unbiased 

way. Leave-one-out (LOO) rate is simply applying the cross-validation with m equal to the 

number of instances.  LOO and 10 fold cross-validation (10FCV) are very popular 

performance evaluation methods [22]. 

1.3.3 Sensitivity and Specificity 

In classification methods, giving only the accuracy values are not sufficient to 

analyze the results.  There exist other values to be estimated and analyzed such as 

sensitivity, specificity, Mathews Correlation Coefficient and performance with respect to 

random prediction.  In order to define these values easily, a representative confusion matrix 

given in Table 1.1 will be used.  The values a, b, c and d are the number of correct 

predictions for the respective classes 1, 2, 3, and 4.  Moreover, ab is the number of 

incorrect predictions where Class 1 instance is predicted as Class 2 and ba is the number of 
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incorrect predictions where Class 2 instance is predicted as Class 1.  The other values of 

the confusion matrix are similar definitions with ab and ba. 

Table 1.1 A representative confusion matrix for a four-grouped data classification problem. 

PREDICTED CLASSES ACTUAL  

CLASSES Class 1 Class 2 Class 3 Class 4 

Class 1 a ab ac ad 

Class 2 ba b bc bd 

Class 3 ca cb c cd 

Class 4 da db dc d 

 

Furthermore, in order to simplify the equations of performance measures, we need 

to define five more parameters.  Total number of instances in the data set is symbolized by 

N.  In Table 1.1, N will be total sum of the values in each of the rows and columns of the 

confusion matrix. Ck represents the correctly classified instances in class k.  For example, 

in Table 1.1, C1 will equal to a. NCk is used to give the number of correctly classified 

instance not in class k.  In Table 1.1, NC2 will equal to (a+c+d).  Additionally, the number 

of under-predicted instances and over-predicted instances for class k are defined by Uk and 

Ok, respectively.  U3 will be the sum (ac+bc+dc) and O3 will be the sum (ca+cb+cd) from 

Table 1.1.  Using these four new parameters, other performance measure definitions will be 

much simpler.  

The sensitivity is the ratio of correct and all predictions for a given structural class 

[23].  The sensitivity value of class k is given in Equation (1.11). 
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The specificity is the ratio between the correct and all predictions for proteins that 

should be excluded for a given class [23].  The specificity value of class k is given in 

Equations (1.12). 
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Generally, average specificity and sensitivity values are given for classification 

methods.  These values can be calculated taking the weighted averages of individual 

specificity and sensitivity values with respect to the class sizes.  In Equations (1.13) and 

(1.14), formal definitions of average sensitivity and specificity values are presented, 

respectively.   
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1.3.4 Mathews Correlation Coefficient 

Mathews Correlation Coefficient (MCC) is a limited number between -1 and 1.  If 

there is no relationship between the predicted values and actual values, the MCC should be 

0 or very low (the predicted numbers are not better than random numbers).  In contrast, the 

MCC value would increase as the strength of the relationship between the predicted values 

and actual values increases.  It is obvious that a perfect fit gives a coefficient of 1.  The 

higher MCC indicates the better performance of the prediction [24].  The MMC value for 

class k can be calculated using Equation (1.15). 
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1.3.5 Performance with Respect to Random Prediction 

Performance with respect to random prediction can be calculated by Equation 

(1.17).  For a perfect prediction, Sk should be equal to 1 while for the predictions that are no 

better than random it would be equal to zero [24].  

( )( ) ( )( )
N

ONCUNCOCUC
RTotal kkkkkkkk

k

+++++
=   (1.16) 

k

kkk

k
RTotalN

RTotalNCC
S

−

−+
=       (1.17) 

Besides giving the accuracy values of the studied data sets, we will investigate these 

performance measures and analyze the results deeper. 

1.3.6 P-value Analysis 

When comparing supervised classification models, the P-value (paired t-test) 

analysis based on hypothesis testing need to be carried out in order to examine the 

differences in a statistical manner.  P-value represents the difference between two models 

with 95% confidence.  If P-value is greater than 2, the difference between the results of the 

models is not due to chance.  Otherwise, the accuracies of the models are very close to each 

other and no significant improvement achieved.  P-value can be calculated using Equation 

(1.18).  In this equation, E1 and E2 are the error rates of two models; q is the average of two 

error rates; n1 and n2 are the number of instances in the test sets of two models. 
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1.4 Ideal Characteristics of Classification Methods 

While evaluating the data classification methods, some important properties of the 

model have to be considered in detail.  Firstly, methods are usually evaluated on the test 

data.  Prediction accuracy, ability of the model to correctly predict the class label, is a very 

considerable point for evaluation.  Most of the comparisons between the models are done 



 
 
Chapter 1: Introduction     18 

  
 

by looking directly to these prediction accuracy values.  On the other hand, time to 

construct the model and time to use it also has a big role in real life applications.  For a 

preferable data classification model, computational time must be reasonable.  Thirdly, for 

an ideal data classifier, it should have a few parameters to tune in the system as possible.  

In Neural Networks, the weights between the nodes have to be adjusted.  Since all of the 

existing weights need to be optimized, it is not easy to incorporate the domain knowledge 

and they possess a long training time.  Moreover, it is difficult to understand the learned 

function.  Similarly, SVM method has the biggest limitation of choosing the kernel 

function.  Once the kernel is fixed, SVM classifiers have only one user-chosen parameter, 

error penalty.  However, kernel is a very important decision criterion.  Another important 

characteristic of an ideal data classifier is the ability to form a decision boundary that 

minimizes the amount of misclassification for all of the overlapping classes in the training 

set. 

Some of the methods mentioned above can only be used for the two class cases, 

such as yes (class1) or no (class 2).  However, the number of classes to be classified is 

generally more than two in real life problems.  Existing methods can be somehow modified 

or developed for multi-class case.  In that situation, the accuracy values of the models 

decrease [4].  For instance, SVMs are originally a model for two class problems and are 

more effective.  For multi-class case, combinations of SVMs should be used.  Since SVMs 

use some approximation algorithms in order to reduce the computational time, increasing 

number of these approximation algorithms causes the degradation of classification 

performance.  Thus, the performance does not improve as much as in binary case.  

Therefore, there is a need for new approaches that are able to address multi-group problems 

effectively.  In this study, a novel mixed-integer programming approach for multi-class 

data classification problem has been developed.  The proposed approach is based on the 

use of hyper-boxes for defining boundaries of the classes that include all or some of the 
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points in that set.  The computational results on the studied datasets show that the 

suggested method is accurate and efficient on multi-class data classification problems. 

1.5 Contributions 

This thesis presents a novel three-stage mathematical programming based hyper-

box enclosure approach for multi-class data classification problems.  A mixed-integer 

programming model is developed for representing existence of hyper-boxes which define 

the boundaries of the classes for the training set.  In order to overcome the computational 

difficulties for large data sets, a three-stage approach is developed for training part analysis 

of hyper-box enclosure approach.  The performance of the model is tested by applying the 

testing part of the proposed method.  Main contributions of this thesis can be summarized 

as follows: 

One of the most important contributions is that the proposed data classification 

method based on mixed-integer programming allows the use of hyper-boxes for defining 

boundaries of the classes that enclose all or some of the points in that set. This approach in 

the training problem can indirectly effect and improve the prediction accuracy of the 

model.  This may be one of the reasons behind the high classification accuracy values 

obtained by the proposed model. 

The suggested model can be used for both binary and multi-class cases without any 

modifications or additions.  High classification accuracies are observed for binary and 

multi-class problems.  

The proposed model has only one parameter to initialize (big-M parameter) and this 

parameter does not require adjusting during the training of the model.  Furthermore, the 

model can operate without a priori knowledge about the underlying distribution of the data. 

From the computational time perspective, the proposed three-stage MILP approach 

is applicable to obtain solutions to large multi-class data classification problems.  
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Furthermore, the testing algorithm is computationally tractable for high dimensional data 

sets.  As observed from the examined data sets, total computational time for proposed 

approach is reasonable and less than the other methods used for these data sets. 

The proposed approach in this thesis gives high accuracy values on the studied 

benchmark data sets.  Hence, the developed multi-class data classification model is at least 

as accurate as the other models including NN, SVM, Decision Trees, K-Nearest Neighbor, 

Logistic Regression, Bayesian Classifier, etc. 

In summary, by the development of this new approach, solutions to multi-class data 

classification problems can be obtained and the prediction accuracies can be improved.  In 

addition to this, the simplicity and the understandability of the proposed model are 

preferable. 

1.6 Outline 

This thesis contains six chapters.  Chapter 2 provides a literature review on data 

classification summarizing distinct methods reported.  Moreover, existing mathematical 

programming based approaches to data classification are investigated in detail.  The 

literature on protein folding type problem is also mentioned in Chapter 2.  The developed 

three-stage MILP based hyper-box enclosure approach to multi-class data classification is 

presented in Chapter 3.  The mixed-integer programming formulation, sub grouping 

algorithm, seed finding algorithm, intersection elimination algorithm and box combination 

algorithm for the training part of the problem are discussed in detail.  In addition, original 

and new testing algorithms are explained and compared.  The method is also illustrated on 

a small illustrative example in Chapter 3.  The application of the proposed approach on 

existing protein folding type benchmark data sets are illustrated and results are examined in 

Chapter 4.  Furthermore, the efficiency of the proposed method on existing eleven UCI 

Repository benchmark data sets is tested and results are given in Chapter 5.  The thesis is 
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concluded with short summary, conclusions, and directions on future research work with 

Chapter 6. 
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Chapter 2 

 

LITERATURE REVIEW 

 

Data classification is a multidisciplinary problem which is a very active area of 

study and research.  Classification problems have been intensively studied by a diverse 

group of researchers including statisticians, engineers, biologists, computer scientists. 

There are variety of methods for solving classification problems such as Neural Networks 

(NN), Support Vector Machines (SVM), Decision Trees, Bayesian Networks, Logistic 

Regression, K-nearest neighbor, tolerant rough sets, fuzzy logic and Mathematical 

Programming [25].  In this chapter, a literature review on data classification methods, 

mathematical programming based methods and an important problem, prediction of folding 

type of proteins, is provided. 

2.1 Literature Review on Data Classification Methods 

An overall view of classification methods is published by Weiss & Kulikowski [5].  

In this book, available classification and prediction methods from statistics, neural 

networks, machine learning and expert systems are reviewed.  Hand [26] investigates the 

statistical approach of data classification and pattern detection in the fields of medicine, 

psychology and finance.  More recently, Webb provides an introduction to statistical 

pattern recognition theory and techniques in his book [27].  In that book, descriptions of 

today’s pattern recognition techniques including many of the recent advances in 

nonparametric approaches to data classification in the statistics literature are provided.  

Moreover, the techniques are illustrated with examples of real-world applications.  The 
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estimation of error rates in discriminant analysis is explored by Lachenbruch & Mickey 

[28].  In this study, leave-one-out cross-validations tests are proposed for error estimation. 

N (number of data points) separate times, the classification function is trained on all the 

data except for one point and a prediction is made for that point in leave-one-out cross-

validation tests.  Average error is computed and used to evaluate the model.  The 

evaluation given by this cross-validation test error is good, but computing the result of 

leave-one-out tests takes very long time.  Kendall et al. [29] give a comprehensive 

exposition about the statistical approach of data classification and advance theory of 

statistics.  Furthermore, McLachlan studied on a thorough treatment of statistical 

procedures in discriminant analysis and pattern recognition [30]. 

The study by Hertz et al. [31] is one of the most detailed and reliable information 

guides for neural network approach in data classification.  They propose an introduction to 

neural computation and explain the theory of the neural network approach.  Additionally, 

Simpson [32] developed a fuzzy min-max classification neural network in which pattern 

classes are utilized as fuzzy sets.  In this study, learning in the neural network was 

performed by properly placing and adjusting hyper boxes in the pattern space.  Simpson 

defines a fuzzy set hyper-box as an n-dimensional box defined by a min and a max point 

with a corresponding membership function.  The min-max membership function defines a 

fuzzy set, hyper-box fuzzy sets are aggregated to form a single fuzzy set class, and the 

resulting structure fits naturally into a neural network framework. Therefore, this 

classification system is referred as fuzzy min-max classification neural network.  Since it 

uses only a min and a max point in the n-dimensional space and combines fuzzy sets with 

the neural network idea, this model has a different approach as compared to the proposed 

model in this thesis.  Moreover, Zhang [33] gave a review of the use of feed-forward neural 

networks for classification.  In data classification problems, neural networks have the 

ability to learn nonlinear input or output relationships while propagating and adopting itself 
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with a given training set by training procedures.  The learning process involves updating 

network architecture and connection weights in order to achieve efficiency by the help of 

some learning algorithms.  The most common types of neural networks that are used for 

data classification are feed forward neural networks (FFNN) which includes multilayer 

Perceptron and Radial Basis Functions (RBFs) [34-37].  In FFNNs, the neurons are 

organized in different layers and each of the neurons in one layer can receive an input from 

units in the previous layers without loss of generality.  On the other hand, RBF network is 

capable to perform a nonlinear mapping between the input and output vector space.  It is 

widely used in data classification problems such as speech recognition, medical diagnosis, 

handwriting recognition, image processing, and fault diagnosis.  The other popular network 

is Kohonen network (self organizing map (SOM)) [38] in which two dimensional 

discretized representation of the input space of the training samples are produced during 

the training phase.  SOMs are different than other neural networks in the sense that they 

use a neighborhood function to preserve the topological properties of the input space. 

On the other hand, Devijver & Kittler [39] concentrate on the K-nearest neighbor 

approach for data classification problems from the perspective of statistical approach.  A 

comprehensive review of K-NN and many of the important contributions to the literature 

are included in Dasarathy [40].  The performance of the K-NN depends on the choice of k.  

If the value of k is larger, the procedure is more robust but needs more computation.  Hans 

[41] mentioned that k must be smaller than the minimum of nj, the number of observations 

in class j.  Otherwise, the neighborhood is no longer the local neighborhood of the sample.  

Other choices of k are n2/8, n3/8, and n1/2, subject to rounding up to the nearest integer, 

where n is the total number of observations in the training set [37].  While the optimal 

value of k depends on the size and nature of the data, typical values are 3, 5, or 7.  
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One of the first papers published on data classification introduces fuzzy adaptive 

resonance theory (ART) which is a fast and reliable analog pattern clustering system.  In 

this study, Carpenter and Grossberg combine the fuzzy logic with the idea of ART and try 

to develop an efficient classifier [42].  A general neural-network model for fuzzy logic 

control and decision systems including the data classification problem is discussed in [14].  

Rough set theory introduced by Pawlak [43] is a mathematical tool to deal with 

vagueness and uncertainty in machine learning and pattern recognition.  Two applications 

of logic for classification using rough set approach are presented in [44].   The multi-model 

logics is employed for automatic feature selection while a rough-set-based inductive 

reasoning is used for discovering optimal feature set with respect to the quality of 

classification as well as for improving the performance of decision algorithms.  Another 

approach in data classification is to use rough sets by tolerating the relationships among the 

objects for pattern classification [45].  A data classification method based on the tolerant 

rough set that combines the use of logic and the tolerance relation among the objects is 

presented in [46].  The performance of this approach is tested on the UCI Repository data 

sets [47].  Furthermore, Castro et al. [48] presented a method to learn maximal structure 

rules in fuzzy logic to deal with the one of the UCI Repository data sets, Iris.  Chen et al. 

[49], Hong et al. [50], Lin et al. [51] and Wu et al. [52] presented different methods to 

generate fuzzy rules from training instances based on genetic algorithms to study UCI 

Repository data sets.  Most recently, Chen et al. [53] developed a new model based on 

distributions of training instances.  Their proposed method achieves a higher average 

classification accuracy rate than existing methods.  On the other hand, Uney and Turkay 

[54] proposed a mixed-integer linear programming approach and tested the performance of 

the method on Iris data set.   

The training procedure of support vector machines (SVMs) usually requires huge 

memory space and significant computation time due to the enormous amounts of training 
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data and quadratic programming problem [55].  Some of the researcher proposed 

incremental training or active learning to shorten the training time [56].  The main idea is 

to select a subset of training samples while preserving the performance as using all the 

training samples.  Syed et al. [57] and Campbell et al. [58] proposed two different 

incremental learning procedures.  On the other hand, multi-group data classification 

problems are solved either by constructing several two class classifier such as one-against-

one, one-against-all, and DAG SVMs [12] or by constructing multi-class classifier directly 

such as k-SVM [59].  Recently, Zhu et al. [60] proposed a multi-class classification 

algorithm which adopted the minimum enclosing spheres to classify a new example and 

showed that the resulting classifier performed comparable to the standard SVMs.  Based on 

Zhu et al. [60], Wang et al. [61] and Lee et al. [62] also proposed a new classification rule 

on the basis of Bayesian optimal decision theory.  

Mathematical optimization techniques have been applied directly in the optimal 

construction of decision boundaries in the decision tree induction.  Bennett [63] introduced 

an extension of linear programming techniques to decision tree construction for two class 

problems.  Kennedy et al. [64] first developed a genetic algorithm for optimizing decision 

trees.  In their approach, a binary tree is represented by a number of unit sub trees each 

having a root node and two branches.  When using genetic algorithm to optimize the tree, 

the growth of the tree could not be controlled as genetic algorithm does not evaluate the 

size of the tree.  Therefore, the resulting tree may become overly deep and complex or may 

be too simple.  To address this problem, Niimi and Tazaki [65] combine genetic 

programming with association rule algorithm for decision tree construction.  In this 

approach, rules generated by apriori association rule discovery algorithm are taken as the 

initial individual decision trees for a subsequent genetic programming algorithm.  

In summary, a large number of data classification methods have been developed up 

to now; however each of them has some drawbacks which make them unattractive.  Thus, 
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researchers have been studying to develop more accurate and more efficient methods or to 

improve the existing methods.    

2.2 Literature Review on Mathematical Programming Based Methods 

Mathematical Programming (MP) based data classification models are used to 

generate linear discriminant functions, or separating hyper-planes, which optimally 

separate observations in a training set.   Generally, two group data classification problems 

are considered by MP techniques and they can be extended to multi-group problems [66, 

67].  Erenguc and Koehler [13] summarized the existing mathematical programming 

models and their experimental results.  

Mangasarian [68] is the first researcher who proposed a linear programming model 

to determine separating hyper-planes, namely linear discriminant function, for two linearly 

separable classes.  In the case of linearly inseparable classes, Freed and Glover [67] 

proposed a mathematical model which tries to minimize the sum of the deviations (MSD) 

of misclassified instances from the separating hyper-plane.  In addition to that, Hand [69] 

developed a mathematical model with an objective function of maximization of the 

minimum deviation (MMD) of the misclassified instances from the separating hyper-plane.  

For multi-group problems, a model based on goal programming was also suggested by 

Freed and Glover [70].  An alternative LP approach for multi-group data classification 

problems has been proposed in [71].  In addition to being non-parametric, LP and other MP 

based approaches are also more flexible than statistical methods.   

In LP based methods, deviations from the separating hyper-planes are used as 

measures of misclassification as mentioned above.  On the other hand, the number of 

misclassifications can be considered directly in mixed integer linear programming (MILP) 

models in which binary variables are used to indicate whether instances are correctly or 

incorrectly classified.  For two-group data classification problem, Bajgier and Hill [72] 

included the number of misclassifications and the deviations in the objective function of a 
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MILP model.  On the other hand, Gehrlein [66] proposed a MILP approach for minimizing 

the number of misclassified instances in multi-group data classification problems, while 

Wilson [73] suggested an alternative MILP formulation and solution methods for these 

problems.  Stam and Joachimsthaler [74] argued that these MILP based methods may be 

superior to both LP based techniques and statistical approaches. However, MILP 

approaches can be used to solve problems involving small number of instances due to 

computational reasons.   

The problems that may appear in mathematical programming formulations for data 

classification are summarized by Koehler [75].  Specific problems include the choice of 

objective function, unacceptable or improper solutions, inconsistencies, gaps, and 

balancing of misclassifications.  MP based data classification models must be normalized 

to prevent the generation of discriminant functions in which the variable coefficients and 

the constant term are zero.  This normalization requirement can cause difficulties, and 

unlike statistical approaches, variables can not be selected in a computationally efficient 

way with MP models.  Glen [76] developed two integer programming (IP) methods for 

normalizing MP discriminant analysis models.  In the first method, binary variables are 

used to represent the constant term, but with this normalization functions with a zero 

constant term can not be generated.  Moreover, the variable coefficients are not invariant 

under origin shifts.  These limitations are overcome by the second method by using IP to 

constrain the sum of the absolute values of the variable coefficients to a constant [76].  

Pavur and Loucopoulos [77] examined conditions under which degenerate solutions can 

occur in MILP models for the classification problem for more than two groups.  They 

presented a multiple-group MSD model and a two-goal approach to the multiple-group data 

classification problem.  Lam and Moy [78] proposed an aggregate model which 

simultaneously determines the cut-off values for the different classification functions in 

order to provide better estimates of the group boundaries.   



   
Chapter 2: Literature Review  29
  
  
   

  
 

Silva and Stam [79] introduced a computationally attractive algorithm, the Divide 

and Conquer (D&C), for determining classification rules which minimize the number of 

misclassifications in the training set for two-group data classification problems.  The D&C 

algorithm partitioned the problem in smaller and more easily handled sub problems and 

solved the problem to the exact optimal solution by allowing analysis of much larger 

training sets than previous methods.  On the other hand, Glen [80] developed an iterative 

MILP model to allow classification accuracy maximizing discriminant functions to be 

generated for problems with many more instances that can be considered by the standard 

MILP formulations.  First, a discriminant function is generated by using a MSD based 

mathematical programming formulation for the complete set of instances.  Then, a 

neighborhood of instances is defined and a MILP model is used to generate a discriminant 

function that maximizes classification accuracy within this neighborhood.  This procedure 

is repeated until there is no improvement in the total number of instances classified 

correctly. This iterative MILP method is applied to a two-group classification problem 

involving 690 observations.    

There are some very good MP based heuristics [81, 82] that can solve real world 

two-group data classification problems fast.  Although there exist ways to solve a multi-

group data classification problem by means of solving several two-group problems, such 

approaches bring about new problems [83].  Hence, Adem and Gochet [25] presented a MP 

based heuristic that avoid these problems and can tackle with multi-group data 

classification problems directly.  The basic idea is to improve an LP-generated classifier 

with respect to the number of misclassifications on the design data set.  The performance of 

the proposed approach is tested on both simulated and real world data sets.  

In addition to the standard MP based data classification methods in which 

discriminant functions are generated by solving a single MP model, two-stage based MP 

methods have also been developed.  Stam and Ragsdale [84] proposed a two-stage method 
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which is particularly suitable for data classification problems with outlier contaminated 

data.  In the first stage, a discriminant function is generated by solving the MSD based 

model.  In that model, some of the instances could be misclassified.  In the second stage, 

the objective is to generate a new discriminant function that minimizes a measure of total 

misclassification while ensuring that the correctly classified instances in the first stage 

remain correctly classified.  Detailed information related to two-stage MP based methods 

and comparisons with standard MP based methods are given by Glen [85].  The results 

from comparisons of methods on one real data set and six simulated data configurations 

indicate that a single technique will not produce good linear classifier under all data 

conditions.  Several methods should consider in developing classification models, with the 

most appropriate method chosen for a particular problem.  

2.3 Literature Review on Protein Folding Type Prediction 

Proteins are the molecules of life that play a key role in realizing the functions of 

any biological organism. Discovery of the functions of proteins will enable us to 

understand the principles of life and working mechanisms of any organism.  In the case of 

humans, this discovery will lead to the design of new drugs that will regulate the functions 

of proteins in order to improve the quality of life.  Functions of proteins are highly 

correlated to their three dimensional structure.  There exist some experimental methods to 

determine the protein structure including X-ray diffraction and nuclear magnetic resonance 

(NMR).  These experimental methods require long experimental times and large amounts 

of resources.  In order to overcome these shortcomings of experimental methods, 

researchers have developed a host of methods to predict the protein structures.  Due to the 

importance of protein structure in understanding the biological and chemical activities in 

any biological system, protein structure determination and prediction has been a focal 

research subject in computational biology and bioinformatics.  The knowledge of folding 

type of proteins is an important part of protein structure prediction and determination 



   
Chapter 2: Literature Review  31
  
  
   

  
 

studies.  The results of the secondary structure prediction [86, 87] and the efficiency of 

searching the possible conformations of the tertiary structure [88, 89] could be significantly 

improved by incorporating the knowledge on folding types of protein.  Another factor that 

motivates protein folding type prediction studies is the substantial gap between number of 

proteins for which structure is known and thus structural class can be assigned manually 

(approximately 30 000 proteins are stored in Protein Data Bank [90] and SCOP [91]) and 

the total number of currently known proteins (NCBI database contains over 2 million 

proteins).  Therefore, development of a reliable method for prediction of folding types of 

proteins for new and undetermined protein sequences is very important.  

A protein molecule is the chain(s) of amino acids (also called residues).  There are 

20 types of amino acids in nature and their names, three-letter representations and single-

letter representations are provided in Table 2.1.  Residue content and order in chain(s) is 

unique for each protein just like specificity of gene sequence.   

Starting with the sequence of residues in the chain(s) making up protein, there are 4 

basic structural phases: primary structure, secondary structure, tertiary structure and 

quaternary structure.  The secondary structure (folding type) of a segment of polypeptide 

chain is the local spatial arrangement of its main-chain atoms without regard to the 

conformation of its side chains or to its relationship with other segments.  This is the shape 

formed by amino acid sequences due to interactions between different parts of molecules.  

There are mainly three types of secondary structural shapes: α-helices, β-sheets and other 

structures connecting these such as loops, turns or coils.  Alpha-helices are spiral strings 

formed by hydrogen bonds between CO and NH groups in residues.  Beta-sheets are plain 

strands formed by stretched polypeptide backbone.  When β-sheets come together, 

hydrogen bonds form between C=O and NH groups of residues of adjacent chains, keeping 

them together.  Connecting structures do not have regular shapes; they connect α-helices 

and β-sheets to each other.  
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Table 2.1 List of amino acids, their three-letter and single-letter representations. 

Amino Acid 
Three 

Letter  

Single 

Letter  Amino Acid 
Three 

Letter 

Single 

Letter  

alanine ALA A leucine LEU L 

arginine ARG R lysine LYS K 

asparagine ASN N methionine MET M 

aspartic acid ASP D phenylalanine PHE F 

cysteine CYS C proline PRO P 

glutamic acid GLU Q serine SER S 

glutamine GLN E threonine THR T 

glycine GLY G tryptophan TRP W 

histidine HIS H tyrosine TYR Y 

isoleucine ILE I valine VAL V 

 

The proportion of α-helices and β-sheets in the secondary structures of proteins are 

used to determine the folding type of proteins.  Protein folding type definitions were 

initially developed in 1980s and redefined multiple times since then (Table 2.2).   
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Table 2.2 Definitions of Protein Structural Classes.  

Reference Folding 

Type 

Helix (α) 

amount 

Strand (β) 

amount 

Additional constraints 

α proteins >15% <10%  

β proteins <15% >10%  

α+β proteins >15% >10% Contains dominantly 

antiparallel β-sheets 

α/β proteins >15% >10% Contains dominantly 

parallel β-sheets 

[92] 

Irregular   Otherwise 

α proteins ≥40% ≤5%  

β proteins ≤5% ≥40%  

α +β proteins ≥15% ≥15% More than 60% 

antiparallel β-sheets 

α/β proteins ≥15% ≥15% More than 60% parallel 

β-sheets 

[93] 

Irregular ≤10% ≤10%  

α proteins >15% <10%  

β proteins <15% >10%  

Mixed proteins >15% >10%  
[95] 

Irregular   Otherwise 

α proteins NA NA Manual classification 

β proteins NA NA Manual classification 

α+β proteins NA NA Manual classification 

α/β proteins NA NA Manual classification 

SCOP[91] 

+7 other classes NA NA Manual classification 
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The main differences were in the thresholds used to define amount of strands for 

all-α proteins, and amount of helices for all-β proteins.  Nakashima and colleagues [92] 

defined five structural classes in 1986.  Then, Chou [93] proposed classification into again 

five classes by using different thresholds in 1995.  The change was due to Nakashima’s 

classification, which set the thresholds for all-α proteins and all-β proteins that were not 

large enough to reflect the real features of the two structural classes.  Chou also defined 

content of the secondary structures using the Dictionary of Secondary Structure of Proteins 

(DSSP) [94].  Eisenhaber and colleagues [95] proposed another definition which merges 

the α+β and the α/β classes into so-called mixed class and thus considers only four in 1996.  

In all above classifications, irregular proteins, ξ, are omitted from classification as they are 

small in numbers.   

The threshold based classifications were replaced by the manually performed SCOP 

classification. The descriptions of the structural and evolutionary relationships of proteins 

from the Protein Data Bank (PDB) [90] are considered in the SCOP database [91].  The 

SCOP classifies proteins on multiple levels including structural classes, but also as 

belonging to different families, super families and containing different domains.  Domain is 

defined as a structurally conserved part of a protein sequence, and together with the entire 

sequences is currently a target of structure prediction.  The SCOP’s classification does not 

incorporate hard coded rules for structural classes.  Intuitively, it makes decisions based on 

structural elements that are located in individual domains that constitute the protein.  

Researchers claim that the SCOP classification is more “natural” and provides more 

reliable information to study protein structural classes when compared to classification 

based on the percentage amounts of the secondary structures [91, 96, 97].  The SCOP 

classification currently includes 11 classes [98]: (1) all-α proteins; (2) all-β proteins; (3) α/β 

proteins; (4) α+β proteins; (5) multi-domain proteins; (6) membrane and cell surface 

proteins; (7) small proteins; (8) coiled coils proteins; (9) low resolutions proteins; (10) 
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peptides; and (11) designed proteins.  Usually, only the first four categories are considered 

for computational prediction purposes as they include significant majority of the protein 

sequences. 

It is postulated that overall folding type of a protein depends on its amino acid 

composition [92].  There have been several methods proposed to exploit this postulate for 

predicting folding type of a protein.  Chou [99] developed a new prediction algorithm 

which incorporates coupling effect between different amino acid components.  By the help 

of this component-coupled algorithm, prediction quality was significantly improved.  

Another important progress in this area was achieved by Bahar et al. [89].  In their study, a 

compact lattice model was proposed in predicting structural class from amino acid 

composition and 81% accuracy achieved using singular value decomposition method [89].  

In this method, each protein is represented by a 19-dimensional array of fluctuations in 

fractions of residues of different types.  The jth element of this vector is the difference 

between the composition of the amino acid type j and the average fraction of amino acid j 

in the group of n structures.  The distance of a protein from the four type of structural 

classes are calculated using 19-dimensional array of the protein by applying singular value 

decomposition method.  The smallest of the four distances obtained for each protein 

determines the structural class of that protein.  Although they use the same data set and 

mathematically identical method with Chou, their accuracy is somehow less.  They explore 

this puzzling difference and came up with the result that the data files used in these studies 

are different.  Chou used files that contained fewer residues (chains of amino acids) 

compared with intact Protein Data Bank (PDB) files.  Eisenhaber et al. [95] found that 

component coupling effect between amino acid components did not improve the class 

prediction, using a different dataset constructed according to their definition.  In order to 

clarify this paradox, Zhou [100], Chou et al. [101] and Cai [102] showed that component-

coupled algorithm significantly improved the prediction accuracy.  The reasons why 
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Eisenhaber et al. come up with that result are misusing the component-coupled algorithm 

and using a conceptually incorrect rule to classify protein structural classes.  On the other 

hand, Bu et al. [103] come up with a new idea, using amino acid index rather than 

composition in order to predict the structural classes.  The overall predictive accuracy of 

the new proposed method for the jackknife test was 5-7% higher than the accuracy based 

only on the composition.  However, many researchers continued studying on the first case, 

based on only the amino acid composition. Cai et al. [104] applied T. Kohonen’s self-

organization neural network on two data sets composed of 277 and 498 domains, 

respectively.  They showed that this approach can be a powerful tool for protein structural 

class prediction.  Furthermore, support vector machine (SVM) method was performed 

based on the same data sets by [100].  The SVM method applies for two class problems.  

Thus, “one-against other” method is used to transfer it into two class problems.  Most 

recently, Kurgan and Homaeiang [23] provided a comprehensive literature survey and 

analyzed the impact of prediction algorithms and test procedures on accuracy.  

Consequently, the prediction of folding types from amino acid composition alone is an 

important topic, which has been the object of many recent researches.  Existing data 

classification methods applied to protein folding type prediction is mainly appropriate for 

two-class problems. These methods can be modified for multi-class problems.  

Unfortunately, these modifications can cause the degradation of classification performance.  

Therefore, developed three-stage mathematical programming based hyper-box enclosure 

approach, which is capable of solving multi-class problems without any modification, can 

be used to classify a given primary protein structure into folding types according to its 

amino acid composition effectively. 

 In conclusion, there exists restricted number of methods for multi class data 

classification problems in literature.  This thesis addresses the need for efficient and 

reliable methods for multi-class problems by introducing a new mixed-integer 
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programming approach.  Moreover, the important and widely used data sets, the protein 

folding type data set and UCI Repository data sets are studied to analyze the performance 

of the developed model.   The results on these data sets show that the prediction accuracy 

of the developed model is as good as the existing data classification models in literature. 

Furthermore, developed model gets rid of some drawbacks of the available multi-class data 

classification models with only one adjustable parameter, rather short learning and 

computational time, no need to know the underlying distribution of the data and well-

construction of the class boundaries.  
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Chapter 3 

 

MILP BASED HYPER-BOX ENCLOSURE APPROACH 

 

The objective in data classification is to assign instances that are described by 

several attributes into a predefined number of classes.  The use of hyper-boxes for defining 

boundaries of the sets that include all or some of the instances in that set as shown in 

Figure 3.1 can be very accurate on multi-class problems.  If it is necessary, more than one 

hyper-box could be used in order to represent a class as shown in Figure 3.1.  When the 

classes that are indicated by square and triangle instances are both represented with a single 

hyper-box respectively, the boundaries of these hyper-boxes overlap.  Thus, two boxes are 

constructed in order to eliminate this overlapping.  A very important consideration in using 

hyper-boxes is the number of boxes used to define a class.  If the total number of hyper-

boxes is equal to the number of classes, then the data classification is very efficient.  On the 

other hand; if there are as many hyper-boxes of a class as the number of instances in a 

class, then the data classification is inefficient. 

The data classification problem is considered in two parts as training and testing.  

Determination of the characteristics of the instances that belong to a certain class and 

differentiating them from the instances that belong to other classes are the main objectives 

of the training part.  The hyper-boxes that determine the characteristics of the classes are 

constructed in the training part by the help of mixed-integer linear programming (MILP) 

formulation.  After the distinguishing characteristics of the classes are determined, then the 

effectiveness of the classification is observed by the help of distance-based testing 
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algorithm.  Predictive accuracy of the developed model is performed on a test data set 

during the test part. 

 

 

Figure 3.1 Schematic representation of multi-class data classification using hyper-boxes. 

3.1 Training Algorithm: MILP Formulation 

Training part studies are performed on a training data set composed of a number of 

instances i.  The instances are represented by the parameter aim that denotes the value of 

attribute m for the instance i.  The class k that the instance i belongs to are given by the set 

Dik.  Each existing hyper-box l encloses a number of instances belonging to the class k.  

Moreover, bounds n (lower, upper) of each hyper-box is determined by solving the training 

problem.  M and N represents the total number of attributes and bounds, respectively.  
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Given these parameters and the sets, the following binary and continuous variables 

are sufficient to model the data classification problem with hyper-boxes.  The existence of 

hyper-box l is represented by binary variable ybl.  The binary variable ypbil indicates the 

position (inside or outside) of the instance i with respect to box l.  The binary variables 

ybclk and ypcik indicate the assigned class k of instance i and hyper-box l, respectively.  If 

the instance i is within the bound n with respect to attribute m of hyper-box l, then the 

binary variable ypbnilmn is 1, otherwise 0.  Similarly, ypbmilm indicates whether the instance 

i is within the bounds of attribute m of hyper-box l or not.  Finally, ypik indicate the 

misclassification of instance i to class k.  In order to define the boundaries of hyper-boxes, 

two continuous variables are required: Xlmn is the one that models bounds n for box l on 

attribute m. Correspondingly, bounds n for box l of class k on attribute m are defined with 

the continuous variable XDlkmn. 

The following MILP problem models the training part of data classification method 

using hyper-boxes: 

 ∑∑ ∑+=
i k l

lik ybypzmin     (3.1) 

subject to 
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Minimization of the misclassified instances in the data set with the minimum 

number of hyper-boxes is the objective of the MILP model given in (3.1).  The lower and 

upper bounds of the hyper-boxes are determined by the instances that are enclosed within 

the hyper-boxes.  Hence, lower and upper bounds of hyper-boxes are calculated by 

equations (3.2) and (3.3), respectively.  Eq. (3.4) enforces the bounds of hyper-boxes exist 

if and only if this hyper-box is assigned to a class.  The relationship between two 

continuous variables is given in Eq. (3.5).  The position of an instance with respect to the 

bounds on attribute m for a hyper-box is given in Eqs. (3.6) and (3.7).  The binary variable 

ypbnilmn helps to identify whether the instance i is within the hyper-box l.  Two constraints, 
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one for the lower bound and one for the upper bound, are needed for this purpose (Eqs. 

(3.6) and (3.7)).  Since these constraints establish a relation between continuous and binary 

variables, a large parameter, Q, is included.  Q generally takes the maximum attribute value 

in the data set.   The assignment of an instance to a single hyper-box l and a single class k is 

established by the equations (3.8) and (3.9), respectively.  The equivalence between Eqs. 

(3.8) and (3.9) is given in Eq. (3.10); indicating that if there is an instance in the class k, 

then there must be a hyper-box l to represent the class k and vice versa.  The existence of a 

hyper-box implies the assignment of that hyper-box to a class as shown in Eq. (3.11).  If a 

class is represented by a hyper-box, there must be at least one instance within that hyper-

box as in Eq. (3.12).  In the same manner, if a hyper-box represents a class, there must be at 

least an instance within that class as given in Eq. (3.13).  The Eq. (3.14) represents the 

condition of an instance being within the bounds of a box in attribute m.  If an instance is 

within the bounds of all attributes of a box, then it must be in the box as shown in Eq. 

(3.15).  When an instance is assigned to a class that it is not a member of, a penalty applies 

as indicated in Eq. (3.16).  Finally, last two constraints Eq. (3.17) and (3.18) give non-

negativity and integrality of decision variables.  The model has LMN + LKMN continuous 

variables, L + LK + 3IK + IL + ILMN + ILM binary variables and O(IKLM) constraints.   

3.2 Three-Stage Approach 

Solving the proposed MILP problem to optimality is computationally expensive for 

large multi-group data classification problems.  The major source of computational 

difficulty is the potentially large number of binary variables.  Hence, we propose a three-

stage decomposition algorithm (shown in Figure 3.2) for obtaining optimal solutions to 

MILP model.   
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Figure 3.2 Flowchart of the decomposition algorithm for solving multi-class classification 

algorithm using hyper-boxes. 
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Instances that are difficult to classify are identified in the first stage that is referred 

to as preprocessing.  Moreover, sub grouping and seed finding algorithms are applied to 

improve the computational efficiency.  With greater emphasis given to these observations, 

solution to the problem is obtained in the second stage using the MILP formulation.  Last, 

final assignments, elimination of box intersections and box combination procedures are 

carried out in the third step. 

3.2.1 Preprocessing 

First, maximum and minimum attribute values for each class are determined.  Then, 

the boundaries of the classes are compared to check whether they overlap or not.  If the 

boundaries of the classes overlap, then the instances that are enclosed by other classes are 

identified. These instances are called as ‘problematic’ instances, since they are not 

separable from the instances of the other classes with a single hyper-box.  In the case of 

having large number of ‘problematic’ instances, the same procedure is repeated to reduce 

the total number of such instances.  In some cases, applying one or two times the same 

procedure do not reduce the number of problematic instances as we want.  For those cases, 

we proposed a sub grouping algorithm in order to obtain small sub groups from the data 

sets efficiently.   

The proposed MILP model has O(LKMN) continuous variables, O(ILMN) binary 

variables and O(IKLM) constraints.  For each instance removed in the preprocessing step, 

the binary variables and constraints in the MILP model are reduced by O(LMN) and 

O(KLM), respectively. 

3.2.2 Threshold Value for the Number of Problematic Instances 

 In order to give more formal threshold value for the number of problematic 

instances, we perform some runs with different number of instances.  For this purpose, sub 

problems of a protein folding type data set are used.  By increasing the number of 
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instances, we try to observe the CPU times of the runs with respect to the change in the size 

of the problem (Figure 3.3.).  For each problem size, we perform 10 different runs and give 

the average results.  In this graph, I represents the number of instances, K represents the 

number of classes and M represents the number of attributes.  The problem size is given by 

the products of cardinalities of I, M and K.  As this product increases, the number of binary 

and continuous variables in the MILP model increases.  Thus, the required solution time 

increases by the increase in the problem size.  After some point, this increase is much more 

significant.  As it could be observed from the graph, the threshold value is 212 (4096).  

After card(IMK) achieves that value,  the required CPU time is high and unfavorable.  
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Figure 3.3 Problem size versus CPU time of algorithm. 
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3.2.3 Sub Grouping Algorithm 

For some of the data classification problems, the number of problematic instances is 

so high that this step does not make enough improvement in the computational time of the 

given problem.  Hence, for this type of problems a sub grouping algorithm is proposed in 

order to improve the computational efficiency.   Sub grouping is a method that constitutes a 

given number of subsets of the given data set by selecting instances considering some 

similarity-dissimilarity measure.  

The determination of subsets is crucial: the instances for each subset must be 

chosen to ensure that they are separated well from other instances.  We develop a pure 

integer programming (IP) formulation to accomplish this task.   

As in the MILP, instances are represented by the parameter aim that denotes the 

value of attribute m for the instances i.  The class k of instance i belongs to is given by the 

set Dik.  NIk represents the number of instances in class k.  Moreover, DBii’ represents the 

distance between two data points i and i'.  This distance is calculated using Euclidean 

distance in m-dimensional space as given in Equation (3.19). 

 ∑ −=
m

miimii aaDB 2
'' )(  (3.19) 

Given these parameters and the sets, the similarity, Si, and dissimilarity, DSi, of an 

instance i can be calculated as in Equations (3.20) and (3.21), respectively.  Similarity, Si, 

is the average distance from instance i to instances i' that exist in the same class with 

instance i.  On the other hand, dissimilarity, DSi, is the average distance from instance i to 

instances i' that are not in the same class with instance i. 
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The binary variable SPi, that indicates whether the instances i is selected for this sub 

group or not, is sufficient to model sub grouping problem.  Furthermore, SS is the number 

of instances that exist in each of the constructed sub groups from the given data set D.  TS 

is the number of sub groups that should be obtained.  TS and SS can be determined by using 

the Equations (3.22) and (3.23).  






=
122

)(DMKcard
TS      (3.22) 

TS

Dcard
SS

)(
=          (3.23) 

The following IP-Sub Group models the sub grouping problem and select SS 

number of instances to form a sub group: 

IP-Sub Group:  

 min ( )ii

i

i DSSSPz −= ∑  (3.24) 

subject to 

 ∑ =
i

i SSSP      (3.25) 

 { } 1,0∈iSP    i∀  (3.26) 

The objective of the IP-Sub Group problem given in Eq. (3.24) is to minimize the 

similarities measures and maximize the dissimilarities measures of selected instances.   

Equation (3.25) states that the number of selected instances must be exactly SS.  Finally, 

integrality of the decision variable SPi is given by (3.26).   
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This IP-Sub Group model constitutes a single subset, S1, from a given data set D.  In 

order to obtain each subset, one should solve TS-1 consecutive IP-Sub Group model while 

in each case updating the new dataset Dnew as Dold\Si.  Hence, by solving IP-Sub Group 

models, we will obtain TS sub groups of data set D.  As MILP is based on hyper-boxes 

approach, this sub group decomposition will not affect the inherent properties of this 

approach.  Moreover, sub grouping will improve the computational efficiency of the 

overall data classification method.     

Further investigation on the proposed IP-Sub Group model leads us to the following 

property.   

Property 3.1: Total Unimodularity Property [105] 

Let A be an mxn integer matrix with a rank of m. A is unimodular if the determinant 

of every basis matrix B of A has value +1 or -1 as given by Ahuja et al. [105].  Thus, 

relying on this, we can state that if an integer valued matrix A is unimodular, then every 

basic feasible solution of the polyhedron defined by the constraints Ax = b where x ≥ 0, is 

integer for every integer valued right hand side vector b.  If every square submatrix of A 

has a determinant of 0 or ±1, then the matrix A is totally unimodular.  Moreover, every 

totally unimodular matrix is unimodular since each basis matrix B of the matrix A has a 

determinant ±1 [105].  

Proposition 3.1: The constraint set of the IP-Sub Group model has the total unimodularity 

property. 

Proof: For the equation 3.25, I is the total number of instances.  The corresponding A 

matrix of the IP-Sub Group model can be stated algebraically as follows. 

  SP1   SP2   …   SPi … SPI-1 SPI 

     [ ]11111 LL=A  
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The rank of above 1xI matrix is equal to 1 since it consists of only one row.  

Moreover, every square submatrix of A has a determinant +1 and therefore it is a totally 

unimodular matrix.  Thus, IP-Sub Group model has the total Unimodularity property.  

 

Using this property, we can conclude that every basic feasible solution of the LP 

relaxation of IP-Sub Group model defined by Equation 3.25 is integer.  Therefore, optimal 

solution of LP-relaxation is the optimal solution of IP-Sub Group model which means that 

solution of IP-Sub Group model could be easily obtained in a small amount of time. 

In order to clarify the sub grouping approach, we tested IP-Sub Group model on an 

illustrative example given in Figure 3.4.  In this illustrative example, there exist 100 

instances (25 from each of the four classes) represented by two attributes values.  
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 Figure 3.4 Illustrative example for sub grouping algorithm. 
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When the IP-Sub Group problem is solved for this illustrative example, we 

constitute two sub groups with 50 instances.  The resulting sub groups are shown in Figures 

3.5 and 3.6.  As it can be seen from obtained sub groups, IP-Sub Group model efficiently 

selects the instances and constitute easier sub problems for MILP model.  Solving the 

overall problem takes much more computational time with respect to solving two sub 

group problems separately.  Hence, by solving Sub Group 1 and Sub Group 2 instances one 

by one using MILP, we obtain the constructed hyper-boxes in a reasonable amount of time.  

In some cases, obtaining the optimal solution of the overall problem takes more than a 

week/month.  Therefore, in those cases solving the IP-Sub Group model and decompose 

the overall problem into smaller sub groups is favorable and preferable. 
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Figure 3.5 Sub Group 1 of given illustrative example. 
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Sub Group 2
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Figure 3.6 Sub Group 2 of given illustrative example.  

3.2.4 Seed Finding Algorithm 

Another method to improve the computational efficiency is determining 

representative seeds for each class.  Seed finding is a method that selects an instance (seed) 

for each class and fixes assignments of these instances to their respective classes before 

solving the problem.  The seeds improve the computational performance of the model 

without changing the optimal solution.   

The determination of seeds is a critical task: the seeds for each class must be chosen 

to ensure that seeds are separated well from each other as well as being a good example of 

the group of instances in the same class.  We develop a pure integer programming (IP) 

formulation to accomplish this task.  As in the MILP formulation, instances are represented 

by the parameter aim that denotes the value of attribute m for the instances i.  The class k of 

instance i belongs to is given by the set Dik.  Moreover, PPii’ represents the distance 
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between two instances i and i'.  This distance is calculated using Euclidean distance in m-

dimensional space as given in Equation (3.27). 

 ∑ −=
m

miimii aaPP 2
'' )(  (3.27) 

Given these parameters and the sets, the binary variable YPi, that indicates whether 

the instance i is selected as seed or not, is sufficient to model the seed finding problem.  

The following IP-Seed models the seed finding problem: 

IP-Seed: min ∑∑∑∑∑∑
∈ ∉∈ ∈
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subject to 

 ∑
∈

=
ki

iYP  1    k∀  (3.29) 

 { } 1,0∈iYP    i∀  (3.30) 

The objective of the IP-Seed problem given in Eq. (3.28) is to minimize the 

distances from each seed to instance of its group (in-class distances) and maximize the 

average distances from each seed to the instances that belong to other classes (out-class 

distances).  Equation (3.29) states that every class must have exactly one seed.  Finally, 

integrality of the decision variable YPi is given by (3.30).   

We performed a set of experiments on MILP model without seeds to compare its 

results with the one initiated with seeds.  One can observe the positive effect of seed 

finding algorithm on the solution of MILP model, in terms of improvement in the number 

of iterations, the number of nodes and the CPU times required to construct the hyper-boxes 

by comparing the results given in Table 3.1.  In Table 3.1, i is the number of instances, 

Cons. is the number of constraints, BVar is the number of binary variables and CVar is the 

number of continuous variables in the model.  When we analyze the Table 3.1, we see that 
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CPU times, number of iterations and nodes decrease significantly as introducing seeds to 

the model.  Hence, seed finding algorithm improves the computational time requirement of 

the MILP model.   

Table 3.1 A comparison of MILP model with and without seeds. 

Problem Characteristics MILP without seeds MILP with seeds 

i # of 

Cons. 

# of 

BVar 

# of  

CVar 

# of 

Iterations 

# of 

nodes 

CPU 

(sec.) 

# of 

Iterations 

# of 

nodes 

CPU 

(sec.) 

10 12,265 6,190 2,081 57,543 331 81.14 15 0 0.468 

20 22,435 12,330 2,161 114,470 239 458.843 1,152 0 2.296 

30 32,605 18,470 2,241 187,769 603 1062.90 3,467 10 3.796 

40 42,775 24,610 2,321 297,133 350 2154.35 26,390 270 27.593 

50 52,945 30,750 2,401 432,922 862 4786.1 22,945 283 29.343 

The seeds found by IP-Seed model are given in Figure 3.7.  As it can be observed, 

seeds found by IP-Seed well exemplify the class properties.  

 

Figure 3.7 Seeds found by IP-Seed are circled on an illustrative example. 
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Further investigation on the proposed IP-Seed model leads us to the following 

property.   

Proposition 3.2: The constraint set of the IP-Seed model has the total unimodularity 

property. 

Proof: For the Equation 3.29, I is the total number of instances, K is the total number of 

classes, c is the total number of class 1 instances and t is the total number of class 2 

instances.  The corresponding A matrix of the IP-Seed model can be stated algebraically as 

follows.  

  YP1   YP2   …   YPc YPc+1 YPc+2  …  YPc+t   … …  YPI-1 YPI  
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The above KxI matrix is 0-1 matrix and its rank is equal to n since it is consists of n 

linearly independent rows.  Moreover, every square submatrix of A has a determinant 0 or 

+1 and therefore it is a totally unimodular matrix.  Thus, IP-Seed model has the total 

Unimodularity property.  

 

By the help of this property, we can conclude every basic feasible solution of the 

LP relaxation of IP-Seed model defined by Constraint 3.29 is integer.  Therefore, optimal 

solution of LP-relaxation is the optimal solution of IP-Seed model which means that 

solution of IP-Seed model could be easily obtained in a small amount of time. 
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3.2.5 MILP Model 

Once the k seeds to be assigned to the k classes are determined by IP-Seed model, 

we can solve MILP model for ‘problematic instances’ with these seeds.  Assignment of the 

instances selected as seed in the MILP model means that we are setting the variables 

corresponding to these instances to a specific value.  Hence, optimal values for associated 

variables are given and do not need to be optimized.  This means that, some of the 

solutions in the solution space are eliminated by fixing these values.  Thus, this approach is 

capable of obtaining alternative optimal solutions for MILP model with smaller 

computational effort. 

3.2.6 Final assignment and Intersection Elimination 

Since the MILP model is solved for ‘problematic instances’ only, the ‘non-

problematic instances’ are assigned to hyper-boxes in a straight forward way.  We define k 

hyper-boxes for each class and assign a ‘non-problematic instance’ to corresponding newly 

defined hyper-box.  Each ‘non-problematic instance’ is considered one by one until all of 

these instances are assigned to a hyper-box.  Finally, the bounds of these new hyper-boxes 

are determined by considering the maximum and minimum attribute values of all instances 

in these hyper-boxes.  It is possible that these hyper-boxes have intersections.  Instances are 

separated from the original hyper-box until all intersections are eliminated.  The eliminated 

instances are grouped in a new box and intersection checking and elimination procedure is 

repeated until no more intersections occur between all of the constructed and defined 

hyper-boxes.  After intersection elimination, box combination algorithm is included in 

order to get tight hyper-boxes for each class. 

3.2.7 Box Combination 

Box combination is the last step in the three-stage hyper-box enclosure approach.  

Since we do not solve problematic and non-problematic instances together, we could have 
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some hyper-boxes that could be combined without causing any intersection.  As we want to 

differentiate the class boundaries with minimum number of hyper-boxes, combination of 

these hyper-boxes and decreasing the number of overall hyper-boxes is preferable. Hence, 

we developed an integer programming (IP) formulation to accomplish this task.  As in the 

MILP formulation, Xlmn represents the bounds of existing hyper-boxes or the hyper-boxes 

obtained at the end of intersection elimination algorithm. The index l represents the 

existing hyper-boxes and the index l’ represents the hyper-boxes that are obtained by 

combinations of the existing ones.  The class k of hyper-box l belongs to is given by the set 

BClk.  NXl’mn represents the bounds of hyper-boxes l’ that is obtained by combining the 

existing hyper-boxes that are in the same class.  The class k of hyper-box l’ belongs to is 

given by the set NBCl’k.   In order to define the box intersections, we need to use center and 

length of the hyper-boxes.  The centers Clm and Cl’m can be calculated using the Equations 

(3.31) and (3.32), respectively. The lengths Llm and Ll’m can be calculated using the 

Equations (3.33) and (3.34), respectively.  If the difference between the centers of the 

hyper-boxes is greater than the average lengths of the hyper-boxes for an attribute, then 

there is no intersection between these hyper-boxes for that attribute. Otherwise, these 

hyper-boxes will intersect on that attribute (Figure 3.8). 

 
2
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=  (3.31) 
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lowernlmnuppernlmnlm XXL == −= ||  (3.33) 

 lowernmnluppernmnlml NXNXL == −= |'|''  (3.34) 

Given these parameters and the sets, the binary variables IN1ll’m and IN2ll’m are 

necessary to indicate the intersection of hyper-boxes l and l’ for each attribute m.  IOll’ is a 
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binary variable that represents the intersection of hyper-box l and l’.  The binary variable 

COl’ is 1 if there is an intersection related to newly defined hyper-box l’.  Finally, SOl’ is a 

binary variable which takes the value 1 when the hyper-box l’ could be obtained without 

causing any intersection.  The parameter SIll’ is 1 if the hyper-box l’ is not obtained by any 

combination of the hyper-box l with other hyper-boxes and 0 otherwise.  This parameter is 

necessary to check intersection for only the rest of the hyper-boxes that are not combined.  

Furthermore, the parameter is SNl’l’’ is 1 if hyper-box l’ and hyper-box l’’ is obtained by 

combination of a common hyper-box and 0 otherwise.  This parameter is necessary to 

eliminate the multiple selections of hyper-box l for combination.  

 

 

        Figure 3.8 Hyper-box intersection check via the centers and lengths of hyper-boxes.  
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Using these binary variables and the parameters, the following IP-Box Combine 

models the box combination problem: 

IP-Box Combine:  

 max ∑=
'

'
l

lSOz  (3.35) 

subject to 

 ε+
+

≥⋅+−
2

1 '
''

mllm
mlllmml

LL
INQCC        1|,', ' =∀ llSImll  (3.36) 

 ε+
+

≥⋅+−
2

2 '
''

mllm
mllmllm

LL
INQCC        1|,', ' =∀ llSImll  (3.37) 

 ''' 1)(*2)21( ll

m

mllmll IOmcardININ ≤+−+∑       1|', ' =∀ llSIll  (3.38) 

 '' lll COIO ≤       1|', ' =∀ llSIll  (3.39) 

 1'' ≤+ ll SOCO        'l∀  (3.40) 

 1''' ≤+ ll SOSO        1|'',' ''' =∀ llSNll  (3.41) 

 }1,0{2,1,,, ''''' ∈mllmllllll ININIOCOSO     mll ,',∀     (3.42) 

The objective of the IP-Box Combine problem given in Eq. (3.35) is to maximize 

the number of newly obtained hyper-boxes that represents the combination of old ones.  

Equation (3.36) and (3.37) are necessary to count the intersections of existing and newly 

obtained hyper-boxes for an attribute.  In order to give the relationship between the centers 

and lengths and intersections, a large parameter Q and ε are included in these constraints.  

If hyper-boxes intersect for all of the attributes, then the binary variable IOll’ is 1 with 

Equation (3.38).  If newly-obtained hyper-box l’ has any intersection with existing ones, 
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then the corresponding binary variable COl’ will be 1 to represent the infeasibility of 

obtaining hyper-box l’ (3.39).  If obtaining the hyper-box l’ is feasible, then the binary 

variable SOl’ is 1, and 0 otherwise by Equation (3.40).  The Equation (3.41) states that only 

one combination related to hyper-box l could be selected. Finally, integrality of the 

decision variables is given by (3.42).   

The IP-Box Combine model tries to find the maximum number of hyper-box 

combinations and obtain combined hyper-boxes.  It is not possible to get all of the hyper-

box combinations after a single run.  We should iteratively solve IP-Box Combine model 

until the objective function value is 0.  In Figure 3.9, there is an artificial example to 

observe the behaviors of the IP-Box Combine model.  After the first run of IP-Box 

Combine model, some of the hyper-boxes are combined but there are some more feasible 

combinations (Figure 3.10).  After the second run of IP-Box Combine, all of the feasible 

combinations are obtained (Figure 3.11).   

 

Figure 3.9 Artificial example for IP-Box Combine analysis.  
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Figure 3.10 Combined hyper-boxes after the first run of IP-Box Combine model.  

 

Figure 3.11 Combined hyper-boxes after the second run of IP-Box Combine model.  
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3.3 Testing Algorithm 

3.3.1 Original Testing Algorithm 

The original testing algorithm proposed in master thesis [106] is briefly explained 

in this section.  If a new instance with an unknown class is given, it is necessary to assign 

this instance to one of the classes.  There are two possibilities for a new instance when 

determining its class: 

i. the new instance is within the boundaries of a hyper-box, 

ii. the new instance is not enclosed in any of the hyper-boxes determined in the 

training problem. 

When the first possibility is realized for the new instance, the classification is made 

by directly assigning this instance to the class that was represented by the hyper-box 

enclosing the data point.  In the case when the second possibility applies, the assignment of 

the new instance to a class requires some analysis.  If the instance is within the lower and 

upper bounds of all but not one of the attributes (i.e., m′) defining the box, then the shortest 

distance between the new instance and the hyper-box is calculated using the minimum 

distance between hyper-planes defining the hyper-box and the new instance.  The 

minimum distance between the new data point i and the hyper-box is calculated using Eq. 

(3.43) considering the fact that the minimum distance is given by the normal of the hyper-

plane. 

 { }nlmim
n

il XaDH ''min −=  (3.43) 

When the data point is between the bounds of smaller than or equal to M-2 

attributes, then the smallest distance between the point and the hyper-box is obtained by 

calculating the minimum distance between edges of the hyper-box and the new point. An 

edge is a finite segment consists of the points of a line that are between two possible pairs 

of extreme points EPlj and EPlt where j and t represent the rank of extreme points. As the 
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number of extreme points for a given box is 2M but the number of edges is M2
M-1, not all of 

the indexes will be used for edge calculation.  This issue will be controlled by given the 

possible extreme point combinations as a set, EPP (extreme point pairs).  Cardinality of 

EPP set is M2
M-1.  The value of attribute m for data point i is represented by the parameter 

ima  and ljmep  and ltmep are the values of attribute m for two possible pairs of extreme points 

j and t.  The minimum distance between the new data point i and one of the segment of the 

hyper-box determined by two extreme points is calculated using Eq. (3.50). 

 ljmimiljtm epaw −=  (3.44) 

 ltmljmiljtm epepv −=  (3.45) 
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When data point is not within the lower and upper bounds of any attributes defining 

the box, then the shortest distance between the new point and the hyper-box is calculated 

using the minimum distance between extreme points of the hyper-box and the new data.  

The minimum distance between the new data point i and one of the extreme points epljm of 

the hyper-box is calculated using Eq. (3.51). 
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The following algorithm assigns a new data point i with attribute values aim to class k: 

Step 0: Initialize inAttlm=0. 

Step 1: For each l and m, if 'lmnimlmn XaX ≤≤ uppernlowern ==∀ ', , set inAttlm = inAttlm 

+ 1. 

Step 2: If inAttlm =M, then go to Step 3.  Otherwise, continue. If inAttlm≤M-1, then go to 

Step 4. 

Step 3: Assign the new data point to class k where ybclk is equal to 1 for the hyper-box in 

Step 2.  Stop. 

Step 4: If inAttlm = M-1, then distil = DHil. 

 If 0 < inAttlm < M-1, then distil = DEDil. 

 If inAttlm = 0, then distil = DEPil. 

Step 5: Select the minimum between { }il
l

distmin  to determine the hyper-box l that is 

closest to the new data point i.  Assign the new data point to class k where ybclk is 

equal to 1 for the hyper-box l.  Stop. 

After finding the assigned classes of test instances, we must compare the assigned 

and original classes in order to calculate the accuracy of the proposed model.  The 

proportion of correctly classified instances will give the efficiency and accuracy of the 

algorithm. 

3.3.2 Improved Testing Algorithm 

The original testing algorithm is computationally intractable for high-dimensional 

problems due to high number of extreme point calculations.  Hence, an improved testing 

algorithm that approximates the original algorithm is developed.  The testing results for 
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large data classification problems can be computed in a very smaller amount of time with 

the improved testing algorithm compared to the original algorithm.  The following new 

algorithm assigns a new data point i with attribute values aim to class k: 

Step 1: For each l and m,  

 If lmnim Xa >  where uppern = , then ( )2lmnimilm Xad −= . 

 If 'lmnim Xa <  where lowern =' , then ( )2' imlmnilm aXd −= . 

 If lmnimlmn XaX ≤≤'  where uppern =  and lowern =' , then 0=ilmd . 

Step 2: Calculate distance from data point i to box l by using Equation 3.1. 

 ∑=
m

ilmil dNdist         (3.52) 

Step 3: Select the minimum between { }il
l

Ndistmin  to determine the hyper-box l that is 

closest to the new data point i.  Assign the new data point to class k where ybclk is 

equal to 1 for the hyper-box l.  Stop. 

3.3.3 Comparison of Original and Improved Testing Algorithms 

There exists four possible cases for the position of an instance i with respect to a 

hyper-box l in the original testing algorithm (Figure 3.12).  These cases can be listed as 

follows: 

Case I:   Instance i is enclosed by the hyper-box l. 

Case II:  Instance i is within the lower and upper bounds of all but not one of the attributes 

(m’) of hyper-box l. 

Case III:  Instance i is between the bounds of smaller than or equal to M-2 attributes of 

hyper-box l. 

Case IV:  Instance i is not within the lower and upper bounds of any attributes of hyper-

box l. 
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Figure 3.12 The possible positions of an instance with respect to a hyper-box.  

The following analysis can be done for each case. 

Case I:  If instance i is inside the hyper-box l, then it is directly assigned to the 

corresponding class of hyper-box l in the original testing algorithm.  Similarly, in the 

improved testing algorithm lmnimlmn XaX ≤≤'  holds and ilmd  will be 0 for each attribute m.  

This will result in 0=ild .  Hence, the closest hyper-box to that instance i will be hyper-box 

l and instance i will be assigned to the corresponding class of hyper-box l.  Therefore, 

improved testing algorithm gives the same results as the original algorithm for Case I. 

Case II:  If an instance i is within the lower and upper bounds of all but not one of the 

attributes (m’) of hyper-box l, minimum distance form that instance i to the hyper-box l is 

calculated by using Equation 3.43 in the original testing algorithm.  For the improved 

testing algorithm, as lmnimlmn XaX ≤≤'  holds for all attributes except 'm , ilmd  will be zero 

II 
I 

III 
IV 
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for those attributes and 'ilmd  will be greater than zero (Equation 3.53).  Hence, distance 

from instance i to the hyper-box l is calculated using Equation 3.54 in the improved testing 

algorithm.  As Eq. (3.54) and Eq. (3.43) are identical, both of the testing algorithms are 

identical for Case II. 

 { }2''' )(min nlmim
n

ilm Xad −=  (3.53) 

 lmnim
n

ilmil Xadd −== min'  (3.54) 

Case III:  If an instance i is between the bounds of smaller than or equal to M-2 attributes 

of hyper-box l, the original algorithm will calculate the distances from instance i to each 

edge of the hyper-box l.  Then, it selects the smallest one from m2m-1 edges as given in Eq. 

(3.50).  On the other hand, the improved algorithm will find out the closest extreme point 

of the hyper-box l that is the one of the extreme points of the closest edge found with the 

original algorithm.  Then, the improved algorithm calculates the Euclidean distance from 

instance i to that extreme point.  Hence, the improved algorithm’s distance value will 

always be greater than the distance value of the old algorithm. 

In order to prove this more formally, assume that the closest extreme point of 

hyper-box l to instance i is ),,,,,( 21 lmupperlkupperupperlupperl XXXX KK .  For the improved 

algorithm, distance from instance i to hyper-box l is calculated as in Eq. (3.55). 

 222
11 )()()( lmupperimlkupperikupperliil XaXaXad −+−++−= KK  (3.55) 

As neighboring extreme points have (m-1) attribute values in common, the closest 

edge to instance i will be the one with an end point 

of ),,,,,( 21 lmupperlkupperupperlupperl XXXX KK .  Assume the other end point of this edge is 

),,,,,( 21 lmupperlklowerupperlupperl XXXX KK  as only one attribute value changes for neighbor 

extreme points.  Then, the closest point on that edge to instance i is 
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),)),((,,,( 21 lmupperlklowerlkupperlklowerupperlupperl XXXbXXX KK −+  where b is that ratio that 

shows how far instance i from start point of that edge.  This b is given in Eq. (3.48).  

Hence, from Eq. (3.50), the original algorithm gives the minimum distance from instance i 

to hyper-box l as follows: 

222
11 )())(()( lmupperimlklowerlkupperlklowerikupperliil XaXXkXaXaorigd −+−−−++−= KK

(3.56) 

All terms of dil and origdil are equal to each other except 
2)( lkupperik Xa − and 

2))(( lklowerlkupperlklowerik XXkXa −−− .  We only need to compare these terms to give the 

superiority relationship between dil and origdil. 

Claim: ilil origdd ≥ . 

Proof: As mentioned before, all terms are equal in these distance values except 

2)( lkupperik Xa −  and 2))(( lklowerlkupperlklowerik XXkXa −−− .  Hence, we need to compare 

these two terms in order to conclude.  As closest extreme point consists of Xlkupper, 

then 15.0 ≤≤ k and lmupperim Xa >  holds. 

 2
?

2 )(()( lklowerlkupperlkloweriklkupperik XXkXaXa −−−≥−  (3.57) 

 )(
?

lklowerlkupperlkloweriklkupperik XXkXaXa −−−≥−  (3.58) 

 )(
?

lklowerlkupperlkloweriklkupperik XXkXaXa −−−≥−  (3.59) 

 lklowerlkupper XkXk )1()1(
?

−≥−  (3.50) 

 lklowerlkupper XX
?

≥  (3.61) 
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Since lkupperX  is always greater than or equal to
lklowerX , the claim 

ilil origdd ≥ is 

true.  In the same manner, the case where instance i is closer to Xlklower can be proved.  

Therefore, the improved testing algorithm gives distance values greater than or equal to the 

original distance value for Case III. 

Case IV:  If an instance i is not within the lower and upper bounds of any attributes of 

hyper-box l, the original algorithm calculates the distances from instance i to each extreme 

points of hyper-box l.  Then, it will select the smallest one from 2m extreme points as given 

in Eq. (3.51).  On the other hand, the proposed improved algorithm tries to find the closest 

bound (either lower or upper) for each attribute.  Then, the closest extreme point will be 

found out by these closest bounds.  Hence, the same distance value will be obtained as in 

the original testing algorithm.  Both algorithms give identical distance values for Case IV. 

Therefore, the improved testing algorithm is an approximation of the original 

testing algorithm.  In Cases I, II and IV, calculated distance values will be same.  On the 

other hand, for Case III improved testing algorithm will give a higher distance value.  

Hence, the improved testing algorithm is an approximation of the original one. 

3.3.4 Computational Complexities of the Original and Improved Testing Algorithms 

The original testing algorithm has a poor computational performance on data sets 

with large number of attributes.  The improved algorithm is an approximation of the 

original algorithm.  Therefore, a worse performance can be expected from the new 

algorithm.  However, the computational complexity of the improved algorithm is far 

superior to the original one.  Therefore, we compare the computational complexities of two 

testing algorithms.  The number of algebraic operations for the original testing algorithm is 

O(M2
M-1) whereas that for the new testing algorithm is O(LM) (see Table 3.2).  Thus, the 

original testing algorithm is an exponential algorithm that depends one the number of 

attributes M.  However, the improved testing algorithm is a polynomial algorithm that 

depends on the number of hyper-boxes L and number of attributes M.  Hence, the improved 
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testing algorithm is preferable in the case of data classification problems with large number 

of attributes. 

Table 3.2. Computational complexities of two testing algorithms. 

Original Testing Algorithm New Testing Algorithm 
Place Computation Time Place Computation Time 
Step 1 O(LM) Step 0 O(LM) 
Step 4 O(N), O(2M), O(M2M-1) Step 3 O(L) 
Step 5 O(L)   
Overall 

Complexity 
O(M2

M-1) Overall 

Complexity 
O(LM) 

3.4 Illustrative Example 

We applied the proposed three-stage MILP based approach on set of 105 training 

data points in four different classes given in Figure 3.13. 

3.4.1 Training Part 

When we apply proposed three-stage algorithm, we first calculate the boundaries of 

classes and compare whether they overlap or not. As shown in Figure 3.14, overlapping 

between the classes exists.  The instances that are enclosed by other classes are identified 

as ‘problematic instances’.  For this data set, there exist 18 data points which fall into the 

bounds of other classes.  These problematic instances are enclosed by dashed points in 

Figure 3.15.  Using these problematic instances, IP-Seed model is solved to find a seed for 

each class.  Seeds are indicated with circles in Figure 3.15.  Once four seeds to be assigned 

to the four classes are determined, we solve MILP model for these ‘problematic instances’ 

with fixed assignment of these seeds.  The constructed hyper-boxes for these problematic 

instances are shown in Figure 3.16. 
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Figure 3.13 Data points in the illustrative example and their graphical representation. 

 

Figure 3.14 Maximum and minimum attribute values for each class. 
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Figure 3.15 Problematic instances are enclosed by dashed points and seeds with circles. 

 

Figure 3.16 Constructed hyper-boxes for problematic instances. 
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Figure 3.17 Defined and constructed hyper-boxes for illustrative example. 

 

Figure 3.18 Hyper-boxes after intersection elimination for illustrative example. 
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Figure 3.19 Final solution for illustrative example. 

The next step is the assignment of non-problematic instances.  New hyper-boxes for 

each class are defined and remaining 87 non-problematic instances are assigned to the 

hyper-boxes that correspond to their own classes.  Then, the bounds of the newly defined 

hyper-boxes are calculated by obtaining the maximum and minimum attribute values of 

instances belonging to them (Figure 3.17).  As it can be seen from Figure 3.17, there are 

some intersections between constructed and defined hyper-boxes.  In order to get rid of 

these intersections, instances in the defined hyper-boxes are separated one by one until 

intersections are eliminated.  Then, the eliminated instances are grouped in a new hyper-

box.  Resulting hyper-boxes do not intersect each other as shown in Figure 3.18.  After 

that, IP-Box Combine model is studied and the feasible combination of hyper-boxes is 

obtained (Figure 3.19).  The final solution for this illustrative example is found.  At last, 

without any misclassifications of training set instances, 8 hyper-boxes are obtained.  
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Hence, the proposed three-stage MILP approach categorized the 105 training instances into 

their corresponding classes with a training accuracy value of 100%.  The characteristics of 

each of the steps of proposed approach on illustrative example are given in Table 3.3. 

Table 3.3 Problem characteristics for illustrative example. 

Problem Characteristics 
Steps of  

3-Stage Approach # of 
Nodes 

# of  
Iterations 

# of 
Constraints 

# of  
BVar 

# of  
CVar 

CPU  
(sec.) 

Problematic Instances  - - - - - - - - - - - - - - - 0.093 
Seed Finding 0 0 59 72 0 0.078 
MILP with Seeds 0 22 1509 858 265 0.265 
Defined Hyper-boxes - - - - - - - - - - - - - - - 0.063 
Intersection 
Elimination 

- - - - - - - - - - - - - - - 0.203 

Box Combination 0 0 4045 222 0 0.109 
Testing - - - - - - - - - - - - - - - 0.016 

3.4.2 Testing  

After classifying the training data perfectly, the 52 test instances (shown in Figure 

3.20) are assigned to the constructed hyper-boxes by applying the improved testing 

algorithm.  After improved test set analysis, it is observed that all of test instances are 

assigned to their original classes.  Hence, accuracy of the proposed three-stage approach is 

100% for this illustrative example using the testing algorithm. 
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Figure 3.20 Test instances for illustrative example. 

 

On the other hand, the same illustrative example is studied with different types of 

classifiers available in the well-known Weka.  Weka is a collection of machine learning 

algorithms for data mining tasks including data classification [107].  In Table 3.4, different 

classification methods and their accuracy values are listed.  The best accuracy value is 

96.1% received by the classifier NNge (Nearest neighbor like algorithm using non-nested 

generalized exemplars). 
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Table 3.4 Accuracies of different data classification methods for illustrative example. 

Classifier Accuracy Classifier Accuracy 

BayesNet 84.6% Decorate 90.3% 

NaiveBayes 92.3% END 88.4% 

NaiveBayesSimple 94.2% FilteredClassifier 84.6% 

NaiveBayesUpdateable 92.3% LogitBoost 82.6% 

Logistic 86.5% MultiClassClassifier (RBF) 88.4% 

MultiLayerPerceptron 88.4% MultiClassClassifier 

(MultiLayerPerceptron) 

86.5% 

RBFNetwork 94.2% RandomCommittee 92.3% 

SimpleLogistic 88.4% BFTree 92.3% 

SMO 92.3% J48 84.6% 

IB1 92.3% NBTree 94.2% 

IB2 92.3% RandomForest 92.3% 

IB3 94.2% RandomTree 88.4% 

IB4 92.3% REPTree 94.2% 

IB5 94.2% SimpleCart 92.3% 

IB6 94.2% NNge 96.1% 

KStar 94.2% Bagging 94.2% 

LWL 94.2% Ridor 92.3% 

AttributeSelectedClassifier 88.4% ClassificationviaRegression 90.3% 

 

As a result, suggested three-stage approach performs better than other data 

classification methods that are listed in Table 3.4 for this illustrative example. Thus, this 

new method can be attractive for real life data classification problems. For further 
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investigation to the performance of the developed MILP based algorithm, distinct 

benchmark problems are examined in the next chapter of the thesis.  

3.4.3 The Original and New Testing Algorithms’ Performances on New Thyroid Data 

Set 

In this part of the study, the efficiencies of original and new testing algorithms are 

compared on new thyroid dataset [108].  This data set is composed of 215 samples with 5 

different attribute values and 3 different classes: euthyroidism (class 1), hypothyroidism 

(class 2), or hyperthyroidism (Class 3).  In this dataset, 150 of instances belong to class 1, 

35 of them belong to class 2 and remaining 30 belong to class 3. 

For thyroid data set, 10-fold cross-validation approach is used to estimate the 

performance of three-stage MILP based approach with both original and new testing 

algorithms. 

In Table 3.5, results for the new and original testing algorithms are listed.  As it is 

seen in Table 3.5, the new testing algorithm has better in overall accuracy for thyroid 

dataset.  For the runs 2, 3, 5, 7 and 8, both algorithms give the same accuracy values.  On 

the other hand, in runs 1, 4, 6 and 10 the new testing algorithm has a higher accuracy value.  

Interestingly, the original testing algorithm has 100% accuracy for run 9, which is more 

accurate than the new testing algorithm.  To sum up, we could not conclude that the new 

testing algorithm is always better than the original algorithm with respect to accuracy.  

However, it gives better results on most of the cases and has higher average classification 

accuracy for thyroid data set. 
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Table 3.5 Prediction results for Thyroid data set for original and new testing algorithm. 

# of run 
Accuracy with the original  

testing algorithm 
Accuracy with the new  

testing algorithm 
1 90.90% 95.45% 
2 95.45% 95.45% 
3 95.45% 95.45% 
4 86.36% 90.90% 
5 100% 100% 
6 95.23% 100% 
7 100% 100% 
8 95.23% 95.23% 
9 100% 90.47% 
10 76.19% 80.95% 
Overall 93.48% 94.39% 
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Chapter 4 

 

COMPUTATIONAL RESULTS ON PROTEIN FOLDING TYPE PREDICTION 

 

The performance of proposed three-stage approach is evaluated on distinct protein 

folding type prediction benchmark data sets.  The prediction results and comparisons with 

other data classification methods are examined in this chapter.  

4.1 Protein Folding Type Prediction Problem 

 The prediction of protein folding type is a typical multi-group data classification 

problem.  The are four different classes; all-alpha (α), all-beta (β), alpha+beta (α+β), 

alpha/beta (α/β).  20 amino acid compositions constitute the attributes of protein folding 

type prediction problem. 

4.2 Protein Folding Type Data Sets 

In order to observe the performance of the proposed approach, the following four 

data sets from [97] are tested: 138 domains in Table A.1, 253 domains in Table A.2, 359 

domains in Table A.3, 1601 domains in Table A.4, 225 Domains in Table A.5, 510 

Domains in Table A.6, 2438 Domains in Table A.7.  Moreover, two data sets from [100] 

are studied: 277 Domains in Table A.8 and 498 Domains in Table A.9.  Finally, two more 

data sets from [23] are tested: 1189 Domains in Table A.10 and 25PDB in Table A.11.  

Each of these data sets is constructed from SCOP [91] and Protein Data Bank [90].  The 

unit of classification in the SCOP database is usually the protein domain.  Small proteins 

and most medium-size proteins have single domain.  Domains in large proteins are usually 

classified individually.  Therefore, the sequence of a domain considered here is either the 
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whole chain or a partial chain of a protein.  Each domain is represented by a symbol of 

X|Y, where first four character of X is the corresponding PDB code and the fifth character 

indicates the specific chain of the protein.  If it is _, then the corresponding protein has only 

one chain.  If Y=W.C., it means the domain is constituted by the whole chain.  Otherwise, 

Y contains two number to indicate starting and end points along the sequence. 

In the SCOP database, protein domains are classified into the following 11 

categories [91]: (1) all-α proteins; (2) all-β proteins; (3) α/β proteins; (4) α+β proteins; (5) 

multi-domain proteins; (6) membrane and cell surface proteins; (7) small proteins; (8) 

coiled coils proteins; (9) low resolution proteins; (10) peptides; and (11) designed proteins.  

Usually, only the first four categories are considered for computational prediction purposes 

as they include significant majority of the protein sequences. 

For 138, 253, 359, 225, 510, 277, 498, 1189 and 25PDB protein data sets, they are 

assumed to have four different classes.  On the other hand, for 1601 and 2438 protein 

domains seven different structural classes, i.e. all α, all β, α+β, α/β, multi domain (µ), small 

protein (σ) and peptides (ρ), were used.  Details related to these seven classes were given in 

[23, 97]. 

The leave-one-out (LOO) results of 138, 253, 359 and 1601 data sets are given in 

[97] and [109].  Moreover, the prediction quality is also examined by independent training 

and test data sets as in [97] and [110].  The training data set is composed of 225 protein 

domains and the corresponding test data set contains 510 protein domains.  Furthermore, 

1601 protein domains are used as training set in order to test the performance on 2438 

protein domains.  On the other hand, LOO results of 277 and 498 domain data sets are 

given in [100], [104] and [109].  Finally, 10-fold cross-validation (10FCV) results of 1189 

and 25PDB data sets are mentioned in [23]. 
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4.3 Classification Algorithms 

 In order to compare the results of proposed MILP approach, WEKA classification 

algorithms J48, RBF Network, Logistic, Naïve Bayes (NB), SMO, Random Forest (RF) 

and IB1 are also studied (Table 4.1).  Optimized parameter values of these WEKA 

classifiers given by [23] are used to perform the studies on the given data sets.  Moreover, 

well-known support vector machine implementation LibSVM given by [111] is also 

studied to observe the accuracy values.  For each of the data sets, parameters related to 

SVM algorithm are optimized by performing 10FCV validation with different 

combinations of cost and gamma values.  The optimal values that achieve the highest 

10FCV accuracy are used to obtain the LOO results for each data set (Table 4.2).  

Table 4.2 Optimal parameter values of LibSVM for each of the data sets. 

Data Sets Kernel Type c  
(Cost) 

g  
(Gamma) 

138 Protein Domains Radial Basis Function 2048 8 

253 Protein Domains Radial Basis Function 8192 8 

359 Protein Domains Radial Basis Function 512 8 

277 Protein Domains Radial Basis Function 2048 8 

498 Protein Domains Radial Basis Function 2048 8 

225&510 Protein Domains Radial Basis Function 32 2 

1601&2438 Protein Domains Radial Basis Function 128 8 

1189 Protein Domains Radial Basis Function 512 0.5 

25PDB Protein Domains Radial Basis Function 8 8 
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 Table 4.1 Summary of the applied classification algorithms of WEKA.  

Classifier Reference Short Description 

Naïve 
Bayes  

[112] • Class for a Naive Bayes classifier using estimator classes.  
• Numeric estimator precision values are chosen based on 
analysis of the training data.  

RBF 
Network 

[113] • Class that implements a normalized Gaussian radial basis 
function network.  

• It uses the k-means clustering algorithm to provide the 
basis functions and learns either a logistic regression 
(discrete class problems) or linear regression (numeric 
class problems) on top of that.  

• It standardizes all numeric attributes to zero mean and 
unit variance. 

IB1 [114] • IB1-type classifier.  
• Uses a simple distance measure to find the training 
instance closest to the given test instance, and predict the 
same class as this training instance.  

• If multiple instances are the same (smallest) distance to 
the test instance, the first one found is used. 

J48 [115] • Class for generating an unpruned or a pruned C4.5 
decision tree. 

Random 
Forest  

[116] • Decision tree type algorithm 
• Class for constructing random forests. 

JRip [117] • This class implements a propositional rule learner, 
Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER), which is proposed by William W. 
Cohen as an optimized version of IREP.  

SMO [118] • Implements John C. Platt's sequential minimal 
optimization algorithm for training a support vector 
classifier using polynomial kernels.  

• Transforms output of SVM into probabilities by applying 
a standard sigmoid function that is not fitted to the data.  

Logistic  [119] • Class for building a logistic regression model using 
LogitBoost.  

• Incorporates attribute selection by fitting simple 
regression functions in LogitBoost. 
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Furthermore, the existing results of distance-based classification methods based on 

Hamming Distance (HD), Euclidean Distance (ED) and Component-coupled (CC) 

algorithms given in [97] and [100], the reported results of SVM algorithm used in [110] 

and [109], and the existing result of Neural Networks method given in [104] are also 

investigated for comparison.  

4.4 Results for Independent Data Sets 

Using the 225 training set samples given in [97] (Table A.5), the proposed three-

stage MILP model is solved in GAMS [120] using ILOG CPLEX Solver version 10.0 

[121] on a notebook computer with Inter Pentium M 1.73 Ghz Processor and 512 MB of 

RAM.  The characteristics of the constructed model for 225 training samples are listed in 

Table 4.3. 

After classifying the training data perfectly (self-consistency test result is 100%), 

the test set given in Table A.6 is assigned to constructed hyper-boxes by applying the 

testing algorithm.  The assignment of data in the test set to structural classes is done 

without a prior knowledge on their membership to a class.  For each member of the test 

data set, testing algorithm is applied and an assignment to a structural class is done.  After 

all, the accuracy of the developed model is checked by comparing the original and assigned 

structural classes of proteins.  At the end of the testing, it is realized that 489 proteins in the 

test set are correctly classified.  On the other hand, 21 proteins are misclassified.   

Table 4.3 Characteristics of the MILP model for 225 training samples. 

ITEM VALUE 
# of continuous variables 2401 
# of binary variables 30750 
# of constraints 52495 
# of nodes 283 
# of iterations 22945 
Solver Memory (MB) 12 
CPU time (sec) 29.343 
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Table 4.4 Performance results for the 510 protein domains in the test set. 

Class-based Accuracy 
Methods 

α β α+β α/β 
Overall 
Accuracy 

MILP 93.58% 96.15% 96.32% 97.04% 95.88% 

IB1 90.83% 94.62% 98.53% 97.78% 95.68% 

SVM NA NA NA NA 94.90% 

Random Forest 93.58% 96.15% 86.76% 95.56% 92.94% 

Component-coupled 74.31% 90.00% 87.50% 91.85% 86.47% 

J48 80.73% 59.23% 82.35% 79.26% 75.29% 

LibSVM 63.30% 78.46% 50.00% 42.22% 58.04% 

RBF Network 46.79% 58.46% 51.47% 66.67% 56.27% 

Logistic 68.81% 77.69% 30.15% 50.37% 55.88% 

Naïve Bayes  45.87% 69.23% 24.26% 77.78% 54.50% 

SMO 50.46% 49.23% 49.26% 50.37% 49.80% 

JRip 18.35% 66.15% 74.26% 26.67% 47.64% 

Euclidean Distance 50.46% 75.38% 23.53% 41.48% 47.25% 

Hamming Distance 60.55% 73.08% 22.06% 36.30% 47.06% 

 

 The overall accuracy of the proposed model on 510 protein domains is 95.88%.  

The results of distance-based classification methods Hamming Distance, Euclidean 

Distance and Component-coupled algorithms [97] and the result of SVM algorithm [110] 

are listed in Table 4.4.  Moreover, LibSVM and classifiers found in WEKA are also studied 

to observe the accuracy values.  Proposed three-stage MILP approach gives the highest 

accuracy for this test set as shown in Table 4.4.  IB1, instance-based classifier, has the 

closest accuracy value to MILP approach.  SVM result given in [110] has a higher accuracy 

value compared to well-known support vector machine implementations SMO and 

LibSVM.  As Cai et al. [110] did not provide individual accuracy values of classes and 
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detailed confusion matrix; we could not compare classed-based accuracies.  Hamming 

Distance and Euclidean Distance algorithm has the worst accuracy values for this data set.   

 In the same manner, 1601 domains data set (Table A.4) is studied by proposed 

three-stage MILP approach.  After classifying the training data perfectly self-consistency 

test result is 100%), the test set composed of 2438 domains given in Table A.7 is assigned 

to constructed hyper-boxes by applying the testing problem algorithm.  The accuracy of the 

developed model is checked by comparing the original and assigned structural classes of 

proteins.  At the end of the testing, it is realized that 2318 proteins in the test set are 

correctly classified.  On the other hand, 120 proteins are misclassified.   

Table 4.5 Performance results for the 2438 protein domain in the test set. 

Class-based Accuracy 
Methods 

α β α+β α/β µ σ ρ 

Overall 

Accuracy 

MILP 96.44% 95.74% 95.72% 97.25% 71.74% 87.34% 85.00% 95.08% 

IB1 95.17% 94.18% 97.20% 95.48% 89.13% 94.30% 65.00% 95.03% 

SVM NA NA NA NA NA NA NA 94.50% 

RF 93.38% 92.76% 94.74% 92.14% 86.96% 96.84% 75.00% 93.23% 

J48 83.72% 87.93% 87.34% 88.41% 71.74% 85.44% 35.00% 86.54% 

LibSVM 79.39% 92.90% 79.11% 87.43% 90.00% 96.20% 0.0% 84.58% 

CC 68.70% 78.27% 69.74% 86.44% 76.09% 90.51% 75.00% 77.03% 

JRip 64.12% 91.05% 44.57% 51.47% 13.04% 89.24% 60.00% 65.01% 

RBF 65.14% 70.17% 52.63% 68.76% 41.30% 85.44% 35.00% 64.84% 

SMO 58.78% 72.44% 60.36% 64.83% 0.00% 76.58% 0.00% 63.94% 

Logistic 63.87% 76.28% 51.64% 60.90% 0.00% 79.11% 0.00% 63.04% 

NB 58.78% 67.05% 26.64% 72.69% 28.26% 80.38% 40.00% 56.72% 

ED 56.23% 57.10% 23.52% 49.51% 50.00% 77.22% 5.00% 47.74% 

HD 47.08% 58.81% 10.36% 45.58% 47.83% 74.05% 0.00% 42.38% 
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 The overall accuracy of the proposed model on 2438 protein domains is 95.08%.  In 

Table 4.5, accuracy results given in [97] and [110] are listed.  Moreover, LibSVM and the 

same classifiers found in WEKA are also studied.  Proposed three-stage MILP approach 

gives the highest accuracy for this test data set than Hamming Distance, Euclidean 

Distance, Component-coupled and SVM methods.  However, the accuracy values of MILP 

approach is much closer to IB1 accuracy value.  SVM result compared to well-known 

support vector machine classifiers LibSVM and SMO.   

4.5 Results for Self-consistency Tests 

 For self-consistency tests, data sets with 138, 253, 359, 1601, 277 and 498 protein 

domains given in Appendix are used.  Using these data sets, the proposed three-stage MILP 

model is solved in GAMS [120] using ILOG CPLEX Solver version 10.0 [121] on a 

notebook computer with Inter Pentium M 1.73 Ghz Processor and 512 MB of RAM.  For 

each data set, as we will perform LOO tests, training runs are carried out.  Average self-

consistency test results for 138, 253, 359 and 1601 data sets are given in Table 4.6. 

Moreover, average self-consistency test results for 277 and 498 domains are listed in Table 

4.7.  

Table 4.6 Self-consistency test results for 138, 253, 359 and 1601 Domains. 

          Methods 138 Domains 253 Domains 359 Domains 

Hamming Distance [97] 55.8% 52.57% 55.15% 

Euclidean Distance [97] 57.25% 53.36% 52.37% 

Component-coupled [97] 97.83% 95.26% 94.43% 

SVM [110] 100% 100% 93% 

3-Stage MILP Approach 100% 100% 100% 
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Table 4.7 Self-consistency test results for 277 and 498 Domains. 

      Methods 277 Domains 498 Domains 

Hamming Distance [100] 62.8% 65.5% 

Euclidean Distance [100] 58.8% 64.3% 

Component-coupled [100] 94.2% 95.8% 

NN [104] 93.5% 94.6% 

SVM [109] 100% 100% 

3-Stage MILP Approach 100% 100% 

 Self-consistency test results indicate the percentage of information grasped during 

the training studies that captures the relationship between amino acid composition and 

protein folding type.  As it could be observed from Table 4.6 and Table 4.7., proposed 

three-stage MILP approach gives highest self-consistency results for each one of the data 

sets. Hence, the relationship between amino acid composition and protein folding type is 

fully grasped by the developed approach.  

4.6 Results for Leave-one-out Tests 

 In this part, structural classes of leaved-out proteins are predicted by the results 

derived using all other proteins in the training set.  LOO test results for 138 protein 

domains are given in Table 4.8.  LibSVM method has the highest LOO test result for 138 

protein domains data set with accuracy of 70.29%.  Proposed MILP approach has the 

second best LOO accuracy value, 67.39%, for 138 protein domains data set.  IB1 classifier 

of WEKA also has a very close result to MILP approach.  Detailed comparison of these 

methods based on hypothesis testing is given in Section 4.8.   
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Table 4.8 LOO test results for 138 protein domains. 

Class-based Accuracy 
Methods 

α β α+β α/β 

Overall 

Accuracy 

LibSVM 80.56% 75.86% 65.85% 59.40% 70.29% 

MILP 83.33% 79.31% 63.41% 43.80% 67.39% 

IB1 61.11% 79.31% 58.54% 71.90% 66.67% 

Component-coupled 77.78% 55.17% 85.37% 28.12% 63.77% 

SMO 63.89% 75.86% 53.66% 53.10% 60.87% 

J48 63.89% 72.41% 58.54% 50.00% 60.87% 

Random Forest 66.67% 65.52% 56.10% 53.10% 60.14% 

RBF Network 63.89% 62.07% 56.10% 50.00% 57.97% 

SVM 52.77% 75.86% 58.50% 43.75% 57.24% 

Naïve Bayes  63.89% 65.52% 34.15% 56.30% 53.62% 

Logistic 61.11% 65.52% 46.34% 40.60% 52.90% 

Hamming Distance 61.11% 55.17% 36.59% 43.75% 48.55% 

Euclidean Distance 61.11% 51.72% 34.15% 40.62% 46.38% 

JRip 50.00% 58.62% 48.78% 18.80% 44.20% 

 Existing and calculated LOO test results for 253 protein domains are given in Table 

4.9.  Proposed three-stage MILP approach has the highest LOO test result for 253 protein 

domains with accuracy of 87.65%.  Instance-based classifier IB1 has the second best result 

with accuracy value of 86.45%.  Random Forest classifier and LibSVM have also high 

classification accuracy values with respect to other methods.   
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Table 4.9 LOO test results for 253 protein domains. 

Class-based Accuracy 
Methods 

α β α+β α/β 

Overall 

Accuracy 

MILP 91.94% 85.96% 92.96% 78.69% 87.65% 

IB1 90.32% 85.96% 80.28% 90.16% 86.45% 

Random Forest 87.10% 80.70% 80.28% 83.61% 82.86% 

LibSVM 88.71% 77.19% 76.06% 85.25% 81.67% 

J48 80.65% 68.42% 67.61% 73.77% 72.51% 

Component-coupled 84.13% 79.31% 70.49% 81.69% 63.77% 

JRip 66.13% 61.40% 63.38% 55.74% 61.75% 

SMO 67.74% 70.18% 52.11% 52.46% 60.15% 

RBF Network 66.13% 66.67% 53.52% 52.46% 59.36% 

Naïve Bayes  69.35% 59.65% 40.85% 68.85% 58.96% 

SVM 84.12% 79.31% 81.96% 87.32% 57.24% 

Logistic 61.29% 63.16% 49.30% 37.70% 52.58% 

Hamming Distance 60.32% 60.34% 47.54% 29.58% 48.55% 

Euclidean Distance 58.73% 62.07% 47.54% 35.21% 46.38% 

 Table 4.10 shows the LOO test results for 359 protein domains.  Proposed three-

stage MILP based approach has the highest LOO test result for 359 protein domains with 

accuracy of 96.38%.  The accuracy value of the SVM method given in [110] is the second 

best result.  However, the well-known support vector machine classifiers LibSVM and 

SMO have surprisingly lower results than this SVM result. Instance-based classifier IB1 

and LibSVM has also higher classification accuracy values than other existing methods.  
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Table 4.10 LOO test results for 359 protein domains. 

Class-based Accuracy 
Methods 

α β α+β α/β 

Overall 

Accuracy 

MILP 98.78% 97.65% 92.47% 96.97% 96.38% 

SVM 92.68% 96.47% 96.77% 94.94% 95.26% 

IB1 93.90% 94.12% 88.17% 97.98% 93.59% 

LibSVM 92.68% 90.59% 86.02% 96.97% 91.64% 

Random Forest 89.02% 88.24% 82.80% 94.95% 88.85% 

Component-coupled 89.02% 83.53% 78.49% 85.85% 84.12% 

J48 76.83% 88.24% 69.89% 85.86% 80.22% 

JRip 76.83% 74.12% 63.44% 77.78% 72.98% 

RBF Network 67.07% 65.88% 53.76% 69.70% 64.06% 

SMO 65.85% 69.41% 45.16% 70.71% 62.67% 

Naïve Bayes  68.29% 67.06% 36.56% 73.74% 61.28% 

Logistic 57.32% 65.88% 47.31% 53.54% 55.71% 

Hamming Distance 57.32% 60.00% 33.33% 59.60% 52.37% 

Euclidean Distance 62.20% 60.00% 34.41% 43.43% 41.22% 

 LOO test results for 277 protein domains are given in Table 4.11.  LibSVM method 

has the highest LOO test result for 277 protein domains with accuracy value of 84.48%.  

Ib1 has a very close accuracy value of 84.11% for 277 protein data set.  Proposed three-

stage MILP based approach has the third highest LOO test result for 277 protein domains 

data set with accuracy value of 81.50%.     
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Table 4.11 LOO test results for 277 protein domains. 

Class-based Accuracy 
Methods 

α β α+β α/β 

Overall 

Accuracy 

LibSVM 82.86% 88.52% 75.83% 90.12% 84.48% 

IB1 80.00% 88.52% 73.85% 92.59% 84.11% 

MILP 87.14% 75.41% 72.31% 88.89% 81.50% 

SVM 74.30% 82.00% 72.30% 87.70% 79.40% 

Component-coupled 84.30% 82.00% 67.70% 81.50% 79.10% 

Random Forest 75.71% 83.61% 70.77% 85.19% 79.06% 

J48 77.14% 77.05% 64.62% 85.19% 76.53% 

Neural Network 68.60% 85.20% 56.90% 86.40% 74.70% 

RBF Network 77.14% 68.85% 53.85% 77.78% 70.03% 

SMO 72.86% 75.41% 44.62% 77.78% 68.23% 

JRip 64.29% 75.41% 55.38% 76.54% 68.23% 

Naïve Bayes  74.29% 57.38% 47.69% 77.78% 65.34% 

Logistic 71.43% 67.21% 44.62% 58.02% 60.28% 

City-block Distance 72.90% 62.30% 43.10% 60.50% 59.90% 

Euclidean Distance 71.40% 54.10% 41.50% 53.10% 55.20% 

 Table 4.12 shows the LOO test results for 498 protein domains.  The overall 

accuracy of the proposed MILP model on 498 protein domains is 92.97%.  On the other 

hand, the best accuracy value is 93.20% received by SVM given in [110].  However, the 

accuracy value of MILP approach is closer to SVM accuracy value.  Moreover, the 

accuracy values of LibSVM and SMO classifiers are 92.17% and 76.30%, respectively, 

which are lower with respect to SVM result given in [110].  As they did not give any 
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detailed information related to predicted results for 498 data sets, we could not investigate 

the results in deeper.  

Table 4.12 LOO test results for 498 protein domains. 

Class-based Accuracy 
Methods 

α β α+β α/β 

Overall 

Accuracy 

SVM 88.80% 95.20% 91.50% 96.30% 93.20% 

MILP 91.59% 94.44% 93.80% 91.91% 92.97% 

IB1 89.72% 96.83% 88.37% 95.59% 92.77% 

LibSVM 91.59% 94.44% 89.92% 92.65% 92.17% 

Random Forest 89.72% 92.86% 89.92% 94.12% 91.76% 

Component-coupled 93.50% 88.90% 84.50% 90.40% 89.20% 

Neural Network 86.00% 96.00% 86.00% 88.20% 89.20% 

JRip 87.85% 88.89% 83.72% 88.24% 87.14% 

J48 84.11% 88.89% 86.82% 87.50% 86.94% 

SMO 71.03% 71.43% 74.42% 86.76% 76.30% 

Logistic 68.22% 79.70% 65.89% 82.35% 74.29% 

RBF Network 68.22% 75.40% 68.22% 74.26% 71.68% 

Naïve Bayes  76.64% 72.22% 55.81% 75.00% 69.67% 

Euclidean Distance 73.80% 65.10% 56.60% 60.30% 63.50% 

City-block Distance 64.50% 68.30% 50.40% 67.70% 62.70% 

 

4.7 Results for 10-Fold Cross-validation Tests 

For the 1189 and 25PDB data sets, there exists 10-fold cross validation results in 

literature.  Therefore, we investigate the performance of these data sets by applying 10-fold 

cross-validation (10FCV).  The 10FCV test results for 1189 protein domains are given in 
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Table 4.13.  The overall accuracy of the proposed model on 1189 protein domains is 

53.30% with the highest accuracy value.  LibSVM and Logistic classifiers has second and 

third best results for 1189 data set.  On the other hand, the IB1 classifier which gives 

generally better results for the above data sets has the worst accuracy value for 1189 data 

set.  This is a surprising result.   

Table 4.13 10FCV test results for 1189 protein domains. 

Class-based Accuracy 
Methods 

α β α+β α/β 

Overall 

Accuracy 

MILP 76.23% 59.86% 36.52% 44.31% 53.30% 

LibSVM 47.09% 65.99% 12.03% 74.55% 52.84% 

Logistic 51.57% 67.35% 15.35% 66.17% 52.29% 

SMO 46.19% 63.61% 8.29% 75.15% 51.37% 

RBF Network 45.74% 53.40% 24.07% 71.86% 51.01% 

Naïve Bayes  45.74% 50.68% 14.11% 79.04% 50.27% 

Random Forest 47.53% 58.50% 21.99% 48.50% 45.15% 

JRip 25.56% 45.24% 1.66% 82.63% 43.04% 

J48 41.26% 48.30% 24.48% 51.20% 42.49% 

IB1 39.46% 46.60% 19.08% 54.79% 41.57% 

 

10FCV test results for 25PDB protein domains are given in Table 4.14. The overall 

accuracy of the proposed model on 1189 protein domains is 51.82%.  The highest accuracy 

value is achieved by LibSVM method with 52.54%.  SMO classifier has a very close 

accuracy value to LibSVM.  MILP approach has the third best accuracy value as Logistic 

classifier.  On the other hand, the IB1 classifier which gives generally better results for the 

above data sets has the second worst accuracy value for 25PDB data set.  
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Table 4.14 10FCV test results for 25PDB protein domains. 

Class-based Accuracy 
Methods 

α β α+β α/β 

Overall 

Accuracy 

LibSVM 65.69% 59.37% 29.48% 56.36% 52.54% 

SMO 67.49% 63.66% 34.01% 40.17% 52.00% 

MILP 60.95% 56.43% 53.47% 36.73% 51.82% 

Logistic 66.82% 62.75% 34.24% 41.04% 51.82% 

RBF Network 57.11% 52.37% 29.93% 60.69% 49.43% 

Naïve Bayes  51.02% 45.82% 29.25% 69.36% 47.69% 

Random Forest 58.24% 52.60% 27.44% 36.42% 44.11% 

J48 49.21% 42.44% 31.29% 38.15% 40.40% 

IB1 40.18% 35.89% 27.44% 49.13% 37.53% 

JRip 42.89% 39.50% 2.49% 19.94% 26.59% 

4.8 Statistical Analysis of the Results 

 In order to analyze the results in detail, sensitivity (SEN), specificity (SPE), MCC 

and S values of each of the protein data sets are calculated and examined (Table 4.15 - 

Table 4.24).  The specificity values are always significantly greater compared to 

sensitivity.  High average specificity means that the number of under predicted proteins is 

low.  Thus, low accuracy is a result of relatively low sensitivity values.  Moreover, as 

sensitivity values increases, the difference between sensitivity and specificity decreases.  

Therefore, observing high specificity values do not mean that the values of classification 

accuracy are good as expected. 

MCC value gives the strength of relationship between the actual and predicted 

values.  A perfect fit will give a MCC value of 1.  Due to the low sensitivity for 138 

Domains data set, MCC and S values are low for each of the classes.  This means that the 

classifier could not effectively capture the characteristics of that class.  For a perfect 
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prediction, S value should be equal to 1 and 0 for vice versa.  On the other hand, when we 

observe the results of each data set in overall, each of the classes have higher and lower 

MCC and S values with respect to the remaining classes.  Hence, we could not say that 

MILP based hyper-box enclosure approach performs rather purely for any of the classes. 

Depending on the data sets, proposed data classification approach works well for each of 

the classes. 

Table 4.15 Values of performance measures for the 138 protein domains. 

MCC S 
Classifier SEN SPE 

α β α+β α/β α β α+β α/β 

LibSVM 70.29% 89.79% 0.62 0.66 0.53 0.51 0.51 0.5 0.47 0.45 

MILP 67.39% 88.59% 0.65 0.58 0.49 0.38 0.5 0.46 0.44 0.36 

IB1 66.67% 89.35% 0.54 0.66 0.55 0.42 0.44 0.48 0.45 0.39 

Component-coupled 63.77% NA NA NA NA NA NA NA NA NA 

SMO 60.87% 86.55% 0.48 0.64 0.34 0.31 0.4 0.44 0.33 0.32 

J48 60.87% 86.38% 0.45 0.56 0.35 0.38 0.39 0.42 0.34 0.35 

Random Forest 60.14% 86.01% 0.41 0.54 0.34 0.42 0.37 0.41 0.33 0.37 

RBF Network 57.97% 85.54% 0.47 0.44 0.31 0.33 0.38 0.37 0.31 0.32 

SVM 57.24% NA NA NA NA NA NA NA NA NA 

Naïve Bayes 53.62% 85.06% 0.44 0.41 0.23 0.24 0.35 0.34 0.26 0.26 

Logistic 52.90% 84.21% 0.38 0.42 0.24 0.17 0.33 0.34 0.27 0.24 

Hamming Distance 48.55% NA NA NA NA NA NA NA NA NA 

Euclidean Distance 46.38% NA NA NA NA NA NA NA NA NA 

JRip 44.20% 79.72% 0.22 0.41 0.03 -0.03 0.25 0.3 0.12 0.16 

 

 

 



  
Chapter 4: Computational Results on Protein Folding Type Prediction 96 
   

 

  
 

Table 4.16 Values of performance measures for the 253 protein domains. 

MCC S 
Classifier SEN SPE 

α β α+β α/β α β α+β α/β 

MILP 87.65% 95.87% 0.84 0.84 0.88 0.76 0.74 0.72 0.76 0.7 

IB1 86.45% 95.47% 0.87 0.84 0.78 0.79 0.73 0.71 0.71 0.71 

Random Forest 82.86% 94.11% 0.79 0.78 0.71 0.78 0.67 0.65 0.65 0.66 

LibSVM 81.67% 93.86% 0.79 0.71 0.7 0.8 0.65 0.61 0.63 0.65 

J48 72.51% 90.71% 0.7 0.6 0.55 0.61 0.54 0.5 0.49 0.51 

Component-coupled 63.77% NA NA NA NA NA NA NA NA NA 

JRip 61.75% 86.54% 0.59 0.54 0.33 0.37 0.44 0.42 0.33 0.36 

SMO 60.15% 86.54% 0.53 0.58 0.34 0.27 0.41 0.42 0.33 0.29 

RBF Network 59.36% 86.08% 0.49 0.54 0.3 0.33 0.4 0.41 0.31 0.33 

Naïve Bayes 58.96% 86.40% 0.56 0.46 0.3 0.35 0.41 0.38 0.3 0.33 

SVM 57.24% NA NA NA NA NA NA NA NA NA 

Logistic 52.58% 84.07% 0.38 0.43 0.26 0.12 0.33 0.35 0.28 0.21 

Hamming Distance 48.55% NA NA NA NA NA NA NA NA NA 

Euclidean Distance 46.38% NA NA NA NA NA NA NA NA NA 

 

For 2438 Domain data set, there are 7 different classes.  Similar to above 

observations, specificity values are higher than the sensitivity values (Table 4.21 & Table 

4.22). Furthermore, MCC and S values of classes α, β, α+β and α/β are greater than the 

MCC and S values of classes µ, σ and ρ.  As the number of proteins belongs to the classes 

α, β, α+β and α/β are higher, proposed approach grasped the characteristics of these classes 

well.  On the other hand, instances in µ, σ and ρ classes are very low with respect to the 

other classes. Hence, MCC and S values of these classes are low.   
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Table 4.17 Values of performance measures for the 359 protein domains. 

MCC S 
Classifier SEN SPE 

α β α+β α/β α β α+β α/β 

MILP 96.38% 98.77% 0.97 0.97 0.92 0.95 0.91 0.91 0.91 0.91 

SVM 95.26% NA NA NA NA NA NA NA NA NA 

IB1 93.59% 97.81% 0.93 0.94 0.84 0.95 0.84 0.85 0.83 0.86 

LibSVM 91.64% 97.20% 0.88 0.9 0.84 0.92 0.8 0.8 0.8 0.83 

Random Forest 88.85% 96.29% 0.82 0.87 0.81 0.89 0.74 0.75 0.74 0.78 

Component-coupled 84.12% NA NA NA NA NA NA NA NA NA 

J48 80.22% 93.31% 0.73 0.78 0.65 0.75 0.61 0.63 0.58 0.63 

JRip 72.98% 90.77% 0.69 0.64 0.55 0.61 0.54 0.52 0.48 0.52 

RBF Network 64.06% 87.70% 0.58 0.52 0.38 0.47 0.44 0.42 0.36 0.41 

SMO 62.67% 87.35% 0.6 0.54 0.16 0.62 0.44 0.43 0.18 0.46 

Naïve Bayes 61.28% 86.55% 0.58 0.52 0.27 0.41 0.43 0.41 0.29 0.37 

Logistic 55.71% 84.87% 0.4 0.47 0.3 0.25 0.35 0.37 0.31 0.27 

Hamming Distance 52.37% NA NA NA NA NA NA NA NA NA 

Euclidean Distance 41.22% NA NA NA NA NA NA NA NA NA 
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Table 4.18 Values of performance measures for the 277 protein domains. 

MCC S 
Classifier SEN SPE 

α β α+β α/β α β α+β α/β 

LibSVM 84.48% 94.72% 0.76 0.82 0.75 0.82 0.67 0.68 0.65 0.71 

IB1 84.11% 94.19% 0.8 0.82 0.79 0.75 0.67 0.68 0.66 0.68 

MILP 81.50% 93.74% 0.7 0.73 0.73 0.82 0.63 0.61 0.61 0.67 

SVM 79.40% NA NA NA NA NA NA NA NA NA 

Component-coupled 79.10% NA NA NA NA NA NA NA NA NA 

Random Forest 79.06% 92.91% 0.69 0.73 0.68 0.74 0.59 0.6 0.57 0.62 

J48 76.53% 92.18% 0.66 0.69 0.56 0.76 0.56 0.56 0.5 0.61 

NN 74.70% NA NA NA NA NA NA NA NA NA 

RBF Network 70.03% 89.54% 0.64 0.6 0.48 0.57 0.51 0.48 0.43 0.49 

SMO 68.23% 88.74% 0.68 0.61 0.41 0.51 0.5 0.48 0.38 0.45 

JRip 68.23% 88.95% 0.52 0.63 0.49 0.55 0.45 0.49 0.42 0.47 

Naïve Bayes 65.34% 87.62% 0.63 0.51 0.39 0.48 0.47 0.42 0.37 0.42 

Logistic 60.28% 86.31% 0.55 0.51 0.3 0.34 0.42 0.4 0.31 0.33 

Hamming Distance 59.90% NA NA NA NA NA NA NA NA NA 

Euclidean Distance 55.20% NA NA NA NA NA NA NA NA NA 
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Table 4.19 Values of performance measures for the 498 protein domains. 

MCC S 
Classifier SEN SPE 

α β α+β α/β α β α+β α/β 

SVM 93.20% NA NA NA NA NA NA NA NA NA 

MILP 92.97% 97.65% 0.89 0.93 0.9 0.9 0.82 0.84 0.84 0.84 

IB1 92.77% 97.53% 0.89 0.93 0.89 0.9 0.81 0.84 0.83 0.84 

LibSVM 92.17% 97.40% 0.88 0.92 0.88 0.89 0.8 0.83 0.82 0.83 

Random Forest 91.76% 97.25% 0.87 0.9 0.87 0.91 0.79 0.81 0.81 0.82 

Component-coupled 89.20% NA NA NA NA NA NA NA NA NA 

NN 89.20% NA NA NA NA NA NA NA NA NA 

JRip 87.14% 95.63% 0.84 0.83 0.82 0.81 0.72 0.73 0.72 0.73 

J48 86.94% 95.62% 0.79 0.87 0.81 0.81 0.7 0.73 0.72 0.73 

SMO 76.30% 91.84% 0.65 0.68 0.72 0.65 0.54 0.56 0.57 0.56 

Logistic 74.29% 91.25% 0.6 0.73 0.59 0.64 0.51 0.56 0.51 0.54 

RBF Network 71.68% 90.30% 0.62 0.62 0.6 0.56 0.5 0.51 0.5 0.49 

Naïve Bayes 69.67% 89.74% 0.61 0.65 0.54 0.52 0.49 0.5 0.45 0.46 

Euclidean Distance 63.50% NA NA NA NA NA NA NA NA NA 

Hamming Distance 62.70% NA NA NA NA NA NA NA NA NA 

 

 

 

 

 

 

 

 

 



  
Chapter 4: Computational Results on Protein Folding Type Prediction 100 
   

 

  
 

Table 4.20 Values of performance measures for the 510 protein domains. 

MCC S 
Classifier SEN SPE 

α β α+β α/β α β α+β α/β 

MILP 95.88% 98.60% 0.93 0.94 0.95 0.95 0.89 0.9 0.9 0.9 

IB1 95.68% 98.52% 0.92 0.93 0.96 0.95 0.88 0.89 0.9 0.9 

SVM 94.90% NA NA NA NA NA NA NA NA NA 

Random Forest 92.94% 97.69% 0.89 0.93 0.87 0.92 0.82 0.84 0.83 0.84 

Component-coupled 86.47% NA NA NA NA NA NA NA NA NA 

J48 75.29% 91.97% 0.63 0.6 0.81 0.61 0.53 0.51 0.6 0.54 

LibSVM 58.04% 86.02% 0.4 0.61 0.27 0.28 0.36 0.43 0.29 0.3 

RBF Network 56.27% 84.93% 0.4 0.33 0.25 0.46 0.35 0.32 0.28 0.37 

Logistic 55.88% 83.60% 0.39 0.54 0.07 0.34 0.34 0.39 0.15 0.32 

Naïve Bayes 54.50% 84.26% 0.42 0.39 0.1 0.42 0.34 0.34 0.2 0.35 

SMO 49.80% 82.24% 0.48 0.41 0.07 0.2 0.34 0.32 0.13 0.25 

JRip 47.64% 81.27% 0.32 0.4 0.18 0.14 0.27 0.32 0.18 0.22 

Euclidean Distance 47.25% NA NA NA NA NA NA NA NA NA 

Hamming Distance 47.06% NA NA NA NA NA NA NA NA NA 
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Table 4.21 Values of performance measures-1 for the 2438 protein domains. 

MCC 
Classifier 

ACC 

(SEN) 
SPE 

α β α+β α/β ρ σ µ 

MILP 95.08% 98.51% 0.91 0.94 0.94 0.96 0.9 0.93 0.82 

IB1 95.03% 98.78% 0.94 0.95 0.96 0.9 0.78 0.95 0.85 

SVM 94.50% NA NA NA NA NA NA NA NA 

Random Forest 93.23% 98.11% 0.92 0.91 0.93 0.88 0.79 0.95 0.93 

J48 86.54% 96.27% 0.79 0.84 0.83 0.82 0.57 0.9 0.8 

LibSVM 84.58% 95.46% 0.78 0.86 0.77 0.75 0.86 0.97 0 

Component-coupled 77.03% NA NA NA NA NA NA NA NA 

JRip 65.01% 87.34% 0.66 0.46 0.56 0.53 0.58 0.86 0.29 

RBF Network 64.84% 90.49% 0.58 0.57 0.44 0.46 0.36 0.79 0.32 

SMO 63.94% 88.99% 0.51 0.52 0.47 0.45 0 0.79 0 

Logistic 63.04% 89.22% 0.47 0.55 0.42 0.45 0 0.75 0 

Naïve Bayes 56.72% 88.79% 0.52 0.49 0.26 0.35 0.33 0.77 0.16 

Euclidean Distance 47.74% NA NA NA NA NA NA NA NA 

Hamming Distance 42.38% NA NA NA NA NA NA NA NA 
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Table 4.22 Values of performance measures-2 for the 2438 protein domains. 

S 
Classifier 

ACC 

(SEN) 
SPE 

α β α+β α/β ρ  σ µ 

MILP 95.08% 98.51% 0.85 0.89 0.88 0.87 0.54 0.74 0.57 

IB1 95.03% 98.78% 0.85 0.89 0.88 0.86 0.52 0.75 0.6 

SVM 94.50% NA NA NA NA NA NA NA NA 

Random Forest 93.23% 98.11% 0.8 0.85 0.84 0.82 0.51 0.71 0.57 

J48 86.54% 96.27% 0.66 0.73 0.72 0.7 0.47 0.59 0.5 

LibSVM 84.58% 95.46% 0.63 0.72 0.67 0.66 0.48 0.59 0.43 

Component-coupled 77.03% NA NA NA NA NA NA NA NA 

JRip 65.01% 87.34% 0.45 0.39 0.42 0.42 0.4 0.45 0.39 

RBF Network 64.84% 90.49% 0.43 0.46 0.39 0.4 0.39 0.44 0.38 

SMO 63.94% 88.99% 0.41 0.43 0.41 0.39 0.38 0.43 0.38 

Logistic 63.04% 89.22% 0.39 0.44 0.38 0.39 0.38 0.43 0.37 

Naïve Bayes 56.72% 88.79% 0.38 0.39 0.28 0.32 0.36 0.4 0.34 

Euclidean Distance 47.74% NA NA NA NA NA NA NA NA 

Hamming Distance 42.38% NA NA NA NA NA NA NA NA 
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Table 4.23 Values of performance measures for the 1189 protein domains. 

MCC S 
Classifier 

ACC 
(SEN) 

SPE 
α β α+β α/β α β α+β α/β 

MILP 53.30% 84,91% 0.37 0.36 0.285 0.28 0.31 0.33 0.3 0.28 

LibSVM 52.84% 81,90% 0.37 0.39 0.025 0.3 0.33 0.33 0.2 0.28 

Logistic 52.28% 82,45% 0.36 0.39 0.045 0.27 0.32 0.33 0.21 0.27 

SMO 51.37% 81,30% 0.35 0.35 0.028 0.27 0.31 0.32 0.21 0.26 

RBF Network 51.00% 82,29% 0.31 0.31 0.07 0.31 0.3 0.3 0.21 0.29 

Naïve Bayes 50.27% 81,26% 0.33 0.3 0.019 0.3 0.3 0.29 0.2 0.27 

Random Forest 45.14% 80,85% 0.24 0.23 -0.01 0.14 0.26 0.25 0.17 0.21 

JRip 43.04% 76,81% 0.18 0.23 -0.08 0.14 0.24 0.25 0.19 0.14 

J48 42.49% 80,22% 0.14 0.13 -0.02 0.14 0.22 0.21 0.17 0.21 

IB1 41.57% 79,49% 0.1 0.22 -0.07 0.07 0.21 0.24 0.15 0.16 

Table 4.24 Values of performance measures for the 25PDB protein domains. 

MCC S 
Classifier 

ACC 
(SEN) 

SPE 
α β α+β α/β α β α+β α/β 

LibSVM 52.54% 84.20% 0.42 0.35 0.082 0.32 0.34 0.32 0.19 0.31 

SMO 52.00% 83.64% 0.42 0.35 0.096 0.25 0.34 0.31 0.19 0.28 

MILP 51.82% 83.74% 0.39 0.29 0.322 0.13 0.33 0.29 0.31 0.21 

Logistic 51.82% 83.54% 0.4 0.33 0.107 0.26 0.34 0.31 0.2 0.29 

RBF Network 49.43% 83.30% 0.36 0.29 0.038 0.3 0.31 0.29 0.16 0.29 

Naïve Bayes 47.69% 83.31% 0.32 0.26 0.054 0.27 0.29 0.27 0.18 0.26 

Random Forest 44.11% 80.87% 0.22 0.18 -0 0.16 0.24 0.23 0.15 0.24 

J48 40.40% 79.75% 0.15 0.07 -0.04 0.12 0.21 0.18 0.12 0.21 

IB1 37.53% 79.79% 0.11 0.07 -0.08 0.04 0.2 0.18 0.11 0.16 

JRip 26.59% 74.05% -0.26 -0.3 -0.1 0.03 -0 -0.01 0.14 0.16 
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In order to evaluate if there is any statistical significant difference between the 

existing and proposed data classification approaches tested on the same data sets, P-value 

(paired test) analysis are carried out.  The results of P-value test results are given in Table 

4.25 and in Table 4.26.   

Table 4.25 The results of P-value analyses. 

138 253 359 277 498 510 2438 1189 25PDB 

Compared Methods P 

Value 

P 

Value 

P 

Value 

P 

Value 

P 

Value 

P 

Value 

P 

Value 

P 

Value 

P 

Value 

MILP vs HD 2.91 9.44 13.5 5.58 10.77 16.15 39.23 NA NA 

MILP vs ED 3.27 9.89 15.95 6.65 10.53 16.1 36.09 NA NA 

MILP vs CC 0.37 6.29 5.53 0.71 1.17 3.63 17.57 NA NA 

MILP vs SVM 1.48 1.39 0.74 0.62 1.06 1.06 0.12 NA NA 

MILP vs LibSVM 0.52 1.87 2.68 0.93 0.48 14.35 12.13 0.22 0.42 

MILP vs SMO 1.13 7.04 11.19 4.09 7.29 16.54 26.94 0.9 0.1 

MILP vs NN NA NA NA 1.93 1.17 NA NA NA NA 

MILP vs IB1 0.13 0.4 1.71 0.81 0.12 0.16 0.08 5.49 8.31 

MILP vs J48 1.13 4.26 6.74 1.63 3.16 9.36 10.32 5.06 6.63 

MILP vs Random Forest 1.25 1.52 3.86 0.82 0.72 2.04 2.75 3.81 4.64 

MILP vs RBF Network 1.62 7.21 10.87 3.58 8.81 14.83 26.38 1.08 1.38 

MILP vs JRip 3.88 6.7 8.7 4.09 3.07 17.11 26.27 4.79 14.95 

MILP vs NaiveBayes 2.34 7.29 11.51 4.9 9.43 15.3 31.31 1.42 2.39 

MILP vs Logistic 2.46 8.62 12.77 6.25 7.29 14.93 27.49 0.48 0 

 

The accuracy values of MILP approach on each of the data sets is statistically 

significant than the accuracies of the distance based algorithms HD and ED given in [97] 

and [100].  Since there are not any existing literature results of these methods for 1189 and 

25PDB data sets, P-value analysis for these data sets are not available.  On the other hand, 

there is no statistical difference between the CC algorithm and MILP approach for 138, 277 
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and 498 data sets.  However, MILP approach is statistically significant than CC algorithm 

for the data sets 253, 359, 510 and 2438.  There is no statistically significant difference 

between the accuracy values of SVM given in [109] and [110] and proposed MILP 

approach.  However, the results given in [110] are not consistent with the results achieved 

by LibSVM and SMO.   

Table 4.26 The results of P-test. 

138 253 359 277 498 510 2438 1189 25PDB 

Compared Methods 
 P 

Test 

Result 

P 

Test 

Result 

 P 

Test 

Result 

 P 

Test 

Result 

 P 

Test 

Result 

 P 

Test 

Result 

 P 

Test 

Result 

 P 

Test 

Result 

 P  

Test 

Result 

MILP vs HD + + + + + + + + + + + + + + NA NA 

MILP vs ED + + + + + + + + + + + + + + NA NA 

MILP vs CC = = + + + + = = = = + + + + NA NA 

MILP vs SVM = = = = = = = = = = = = = = NA NA 

MILP vs LibSVM = = = = + + = = = = + + + + = = = = 

MILP vs SMO = = + + + + + + + + + + + + = = = = 

MILP vs NN NA NA NA = = = = NA NA NA NA 

MILP vs IB1 = = = = = = = = = = = = = = + + + + 

MILP vs J48 = = + + + + = = + + + + + + + + + + 

MILP vs Random Forest = = = = + + = = = = + + + + + + + + 

MILP vs RBF Network = = + + + + + + + + + + + + = = = = 

MILP vs JRip + + + + + + + + + + + + + + + + + + 

MILP vs NaiveBayes + + + + + + + + + + + + + + = = + + 

MILP vs Logistic + + + + + + + + + + + + + + + + = = 

+ + denotes that the first method is statistically significantly better than the second method. - - represents that 
the second method is statistically significantly better than the first method. = = indicates that there is no 
significant difference between the results of the methods. HD: Hamming Distance. ED: Euclidean Distance. 
CC: Component-coupled. SVM: Support Vector Machines. NN: Neural Networks. 
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MILP approach is statistically significantly better than the support vector machine 

algorithms implemented in LibSVM and WEKA for some of the data sets.  Similarly, there 

is no statistically significant difference between the LOO results of Neural Network given 

in [104] and MILP approach on 277 and 498 data sets.  On the other hand, MILP approach 

is statistically significant than the Neural Network classifier found in WEKA (RBF 

Network) for most of the data sets.  There is no statistically significant difference between 

the results of IB1 classifier and MILP approach for each of the data sets except 1189 and 

25PDB.  Surprisingly, IB1 has worse accuracy value with respect to MILP approach for 

data sets 1189 and 25PDB.  Finally, MILP approach has statistically significant accuracy 

values for the methods J48, Random Forest (RF), JRip, Naïve Bayes (NB) and Logistic for 

most of the data sets. 

In order to compare the existing data classification methods with MILP, some of the 

ordered P-value graphs are shown in Figure 4.1 to Figure 4.6.   In Figure 4.1, the ordered 

P-values of MILP versus LibSVM for each of the nine data sets are shown.  For three data 

sets, the P-values are greater than 2 and very close to 15 which is a considerably high P-

value.  In general, MILP is preferable since it performs quite well for each of the existing 

benchmark data sets.  However, LibSVM method performs poorly with respect to MILP 

approach for 3 of the data sets.  Hence, we could say that MILP approach is significantly 

better than LibSVM method in general.  We could come up with the same conclusion for 

IB1 and MILP methods (Figure 4.2).   In a similar way, IB1 method performs worse for 

two of the data sets despite its high efficiency for the rest of the data sets.  Thus, MILP 

approach is statistically better than IB1 method in general.  MILP approach is statistically 

significant than SMO, Logistic and RBF Network algorithms found in WEKA in most of 

the data sets (Figure 4.3, 4.4 and 4.5).  Moreover, the highest P-value for these methods is 

close to 30 which mean that the difference between the performances of the methods and 

MILP is highly significant.  Finally, proposed MILP approach is statistically significantly 
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better than Random Forest algorithm for half of the data sets (Figure 4.6).  For the rest, the 

difference between the accuracies of two methods is not significant.  Moreover, P-values 

are not very high for Random Forest algorithm compared to the rest of the listed methods 

in Figure 2.  For each of the existing protein folding type benchmark data sets, MILP 

approach generally achieves high accuracy values and mostly ranks in first three positions 

with respect to accuracy.  Furthermore, MILP is statistically significantly better than the 

existing data classification methods for protein folding type prediction problems on given 

nine distinct benchmark data sets. 
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Figure 4.1 P-value graph of MILP versus LibSVM. 
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MILP vs IB1
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Figure 4.2 P-value graph of MILP versus IB1. 
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Figure 4.3 P-value graph of MILP versus SMO. 
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MILP vs Logistic
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Figure 4.4 P-value graph of MILP versus Logistic. 

MILP vs RBF Network
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Figure 4.5 P-value graph of MILP versus RBF Network.  
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MILP vs Random Forest
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Figure 4.6 P-value graph of MILP versus Random Forest. 

4.9 Problematic Instance Analysis 

 In order to analyze whether there exists any relation between the performance of the 

proposed approach and the number of problematic instances in the data sets, we investigate 

the results of these data sets in detail.  In Table 4.27, the number of problematic instances is 

given by average, maximum and minimum values for each of the protein folding type 

benchmark data sets.  As 225 and 1601 data sets are used for training sets for the test sets 

510 and 2438 data sets, they do not have any maximum and minimum number of 

problematic instances.  On the other hand, since for the data sets 138, 253, 359, 277 and 

498 LOO tests are carried, their problematic instance analyses are comprehensive (Figure 

4.7 and 4.11).  Furthermore, the number of problematic instances for 1189 and 25PDB data 

sets change from one run to another as 10FCV results are obtained for them (Figure 4.12 – 

Figure 4.13).     
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 As it can be observed from the Table 4.27, the number of problematic instances 

does not affect the performance of the proposed approach.  For the same percentage of 

problematic instances as in 359 and 498 data sets, the proposed approach could achieve the 

best and second best results for 359 and 498 data sets, respectively.  Moreover, for the data 

sets that have high percentage of problematic instances as 1601 data set, proposed approach 

could very high accuracy value, 95.88%.  Hence, considering only the number of 

problematic instances could not be sufficient to analyze the difficulty of the data sets.   

Table 4.27 Number of problematic instances for each of the protein folding type data sets. 

Number of Problematic 
Instances 

Data 
Set 

Name 

Accuracy 
(%) 

Accuracy 
Rank 

% of Av. 
Problematic 
Instances  Average Max. Min. 

138 67.39% 2 53% 73 74 69 

253 87.65% 1 65% 164 165 157 

359 96.38% 1 65% 233 234 228 

277 81.50% 3 60% 167 168 161 

498 92.97% 2 65% 322 323 312 

225 95.88% 1 78% 179 N/A N/A 

1601 95.08% 1 97% 1554 N/A N/A 

1189 53.30% 1 88% 959 962 956 

25PDB 51.82% 3 89% 1486 1489 1482 
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Figure 4.7 The number of problematic instances for 138 data set. 
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Figure 4.8 The number of problematic instances for 253 data set. 
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Figure 4.9 The number of problematic instances for 359 data set. 
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Figure 4.10 The number of problematic instances for 277 data set. 
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Figure 4.11 The number of problematic instances for 498 data set. 

1189 Data Set 10FCV Analysis

1

2

1

3

1 1 1

0

0,5

1

1,5

2

2,5

3

3,5

956 957 958 959 960 961 962

# of Problematic Instances

F
re
q
u
e
n
c
y

 

Figure 4.12 The number of problematic instances for 1189 data set. 
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Figure 4.13 The number of problematic instances for 25PDB data set. 
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Chapter 5 

 

COMPUTATIONAL RESULTS ON UCI REPOSITORY DATA SETS 

 

The performance of proposed three-stage approach is evaluated on eleven UCI 

repository benchmark data sets [108].  The prediction results and comparisons with other 

data classification methods are examined in this chapter.  

5.1 UCI Repository Data Sets 

The UCI Machine Learning Repository is a collection of databases, domain 

theories, and data generators that are used by the machine learning community for the 

empirical analysis of machine learning algorithms.  The archive was created in 1987 by 

David Aha and fellow graduate students at UC Irvine.  Since that time, it has been widely 

used by students, educators, and researchers all over the world as a primary source of 

machine learning data sets [108]. 

In order to observe the performance of the proposed MILP based hyper-box 

enclosure approach, the following eleven data sets from [108] are tested.  First five of them 

are binary-class data classification data sets and the rest are multi-class data sets. 

5.1.1 Johns Hopkins University Ionosphere Database 

This database contains the radar data collected by a system in Goose Bay, Labrador.  

This system consists of a phased array of 16 high-frequency antennas with a total 

transmitted power on the order of 6.4 kilowatts.  Free electrons in the ionosphere are the 

targets of this study.  “Good” radar returns are those showing evidence of some type of 
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structure in the ionosphere.  On the other hand, “Bad” radar returns are those that do not 

show any evidence and their signals pass through the ionosphere.   

 Received signals were processed using an autocorrelation function that depends on 

the time of the pulse and the pulse number.  There were 17 pulse numbers for the Goose 

Bay system.  Instances in this database are described by 2 attributes per pulse number, 

corresponding to the complex values returned by the function resulting from the complex 

electromagnetic signal.  The overall characteristics of the database are given in Table 5.1.  

This data set is referred as “Ionosphere”.  

Table 5.1 Binary-class UCI Repository data sets and their characteristics.  

Data Set 
Name 

# of 
Attributes 

# of 
Classes 

# of 
Instances 

# of 
Instances 
in Class 1 

# of 
Instances 
in Class 2 

Ionosphere 34 2 351 225 126 

Pima 8 2 768 500 268 

Blood 4 2 748 570 178 

WDBC 9 2 683 444 239 

Liver 6 2 345 200 145 

5.1.2 Pima Indians Diabetes Database 

 This database consists of female patients at least 21 years old who have Pima Indian 

Heritage.  The given 8 properties related to the patients are used to test the diabetes for 

each one of them.  The overall characteristics of the database are given in Table 5.1.  This 

data set is referred as “Pima”. 
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5.1.3 Blood Transfusion Service Center Data Set 

 This data set is taken from the donor database of Blood Transfusion Service Center 

in Hsin-Chu City in Taiwan.  748 donors are randomly selected from the databases with 

information related to the months since last donation, months since first donation, total 

blood donated in c.c., total number of donation.  The class variable represents whether 

she/he donated blood in March 2007.  The overall characteristics of the data set are given 

in Table 5.1.  This data set is referred as “Blood”. 

5.1.4 Wisconsin Diagnostic Breast Cancer (WDBC) 

 This breast cancer database was obtained from the University of Wisconsin    

Hospitals, Madison from Dr. William H. Wolberg.  Using the 9 different information 

related to the patients, one is trying to find out whether the patient has a breast cancer or 

not.  The overall characteristics of the database are given in Table 5.1.  This data set is 

referred as “WDBC”. 

5.1.5 Liver Disorders Data Set 

 This data set is consists of the records of male individuals with 5 blood test values 

which are thought to be sensitive to liver disorders that might arise from excessive alcohol 

consumption.  Moreover, each individual have an attribute value related to the number of 

half-pint equivalents of alcoholic beverages drunk per day.  The class variable represents 

whether he has a liver disorder or not.  The overall characteristics of the data set are given 

in Table 5.1.  This data set is referred as “Liver”.  

5.1.6 Wine Recognition Data 

 These data are the results of a chemical analysis of wines grown in the same region 

in Italy but derived from three different cultivars.  The analysis determined the quantities of 
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13 constituents found in each of the three types of wines.  The overall characteristics of the 

data set are given in Table 5.2.  This data set is referred as “Wine”.   

Table 5.2 Multi-class UCI Repository data sets and their characteristics.  

# of Instances in each class Data Set  #  
Att. 

#  
Classes 

#  
Ins. C1 C2 C3 C4 C5  C6  C7 C8  C9  C10  

Wine 13 3 178 59 71 48 --- --- --- --- --- --- --- 

Iris 4 3 150 50 50 50 --- --- --- --- --- --- --- 

Thyroid 5 3 215 150 35 30 --- --- --- --- --- --- --- 

Glass 9 6 214 70 76 17 13 9 29 --- --- --- --- 

Ecoli 7 8 336 143 77 2 2 35 20 5 52 --- --- 

Yeast 8 10 1484 244 429 463 44 35 51 163 30 20 5 

5.1.7 Iris Data Set 

 Iris data is the best known data set to be found in the pattern recognition literature. 

The sepal length, sepal width, petal length, and petal width are measured in centimeters on 

50 iris specimens from each of three species, Iris setosa, I. versicolor, and I. virginica.   

The overall characteristics of the data set are given in Table 5.2.  This data set is referred as 

“Iris”. 

5.1.8 Thyroid Gland Data 

 This data set composed of five laboratory tests of patients to predict whether a 

patient's thyroid to the class euthyroidism, hypothyroidism or hyperthyroidism.  The 

diagnosis (the class label) was based on a complete medical record, including anamnesis, 

scan, etc.  The overall characteristics of the data set are given in Table 5.2.  This data set is 

referred as “Thyroid”. 
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5.1.9 Glass Identification Database 

 This database is composed of 6 different types of glasses with having some 

chemical properties to differentiate.  The aim is to classify the glasses using the 9 

characteristics of instances exist in the data set.  The overall characteristics of the data set 

are given in Table 5.2.  This data set is referred as “Glass”. 

5.1.10 Ecoli Data Set 

 This data set is composed of proteins with 7 different score values and a 

localization site.  There are 8 different sites that proteins are localized.  The overall 

characteristics of the data set are given in Table 5.2.  This data set is referred as “Ecoli”. 

5.1.11 Yeast Data Set 

 This data set is also composed of proteins with 8 different score values and a 

cellular localization site.  There are 10 different cellular sites that proteins are localized.  

The overall characteristics of the data set are given in Table 5.2.  This data set is referred as 

“Yeast”. 

5.2 Classification Algorithms 

 In order to compare the results of proposed MILP approach, WEKA classification 

algorithms J48, RBF Network, Logistic, Naïve Bayes (NB), SMO, Random Forest (RF) 

and IB1 are studied (Table 5.3).  Optimized parameter values of these WEKA classifiers 

are determined and used to perform the studies on the given data sets.  Moreover, well-

known support vector machine implementation LibSVM given by [111] is also studied to 

observe the accuracy values.  For each of the data sets, parameters related to SVM 

algorithm are optimized by performing 10FCV validation with different combinations of 

cost and gamma values.  The optimal values that achieve the highest 10FCV accuracy are 

used to obtain the results for each data set (Table 5.4).  



 
Chapter 5: Computational Results on UCI Repository Data Sets 121 
   

 

  
 

Table 5.3 Summary of the applied classification algorithms of WEKA. 

Classifier Reference Short Description 

Naïve 
Bayes  

[112] • Class for a Naive Bayes classifier using estimator classes.  
• Numeric estimator precision values are chosen based on 
analysis of the training data.  

RBF 
Network 

[113] • Class that implements a normalized Gaussian radial basis 
function network.  

• It uses the k-means clustering algorithm to provide the basis 
functions and learns either a logistic regression (discrete 
class problems) or linear regression (numeric class 
problems) on top of that.  

• It standardizes all numeric attributes to zero mean and unit 
variance. 

IB1 [114] • IB1-type classifier.  
• Uses a simple distance measure to find the training instance 
closest to the given test instance, and predict the same class 
as this training instance.  

• If multiple instances are the same (smallest) distance to the 
test instance, the first one found is used. 

J48 [115] • Class for generating an unpruned or a pruned C4.5 decision 
tree. 

Random 
Forest  

[116] • Decision tree type algorithm 
• Class for constructing random forests. 

JRip [117] • This class implements a propositional rule learner, Repeated 
Incremental Pruning to Produce Error Reduction (RIPPER), 
which is proposed by William W. Cohen as an optimized 
version of IREP.  

SMO [118] • Implements John C. Platt's sequential minimal optimization 
algorithm for training a support vector classifier using 
polynomial kernels.  

• Transforms output of SVM into probabilities by applying a 
standard sigmoid function that is not fitted to the data.  

Logistic  [119] • Class for building a logistic regression model using 
LogitBoost.  

• Incorporates attribute selection by fitting simple regression 
functions in LogitBoost. 
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Table 5.4 Optimal parameter values of LibSVM for each of the data sets. 

Data Sets Kernel Type c (Cost) g (Gamma) 

Ionosphere Radial Basis Function 8192 0.5 

Pima Radial Basis Function 8 0.00003 

Blood Radial Basis Function 2048 0.00012 

WDBC Radial Basis Function 32768 0.00003 

Liver Radial Basis Function 2 0.00012 

Wine Radial Basis Function 8192 0.00003 

Iris Radial Basis Function 2 0.125 

Thyroid Radial Basis Function 512 0.00003 

Glass Radial Basis Function 32768 0.03125 

Ecoli Radial Basis Function 0.5 8 

Yeast Radial Basis Function 0.5 8 

5.3 10-Fold Cross-validation Results for Binary-Class Data Sets 

For 10-fold cross-validation tests (10FCV), five binary-class data sets including 

Ionosphere, Pima, Blood, WDBC, and Liver are used.  Using these data sets, the proposed 

three-stage MILP model is solved in GAMS [120] using ILOG CPLEX Solver version 10.0 

[121] on a notebook computer with Inter Pentium M 1.73 Ghz Processor and 512 MB of 

RAM.  For each data set, 10 different runs are carried out and average 10FCV results are 

given.  

10FCV test results for Ionosphere data set are given in Table 5.5.  The overall 

accuracy of the proposed model on Ionosphere data set is 94.59%.  MILP approach has the 

second best accuracy value.  The highest accuracy value is achieved by LibSVM method 

with 94.87%.  Random Forest classifier has a very close accuracy value to LibSVM and 
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MILP with 93.45%.  On the other hand, the Naïve Bayes classifier has the worst accuracy 

value for Ionosphere data set.  The rest of the classifiers have moderate accuracy values.  

Table 5.5 10FCV results for Ionosphere data set. 

Class-based Accuracy 
Methods 

C1 C2 

Overall  

Accuracy 

LibSVM 95.56% 93.65% 94.87% 

MILP 97.33% 89.68% 94.59% 

Random Forest 96.44% 88.10% 93.45% 

RBF Network 93.33% 90.48% 92.31% 

J48 96.44% 82.54% 91.45% 

JRip 91.56% 86.51% 89.74% 

Logistic 94.22% 79.37% 88.89% 

SMO 96.89% 73.81% 88.60% 

IB1 96.89% 67.46% 86.32% 

Naïve Bayes 80.44% 86.51% 82.62% 

10FCV test results for Pima data set are given in Table 5.6.  The highest accuracy 

value is achieved by proposed MILP approach with 81.25%.  SMO and Logistic classifiers 

are the ones that have the closest accuracy value to the MILP approach’s accuracy.  As 

expected, LibSVM has also high accuracy with respect to other classifiers with 76.43%.  

On the other hand, decision tree based classifiers J48 and Random Forest has low accuracy 

values compared to the MILP approach.  Furthermore, the IB1 classifier has the worst 

accuracy value for Pima data set.   

Table 5.7 gives the 10FCV test results for Blood data set.  The highest accuracy 

value is achieved by proposed MILP approach with 79.95%.  The neural network based 
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classifier RBF Network has a very close accuracy value to the MILP.  Rule based classifier 

JRip and decision tree based classifier J48 have also high accuracy value for Blood data 

set.  Support vector machine based classifier LibSVM and SMO have relatively low 

classification accuracies.  The nearest neighborhood based classifier IB1 has the lowest 

accuracy value, 68.58%, for Blood data set. 

Table 5.6 10FCV results for Pima data set. 

Class-based Accuracy 
Methods 

C1 C2 

Overall  

Accuracy 

MILP 62.69% 91.20% 81.25% 

SMO 54.10% 89.80% 77.34% 

Logistic 57.09% 88.00% 77.21% 

LibSVM 52.24% 89.40% 76.43% 

Naïve Bayes 61.19% 77.80% 76.30% 

RBF Network 54.10% 86.80% 75.39% 

JRip 57.46% 84.20% 74.87% 

J48 59.70% 81.40% 73.83% 

Random Forest 61.19% 77.80% 72.01% 

IB1 52.99% 79.40% 70.18% 

10FCV test results for WDBC data set are given in Table 5.8.  The highest accuracy 

value is achieved by proposed MILP approach with 97.36%.  SMO, LibSVM and Logistic 

classifiers are the ones that have the closest accuracy value to the MILP approach’s 

accuracy.  Naïve Bayes, Random Forest, JRip, IB1 and J48 have moderate accuracy values 

approximately 96%.  Furthermore, neural network based classifier RBF Network has the 

worst accuracy value for WDBC data set, 95.75%. 
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Table 5.7 10FCV results for Blood data set. 

Class-based Accuracy 
Methods 

C1 C2 

Overall 

Accuracy 

MILP 42.13% 91.75% 79.95% 

RBF Network 25.84% 96.49% 79.68% 

JRip 41.57% 90.53% 78.88% 

J48 43.26% 88.60% 77.81% 

LibSVM 34.83% 91.23% 77.81% 

Logistic 12.36% 97.37% 77.14% 

SMO 0.00% 100.00% 76.20% 

Naïve Bayes 20.22% 92.63% 75.40% 

Random Forest 32.58% 84.74% 72.33% 

IB1 37.08% 78.42% 68.58% 

 
Table 5.8 10FCV results for WDBC data set. 

Class-based Accuracy 
Methods 

C1 C2 

Overall 

Accuracy 

MILP 98.87% 94.56% 97.36% 

SMO 97.30% 96.65% 97.07% 

Logistic 97.75% 94.98% 96.78% 

LibSVM 97.52% 95.40% 96.78% 

Naïve Bayes 95.72% 97.49% 96.34% 

Random Forest 97.52% 93.72% 96.19% 

JRip 96.40% 95.82% 96.19% 

IB1 97.52% 93.31% 96.05% 

J48 96.40% 95.40% 96.05% 

RBF Network 95.72% 95.82% 95.75% 



 
Chapter 5: Computational Results on UCI Repository Data Sets 126 
   

 

  
 

Table 5.9 10FCV results for Liver data set. 

Class-based Accuracy 
Methods 

C1 C2 

Overall 

Accuracy 

LibSVM 64.83% 81% 74.20% 

MILP 65.52% 79% 73.33% 

J48 53.10% 80% 68.70% 

Logistic 53.10% 79% 68.12% 

Random Forest 62.76% 69% 66.38% 

JRip 46.90% 77% 64.35% 

RBF Network 51.72% 73.50% 64.35% 

IB1 56.55% 67.50% 62.90% 

SMO 0.69% 100% 58.26% 

Naïve Bayes 76.55% 40% 55.36% 

 
10FCV test results for Liver data set are given in Table 5.9.  The overall accuracy 

of the proposed model on Liver data set is 73.33%.  MILP approach has the second best 

accuracy value.  The highest accuracy value is achieved by LibSVM method with 74.20%.  

J48 and Logistic classifiers have a closer accuracy values with 68.70% and 68.12%, 

respectively.  On the other hand, the famous probabilistic classifier Naïve Bayes has the 

worst accuracy value for Liver data set. The rest of the classifiers have moderate accuracy 

values ranging from 58% to 66%. 

5.4 10-Fold Cross-validation Results for Multi-Class Data Sets 

For 10-fold cross-validation tests (10FCV) of multi-class problems, six data sets 

including Wine, Iris, Thyroid, Glass, Ecoli and Yeast are used.  Using these data sets, the 

proposed three-stage MILP model is solved in GAMS [120] using ILOG CPLEX Solver 

version 10.0 [121] on a notebook computer with Inter Pentium M 1.73 Ghz Processor and 
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512 MB of RAM.  Similar to two-class case, 10 different runs are carried out and average 

10FCV results are given for each of the data sets.  

Table 5.10 10FCV results for Wine data set. 

Class-based Accuracy 
Methods 

C1 C2 C3 
Overall 
Accuracy 

SMO 100% 95.77% 100% 98.31% 

Random Forest 100% 95.77% 100% 98.31% 

RBF Network 96.61% 100% 97.92% 98.31% 

Logistic 98.31% 95.77% 97.92% 97.19% 

Naïve Bayes 94.92% 95.77% 100% 96.63% 

MILP 94.92% 95.77% 93.75% 94.94% 

IB1 100% 87.32% 100% 94.94% 

JRip 91.53% 94.37% 95.83% 93.82% 

J48 98.31% 94.37% 87.50% 93.82% 

LibSVM 94.92% 90.14% 91.67% 92.13% 
 

10FCV test results for Wine data set are given in Table 5.10.  The overall accuracy 

of the proposed model on Ionosphere data set is 94.94%.  MILP approach has the fourth 

best accuracy value as distance based classifier IB1.  The highest accuracy value is 

achieved by SMO, Random Forest and RBF Network methods with 98.31%.  Logistic and 

Naïve Bayes classifiers have also higher accuracy values than MILP approach with 97.19% 

and 96.63%, respectively.  On the other hand, the famous decision tree classifier J48 and 

rule based classifier have the same accuracy value, 93.83%, for Wine data set.  

Surprisingly, LibSVM has the worst accuracy value, 92.13%, for this data set.   

10FCV test results for Iris data set are given in Table 5.11.  The overall accuracy of 

the proposed model on Iris data set is 96%.  MILP approach has the second best accuracy 

value.  The highest accuracy value is achieved by LibSVM method with 98%.  Logistic, 

J48, Naïve Bayes and SMO classifiers have the same accuracy value with the MILP 

approach.  On the other hand, Random Forest, IB1 and RBF Network have equal accuracy 
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value, 95.33%, for Iris data set. The lowest accuracy value, 94%, is achieved by the rule 

based classifier JRip. 

Table 5.11 10FCV results for Iris data set. 

Class-based Accuracy 
Methods 

C1 C2 C3 

Overall 

Accuracy 

LibSVM 100% 96% 98% 98% 

MILP 100% 94% 94% 96% 

Logistic 100% 92% 96% 96% 

J48 98% 94% 96% 96% 

Naïve Bayes 100% 96% 92% 96% 

SMO 100% 98% 90% 96% 

Random Forest 100% 96% 90% 95.33% 

IB1 100% 94% 92% 95.33% 

RBF Network 100% 92% 94% 95.33% 

JRip 100% 90% 92% 94% 

 

Table 5.12 gives the 10FCV test results for Thyroid data set.  The highest accuracy 

value is achieved by proposed MILP approach with 97.21%.  The nearest neighborhood 

based classifier IB1 has the same accuracy value with MILP approach.  The famous 

probabilistic classifier Naïve Bayes and Logistic classifier has the second best results with 

the accuracy value of 96.74%.  RBF Network has 95.35% accuracy and stand at the third 

order.  Random forest and LibSVM has the same accuracy values, 93.95%.  The support 

vector machine based classifier SMO has the lowest accuracy value, 89.77%, for Thyroid 

data set. 
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Table 5.12 10FCV results for Thyroid data set. 

Class-based Accuracy 
Methods 

C1 C2 C3 

Overall  

Accuracy 

MILP 98.67% 91.43% 93.33% 97.21% 

IB1 99.33% 94.29% 86.67% 97.21% 

Naïve Bayes 97.33% 94.29% 86.67% 96.74% 

Logistic 100% 57.14% 76.67% 96.74% 

RBF Network 98% 97.14% 93.33% 95.35% 

Random Forest 94.67% 88.57% 83.33% 93.95% 

LibSVM 97.33% 85.71% 86.67% 93.95% 

JRip 94.67% 85.71% 93.33% 93.02% 

J48 99.33% 82.86% 80.00% 92.09% 

SMO 98% 94.29% 96.67% 89.77% 

 
10FCV test results for Glass data set are given in Table 5.13.  The overall accuracy 

of the proposed model on Iris data set is 76.17%.  MILP approach has the second best 

accuracy value.  The highest accuracy value is achieved by Random Forest classifier with 

77.57%.  LibSVM and IB1 have accuracy value greater than 70% and are following the 

MILP approach.  On the other hand, JRip, Logistic, J48 and RBF Network have some how 

closer accuracies to each other for Glass data set. The lowest accuracy value, 49.53%, is 

achieved by the probabilistic classifier Naïve Bayes. 
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Table 5.13 10FCV results for Glass data set. 

Class-based Accuracy 
Methods 

C1 C2 C3 C4 C5 C6 

Overall 

Accuracy 

Random Forest 82.86% 78.95% 29.41% 76.92% 88.89% 86.21% 77.57% 

MILP 75.71% 78.95% 47.06% 76.92% 77.78% 86.21% 76.17% 

LibSVM 70% 78.95% 17.65% 76.92% 66.67% 86.21% 71.50% 

IB1 77.14% 67.11% 35.29% 76.92% 66.67% 82.76% 70.56% 

JRip 61.43% 76.32% 5.88% 69.23% 77.78% 82.76% 66.36% 

Logistic 67.14% 67.11% 5.88% 76.92% 88.89% 86.21% 66.36% 

J48 71.43% 56.58% 29.41% 84.62% 88.89% 82.76% 65.89% 

RBF Network 72.86% 63.16% 11.76% 53.85% 77.78% 89.66% 65.89% 

SMO 44.29% 85.53% 0.00% 15.38% 0.00% 86.21% 57.48% 

Naïve Bayes 71.43% 19.74% 35.29% 23.08% 88.89% 82.76% 49.53% 

 
10FCV test results for Ecoli data set are given in Table 5.14.  The overall accuracy 

of the proposed model on Iris data set is 86.61%.  MILP approach has the second best 

accuracy value.  The highest accuracy value is achieved by LibSVM classifier with 

87.50%.  Logistic classifier has a very close accuracy value to the MILP approach with 

86.31%. As the number of instances in the classes C3 and C4 are very low (Table 5.2), the 

class-based accuracy values for these classes are 0 for each of the methods. As two 

instances are not sufficient to capture the class characteristic for this large Ecoli data set, 

these results are not surprising. On the other hand, Naïve Bayes, RBF Network, J48, SMO, 

and Random Forest have some how closer and moderate accuracies to each other for Ecoli 

data set. The lowest accuracy value, 80.36%, is achieved by the instance based classifier 

IB1 and the rule based classifier JRip. 
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Table 5.14 10FCV results for Ecoli data set. 

Class-based Accuracy 
Methods 

C1 C2 C3 C4 C5 C6 C7 C8 

Overall 

Accuracy 

LibSVM 98.60% 84.42% 0% 0% 62.86% 80% 80% 88.46% 87.50% 

MILP 97.90% 83.12% 0% 0% 60% 80% 80% 88.46% 86.61% 

Logistic 96.50% 84.42% 0% 0% 60% 80% 100% 86.54% 86.31% 

Naïve Bayes 95.80% 72.73% 0% 0% 82.86% 90% 60% 84.62% 85.42% 

RBF Network 96.50% 80.52% 0% 0% 54.29% 75% 80% 88.46% 84.52% 

J48 95.10% 84.42% 0% 0% 60.00% 70% 60% 84.62% 84.23% 

SMO 98.60% 83.12% 0% 0% 25.71% 75% 100% 90.38% 83.63% 

Random Forest 95.80% 81.82% 0% 0% 45.71% 90% 60% 84.62% 83.63% 

IB1 93.01% 72.73% 0% 0% 48.57% 75% 100% 84.62% 80.36% 

JRip 95.80% 75.32% 0% 0% 51.43% 75% 20% 78.85% 80.36% 

Table 5.15 10FCV results for Yeast data set. 

Class-based Accuracy 
Methods 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Overall 

Accuracy 

MILP 57% 50% 76% 89% 49% 45% 84% 10% 45% 40% 63% 

LibSVM 55% 50% 74% 82% 49% 37% 78% 3% 35% 20% 60% 

RBF Network 56% 53% 64% 80% 63% 29% 80% 0% 45% 100% 59% 

Random Forest 61% 57% 60% 75% 49% 35% 80% 0% 25% 20% 59% 

Logistic 57% 46% 70% 64% 49% 37% 81% 0% 45% 80% 59% 

JRip 50% 53% 64% 73% 49% 35% 80% 0% 55% 80% 58% 

Naïve Bayes 61% 40% 70% 61% 69% 39% 80% 0% 45% 40% 58% 

SMO 56% 35% 78% 80% 29% 20% 78% 0% 55% 60% 57% 

J48 54% 51% 56% 82% 43% 43% 83% 0% 25% 80% 56% 

IB1 48% 48% 56% 68% 49% 33% 68% 7% 45% 100% 52% 
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Table 5.15 gives the 10FCV test results for Yeast data set.  The highest accuracy 

value is achieved by proposed MILP approach with 63%.  The support vector machine 

based classifier LibSVM has the closest accuracy value to MILP approach with 60%.  RBF 

Network, Random forest and Logistic classifiers achieved the third best results, 59%, for 

Yeast data set.  The JRip, Naïve Bayes, SMO and J48 have moderate results with 58%, 

58%, 57%, and 56%, respectively.  The instance based classifier IB1 has the lowest 

accuracy value, 52%, for Yeast data set. 

5.5 Statistical Analysis of the Results 

In order to analyze the results in detail, average sensitivity (SEN), average 

specificity (SPE), MCC and S values of each of the protein data sets are calculated and 

examined (Table 5.16 - Table 5.28).  The average sensitivity values are same as the overall 

accuracy values.  Hence, each of the tables are arranged so as to show the ordering of the 

methods based on sensitivity values.  The average specificity values are generally 

significantly lower compared to average sensitivity values for the two-class data sets (Table 

5.16 – Table 5.20).  On the other hand, this observation is not valid for multi-class 

problems.  For six multi-class benchmark data sets, the average specificity values are 

significantly higher than average sensitivity values (Table 5.17 – Table 5.28).  High 

average specificity means that the number of under predicted proteins is low.  Thus, low 

accuracy is a result of relatively low sensitivity values.  Moreover, as average sensitivity 

values increases, the difference between average sensitivity and average specificity 

decreases for multi-class problems.  Nevertheless, for two-class benchmark data sets, the 

difference between average sensitivity and average specificity values decreases, as average 

sensitivity value decreases. 

MCC value gives the strength of relationship between the actual and predicted 

values.  A perfect fit will give a MCC value of 1.  For two-class benchmark data sets, MCC 

and S values are equal to the each other for each one of the classes (Table 5.16 – Table 
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5.20).  Moreover, MCC values are always higher than the S values for both two-class and 

multi-class data sets.  On the other hand, each one of the classes in multi-class benchmark 

data sets has different MCC and S values (Table 5.17 – Table 5.28).  Due to the low 

accuracy values for Blood and Yeast data sets, MCC and S values are low for each of the 

classes (Table 5.18, Table 5.27, and Table 5.28).  This means that the classifier could not 

effectively capture the characteristics of that class.  As accuracy values of data sets 

including Ionosphere, WDBC, Wine, Iris, Thyroid and Ecoli are high, the MCC and S 

values are also high for these data sets (Table 5.16, Table 5.19, Table 5.21, Table 5.22, 

Table 5.23, Table 5.25, and Table 5.26).  Furthermore, the data sets Pima, Liver and Glass 

have moderate MCC and S values as they have moderate accuracy values (Table 5.17, 

Table 5.20, and Table 5.24).   

Table 5.16 Values of performance measures for the Ionosphere data set. 

MCC S 
Classifier 

Average 

Sensitivity 

Average 

Specificity C1 C2 C1 C2 

LibSVM 94.87% 94.33% 0.89 0.89 0.89 0.89 

MILP 94.59% 92.43% 0.88 0.88 0.88 0.88 

Random Forest 93.45% 91.09% 0.86 0.86 0.86 0.86 

RBF Network 92.31% 91.50% 0.83 0.83 0.83 0.83 

J48 91.45% 87.53% 0.81 0.81 0.81 0.81 

JRip 89.74% 88.32% 0.78 0.78 0.78 0.78 

Logistic 88.89% 84.70% 0.76 0.76 0.75 0.75 

SMO 88.60% 82.09% 0.75 0.75 0.74 0.74 

IB1 86.32% 78.02% 0.70 0.70 0.68 0.68 

Naïve Bayes 82.62% 84.33% 0.65 0.65 0.64 0.64 
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For a perfect prediction, S value should be equal to 1 and 0 for vice versa.  

Depending on the characteristics of the data sets such as complexity and dimensionality, 

the prediction accuracies could be low as in the Blood and Yeast data sets (Table 5.18, 

Table 5.27, and Table 5.28).  Hence, the S values for these data sets are very low.  On the 

other hand, when we observe the results of each data set in overall, each of the classes have 

higher and lower MCC and S values with respect to the remaining classes.  Hence, we 

could not say that MILP based hyper-box enclosure approach performs rather purely for 

any of the classes.  Depending on the data set characteristics, proposed data classification 

approach works well for each of the classes. 

Table 5.17 Values of performance measures for the Pima data set. 

MCC S 
Classifier 

Average 

Sensitivity 

Average 

Specificity C1 C2 C1 C2 

MILP 81.25% 72.64% 0.57 0.57 0.56 0.56 

SMO 77.34% 66.56% 0.48 0.48 0.47 0.47 

Logistic 77.21% 67.88% 0.48 0.48 0.47 0.47 

LibSVM 76.43% 65.21% 0.46 0.46 0.45 0.45 

Naïve Bayes 76.30% 69.29% 0.47 0.47 0.47 0.47 

RBF Network 75.39% 65.51% 0.44 0.44 0.43 0.43 

JRip 74.87% 66.79% 0.43 0.43 0.43 0.43 

J48 73.83% 67.27% 0.42 0.42 0.42 0.42 

Random Forest 72.01% 66.99% 0.39 0.39 0.39 0.39 

IB1 70.18% 62.20% 0.33 0.33 0.33 0.33 
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Table 5.18 Values of performance measures for the Blood data set. 

MCC S 
Classifier 

Average 
Sensitivity 

Average 
Specificity C1 C2 C1 C2 

MILP 79.95% 75.58% 0.39 0.39 0.38 0.38 

RBF Network 79.68% 42.65% 0.34 0.34 0.29 0.29 

JRip 78.88% 53.22% 0.36 0.36 0.36 0.36 

J48 77.81% 54.05% 0.35 0.35 0.34 0.34 

LibSVM 77.81% 48.25% 0.31 0.31 0.30 0.30 

Logistic 77.14% 32.59% 0.19 0.19 0.13 0.13 

SMO 76.20% 23.80% NA NA 0.00 0.00 

Naive Bayes 75.40% 37.46% 0.18 0.18 0.16 0.16 

Random Forest 72.33% 44.99% 0.19 0.19 0.19 0.19 

IB1 68.58% 46.92% 0.15 0.15 0.15 0.15 

Table 5.19 Values of performance measures for the WDBC data set. 

MCC S 
Classifier 

Average 
Sensitivity 

Average 
Specificity C1 C2 C1 C2 

MILP 97.36% 96.07% 0.94 0.94 0.94 0.94 

SMO 97.07% 96.88% 0.94 0.94 0.94 0.94 

Logistic 96.78% 95.95% 0.93 0.93 0.93 0.93 

LibSVM 96.78% 96.14% 0.93 0.93 0.93 0.93 

Naïve Bayes 96.34% 96.87% 0.92 0.92 0.92 0.92 

Random Forest 96.19% 95.05% 0.92 0.92 0.92 0.92 

JRip 96.19% 96.02% 0.92 0.92 0.92 0.92 

IB1 96.05% 94.78% 0.91 0.91 0.91 0.91 

J48 96.05% 95.75% 0.91 0.91 0.91 0.91 

RBF Network 95.75% 95.78% 0.91 0.91 0.91 0.91 
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Table 5.20 Values of performance measures for the Liver data set. 

MCC S 
Classifier 

Average 
Sensitivity 

Average 
Specificity C1 C2 C1 C2 

LibSVM 74.20% 71.62% 0.47 0.47 0.46 0.46 

MILP 73.33% 71.18% 0.45 0.45 0.45 0.45 

J48 68.70% 64.41% 0.35 0.35 0.34 0.34 

Logistic 68.12% 63.99% 0.33 0.33 0.33 0.33 

Random Forest 66.38% 65.38% 0.32 0.32 0.32 0.32 

JRip 64.35% 59.55% 0.25 0.25 0.25 0.25 

RBF Network 64.35% 60.88% 0.26 0.26 0.26 0.26 

IB1 62.90% 61.15% 0.24 0.24 0.24 0.24 

SMO 58.26% 42.43% 0.06 0.06 0.01 0.01 

Naïve Bayes 55.36% 61.19% 0.17 0.17 0.15 0.15 

 

Table 5.21 Values of performance measures for the Wine data set. 

MCC S 
Classifier 

Average 
Sensitivity 

Average 
Specificity C1 C2 C3 C1 C2 C3 

RBF Network 98.31% 98.88% 0.97 0.97 0.99 0.96 0.97 0.96 

SMO 98.31% 99.31% 0.99 0.97 0.97 0.96 0.96 0.96 

Random Forest 98.31% 99.31% 0.99 0.97 0.97 0.96 0.96 0.96 

Logistic 97.19% 98.56% 0.97 0.94 0.96 0.94 0.94 0.93 

Naïve Bayes 96.63% 98.26% 0.96 0.93 0.96 0.93 0.93 0.92 

IB1 94.94% 97.78% 0.94 0.90 0.95 0.90 0.89 0.89 

MILP 94.94% 97.16% 0.94 0.91 0.93 0.89 0.90 0.88 

J48 93.82% 96.44% 0.94 0.88 0.90 0.87 0.87 0.85 

JRip 93.82% 96.44% 0.88 0.88 0.96 0.86 0.87 0.86 

LibSVM 92.13% 95.82% 0.91 0.85 0.88 0.83 0.84 0.81 
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Table 5.22 Values of performance measures for the Iris data set. 

MCC S 
Classifier 

Average 
Sensitivity 

Average 
Specificity C1 C2 C3 C1 C2 C3 

LibSVM 98% 99% 1.00 0.95 0.96 0.96 0.95 0.96 

Naïve Bayes 96% 98% 1.00 0.91 0.91 0.92 0.91 0.91 

Logistic 96% 98% 1.00 0.91 0.91 0.92 0.91 0.91 

SMO 96% 98% 1.00 0.91 0.91 0.92 0.91 0.91 

J48 96% 98% 0.98 0.91 0.93 0.92 0.91 0.91 

MILP 96% 98% 1.00 0.91 0.91 0.92 0.91 0.91 

Random Forest 95.33 97.67% 1.00 0.90 0.89 0.91 0.90 0.89 

IB1 95.33 97.67% 1.00 0.90 0.89 0.91 0.90 0.89 

RBF Network 95.33 97.67% 1.00 0.89 0.90 0.91 0.89 0.90 

JRip 94% 97% 0.98 0.86 0.88 0.88 0.86 0.87 

 

Table 5.23 Values of performance measures for the Thyroid data set. 

MCC S 
Classifier 

Average 
Sensitivity 

Average 
Specificity C1 C2 C3 C1 C2 C3 

MILP 97.21% 96.55% 0.93 0.97 0.93 0.93 0.91 0.89 

IB1 97.21% 96.52% 0.93 0.95 0.94 0.93 0.91 0.89 

Naïve Bayes 96.74% 93.48% 0.92 0.97 0.90 0.92 0.89 0.87 

Logistic 96.74% 94.47% 0.92 0.93 0.94 0.92 0.89 0.88 

RBF Network 95.35% 93.23% 0.89 0.93 0.88 0.89 0.85 0.82 

Random Forest 93.95% 90.02% 0.85 0.89 0.86 0.85 0.81 0.79 

LibSVM 93.95% 87.04% 0.86 0.89 0.86 0.85 0.80 0.78 

JRip 93.02% 91.81% 0.84 0.83 0.90 0.84 0.78 0.78 

J48 92.09% 89.66% 0.81 0.85 0.84 0.81 0.76 0.74 

SMO 89.77% 76.39% 0.76 0.73 0.86 0.73 0.64 0.69 
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Table 5.24 Values of performance measures for the Glass data set. 

MCC S 
Classifier SEN SPE 

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

Random Forest 78% 91% 0.67 0.63 0.32 0.75 0.94 0.87 0.59 0.58 0.39 0.50 0.50 0.58 

MILP 76% 91% 0.63 0.63 0.42 0.72 0.82 0.87 0.56 0.57 0.41 0.48 0.48 0.57 

LibSVM 71% 89% 0.54 0.59 0.13 0.72 0.74 0.83 0.48 0.52 0.32 0.46 0.45 0.53 

IB1 71% 89% 0.59 0.51 0.27 0.66 0.69 0.83 0.51 0.47 0.36 0.45 0.44 0.52 

JRip 66% 85% 0.45 0.45 0.08 0.63 0.68 0.85 0.41 0.41 0.33 0.42 0.42 0.49 

Logistic 66% 86% 0.43 0.43 0.03 0.69 0.88 0.85 0.40 0.41 0.32 0.43 0.44 0.49 

J48 66% 87% 0.48 0.39 0.21 0.74 0.79 0.81 0.43 0.37 0.34 0.44 0.43 0.48 

RBF Network 66% 86% 0.47 0.44 0.08 0.50 0.88 0.80 0.43 0.41 0.32 0.40 0.43 0.49 

SMO 57% 78% 0.30 0.33 NA 0.24 NA 0.84 0.30 0.28 0.32 0.34 0.34 0.44 

Naïve Bayes 50% 82% 0.21 0.11 0.14 0.16 0.75 0.79 0.22 0.18 0.27 0.30 0.35 0.38 

Table 5.25 Values of performance measures I for the Ecoli data set. 

MCC 
Classifier SEN SPE 

C1 C2 C3 C4 C5 C6 C7 C8 
SMO 87.50% 96.14% 0.94 0.75 NA 0.00 0.63 0.89 0.89 0.86 

Naïve Bayes 86.61% 95.81% 0.93 0.73 NA 0.00 0.61 0.86 0.89 0.86 

MILP 86.31% 96.37% 0.92 0.78 NA NA 0.60 0.81 0.91 0.83 

Random Forest 85.42% 96.35% 0.91 0.74 0.00 NA 0.67 0.87 0.77 0.80 

LibSVM 84.52% 96.01% 0.93 0.71 0.00 NA 0.54 0.83 0.80 0.83 

Logistic 84.23% 96.04% 0.91 0.76 NA NA 0.59 0.68 0.59 0.81 

IB1 83.63% 94.81% 0.92 0.69 NA NA 0.36 0.86 0.70 0.84 

J48 83.63% 95.39% 0.91 0.72 NA NA 0.47 0.83 0.77 0.78 

JRip 80.36% 94.59% 0.86 0.64 NA NA 0.43 0.80 0.91 0.76 

RBF Network 80.36% 93.87% 0.85 0.71 NA NA 0.44 0.78 0.17 0.77 
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Table 5.26 Values of performance measures II for the Ecoli data set. 

S 
Classifier SEN SPE 

C1 C2 C3 C4 C5 C6 C7 C8 
SMO 87.50% 96.14% 0.79 0.70 0.45 0.45 0.56 0.59 0.50 0.69 

Naïve Bayes 86.61% 95.81% 0.78 0.68 0.45 0.45 0.54 0.57 0.50 0.68 

MILP 86.31% 96.37% 0.77 0.69 0.45 0.43 0.53 0.56 0.51 0.67 

Random Forest 85.42% 96.35% 0.76 0.66 0.44 0.44 0.57 0.58 0.48 0.65 

LibSVM 84.52% 96.01% 0.75 0.65 0.44 0.43 0.49 0.55 0.48 0.65 

Logistic 84.23% 96.04% 0.74 0.66 0.45 0.43 0.52 0.52 0.47 0.64 

IB1 83.63% 94.81% 0.74 0.63 0.45 0.45 0.38 0.54 0.48 0.64 

J48 83.63% 95.39% 0.73 0.64 0.45 0.45 0.45 0.55 0.47 0.62 

JRip 80.36% 94.59% 0.69 0.57 0.44 0.43 0.42 0.52 0.48 0.59 

RBF Network 80.36% 93.87% 0.68 0.60 0.44 0.43 0.43 0.51 0.42 0.59 

Table 5.27 Values of performance measures I for the Yeast data set. 

MCC 
Classifier SEN SPE 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

LibSVM 63.14% 86.56% 0.53 0.40 0.40 0.78 0.59 0.49 0.81 0.31 0.55 0.63 

MILP 60.38% 85.51% 0.49 0.36 0.35 0.73 0.59 0.42 0.76 0.18 0.46 0.45 

Logistic 59.10% 86.04% 0.51 0.33 0.32 0.69 0.57 0.34 0.71 -0.01 0.55 0.91 

Naïve Bayes 58.89% 86.48% 0.48 0.34 0.33 0.70 0.51 0.37 0.73 -0.02 0.42 0.25 

RBF Network 58.63% 85.68% 0.48 0.33 0.32 0.61 0.51 0.37 0.75 -0.01 0.57 0.73 

J48 58.09% 85.08% 0.48 0.34 0.28 0.68 0.54 0.39 0.71 -0.01 0.63 0.89 

SMO 57.61% 86.29% 0.50 0.31 0.32 0.59 0.48 0.34 0.75 -0.01 0.55 0.63 

Random Forest 57.01% 84.14% 0.46 0.29 0.32 0.69 0.44 0.28 0.75 NA 0.63 0.77 

IB1 55.86% 85.53% 0.39 0.27 0.27 0.78 0.45 0.40 0.74 -0.02 0.39 0.80 

JRip 52.29% 85.07% 0.33 0.23 0.24 0.66 0.43 0.31 0.64 0.04 0.39 1.00 
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Table 5.28 Values of performance measures II for the Yeast data set. 

S 
Classifier SEN SPE 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

LibSVM 63.14% 86.56% 0.41 0.37 0.37 0.41 0.39 0.39 0.46 0.38 0.39 0.39 

MILP 60.38% 85.51% 0.39 0.34 0.33 0.39 0.38 0.37 0.43 0.36 0.38 0.38 

Logistic 59.10% 86.04% 0.39 0.32 0.32 0.39 0.38 0.36 0.42 0.36 0.37 0.37 

Naïve Bayes 58.89% 86.48% 0.38 0.33 0.33 0.38 0.37 0.36 0.42 0.36 0.37 0.37 

RBF Network 58.63% 85.68% 0.38 0.32 0.31 0.38 0.37 0.36 0.42 0.36 0.37 0.37 

J48 58.09% 85.08% 0.37 0.33 0.29 0.38 0.37 0.36 0.41 0.35 0.37 0.37 

SMO 57.61% 86.29% 0.38 0.31 0.31 0.37 0.36 0.35 0.42 0.35 0.37 0.37 

Random Forest 57.01% 84.14% 0.37 0.29 0.29 0.38 0.36 0.35 0.41 0.35 0.37 0.36 

IB1 55.86% 85.53% 0.34 0.29 0.29 0.38 0.36 0.35 0.41 0.34 0.36 0.36 

JRip 52.29% 85.07% 0.31 0.26 0.26 0.35 0.34 0.33 0.37 0.33 0.34 0.35 

 

In order to evaluate if there is any statistical significant difference between the 

existing and proposed data classification approaches tested on the same data sets, P-value 

(paired test) analysis are carried out.  The results of P-value test for two-class benchmark 

data sets are given in Table 5.29 and Table 5.30.  There is no statistical significant 

difference between the results LibSVM and MILP approach on two-class problems except 

Pima data set.  MILP approach is statistically significant than the LibSVM method for 

Pima data set.  On the other hand, there is no significant difference between the results of 

SMO, support vector implementation of WEKA, and MILP approach for the data sets 

Pima, Blood and WDBC.  However, MILP approach is statistically significant than the 

accuracies of the SMO classifier on Ionosphere and Liver data sets.  The accuracy values of 

MILP approach on each of the data sets is statistically significant than the accuracies of the 

distance based algorithm IB1 except the WDBC data set.  There is no statistically 

significant difference between the accuracies of the decision tree based classifier J48 and 
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MILP approach except the Pima data set.  MILP approach is statistically significant than 

the J48 classifier for Pima data set.  There is no statistical significant difference between 

the results of Random Forest and RBF Network classifier with the MILP approach except 

the two data sets.  MILP approach is statistically significant than the results of Random 

Forest classifier for Pima and Blood data sets.  Furthermore, MILP approach is statistically 

significant than the results of RBF Network classifier for Pima and Liver data sets.  Fro 

most of the data sets; MILP approach has statistically significant accuracy values from the 

classifiers JRip and Naïve Bayes.  Finally, there is no significant difference between the 

results of MILP approach and Logistic classifier for each of the data sets except 

Ionosphere.  When we observe the results from the data sets one by one, each of the 

methods applied to WDBC data set have statistically equivalent results.  For the rest of the 

data sets, MILP approach statistically dominates the results of some of the classifiers. 

 

Table 5.29 The results of P-value analyses for two-class data sets. 

Ionosphere Pima Blood WDBC Liver 
Compared  

Methods 
 P  

Value 

 P 

Value 

 P 

Value 

 P 

Value 

 P 

Value 

MILP vs LibSVM 0.17 2.31 1.02 0.64 0.26 

MILP vs SMO 2.86 1.89 1.75 0.33 4.17 

MILP vs IB1 3.73 5.06 5.03 1.36 2.94 

MILP vs J48 1.63 3.49 1.02 1.36 1.34 

MILP vs Random Forest 0.64 4.28 3.46 1.22 1.99 

MILP vs RBF Network 1.22 2.79 0.13 1.63 2.55 

MILP vs JRip 2.39 3.02 0.51 1.22 2.55 

MILP vs Naïve Bayes 4.99 2.37 2.11 1.08 4.93 

MILP vs Logistic 2.74 1.95 1.32 0.64 1.50 
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Table 5.30 The results of P-test for two-class data sets. 

Ionosphere Pima Blood WDBC Liver 
Compared  

Methods 
P Test 

Result 

P Test 

Result 

P Test 

Result 

P Test 

Result 

P Test 

Result 

MILP vs LibSVM = = + + = = = = = = 

MILP vs SMO + + = = = = = = + + 

MILP vs IB1 + + + + + + = = + + 

MILP vs J48 = = + + = = = = = = 

MILP vs Random Forest = = + + + + = = = = 

MILP vs RBF Network = = + + = = = = + + 

MILP vs JRip + + + + = = = = + + 

MILP vs Naïve Bayes + + + + + + = = + + 

MILP vs Logistic + + = = = = = = = = 

+ + denotes that the first method is statistically significantly better than the second method. - - 

represents that the second method is statistically significantly better than the first method. = = 

indicates that there is no significant difference between the results of the methods. 

The results of P-value test for multi-class benchmark data sets are given in Table 

5.31 and Table 5.32.  There is no statistical significant difference between the results 

LibSVM and MILP approach on each one of the multi-class benchmark problems.  On the 

other hand, MILP approach is statistically significant than the accuracies of the SMO 

classifier on half of the data sets (Thyroid, Glass and Yeast) and there is no significant 

difference between the results of SMO and MILP approach on half of the data sets (Wine, 

Iris and Ecoli).  There is no statistically significant difference between the performances of 

the methods IB1 and MILP on each of the multi-class data sets except Ecoli and Yeast.  

The result of MILP approach is significantly better than the IB1 classifier fro the data sets 
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Ecoli and Yeast.  Similar to SMO classifier,  MILP approach is statistically significant than 

the results of the J48 classifier on half of the data sets (Thyroid, Glass and Yeast) and there 

is no significant difference between the results of J48 and MILP approach on half of the 

data sets (Wine, Iris and Ecoli).   

Table 5.31 The results of P-value analyses for multi-class data sets. 

Wine Iris Thyroid Glass Ecoli Yeast 
Compared  

Methods 
 P  

Value 

 P  

Value 

 P  

Value 

 P  

Value 

 P  

Value 

 P  

Value 

MILP vs LibSVM 1.08 1.02 1.64 1.10 0.34 1.55 

MILP vs SMO 1.76 0 3.13 4.11 1.08 3.41 

MILP vs IB1 0 0.28 0 1.31 2.18 5.98 

MILP vs J48 0.46 0 2.36 2.34 0.88 4.04 

MILP vs Random Forest 1.76 0.28 1.64 0.34 1.08 2.37 

MILP vs RBF Network 1.76 0.28 1.02 2.34 0.77 2.26 

MILP vs JRip 0.46 0.79 2.01 2.24 2.18 2.82 

MILP vs Naïve Bayes 0.79 0 0.28 5.70 0.45 3.08 

MILP vs Logistic 1.09 0 0.28 2.24 0.11 2.52 

The performances of the methods Random Forest and MILP are not statistically 

significant for each one of the data sets except Yeast.  For the Yeast data set, MILP 

approach is significantly better than the classifier Random Forest.  The neural network 

based classifier RBF Network and MILP approach do not have statistically significant 

results for each one of the data sets except Glass and Yeast.  However, the performance of 

MILP approach is statistically significant than the RBF Network classifier for the data sets 

Glass and Yeast.  The accuracy values of MILP approach on each of the data sets is 

statistically significant than the accuracies of the rule based classifier JRip except the data 
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sets Wine and Iris.  Similar to RBF Network classifier, Naïve Bayes and Logistic classifiers 

have no statistically significant results than the MILP approach for the data sets Glass and 

Yeast.  On the other hand, the performances of the methods MILP and Naïve Bayes and 

Logistic classifiers are not significant in statistical manner for the rest of the multi-class 

benchmark data sets.   

Table 5.32 The results of P-test for multi-class data sets. 

Wine Iris Thyroid Glass Ecoli Yeast 
Compared  

Methods 
 P Test 

Result 

 P Test 

Result 

 P Test 

Result 

 P Test 

Result 

 P Test 

Result 

 P Test 

Result 

MILP vs LibSVM = = = = = = = = = = = = 

MILP vs SMO = = = = + + + + = = + + 

MILP vs IB1 = = = = = = = = + + + + 

MILP vs J48 = = = = + + + + = = + + 

MILP vs Random Forest = = = = = = = = = = + + 

MILP vs RBF Network = = = = = = + + = = + + 

MILP vs JRip = = = = + + + + + + + + 

MILP vs Naïve Bayes = = = = = = + + = = + + 

MILP vs Logistic = = = = = = + + = = + + 

+ + denotes that the first method is statistically significantly better than the second method. - - represents 

that the second method is statistically significantly better than the first method. = = indicates that there is 

no significant difference between the results of the methods. 

 
In order to compare the existing data classification methods with MILP, some of the 

ordered P-value graphs are shown in Figure 5.1 to Figure 5.9.   In Figure 5.1, the ordered 

P-values of MILP versus LibSVM for each of the eleven data sets are shown.  For only one 

data set, the P-value is greater than 2.  In general, MILP is preferable since it performs 

quite well for each of the existing benchmark data sets.  However, LibSVM method 
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performs poorly with respect to MILP approach for one of the data sets (Pima).  Hence, we 

could say that MILP approach is significantly better than LibSVM method in general.  For 

more than half of the data sets, MILP approach is statistically significant than SMO, IB1, 

JRip, and Naïve Bayes classifiers (Figure 5.2, Figure 5.3, Figure 5.7, Figure 5.8).  Thus, 

MILP approach is statistically better than these 4 methods in general.  For three data sets, 

the P-values are greater than 2 for the classifiers Random Forest and Logistic (Figure 5.5 

and Figure 5.9).  For the rest of the data sets, the difference between the accuracies of two 

methods is not significant.  Finally, proposed MILP approach is statistically significantly 

better than J48 and RBF Network classifiers for four of the data sets (Figure 5.4 and Figure 

5.6).  

MILP vs LibSVM

0

0,5

1

1,5

2

2,5

3

Io
no
sp
he
re

Li
ve
r
Ec
ol
i

W
D
B
C

Bl
oo
d

Iri
s

W
in
e

G
la
ss

Ye
as
t

Th
yr
oi
d
Pi
m
a

Data Sets

P
-V
a
lu
e
s

 

Figure 5.1 P-value graph of MILP versus LibSVM for UCI Benchmark data sets. 
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For each of the eleven UCI Repository data sets, MILP approach generally achieves 

high accuracy values and mostly ranks in first three positions with respect to accuracy.  

Furthermore, MILP is statistically significantly better than the existing data classification 

methods for these benchmark problems on given eleven distinct benchmark data sets. 
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Figure 5.2 P-value graph of MILP versus SMO for UCI Benchmark data sets. 
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MILP vs IB1
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Figure 5.3 P-value graph of MILP versus IB1 for UCI Benchmark data sets. 
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Figure 5.4 P-value graph of MILP versus J48 for UCI Benchmark data sets. 
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MILP vs Random Forest
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Figure 5.5 P-value graph of MILP versus Random Forest for UCI Benchmark data sets. 

MILP vs RBF Network
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Figure 5.6 P-value graph of MILP versus RBF Network for UCI Benchmark data sets. 
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MILP vs JRip
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Figure 5.7 P-value graph of MILP versus JRip for UCI Benchmark data sets. 

MILP vs Naive Bayes
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Figure 5.8 P-value graph of MILP versus Naïve Bayes for UCI Benchmark data sets. 
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MILP vs Logistic
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Figure 5.9 P-value graph of MILP versus Logistic for UCI Benchmark data sets. 

5.6 Problematic Instance Analysis 

 In order to analyze whether there exists any relation between the performance of the 

proposed approach and the number of problematic instances in the data sets, we investigate 

the results of these data sets in detail.  In Table 5.33, the number of problematic instances is 

given by average, maximum and minimum values for each of the protein folding type 

benchmark data sets.  Furthermore, the number of problematic instances for 1189 and 

25PDB data sets change from one run to another as 10FCV results are obtained for them 

(Figure 5.10 – Figure 5.20).     

 As it can be observed from the Table 5.33, the number of problematic instances 

does not affect the performance of the proposed approach.  For example, for the data sets 

WDBC and thyroid which have 67% and 10% problematic instances proposed approach 
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achieved approximately 97% accuracy.  Hence, considering only the number of 

problematic instances could not be sufficient to analyze the difficulty of the data sets.   

Table 5.33 Number of problematic instances for each of UCI repository data sets. 

Number of Problematic 
Instances 

Data Set 
Name 

Accuracy 
(%) 

Accuracy 
Rank 

% of Av. 
Problematic 
Instances Average Max. Min. 

Ionosphere 94.59% 2 60% 212 217 206 
Pima 81.25% 1 87% 666 677 641 
Blood 79.95% 1 89% 664 666 662 
WDBC 97.36% 1 67% 458 471 430 
Liver 73.33% 2 80% 275 279 269 
Wine 94.94% 4 6% 10 12 9 
Iris 96.00% 2 15% 22 25 16 
Thyroid 97.21% 1 10% 21 24 15 
Glass 76.17% 2 65% 140 143 134 
Ecoli 87.50% 2 48% 162 170 151 
Yeast 63.00% 1 88% 1299 1307 1290 
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Figure 5.10 The number of problematic instances for Ionosphere data set. 
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Pima Data Set 10FCV Analysis
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Figure 5.11 The number of problematic instances for Pima data set. 

Blood Data Set 10FCV Analysis
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 Figure 5.12 The number of problematic instances for Blood data set. 
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WDBC Data Set 10FCV Analysis
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Figure 5.13 The number of problematic instances for WDBC data set. 

Liver Data Set 10FCV Analysis
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Figure 5.14 The number of problematic instances for Liver data set. 



 
Chapter 5: Computational Results on UCI Repository Data Sets 154 
   

 

  
 

Wine Data Set 10FCV Analysis
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Figure 5.15 The number of problematic instances for Wine data set. 

Iris Data Set 10FCV Analysis
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Figure 5.16 The number of problematic instances for Iris data set. 
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Thyroid Data Set 10FCV Analysis
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Figure 5.17 The number of problematic instances for Thyroid data set. 

Glass Data Set 10FCV Analysis
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Figure 5.18 The number of problematic instances for Glass data set. 
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Ecoli Data Set 10FCV Analysis
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Figure 5.19 The number of problematic instances for Ecoli data set. 

Yeast Data Set 10FCV Analysis
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Figure 5.20 The number of problematic instances for Yeast data set. 
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Chapter 6 

 

CONCLUSION 

 

With the rapid increase in the availability of data for exploration and analysis, it is 

important to develop techniques that efficiently perform data mining studies.  As data 

classification is one of the important issues in these studies, many researchers study this 

concept.  Classification involves the supervised assignment of data points to predefined or 

known classes.  Here, there exists a collection of classes with labels and the problem is to 

label a new instance as belonging to one or more of the classes.  The field of data 

classification is wide and covers a broad range of areas including bioinformatics, decision 

sciences, finance, sports and health care.  A large number of data classification methods 

have been developed to date; however, each of them has several drawbacks which make 

them unattractive.  Thus, researchers have been studying to develop more accurate and 

more efficient methods or to improve the existing methods. 

In this thesis, a new three-stage mathematical programming based hyper-box 

enclosure approach for multi-class data classification problem is proposed.  A mixed-

integer programming model is developed for representing existence of hyper-boxes which 

define the boundaries of the classes for the training set.  In order to overcome the 

computational difficulties for large data sets, a three-stage approach is developed for 

training part analysis of hyper-box enclosure approach.  The performance of the model is 

tested by the testing part of the proposed method and compared with existing multi-class 

data classification methods on two widely used challenging problems; the protein folding 

type prediction problem and UCI Repository benchmark problems. 
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The developed three-stage MILP based hyper-box enclosure approach to multi-

class data classification is described in Chapter 3.  In the training part of the proposed 

approach, the characteristics of data points belonging to a certain class are determined by 

the construction of hyper-boxes.  The hyper-boxes define the boundaries of the classes that 

include all or some of the points in that set.  In order to represent the existence of hyper-

boxes and their boundaries, a mixed-integer programming model is developed.   

Solving the proposed MILP formulation to optimality is computationally expensive 

for large multi-group data classification problems.  The major source of computational 

difficulty is the potentially large number of binary variables.  Hence, we proposed a three-

stage decomposition algorithm for obtaining solutions to MILP model.  Instances that are 

difficult to classify are identified in the first stage that is referred to as preprocessing.  

Moreover, sub grouping and seed finding algorithms are applied to improve the 

computational efficiency.  With greater emphasis given to these observations, solution to 

the problem is obtained in the second stage using the MILP formulation.  Last, final 

assignments, elimination of box intersections and box combination procedures are carried 

out in the third step.   

After distinguishing characteristics of the classes are determined in the training part, 

the performance of the model is tested by the distance based algorithm introduced in testing 

problem formulation part.  While the original and proposed testing algorithms are 

compared and investigated in detail, the advantages of proposed testing algorithm are 

shown.  If a new data point with an unknown membership arrives, it is necessary to assign 

this data point to one of the classes.  For each member of the test data set, testing algorithm 

is applied and assignments to a class are done.  After all, by checking the original classes of 

the test set samples the performance of the developed model is evaluated.   

The proposed model is illustrated on a small illustrative example.  By this 

illustrative example, the main steps of the developed three-stage MILP based hyper-box 
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enclosure approach are understood. Moreover, the comparison of the results of distinct 

models available for data classification is performed.  The suggested model’s result is 

accurate and efficient in this small example with regard to the other methods listed in Table 

3.3. 

In Chapter 4, proposed three-stage MILP approach is applied to the protein folding 

type prediction problem.  Different performance evaluation techniques and measures are 

examined in order to investigate the details of results and compare different algorithms.  

The performance of proposed three-stage MILP based approach is compared with the 

results in [97], [100] and [23] for nine distinct data sets.  Two independent datasets (225 

training - 510 testing and 1601 training - 2438 testing) results are calculated and pretty 

good results are obtained.  Furthermore, LOO test results are given for 138, 253, 277, 35 

and 498 protein data sets and 10FCV results are studied for 1189 and 25PDB data sets.  

Results indicate that proposed MILP approach gives generally high accuracy values and 

mostly rank in the first or second position.  Moreover, P-value analyses show that MILP 

approach is statistically significantly better than the existing distance based algorithms HD, 

ED and CC algorithm.  Moreover, MILP approach is statistically better than the LibSVM 

and well-known WEKA classifiers for protein folding type prediction problems on given 

nine distinct benchmark data sets.  In summary, proposed MILP based hyper-box enclosure 

approach is a powerful and efficient computational method for predicting folding types of 

proteins with its favorable results and characteristics.   

In Chapter 5, the performance of proposed three-stage approach is evaluated on 

eleven UCI repository benchmark data sets [108].  In order to observe the performance of 

the proposed MILP based hyper-box enclosure approach, the eleven data sets including 

Ionosphere, Pima, Blood, WDBC, Liver, Wine, Iris, Thyroid, Glass, Ecoli and Yeast are 

tested.  First five of them are binary-class data classification data sets and the rest are 

multi-class data sets.  In order to compare the results of proposed MILP approach, WEKA 
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classification algorithms J48, RBF Network, Logistic, Naïve Bayes (NB), SMO, Random 

Forest (RF) and IB1 are studied (Table 5.3).  Moreover, well-known support vector 

machine implementation LibSVM given by [111] is also studied.  Using these data sets, the 

proposed three-stage MILP model is solved in GAMS [120] using ILOG CPLEX Solver 

version 10.0 [121] on a notebook computer with Inter Pentium M 1.73 Ghz Processor and 

512 MB of RAM.  For each data set, 10 different runs are carried out and average 10FCV 

results are calculated.  In order to analyze the results in detail, average sensitivity (SEN), 

average specificity (SPE), MCC and S values of each of the protein data sets are 

investigated (Table 5.16 - Table 5.28).  Depending on the data set characteristics, proposed 

data classification approach works well for each of the classes.  In order to evaluate if there 

is any statistical significant difference between the existing and proposed data classification 

approaches tested on the same data sets, P-value (paired test) analysis are carried out.  For 

each of the eleven UCI Repository data sets, MILP approach generally achieves high 

accuracy values and mostly ranks in first three positions with respect to accuracy.  

Furthermore, MILP is statistically significantly better than the existing data classification 

methods for these benchmark problems on given eleven distinct benchmark data sets. 

In conclusion, this thesis introduces a new three-stage mathematical programming 

based hyper-box enclosure method for multi-class data classification problem.  One of the 

most important characteristics of the proposed approach is allowing the use of hyper-boxes 

for defining the boundaries of the classes that enclose all or some of the points in that set. 

In other words, if necessary, more than one hyper-box is constructed for a specific class in 

the training part.  Moreover, well-construction of the boundaries of each class provides the 

lack of misclassifications in the training set and indirectly improves the accuracy of the 

model.  In addition, the model does not need to know the underlying distribution of the 

training data set and learns from the training set in a reasonable time. With only one 

parameter to be initialized, the suggested model is simple and easily understandable.  
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Furthermore, the proposed model can be used for both binary and multi-class data 

classification problems without any modifications or additions.  The accuracy, simplicity 

and understandability of the proposed model are favorable.  Proposed three-stage MILP 

approach is applicable to obtain solutions to large multi-class data classification problems.  

These characteristics make the proposed approach efficient, simple and easily 

implementable. 

The advantage of the mathematical programming approach in the context of 

supervised classification lies in its power to model more complex real world problems.  

Future studies should further evaluate the performance of the proposed approach on data 

sets with categorical attributes.  Since the proposed approach depends on a geometrical 

idea, it is efficient for data sets including continuous and integer valued attributes.  In 

literature, there exist data classification problems which include both categorical and 

numerical attributes.   Hence, MILP approach could be modified in order to deal with 

categorical attributes.  Moreover, overall method could be implemented in a computer 

package and could be parallelized.  Finally, proposed data classification approach could be 

implemented in WEKA.  In that case, there will be some solver related problems since 

MILP approach needs an IP solver such as GAMS.  If these problems could be solved, 

MILP approach could be tested by many researchers by the help of WEKA.  
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APPENDIX A: PROTEIN FOLDING TYPE PREDICTION DATA SETS 

 

Table A.1 The 138 Protein Domains. 

36 all-α domains 
1hbiA|W.C. 1sctA|W.C. 1ytc_|W.C. 1boc_|W.C. 1ctz_|W.C. 1troA|W.C. 
1fipA|W.C. 1hddC|W.C. 1dprA|65-136 1tnt_|W.C. 1erc_|W.C. 2tct_|W.C. 
1aca_|W.C. 1vasA|W.C. 1lynA|W.C. 1hsm_|W.C. 1rprA|W.C. 3wrp_|W.C. 
1pou_|W.C. 1arqA|W.C. 1mykA|W.C. 1mylA|W.C. 1bpd_|9-91 1lis_|W.C. 
1olhA|W.C. 1pesA|W.C. 1rpo_|W.C. 1hns_|W.C. 1tag_|57-177 1rhgA|W.C. 
1tyc_|228-319 1oxy_|1-379 1pgn_|177-473 1csi_|W.C. 1phb_|W.C. 1lla_|2-379 

29 all-β domains 
1mdtA|381-535 1cgt_|580-684 1gcs_|1-85 1pnf_|1-140 1png_|5-140 1gog_|151-537 
1gog_|1-150 1tnfA|W.C. 1hivA|W.C. 2ctvA|W.C. 1apnA|W.C. 1cgt_|383-494 
1bib_|271-317 1bfb_|W.C. 2bfh_|W.C. 1bfg_|W.C. 1arc_|W.C. 1hpcA|W.C. 
1bcmA|481-560 1hvc_|W.C. 1hbp_|W.C. 1fen_|W.C. 1slfB|W.C. 1kraC|2-129 
1azm_|W.C. 1srgA|W.C. 1sleB|W.C. 1cyhA|W.C. 3cysA|W.C.  

32 α/β domains 
1cgt_|1-382 1cxe_|1-382 1btb_|W.C. 1brsD|W.C. 1fnd_|155-314 1garA|W.C. 
4ts1A|1-217 1selA|W.C. 1cdoA|176-324 1hldA|175-324 1horA|W.C. 3pgk_|W.C. 
1cia_|W.C. 1pnt_|W.C. 2hnp_|W.C. 1tho_|W.C. 1lam_|1-159 1olcA|W.C. 
1gdtA|1-140 3hsc_|3-188 1idm_|W.C. 1cde_|W.C. 1cddA|W.C. 1pkm_|396-530 
1mhtA|W.C. 1alhA|W.C. 8atcA|1-150 2ctc_|W.C. 1dr1_|W.C. 2rslA|W.C. 
1drj_|W.C. 2bgt_|W.C.     

41 α+β domains 
1fut_|W.C. 2baa_|W.C. 1aec_|W.C. 2rat_|W.C. 2rns_|W.C. 1mrk_|W.C. 
1rbd_|W.C. 1kraA|W.C. 1pgb_|W.C. 2igg_|W.C. 2secI|W.C. 1mldA|145-313 
3monA|W.C. 1frtA|1-178 1fkj_|W.C. 2tecI|W.C. 1lttA|W.C. 1ltaA|W.C. 
3mdsA|93-203 1egpA|W.C. 1mns_|3-132 1grl_|137-190 1r1dS 2act_|W.C. 
1comA|W.C. 1sphA|W.C. 1gaeO|149-312 1mstA|W.C. 1grb_|364-478 1molA|W.C. 
1lklA|W.C. 1lckA|117-226 1sceA|W.C. 1tsy_|W.C. 3b5c_|W.C. 1xrb_|1-101 
1tbpA|61-155 1xrc_|1-101 1glv_|123-316 3dni_|W.C. 1dnkA|W.C.  

* Each domain is represented by a symbol of X|Y, where first four character of X is the corresponding PDB 
code and the fifth character indicates the specific chain of the protein. If it is _, then the corresponding 
protein has only one chain. If Y=W.C., it means the domain is constituted by the whole chain. Otherwise, Y 
contains two number to indicate starting and end points along the sequence.  
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Table A.2 The 253 Protein Domains. 

63 all-α domains 
1hbiA|W.C. 1sctA|W.C. 1ytc_|W.C. 1crj_|W.C. 1hddC|W.C. 1glm_|W.C. 
1dprA|65-136 1tnt_|W.C. 1erc_|W.C. 1aca_|W.C. 1vasA|W.C. 2tct_|W.C. 
1lynA|W.C. 1hsm_|W.C. 1rprA|W.C. 1rpo_|W.C. 1pou_|W.C. 2ts1_|228-319 
1cdn_|W.C. 1arqA|W.C. 1mykA|W.C. 1mylA|W.C. 1bpd_|9-91 1csh_|W.C. 
1olhA|W.C. 1pesA|W.C. 1hns_|W.C. 1tag_|57-177 4ts1A|228-319 1oelA|2-136 
1tyc_|228-319 1oxy_|1-379 1pgn_|177-473 1csi_|W.C. 1phb_|W.C. 1llp_|W.C. 
1troA|W.C. 3wrp_|W.C. 3sdhA|W.C. 1ycc_|W.C. 1enh_|W.C. 1phc_|W.C. 
1dtr_|65-191 1tns_|W.C. 1bal_|W.C. 1erl_|W.C. 2abd_|W.C. 1rtm1|73-104 
2end_|W.C. 1lis_|W.C. 1aab_|W.C. 1rhgA|W.C. 1ropA|W.C. 1lla_|2-379 
1octC|5-75 4icb_|W.C. 1parA|W.C. 2bpfA|9-91 1olgA|W.C. 1fiaA|W.C. 
1hnr_|W.C. 2wrpR|W.C. 2pgd_|177-473    

58 all-β domains 
1mdtA|381-535 1cgt_580-684 1gcs_|1-85 1pnf_|1-140 1pnf_|5-140 2sil_|W.C. 
1gog_|1-150 1tnfA|W.C. 2ctvA|W.C. 1apnA|W.C. 1bib_|271-317 2pec_|W.C. 
1bfb_|W.C. 2bfh_|W.C. 1bfg_|W.C. 1arc_|W.C. 1bcmA|481-560 1gtrA|339-547 
1hpxA|W.C. 1hvc_|W.C. 1hbp_|W.C. 1fen_|W.C. 1slfB|W.C. 1gof_|151-537 
1srgA|W.C. 1sleB|W.C. 1cyhA|W.C. 3cysA|W.C. 1gog_|151-537 1htp_|W.C. 
1cgt_|383-494 1hug_|W.C. 1hpcA|W.C. 1kraC|2-129 1ddt_|381-535 2kauC|2-129 
1cdg_582-686 1aac_|W.C. 4gcr_|1-85 1pgs_|4-140 1gof_|1-150 1hcb_|W.C. 
1tnrA|W.C. 1thw_|W.C. 1scs_|W.C. 1bglA|731-1023 1bia_|271-317 1kapP|247-470 
1ltsD|W.C. 4fgf_|W.C. 1fnb_|19-154 1arb_|W.C. 1bco_|481-560 2cpl_|W.C. 
1difA|W.C. 1hbq_|W.C. 1cdg_|383-495 1sriA|W.C.   

61 α/β domains 
1cgt_|1-382 1cxe_|1-382 1btb_|W.C. 1brsD|W.C. 1fnd_|155-314 7acn_|2-528 
4ts1A|1-217 1cdoA|176-324 1hldA|175-324 1horA|W.C. 2secE|W.C. 1ctt_|1-150 
1cia_|W.C. 1pnt_|W.C. 2hnp_|W.C. 1trx_|W.C. 1lam_|1-159 3pgk_|W.C. 
1gdtA|1-140 3hsc_|3-188 1cde_|W.C. 1cddA|W.C. 1mhtA|W.C. 1aliA|W.C. 
2ctc_|W.C. 1dr1_|W.C. 2anhA|W.C. 1xab_|W.C. 1raiA|1-150 1xaa_|W.C. 
2bgt_|W.C. 1drk_|W.C. 1olcA|W.C. 1cdg_|1-382 1bta_|W.C. 2bgu_|W.C. 
1fnb_|155-314 2ts1_|1-217 2ohxA|175-324 1deaA|W.C. 1cseE|W.C. 1ubsB|W.C. 
3cla_|W.C. 1phr_|W.C. 2hnq_|W.C. 2trxA|W.C. 1trkA|535-680 2dri_|W.C. 
1pkm_|396-530 1lcpA|1-159 2rslA|W.C. 1hpm_|4-188 1garA|W.C. 1ora_|1-149 
1hmy_|W.C. 7aatA|W.C. 1ulb_|W.C. 1ack_|W.C. 2ctb_|W.C. 2olbA|W.C. 
8dfr_|W.C.      

71 α+β domains 
1fut_|W.C. 2baa_|W.C. 1aec_|W.C. 2rat_|W.C. 2rns_|W.C. 1puc_|W.C. 
1rbd_|W.C. 1kraA|W.C. 1pgb_|W.C. 2igg_|W.C. 3monA|W.C. 1xrb_|1-101 
1frtA|1-178 1fkj_|W.C. 2secI|W.C. 1egpA|W.C. 2tecI|W.C. 1ltsA|W.C. 
3mdsA|93-203 1mns_|3-132 1gr1_|137-190 1rldS|W.C. 1comA|W.C. 1sryA|111-421 
1gaeO|149-312 1mstA|W.C. 1grb_|364-478 1lklA|W.C. 1lckA|177-226 2glt_|123-316 
1sphA|W.C. 1sceA|W.C. 1tsy_|W.C. 3b5c_|W.C. 1tbpA|61-155 1tlcA|W.C. 
1xrc_|1-101 1glv_|123-316 3dni_|W.C. 1dnkA|W.C. 1mrk_|W.C. 2dnjA|W.C. 
1ltaA|W.C. 1lttA|W.C. 1fus_|W.C. 1cnsA|W.C. 2act_|W.C. 1cyo_|W.C. 
7rsa_|W.C. 2kauA|W.C. 1igd_|W.C. 3cox_|319-450 1molA|W.C. 1mldA|145-313 
1fruA|1-178 1fkd_|W.C. 1cseI|W.C. 1mngA|93-203 1vih_|W.C. 1ytbA|61-155 
2mnr_|3-132 1oelA|137-190 3rubS|W.C. 2chsA|W.C. 1gadO|149-312 1mrj_|W.C. 
3sicI|W.C. 2ms2A|W.C. 3grs_|364-478 1lkkA|W.C. 1hid_|W.C.  
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Table A.3 The 359 Protein Domains. 

82 all-α domains 
1hbiA|W.C. 1sctA|W.C. 1ytc_|W.C. 1boc_|W.C. 1ctz_|W.C. 2ts1_|228-319 
1fipA|W.C. 1hddC|W.C. 1dprA|65-136 1tnt_|W.C. 1bbl_|W.C. 1csh_|W.C. 
1erc_|W.C. 1aca_|W.C. 1vasA|W.C. 1lynA|W.C. 1hme_|W.C. 1oelA|2-136 
1hsm_|W.C. 1gnc_|W.C. 1rprA|W.C. 1pou_|W.C. 1cdn_|W.C. 1llp_|W.C. 
1cih_|W.C. 1arqA|W.C. 1mykA|W.C. 1mylA|W.C. 1bpd_|9-91 1phc_|W.C. 
1olhA|W.C. 1pesA|W.C. 1rpo_|W.C. 1hns_|W.C. 1tag_|57-177 1rtm1|73-104 
1bod_|W.C. 2pccB|W.C. 4ts1A|228-319 1tyc_|228-319 1lgaA|W.C. 1lla_|2-379 
1oxy_|1-379 1nol_|1-379 1pgn_|177-473 1yeb_|W.C. 2utgA|W.C. 1fiaA|W.C. 
3gly_|W.C. 1csi_|W.C. 1csc_|W.C. 1phb_|W.C. 3fisA|W.C. 2pgd_|177-473 
1troA|W.C. 3wrp_|W.C. 1trrA|W.C. 1grl_|6-136 1raq_|W.C. 2wrpR|W.C. 
1afb1|73-104 3sdhA|W.C. 1ycc_|W.C. 1enh_|W.C. 1dtr_|65-191 1glm_|W.C. 
1tns_|W.C. 1bal_|W.C. 1erl_|W.C. 2abd_|W.C. 2end_|W.C. 2tct_|W.C. 
1lis_|W.C. 1aab_|W.C. 1rhgA|W.C. 1ropA|W.C. 1octC|5-75 1hnr_|W.C. 
4icb_|W.C. 1parA|W.C. 2bpfA|9-91 1olgA|W.C.   

85 all-β domains 
1mdtA|381-535 1cgt_|580-684 1cxe_|582-686 1aaj_|W.C. 1mdaA|W.C. 1sriA|W.C. 
1gcs_|1-85 1pnf_|1-140 1png_|5-140 1gog_|1-150 1tnfA|W.C. 1hcb_|W.C. 
1hivA|W.C. 1thu_|W.C. 2ctvA|W.C. 2tunA|W.C. 1apnA|W.C. 2cpl_|W.C. 
2cna_|W.C. 1bib_|271-317 1ltaD|W.C. 1bfb_|W.C. 2bfh_|W.C. 1kapP|247-470 
1bfg_|W.C. 1bas_|W.C. 1fnd_|19-154 1arc_|W.C. 1bcmA|481-560 2sil_|W.C. 
1hpxA|W.C. 1thv_|W.C. 1hshA|W.C. 1bzm_|W.C. 1cpiA|W.C. 2pec_|W.C. 
1hvc_|W.C. 1hefE|W.C. 1hvsA|W.C. 1gtsA|339-547 1hbp_|W.C. 1gof_|151-537 
1fen_|W.C. 1fga_|W.C. 1erb_|W.C. 1slfB|W.C. 1azm_|W.C. 1htp_|W.C. 
1srgA|W.C. 1srjA|W.C. 1ptsA|W.C. 1sleB|W.C. 1cyhA|W.C. 1cdg_|383-495 
3cysA|W.C. 2sim_|W.C. 1gog_|151-537 1cgt_|383-494 1cxe_|383-495 2kauC|2-129 
1hug_|W.C. 1mikA|W.C. 1huh_|W.C. 1akl_|247-470 1hpcA|W.C. 1hbq_|W.C. 
1kraC|2-129 1ddt_|381-535 1cdg_|582-686 1aac_|W.C. 4gcr_|1-85 1gtrA|339-547 
1pgs_|4-140 1gof_|1-150 1tnrA|W.C. 1thw_|W.C. 1scs_|W.C. 1difA|W.C. 
1bglA|731-1023 1bia_|271-317 1ltsD|W.C. 4fgf_|W.C. 1fnb_|19-154 1bco_|481-560 
1arb_|W.C.      

99 α/β domains 
1cgt_|1-382 1cxe_|1-382 1cgv_|1-382 1btb_|W.C. 1brsD|W.C. 1ulb_|W.C. 
1cxf_|1-382 1fnd_|155-314 4ts1A|1-217 1selA|W.C. 1cdoA|176-324 1xaa_|W.C. 
1hldA|175-324 1horA|W.C. 2secE|W.C. 1cia_|W.C. 1frn_|155-314 2bgu_|W.C. 
1pnt_|W.C. 2hnp_|W.C. 1tybE|1-217 1tho_|W.C. 1tkbA|535-680 1ack_|W.C. 
1lam_|1-159 1bllE|1-159 1gdtA|1-140 3hsc_|3-188 1idm_|W.C. 1ubsB|W.C. 
1ngi_|4-188 1atr_|2-188 1cde_|W.C. 1grcA|W.C. 1cddA|W.C. 2dri_|W.C. 
1mhtA|W.C. 1ama_|W.C. 1alhA|W.C. 1ula_|W.C. 1ngb_|4-188 2ctb_|W.C. 
1rhd_|1-149 1trx_|W.C. 1amn_|W.C. 8atcA|1-150 1acj_|W.C. 1ora_|1-149 
1alkA|W.C. 2ctc_|W.C. 1dr1_|W.C. 1drj_|W.C. 1hqaA|W.C. 2olbA|W.C. 
1ajdA|W.C. 1acl_|W.C. 1ngg_|3-188 1ajcA|W.C. 1dbp_|W.C. 8dfr_|W.C. 
1xab_|W.C. 1raiA|W.C. 1scnE|W.C. 1ttqB|W.C. 1wsyB|W.C. 7acn_|2-528 
1orb_|1-149 1ajaA|W.C. 2anhA|W.C. 5acn_|1-528 5cpa_|W.C. 1ctt_|1-150 
2bgt_|W.C. 1drk_|W.C. 1acmA|1-150 1ngh_|4-188 1olcA|W.C. 1aliA|W.C. 
1ctu_|1-150 1cdg_|1-382 1bta_|W.C. 1fnb_|155-314 2ts1_|1-217 3pgk_|W.C. 
2ohxA|175-324 1deaA|W.C. 1cseE|W.C. 3cla_|W.C. 1phr_|W.C. 7aatA|W.C. 
2hnq_|W.C. 2trxA|W.C. 1trkA|535-680 1pkm_|396-530 1lcpA|1-159 1hmy_|W.C. 
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2rs1A|W.C. 1hpm_|4-188 1garA|W.C.    

93 α+β domains 
1fut_|W.C. 2baa_|W.C. 1aec_|W.C. 2rat|W.C. 2rns_|W.C. 1lkkA|W.C. 
1ras_|W.C. 1ssbA|W.C. 1rbd_|W.C. 1kraA|W.C. 1pgx_|W.C. 1cyo_|W.C. 
1pgb_|W.C. 1igcA|W.C. 2igg_|W.C. 2igh_|W.C. 2secI|W.C. 1mldA|145-313 
1coy_|319-450 3monA|W.C. 1frtA|1-178 1fkj_|W.C. 2tecI|W.C. 1hid_|W.C. 
1lttA|W.C. 1egl_|W.C. 1sbnI|W.C. 3mdsA|93-203 1vig_|W.C. 1ytbA|61-155 
1egpA|W.C. 1fkl_|W.C. 1mns_|3-132 1grl_|137-190 1fccC|W.C. 1mrj_|W.C. 
1rldS|W.C. 1comA|W.C. 1sphA|W.C. 1gaeO|149-312 1mstA|W.C. 1puc_|W.C. 
1grb_|364-478 1lklA|W.C. 1lcjA|W.C. 1lckA|117-226 1sceA|W.C. 1xrb_|1-101 
1setA|111-421 1sibI|W.C. 1tsdA|W.C. 1htlA|W.C. 1bmsA|W.C. 1ltsA|W.C. 
2hpr_|W.C. 1tsy_|W.C. 1tys_|W.C. 3b5c_|W.C. 1tbpA|61-155 1sryA|111-421 
1xrc_|1-101 1glv_|123-316 2tscA|W.C. 3dni_|W.C. 1dnkA|W.C. 2glt_|123-316 
4mdhA|155-333 1mrk_|W.C. 1ltaA|W.C. 1ltgA|W.C. 1fus_|W.C. 1tlcA|W.C. 
1cnsA|W.C. 2act_|W.C. 7rsa_|W.C. 2kauA|W.C. 1igd_|W.C. 2dnjA|W.C. 
3cox_|319-450 1molA|W.C. 1fruA|1-178 1fkd_|W.C. 1cseI|W.C. 3grs_|364-478 
1mngA|93-203 1vih_|W.C. 2mnr_|3-132 1oelA|137-190 3rubS|W.C. 2ms2A|W.C. 
2chsA|W.C. 1gadO|149-312 3sicI|W.C.    
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Table A.4 The 1601 Protein Domains. 

273 all-α domains 
3sdhA|W.C. 1flp_|W.C. 2hbg_|W.C. 1bvc_|W.C. 2myc_|W.C. 1utg_|W.C. 
2mb5_|W.C. 1mls_|W.C. 1mbw_|W.C. 1mod_|W.C. 2mga_|W.C. 5cscA|W.C. 
1mba_|W.C. 1mbs_|W.C. 1mygA|W.C. 1ymb_|W.C. 1mniA|W.C. 1oxa_|W.C. 
1emy_|W.C. 1lht_|W.C. 1myt_|W.C. 1eca_|W.C. 2gdm_|W.C. 1aorA|211-605 
1lh1_|W.C. 2hhbA|W.C. 2hbcA|W.C. 1cohA|W.C. 1dshA|W.C. 1oelA|2-136 
2mhbA|W.C. 1hdsA|W.C. 1hdaA|W.C. 2pghA|W.C. 1pbxA|W.C. 1pshA|W.C. 
2mhbB|W.C. 1hbcB|W.C. 1cohB|W.C. 2hhe3|W.C. 1fdhG|W.C. 4p2p_|W.C. 
2hhbB|W.C. 1hdsB|W.C. 1hdaB|W.C. 2pgh3|W.C. 1pbxB|W.C. 2ztaA|W.C. 
2lhb_|W.C. 1ithA|W.C. 1ash_|W.C. 1hlb_|W.C. 1cpcA|W.C. 1ifk_|W.C. 
1grj_|2-79 1sryA|1-110 1idsA|W.C. 3sdpA|5-834 1isaA|1-82 1ccd_|W.C. 
1abmA|1-83 1mngA|1-92 1ycc_|W.C. 1csw_|W.C. 1csv_|W.C. 2cts_|W.C. 
1hrc_|W.C. 1ccr_|W.C. 5cytR|W.C. 1cyc_|W.C. 3c2c_|W.C. 1cpt_|W.C. 
1c2rA|W.C. 1cxc_|W.C. 1cry_|W.C. 1cot_|W.C. 1cc5_|W.C. 1bvp1|1-120 
1cor_|W.C. 451c_|W.C. 2mtaC|W.C. 1cyi_|W.C. 1fcdC|W.C. 1ecmA|W.C. 
1enh_|W.C. 1yrnA|W.C. 1lfb_|W.C. 1octC|102-161 1ftt_|W.C. 1pp2R|W.C. 
1hdp_|W.C. 1ocp_|W.C. 1hom_|W.C. 1ftz_|W.C. 1hcrA|W.C. 1bunA|W.C. 
1gdtA|141-183 1mbe_|W.C. 1pdnC|W.C. 1bia_|1-63 1lea_|W.C. 1d66A|49-64 
1cgpA|138-205 1hstA|W.C. 1ghc_|W.C. 1fliA|W.C. 1etc_|W.C. 1ifl_|W.C. 
1stwA|W.C. 1hks_|W.C. 2hts_|W.C. 1dtr_|4-64 1dtr_|65-191 1g1m_|W.C. 
1tns_|W.C. 2spcA|W.C. 1fc2C|W.C. 1bal_|W.C. 2pdd_|W.C. 1phc_|W.C. 
1erl_|W.C. 1erd_|W.C. 1erp_|W.C. 1acp_|W.C. 2abd_|W.C. 1fiaA|W.C. 
2end_|W.C. 1lis_|W.C. 1aab_|W.C. 1hma_|W.C. 1hryA|W.C. 2sblB|150-838 
1bfmA|W.C. 1mmoG|W.C. 1lpe_|W.C. 1le4_|W.C. 1le2_|W.C. 1csmA|W.C. 
2asr_|W.C. 2ligA|W.C. 256bA|W.C. 2ccyA|W.C. 1bbhA|W.C. 1ppa_|W.C. 
1cgn_|W.C. 1cgo_|W.C. 2hmzA|W.C. 2mhr_|W.C. 2tmvP|W.C. 1clpA|W.C. 
1cgmE|W.C. 1bucA|233-383 3mddA|242-395 1bcfA|W.C. 1fha_|W.C. 1pyiA|72-117 
1hrs_|W.C. 1rcd_|W.C. 1ribA|W.C. 1mmo3|W.C. 1rhgA|W.C. 2ifo_|W.C. 
1bgc_|W.C. 1bgeA|W.C. 1lki_|W.C. 3hhrA|W.C. 1ilk_|W.C. 1clc_|135-574 
1gmfA|W.C. 1rcb_|W.C. 1itl_|W.C. 1hulA|W.C. 1ir1_|W.C. 7cpp_|W.C. 
1rfbA|W.C. 1ropA|W.C. 1eciA|W.C. 1octC|5-75 1lmb3|W.C. 1prcC|W.C. 
1r69_|W.C. 2cro_|W.C. 1adr_|W.C. 1neq_|W.C. 1pnrA|3-58 2tct_|W.C. 
1lccA|W.C. 1coo_|W.C. 1mdyA|W.C. 4icb_|W.C. 1cb1_|W.C. 1poc_|W.C. 
1sra_|W.C. 1rro_|W.C. 1cdp_|W.C. 1pvb_|W.C. 5pa1_|W.C. 1bbc_|W.C. 
1rtp1|W.C. 1top_|W.C. 5tnc_|W.C. 1rec_|W.C. 2scpA|W.C. 1rtm1|73-104 
2sas_|W.C. 1cll_|W.C. 1lin_|W.C. 3cln_|W.C. 1cfd_|W.C. 1ifj_|W.C. 
1osa_|W.C. 1scmB|W.C. 1scmC|W.C. 1parA|W.C. 1mntA|W.C. 1csh_|W.C. 
1cmbA|W.C. 1dsbA|65-128 2gstA|85-217 1glqA|79-209 1gsrA|77-207 2hpdA|W.C. 
1gssA|77-207 1hna_|85-217 1gseA|81-222 2gsq_|76-202 1gta_|81-218 2wrpR|W.C. 
1bmtA|651-740 1c5a_|W.C. 1hyp_|W.C. 1lpt_|W.C. 1lip_|W.C. 1fps_|W.C. 
1bip_|W.C. 2bpfA|9-91 1olgA|W.C. 1sakA|W.C. 1hnr_|W.C. 1poa_|W.C. 
1hueA|W.C. 1aep_|W.C. 1axn_|W.C. 1ala_|W.C. 1hvd_|W.C. 4bp2_|W.C. 
2ran_|W.C. 1ann_|W.C. 1tadA|57-177 1gia_|51-181 1ezm_|154-298 1hup_|88-111 
8tlnE|156-316 4tmnE|156-316 1npc_|157-317 2ts1_|228-319 2hmx_|W.C. 1ifm_|W.C. 
1llp_|W.C. 1aru_|W.C. 2cyp_|W.C. 1ccc_|W.C. 1cpd_|W.C. 2pgd_|177-473 
1mnp_|W.C. 1apxA|W.C. 1mhlA|W.C. 1mypA|W.C. 1pth_|74-583 1hc2_|5-398 
2abk_|W.C. 1gln_|306-468 1lla_|2-379    
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461 all-β domains 
1bec_|3-117 8fabA|3-105 7fabL|1-103 1bafL|1-108 1bbdL|1-114 1r081|W.C. 
1bbjL|1-109 1hilA|1-108 1dbaL|1-107 1dfbL|1-106 1igfL|1-107 1cov1|W.C. 
1igiL|1-107 1igmL|W.C. 1indL|2-109 2f19L|1-108 2fb4L|1-109 1dhx_|W.C. 
2fbjL|1-109 1fgvL|W.C. 2imm_|W.C. 1fvcA|W.C. 1ggbL|1-107 1hplA|337-449 
1acyL|1-108 1mamL|1-108 1nbvL|1-112 1tetL|1-107 1flrL|1-112 1bvp1|121-254 
6fabL|1-108 1gigL|1-110 2cgrL|1-112 1figL|1-108 1frgL|1-108 1thw_|W.C. 
1vfaA|W.C. 1jhlL|W.C. 3hf1L|1-106 3hfmL|1-108 1jelL|1-108 1lte_|W.C. 
1ncaL|1-108 1forL|1-108 1eapA|1-107 1mrdL|1-108 1fbiL|1-107 2ayh_|W.C. 
1rmfL|1-112 1fptL|1-108 1ikfL|1-107 1lmkA|2-127 1igcL|1-108 1celA|W.C. 
1ibgL|2-107 1mlbA|1-108 1nmbL|W.C. 1opgL|1-107 1nsnL|1-107 1oacA|301-724 
1iaiL|1-108 1iaiM|1-109 1plgL|1-112 1ivlA|W.C. 1reiA|W.C. 1pht_|W.C. 
2rhe_|W.C. 1bjmA|W.C. 1wtlA|W.C. 1breA|W.C. 1mcoL|1-111 1gbrA|W.C. 
1mcdA|1-111 1mceA|1-111 1mcwM|1-111 3cd4_|1-97 1cid_|1-105 1qweA|W.C. 
1hnf_|4-104 1cdcA|W.C. 1cd8_|W.C. 1bec_|118-246 8fabA|106-208 1qorA|2-135 
7fabL|104-204 1bafL|109-214 1bbdL|115-219 1bbjL|110-211 1hilA|109-211 1prtD|W.C. 
1dbaL|108-211 1dfbL|106-212 1igfL|108-214 1igiL|108-213 1indL|110-212 1tssA|1-93 
2f19L|109-214 2fb4L|110-214 2fbjL|108-213 2fgwL|109-214 1mcpL|115-219 1pyp_|W.C. 
1fvdA|109-214 1ggbL|108-211 1acyL|109-211 1mamL|109-214 1mfbL|112-212 1bgh_|W.C. 
1nbvL|113-219 1tetL|108-211 1flrL|113-219 6fabL|109-214 1gigL|111-210 4fgf_|W.C. 
2cgrL|113-219 1figL|108-214 1frgL|112-217 1fdlL|108-214 3hflL|107-212 2aaiB|1-135 
3hfmL|109-214 1jelL|109-212 1ncaL|109-214 1forL|108-210 1eapA|108-214 1fnb_|19-154 
1mrdL|109-211 1fbiL|108-214 1rmfL|113-219 1fptL|108-213 1ikfL|108-214 1eft_|313-405 
1igcL|109-213 1ibgL|108-214 1mlbA|109-214 1opgL|108-214 1nsnL|108-211 1gbdA|W.C. 
1iaiL|109-214 1iaiM|110-215 1plgL|113-215 1mcoL|112-216 1mcdA|112-216 1ppcE|W.C. 
1mceA|112-216 1mcwM|112-216 1fc1A|238-341 1frtC|239-341 1pfc_|W.C. 1brbE|W.C. 
1fruA|179-269 1bmg_|W.C. 2clrA|182-275 1hsaA|182-276 1hsbA|182-270 2gmt_|W.C. 
1vabA|182-274 1hocA|182-272 1mhcA|182-272 1dlhA|82-182 1vcaA|1-90 7estE|W.C. 
3cd4_|98-178 1cid_|106-177 1hnf_|105-182 1hngA|101-176 1cgx_|496-581 1nrpL|W.C. 
1tlk_|W.C. 1tnm_|W.C. 1gof_538-639 1cdg_|496-581 1clc_|35-134 1ton_|W.C. 
1cyg_|492-574 1ciu_|496-578 1lla_|380-628 1hc2_|399-653 1ten_|W.C. 1difA|W.C. 
1ctn_|24-132 1ggtA|8-190 2hft_|1-106 1fna_|W.C. 2mcm_|W.C. 1idaA|W.C. 
1cfb_|610-709 3hhrB|32-130 1ggtA|516-627 1nciA|W.C. 1spdA|W.C. 1er8E|W.C. 
1noa_|W.C. 1acx_|W.C. 1akp_|W.C. 1sxcA|W.C. 1ddt_|381-535 1psoE|W.C. 
1xsoA|W.C. 1srdA|W.C. 1jcv_|W.C. 1rsy_|W.C. 1cgx_|582-686 1lybA|W.C. 
1exg_|W.C. 1tupA|W.C. 1ctm_|1-167 1cdg_|582-686 2pcdA|W.C. 1dro_|W.C. 
1cyg_|575-680 1ciu_|579-683 1ttaA|W.C. 1ttcA|W.C. 1plc_|W.C. 1pkyA|70-157 
2pcdM|W.C. 1hoe_|W.C. 2ait_|W.C. 1aac_|W.C. 1pmy_|W.C. 1epbA|W.C. 
9pcy_|W.C. 1pla_|W.C. 2plt_|W.C. 1paz_|W.C. 1cyx_|W.C. 1mdc_|W.C. 
1azcA|W.C. 1arn_|W.C. 1ilsA|W.C. 1azrA|W.C. 1gff1|W.C. 1pmpA|W.C. 
1nif_|8-166 1afnA|11-166 1aozA|1-129 2bpa1|W.C. 2tbvA|W.C. 2cpl_|W.C. 
2stv_|W.C. 1smvA|W.C. 1bmv1|W.C. 4sbvA|W.C. 4rhv1|W.C. 1fbl_|272-466 
1cwpA|W.C. 2bbvA|W.C. 1bbt1|W.C. 2cas_|W.C. 1vcaA|91-199 1nscA|W.C. 
1cgx_|383-495 1ppi_|404-496 2cba_|W.C. 1heb_|W.C. 1vmoA|W.C. 2pec_|W.C. 
1cqpA|9-137 1ctm_|231-249 2kauC|2-129 1ruj1|W.C. 1tme1|W.C. 4gcr_|1-85 
1lpbB|337-449 1hgiA|W.C. 1scs_|W.C. 1loeA|W.C. 1cpn_|W.C. 1xnb_|W.C. 
1bia_|271-317 2pni_|W.C. 1semA|W.C. 1psf_|W.C. 1ltsD|W.C. 1prtF|W.C. 
1se2_|1-120 1ino_|W.C. 1gpc_|W.C. 1barA|W.C. 1abrB|1-140 2cnd_|11-124 
1arb_|W.C. 1gbeA|W.C. 2tgt_|W.C. 1trnA|W.C. 4gch_|W.C. 1elt_|W.C. 
1ahtL|W.C. 1hcgA|W.C. 1hvlA|W.C. 2rspA|W.C. 4er4E|W.C. 1htrP|W.C. 
4cms_|W.C. 1dynA|W.C. 1hbq_|W.C. 1mup_|W.C. 1ftpA|W.C. 1sriA|W.C. 
2rmcA|W.C. 2sil_|W.C. 1gof_|151-537 1cyg_|379-491 1hny_|404-496 1cnx_|W.C. 
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1cva_|W.C. 1dlc_|290-499 1tsp_|W.C. 1wapA|W.C. 1gpr_|W.C. 1pov0|W.C. 
2rhn1|W.C. 2bb2_|2-85 1pgs_|4-140 4hmgA|W.C. 2ltnA|W.C. 1lgcA|W.C. 
1sltA|W.C. 1xnd_|W.C. 1ckaA|W.C. 1shg_|W.C. 1hsq_|W.C. 2ohxA|1-174 
1chpD|W.C. 1snc_|W.C. 1asyA|68-204 2prd_|W.C. 1rip_|W.C. 2afgA|W.C. 
1tie_|W.C. 1ndh_|3-125 2sga_|W.C. 1hpgA|W.C. 1gbt_|W.C. 1bit_|W.C. 
1ppfE|W.C. 1ihsL|W.C. 1hylA|W.C. 1lmwA|W.C. 4hvpA|W.C. 1mvpA|W.C. 
1ppmE|W.C. 1mpp_|W.C. 1bw3_|W.C. 1pls_|W.C. 1rbp_|W.C. 1hms_|W.C. 
1cbs_|W.C. 1stsB|W.C. 1cynA|W.C. 1nnc_|W.C. 2bbkH|W.C. 1ciu|383-495 
1amg_|358-416 4ca2_|W.C. 1cnb_|W.C. 1msaA|W.C. 1lxa_|W.C. 1htp_|W.C. 
1f3g_|W.C. 1pvc1|W.C. 1r1a1|W.C. 1prr_|1-90 1gof_|1-150 1knb_|W.C. 
1lesA|W.C. 1sba_|W.C. 1hlcA|W.C. 1xyn_|W.C. 1shfA|W.C. 1lckA|63-116 
1srl_|W.C. 6adhA|1-174 1bovA|W.C. 1sty_|W.C. 1krs_|W.C. 1mjc_|W.C. 
1prcH|37-258 1i1b_|W.C. 1wbc_|W.C. 2pia_1-103 1sgpE|W.C. 1sgt_|W.C. 
1tabE|W.C. 1try_|W.C. 1elg_|W.C. 1hahL|W.C. 3rp2A|W.C. 2snv_|W.C. 
1hteA|W.C. 1sivA|W.C. 2apr_|W.C. 1hrnA|W.C. 1gtrA|339-547 1pkn_|116-217 
1rlbE|W.C. 1ifc_|W.C. 1cbiA|W.C. 2aviA|W.C. 1clh_|W.C. 1nnb_|W.C. 
3aahA|W.C. 2aaa_|374-476 1amy_|347-402 1cim_|W.C. 1dmxA|W.C. 1kapP|247-470 
2phlA|W.C. 1lab_|W.C. 2kauB|W.C. 2mev1|W.C. 1fpv_|W.C. 2sblB|7-149 
1dlc_|500-643 1tnrA|W.C. 1led_|W.C. 1gbg_|W.C. 1sacA|W.C. 1xyoA|W.C. 
1aboA|W.C. 1griA|1-63 1cskA|W.C. 1dehA|1-174 1prtB|88-197 1sye_|W.C. 
1lylA|14-153 1csp_|W.C. 1pcrH|36-250 1ilr1|W.C. 1hce_|W.C. 1eft_|213-312 
2alp_|W.C. 4ptp_|W.C. 1mctA|W.C. 3gctA|W.C. 1eleE|W.C. 1abjL|W.C. 
2pkaA|W.C. 1bco_|481-560 1fivA|W.C. 1epnE|W.C. 3psg_|W.C. 1smrA|W.C. 
1btn_|W.C. 1pkm_|116-217 1bbpA|W.C. 1lib_|W.C. 1opaA|W.C. 1smpI|W.C. 
1hxn_|W.C. 6nn9_|W.C. 1cdg_|383-495 6taa_|374-476 1hcb_|W.C. 1hec_|W.C. 
3bcl_|W.C. 1sat_|247-470 1cauA|W.C. 1bncA|331-446 1dupA|W.C.  

332 α/β domains 
1cdg_|1-382 1cgx_|1-382 1cyg_|1-378 1ciu_|1-382 2aaa_|1-353 1opr_|W.C. 
6taa_|1-353 1ppi|1-403 1hny_|1-403 1amg_|1-357 1amy_|1-346 1admA|W.C. 
1byb_|W.C. 1ceo_|W.C. 2exo_|W.C. 1ghsA|W.C. 1ghr_|W.C. 1art_|W.C. 
1xyzA|W.C. 1cbg_|W.C. 1pbgA|W.C. 1nar_|W.C. 1cnv_|W.C. 2dkb_|W.C. 
1llo_|W.C. 2ebn_|W.C. 1edt_|W.C. 1ctn_|133-441 1add_|W.C. 1ack_|W.C. 
2kauC|130-422 1pta_|W.C. 1nal1|W.C. 1ald_|W.C. 1fbaA|W.C. 2had_|W.C. 
2acs_|W.C. 1ral_|W.C. 4enl_|142-436 1pdz_|140-433 2mnr_|133-359 1tib_|W.C. 
2chr_|127-370 1oyb_|W.C. 1gox_|W.C. 2tmdA|1-340 1ltdA|98-511 1hplA|1-336 
1ubsA|W.C. 1pii_|1-252 1pkm_|12-115 1pkn_|12-115 1pkyA|1-69 8dfr_|W.C. 
1dik_|510-874 3rubL|148-467 1ausL|148-463 1rblA|148-475 5ru bA|138-457 1ajbA|W.C. 
1tph1|W.C. 1htiA|W.C. 7timA|W.C. 1treA|W.C. 1tmhA|W.C. 4at1A|1-150 
1btmA|W.C. 6xia_|W.C. 1dxiA|W.C. 2gyiA|W.C. 2xis_|W.C. 1aco_|2-528 
1xih_|W.C. 4xiaA|W.C. 1xlbA|W.C. 1ximA|W.C. 2xinA|W.C. 1minA|W.C. 
1brlA|W.C. 1nfp_|W.C. 1fvpA|W.C. 1tml_|W.C. 2tmdA|490-645 1agx_|W.C. 
3cox_|5-318 1pbe_|1-173 1doc_|1-173 1gal_|3-324 3grs_|18-165 1abe_|W.C. 
1gerA|3-146 1tde_|1-118 1npx_|1-119 2tprA|1-168 3ladA|1-158 1tlfA|W.C. 
1fcdA|1-114 1dik_|377-505 7acn_|529-754 1aco_|529-754 1oelA|191-375 1lst_|W.C. 
1bta_|W.C. 1bnh_|W.C. 1iceA|W.C. 1udh_|W.C. 1mla_|3-127 1lct_|W.C. 
3chy_|W.C. 2chf_|W.C. 1ntr_|W.C. 1scuA|122-288 1scuB|245-388 1pxtA|28-293 
2fcr_|W.C. 2fx2_|W.C. 1rcf_|W.C. 1ofv_|W.C. 4fxn_|W.C. 1oroA|W.C. 
1bmtA|741-896 1ordA|1-107 1cus_|W.C. 1esc_|W.C. 2nacA|1-147 1dctA|W.C. 
1gdhA|2-100 1psdA|7-107 1dldA|1-103 1fnb_|155-314 2cnd_|125-270 1ase_|W.C. 
1ndh_|126-272 2pia_|104-223 2ts1_|1-217 1gtrA|8-338 1gln_|1-305 1ordA|108-569 
1gpmA|208-404 2tmdA|341-489 2ohxA|175-324 6adhA|175-324 1dehA|175-324 1fssA|W.C. 
1qorA|136-265 1hdcA|W.C. 1dhr_|W.C. 1hdr_|W.C. 1eny_|W.C. 1thtA|W.C. 



 
Appendix  181 
    
   

 

  
 

1gadO|0-148 1gd1O|0-148 1cerO|1-148 1hdgO|1-148 1ggaO|1-164 1thg_|W.C. 
1gypA|1-165 1gpdG|1-148 3gpdR|1-150 1dpgA|1-181 1dih_|2-130 1lbpB|1-336 
2nacA|148-335 1gdhA|101-291 1psdA|108-295 2dldA|104-300 1m1dA|1-144 1dhfA|W.C. 
2cmd_|1-145 1bmdA|0-154 1hlpA|21-146 1hyhA|21-166 9ldtA|1-162 1xaa_|W.C. 
2ldx_|1-159 1ldm_|1-160 1ldnA|15-162 1llc_|13-164 1lldA|7-149 1ragA|1-150 
2pgd_|1-176 1scuA|1-121 1bncA|1-114 2dln_|1-96 2glt_|1-122 3pmgA|1-190 
1pydA|2-181 1pvdA|2-181 1powA|183-365 1nbaA|W.C. 1deaA|W.C. 2bgu_|W.C. 
1powA|9-182 1trkA|3-337 1gky_|W.C. 1ukz_|W.C. 3adk_|W.C. 3pga1|W.C. 
2ak3A|W.C. 1akeA|W.C. 1aky_|W.C. 5p21_|W.C. 1crr_|W.C. 2gbp_|W.C. 
1plk_|W.C. 1tadA|27-56 1gia_|34-60 1hurA|W.C. 1eft_|1-212 2lbp_|W.C. 
1dts_|W.C. 1adeA|W.C. 1nipA|W.C. 2reb_|3-268 1chd_|W.C. 1sbp_|W.C. 
1cseE|W.C. 1thm_|W.C. 1st3_|W.C. 1sup_|W.C. 2sbt_|W.C. 1ovb_|W.C. 
2prk_|W.C. 1meeA|W.C. 1mpt_|W.C. 3c1a_|W.C. 1qca_|W.C. 1ctt_|1-150 
1eaf_|W.C. 1phr_|W.C. 2hnq_|W.C. 1yts_|W.C. 2trxA|W.C. 1lfaA|W.C. 
1thx_|W.C. 3trx_|W.C. 1aazA|W.C. 1dsbA|1-64 1gp1A|W.C. 7aatA|W.C. 
2gstA|1-84 1glqA|1-78 1gsrA|1-76 1gssA|1-76 1hna_|1-84 1spa_|W.C. 
1gseA|2-80 2gsq_|1-75 1gta_|1-80 1trkA|535-680 1pkm_|396-530 1ulb_|W.C. 
1pkn_|396-530 1pkyA|351-470 1lcpA|1-159 1eriA|W.C. 1rvaA|W.C. 1mahA|W.C. 
1bam_|W.C. 1pvuA|W.C. 2rslA|W.C. 1hpm_|4-188 1ngh_|4-188 1tca_|W.C. 
2btfA|2-146 2yhx_|2-202 1hkg_|2-202 1glaG|4-253 1chmA|2-156 1crl_|W.C. 
2rn2_|W.C. 1gob_|W.C. 1ril_|W.C. 1vrtA|430-539 1hnvA|430-556 2ctb_|W.C. 
1rdd_|W.C. 1vsd_|W.C. 1itg_|W.C. 1bco_|258-480 1kfd_|324-518 1dyr_|W.C. 
1hjrA|W.C. 3pgm_|W.C. 1rpa_|W.C. 1gph1|235-465 1hmpA|W.C. 1xac_|W.C. 
1ubsB|W.C. 3pgk_|W.C. 1gpb_|W.C. 1pfkA|W.C. 1gca_|W.C. 1pnrA|59-340 
1mpb_|W.C. 1ovt_|5-334 1garA|W.C. 1akbA|W.C. 1aam_|W.C. 1pbn_|W.C. 
1whtA|W.C. 3tgl_|W.C. 1cleA|W.C. 1lcpA|160-484 4dfrA|W.C. 1idc_|W.C. 
1ora_|W.C. 1php_|W.C. 1pygA|W.C. 3pfk_|W.C. 1pea_|W.C. 2olbA|W.C. 
1hslA|W.C. 1tfd_|W.C. 1hmy_|W.C. 2cstA|W.C. 1tp1A|W.C. 1gpmA|3-207 
1ysc_|W.C. 1tia_|W.C. 1tahB|W.C. 1amp_|W.C. 1aliA|W.C. 1idf_|W.C. 
7acn_|2-528 1mioA|W.C. 3ecaA|W.C. 2dri_|W.C. 2liv_|W.C. 1pda_|3-219 
1dppA|W.C. 1lfg_|1-334     

297 α+β domains 
1fus_|W.C. 9rnt_|W.C. 1rgk_|W.C. 1trpA|W.C. 1gmpA|W.C. 1ltdA|10-97 
1brnL|W.C. 1bscA|W.C. 1banA|W.C. 1rms_|W.C. 1cnsA|W.C. 2polA|1-122 
193l_|W.C. 1rcmA|W.C. 3lym_|W.C. 6lyz_|W.C. 1lze_|W.C. 1scuB|1-244 
135l_|W.C. 1hhl_|W.C. 1ghlA|W.C. 1bqlY|W.C. 2ihl_|W.C. 1pnkA|W.C. 
1lzr_|W.C. 1lz5_|W.C. 1lhk_|W.C. 2eq1_|W.C. 1lmq_|W.C. 1hlpA|147-328 
1alc_|W.C. 1hml_|W.C. 4lzm_|W.C. 1l92_|W.C. 130l_|W.C. 1ldnA|163-330 
163l_|W.C. 113l_|W.C. 1l24_|W.C. 1l63_|W.C. 1lyg_|W.C. 1abrA|W.C. 
1l49_|W.C. 146l_|W.C. 1l15_|W.C. 1l41_|W.C. 1l01_|W.C. 1prtA|W.C. 
1l98_|W.C. 1l51_|W.C. 1l71_|W.C. 1l53_|W.C. 1l95_|W.C. 1afa1|105-226 
205l_|W.C. 176lA|W.C. 189l_|W.C. 153l_|W.C. 1gbs_|W.C. 1mat_|W.C. 
2act_|W.C. 1ppn_|W.C. 5pad_|W.C. 1ppo_|W.C. 1hucA|W.C. 1plq_|1-126 
1theA|W.C. 1gecE|W.C. 1gcb_|W.C. 1ggtA|191-515 7rsa_|W.C. 1dik_|2-376 
8rat_|W.C. 1rnnE|W.C. 1rbn_|W.C. 1rbh_|W.C. 1onc_|W.C. 1pyaA|W.C. 
1bsrA|W.C. 1ang_|W.C. 1agi_|W.C. 2kauA|W.C. 1napA|W.C. 1hyhA|167-329 
3il8_|W.C. 1plfA|W.C. 1rhpA|W.C. 1mgsA|W.C. 1humA|W.C. 1llc_|165-333 
1rtoA|W.C. 1sso_|W.C. 1sap_|W.C. 1pkp_|78-147 1igd_|W.C. 1apa_|W.C. 
2ptl_|W.C. 1ubi_|W.C. 1frd_|W.C. 4fxc_|W.C. 1fxiA|W.C. 1dmaA|W.C. 
1dox_|W.C. 1frrA|W.C. 2pia_|224-320 1put_|W.C. 1tssA|94-194 1prtB|4-87 
1sc2_|121-239 1tif_|W.C. 3cox_|319-450 1pbe_|174-275 1doc_|174-275 1ytbA|61-155 
1gal_|518-582 1molA|W.C. 1cyv_|W.C. 1stfI|W.C. 1oacA|91-185 2glt_|123-316 
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1std_|W.C. 1udiI|W.C. 1fruA|1-178 1dlhA|3-81 2clrA|1-181 2dnjA|W.C. 
1hsaA|1-181 1hsbA|1-181 1vabA|1-181 1hocA|1-181 1mhcA|1-181 1mldA|145-313 
1aak_|W.C. 2uce_|W.C. 1fkd_|W.C. 1fkr_|W.C. 1yat_|W.C. 9ldtA|163-331 
1ctn_|516-560 1grj_|80-157 1dhy_|1-132 1han_|2-132 1cseI|W.C. 1lldA|150-319 
1sibI|W.C. 2sniI|W.C. 1tin_|W.C. 1mngA|93-203 1abmA|84-198 1rtc_|W.C. 
3sdpA|84-190 1isaA|83-192 1idsA|86-199 1ctf_|W.C. 2reb_|269-328 1esl_|1-118 
1stu_|W.C. 1pkp_|4-77 1pda_|220-306 1vih_|W.C. 1gpmA|405-525 3pmgA|421-561 
2mnr_|3-132 4enla_|1-141 1pdz_|1-139 2chr_|1-126 1oelA|137-190 2dln_|97-306 
1fxd_|W.C. 1fdx_|W.C. 1fca_|W.C. 1clf_|W.C. 5fd1_|W.C. 1aorA|1-210 
1frj_|W.C. 1fxrA|W.C. 2fxb_|W.C. 4at1B|8-100 1ragE|1-100 2cmd_|146-312 
1pba_|W.C. 1spbP|W.C. 1pil_|W.C. 1nueA|W.C. 1npk_|W.C. 2ldx_|160-331 
1nsqA|W.C. 1nhkR|W.C. 1urnA|W.C. 1sxl_|W.C. 2bopA|W.C. 1mrj_|W.C. 
3rubL|22-147 1ausL|20-147 1rb1A|9-147 5rubA|2-137 1aps_|W.C. 1ltsA|W.C. 
1ris_|W.C. 1regX|W.C. 1psdA|327-410 1mla_|128-197 1vhh_|W.C. 1hup_|112-228 
1tig_|W.C. 1ife_|W.C. 1kptA|W.C. 3rubS|W.C. 1ausS|W.C. 1xrb_|1-101 
1rb1M|W.C. 1dchA|W.C. 1xxaA|W.C. 2chsA|W.C. 1otfA|W.C. 1bncA|115-330 
1otgA|W.C. 1gadO|149-312 1gd1O|149-312 1cerO|149-312 1hdgO|149-312 1gph1|1-234 
1ggaO|165-333 1gypA|166-334 1gpdG|149-312 3gpdR|151-314 1dih_|131-240 1bmdA|155-332 

1dpgA|182-412 1oacA|5-90 3sicI|W.C. 2ms2A|W.C. 1frsA|W.C. 1ldm_|161-329 
3grs_|364-478 1gerA|336-450 1npx_|322-447 2tprA|358-482 3ladA|349-472 1mrg_|W.C. 
1fcdA|328-401 1ezm_|1-153 8tlnE|1-155 4tmnE|1-155 1npc_|1-156 1ddt_|1-187 
1ast_|W.C. 1iag_|W.C. 1at1A|W.C. 1kapP|1-239 1sat_|4-239 2msbA|W.C. 
1hfc_|W.C. 1mnc_|W.C. 1mmq_|W.C. 2srt_|W.C. 1fbl_|100-271 1smnA|W.C. 
1lkkA|W.C. 1shaA|W.C. 1shdA|W.C. 1ayaA|W.C. 1griA|64-156 1ordA|570-730 
2pna_|W.C. 1ab2_|W.C. 2pldA|W.C. 1hid_|W.C. 1ptf_|W.C. 1yua_|1-65 
1poh_|W.C. 1pch_|W.C. 1zer_|W.C. 1gtqA|W.C. 1puc_|W.C. 1vcc_|W.C. 
1cksA|W.C. 1dksA|W.C. 1sryA|111-421 1lylA|161-502 1asyA|205-557 1chmA|157-402 
1bia_|64-270 1vil_|W.C. 1svq_|W.C. 2prf_|W.C. 1acf_|W.C. 1cyo_|W.C. 
1pne_|W.C. 1pfl_|W.C. 2phy_|W.C. 1mut_|W.C. 1tlcA|W.C. 1lba_|W.C. 
1tsv_|W.C. 4tms_|W.C. 1tis_|W.C.    

31 multi (µ) domains 
1cdkA|W.C. 1daaA|W.C. 1mml_|W.C. 1spiA|W.C. 1bucA|1-232 4blmA|W.C. 
1hleA|W.C. 2cpkE|W.C. 1ckiA|W.C. 1vrtA|4-429 2hhmA|W.C. 3mddA|11-241 
1athA|W.C. 1ovaA|W.C. 2achA|W.C. 1csn_|W.C. 1lgr_|W.C. 1inp_|W.C. 
2bltA|W.C. 3pte_|W.C. 1btl_|W.C. 9apiA|W.C. 1irk_|W.C. 1ecl_|W.C. 
5fbpA|W.C. 8catA|W.C. 1cae_|W.C. 3blm_|W.C. 1attA|W.C. 1ftaA|W.C. 
1kfd_|519-928      

168 small protein (σ) domains 
6rlxA|W.C. 1cphA|W.C. 1trzA|W.C. 3insA|W.C. 2gf1_|W.C. 2drpA|103-139 
1bomA|W.C. 1etl_|W.C. 1wgtA|1-52 1hev_|W.C. 1mmc_|W.C. 1pyiA|30-71 
1mctI|W.C. 1ppeI|W.C. 4cpaI|W.C. 2eti_|W.C. 1kal_|W.C. 1hra_|W.C. 
1omc_|W.C. 1omn_|W.C. 1omg_|W.C. 1oma_|W.C. 1eit_|W.C. 1rdg_|W.C. 
2sn3_|W.C. 1vna_|W.C. 1nra_|W.C. 1ptx_|W.C. 1mtx_|W.C. 1ragB|101-153 
1sxm_|W.C. 2crd_|W.C. 1scy_|W.C. 1agt_|W.C. 1chl_|W.C. 1dmc_|W.C. 
1sis_|W.C. 1pnh_|W.C. 1ktx_|W.C. 1ica_|W.C. 1gpt_|W.C. 1ard_|W.C. 
1gps_|W.C. 11pbA|6-44 1bi6H|8-31 1tabI|W.C. 1pmc_|W.C. 1c1d_|W.C. 
3ebx_|W.C. 1tgxA|W.C. 1fas_|W.C. 1ntn_|W.C. 1cdtA|W.C. 1aaf_|W.C. 
2ctx_|W.C. 1lsi_|W.C. 1tfs_|W.C. 1abtA|W.C. 1kbaA|W.C. 6rxn_|W.C. 
2cdx_|W.C. 2ccx_|W.C. 1cre_|W.C. 2crs_|W.C. 1cod_|W.C. 1chc_|W.C. 
1nea_|W.C. 1ntx_|W.C. 1nor_|W.C. 1drs_|W.C. 1erg_|W.C. 1adn_|W.C. 
1bpi_|W.C. 4tpiI|W.C. 1bpt_|W.C. 1aapA|W.C. 1knt_|W.C. 1znf_|W.C. 
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1dtx_|W.C. 1bunB|W.C. 1shp_|W.C. 1dtk_|W.C. 1dem_|W.C. 1gatA|W.C. 
1tap_|W.C. 1dfnA|W.C. 1bnb_|W.C. 1bds_|W.C. 1sh1_|W.C. 1mea_|W.C. 
1atx_|W.C. 1ah1_|W.C. 1ans_|W.C. 1ldl_|W.C. 1esl_|119-156 1iro_|W.C. 
1hcgB|W.C. 1apo_|W.C. 1pth_|33-73 1egf_|W.C. 2tgf_|W.C. 1mhu_|W.C. 
1ixa_|W.C. 1urk_|6-49 1tpg_|51-91 1hre_|W.C. 1zaq_|W.C. 1ptq_|W.C. 
1cnr_|W.C. 1bhp_|W.C. 2plh_|W.C. 1pk4_|W.C. 1tpkA|W.C. 1bbo_|1-28 
1ceaA|W.C. 2pf2_|1-65 2hppP|W.C. 1kdu_|W.C. 1fbr_|1-46 1latA|W.C. 
1tpg_|W.C. 1sgpI|W.C. 3ovo_|W.C. 1hpt_|W.C. 1tgsI|W.C. 1tfi_|W.C. 
1bus_|W.C. 1pce_|W.C. 4sgbI|W.C. 1tih_|W.C. 1pspA|1-53 1caa_|W.C. 
1pdgA|W.C. 2tgi_|W.C. 1bndA|W.C. 1bet_|W.C. 1hcnA|W.C. 1mrb_|W.C. 
1hfh_|1-63 1tcg_|W.C. 2ech_|W.C. 1fvl_|W.C. 1kst_|W.C. 1d66A|8-48 
1edn_|W.C. 1srb_|W.C. 1ahtI|W.C. 1ihsI|W.C. 1fphI|W.C. 1hcqA|W.C. 
2hgtI|W.C. 1dec_|W.C. 2bbkL|W.C. 2madL|W.C. 1pdc_|W.C. 8rxnA|W.C. 
1ata_|W.C. 1ncfA|11-70 1afp_|W.C. 2cy3_|W.C. 2cdv_|W.C. 4at1B|101-153 
1isuA|W.C. 1hip_|W.C. 2hipA|W.C. 1hpi_|W.C. 1zaaC|W.C. 4mt2_|W.C. 

39 peptides (ρ) domains 
1grmA|W.C. 3aahB|W.C. 1sut_|W.C. 1smfI|W.C. 1gna_|W.C. 1lyp_|W.C. 
1aml_|W.C. 1bba_|W.C. 193dC|W.C. 1cfh_|W.C. 1aty_|W.C. 1paj_|W.C. 
1psm_|W.C. 1rpv_|W.C. 1ppt_|W.C. 185dA|W.C. 1ale_|W.C. 1 bdk_|W.C. 
1pan_|W.C. 2mltA|W.C. 1cfg_|W.C. 2dtb_|W.C. 1sol_|W.C. 1fct_|W.C. 
1bha_|W.C. 1kb7_|W.C. 1ter_|W.C. 1hph_|W.C. 2da8A|W.C. 1alf_|W.C. 
1vtp_|W.C. 1btq_|W.C. 1rpc_|W.C. 1wfbA|W.C. 1gcn_|W.C. 1tor_|W.C. 
1tvs_|W.C. 1plp_|W.C. 1spf_|W.C.    
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Table A.5 The 225 Protein Domains. 

61 all-α domains 
3sdhA|W.C. 1grj_|2-79 1ycc_|W.C. 1enh_|W.C. 1dtr_|65-191 2tct_|W.C. 
1tns_|W.C. 2spcA|W.C. 1fc2C|W.C. 1bal_|W.C. 1erl_|W.C. 1rtm1|73-104 
1acp_|W.C. 2abd_|W.C. 2end_|W.C. 1lis_|W.C. 1aab_|W.C. 1fps_|W.C. 
1mmoG|W.C. 1lpe_|W.C. 1bcfA|W.C. 1rhgA|W.C. 1ropA|W.C. 1oelA|2-136 
1eciA|W.C. 1octC|5-75 1coo_|W.C. 1mdyA|W.C. 4icb_|W.C. 1ecmA|W.C. 
1parA|W.C. 1dsbA|65-128 2gstA|85-217 1bmtA|651-740 1c5a_|W.C. 2sblB|150-838 
1hyp_|W.C. 2bpfA|9-91 1olgA|W.C. 1hnr_|W.C. 1aep_|W.C. 1poc_|W.C. 
1axn_|W.C. 1tadA|57-177 1ezm_|154-298 2ts1_|228-319 2hmx_|W.C. 1bvp1|1-120 
1llp_|W.C. 2abk_|W.C. 1gln_|306-468 1lla_|2-379 2pgd_|177-473 1aorA|211-605 
1utg_|W.C. 1glm_|W.C. 1csh_|W.C. 1phc_|W.C. 1fiaA|W.C. 2wrpR|W.C. 
1prcC|W.C.      

45 all-β domains 
1ddt_|381-535 1cdg_|582-686 1hoe_|W.C. 1aac_|W.C. 2bpa1|W.C. 2pec_|W.C. 
4gcr_|1-85 2sblB|7-149 1pgs_|4-140 1gof_|1-150 1bvp1|1-217 1lxa_|W.C. 
1knb_|W.C. 1tnrA|W.C. 1thw_|W.C. 1scs_|W.C. 1bglA|731-1023 2phlA|W.C. 
1bia_|271-317 1ltsD|W.C. 1prcH|W.C. 4fgf_|W.C. 1fnb_|19-154 1htp_|W.C. 
1eft_|313-405 1arb_|W.C. 1bco_|481-560 1difA|W.C. 1gtrA|339-547 2kauC|2-129 
1btn_|W.C. 1pkn_|116-217 1hbq_|W.C. 1sriA|W.C. 2cpl_|W.C. 1kapP|247-470 
1hxn_|W.C. 2sil_|W.C. 1gof_|151-537 3aahA|W.C. 1cdg_|383-495 1msaA|W.C. 
1hcb_|W.C. 3bcl_|W.C. 1vmoA|W.C.    

56 α/β domains 
1cdg_|1-382 1tml_|W.C. 2tmdA|490-645 1dik_|377-505 1bta_|W.C. 3ecaA|W.C. 
1bnh_|W.C. 1iceA|W.C. 1mla_|3-127 1fnb_|155-314 2ts1_|1-217 1ctt_|1-150 
2tmdA|341-489 2ohxA|175-324 1bncA|1-114 1pydA|2-181 1nbaA|W.C. 1pfkA|W.C. 
1deaA|W.C. 1gky_|W.C. 1chd_|W.C. 1cseE|W.C. 3cla_|W.C. 2dri_|W.C. 
1phr_|W.C. 2hnq_|W.C. 2trxA|W.C. 1trkA|535-680 1pkm_|396-530 2olbA|W.C. 
1lcpA|1-159 1eriA|W.C. 2rslA|W.C. 1hpm_4-188 3pgm_|W.C. 2bgu_|W.C. 
1gph1235-465 1lfaA|W.C. 1garA|W.C. 1hmy_|W.C. 7aatA|W.C. 1pxtA|28-293 
1ulb_|W.C. 1gpmA|3-207 1ack_|W.C. 2ctb_|W.C. 8dfr_|W.C. 1mioA|W.C. 
1aliA|W.C. 1xaa_|W.C. 4at1A|1-150 1ubsB|W.C. 1ora_|1-149 3pgk_|W.C. 
7acn_|2-528 3pmgA|1-190     

63 α+β domains 
1fus_|W.C. 1cnsA|W.C. 2act_|W.C. 7rsa_|W.C. 2kauA|W.C. 1mrj_|W.C. 
1napA|W.C. 1sso_|W.C. 1pkp_|78-147 1igd_|W.C. 3cox_|319-450 1ltsA|W.C. 
1molA|W.C. 1fruA|1-178 1aak_|W.C. 1fkd_|W.C. 1dhy_|1-132 1esl_|1-118 
1cseI|W.C. 1mngA|93-203 1ctf_|W.C. 2reb_|269-328 1stu_|W.C. 1mldA|145-313 
1vih_|W.C. 1gpmA|405-525 2mnr_|3-132 1oelA|137-190 1fxd_|W.C. 1pyaA|W.C. 
1tig_|W.C. 1kptA|W.C. 3rubS|W.C. 1dchA|W.C. 2chsA|W.C. 1gph1|1-234 
1otfA|W.C. 1gadO|149-312 1oacA|5-90 3sicI|W.C. 2ms2A|W.C. 1aorA|1-210 
3grs_|364-478 1ezm_|1-153 1lkkA|W.C. 1hid_|W.C. 1puc_|W.C. 2dnjA|W.C. 
1sryA|111-421 1vil_|W.C. 2prf_|W.C. 1mut_|W.C. 1tlcA|W.C. 2glt_|123-316 
1lba_|W.C. 1cyo_|W.C. 1vcc_|W.C. 1ordA|570-730 1smnA|W.C. 2polA|1-122 
1chmA|157-402 1ytbA|61-155 1xrb_|1-101    

 



 
Appendix  185 
    
   

 

  
 

Table A.6 The 510 Protein Domains. 

109 all-α domains 
1sctA|W.C. 1ytc_|W.C. 1yea_|W.C. 1yeb_|W.C. 2pccB|W.C. 1phd_|W.C. 
1fhb_|W.C. 1cih_|W.C. 1cie_|W.C. 1csu_|W.C. 1crj_|W.C. 1noo_|W.C. 
1csw_|W.C. 1csx_|W.C. 1cri_|W.C. 1chi_|W.C. 1cig_|W.C. 1grl_|6-136 
1crh_|W.C. 1raq_|W.C. 1ctz_|W.C. 1chj_|W.C. 1cif_|W.C. 1phg_|W.C. 
1csv_|W.C. 1crg_|W.C. 1chh_|W.C. 1cty_|W.C. 1rap_|W.C. 3fisA|W.C. 
1hddC|W.C. 1dprA|65-136 1tnt_|W.C. 1bbl_|W.C. 1erc_|W.C. 1afb1|73-104 
1aca_|W.C. 1vasA|W.C. 1enj_|W.C. 1enk_|W.C. 1eni_|W.C. 1phf_|W.C. 
1lynA|W.C. 1hme_|W.C. 1hmf_|W.C. 1hsm_|W.C. 1hsn_|W.C. 1fipA|W.C. 
1nhm_|W.C. 1nhn_|W.C. 1gnc_|W.C. 1rprA|W.C. 1rpo_|W.C. 1afa1|73-104 
1pou_|W.C. 1cdn_|W.C. 1bod_|W.C. 1boc_|W.C. 2bca_|W.C. 1phe_|W.C. 
2bcb_|W.C. 1clb_|W.C. 1arqA|W.C. 1arrA|W.C. 1mykA|W.C. 1troA|W.C. 
1mylA|W.C. 1bpd_|9-91 2bpgA|9-91 1olhA|W.C. 1pesA|W.C. 1afd1|73-104 
1petA|W.C. 1seaA|W.C. 1safA|W.C. 1sagA|W.C. 1sahA|W.C. 1cp4_|W.C. 
1saiA|W.C. 1sajA|W.C. 1sakA|W.C. 1salA|W.C. 1hns_|W.C. 1trrA|W.C. 
1tag_|57-177 1tndA|57-177 1tyc_|228-319 1tydE|228-319 1tybE|228-319 1pha_|W.C. 
1tyaE|228-319 1lgaA|W.C. 1oxy_|1-379 1nol_|1-279 1pgn_|177-473 2cpp_|W.C. 
1pgo_|177-473 1pgp_|177-473 1pgg_|177-473 3gly_|W.C. 1dog_|W.C. 1phb_|W.C. 
1agm_|W.C. 1csi_|W.C. 1css_|W.C. 1csr_|W.C. 1csc_|W.C. 5cscA|W.C. 
5cts_|W.C.      

130 all-β domains 
1mdtA|381-535 1cgt_|580-684 1cxe_|582-686 1cxi_|582-686 1cxg_|582-686 1cxi_|383-495 
1cxh_|582-686 1cxf_|582-686 1cgv_|582-686 1cgw_|582-686 1cgy_|582-686 1cgw_|383-495 
1cgx_|582-686 1cgu_|580-684 1aaj_|W.C. 1aan_|W.C. 2mtaA|W.C. 1crm_|W.C. 
1mdaA|W.C. 1gcs_|1-85 1pnf_|1-140 1png_|5-140 1gog_|1-150 1akl_|247-470 
1goh_|1-150 1tnfA|W.C. 2tunA|W.C. 1thv_|W.C. 1thu_|W.C. 1cxg_|383-495 
2ctvA|W.C. 1scr_|W.C. 1conA|W.C. 5cnaA|W.C. 1apnA|W.C. 1cgy_|383-495 
2cna_|W.C. 1cn1A|W.C. 1bib_|271-317 1ltaD|W.C. 1lttD|W.C. 1azm_|W.C. 
1ltgD|W.C. 1ltbD|W.C. 1htlD|W.C. 1bfb_|W.C. 1bfc_|W.C. 1hpcA|W.C. 
1fga_|W.C. 2bfh_|W.C. 1bfg_|W.C. 1bas_|W.C. 1fnd_|19-154 1cxh_|383-495 
1fnc_|19-154 1frn_|19-154 1arc_|W.C. 1bcmA|481-560 1hpxA|W.C. 1cgx_|383-495 
1hihA|W.C. 1hvjA|W.C. 1hvkA|W.C. 1hivA|W.C. 1hpvA|W.C. 1bzm_|W.C. 
1hsgA|W.C. 1hshA|W.C. 1hvlA|W.C. 1cpiA|W.C. 1hvrA|W.C. 1kraC|2-129 
1htgA|W.C. 1hvc_|W.C. 4phvA|W.C. 1hosA|W.C. 1sbgA|W.C. 1cxf_|383-495 
1hhp_|W.C. 5hvpA|W.C. 1hbvA|W.C. 1hefE|W.C. 1hpsA|W.C. 1cgu_|383-494 
1hsiA|W.C. 1hegE|W.C. 1aaqA|W.C. 1htfA|W.C. 1hteA|W.C. 1czm_|W.C. 
3hvp_|W.C. 3phv_|W.C. 1hvsA|W.C. 1gtsA|339-547 1hbp_|W.C. 1krbC|2-129 
1fen_|W.C. 1erb_|W.C. 1fel_|W.C. 1fem_|W.C. 1slfB|W.C. 1cgv_|383-495 
1srgA|W.C. 1sreA|W.C. 1srjA|W.C. 1slgB|W.C. 1ptsA|W.C. 1hug_|W.C. 
1sleB|W.C. 1srfA|W.C. 1strB|W.C. 1stsB|W.C. 1sldB|W.C. 1huh_|W.C. 
1srhA|W.C. 1stp_|W.C. 1cyhA|W.C. 1mikA|W.C. 2rmaA|W.C. 1krcC|2-129 
1cwaA|W.C. 1cwcA|W.C. 2rmbA|W.C. 1cwbA|W.C. 3cysA|W.C. 1cxe_|383-495 
2sim_|W.C. 1gog_|151-537 1goh_|151-537 1cgt_|383-494   

135 α/β domains 
1cgt_|1-382 1cxe_|1-382 1cxi_|1-382 1cxg_|1-382 1cxh_|1-382 1racA|1-150 
1cxf_|1-382 1cgv_|1-382 1cgw_|1-382 1cgy_|1-382 1cgx_|1-382 1rahA|1-150 
1cgu_|1-382 1btb_|W.C. 1brsD|W.C. 1bgsE|W.C. 1fnd_|155-314 1wsyB|W.C. 
1fnc_|155-314 1frn_|155-314 1tyc_|1-217 1tydE|1-217 1tybE|1-217 1dbp_|W.C. 
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1tyaE|1-217 1cdoA|176-324 1hldA|175-324 2oxiA|175-324 1adbA|175-324 1radA|1-150 
1adg_|175-324 1adf_|175-324 8adh_|175-324 1adcA|175-324 6adhA|175-324 8atcA|1-150 
1horA|W.C. 1hotA|W.C. 2secE|W.C. 1sca_|W.C. 1scnE|W.C. 1orb_|1-149 
1scd_|W.C. 1scb_|W.C. 1sbc_|W.C. 1selA|W.C. 1cia_|W.C. 1drj_|W.C. 
1pnt_|W.C. 1bvh_|W.C. 2hnp_|W.C. 2tir_|W.C. 1tho_|W.C. 1raeA|1-150 
1tkbA|535-680 1tkcA|535-680 1tkaA|535-680 1lam_|1-159 1lanA|1-159 1acmA|1-150 
1bllE|1-159 1lap|1-159 1bpm_|1-159 1bpn_|1-159 1gdtA|1-140 1rhd_|1-149 
3hsc_|3-188 1ngj_|3-188 1ngi_|4-188 1ngb_|4-188 1ngf_|3-188 1olcA|W.C. 
1nga_|4-188 1nge_|4-188 1ngc_|4-188 1ngg_|3-188 1ngh_|4-188 1rafA|1-150 
1atr_|2-188 1ngd_|4-188 1ats_|2-188 1cde_|W.C. 1grcA|W.C. 1ttqB|W.C. 
1cddA|W.C. 1mhtA|W.C. 1ama_|W.C. 1maq_|W.C. 1tarA|W.C. 2bgt_|W.C. 
1map_|W.C. 1tasA|W.C. 1tatA|W.C. 1akaA|W.C. 1akbA|W.C. 1olaA|W.C. 
1akcA|W.C. 1ula_|W.C. 1amn_|W.C. 1acj_|W.C. 1acl_|W.C. 1ragA|1-150 
1ace_|W.C. 2ctc_|W.C. 5cpa_|W.C. 1cbx_|W.C. 1cps_|W.C. 1ttpB|W.C. 
1dr1_|W.C. 1dr3_|W.C. 1dr2_|W.C. 1dr6_|W.C. 1dr4_|W.C. 1drk_|W.C. 
1dr5_|W.C. 1dr7_|W.C. 2anhA|W.C. 1hqaA|W.C. 1alkA|W.C. 1ctu_|1-150 
1ajaA|W.C. 1ajdA|W.C. 1anjA|W.C. 1a1jA|W.C. 1aniA|W.C. 1rabA|1-150 
1alhA|W.C. 1ajbA|W.C. 1ajcA|W.C. 1xab_|W.C. 1ipd_|W.C. 1raaA|1-150 
1hex_|W.C. 1idm_|W.C. 1raiA|1-150    

136 α+β domains 
1fut_|W.C. 1rck_|W.C. 1rcl_|W.C. 2baa_|W.C. 1aec_|W.C. 3tms_|W.C. 
2rat_|W.C. 1rpg_|W.C. 1rhb_|W.C. 1rnc_|W.C. 2rns_|W.C. 3b5c_|W.C. 
1rnd_|W.C. 3rn3_|W.C. 1rbx_|W.C. 1rob_|W.C. 1rnu_|W.C. 3dni_|W.C. 
1ras_|W.C. 1rnv_|W.C. 1rnnE|W.C. 1rno_|W.C. 1rar_|W.C. 1tcs_|W.C. 
1rbw_|W.C. 1rnmE|W.C. 1rha_|W.C. 1rsm_|W.C. 1rbn_|W.C. 1htlA|W.C. 
1rnq_|W.C. 1sscA|W.C. 1ssbA|W.C. 1rca_|W.C. 1srnA|W.C. 1tsx_|W.C. 
1rpf_|W.C. 1rph_|W.C. 1rbbA|W.C. 1rcnE|W.C. 1rtaE|W.C. 1tbpA|61-155 
1rtb_|W.C. 1rbjA|W.C. 1rbh_|W.C. 2aas_|W.C. 1rbd_|W.C. 1dnkA|W.C. 
1rbi_|W.C. 2rlnE|W.C. 1kraA|W.C. 1rbe_|W.C. 1rbg_|W.C. 1ltaA|W.C. 
1rbf_|W.C. 1rbc_|W.C. 1pga_|W.C. 1krbA|W.C. 1krcA|W.C. 1xrc_|1-101 
1pgx_|W.C. 1pgb_|W.C. 2igh_|W.C. 1igcA|W.C. 1fccC|W.C. 1atnD|W.C. 
1gb1_|W.C. 2igg_|W.C. 1fkb_|W.C. 1coy_|319-450 3monA|W.C. 1lttA|W.C. 
1frtA|1-178 1fkj_|W.C. 1fkg_|W.C. 1fkf_|W.C. 1fkl_|W.C. 1tsv_|W.C. 
2fke_|W.C. 1fkh_|W.C. 1fkt_|W.C. 1fkk_|W.C. 1fkiA|W.C. 1xra_|1-101 
1fkr_|W.C. 1fks_|W.C. 1acbI|W.C. 2secI|W.C. 1egpA|W.C. 4mdhA|155-333 
1meeI|W.C. 2tecI|W.C. 1vig_|W.C. 1egl_|W.C. 1sbnI|W.C. 1ltgA|W.C. 
1sibI|W.C. 3mdsA|93-203 1r1cS|W.C. 1mns_|3-132 1mdr_|3-132 1tys_|W.C. 
1grl_|137-190 1rldS|W.C. 1bmsA|W.C. 1comA|W.C. 2chtA|W.C. 1glv_|123-316 
1gaeO|149-312 1mstA|W.C. 1grf_|364-478 1msc_|W.C. 1grb_|364-478 1mrk_|W.C. 
1gra_|364-478 1gre_|364-478 1lckA|117-226 1grg_|364-478 4grl_|364-478 1ltbA|W.C. 
1lklA|W.C. 1lcjA|W.C. 1sesA|111-421 1sphA|W.C. 2hpr_|W.C. 1tsw_|W.C. 
1sceA|W.C. 1setA|111-421 1synA|W.C. 1serA|111-421 2tscA|W.C. 1tsy_|W.C. 
1tsdA|W.C. 2bbqA|W.C. 1tsz_|W.C. 1ssaA|W.C.   
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Table A.7 The 2438 Protein Domains. 

393 all-α domains 
1aca_|W.C. 1cpe_|W.C. 1hbbB|W.C. 1mbi_|W.C. 1pra_|W.C. 2dhbA|W.C. 
1afb1|73-104 1cpf_|W.C. 1hbhA|W.C. 1mbj_|W.C. 1prhA|74-586 2dhbB|W.C. 
1afd1|73-104 1cpg_|W.C. 1hbhB|W.C. 1mbk_|W.C. 1pru_|W.C. 2fal_|W.C. 
1agm_|W.C. 1crcA|W.C. 1hbsA|W.C. 1mbo_|W.C. 1prv_|W.C. 2fam_|W.C. 
1anwA|W.C. 1crg_|W.C. 1hbsB|W.C. 1mcy_|W.C. 1pvaA|W.C. 2frc_|W.C. 
1anxA|W.C. 1crh_|W.C. 1hc1_|W.C. 1mgn_|W.C. 1r36_|W.C. 2glrA|79-209 
1apc_|W.C. 1cri_|W.C. 1hc3_|5-398 1mlf_|W.C. 1rap_|W.C. 2hbdA|W.C. 
1arp_|W.C. 1crj_|W.C. 1hc4_|W.C. 1mlg_|W.C. 1raq_|W.C. 2hbdB|W.C. 
1arqA|W.C. 1csgA|W.C. 1hc5_|W.C. 1mlh_|W.C. 1rcc_|W.C. 2hbeA|W.C. 
1arrA|W.C. 1csi_|W.C. 1hc6_|5-398 1mlj_|W.C. 1rce_|W.C. 2hbeB|W.C. 
1arv_|W.C. 1csr_|W.C. 1hcy_|W.C. 1mlk_|W.C. 1rcg_|W.C. 2hbfA|W.C. 
1arw_|W.C. 1css_|W.C. 1hdbA|W.C. 1mll_|W.C. 1rci_|W.C. 2hbfB|W.C. 
1arx_|W.C. 1csu_|W.C. 1hdbB|W.C. 1mlm_|W.C. 1res_|W.C. 2hcoA|W.C. 
1ary_|W.C. 1csx_|W.C. 1hgaA|W.C. 1mln_|W.C. 1ret_|W.C. 2hcoB|W.C. 
1avhA|W.C. 1ctaA|W.C. 1hgaB|W.C. 1mlo_|W.C. 1rnrA|W.C. 2hhdA|W.C. 
1avr_|W.C. 1ctdA|W.C. 1hgbA|W.C. 1mlq_|W.C. 1rpo_|W.C. 2hhdB|W.C. 
1aypA|W.C. 1ctr_|W.C. 1hgbB|W.C. 1mlr_|W.C. 1rprA|W.C. 2hmqA|W.C. 
1babA|W.C. 1cty_|W.C. 1hgcA|W.C. 1mlu_|W.C. 1saeA|W.C. 2hoa_|W.C. 
1babB|W.C. 1ctz_|W.C. 1hgcB|W.C. 1mnh_|W.C. 1safA|W.C. 2ifn_|W.C. 
1bbbA|W.C. 1cxa_|W.C. 1hgu_|W.C. 1mnjA|W.C. 1sagA|W.C. 2int_|W.C. 
1bbbB|W.C. 1cyf_|W.C. 1hhoA|W.C. 1mnkA|W.C. 1sahA|W.C. 2lh2_|W.C. 
1bbl_|W.C. 1cyj_|W.C. 1hhoB|W.C. 1moa_|W.C. 1saiA|W.C. 2lh6_|W.C. 
1bbn_|W.C. 1cyl_|W.C. 1hij_|W.C. 1mob_|W.C. 1sajA|W.C. 2lh7_|W.C. 
1bcn_|W.C. 1dcc_|W.C. 1hik_|W.C. 1moc_|W.C. 1salA|W.C. 2mgb_|W.C. 
1bgd_|W.C. 1dog_|W.C. 1hkt_|W.C. 1mrrA|W.C. 1san_|W.C. 2mgc_|W.C. 
1bib_|2-63 1dprA|3-64 1hlm_|W.C. 1msdA|1-83 1sctA|W.C. 2mgd_|W.C. 
1boc_|W.C. 1dprA|65-136 1hmdA|W.C. 1mti_|W.C. 1sesA|W.C. 2mge_|W.C. 
1bod_|W.C. 1dvh_|W.C. 1hme_|W.C. 1mtj_|W.C. 1setA|W.C. 2mgf_|W.C. 
1bpd_|W.C. 1dxtA_|W.C. 1hmf_|W.C. 1mtk_|W.C. 1spe_|W.C. 2mgg_|W.C. 
1bpq_|W.C. 1dxtB|W.C. 1hmoA|W.C. 1myf_|W.C. 1swm_|W.C. 2mgh_|W.C. 
1bvd_|W.C. 1dxuA|W.C. 1hnbA|85-217 1myhA|W.C. 1tag_|W.C. 2mgi_|W.C. 
1cblA|W.C. 1dxuB|W.C. 1hncA|W.C. 1myiA|W.C. 1thbA|W.C. 2mgj_|W.C. 
1cblB|W.C. 1dxvA|W.C. 1hns_|W.C. 1myjA|W.C. 1thbB|W.C. 2mgk_|W.C. 
1cbmA|W.C. 1dxvB|W.C. 1hrm_|W.C. 1mykA|W.C. 1thl_|W.C. 2mgl_|W.C. 
1cbmB|W.C. 1ecd_|W.C. 1hsm_|W.C. 1mylA|W.C. 1tlpE|156-316 2mgm_|W.C. 
1cca_|W.C. 1ecn_|W.C. 1hsn_|W.C. 1mym_|W.C. 1tndA|W.C. 2mm1_|W.C. 
1ccb_|W.C. 1eco_|W.C. 1hsy_|W.C. 1ner_|W.C. 1tnp_|W.C. 2mya_|W.C. 
1cce_|W.C. 1eni_|W.C. 1huw_|W.C. 1nhm_|W.C. 1tnq_|W.C. 2myb_|W.C. 
1ccg_|W.C. 1enj_|W.C. 1hve_|W.C. 1nhn_|W.C. 1tnt_|W.C. 2myd_|W.C. 
1cch_|W.C. 1enk_|W.C. 1hvf_|W.C. 1nihA|W.C. 1tnw_|W.C. 2mye_|W.C. 
1ccp_|W.C. 1erc_|W.C. 1hvg_|W.C. 1nihB|W.C. 1tnx_|W.C. 2pac_|W.C. 
1cdlA_|W.C. 1esp_|W.C. 1hyt_|156-316 1nol_|W.C. 1trf_|W.C. 2pas_|W.C. 
1cdmA_|W.C. 1fcs_|W.C. 1ifd_|W.C. 1noo_|W.C. 1trlA|W.C. 2pcbA|W.C. 
1cdn_|W.C. 1fhb_|W.C. 1ifi_|W.C. 1olhA|W.C. 1tyaE|228-319 2pcbB|W.C. 
1ceh_|W.C. 1fipA|W.C. 1isbA|1-82 1omd_|W.C. 1tybE|228-319 2pccA|W.C. 
1cfc_|W.C. 1fw4_|W.C. 1iscA|1-82 1oxy_|1-379 1tyc_|W.C. 2pccB|W.C. 
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1chh_|W.C. 1gclA|W.C. 1iti_|W.C. 1pesA|W.C. 1tydE_|W.C. 2pde_|W.C. 
1chi_|W.C. 1gcmA|W.C. 1itm_|W.C. 1petA|W.C. 1was_|W.C. 2phiA|W.C. 
1chj_|W.C. 1gdd_|W.C. 1leb_|W.C. 1pgn_|W.C. 1watA|W.C. 2spl_|W.C. 
1cie_|W.C. 1gdi_|W.C. 1lgaA|W.C. 1pgo_|177-473 1ycaA|W.C. 2spm_|W.C. 
1cif_|W.C. 1gdj_|W.C. 1lh3_|W.C. 1pgp_|177-473 1ycbA|W.C. 2spn_|W.C. 
1cig_|W.C. 1gdk_|W.C. 1lh5_|W.C. 1pgq_|W.C. 1yea_|W.C. 2spo_|W.C. 
1cih_ |W.C. 1gdl_|W.C. 1lhs_|W.C. 1pha_|W.C. 1yeb_|W.C. 2sttA|W.C. 
1cib_|W.C. 1gfi_|61-181 1lih_|W.C. 1phb_|W.C. 1yma_|W.C. 3fisA|W.C. 
1clm_|W.C. 1gil_|61-181 1lnaE|156-316 1phd_|W.C. 1ymc_|W.C. 3gly_|W.C. 
1cmcA|W.C. 1glpA|79-209 1lnbE_|W.C. 1phe_|W.C. 1ytc_|W.C. 3hsf_|W.C. 
1cmf_|W.C. 1gnc_|W.C. 1lncE_|W.C. 1phf_|W.C. 2bbmA|W.C. 3inkC|W.C. 
1cmg_|W.C. 1gne_|80-232 1lndE_|W.C. 1phg_|W.C. 2bbnA|W.C. 2mdeA|242-395 
1cmp_|W.C. 1grl_|6-136 1lneE_|156-316 1pir_|W.C. 2bca_|W.C. 3mdsA|W.C. 
1cmq_|W.C. 1gsdA|W.C. 1lnfE_|W.C. 1pis_|W.C. 2bcb_|W.C. 3pat_|W.C. 
1cmt_|W.C. 1gsfA|81-222 1lynA_|W.C. 1pmbA|W.C. 2bmhA|W.C. 4cpv_|W.C. 
1cmu_|W.C. 1gtb_|W.C. 1mbc_|W.C. 1pobA|W.C. 2bpp_|W.C. 4mbn_|W.C. 
1cmyA|W.C. 1guhA|W.C. 1mbd_|W.C. 1pod_|W.C. 2cep_|W.C. 155c_|W.C. 
1cmyB|W.C. 1hbaA|W.C. 1mbf_|W.C. 1poeA|W.C. 2cmm_|W.C.  
1copD|W.C. 1hbaB|W.C. 1mbg_|W.C. 1pog_|W.C. 2cxbA|W.C.  
1cp4_|W.C. 1hbbA|W.C. 1mbh_|W.C. 1pou_|W.C. 2cyk_|W.C.  

704 all-β domains 
1aaj_|W.C. 1cpiA|W.C. 1gmcA|W.C. 1krcB|W.C. 1plb_|W.C. 1vfbA|W.C. 
1aan_|W.C. 1cpm_|W.C. 1gmdA|W.C. 1krcC|2-129 1pnc_|W.C. 1xnc_|W.C. 
1aaqA|W.C. 1cra_|W.C. 1gmh_|W.C. 1krt_|W.C. 1pnd_|W.C. 1xypA|W.C. 
1abiL|W.C. 1crb_|W.C. 1gog_|1-150 1lac_|W.C. 1pnf_|1-140 1yda_|W.C. 
1abq_|W.C. 1crm_|W.C. 1gog_|151-537 1lec_|W.C. 1png_|5-140 1ydb_|W.C. 
1acbE|W.C. 1csq_|W.C. 1gog_|538-639 1lemA|W.C. 1pnj_|W.C. 1ydc_|W.C. 
1adbA|1-174 1cvb_|W.C. 1goh_|1-150 1lenA|W.C. 1ppbL|W.C. 1ydd_|W.C. 
1adcA|1-174 1cvc_|W.C. 1goh_|151-537 1lgbA|W.C. 1ppgE|W.C. 1yhaA|W.C. 
1adf_|1-174 1cvd_|W.C. 1goh_|538-639 1lic_|W.C. 1pphE|W.C. 1yhb_|W.C. 
1adg_|1-174 1cve_|W.C. 1hagE|W.C. 1lid_|W.C. 1ppkE|W.C. 1ystH|36-260 
1adl_|W.C. 1cvf_|W.C. 1haiL|W.C. 1lie_|W.C. 1pplE|W.C. 2azaA|W.C. 
1afcA|W.C. 1cvh_|W.C. 1hapL|W.C. 1lif_|W.C. 1prlC|W.C. 2bat_|W.C. 
1aizA|W.C. 1cwaA|W.C. 1hbp_|W.C. 1loaA|W.C. 1prmC|W.C. 2bfh_|W.C. 
1akl_|247-470 1cwbA|W.C. 1hbtL|W.C. 1lobA|W.C. 1prs1|W.C. 2cab_|W.C. 
1alb_|W.C. 1cwcA|W.C. 1hbvA|W.C. 1locA|W.C. 1psaA|W.C. 2cbb_|W.C. 
1apnA|W.C. 1cxe_|383-495 1hc1_|399-653 1lodA|W.C. 1pse_|W.C. 2cbc_|W.C. 
1aptE|W.C. 1cxe_|496-581 1hc3_|399-653 1lofA|W.C. 1psn_|W.C. 2cbd_|W.C. 
1apuE|W.C. 1cxe_|582-686 1hc4_|399-653 1logA|W.C. 1pssH|36-248 2cbe_|W.C. 
1apvE|W.C. 1cxf_|582-686 1hc5_|399-653 1lpaB|337-449 1pstH|36-248 2cgaA|W.C. 
1apwE|W.C. 1cxf_|383-495 1hc6_|399-653 1ltaD|W.C. 1ptoB|88-197 2cha_|W.C. 
1arc_|W.C. 1cxf_|496-581 1hca_|W.C. 1ltbD|W.C. 1ptoD|W.C. 2chbD|W.C. 
1asoA|1-129 1cxg_|383-495 1hcd_|W.C. 1ltgD|W.C. 1ptoF|W.C. 2cna_|W.C. 
1aspA|1-129 1cxg_|582-686 1hcy_|399-653 1lttD|W.C. 1ptsA|W.C. 2ctvA|W.C. 
1asqA|1-129 1cxh_|383-495 1hdtL|W.C. 1lyaA|W.C. 1pza_|W.C. 1cxg_|496-581 
1avdA|W.C. 1cxh_|496-581 1hdxA|1-174 1macA|W.C. 1pzb_|W.C. 2dblL|1-107 
1aveA|W.C. 1cxh_|582-686 1hdyA|1-174 1maj_|W.C. 1pzc_|W.C. 2dblL|108-211 
1azbA|W.C. 1cxi_|383-495 1hdzA|1-174 1mak_|W.C. 1qwfA|W.C. 2eipA|W.C. 
1azm_|W.C. 1cxi_|496-581 1hea_|W.C. 1mcbA|1-111 1r091|W.C. 2enb_|W.C. 
1aznA|W.C. 1cxi_|582-686 1hed_|W.C. 1mcbA|112-216 1ray_|W.C. 2er0E|W.C. 
1azu_|W.C. 1cyhA|W.C. 1hefE|W.C. 1mccA|1-111 1raz_|W.C. 2er6E|W.C. 
1bas_|W.C. 1cyw_|W.C. 1hegE|W.C. 1mccA|112-216 1rinA|W.C. 2er7E|W.C. 
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1bbrL|W.C. 1czm_|W.C. 1hgdA|W.C. 1mcfA|1-111 1rlpC|W.C. 2er9E|W.C. 
1bbs_|W.C. 1dbbL|1-107 1hgeA|W.C. 1mcfA|112-216 1rlqC|W.C. 2gn5_|W.C. 
1bcd_|W.C. 1dbbL|108-211 1hgfA|W.C. 1mchA|1-111 1rne_|W.C. 2gvaA|W.C. 
1bcmA|481-560 1dbjL|1-107 1hggA|W.C. 1mchA|112-216 1ruc1|W.C. 2gvbA|W.C. 
1bcx_|W.C. 1dbjL|108-211 1hghA|W.C. 1mciA|1-111 1rud1|W.C. 2hmb_|W.C. 
1bfb_|W.C. 1dbkL|1-107 1hgjA|W.C. 1mciA|112-216 1rue1|W.C. 2hntL|W.C. 
1bfc_|W.C. 1dbkL|108-211 1hhgA|182-275 1mcjA|1-111 1ruf1|W.C. 2hpeA|W.C. 
1bfg_|W.C. 1dbmL|1-107 1hhhA|182-275 1mcjA|112-216 1rug1|W.C. 2hpfA|W.C. 
1bib_|271-317 1dbmL|108-211 1hhiA|182-275 1mckA|1-111 1ruh1|W.C. 2hpqL|W.C. 
1bic_|W.C. 1dca_|W.C. 1hhjA|182-275 1mckA|112-216 1rui1|W.C. 2hsp_|W.C. 
1bilA|W.C. 1dcb_|W.C. 1hhkA|182-275 1mclA|1-111 1rza_|W.C. 2hwb1|W.C. 
1bimA|W.C. 1dmyA|W.C. 1hhp_|W.C. 1mclA|112-216 1rzb_|W.C. 2hwc1|W.C. 
1blbA|W.C. 1dwbL|W.C. 1hib_|W.C. 1mcnA|1-111 1rzc_|W.C. 2hwd1|W.C. 
1bmaA|W.C. 1dwcL|W.C. 1hihA|W.C. 1mcnA|112-216 1rzd_|W.C. 2hwe1|W.C. 
1bra_|W.C. 1dwdL|W.C. 1hiiA|W.C. 1mcqA|1-111 1rze_|W.C. 2hwf1|W.C. 
1brcE|W.C. 1dweL|W.C. 1himL|1-108 1mcqA|112-216 1sbgA|W.C. 2ifb_|W.C. 
1brp_|W.C. 1eas_|W.C. 1himL|109-211 1mcrA|1-111 1scr_|W.C. 2iffL|1-106 
1brq_|W.C. 1eat_|W.C. 1hinL|1-108 1mcrA|112-216 1sdaB|W.C. 2iffL|107-212 
1btb_|W.C. 1eau_|W.C. 1hinL|109-211 1mcsA|1-111 1sdyA|W.C. 2ig2L|1-109 
1btwA|W.C. 1eedP|W.C. 1hivA|W.C. 1mcsA|112-216 1sgc_|W.C. 2ig2L|110-214 
1btxA|W.C. 1elaA|W.C. 1hldA|1-174 1mdaA|W.C. 1sgqE|W.C. 2imn_|W.C. 
1bty_|W.C. 1elbA|W.C. 1hltL|W.C. 1mdaH|W.C. 1sgrE|W.C. 2jcw_|W.C. 
1btzA|W.C. 1elcA|W.C. 1hmr_|W.C. 1mdtA|381-535 1sip_|W.C. 2kaiA|W.C. 
1bw4_|W.C. 1eldE|W.C. 1hmt_|W.C. 1mec1|W.C. 1slaA|W.C. 2lalA|W.C. 
1byh_|W.C. 1elf_|W.C. 1hneE|W.C. 1mfcL|1-111 1slbA|W.C. 2mcg1|1-111 
1bzm_|W.C. 1ena_|W.C. 1hosA|W.C. 1mfcL|112-212 1slcA|W.C. 2mcg1|112-216 
1ca3_|W.C. 1enc_|W.C. 1hpcA|W.C. 1mfdL|1-111 1sldB|W.C. 2mhaA|182-270 
1cah_|W.C. 1entE|W.C. 1hpsA|W.C. 1mfdL|112-212 1sleB|W.C. 2mib_|W.C. 
1cai_|W.C. 1enxA|W.C. 1hpvA|W.C. 1mfeL|1-111 1slfB|W.C. 2mipA|W.C. 
1caj_|W.C. 1epaA|W.C. 1hpxA|W.C. 1mfeL|112-211 1slgB|W.C. 2nrd_|8-166 
1cak_|W.C. 1eplE|W.C. 1hri1|W.C. 1mikA|W.C. 1snm_|W.C. 2oxiA|1-174 
1cal_|W.C. 1epmE|W.C. 1hrtL|W.C. 1mlcA|1-108 1sosA|W.C. 2pabA|W.C. 
1cam_|W.C. 1epoE|W.C. 1hrv1|W.C. 1mlcA|109-214 1sreA|W.C. 2plv1|W.C. 
1can_|W.C. 1eppE|W.C. 1hsgA|W.C. 1mrcL|1-108 1srfA|W.C. 2ptcE|W.C. 
1cao_|W.C. 1epqE|W.C. 1hshA|W.C. 1mrcL|109-211 1srgA|W.C. 2ptn_|W.C. 
1cavA|W.C. 1eprE|W.C. 1hsiA|W.C. 1mreL|1-108 1srhA|W.C. 2r041|W.C. 
1cawA|W.C. 1eptA|W.C. 1htbA|1-174 1mreL|109-211 1srjA|W.C. 2r061|W.C. 
1caxA|W.C. 1erb_|W.C. 1htfA|W.C. 1mrfL|1-108 1srm_|W.C. 2r071|W.C. 
1cay_|W.C. 1esa_|W.C. 1htgA|W.C. 1mrfL|109-211 1srp_|247-470 2rcrH|36-255 
1caz_|W.C. 1esb_|W.C. 1htlD|W.C. 1mua_|W.C. 1sta_|W.C. 2ren_|W.C. 
1cbq_|W.C. 1eta1|W.C. 1hug_|W.C. 1ncbL|1-108 1stb_|W.C. 2rm21|W.C. 
1cbrA|W.C. 1etb1|W.C. 1huh_|W.C. 1ncbL|109-214 1stg_|W.C. 2rmaA|W.C. 
1ccs_|W.C. 1etrL|W.C. 1hva_|W.C. 1ncbN|W.C. 1sth_|W.C. 2rmbA|W.C. 
1cct_|W.C. 1etsL|W.C. 1hvc_|W.C. 1nccL|1-108 1stn_|W.C. 2rmu1|W.C. 
1ccu_|W.C. 1ettL|W.C. 1hviA|W.C. 1nccL|109-214 1stp_|W.C. 2rr11|W.C. 
1cdb_|W.C. 1exh_|W.C. 1hvjA|W.C. 1nccN|W.C. 1strB|W.C. 2rs11|W.C. 
1cdh_|1-97 1faiL|1-108 1hvkA|W.C. 1ncdL|1-108 1sxaA|W.C. 2rs31|W.C. 
1cdh_|98-178 1faiL|109-214 1hvrA|W.C. 1ncdL|109-211 1sxBA|W.C. 2rs51|W.C. 
1cdoA|1-175 1fccA|238-341 1hvsA|W.C. 1ncdN|W.C. 1syb_|W.C. 2sam_|W.C. 
1cgiE|W.C. 1fel_|W.C. 1icm_|W.C. 1ncg_|W.C. 1syc_|W.C. 2sim_|W.C. 
1cgjE|W.C. 1fem_|W.C. 1icn_|W.C. 1nchA|W.C. 1syd_|W.C. 2sns_|W.C. 
1cgsL|1-112 1fen_|W.C. 1idbA|W.C. 1ncoA|W.C. 1syf_|W.C. 2snwA|W.C. 
1cgsL|113-219 1fga_|W.C. 1ifhL|1-108 1nesE|W.C. 1syg_|W.C. 2sob_|W.C. 
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1cgt_|580-684 1fmd1|W.C. 1ifhL|109-211 1niaA|8-166 1tgb_|W.C. 2tbs_|W.C. 
1cgt_|383-494 1fnc_|19-154 1igjA|1-107 1nibA|8-166 1tgc_|W.C. 2tga_|W.C. 
1cgt_|495-579 1fnd_|19-154 1igjA|108-211 1nic_|8-166 1tgn_|W.C. 2tgd_|W.C. 
1cgu_|383-494 1fnf_|1142-123 1igp_|W.C. 1nid_|8-166 1thaA|W.C. 2tgpZ|W.C. 
1cgu_|495-579 1fod1|W.C. 1ihtL|W.C. 1nie_|8-166 1thcA|W.C. 2trm_|W.C. 
1cgu_|580-684 1fpcL|W.C. 1iluA|W.C. 1nmaL|W.C. 1thrL|W.C. 2tsaA|W.C. 
1cgv_|383-495 1frn_|19-154 1inc_|W.C. 1nmaN|W.C. 1thsL|W.C. 2tsbA|W.C. 
1cgv_|496-581 1fveA|1-108 1ineL|2-109 1nn2_|W.C. 1thu_|W.C. 2tunA|W.C. 
1cgv_|582-686 1fveA|109-214 1ineL|110-212 1nna_|W.C. 1thv_|W.C. 2vaaA|182-274 
1cgw_|383-495 1gbaA|W.C. 1inv_|W.C. 1nol_|380-628 1tld_|W.C. 3app_|W.C. 
1cgw_|496-581 1gbbA|W.C. 1inw_|W.C. 1nrnL|W.C. 1tlmA|W.C. 3bjlA|W.C. 
1cgw_|582-686 1gbcA|W.C. 1inx_|W.C. 1nroL|W.C. 1tmbL|W.C. 3cysA|W.C. 
1cgy_|383-495 1gbfA|W.C. 1iny_|W.C. 1nrqL|W.C. 1tmcB|W.C. 3er3E|W.C. 
1cgy_|496-581 1gbhA|W.C. 1irp_|W.C. 1nrrL|W.C. 1tmf1|W.C. 3er5E|W.C. 
1cgy_|582-686 1gbiA|W.C. 1ivb_|W.C. 1nrsL|W.C. 1tmtL|W.C. 3hatL|W.C. 
1chg_|W.C. 1gbjA|W.C. 1ivc_|W.C. 1nsbA|W.C. 1tmuL|W.C. 3hudA|1-174 
1choE|W.C. 1gbkA|W.C. 1ivd_|W.C. 1nsdA|W.C. 1tnfA|W.C. 3ptb_|W.C. 
1chqD|W.C. 1gblA|W.C. 1ive_|W.C. 1ntp_|W.C. 1tng_|W.C. 4ape_|W.C. 
1cil_|W.C. 1gbmA|W.C. 1ivf_|W.C. 1nzrA|W.C. 1tnh_|W.C. 4azuA|W.C. 
1cin_|W.C. 1gcd_|W.C. 1ivg_|W.C. 1opbA|W.C. 1tni_|W.C. 4er1E|W.C. 
1ckbA|W.C. 1gcs_|1-85 1ivpA|W.C. 1oxy_|380-627 1tnj_|W.C. 4htcL|W.C. 
1cn1A|W.C. 1gfc_|W.C. 1ivqA|W.C. 1p01A|W.C. 1tnk_|W.C. 4pep_|W.C. 
1cnc_|W.C. 1gfd_|W.C. 1jim_|W.C. 1p02A|W.C. 1tnl_|W.C. 4rcrH|36-248 
1cneA|11-124 1ggcL|1-107 1kaa_|W.C. 1p03A|W.C. 1tnn_|W.C. 5cac_|W.C. 
1cnf_|11-124 1ggcL|108-211 1kab_|W.C. 1p04A|W.C. 1tpaE|W.C. 5chaA|W.C. 
1cng_|W.C. 1ggiL|1-107 1kda_|W.C. 1p05A|W.C. 1tpo_|W.C. 5cnaA|W.C. 
1cnh_|W.C. 1ggiL|108-211 1kdb_|W.C. 1p06A|W.C. 1tpp_|W.C. 5er2E|W.C. 
1cni_|W.C. 1ghaE|W.C. 1kdc_|W.C. 1p09A|W.C. 1tps_|W.C. 9lprA|W.C. 
1cnj_|W.C. 1ghbE|W.C. 1knoA|1-108 1p10A|W.C. 1trmA|W.C. 12ca_|W.C. 
1cnk_|W.C. 1glbF|W.C. 1knoA|109-214 1p11E|W.C. 1ttbA|W.C. 31bi_|W.C. 
1cnw_|W.C. 1glcF|W.C. 1kraB|W.C. 1p12E|W.C. 1ttf_|W.C.  
1cny_|W.C. 1gldF|W.C. 1kraC|2-129 1piv1|W.C. 1ttg_|W.C.  
1cobA|W.C. 1gleF|W.C. 1krbB|W.C. 1pks_|W.C. 1tyn_|W.C.  
1conA|W.C. 1glh_|W.C. 1krbC|2-129 1pkt_|W.C. 1tyrA|W.C.  

608 α+β domains 
1aarA|W.C. 1glv_|123-316 1l64_|W.C. 1mri_|W.C. 1rsm_|W.C. 4ltyA|W.C. 
1acbI|W.C. 1gmqA|W.C. 1l65_|W.C. 1mrk_|W.C. 1rsnA|W.C. 4mdhA|155-333 
1acmB|8-100 1gmrA|W.C. 1l66_|W.C. 1msc_|W.C. 1rtb_|W.C. 5ldh_|163-331 
1aec_|W.C. 1gra_|364-478 1l67_|W.C. 1msdA|84-198 1rtnA|W.C. 6fdr_|W.C. 
1afb1|105-221 1grb_|364-478 1l68_|W.C. 1msgA|W.C. 1rusA|3-137 6ldh_|161-329 
1afd1|105-221 1gre_|364-478 1l69_|W.C. 1mshA|W.C. 1sbnI|W.C. 6lyt_|W.C. 
1aha_|W.C. 1grf_|364-478 1l70_|W.C. 1mstA|W.C. 1sceA|W.C. 8atcB|8-100 
1ahb_|W.C. 1grg_|364-478 1l72_|W.C. 1ndaA|358-484 1sesA|111-421 9ldb_|163-331 
1ahc_|W.C. 1grl_|137-190 1l73_|W.C. 1ndc_|W.C. 1setA|111-421 9pap_|W.C. 
1akl_|1-239 1hcsB|W.C. 1l74_|W.C. 1ndk_|W.C. 1shbA|W.C. 102l_|W.C. 
1atnD|W.C. 1hctB|W.C. 1l75_|W.C. 1ndlA|W.C. 1sphA|W.C. 103l_|W.C. 
1aybA|W.C. 1hdn_|W.C. 1l76_|W.C. 1ndpA|W.C. 1sprA|W.C. 104lA|W.C. 
1aycA|W.C. 1hel_|W.C. 1l77_|W.C. 1nel_|1-141 1spsA|W.C. 107l_|W.C. 
1ayd_|W.C. 1hem_|W.C. 1l79_|W.C. 1nhb_|W.C. 1srnA|W.C. 108l_|W.C. 
1baoA|W.C. 1hen_|W.C. 1l80_|W.C. 1nhp_|322-447 1srp_|4-239 109l_|W.C. 
1bdmA|155-332 1heo_|W.C. 1l81_|W.C. 1nhq_|322-447 1ssaA|W.C. 110l_|W.C. 
1bgsA|W.C. 1hep_|W.C. 1l82_|W.C. 1nhr_|322-447 1ssbA|W.C. 111l_|W.C. 
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1bib_|64-270 1heq_|W.C. 1l83_|W.C. 1nhs_|322-447 1sscA|W.C. 112l_|W.C. 
1bmsA|W.C. 1her_|W.C. 1l84_|W.C. 1nlkR|W.C. 1svr_|W.C. 114l_|W.C. 
1bneA|W.C. 1hew_|W.C. 1l85_|W.C. 1nskR|W.C. 1synA|W.C. 115l_|W.C. 
1bnfA|W.C. 1hhgA|1-181 1l86_|W.C. 1nsp_|W.C. 1tay|W.C. 118l_|W.C. 
1bngA|W.C. 1hhhA|1-181 1l87_|W.C. 1pafA|W.C. 1tbeA|W.C. 119l_|W.C. 
1bniA|W.C. 1hhiA|1-181 1l88_|W.C. 1pagA|W.C. 1tbpA|61-155 120l_|W.C. 
1bnjA|W.C. 1hhjA|1-181 1l89_|W.C. 1pbb_|174-275 1tby_|W.C. 122l_|W.C. 
1bnr_|W.C. 1hhkA|1-181 1l90_|W.C. 1pbc_|174-275 1tcs_|W.C. 123l_|W.C. 
1bnsA|W.C. 1hnl_|W.C. 1l91_|W.C. 1pbd_|174-275 1tcy_|W.C. 125l_|W.C. 
1brgA|W.C. 1htdA|W.C. 1l93_|W.C. 1pbf_|174-275 1tda_|W.C. 126l_|W.C. 
1brhA|W.C. 1htlA|W.C. 1l94_|W.C. 1pdh_|174-275 1tdb_|W.C. 127l_|W.C. 
1briA|W.C. 1hunA|W.C. 1l96_|W.C. 1pdy_|1-139 1tdc_|W.C. 128l_|W.C. 
1brjA|W.C. 1hymA|W.C. 1l97A|W.C. 1pe6_|W.C. 1tdy_|W.C. 129l_|W.C. 
1brkA|W.C. 1hyt_|1-155 1l99_|W.C. 1pfh_|W.C. 1tew_|W.C. 131l_|W.C. 
1brsA|W.C. 1iaa_|W.C. 1laa_|W.C. 1pfmA|W.C. 1thl_|1-155 132l_|W.C. 
1bsaA|W.C.  1iab_|W.C. 1lca_|W.C. 1pfnA|W.C. 1thy_|W.C. 133l_|W.C. 
1bsbA|W.C. 1iac_|W.C. 1lcb_|W.C. 1pgb_|W.C. 1tla_|W.C. 134l_|W.C. 
1bsdA|W.C. 1iad_|W.C. 1lce_|W.C. 1pgx_|W.C. 1tlpE|1-155 135l_|W.C. 
1bseA|W.C. 1iae_|W.C. 1lcjA|W.C. 1pipA|W.C. 1tmc_|W.C. 137lA|W.C. 
1cge_|W.C. 1ikl_|W.C. 1lcoA|10-97 1plr_|1-126 1trqA|W.C. 138l_|W.C. 
1cgfA|W.C. 1ikm_|W.C. 1ldb_|163-331 1pnlA|W.C. 1tsdA|W.C. 139l_|W.C. 
1cglA|W.C. 1isbA|83-192 1ldcA|10-97 1pnmA|W.C. 1tsw_|W.C. 140l_|W.C. 
1ciqA|W.C. 1iscA|83-192 1lhh_|W.C. 1popA|W.C. 1tsx_|W.C. 141l_|W.C. 
1cirA|W.C. 1ius_|174-275 1lhi_|W.C. 1ppd_|W.C. 1tsy_|W.C. 142l_|W.C. 
1coaI|W.C. 1iut_|174-275 1lhj_|W.C. 1ppp_|W.C. 1tsz_|W.C. 143l_|W.C. 
1comA|W.C. 1iuu_|174-275 1lhl_|W.C. 1ptoA|W.C. 1typA|359-487 144l_|W.C. 
1coy_|319-450 1kraA|W.C. 1lhm_|W.C. 1ptoB|4-87 1tys_|W.C. 145l_|W.C. 
1cpjA|W.C. 1krbA|W.C. 1lklA|W.C. 1pxa_|174-275 1tytA|359-487 147l_|W.C. 
1csbA|W.C. 1krcA|W.C. 1lma_|W.C. 1pxb_|174-275 1ubq_|W.C. 148lE|W.C. 
1cteA|W.C. 1l00_|W.C. 1lmc_|W.C. 1pxc_|174-275 1umsA|W.C. 149l_|W.C. 
1cyo_|W.C. 1l02_|W.C. 1lmn_|W.C. 1raaB|1-100 1umtA|W.C. 150lA|W.C. 
1cyu_|W.C. 1l03_|W.C. 1lmo_|W.C. 1rabB|1-100 1vfbC|W.C. 151l_|W.C. 
1dktA|W.C. 1l04_|W.C. 1lmp_|W.C. 1racB|1-100 1vig_|W.C. 152l_|W.C. 
1dob_|174-275 1l05_|W.C. 1lmt_|W.C. 1radB|1-100 1xra_|1-101 154l_|W.C. 
1dod_|174-275 1l06_|W.C. 1lnaE|1-155 1raeB|1-100 1xrc_|1-101 155l_|W.C. 
1doe_|174-275 1l07_|W.C. 1lnbE|1-155 1rafB|1-100 1xxbA|W.C. 156l_|W.C. 
1doy_|W.C. 1l08_|W.C. 1lncE|1-155 1rahB|1-100 1xxcA|W.C. 157l_|W.C. 
1dtp_|W.C. 1l09_|W.C. 1lndE|1-155 1raiB|1-100 1yam_|W.C. 158l_|W.C. 
1dya_|W.C. 1l10_|W.C. 1lneE|1-155 1rar_|W.C. 1yan_|W.C. 159l_|W.C. 
1dyb_|W.C. 1l11_|W.C. 1lnfE|1-155 1ras_|W.C. 1yao_|W.C. 160l_|W.C. 
1dyc_|W.C. 1l12_|W.C. 1lpfA|349-472 1rbaA|5-137 1yap_|W.C. 161l_|W.C. 
1dyd_|W.C. 1l13_|W.C. 1lra_|W.C. 1rbbA|W.C. 1yaq_|W.C. 162l_|W.C. 
1dye_|W.C. 1l14_|W.C. 1lsa_|W.C. 1rbc_|W.C. 1ypaI|W.C. 164l_|W.C. 
1dyf_|W.C. 1l16_|W.C. 1lsb_|W.C. 1rbd_|W.C. 1ypbI|W.C. 165l_|W.C. 
1dyg_|W.C. 1l17_|W.C. 1lsc_|W.C. 1rbe_|W.C. 1ypcI|W.C. 166l_|W.C. 
1e8l_|W.C. 1l18_|W.C. 1lsd_|W.C. 1rbf_|W.C. 2aadA|W.C. 167lA|W.C. 
1ebgA|1-141 1l19_|W.C. 1lse_|W.C. 1rbg_|W.C. 2aae_|W.C. 168lA|W.C. 
1ebhA|1-141 1l20_|W.C. 1lsf_|W.C. 1rbw_|W.C. 2aas_|W.C. 169lA|W.C. 
1egl_|W.C. 1l21_|W.C. 1lsg_|W.C. 1rbx_|W.C. 2acg_|W.C. 170l_|W.C. 
1egpA|W.C. 1l22_|W.C. 1lsm_|W.C. 1rca_|W.C. 2atcB|1-100 171l_|W.C. 
1els_|1-141 1l23_|W.C. 1lsn_|W.C. 1rck_|W.C. 2baa_|W.C. 172l_|W.C. 
1emd_|146-312 1l25_|W.C. 1lsp_|W.C. 1rcl_|W.C. 2bbqA|W.C. 173l_|W.C. 
1esp_|1-156 1l26_|W.C. 1lsy_|W.C. 1rdi1|W.C. 2chtA|W.C. 174lA|W.C. 
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1fcbA|1-97 1l27_|W.C. 1lsz_|W.C. 1rdj1|W.C. 2ci2I|W.C. 175lA|W.C. 
1fccC|W.C. 1l28_|W.C. 1ltaA|W.C. 1rdk1|W.C. 2fke_|W.C. 177l_|W.C. 
1fd2_|W.C. 1l29_|W.C. 1ltbA|W.C. 1rdl1|W.C. 2hpr_|W.C. 178l_|W.C. 
1fda_|W.C. 1l30_|W.C. 1ltgA|W.C. 1rdm1|W.C. 2iffY|W.C. 179l_|W.C. 
1fdb_|W.C. 1l31_|W.C. 1lthR|150-319 1rdn1|W.C. 2igg_|W.C. 180lA|W.C. 
1fdd_|W.C. 1l32_|W.C. 1lttA|W.C. 1rdo1|W.C. 2igh_|W.C. 181l_|W.C. 
1fdn_|W.C. 1l33_|W.C. 1lvl_|336-458 1rds_|W.C. 2l78_|W.C. 182l_|W.C. 
1fer_|W.C. 1l34_|W.C. 1lyd_|W.C. 1rga_|W.C. 2lz2_|W.C. 183l_|W.C. 
1fkb_|W.C. 1l35_|W.C. 1lye_|W.C. 1rgcA|W.C. 2lzt_|W.C. 184l_|W.C. 
1fkf_|W.C. 1l36_|W.C. 1lyf_|W.C. 1rgl_|W.C. 2mhaA|1-181 185l_|W.C. 
1fkg_|W.C. 1l37_|W.C. 1lyh_|W.C. 1rha_|W.C. 2nckR|W.C. 186l_|W.C. 
1fkh_|W.C. 1l38_|W.C. 1lyi_|W.C. 1rhb_|W.C. 2phh_|174-275 187l_|W.C. 
1fkiA|W.C. 1l39_|W.C. 1lyj_|W.C. 1rlcL|22-147 2pleA|W.C. 188l_|W.C. 
1fkj_|W.C. 1l40_|W.C. 1lysA|W.C. 1rlcS|W.C. 2pnb_|W.C. 190l_|W.C. 
1fkk_|W.C. 1l42_|W.C. 1lz1_|W.C. 1rldA|22-147 2rlnE|W.C. 191l_|W.C. 
1fkl_|W.C. 1l43_|W.C. 1lz4_|W.C. 1rldS|W.C. 2rns_|W.C. 192l_|W.C. 
1fks_|W.C. 1l44_|W.C. 1lza_|W.C. 1rls_|W.C. 2rusA|2-137 194l_|W.C. 
1fkt_|W.C. 1l45_|W.C. 1lzb_|W.C. 1rn4_|W.C. 2sarA|W.C. 195l_|W.C. 
1fmp_|W.C. 1l46_|W.C. 1lzc_|W.C. 1rnc_|W.C. 2secI|W.C. 196l_|W.C. 
1frh_|W.C. 1l47_|W.C. 1lzd_|W.C. 1rnd_|W.C. 2tcl_|W.C. 197l_|W.C. 
1fri_|W.C. 1l48_|W.C. 1lzg_|W.C. 1rnlA|W.C. 2tdd_|W.C. 198l_|W.C. 
1frk_|W.C. 1l50_|W.C. 1lzsA|W.C. 1rnmE|W.C. 2tdm_|W.C. 199l_|W.C. 
1frl_|W.C. 1l52_|W.C. 1lzy_|W.C. 1rno_|W.C. 2tecI|W.C. 200l_|W.C. 
1frm_|W.C. 1l54_|W.C. 1mdr_|3-132 1rnq_|W.C. 2tscA|W.C. 201lA|W.C. 
1frx_|W.C. 1l55_|W.C. 1mdtA|1-187 1rnu_|W.C. 2vaaA|W.C. 216lA|W.C. 
1fut_|W.C. 1l56_|W.C. 1mit_|W.C. 1rnv_|W.C. 3ci2_|W.C. 217l_|W.C. 
1fxaA|W.C. 1l57_|W.C. 1mlcE|W.C. 1rob_|W.C. 3dni_|W.C. 221l_|W.C. 
1gaeO|149-312 1l58_|W.C. 1mmpA|W.C. 1rpf_|W.C. 3mdsA|93-203 224l_|W.C. 
1gb1_|W.C. 1l59_|W.C. 1mmr_|W.C. 1rpg_|W.C. 3monA|W.C.  
1gesA|336-450 1l60_|W.C. 1mns_|3-132 1rph_|W.C. 3rn3_|W.C.  
1getA|336-450 1l61_|W.C. 1mom_|W.C. 1rcsA|9-147 3ssi_|W.C.  
1geuA|336-450 1l62_|W.C. 1mrh_|W.C. 1rscM|W.C. 4gr1_|364-478  

509 α/β domains 
1aaw_|W.C. 1cec_|W.C. 1ffa_|W.C. 1lap_|160-484 1raeA|1-150 1ula_|W.C. 
1aba_|W.C. 1cen_|W.C. 1ffb_|W.C. 1lav_|W.C. 1rafA|1-150 1vlzA|W.C. 
1abbA|W.C. 1cey_|W.C. 1ffc_|W.C. 1law_|W.C. 1rahA|1-150 1vruA|430-539 
1abf_|W.C. 1cgt_|1-382 1ffd_|W.C. 1lbs_|W.C. 1raiA|1-150 1vse_|W.C. 
1ace_|W.C. 1cgu_|1-382 1ffe_|W.C. 1lbt_|W.C. 1rbaA|138-441 1vsf_|W.C. 
1acj_|W.C. 1cgv_|1-382 1flv_|W.C. 1lcf_|1-334 1rbr_|W.C. 1whsA|W.C. 
1acl_|W.C. 1cgw_|1-382 1fnc_|155-314 1lcoA|98-511 1rbs_|W.C. 1wsyA|W.C. 
1acmA|1-150 1cgy_|1-382 1fnd_|155-314 1ldb_|15-162 1rbt_|W.C. 1wsyB|W.C. 
1adbA|175-324 1chn_|W.C. 1frn_|155-314 1ldcA|98-511 1rbu_|W.C. 1xab_|W.C. 
1adcA|175-324 1cia_|W.C. 1fx1_|W.C. 1lfh_|1-334 1rbv_|W.C. 1xad_|W.C. 
1adf_|175-324 1cne_|125-270 1gaeO|0-148 1lfi_|1-334 1rda_|W.C. 1xib_|W.C. 
1adg_|175-324 1cnf_|125-270 1gcg_|W.C. 1lgbC|W.C. 1rdb_|W.C. 1xic_|W.C. 
1ads_|W.C. 1coy_|4-318 1gdd_|9-60 1lpaB|1-336 1rdc_|W.C. 1xid_|W.C. 
1agp_|W.C. 1cps_|W.C. 1gesA|3-146 1lpfA|1-158 1rhd_|1-149 1xie_|W.C. 
1aheA|W.C. 1cpy_|W.C. 1getA|3-146 1lpm_|W.C. 1rlcL|148-467 1xif_|W.C. 
1ahfA|W.C. 1crp_|W.C. 1geuA|3-146 1lpn_|W.C. 1rldA|148-467 1xig_|W.C. 
1ahgA|W.C. 1crq_|W.C. 1gfi_|33-60 1lpo_|W.C. 1rnh_|W.C. 1xii_|W.C. 
1ahxA|W.C. 1ctu_|1-150 1gil_|34-60 1lpp_|W.C. 1rpt_|W.C. 1xij_|W.C. 
1ahyA|W.C. 1cxe_|W.C. 1glbG|4-253 1lps_|W.C. 1rscA|148-475 1xlaA|W.C. 
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1aiaA|W.C. 1cxf_|1-382 1glcG|4-253 1lthR|7-149 1rthA|430-543 1xlcA|W.C. 
1aibA|W.C. 1cxg_|1-382 1gldG|4-253 1lvl_|1-150 1rtiA|430-543 1xldA|W.C. 
1aicA|W.C. 1cxh_|1-382 1gleG|4-253 1map_|W.C. 1rtjA|430-543 1xleA|W.C. 
1ajaA|W.C. 1cxi_|1-382 1glg_|W.C. 1maq_|W.C. 1s01_|W.C. 1xlfA|W.C. 
1ajcA|W.C. 1cye_|1-382 1glpA|1-78 1mdiA|W.C. 1s02_|W.C. 1xlgA|W.C. 
1ajdA|W.C. 1dbp_|W.C. 1glv_|1-122 1mdjA|W.C. 1sbc_|W.C. 1xlhA|W.C. 
1akaA|W.C. 1dbs_|W.C. 1gne_|1-79 1mdkA|W.C. 1sbh_|W.C. 1xliA|W.C. 
1akcA|W.C. 1ddrA|W.C. 1gnp_|W.C. 1mdp1|W.C. 1sbi_|W.C. 1xljA|W.C. 
1alhA|W.C. 1ddsA|W.C. 1gnq_|W.C. 1mdq_|W.C. 1sbnE|W.C. 1xlkA|W.C. 
1aljA|W.C. 1dgd_|W.C. 1gnr_|W.C. 1mdr_|133-359 1sca_|W.C. 1xllA|W.C. 
1alkA|W.C. 1dge_|W.C. 1goa_|W.C. 1mns_|133-359 1scb_|W.C. 1xyaA|W.C. 
1ama_|W.C. 1dhiA|W.C. 1goc_|W.C. 1mpc_|W.C. 1scd_|W.C. 1xybA|W.C. 
1ami_|2-528 1dhjA|W.C. 1gpaA|W.C. 1mpd_|W.C. 1scnE|W.C. 1xycA|W.C. 
1ami_|529-754 1didA|W.C. 1gpy_|W.C. 1mssA|W.C. 1selA|W.C. 1xylA|W.C. 
1amj_|2-528 1dieA|W.C. 1gra_|18-165 1ndaA|4-169 1st2_|W.C. 1xymA|W.C. 
1amj_|529-754 1dirA|W.C. 1grb_|18-165 1nel_|142-436 1sto_|W.C. 1ymuA|W.C. 
1amn_|W.C. 1dis_|W.C. 1grcA|W.C. 1nga_|4-188 1sub_|W.C. 1ymv_|W.C. 
1amq_|W.C. 1diu_|W.C. 1gre_|18-165 1ngb_|4-188 1suc_|W.C. 1ypiA|W.C. 
1amr_|W.C. 1dka_|W.C. 1grf_|18-165 1ngc_|4-188 1sud_|W.C. 1yptA|W.C. 
1ams_|W.C. 1dlr_|W.C. 1grg_|18-165 1ngd_|4-188 1tag_|27-56 2acq_|W.C. 
1aniA|W.C. 1dls_|W.C. 1grl_|191-375 1nge_|4-188 1tarA|W.C. 2acr_|W.C. 
1anjA|W.C. 1dmb_|W.C. 1gro_|W.C. 1ngf_|3-188 1tasA|W.C. 2acu_|W.C. 
1ankA|W.C. 1dob_|1-173 1grp_|W.C. 1ngg_|3-188 1tatA|W.C. 2ada_|W.C. 
1apb_|W.C. 1dod_|1-173 1grx_|W.C. 1ngi_|4-188 1tcbA|W.C. 2anhA|W.C. 
1argA|W.C. 1doe_|1-173 1gsdA|2-80 1ngj_|3-188 1tccA|W.C. 2bgt_|W.C. 
1arhA|W.C. 1dot_|1-334 1gsfA|2-80 1nhp_|1-119 1tdf_|1-118 2che_|W.C. 
1ariA|W.C. 1dpb_|W.C. 1gtb_|1-80 1nhq_|1-119 1tdrA|W.C. 2ctc_|W.C. 
1ars_|W.C. 1dpc_|W.C. 1guhA|2-80 1nhr_|1-119 1tho_|W.C. 2cut_|W.C. 
1asa_|W.C. 1dpd_|W.C. 1gylA|W.C. 1nhs_|1-119 1tkaA|3-337 2dhc_|W.C. 
1asb_|W.C. 1dr1_|W.C. 1hdxA|175-324 1nis_|2-528 1tkaA|535-680 2dhd_|W.C. 
1asc_|W.C. 1dr2_|W.C. 1hdyA|175-324 1nis_|529-754 1tkbA|3-337 2dhe_|W.C. 
1asd_|W.C. 1dr3_|W.C. 1hdzA|175-324 1nit_|2-528 1tkbA|535-680 2eda_|W.C. 
1asf_|W.C. 1dr4_|W.C. 1hex_|W.C. 1nit_|529-754 1tkcA3-337 2edc_|W.C. 
1asg_|W.C. 1dr5_|W.C. 1hey_|W.C. 1nnt_|W.C. 1tkcA|535-680 2glrA|1-78 
1aslA|W.C. 1dr6_|W.C. 1hldA|175-324 1olaA|W.C. 1tndA|27-56 2hnp_|W.C. 
1asmA|W.C. 1dr7_|W.C. 1hmvA|430-554 1olcA|W.C. 1tpb1|W.C. 2hsdA|W.C. 
1asnA|W.C. 1draA|W.C. 1hnbA|1-84 1omp_|W.C. 1tpc1|W.C. 2lao_|W.C. 
1asu_|W.C. 1drbA|W.C. 1hncA|1-84 1orb_|1-149 1tpdA|W.C. 2nadA|1-147 
1asv_|W.C. 1drf_|W.C. 1hniA|430-556 1oya|W.C. 1tpe_|W.C. 2nadA|148-335 
1asw_|W.C. 1drh_|W.C. 1horA|W.C. 1oyc_|W.C. 1tpfA|W.C. 2oxiA|175-324 
1atnA|0-146 1drj_|W.C. 1hotA|W.C. 1pbb_|1-173 1tpuA|W.C. 2phh_|1-173 
1atr_|2-188 1drk_|W.C. 1hqaA|W.C. 1pbc_|1-173 1tpvA|W.C. 2pkc_|W.C. 
1ats_|2-188 1dsn_|W.C. 1hrhA|W.C. 1pbd_|1-173 1tpwA|W.C. 2pri_|W.C. 
1bap_|W.C. 1dvrA|W.C. 1htbA|175-324 1pbf_|1-173 1trb_|1-118 2prj_|W.C. 
1bcmA|257-480 1dyhA|W.C. 1hvm_|W.C. 1pbp_|W.C. 1trdA|W.C. 2rusA|138-457 
1bcrA|W.C. 1dyiA|W.C. 1hvq_|W.C. 1pdh_|1-173 1trh_|W.C. 2secE|W.C. 
1bcsA|W.C. 1dyjA|W.C. 1idd_|W.C. 1pdy_|140-433 1tri_|W.C. 2ts1_|W.C. 
1bdmA|0-154 1eaa_|W.C. 1ide_|W.C. 1pekE|W.C. 1trs_|W.C. 2tecE|W.C. 
1bgsE|W.C. 1eab_|W.C. 1idm_|W.C. 1pgn_|1-176 1tru_|W.C. 2tir_|W.C. 
1bllE|1-159 1eac_|W.C. 1ika_|W.C. 1pgo_|1-176 1trv_|W.C. 3drcA|W.C. 
1bllE|160-484 1ead_|W.C. 1ikb_|W.C. 1pgp_|1-176 1trw_|W.C. 3hsc_|3-188 
1bpm_|1-159 1eae_|W.C. 1ipd_|W.C. 1pgq_|1-176 1tsiA|W.C. 3hudA|175-324 
1bpm_|160-484 1ebgA|142-436 1ius_|1-173 1phh_|1-173 1tti_|W.C. 3hvtA|430-556 
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1bpn_|1-159 1ebhA|142-436 1iut_|1-173 1plj_|W.C. 1ttj_|W.C. 3sc2A|W.C. 
1bpn_|160-484 1edb_|W.C. 1iuu_|1-173 1pll_|W.C. 1ttpA|W.C. 4gr1_|18-165 
1brsD|W.C. 1edd_|W.C. 1kraC|130-422 1pnt_|W.C. 1ttpB|W.C. 4mdhA|1-154 
1btb_|W.C. 1ede_|W.C. 1krbC|130-422 1poxA|9-182 1ttqA|W.C. 4q21_|W.C. 
1btc_|W.C. 1ego_|W.C. 1krcC|130-422 1poxA|183-365 1ttqB|W.C. 5abp_|W.C. 
1bvh_|W.C. 1egr_|W.C. 1lafE|W.C. 1ptk_|W.C. 1tyaE|1-217 5ldh_|1-162 
1bya_|W.C. 1els_|142-436 1lagE|W.C. 1pxa_|1-173 1tybE|1-217 6ldh_|1-160 
1byc_|W.C. 1emd_|1-145 1lahE|W.C. 1pxb_|1-173 1tyc_|1-217 6q21A|W.C. 
1byd_|W.C. 1enz_|W.C. 1lam_|1-159 1pxc_|1-173 1tydE|1-217 8atcA|1-150 
1cbx_|W.C. 1esd_|W.C. 1lam_|160-484 1raaA|1-150 1typA|1-169 9icd_|W.C. 
1cddA|W.C. 1ese_|W.C. 1lanA|1-159 1rabA|1-150 1tytA|1-169 9ldbA|1-162 
1cde_|W.C. 1etu_|W.C. 1lanA|160-484 1racA|1-150 1udg_|W.C. 121p_|W.C. 
1cdoA|176-324 1fcbA|98-511 1lap_|1-159 1radA|1-150 1uky_|W.C.  

158 σ domains 
1aalA|W.C. 1coe_|W.C. 1hfi_|W.C. 1nag_|W.C. 1radB|101-153 2crt_|W.C. 
1acmB|101-153 1crf_|W.C. 1hic_|W.C. 1ncpC|W.C. 1raeB|101-153 2cthA|W.C. 
1agg_|W.C. 1crn_|W.C. 1hiqA|W.C. 1neh_|W.C. 1rafB|101-153 2cwgA|1-52 
1aphA|W.C. 1cti_|W.C. 1hisA|W.C. 1nrb_|W.C. 1rahB|101-153 2cym_|W.C. 
1are_|W.C. 1cvo_|W.C. 1hitA|W.C. 1nxb_|W.C. 1raiB|101-153 2gda_|W.C. 
1arf_|W.C. 1cxn_|W.C. 1hlsA|W.C. 1oav_|W.C. 1rgd_|W.C. 2hir_|W.C. 
1atb_|W.C. 1cxo_|W.C. 1hrf_|W.C. 1oaw_|W.C. 1sgqI|W.C. 2hiuA|W.C. 
1atd_|W.C. 1den_|W.C. 1hrpA|W.C. 1omb_|W.C. 1sgrI|W.C. 2hpqP|W.C. 
1ate_|W.C. 1dmd_|W.C. 1hrq_|W.C. 1omt_|W.C. 1shi_|W.C. 2kaiI|W.C. 
1bbi_|W.C. 1dme_|W.C. 1hrr_|W.C. 1omu_|W.C. 1tch_|W.C. 2let_|W.C. 
1bonA|W.C. 1dmf_|W.C. 1hrtI|W.C. 1paa_|W.C. 1tcj_|W.C. 2nbtA|W.C. 
1bphA|W.C. 1dphA|W.C. 1igl_|W.C. 1pcn_|1-44 1tck_|W.C. 2pf1_|36-65 
1brcI|W.C. 1edp_|W.C. 1ihtI|W.C. 1pco_|1-44 1tcp_|W.C. 2ptcI|W.C. 
1btgA|W.C. 1ehs_|W.C. 1irn_|W.C. 1pcp_|1-53 1tfg_|W.C. 2spt_|1-65 
1bti_|W.C. 1epg_|W.C. 1iva_|W.C. 1pi2_|W.C. 1tmr_|W.C. 2tciA|W.C. 
1cad_|W.C. 1eph_|W.C. 1izaA|W.C. 1pih_|W.C. 1tpaI|W.C. 2tgpI|W.C. 
1cbn_|W.C. 1epi_|W.C. 1izbA|W.C. 1pij_|W.C. 1tpm_|W.C. 2wgcA|1-52 
1ccf_|W.C. 1epj_|W.C. 1ldr_|W.C. 1pit_|W.C. 1tpn_|W.C. 3cyr_|W.C. 
1ccm_|W.C. 1era_|W.C. 1lpaA|6-44 1pk2_|W.C. 1tur_|W.C. 3mthA|W.C. 
1ccn_|W.C. 1etm_|W.C. 1maeL|W.C. 1pkr_|W.C. 1tus_|W.C. 4htcI|W.C. 
1cdq_|W.C. 1etn_|W.C. 1mafL|W.C. 1pmkA|W.C. 1tylA|W.C. 5pti_|W.C. 
1cdr_|W.C. 1fan_|W.C. 1mdaL|W.C. 1pmlA|W.C. 1tymA|W.C. 8atcB|101-153 
1cds_|W.C. 1fra_|W.C. 1med_|W.C. 1prhA|33-73 1vnb_|W.C. 9wgaA|1-52 
1cebA|W.C. 1fsc_|W.C. 1mhiA|W.C. 1ptr_|W.C. 1zrp_|W.C.  
1cgiI|W.C. 1gdc_|W.C. 1mhjA|W.C. 1raaB|101-153 2abxA|W.C.  
1cgjI|W.C. 1hcc_|W.C. 1mpjA|W.C. 1rabB|101-153 2atcB|101-152  
1choI|W.C. 1hcp_|W.C. 1mrt_|W.C. 1racB|101-153 2cco_|W.C.  

46 µ domains 
1antI|W.C. 1bpd_|92-335 1fbfA|W.C. 1fprA|W.C. 1imeA|W.C. 2bpc_|W.C. 
1apmE|W.C. 1bpe_|92-335 1fbgA|W.C. 1har_|W.C. 1imf_|W.C. 2cah_|W.C. 
1atpE|W.C. 1ckjA|W.C. 1fbhA|W.C. 1hmvA|1-429 1mblA|W.C. 2glsA|W.C. 
1blc_|W.C. 1cmkE|W.C. 1fpbA|W.C. 1hniA|1-429 1pioA|W.C. 2lgsA|W.C. 
1blh_|W.C. 1ctpE|W.C. 1fpdA|W.C. 1imaA|W.C. 1rthA|2-429 3hvtA|2-429 
1blp_|W.C. 1fbcA|W.C. 1fpeA|W.C. 1imbA|W.C. 1rtiA|2-429 3mdeA|11-241 
1blsA|W.C. 1fbdA|W.C. 1fpfA|W.C. 1imcA|W.C. 1rtjA|2-429  
1bpb_|W.C. 1fbeA|W.C. 1fpgA|W.C. 1imdA|W.C. 1vruA|3-429  

20 ρ domains 
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1amb_|W.C. 1bhb_|W.C. 1btt_|W.C. 1kb8_|W.C. 1pak_|W.C. 1tiv_|W.C. 
1amc_|W.C. 1btr_|W.C. 1dtc_|W.C. 1nil_|W.C. 1pao_|W.C. 1tos_|W.C. 
1bct_|W.C. 1bts_|W.C. 1gnb_|W.C. 1nim_|W.C. 1rpb_|W.C. 1tvt_|W.C. 
1wfaA|W.C. 1xy2_|W.C.     
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Table A.8 The 277 Protein Domains. 

70 all-α domains 
1hbiA|W.C. 1sctA|W.C. 1ytc_|W.C. 1yea_|W.C. 1yeb_|W.C. 1csc_|W.C. 
2pccB|W.C. 1fhb_|W.C. 1cih_|W.C. 1cie_|W.C. 1csu_|W.C. 1troA|W.C. 
1crj_|W.C. 1csw_|W.C. 1csx_|W.C. 1chi_|W.C. 1cig_|W.C. 5cscsA|W.C. 
1crh_|W.C. 1raq_|W.C. 1ctz_|W.C. 1chj_|W.C. 1cif_|W.C. 3wrp_|W.C. 
1csv_|W.C. 1crg_|W.C. 1chh_|W.C. 1rap_|W.C. 1hddC|W.C. 1phb_|W.C. 
1dprA|65-136 1tnt_|W.C. 1bbl_|W.C. 1erc_|W.C. 1aca_|W.C. 1trrA|W.C. 
1vasA|W.C. 1enk_|W.C. 1eni_|W.C. 1lynA|W.C. 1hme_|W.C. 3fisA|W.C. 
1hsm_|W.C. 1gnc_|W.C. 1rprA|W.C. 1rpo_|W.C. 1pou_|W.C. 1grl_|6-136 
1cdn_|W.C. 1bod_|W.C. 1boc_|W.C. 1arqA|W.C. 1mykA|W.C. 1fipA|W.C. 
1mylA|W.C. 1bpd_|W.C. 1olhA|W.C. 1pesA|W.C. 1hns_|W.C. 1afb1|73-104 
1tag_|57-177 4ts1A|228-319 1tyc_|228-319 1lgaA|W.C. 1oxy_|1-379 1csi_|W.C. 
1nol_|1-379 1pgn_|177-473 2utgA|W.C. 3gly_|W.C.   

61 all-β domains 
1mdtA|381-535 1cgt_|580-684 1cxe_|582-686 1aaj_|W.C. 1mdaA|W.C. 1gog_|151-537 
1gcs_|W.C. 1pnf_|1-140 1png_|5-140 1gog_|1-150 1tnfA|W.C. 1azm_|W.C. 
2tunA|W.C. 1thv_|W.C. 1thu_|W.C. 2ctvA|W.C. 1apnA|W.C. 1kraC|2-129 
2cna_|W.C. 1bib_|271-317 1ltaD|W.C. 1bfb_|W.C. 1fga_|W.C. 1cgt_|383-494 
2bfh_|W.C. 1bfg_|W.C. 1bas_|W.C. 1fnd_|19-154 1frn_|19-154 1bzm|W.C. 
1arc_|W.C. 1bcmA|481-560 1hpxA|W.C. 1hivA|W.C. 1hshA|W.C. 1cxe_|383-495 
1cpiA|W.C. 1hvrA|W.C. 1hvc_|W.C. 4phvA|W.C. 1hefE|W.C. 1huh_|W.C. 
1aaqA|W.C. 1hvsA|W.C. 1gtsA|339-547 1hbp_|W.C. 1fen_|W.C. 1hug_|W.C. 
1erb_|W.C. 1slfB |W.C. 1srgA|W.C. 1srjA|W.C. 1ptsA|W.C. 1akl_|247-470 
1sleB|W.C. 1cyhA|W.C. 1mikA|W.C. 3cysA|W.C. 2sim_|W.C. 1crm_|W.C. 
1hpcS|W.C.      

81 α+β domains 
1cgt_|1-382 1cxe_|1-382 1cxf_|1-382 1cgv_|1-382 1cgw_|1-382 2bgt_|W.C. 
1cgy_|1-382 1cgx_|1-382 1cgu_|1-382 1btb_|W.C. 1brsD|W.C. 1ctu_|1-150 
1bgsE|W.C. 1fnd_|155-314 1frn_|155-314 4ts1A|1-217 1tyc_|1-217 1wsyB|W.C. 
1tydE|1-217 1tybE|1-217 1tyaE|1-217 1cdoA|176-324 1hldA|175-324 1drk_|W.C. 
1horA|W.C. 2secE|W.C. 1scnE|W.C. 1selA|W.C. 1cia_|W.C. 1orb_|1-149 
1pnt_|W.C. 2hnp_|W.C. 1trx_|W.C. 2tir_|W.C. 1tho_|W.C. 1dbp_|W.C. 
1tkbA|535-680 1lam_|1-159 1bllE|1-159 1gdtA|1-140 3hsc_|3-188 1rhd_|1-149 
1ngi_|4-188 1ngb_|4-188 1nga_|4-188 1ngg_|3-188 1ngh_|4-188 1drj_|W.C. 
1atr_|2-188 1cde_|W.C. 1grcA|W.C. 1cddA|W.C. 1mhtA|W.C. 5acn_|1-528 
1ama_|W.C. 1akaA|W.C. 1ula_|W.C. 1amn_|W.C. 1acj_|W.C. 1olcA|W.C. 
1acl_|W.C. 2ctc_|W.C. 5cpa_|W.C. 1dr1_|W.C. 2anhA|W.C. 1ttqB|W.C. 
1hgaA|W.C. 1alkA|W.C. 1ajaA|W.C. 1ajdA|W.C. 1anjA|W.C. 1acmA|1-150 
1aljA|W.C. 1aniA|W.C. 1alhA|W.C. 1ajcA|W.C. 1xab_|W.C. 8atcA|1-150 
1ipd_|W.C. 1idm_|W.C. 1raiA|1-150    

65 α/β domains 
1fut_|W.C. 2baa_|W.C. 1aec_|W.C. 2rat_|W.C. 2rns_|W.C. 1tsw_|W.C. 
1ras_|W.C. 1sscA|W.C. 1ssbA|W.C. 1ssa_|W.C. 1rbd_|W.C. 1ltaA|W.C. 
1kraA|W.C. 1pgx_|W.C. 1pgb_|W.C. 1igc_|W.C. 1fccC|W.C. 1lttA|W.C. 
2igg_|W.C. 2igh_|W.C. 1coy_|319-450 3monA|W.C. 1frtA|1-178 1ltgA|W.C. 
1fkj_|W.C. 1fkl_|W.C. 2secI|W.C. 1egpA|W.C. 2tecI|W.C. 1htlA|W.C. 
1egl_|W.C. 1sbnI|W.C. 1sibI|W.C. 3mdsA|93-203 1vig_|W.C. 1mrk_|W.C. 
1mns_|3-132 1grl_|137-190 1rldS|W.C. 1comA|W.C. 1gaeO|149-312 1glv_|123-316 
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1mstA|W.C. 1bmsA|W.C. 1msc_|W.C. 1grb_|364-478 1lklA|W.C. 3dni_|W.C. 
1lcjA|W.C. 1lckA|117-226 1sphA|W.C. 2hpr_|W.C. 1sceA|W.C. 1dnkA|W.C. 
1setA|111-421 2tscA|W.C. 1tsdA|W.C. 2bbqA|W.C. 1tsy_|W.C. 4dmhA|155-333 
1xrc_|1-101 1tsx_|W.C. 1tys_|W.C. 3b5c_|W.C. 1tbpA|61-155  
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Table A.9 The 498 Protein Domains. 

107 all-α domains 
1hbiA|W.C. 1sctA|W.C. 1ytc_|W.C. 1yea_|W.C. 1yeb_|W.C. 1phe_|W.C. 
2pccB|W.C. 1fhb_|W.C. 1cih_|W.C. 1cie_|W.C. 1csu-|W.C. 1troA|W.C. 
1crj_|W.C. 1csw_|W.C. 1csx_|W.C. 1chi_|W.C. 1cig_|W.C. 1afa1|73-104 
1crh_|W.C. 1raq_|W.C. 1ctz_|W.C. 1chj_|W.C. 1cif_|W.C. 1cp4_|W.C. 
1csv_|W.C. 1crg_|W.C. 1chh_|W.C. 1rap_|W.C. 1hddC|W.C. 3wrp_|W.C. 
1dprA|65-136 1tnt_|W.C. 1bbl_|W.C. 1erc_|W.C. 1aca_|W.C. 1afd1|73-104 
1vasA|W.C. 1enk_|W.C. 1eni_|W.C. 1lynA|W.C. 1hme_|W.C. 1noo_|W.C. 
1hmf_|W.C. 1hsm_|W.C. 1nhn_|W.C. 1gnc_|W.C. 1rprA|W.C. 1trrA|W.C. 
1rpo_|W.C. 1pou_|W.C. 1cdn_|W.C. 1bod_|W.C. 1boc_|W.C. 3fisA|W.C. 
2bca_|W.C. 1clb_|W.C. 1arqA|W.C. 1arrA|W.C. 1mykA|W.C. 1grl_|6-316 
1mylA|W.C. 1bpd_|9-91 2bpgA|9-91 1olhA|W.C. 1pesA|W.C. 1fipA|W.C. 
1petA|W.C. 1saeA|W.C. 1safA|W.C. 1sagA|W.C. 1sahA|W.C. 1afb1|73-104 
1saiA|W.C. 1sajA|W.C. 1sakA|W.C. 1salA|W.C. 1hns_|W.C. 1phf_|W.C. 
1tag_|57-177 1tndA|57-177 4ts1A|228-319 1tyc_|228-319 1tydE|228-319 1phg_|W.C. 
1tybE|228-319 1tyaE|228-319 1lgaA|W.C. 1oxy_|1-379 1nol_|1-379 1phd_|W.C. 
1pgn_|177-473 1pgo_|177-473 1pgp_|177-473 1pgq_|177-473 2utgA|W.C. 1pha_|W.C. 
3gly_|W.C. 1dog_|W.C. 1agm_|W.C. 1csi_|W.C. 1css_|W.C. 2cpp_|W.C. 
1csr_|W.C. 1csc_|W.C. 5cts_|W.C. 5cscsA|W.C. 1phb_|W.C.  

126 all-β domains 
1mdtA|381-535 1cgt_|580-684 1cxe_|582-686 1cxi_|582-686 1cxf_|582-686 1krcC|2-129 
1cvg_|582-686 1cgw_|582-686 1cgy_|582-686 1cgx_|582-686 1aaj_|W.C. 1hug_|W.C. 
1aan_|W.C. 2mtaA|W.C. 1mdaA|W.C. 1gcs_|1-85 1pnf_|1-140 1huh_|W.C. 
1png_|5-140 1gog_|1-150 1goh_|1-150 1tnfA|W.C. 2tunA|W.C. 1crm_|W.C. 
1thv_|W.C. 1thu_|W.C. 2ctvA|W.C. 1scr_|W.C. 1conA|W.C. 1akl_|247-470 
5cnaA|W.C. 1apnA|W.C. 2cna_|W.C. 1cn1A|W.C. 1bib_|271-317 1azm_|W.C. 
1ltaD|W.C. 1lttD|W.C. 1ltgD|W.C. 1ltbD|W.C. 1htlD|W.C. 1hpcA|W.C. 
1bfb_|W.C. 1bfc_|W.C. 1fga_|W.C. 2bfh_|W.C. 1bfg_|W.C. 1bzm_|W.C. 
1bas_|W.C. 1fnd_|19-154 1fnc_|19-154 1frn_|19-154 1arc_|W.C. 1kraC|2-129 
1bcmA|481-560 1hpxA|W.C. 1hihA|W.C. 1hvjA|W.C. 1hvkA|W.C. 1czm_|W.C. 
1hivA|W.C. 1hpvA|W.C. 1hsgA|W.C. 1hshA|W.C. 1hvlA|W.C. 1krbC|2-129 
1cpiA|W.C. 1hvrA|W.C. 1htgA|W.C. 1hvc_|W.C. 4phvA|W.C. 1cxf_|383-495 
1hosA|W.C. 1sbgA|W.C. 1hhp_|W.C. 5hvpA|W.C. 1hbvA|W.C. 1cgu_|383-494 
1hefE|W.C. 1hpsA|W.C. 1hsiA|W.C. 1hegE|W.C. 1aaqA|W.C. 1cxh_|383-495 
1htfA|W.C. 1hteA|W.C. 3hvp_|W.C. 3phv_|W.C. 1hvsA|W.C. 1cgx_|383-495 
1gtsA|339-547 1hbp_|W.C. 1fen_|W.C. 1erb_|W.C. 1fel_|W.C. 1cxg_|383-495 
1fem_|W.C. 1slfB|W.C. 1srgA|W.C. 1sreA|W.C. 1srjA|W.C. 1cgy_|383-495 
1slgB|W.C. 1ptsA|W.C. 1sleB|W.C. 1srfA|W.C. 1strB|W.C. 1cxe_|383-495 
1stsB|W.C. 1sldB|W.C. 1srhA|W.C. 1stp_|W.C. 1cyhA|W.C. 1cgw_|383-495 
1mikA|W.C. 2rmaA|W.C. 1cwaA|W.C. 1cwcA|W.C. 2rmbA|W.C. 1cgt_|383-494 
1cwbA|W.C. 3cysA|W.C. 2sim_|W.C. 1gog_|151-537 1goh_|151-537 1cgv_|383-495 

136 α/β domains 
1cgt_|1-382 1cxe_|1-382 1cxh_|1-382 1cxf_|1-382 1cgv_|1-382 1racA|1-150 
1cgw_|1-382 1cgy_|1-382 1cgx_|1-382 1cgu_|1-382 1btb|W.C. 1rahA|1-150 
1brsD|W.C. 1bgsE|W.C. 1fnd_|155-314 1fnc_|155-314 1frn_|155-314 1wsyB|W.C. 
4ts1A|1-217 1tyc_|1-217 1tydE|1-217 1tybE|1-217 1tyaE|1-217 1drk_|W.C. 
1cdoA|176-324 1hldA|175-324 2oxiA|175-324 1adbA|175-324 1adg_|175-324 1ctu_|1-150 
1adf_|175-324 8adh_|175-324 1adcA|175-324 6adhA|175-324 1horA|W.C. 1radA|1-150 
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1hotA|W.C. 2secE|W.C. 1sca_|W.C. 1scnE|W.C. 1scd_|W.C. 8atcA|1-149 
1scb_|W.C. 1sbc_|W.C. 1selA|W.C. 1cia_|W.C. 1pnt_|W.C. 1orb_|1-149 
1bvh_|W.C. 2hnp_|W.C. 1trx_|W.C. 2tir_|W.C. 1tho_|W.C. 1dbp_|W.C. 
1tkbA|535-680 1tkcA|535-680 1tkaA|535-680 1lam_|1-159 1lanA|1-159 1raeA|1-150 
1bllE|1-159 1lap_|1-159 1bpm_|1-159 1bpn_|1-159 1gdtA|1-140 1acmA|1-150 
3hsc_|3-188 1ngj_|4-188 1ngi_|4-188 1ngb_|4-188 1ngf_|3-188 1rhd_|1-149 
1nga_|4-188 1nge_|4-188 1ngc_|4-188 1ngg_|3-188 1ngh_|4-188 1drj_|W.C. 
1atr_|2-188 1ngd_|4-188 1ats_|2-188 1cde_|W.C. 1grcA|W.C. 1rafA|1-150 
1cddA|W.C. 1mhtA|W.C. 1ama_|W.C. 1mag_|W.C. 1tarA|W.C. 1ttqB|W.C. 
1map_|W.C. 1tasA|W.C. 1tatA|W.C. 1akaA|W.C. 1akbA|W.C. 5acn_|1-528 
1akcA|W.C. 1ula_|W.C. 1amn_|W.C. 1acj_|W.C. 1acl_|W.C. 1olcA|W.C. 
1ace_|W.C. 2ctc_|W.C. 5cpa_|W.C. 1cbx_|W.C. 1cps_|W.C. 1ragA|1-150 
1dr1_|W.C. 1dr3_|W.C. 1dr2_|W.C. 1dr6_|W.C. 1dr4_|W.C. 1ttpB|W.C. 
1dr5_|W.C. 1dr7_|W.C. 2anhA|W.C. 1hqaA|W.C. 1alkA|W.C. 2bgt_|W.C. 
1ajaA|W.C. 1ajdA|W.C. 1anjA|W.C. 1aljA|W.C. 1aniA|W.C. 1olaA|W.C. 
1alhA|W.C. 1ajbA|W.C. 1ajcA|W.C. 1xab_|W.C. 1ipd_|W.C. 1rabA|1-150 
1hex_|W.C. 1idm_|W.C. 1raiA|1-150 1raaA|1-150   

129 α+β domains 
1fut_|W.C. 2baa_|W.C. 1aec_|W.C. 2rat_|W.C. 1rpg_|W.C. 1xrc_|1-101 
1rhb_|W.C. 1rnc_|W.C. 2rns_|W.C. 1rnd_|W.C. 3rn3_|W.C. 1atnD|W.C. 
1rnu_|W.C. 1ras_|W.C. 1rnv_|W.C. 1rnnE|W.C. 9rsaA|W.C. 1lttA|W.C. 
1rno_|W.C. 1rar_|W.C. 1rbw_|W.C. 1rnmE|W.C. 1rha_|W.C. 1xra_|1-101 
1rbn_|W.C. 1sscA|W.C. 1ssbA|W.C. 1srnA|W.C. 1rpf_|W.C. 4mdhA|155-333 
1rph_|W.C. 1ssaA|W.C. 1rcnE|W.C. 1rtaE|W.C. 1rtb_|W.C. 1ltgA|W.C. 
1rbjA|W.C. 1rbbA|W.C. 2aas_|W.C. 1rbd_|W.C. 1rbi_|W.C. 1glv_|123-316 
2rlnE|W.C. 1rbh_|W.C. 1rbe_|W.C. 1rbg_|W.C. 1rbf_|W.C. 1mrk_|W.C. 
1rbe_|W.C. 1kraA|W.C. 1krbA|W.C. 1krcA|W.C. 1pgx_|W.C. 1ltbA|W.C. 
1pgb_|W.C. 1pga_|W.C. 1igcA|W.C. 1fccC|W.C. 1gbl_|W.C. 3dni_|W.C. 
2igg_|W.C. 2igh_|W.C. 1coy_|319-450 3monA|W.C. 1frtA|1-178 1tcs_|W.C. 
1fkj_|W.C. 1fkb_|W.C. 1fkf_|W.C. 1fkl_|W.C. 2fke_|W.C. 1htlA|W.C. 
1fkh_|W.C. 1fkg_|W.C. 1fkk_|W.C. 1fkiA|W.C. 1fkr_|W.C. 1dnkA|W.C. 
1fks_|W.C. 1fkt_|W.C. 2secI|W.C. 1egpA|W.C. 1meeI|W.C. 1ltaA|W.C. 
2tecI|W.C. 1acbI|W.C. 1egl_|W.C. 1sbnI|W.C. 1sibI|W.C. 3tms_|W.C. 
3mdsA|93-203 1vig_|W.C. 1mns_|3-132 1mdr_|3-132 1grl_|137-190 1tbpA|61-155 
1rldS|W.C. 1rlcS|W.C. 1comA|W.C. 2chtA|W.C. 1gaeO|149-312 1tsw_|W.C. 
1mstA|W.C. 1bmsA|W.C. 1msc_|W.C. 1grb_|364-478 1gra_|364-478 3b5c_|W.C. 
1gre_|364-478 1grf_|364-478 1grg_|364-478 4grl_|364-478 1lklA|W.C. 1tsy_|W.C. 
1lcjA|W.C. 1lckA|117-226 1sphA|W.C. 2hpr_|W.C. 1sceA|W.C. 1tys_|W.C. 
1setA|111-421 1sesA|111-421 1serA|111-421 2tscA|W.C. 1tsdA|W.C. 1tsv_|W.C. 
2bbqA|W.C. 1synA|W.C. 1tsx_|W.C.    
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Table A.10 The 1189 Protein Domains. 

222 all-α domains 
1aab_|W.C. 1cnt1|W.C. 1gh1A|W.C. 1lis_|W.C. 1prcC|W.C. 1zymA|22-144 
1ab3_|W.C. 1coo_|W.C. 1gks_|W.C. 1lki_|W.C. 1pueE|W.C. 256BA|W.C. 
1abv_|W.C. 1copD|W.C. 1glm_|W.C. 1lla_|110-379 1r69_|W.C. 2abk_|W.C. 
1aca_|W.C. 1cpcA|W.C. 1gln_|306-468 1lla_|2-109 1rcd_|W.C. 2bct_|W.C. 
1acp_|W.C. 1cpcB|W.C. 1glqA|79-209 1lliA|W.C. 1rec_|W.C. 2bmhA|W.C. 
1adr_|W.C. 1cpq_|W.C. 1gnwA|86-211 1lpe_|W.C. 1res_|W.C. 2ccyA|W.C. 
1adt_|176-265 1cpt_|W.C. 1grj_|2-79 1lre_|W.C. 1rfbA|W.C. 2cyp_|W.C. 
1aep_|W.C. 1crkA|1-98 1grl_|410-523 1lrv_|W.C. 1rgb_|W.C. 2end_|W.C. 
1af8_|W.C. 1csgA|W.C. 1grl_|6-136 1mbd_|W.C. 1ribA|W.C. 2gstA|85-217 
1afrA|W.C. 1csh_|W.C. 1hbg_|W.C. 1mdyA|W.C. 1rlr_|10-221 2hmqA|W.C. 
1agrE|W.C. 1csmA|W.C. 1hc2_|136-398 1mhlA|W.C. 1rom_|W.C. 2hmx_|W.C. 
1aj3_|W.C. 1cuk_|156-203 1hc2_|5-135 1mhlC|W.C. 1rpo_|W.C. 2hts_|W.C. 
1ak4C|W.C. 1cuk_|65-142 1hcrA|W.C. 1mmoB|W.C. 1rro_|W.C. 2int_|W.C. 
1allA|W.C. 1cyi_|W.C. 1hdj_|W.C. 1mmoD|W.C. 1ryt_|2-147 2lefA|W.C. 
1an2A|W.C. 1djxA|200-298 1hmcA|W.C. 1mmoG|W.C. 1scmB|W.C. 2lhb_|W.C. 
1aofA|36-133 1dnpA|201-469 1hme_|W.C. 1mngA|1-92 1setA|1-110 2ligA|W.C. 
1aorA|211-605 1dprA|3-64 1hnr_|W.C. 1mntA|W.C. 1sfe_|93-176 2mtaC|W.C. 
1aoy_|W.C. 1dprA|65-136 1hrzA|W.C. 1mykA|W.C. 1sig_|W.C. 2mysB|W.C. 
1aru_|W.C. 1dvh_|W.C. 1hstA|W.C. 1ner_|W.C. 1sly_|1-450 2pde_|W.C. 
1bbhA|W.C. 1eca_|W.C. 1hueA|W.C. 1ngr_|W.C. 1sra_|W.C. 2pgd_|177-473 
1bbl_|W.C. 1eciA|W.C. 1hulA|W.C. 1nkl_|W.C. 1tadA|57-177 2sas_|W.C. 
1bcfA|W.C. 1ecmA|W.C. 1huw_|W.C. 1occE|W.C. 1tafA|W.C. 2sblB|150-839 
1beo_|W.C. 1enh_|W.C. 1hvd_|W.C. 1occH|W.C. 1tafB|W.C. 2scpA|W.C. 
1bfmA|W.C. 1erc_|W.C. 1hyp_|W.C. 1octC|5-75 1tcoB|W.C. 2spcA|W.C. 
1bgc_|W.C. 1erd_|W.C. 1ihfB|W.C. 1olgA|W.C. 1tf4A|1-460 2tct_|2-67 
1bia_|1-63 1erp_|W.C. 1ilk_|W.C. 1opc_|W.C. 1tfr_|183-305 2wrpR|W.C. 
1bip_|W.C. 1ery_|W.C. 1imq_|W.C. 1osa_|W.C. 1tns_|W.C. 351c_|W.C. 
1bmfA|380-510 1etpA|1-92 1ithA|W.C. 1oxa_|W.C. 1tpt_|1-70 3inkC|W.C. 
1bmfD|358-475 1etpA|93-190 1jkw_|11-161 1pbwA|W.C. 1utg_|W.C. 3sdhA|W.C. 
1bucA|233-383 1fapB|W.C. 1jkw_|162-287 1pdnC|W.C. 1vii_|W.C. 4icb_|W.C. 
1bvp1|1-120 1fdcD|1-80 1jli_|W.C. 1phb_|W.C. 1vnc_|W.C. 5eas_|221-548 
1bvp1|255-349 1fcdD|81-174 1jvr_|W.C. 1pnbA|W.C. 1vtmP|W.C. 5eas_|24-220 
1c5a_|W.C. 1fipA|W.C. 1lbd_|W.C. 1pnbB|W.C. 1xgsA|195-271 1ash_|W.C. 
1cc5_|W.C. 1fjlA|W.C. 1lbu_|1-83 1pnrA|3-58 1xsm_|W.C. 1ytfD|5-54 
1cem_|W.C. 1flp_|W.C. 1lccA|W.C. 1poa_|W.C. 1yrnA|W.C. 1pprM|157-312 
1cpgA|138-205 1fow_|W.C. 1lea_|W.C. 1poc_|W.C. 1yrnB|W.C. 1lh1_|W.C. 
1clc_|135-575 1fps_|W.C. 1lfb_|W.C. 1pprM|1-156 1ytfB|W.C. 1gab_|W.C. 
1cmbA|W.C.      

294 all-β domains 
1abrB|1-140 1clc_|35-134 1gtrA|339-547 1nbcA|W.C. 1smpI|W.C. 2bb2_|86-175 
1abrB|141-267 1cpn_|W.C. 1gzi_|W.C. 1nciA|W.C. 1sriA|W.C. 2bbkH|W.C. 
1agjA|W.C. 1cskA|W.C. 1havA|W.C. 1neu_|W.C. 1sro_|W.C. 2bbvA|W.C. 
1ah9_|W.C. 1ctm_|1-167 1hbp_|W.C. 1nfa_|W.C. 1sso_|W.C. 2bpa1|W.C. 
1ahsA|W.C. 1ctm_|168-230 1hc2_|399-653 1noa_|W.C. 1stmA|W.C. 2bpa2|W.C. 
1aizA|W.C. 1ctm_|231-250 1hcd_|W.C. 1npoA|W.C. 1sty_|W.C. 2cas_|W.C. 
1aly_|W.C. 1ctn_|24-132 1hgeA|W.C. 1nscA|W.C. 1sva1|W.C. 2cbp_ 
1amy|347-403 1cto_|W.C. 1hms_|W.C. 1obpA|W.C. 1svb_|303-395 2cnd_|11-124 
1anu_|W.C. 1cuk_|1-64 1hoe_|W.C. 1occB|91-227 1tdtA|W.C. 2cpl_|W.C. 
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1aofA|134-567 1cur_|W.C. 1hsq_|W.C. 1ospO|W.C. 1ten_|W.C. 2eng_|W.C. 
1aol_|W.C. 1cwpA|W.C. 1htp_|W.C. 1pcl_|W.C. 1tf4A|461-605 2fgf_|W.C. 
1aonO|W.C. 1cyx_|W.C. 1hxn_|W.C. 1pdr_|W.C. 1thjA|W.C. 2hft_|107-211 
1aozA|1-129 1dar_|283-400 1i1b_|W.C. 1pex_|W.C. 1thw_|W.C. 2hft_|1-106 
1aozA|130-338 1ddt_|381-535 1idaA|W.C. 1pfsA|W.C. 1tie_|W.C. 2ila_|W.C. 
1aozA|339-552 1dkgA|139-197 1idk_|W.C. 1pgs_|141-314 1tiiD|W.C. 2kauB|W.C. 
1arb_|W.C. 1dlc_|290-499 1ifc_|W.C. 1pgs_|4-140 1tiu_|W.C. 2kauC|2-129 
1asyA|68-204 1dupA|W.C. 1ihwA|W.C. 1pht_|W.C. 1tlk_|W.C. 2kauC|423-475 
1bbpA|W.C. 1dutA|W.C. 1ilr1_|W.C. 1pkyA|70-167 1tme1|W.C. 2mev1|W.C. 
1bbt1|W.C. 1dynA|W.C. 1irsA|W.C. 1plc_|W.C. 1tnfA|W.C. 2mev2|W.C. 
1bbt3|W.C. 1eagA|W.C. 1iyu_|W.C. 1pls_|W.C. 1tnm_|W.C. 2ncm_|W.C. 
1bdo_|W.C. 1eal_|W.C. 1jdc_|358-418 1pmi_|W.C. 1tnrA|W.C. 2ohxA|1-163 
1bebA|W.C. 1ebpA|10-116 1jer_|W.C. 1pms_|W.C. 1tsp_|W.C. 2ohxA|340-374 
1bglA|220-333 1eft_|213-312 1kapP|247-470 1ppi_|404-496 1tul_|W.C. 2pcdA|W.C. 
1bglA|3-219 1eft_|313-405 1kcw_|1-192 1prr_|1-90 1tupA|W.C. 2pcdM|W.C. 
1bglA|626-730 1epbA|W.C. 1kcw_|193-338 1prr_|91-173 1ulo_|W.C. 2pec_|W.C. 
1bglA|731-1023 1epnE|W.C. 1kcw_|347-553 1prtD|W.C. 1vcaA|1-90 2phlA|11-210 
1bhgA|22-225 1esfA|1-120 1kcw_|554-705 1prtF|W.C. 1vcaA|91-199 2phlA|220-381 
1bhgA|226-328 1eta1|W.C. 1kcw_|706-884 1pse_|W.C. 1vfbA|W.C. 2pia_|1-103 
1bia_|71-317 1eur_|W.C. 1kcw_|892-1040 1pvc1|W.C. 1vie_|W.C. 2prd_|W.C. 
1bmfA|24-94 1exg_|W.C. 1kevA|1-139 1pvc2|W.C. 1vmoA|W.C. 2rspA|W.C. 
1bmfD|9-81 1fdr_|2-100 1kevA|314-351 1pvc3|W.C. 1wapA|W.C. 2sblB|7-149 
1bncA|331-446 1fgp_|W.C. 1kit_|217-346 1pyp_|W.C. 1wba_|W.C. 2sil_|W.C. 
1bovA|W.C. 1fivA|W.C. 1kit_|25-216 1qba_|28-200 1whi_|W.C. 2snv_|W.C. 
1btkA|W.C. 1fmb_|W.C. 1kit_|347-543 1qorA|2-112 1who_|W.C. 2stv_|W.C. 
1btn_|W.C. 1fna_|W.C. 1knb_|W.C. 1qorA|292-327 1wiu_|W.C. 2tbvA|W.C. 
1bty_|W.C. 1fnb|19-154 1ksr_|W.C. 1rgs_|113-244 1wkt_|W.C. 2trcB|W.C. 
1bvp1|121-254 1fuiA|356-591 1lac_|W.C. 1rip_|W.C. 1xnb_|W.C. 2tssA|1-93 
1bw3_|W.C. 1fyc_|W.C. 1lcl_|W.C. 1rsy_|W.C. 1xsoA|W.C. 3cd4_|1-97 
1cd1a|186-279 1gen_|W.C. 1lla_|380-628 1sacA|W.C. 1yaiA|W.C. 3cd4_|98-178 
1cdcB|W.C. 1ggtA|516-627 1ltsD|W.C. 1scs_|W.C. 1yhb_|W.C. 3dpa_|1-124 
1cdg_|407-495 1ggtA|628-729 1lxa_|W.C. 1se4_|1-121 1ytfC|W.C. 3dpa_|125-218 
1cdg_|496-581 1ggtA|8-190 1lylA|14-153 1semA|W.C. 1ytfD|55-119 3hhrB|32-130 
1cdg_|582-686 1ghk_|W.C. 1mai_|W.C. 1sftA|2-11 1zncA|W.C. 3nn9_|W.C. 
1cgpA|9-137 1glaF|W.C. 1mjc_|W.C. 1sftA|245-383 1zxq_|1-86 3ullA|W.C. 
1cid_|106-177 1gof_|1-150 1mmd_|34-79 1sgc_|W.C. 1zxq_|87-192 4aahA|W.C. 
1cid_|1-105 1gof_|151-537 1mpp_|W.C. 1shcA|W.C. 2aaa_|382-476 4bcl_|W.C. 
1ciy_|256-461 1gof_|538-639 1msaA|W.C. 1shg_|W.C. 2alp_|W.C. 4gcr_|1-85 
1ckaA|W.C. 1gpc_|W.C. 1mspA|W.C. 1slaA|W.C. 2arcA|W.C. 4gcr_|86-174 
1ckmA|239-327 1gpr_|W.C. 1mup_|W.C. 1sluA|W.C. 2aviA|W.C. 4kbpA|9-120 

334 α/β domains 
1aba_|W.C. 1dpgA|413-426 1gtmA|3-180 1nfp_|W.C. 1qrdA|W.C. 2at2A|1-144 
1ad3A|W.C. 1dppA|W.C. 1gtrA|8-338 1nhp_|1-119 1raaA|1-150 2at2A|145-295 
1add_|W.C. 1draA|W.C. 1gym_|W.C. 1nhp_|120-242 1raaA|151-310 2bgu_|W.C. 
1adeA|W.C. 1dsbA|W.C. 1hdcA|W.C. 1nhp_|243-321 1rcf_|W.C. 2chr_|127-370 
1adjA|326-421 1dts_|W.C. 1hgxA|W.C. 1nipA|W.C. 1reqA|2-560 2cmd_|1-145 
1ag8A|W.C. 1dubA|W.C. 1hjrA|W.C. 1noyA|W.C. 1reqB|20-475 2cnd_|125-270 
1ak5_|2-101 1dxy_|101-299 1hlpA|21-162 1nsj_|W.C. 1rlaA|W.C. 2ctb_|W.C. 
1ak5_|222-483 1dxy_|1-100 1hmpA|W.C. 1nsyA|W.C. 1rlr_|222-748 2dkb_|W.C. 
1amp_|W.C. 1e2b_|W.C. 1hmy_|W.C. 1ntr_|W.C. 1rnl_|5-142 2dln_|1-96 
1amy_|1-346 1eaf_|W.C. 1hplA|1-336 1nulA|W.C. 1rpa_|W.C. 2dri_|W.C. 
1art_|W.C. 1ebhA|142-436 1hpm_|189-381 1nzyA|W.C. 1rvaA|W.C. 2ebn_|W.C. 
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1asu_|W.C. 1eceA|W.C. 1hpm_|4-188 1obr_|W.C. 1rvvA|W.C. 2fx2_|W.C. 
1atiA|395-505 1ecpA|W.C. 1hrdA|1-194 1ofgA|1-160 1sbp_|W.C. 2glt_|1-122 
1ayl_|1-227 1ede_|W.C. 1hrdA|195-449 1ofgA|323-381 1scuA|1-121 2gstA|1-84 
1ayl_|228-540 1edg_|W.C. 1hurA|W.C. 1opr_|W.C. 1scuA|122-288 2hnp_|W.C. 
1bam_|W.C. 1edt_|W.C. 1hvq_|W.C. 1orb_|1-149 1scuB|239-388 2kauC|130-422 
1bglA|334-625 1eft_|1-212 1hyhA|21- 166 1orb_|150-293 1sfe_|12-92 2kauC|476-567 
1bksA|W.C. 1ego_|W.C. 1iceA|W.C. 1ordA|108-569 1sftA|12-244 2lbp_|W.C. 
1bksB|W.C. 1eny_|W.C. 1iceB|W.C. 1ordA|1-107 1srrA|W.C. 2masA|W.C. 
1ble_ |W.C. 1eriA|W.C. 1idm_|W.C. 1ortA|1-150 1tadA|27-56 2nacA|1-147 
1bmfA|95-379 1esc_|W.C. 1ido_|W.C. 1ortA|151-335 1tahB|W.C. 2nacA|148-335 
1bmfD|82-357 1fcdA|1-114 1igs_|W.C. 1oya_|W.C. 1tca_|W.C. 2nacA|336-374 
1bmfG 1fcdA|115-255 1itg_|W.C. 1pauA|W.C. 1tde_|1-118 2ohxA|164-339 
1bncA|1-114 1fcdA|256-327 1jdc_|1-357 1pauB|W.C. 1tde_|119-244 2olbA|W.C. 
1broA|W.C. 1fdr_|101-248 1kevA|140-313 1pbe_|1-173 1tde_|245-316 2pgd_|1-176 
1brsD|W.C. 1fds_|W.C. 1kfd_|324-518 1pbe_|276-391 1tfr_|12-180 2pia_|104-223 
1byb_|W.C. 1fmcA|W.C. 1kifA|1-194 1pbn_|W.C. 1thtA|W.C. 2reb_|3-268 
1cb2A|W.C. 1fnb_|155-314 1kifA|288-339 1pbp_|W.C. 1tib_|W.C. 2rn2_|W.C. 
1cbg-|W.C. 1fua_|W.C. 1kte_|W.C. 1pda_|3-219 1tlfA|W.C. 2rslA|W.C. 
1cdg_|1-406 1fuiA|1-355 1lam_|1-159 1pdo_|W.C. 1tml_|W.C. 2tmdA|1-340 
1cec_|W.C. 1gal_|3-324 1lam_|160-484 1pea_|W.C. 1tpfA|W.C. 2tmdA|341-489 
1cfr_|W.C. 1gal_|521-583 1lct_|W.C. 1pfkA|W.C. 1tplA|W.C. 2tmdA|490-645 
1chd_|W.C. 1garA|W.C. 1ldb_|15-162 1php_|W.C. 1tpt_|71-335 2tmdA|646-729 
1chmA|2-156 1gca_|W.C. 1ldg_|18-163 1phr_|W.C. 1trkA|3-337 2tprA|1-168 
1coy_|4-318 1gd1O|313-333 1ldm_|1-160 1pii_|1-254 1trkA|338-534 2tprA|169-285 
1cseE|W.C. 1gdhA|101-291 1lehA|1-134 1pii_|255-452 1trkA|535-680 2tprA|286-357 
1ctn_|133-443 1gdhA|2-100 1lehA|135- 364 1pkyA|168-344 1udg_|W.C. 2trxA|W.C. 
1ctt_|1-150 1gesA|147-262 1lfaA|W.C. 1pkyA|1-69 1v39_|W.C. 2ts1_|W.C. 
1ctt_|151-294 1gesA|263-335 1lldA|7-149 1pkyA|351- 470 1vhrA|W.C. 2xis_|W.C. 
1cus_|W.C. 1gesA|3-146 1lst_|W.C. 1pnrA|59-340 1vid_|W.C. 3chy_|W.C. 
1cydA|W.C. 1gggA|W.C. 1lucA|W.C. 1pot_|W.C. 1vtk_|W.C. 3cla_|W.C. 
1dapA|1-118 1ghr_|W.C. 1lucB|W.C. 1poxA|183-365 1whtA|W.C. 3dfr_|W.C. 
1dapA|269-320 1glaG|254-499 1lvl_|1-150 1poxA|9-182 1whtB|W.C. 3pgm_|W.C. 
1dar_|1-282 1glaG|4-253 1lvl_|151-265 1ppi_|1-403 1xel_|W.C. 3pmgA|1-190 
1dctA|W.C. 1gln_|1-305 1lvl_|266-335 1psdA|108-295 1xvaA|W.C. 3pmgA|191-303 
1deaA|W.C. 1glqA|1-78 1mek_|W.C. 1psdA|296-326 1xyzA|W.C. 3pmgA|304-420 
1dhpA|W.C. 1gnd_|1-291 1mioA|W.C. 1psdA|7-107 1yasA|W.C. 3rubL|148-467 
1dhr_|W.C. 1gnd_|389-430 1mioB|W.C. 1pta_|W.C. 1ybvA|W.C. 3tgl_|W.C. 
1dih_|2-130 1gnwA|2-85 1mla_|198-307 1pud_|W.C. 1yptA|W.C. 5nul_|W.C. 
1dih_|241-273 1gpb_|W.C. 1mla_|3-127 1pvdA|182-360 1yveI|83-307 5p21_|W.C. 
1dik_|377-505 1gph1|235-465 1mmd_|2-33 1pvdA|2-181 1zymA|145-249 5rubA|138-457 
1dik_|510-874 1gpmA|208-404 1mmd_|80-759 1pvuA|W.C. 1zymA|3-21 7icd_|W.C. 
1dnpA|1-200 1gpmA|3-207 1mpb_|W.C. 1pxtA|28-293 2aaa_|1-381 8abp_ |W.C. 
1dorA|W.C. 1grl_|191-366 1nal1|W.C. 1qapA|130-296 2acr_|W.C. 8dfr_|W.C. 
1dosA|W.C. 1gseA|2-80 1nar-|W.C. 1qba_|338-780 2admA|W.C.  
1dpgA|1-181 1gtmA|181-419 1nbaA|W.C. 1qorA|113-291 2anhA|W.C.  

241 α+β domains 
119l_|W.C. 1ctn_|444-516 1gpmA|405-525 1mli_|W.C. 1qbeA|W.C. 1znbA|W.C. 
193l_|W.C. 1cyo_|W.C. 1grj_|80-158 1mngA|93-203 1raaB|1-100 2aak_|W.C. 
1ab8A|W.C. 1dapA|119-268 1grl_|137-190 1molA|W.C. 1regX|W.C. 2act_|W.C. 
1abrA|W.C. 1dar_|476-599 1grl_|367-409 1mrj_|W.C. 1ris_|W.C. 2baa_|W.C. 
1acf_|W.C. 1dar_|600-689 1gtpA|W.C. 1msk_|W.C. 1sceA|W.C. 2bopA|W.C. 
1adjA|2-325 1dcoA|W.C. 1gtqA|W.C. 1mut_|W.C. 1scuB|1-238 2chr_|1-126 
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1af5_|W.C. 1ddt_|1-187 1guaB|W.C. 1mxa_|108-231 1se4_|122-239 2chsA|W.C. 
1afi_|W.C. 1def_|W.C. 1han_|133-289 1mxa_|1-102 1seiA|W.C. 2cmd_|146-312 
1ag2_|W.C. 1dhmA|W.C. 1han_|2-132 1mxa_|232-383 1setA|111-421 2dln_|97-306 
1ah6_|W.C. 1dih_131-240 1hfc_|W.C. 1napA|W.C. 1shaA|W.C. 2dnjA|W.C. 
1ahq_|W.C. 1dik_|2-376 1hqi_|W.C. 1nhp_|322-447 1sly_|451-618 2glt_|123-316 
1aihA|W.C. 1div_|1-55 1httA|4-325 1nox_|W.C. 1smnA|W.C. 2kauA|W.C. 
1ak7_|W.C. 1div_|56-149 1humA|W.C. 1npk_|W.C. 1spbP|W.C. 2mnr_|3-132 
1ako_|W.C. 1dlhA|3-81 1hxpA|178-348 1o7bT|W.C. 1srsA|W.C. 2ms2A|W.C. 
1aop_|149-345 1dmaA|W.C. 1hxpA|2-177 1ofgA|161-322 1std_|W.C. 2phy_|W.C. 
1aop_|346-425 1donA|W.C. 1iba_|W.C. 1ordA|570-730 1stfI|W.C. 2pia_|224-321 
1aop_|81-145 1dpgA|182-412 1igd_|W.C. 1otfA|W.C. 1stu_|W.C. 2pldA|W.C. 
1aorA|1-210 1dpgA|427-485 1iqzA|W.C. 1otgA|W.C. 1svr_|W.C. 2pnb_|W.C. 
1apa_|W.C. 1ebhA|1-141 1kapP|1-246 1ounA|W.C. 1sxl_|W.C. 2polA|1-122 
1aps_|W.C. 1efnB|W.C. 1kifA|195-287 1pba_|W.C. 1tbd_|W.C. 2polA|123-244 
1apyA|W.C. 1eps_|W.C. 1kptA|W.C. 1pbe_|174-275 1tfe_|W.C. 2polA|245-366 
1apyB|W.C. 1esfaA|121-233 1kuh_|W.C. 1pda_|220-307 1tif_|W.C. 2ptl_|W.C. 
1ast_|W.C. 1esl_|1-118 1kvdA|W.C. 1pil_|W.C. 1tig_ |W.C. 2reb_|269-328 
1atiA|1-394 1ezm_|W.C. 1kvdB|W.C. 1pkp_|4-77 1tpt_|336-440 2sicI|W.C. 
1atlA 1fca_|W.C. 1lba_|W.C. 1pkp_|78-148 1uae_|W.C. 2tprA|358-482 
1bia_|64-270 1fcdA|328-401 1lbu_|84-213 1plq_|1-126 1ubi-|W.C. 2tssA|94-194 
1bncA|115-330 1fd2_|W.C. 1ldm_|161-329 1plq_|127-258 1udiI|W.C. 2u1a_|W.C. 
1bp1_|1-217 1fjmA|W.C. 1lgr_|101-468 1pmaA|W.C. 1up1_|7-92 2vik_|W.C. 
1bp1_|218-456 1fkd_|W.C. 1lgr_|1-100 1pmaB|W.C. 1up1_|99-182 3fib_|W.C. 
1brnl_|W.C. 1frd_|W.C. 1lit_|W.C. 1pmd_|76-263 1urna_|W.C. 3pmgA|421-561 
1bv1_|W.C. 1froA|W.C. 1lldA|150-319 1pnkA|W.C. 1vaoA|274-560 3rubL|22-147 
1bvtA|W.C. 1fwp_|W.C. 1lml_|W.C. 1pnkB|W.C. 1vaoA|6-273 3rubS|W.C. 
1cby_|W.C. 1fxrA|W.C. 1ltsA|W.C. 1poh_|W.C. 1vcc_|W.C. 4kbpA|121-432 
1cd1A|7-185 1gbs_|W.C. 1ltsC|W.C. 1preA|2-84 1vhh_|W.C. 5rubA|2-137 
1cewI|W.C. 1gcb_|W.C. 1lvl_|336-458 1prtA|W.C. 1vhiA|W.C. 7rsa_|W.C. 
1chkA|W.C. 1gd1O|149-312 1lylA|161-502 1prtB|4-89 1vig_|W.C. 9rnt_|W.C. 
1ckmA|11-238 1gesA|336-450 1mat_|W.C. 1ptf_|W.C. 1vjw_|W.C. 1ytbA|61-155 
1coaI|W.C. 1ggtA|191-515 1mbb_|201-342 1put_|W.C. 1xgsA|1-194 1qba_|201-337 
1coy_|319-450 1gmpA|W.C. 1mbb_|3-200 1pyaA|W.C. 1xgsA|272-295 1mla_|128-197 
1crkA|99-380 1gnd_|292-388 1mkaA|W.C. 1qapA|8-129 1xxaA|W.C. 1gph1|1-234 
1ctf_|W.C.      
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Table A.11 The 25PDB Protein Domains. 

443 all-α domains 
1a1w_|W.C. 1dvkB|W.C. 1h9eA|W.C. 1jr5A|W.C. 1nd9A|W.C. 1qqiA|W.C. 
1a56_|W.C. 1dvoA|W.C. 1hbkA|W.C. 1jr8A|W.C. 1neq_|W.C. 1qv1A|W.C. 
1a6m_|W.C. 1e29A|W.C. 1hciA|272-396 1jumA|2-72 1ng7A|W.C. 1qwnA|412-522 
1ab3_|W.C. 1e52A|W.C. 1hcrA|W.C. 1jumA|73-187 1ngnA|W.C. 1qz4A|W.C. 
1abv_|W.C. 1e6bA|88-220 1hd6A|W.C. 1jvr_|W.C. 1nh2B|W.C. 1r2aA|W.C. 
1aduB|180-265 1e6iA|W.C. 1he8A|525-725 1jw2A|W.C. 1nhm_|W.C. 1r4aE|W.C. 
1aipH|3-53 1e7lA|104-157 1hfeS|W.C. 1jybA|2-147 1ni8A|W.C. 1r4gA|W.C. 
1aj3_|W.C. 1eb7A|1-164 1hh8A|W.C. 1k04A|W.C. 1nk2P|W.C. 1r5iD|W.C. 
1ak0_|W.C. 1eb7A|165-323 1hkqA|W.C. 1k0mA|92-240 1nkd_|W.C. 1r5rA|W.C. 
1alu_|W.C. 1eca_|W.C. 1hloA|W.C. 1k1vA|W.C. 1nkl_|W.C. 1res_|W.C. 
1aoy_|W.C. 1eciA|W.C. 1hm7A|W.C. 1k3xA|125-213 1nkuA|W.C. 1rfbA|W.C. 
1ash_|W.C. 1ef4A|W.C. 1hmwA|26-335 1k5oA|W.C. 1nlxA|W.C. 1rkcA|1-128 
1avoA|W.C. 1elkA|W.C. 1hns_|W.C. 1k61D|W.C. 1nom_|91-148 1rkcA|129-258 
1b0nA|1-68 1elrA|W.C. 1hq1A|W.C. 1k6kA|W.C. 1np7A|205-483 1rqtA|W.C. 
1b0nA|74-108 1enwA|W.C. 1hqbA|W.C. 1k8kE|W.C. 1nq4A|W.C. 1rrtA|9-230 
1b0nB|W.C. 1eo0A|W.C. 1hryA|W.C. 1k94A|W.C. 1ns1A|W.C. 1rsoA|W.C. 
1b22A|W.C. 1eoqA|W.C. 1hs5A|W.C. 1k99A|W.C. 1nwnA|W.C. 1rsoB|W.C. 
1b28A|W.C. 1erd_|W.C. 1hs7A|W.C. 1ka8A|W.C. 1ny9A|W.C. 1rss_|W.C. 
1b4uA|W.C. 1eteD|W.C. 1hx8B|167-299 1kanA|126-253 1nyaA|W.C. 1rykA|W.C. 
1b8zA|W.C. 1eumA|W.C. 1hx8B|22-162 1kbhA|W.C. 1nzpA|W.C. 1s0pA|W.C. 
1bal_|W.C. 1exjA|3-120 1hxgA|15-220 1keyC|W.C. 1o4xA|110-163 1s7aA|W.C. 
1bax_|W.C. 1eyhA|W.C. 1hxgA|221-548 1kf6B|106-243 1o4xA|5-79 1sig_|W.C. 
1bbhA|W.C. 1f4iA|W.C. 1hz4A|W.C. 1kftA|W.C. 1o82A|W.C. 1sknP|W.C. 
1bbn_|W.C. 1f5qB|147-252 1i1sA|W.C. 1kgzB|12-80 1o9rA|W.C. 1sly_|1-450 
1bc9_|W.C. 1f5qB|6-146 1i27A|W.C. 1khoA|1-249 1oafA|W.C. 1t5jA|W.C. 
1bea_|W.C. 1f6vA|W.C. 1i2tA|W.C. 1kjs_|W.C. 1oaiA|W.C. 1tafA|W.C. 
1bg8A|W.C. 1f7cA|W.C. 1i4zA|W.C. 1ko9A|136-323 1oczE|W.C. 1tbaA|W.C. 
1bgf_|W.C. 1fadA|W.C. 1iapA|W.C. 1koyA|W.C. 1ohzB|W.C. 1tfb_|111-207 
1bh8B|W.C. 1fafA|W.C. 1ib1A|W.C. 1kqmB|W.C. 1omrA|W.C. 1ub9A|W.C. 
1bh9A|W.C. 1fexA|W.C. 1ichA|W.C. 1ks8A|W.C. 1on7B|W.C. 1ucpA|W.C. 
1bk6A|W.C. 1ff1A|W.C. 1ie9A|W.C. 1kwfA|W.C. 1oohA|W.C. 1ucrB|W.C. 
1bkrA|W.C. 1ffkS|W.C. 1ifyA|W.C. 1kx7A|W.C. 1oqpA|W.C. 1ucvA|W.C. 
1bl0A|63-124 1fipA|W.C. 1ig6A|W.C. 1l3pA|W.C. 1or6A|W.C. 1ufiB|W.C. 
1bl0A|9-62 1fliA|W.C. 1iieA|W.C. 1l9lA|W.C. 1or7F|W.C. 1uk5A|W.C. 
1bo9A|W.C. 1fp2A|8-108 1iioA|W.C. 1lb3A|W.C. 1orgA|W.C. 1uqvA|W.C. 
1bp3A|W.C. 1fpoC|1-76 1ijyA|W.C. 1lbu_|1-83 1os6A|W.C. 1ustA|W.C. 
1br0A|W.C. 1fpoC|77-171 1ik7B|W.C. 1ld8A|W.C. 1oslA|W.C. 1utg_|W.C. 
1bshA|87-138 1fqkA|61-181 1irdB|W.C. 1lddA|W.C. 1otkA|W.C. 1uw4B|W.C. 
1bt6A|W.C. 1fr2A|W.C. 1irg_|W.C. 1lea_|W.C. 1otrA|W.C. 1uzcA|W.C. 
1bu2A|22-148 1fs9A|W.C. 1irjD|W.C. 1liaA|W.C. 1otwA|W.C. 1v38A|W.C. 
1buyA|W.C. 1fyjA|W.C. 1irl_|W.C. 1lj9A|W.C. 1oyiA|W.C. 1v3f_|W.C. 
1bw6A|W.C. 1fzpB|W.C. 1irqA|W.C. 1lmb3|W.C. 1oykA|W.C. 1v54H|W.C. 
1c1kA|W.C. 1g03A|W.C. 1irzA|W.C. 1lq1A|W.C. 1p22B|64-136 1v74B|W.C. 
1c20A|W.C. 1g1eB|W.C. 1it2A|W.C. 1lriA|W.C. 1p3bA|W.C. 1v92A|W.C. 
1c53_|W.C. 1g6iA|W.C. 1itf_|W.C. 1ls1A|1-88 1p3bC|W.C. 1vf6A|W.C. 
1c75A|W.C. 1g7oA|76-215 1ithA|W.C. 1lwbA|W.C. 1p3bF|W.C. 1vf6C|W.C. 
1c9iA|331-357 1g8eA|W.C. 1iufA|76-141 1lycA|W.C. 1p5sA|W.C. 1vii_|W.C. 
1cf7A|W.C. 1g8qA|W.C. 1iuyA|W.C. 1m12A|W.C. 1p6rA|W.C. 1vls_|W.C. 
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1cf7B|W.C. 1ga3A|W.C. 1iw8D|W.C. 1m15A|2-95 1p8cD|W.C. 1wjfA|W.C. 
1cif_|W.C. 1gakA|W.C. 1ix9A|1-90 1m1eB|W.C. 1p94A|W.C. 1wtuA|W.C. 
1cmbA|W.C. 1gc6A|88-198 1j0pA|W.C. 1m1qA|W.C. 1pc2A|W.C. 1xbl_|W.C. 
1cnt4|W.C. 1gjtA|W.C. 1j0tA|W.C. 1m5nS|W.C. 1pd3A|W.C. 1xo1A|186-290 
1cokA|W.C. 1gkmA|W.C. 1j2jB|W.C. 1m70A|1-92 1pfvA|389-550 1ycqA|W.C. 
1coo_|W.C. 1gnc_|W.C. 1j75A|W.C. 1m70A|93-190 1pgyA|W.C. 1ytfD|5-54 
1copD|W.C. 1gotG|W.C. 1j7qA|W.C. 1m8yA|W.C. 1pn5A|59-151 2a0b_|W.C. 
1ctj_|W.C. 1gscA85-217 1j9iA|W.C. 1m9xC|W.C. 1pnbA|W.C. 2bby_|W.C. 
1cy5A|W.C. 1gsq_|76-202 1jeiA|W.C. 1mc2A|W.C. 1pnbB|W.C. 2cpgB|W.C. 
1cz2A|W.C. 1gu2B|W.C. 1jfbA|W.C. 1mdyB|W.C. 1pp7U|W.C. 2eiaA|17-147 
1d2vA|W.C. 1gumA|81-220 1jfiA|W.C. 1mhzG|W.C. 1pra_|W.C. 2erl_|W.C. 
1d2zB|W.C. 1guxB|W.C. 1jfiB|W.C. 1mkdA|W.C. 1psrA|W.C. 2ezi_|W.C. 
1d5vA|W.C. 1gvd|W.C. 1jgcA|W.C. 1mn8D|W.C. 1psyA|W.C. 2ezl_|W.C. 
1d8bA|W.C. 1gxmB|W.C. 1jgsA|W.C. 1mp1A|W.C. 1puoA|5-73 2ilk_|W.C. 
1d8jA|W.C. 1gyzA|W.C. 1jhgA|W.C. 1mr8A|W.C. 1puoA|93-164 2lefA|W.C. 
1d8lA|65-140 1gzsB|W.C. 1jigA|W.C. 1mwbA|W.C. 1pvhB|W.C. 2lfb_|W.C. 
1dgnA|W.C. 1h0tB|W.C. 1jjrA|W.C. 1mzbA|W.C. 1pzqA|W.C. 2lisA|W.C. 
1dizA|100-282 1h1jS|W.C. 1jjsA|W.C. 1n1fA|W.C. 1pzrA|W.C. 2pvbA|W.C. 
1dk8A|W.C. 1h31B|W.C. 1jkuA|W.C. 1n32R|W.C. 1q02A|W.C. 2sas_|W.C. 
1dnyA|W.C. 1h3lB|W.C. 1jkw_|11-161 1n3kA|W.C. 1q08A|W.C. 2tmvP|W.C. 
1dp3A|W.C. 1h4jB|W.C. 1jkw_|162-287 1n62D|82-160 1q2zA|W.C. 3csmA|W.C. 
1dp5B|W.C. 1h4lD|W.C. 1jl7A|W.C. 1n69B|W.C. 1q8cA|W.C. 3hdhC|204-295 
1dp7P|W.C. 1h6oA|W.C. 1jli_|W.C. 1n89A|W.C. 1qatA|206-298 3htsB|W.C. 
1dpuA|W.C. 1h8eI|W.C. 1jniA|W.C. 1n8vA|W.C. 1qksA|9-135 3ygsP|W.C. 
1dqeA|W.C. 1h97A|W.C. 1joyA|W.C. 1n9dA|W.C. 1qntA|92-176 4ctsA|W.C. 
1du6A|W.C. 1h99A|54-168 1jqjD|213-333 1nc5A|W.C. 1qpmA|W.C.  

443 all-β domains 
1a1x_|W.C. 1earA|1-74 1h6xA|W.C. 1k8kC|W.C. 1npuA|W.C. 1r2mA|W.C. 
1a8vA|48-118 1eazA|W.C. 1havA|W.C. 1k9cA|W.C. 1nqjA|W.C. 1r6jA|W.C. 
1a9v_|W.C. 1ed7A|W.C. 1hce_|W.C. 1kawA|W.C. 1nwbA|W.C. 1r6kA|W.C. 
1ag4_|W.C. 1egxA|W.C. 1hcfX|W.C. 1kd6A|W.C. 1nxmA|W.C. 1r75A|W.C. 
1aiw_|W.C. 1ehkB|41-168 1hdkA|W.C. 1kdmA|W.C. 1nycA|W.C. 1rhi1|W.C. 
1ajw_|W.C. 1ejfA|W.C. 1he8A|353-524 1khoA|250-370 1nz9A|W.C. 1ri9A|W.C. 
1am2_|W.C. 1eo2A|W.C. 1hk6A|W.C. 1kikA|W.C. 1o1uA|W.C. 1rip_|W.C. 
1aol_|W.C. 1eqrA|1-106 1hkf_|W.C. 1kj2B|W.C. 1o3sA|8-137 1rk8C|W.C. 
1aonO|W.C. 1ernb_|10-116 1hlc_|W.C. 1knmA|W.C. 1o4tA|W.C. 1rkrA|W.C. 
1avgI|W.C. 1ethA|337-448 1hm8A|252-459 1ko6C|W.C. 1o4yA|W.C. 1rl1A|W.C. 
1ax3_|W.C. 1euwA|W.C. 1hmwA|336-599 1kq1A|W.C. 1o5lA|1-129 1rocA|W.C. 
1ayoA|W.C. 1ewiA|W.C. 1hmwA|600-699 1kqrA|W.C. 1o5pA|W.C. 1rqwA|W.C. 
1b34B|W.C. 1exh_|W.C. 1ht6A|348-404 1ksr_|W.C. 1o6sB|W.C. 1s2bA|W.C. 
1b35A|W.C. 1exsA|W.C. 1htrp|W.C. 1kt6A|W.C. 1o7iB|W.C. 1s2eA|W.C. 
1b55A|W.C. 1eysH|59-259 1hu8A|W.C. 1kum_|W.C. 1od3A|W.C. 1se1A|1-125 
1b9xA|W.C. 1ezgA|W.C. 1hwhB|131-237 1kv7A|171-335 1odmA|W.C. 1sfp_|W.C. 
1bak_|W.C. 1f3uB|W.C. 1hwhB|32-130 1kv7A|31- 170 1oekA|W.C. 1sg3A|1-187 
1bbpA|W.C. 1f53A|W.C. 1hxrB|W.C. 1kwaA|W.C. 1ofzA|W.C. 1sg3A|195-343 
1bci_|W.C. 1f6oA|W.C. 1hzeA|W.C. 1kxgA|W.C. 1ogoX|202-574 1sm4A|67-207 
1bdo_|W.C. 1f86A|W.C. 1i07A|W.C. 1kxlA|W.C. 1ogoX|3-201 1sr3A|W.C. 
1bdyA|W.C. 1f8eA|W.C. 1i16_|W.C. 1l1cA|W.C. 1oh1A|W.C. 1ssxA|W.C. 
1bhu_|W.C. 1feuD|W.C. 1i1jA|W.C. 1l1nB|W.C. 1oh4A|W.C. 1tfhB|107-210 
1bj8_|W.C. 1ffkN|W.C. 1i40A|W.C. 1l1oB|W.C. 1oioA|W.C. 1tfhB|5-106 
1bpv_|W.C. 1fg9E|110-221 1i4vA|W.C. 1l2hA|W.C. 1ok0A|W.C. 1tiiD|W.C. 
1bqhH|W.C. 1fg9E|13-109 1i8aA|W.C. 1lb6A|W.C. 1op4A|W.C. 1tiu_|W.C. 
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1br9_|W.C. 1fhoA|W.C. 1i9bA|W.C. 1lf7A|W.C. 1oqkA|W.C. 1tl2A|W.C. 
1bshA|1-86 1fhrA|W.C. 1iaoA|83-178 1lixB|160-261 1ou8A|W.C. 1tme1|W.C. 
1bwmA|3-116 1fi2A|W.C. 1iarB|1-96 1lktA|W.C. 1ouxA|W.C. 1ttg_|W.C. 
1bymA|W.C. 1fjrA|W.C. 1iarB|97-197 1lm8V|W.C. 1oy2A|W.C. 1tul_|W.C. 
1c01A|W.C. 1fl0A|W.C. 1ib5A|W.C. 1lmiA|W.C. 1p0sE|W.C. 1ub4B|W.C. 
1c28A|W.C. 1flmA|W.C. 1ib8A|91-164 1lplA|W.C. 1p1mA|1-49 1ucsA|W.C. 
1c4rB|W.C. 1fltY|W.C. 1ibyA|W.C. 1lugA|W.C. 1p1mA|331-404 1ud8A|391-480 
1c5eA|W.C. 1fmmS|W.C. 1ic1A|1-82 1luqB|W.C. 1p35C|W.C. 1uepA|W.C. 
1c5fK|W.C. 1fod1|W.C. 1ic1A|83-190 1m1fB|W.C. 1p3eA|W.C. 1uffA|W.C. 
1c5lL|W.C. 1fujA|W.C. 1ifc_|W.C. 1m30A|W.C. 1p4pA|W.C. 1ufxA|W.C. 
1c8cA|W.C. 1fviA|190-293 1ifrA|W.C. 1m4o|W.C. 1p9uA|W.C. 1ug1A|W.C. 
1c9iA|3-330 1fyc_|W.C. 1igq|W.C. 1m5zA|W.C. 1pex_|W.C. 1ujvA|W.C. 
1c9oA|W.C. 1g291|241-301 1ihw|W.C. 1m7eA|W.C. 1pfbA|W.C. 1ujxA|W.C. 
1c9uB|W.C. 1g291|302-372 1iisC|5-86 1mai_|W.C. 1pfsA|W.C. 1ulp_|W.C. 
1cawB|W.C. 1g2bA|W.C. 1iisC|87-171 1mdaH|W.C. 1pgs_|141-314 1umiA|W.C. 
1cdb_|W.C. 1g3gA|W.C. 1ikoP|W.C. 1me6A|W.C. 1pgs_|4-140 1uscA|W.C. 
1ci0A|W.C. 1g43A|W.C. 1ilfA|W.C. 1mfgA|W.C. 1ph7A|205- 328 1ut4B|W.C. 
1ci5A|1-95 1g5vA|W.C. 1im3D|W.C. 1mfmA|W.C. 1ph7A|36-204 1uw7A|W.C. 
1cid_|106-177 1g6eA|W.C. 1irsA|W.C. 1mgqA|W.C. 1pht_|W.C. 1uz0A|W.C. 
1cid_|1-105 1g6zA|W.C. 1is3A|W.C. 1mi8A|W.C. 1pinA|6-39 1v27A|W.C. 
1cpm_|W.C. 1g84A|W.C. 1iwnA|W.C. 1mjuL|108-214 1pjwA|W.C. 1vie_|W.C. 
1cq3A|W.C. 1g88A|W.C. 1j0sA|W.C. 1mjuL|1-107 1pk6A|W.C. 1wbc_|W.C. 
1cqyA|W.C. 1g9oA|W.C. 1j3rA|W.C. 1mnnA|W.C. 1pkhB|W.C. 1whi_|W.C. 
1cr5A|26-107 1gc6A|199-297 1j7vR101-206 1muzA|W.C. 1plc_|W.C. 1wkt_|W.C. 
1cto_|W.C. 1gcqC|W.C. 1j7vR|2-100 1mvfD|W.C. 1pms_|W.C. 1xntA|W.C. 
1cur_|W.C. 1gglA|W.C. 1jer_|W.C. 1mvxA|W.C. 1pq7A|W.C. 1ytfD|55-119 
1d1nA|W.C. 1gjxA|W.C. 1jhjA|W.C. 1my7B|W.C. 1prtD|W.C. 2arcB|W.C. 
1d3bA|W.C. 1gl4B|W.C. 1jjjA|W.C. 1mzkA|W.C. 1prtF|W.C. 2bpa2|W.C. 
1d7pM|W.C. 1gmiA|W.C. 1jk4A|W.C. 1n0fC|W.C. 1pse_|W.C. 2dynA|W.C. 
1d8lA|1-64 1gnhA|W.C. 1jm1A|W.C. 1n32L|W.C. 1pybA|W.C. 2hntE|W.C. 
1dcs_|W.C. 1gp0A|W.C. 1jo8A|W.C. 1n3jA|W.C. 1q67B|W.C. 2hrvA|W.C. 
1ddmA|W.C. 1gppA|W.C. 1jopA|W.C. 1n6uA|110-212 1qauA|W.C. 2ila_|W.C. 
1dg6A|W.C. 1gqhD|W.C. 1jovA|W.C. 1n6uA|1-109 1qdnA|1-85 2nlrA|W.C. 
1dj7B|W.C. 1gqwB|W.C. 1jq7A|W.C. 1n8bA|W.C. 1qfoA|W.C. 2sns_|W.C. 
1dqgA|W.C. 1gsgP|339-547 1jsyA|176-399 1n8kA|1-163 1qksA|136-567 2stv_|W.C. 
1dqiA|W.C. 1guiA|W.C. 1jsyA|6-175 1n8kA|340-374 1qleB|108-252 2tnfA|W.C. 
1dqtA|W.C. 1gv9A|W.C. 1jt8A|W.C. 1nct_|W.C. 1qouB|W.C. 3chbD|W.C. 
1ds1A|W.C. 1gvmF|W.C. 1jytA|W.C. 1ne3A|W.C. 1qqp4|W.C. 3dpa_|1-124 
1dxmA|W.C. 1gvp_|W.C. 1k0hA|W.C. 1nepA|W.C. 1qreA|W.C. 3dpa_|125-218 
1dxwA|W.C. 1gwmA|W.C. 1k2fA|W.C. 1nglA|W.C. 1qw9A|385-501 3ezmA|W.C. 
1dz1A|W.C. 1gxcA|W.C. 1k3bA|W.C. 1nh0A|W.C. 1qw9A|5-17 3mspA|W.C. 
1dzkA|W.C. 1gxeA|W.C. 1k3xa|1-124 1nh2C|W.C. 1qwdA|W.C. 3ncmA|W.C. 
1e0lA|W.C. 1gywB|W.C. 1k45A|W.C. 1nivA|W.C. 1qwnA|523-1044 3seb_|1-121 
1e44B|W.C. 1h2cA|W.C. 1k4zA|W.C. 1nkoA|W.C. 1qwyA|W.C. 3sil_|W.C. 
1e5cA|W.C. 1h2nA|W.C. 1k5cA|W.C. 1nkr_|102-200 1qxmA|149-286 3vub_|W.C. 
1e5uI|1-89 1h2wA|1-430 1k5jA|W.C. 1nkr_|6-101 1qxmA|4-148 4aahA|W.C. 
1e9gA|W.C. 1h3zA|W.C. 1k5nA|182-276 1nls_|W.C. 1qy1A|W.C. 4hmgA|W.C. 
1e9yA|106-238 1h4aX|1-85 1k5nB|W.C. 1nnxA|W.C. 1r0uA|W.C. 4ull_|W.C. 
1eajB|W.C. 1h6fbB|W.C. 1k8hA|W.C. 1nofA|31-43 1r21A|W.C.  

346 α/β domains 
1aba_|W.C. 1f61A|W.C. 1i24A|W.C. 1lqtB|109-324 1oc7A|W.C. 1r18A|W.C. 
1ao3A|W.C. 1f9vA|W.C. 1i2zA|W.C. 1lqtB|2-108 1od6A|W.C. 1r26A|W.C. 
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1ay7B|W.C. 1fezA|W.C. 1i4nA|W.C. 1lqtB|325-456 1odgA|W.C. 1r2qA|W.C. 
1ayl_|1-227 1ffkC|W.C. 1i4wA|W.C. 1ls1A|89-295 1odzA|W.C. 1r5pB|W.C. 
1ayl_|228-540 1ffkG|W.C. 1i69B|W.C. 1lu4A|W.C. 1oftA|W.C. 1r5xA|W.C. 
1b26A|179-412 1ffkL|W.C. 1i7lA|113-214 1m0iA|W.C. 1oheA|42-198 1r5yA|W.C. 
1b26A|4-178 1ffkV|W.C. 1iaqB|W.C. 1m1bB|W.C. 1ohhG|W.C. 1r6dA|W.C. 
1b3oA|10-109 1fo5A|W.C. 1ibsB|167-315 1m1nA|W.C. 1ojrA|W.C. 1r6hA|W.C. 
1b3oA|232-499 1fovA|W.C. 1ibsB|6-166 1m1nB|W.C. 1on4A|W.C. 1rflA|W.C. 
1b4uB|W.C. 1fp2A|109-352 1iibA|W.C. 1m2dA|W.C. 1ooyA|1-242 1rfvA|W.C. 
1b8gB|W.C. 1fqkA|28-60 1iiwA|W.C. 1m2eA|W.C. 1ooyA|261-481 1rhqA|W.C. 
1b93A|W.C. 1fsgA|W.C. 1in1A|W.C. 1m3gA|W.C. 1orhA|W.C. 1rkuA|W.C. 
1bcrA|W.C. 1fvkA|W.C. 1ioiA|W.C. 1m4lA|W.C. 1ot5A|123-460 1rpa_|W.C. 
1bcrB|W.C. 1fvpA|W.C. 1itqA|W.C. 1m65A|W.C. 1ovyA|W.C. 1rrf_|W.C. 
1bqcA|W.C. 1fyeA|W.C. 1iu9A|W.C. 1m6bB|311-479 1p1mA|50-330 1rtqA|W.C. 
1brt_|W.C. 1fztA|W.C. 1ixh_|W.C. 1m6bB|6-165 1p33C|W.C. 1ryoA|W.C. 
1bvh-|W.C. 1g291|1-240 1izyA|W.C. 1m7gD|W.C. 1p4cA|W.C. 1s4pB|W.C. 
1bx4A|W.C. 1g5qA|W.C. 1j2rC|W.C. 1mavA|W.C. 1p5fA|W.C. 1sfsA|W.C. 
1byi_|W.C. 1g64A|W.C. 1j5sA|W.C. 1mf7A|W.C. 1p5zB|W.C. 1shuX|W.C. 
1bykA|W.C. 1g66A|W.C. 1jdnA|W.C. 1mj5A|W.C. 1p6oA|W.C. 1st9A|W.C. 
1c25_|W.C. 1g7eA|W.C. 1jf8A|W.C. 1mldA|1-144 1p73C|W.C. 1sx5A|W.C. 
1cen_|W.C. 1g7oA|1-75 1ji3A|W.C. 1moq_|W.C. 1p74B|102-272 1t2dA1-150 
1cfzA|W.C. 1g8aA|W.C. 1jikA|W.C. 1mq0A|W.C. 1p74B|1-101 1thx_|W.C. 
1cp2|W.C. 1ga6A|W.C. 1jl1A|W.C. 1muwA|W.C. 1pb7A|W.C. 1ud8A|1-390 
1cqg|W.C. 1gci_|W.C. 1jlsB|W.C. 1mwjA|W.C. 1pdo_|W.C. 1uehA|W.C. 
1cui_|W.C. 1gin_|W.C. 1jmkO|W.C. 1mxiA|W.C. 1pfvA|176-388 1ug6A|W.C. 
1cxqA|W.C. 1gklA|W.C. 1jmvA|W.C. 1n1dA|W.C. 1pfvA|4-140 1uocA|W.C. 
1d2hA|W.C. 1gllO|2- 253 1jn0A|313-333 1n25A|W.C. 1pmoC|W.C. 1ursA|W.C. 
1d3vA|W.C. 1gllO|254-499 1jon_|W.C. 1n2oB|W.C. 1poiB|W.C. 1us0A|W.C. 
1d4oA|W.C. 1glv_|1-122 1jq3C|W.C. 1n32B|W.C. 1pwyE|W.C. 1uslA|W.C. 
1d5tA|389-431 1gn1G|W.C. 1jqjD|1-209 1n3lA|W.C. 1pyoB|W.C. 1uwcA|W.C. 
1dbwB|W.C. 1gph1|235-465 1jr4A|W.C. 1n4wA|9-318 1pztA|W.C. 1uzbA|W.C. 
1dciA|W.C. 1gqoV|W.C. 1jsxA|W.C. 1n55A|W.C. 1q1qA|W.C. 1v2xA|W.C. 
1de5B|W.C. 1grc|W.C. 1jtvA|W.C. 1n7hB|W.C. 1q7lA|W.C. 1v7rA|W.C. 
1dirA|W.C. 1gscA|1-84 1jubA|W.C. 1n7iB|W.C. 1q7lD|W.C. 1v8aA|W.C. 
1dl3A|W.C. 1gsgP|8-338 1jxiA|W.C. 1n8kA|164-339 1q92A|W.C. 1vguB|W.C. 
1do0A|W.C. 1gsq_|1-75 1k0mA|6-91 1n9kA|W.C. 1qc9A|W.C. 1vhwF|W.C. 
1dosA|W.C. 1gumA|4-80 1k7cA|W.C. 1nbwB|W.C. 1qdlB|W.C. 1vimA|W.C. 
1dqzA|W.C. 1gvfA|W.C. 1k92A|1-188 1nf9A|W.C. 1qfeA|W.C. 1xo1A|19-185 
1e0jA|W.C. 1gwz_|W.C. 1kgdA|W.C. 1nh7A|1-210 1qgeE|W.C. 1yacA|W.C. 
1e5kA|W.C. 1h2wA|431-710 1kgzB|81-344 1nmpA|W.C. 1qgvA|W.C. 1yub_|W.C. 
1e6bA|8-87 1h6jA 1ki9B|W.C. 1nn5A|W.C. 1qhhA|W.C. 2at2A|1-144 
1ecxA|W.C. 1h6vC|14-170 1kicA|W.C. 1nnfA|W.C. 1qhhB|W.C. 2at2A|145-295 
1edg_|W.C. 1h6vC|171-292 1kjqB|2-112 1nnuC|W.C. 1qhhC|W.C. 2pjrB|W.C. 
1eexB|W.C. 1h6vC|293-366 1kmvA|W.C. 1nofA|44-320 1qj4A|W.C. 2pth_|W.C. 
1efm_|12-190 1h75A|W.C. 1kngA|W.C. 1noyA|W.C. 1qkiB|11-199 2tpsA|W.C. 
1efpA|2-184 1hd2A|W.C. 1kqpA|W.C. 1np6B|W.C. 1qkiB|435-449 2tsyA|W.C. 
1eiwA|W.C. 1hdoA|W.C. 1kr2F|W.C. 1np7A|1-204 1qlwB|W.C. 3cla_|W.C. 
1eizA|W.C. 1hg3A|W.C. 1kte_|W.C. 1nrjB|W.C. 1qmlA|W.C. 3fua_|W.C. 
1em8B|W.C. 1hjqA|W.C. 1l7aA|W.C. 1nw8A|W.C. 1qnrA|W.C. 3hdhC|12-203 
1eo1A|W.C. 1hlgA|W.C. 1l8oA|W.C. 1nzjA|W.C. 1qntA|6-91 3pviA|W.C. 
1eomA|W.C. 1hm8A|2-251 1lc7A|W.C. 1o08A|W.C. 1qo5K|W.C. 4eugA|W.C. 
1eqa_|W.C. 1hqkA|W.C. 1lixB|262-439 1o58A|W.C. 1qopB|W.C. 6pfkA|W.C. 
1es9A|W.C. 1ht6A|1-347 1lixB|57-159 1o7jA|W.C. 1qtnB|W.C. 7a3hA|W.C. 
1ethA|1-336 1htwA|W.C. 1lk9A|W.C. 1o7qA|W.C. 1qtwA|W.C. 7mhtA|W.C. 
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1excA|W.C. 1huxA|W.C. 1lkxD|W.C. 1o8xA|W.C. 1qw9A|18-384 8abp_|W.C. 
1f2tB|W.C. 1hxhA|W.C. 1ll4A|36-292 1oaa_ |W.C. 1qwnA|31-411  
1f51E|W.C. 1i0dB|W.C. 1llfA|W.C. 1oboA|W.C. 1qzmA|W.C.  

441 α+β domains 
169lA|W.C. 1eqrA|421-590 1iad_|W.C. 1kn6A|W.C. 1o26A|W.C. 1r29A|W.C. 
1a2n_|W.C. 1euvA|W.C. 1iajB|W.C. 1ko9A|12-135 1o2fB|W.C. 1r52B|W.C. 
1a2pA|W.C. 1euvB|W.C. 1iaoA|1-82 1kotA|W.C. 1o50A|77-145 1r8hC|W.C. 
1a67_|W.C. 1ev0A|W.C. 1ib8A|1-90 1kp6A|W.C. 1o7bT|W.C. 1regY|W.C. 
1a9nD|W.C. 1ew4A|W.C. 1ibxA|W.C. 1kpqA|W.C. 1o7nB|W.C. 1rfa_|W.C. 
1aa3_|W.C. 1exjA|121-277 1id0A|W.C. 1kptA|W.C. 1o8rA|W.C. 1rjtA|W.C. 
1af5-|W.C. 1f08A|W.C. 1idpA|W.C. 1kqfB|2-245 1ocyA|W.C. 1ro2A|W.C. 
1aihB|W.C. 1f0zA|W.C. 1ihrA|W.C. 1kufA|W.C. 1odhA|W.C. 1rrtA|231-360 
1aipH|54-196 1f2rI|W.C. 1ijkC|W.C. 1kvdB|W.C. 1of5A|W.C. 1rwzA|1-122 
1ako_|W.C. 1f32A|W.C. 1ikm_|W.C. 1kveA|W.C. 1of5B|W.C. 1rwzA|123-244 
1aps_|W.C. 1f40A|W.C. 1imuA|W.C. 1kznA|W.C. 1ofhG|W.C. 1ry9A|W.C. 
1apzA|W.C. 1f51A|W.C. 1iouA|W.C. 1l0oA|W.C. 1oh0A|W.C. 1ryjA|W.C. 
1aq4A|W.C. 1f60B|W.C. 1ipbA|W.C. 1l1pA|W.C. 1oj5A|W.C. 1s0yD|W.C. 
1aqzB|W.C. 1f7lA|W.C. 1ipgA|W.C. 1l3gA|W.C. 1ojgA|W.C. 1s0yE|W.C. 
1avpA|W.C. 1f96A|W.C. 1iqsA|W.C. 1l3kA|103-181 1oo5A|W.C. 1s5fA|W.C. 
1ayyB|W.C. 1f9yA|W.C. 1iqzA|W.C. 1l3kA|8-91 1opd_|W.C. 1s5uB|W.C. 
1b04B|W.C. 1ffk1|1-79 1iryA|W.C. 1l4zB|W.C. 1opzA|W.C. 1s79A|W.C. 
1b10A|W.C. 1ffk1|80-172 1is7K|W.C. 1l5pA|W.C. 1oqjB|W.C. 1s7jA|W.C. 
1b33N|W.C. 1ffkD|W.C. 1itpA|W.C. 1l9aA|W.C. 1oqqA|W.C. 1sb6A|W.C. 
1b3aA|W.C. 1ffkF|W.C. 1iu3C|W.C. 1l9yA|W.C. 1oqvA|W.C. 1scjB|W.C. 
1b5eA|W.C. 1ffkP|W.C. 1iujB|W.C. 1lbu_|84-213 1oqwA|W.C. 1sf0A|W.C. 
1b65A|W.C. 1ffkU|W.C. 1iv3A|W.C. 1lkkA|W.C. 1otfA|W.C. 1sgoA|W.C. 
1b69A|W.C. 1fjcA|W.C. 1ivzA|W.C. 1ll4A|293-354 1otgA|W.C. 1sjwA|W.C. 
1b6fA|W.C. 1fm0D|W.C. 1ix9A|91-205 1ll8A|W.C. 1owtA|W.C. 1sly_|451-618 
1b87A|W.C. 1fpyA|101-468 1j0gA|W.C. 1lniA|W.C. 1p0rA|W.C. 1sp4A|W.C. 
1b9lA|W.C. 1fpyA|1-100 1j27A|W.C. 1lo7A|W.C. 1p0zA|W.C. 1st4A|146-337 
1bnlA|W.C. 1fu6A|W.C. 1j3gA|W.C. 1lq9A|W.C. 1p1tA|W.C. 1st4A|38-145 
1bob_|W.C. 1fviA|2-189 1j4wA|104-174 1ltzA|W.C. 1p22B|2-59 1t0gA|W.C. 
1bxyA|W.C. 1fw9A|W.C. 1j4wA|1-74 1ly7A|W.C. 1p32B|W.C. 1t0yA|W.C. 
1by2_|W.C. 1fx4A|W.C. 1j57A|W.C. 1m0vA|W.C. 1p4lD|W.C. 1t1dA|W.C. 
1bysA|W.C. 1g61A|W.C. 1j6rA|W.C. 1m15A|96-357 1p4oA|W.C. 1t2dA|151-315 
1bywA|W.C. 1g71A|W.C. 1j8cA|W.C. 1m4jA|W.C. 1p65A|W.C. 1tbaB|61-155 
1c05A|W.C. 1gc1G|W.C. 1jatA|W.C. 1mbxD|W.C. 1p9kA|W.C. 1tig_|W.C. 
1c7kA|W.C. 1gc6A|1-87 1jatB|W.C. 1mbyA|W.C. 1pa4A|W.C. 1tiiC|W.C. 
1cc8A|W.C. 1gd0A|W.C. 1jbiA|W.C. 1me4A|W.C. 1pavA|W.C. 1ub1A|W.C. 
1cjkB|W.C. 1gh8A|W.C. 1jc5B|W.C. 1mg4A|W.C. 1pba_|W.C. 1ufyA|W.C. 
1ckjB|W.C. 1ghhA|W.C. 1jd21|W.C. 1mg7A|14-187 1pbuA|W.C. 1unnC|W.C. 
1ckv_|W.C. 1gk9A|W.C. 1jd2K|W.C. 1mg7A|188-380 1pc6B|W.C. 1uq5A|W.C. 
1cqmA|W.C. 1gk9B|W.C. 1jd2L|W.C. 1mhdA|W.C. 1pcfA|W.C. 1usmA|W.C. 
1cv8_|W.C. 1go1A|W.C. 1jd2M|W.C. 1mhmB|W.C. 1pil_|W.C. 1uutA|W.C. 
1cxyA|W.C. 1gph1|1-234 1jfmA|W.C. 1mk0A|W.C. 1pinA|45-163 1uuzB|W.C. 
1czpA|W.C. 1gpqB|W.C. 1jh6A|W.C. 1mk4A|W.C. 1pqsA|W.C. 1uw4A|W.C. 
1d5tA|292-388 1gtpA|W.C. 1jhsA|W.C. 1mkbA|W.C. 1prtA|W.C. 1v2yA|W.C. 
1d8iA|W.C. 1gtqA|W.C. 1jidA|W.C. 1ml8A|W.C. 1prtB|4-89 1v74A|W.C. 
1d9uA|W.C. 1gw5S|W.C. 1jihA|390-509 1mldA|145-313 1pugC|W.C. 1vazA|W.C. 
1dchA|W.C. 1gxuA|W.C. 1jk3A|W.C. 1mogA|W.C. 1pvmB|65-142 1vcc_|W.C. 
1dcjA|W.C. 1gxyA|W.C. 1jknA|W.C. 1molA|W.C. 1pytA|W.C. 1vhiB|W.C. 
1def_|W.C. 1gy7B|W.C. 1jn0A|149-312 1mszA|W.C. 1pz4A|W.C. 1vi8B|W.C. 
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1di2B|W.C. 1gyfA|W.C. 1jnzB|W.C. 1mw4A|W.C. 1q53A|W.C. 1vih_|W.C. 
1dizA|1-99 1gyxA|W.C. 1jo0A|W.C. 1mwpA|W.C. 1q5yB|W.C. 1xxcA|W.C. 
1dokA|W.C. 1h0yA|W.C. 1josA|W.C. 1mwwB|W.C. 1q8lA|W.C. 2atcB1-100 
1dt4A|W.C. 1h3qA|W.C. 1jrkA|W.C. 1n13C|W.C. 1q8rA|W.C. 2bopA|W.C. 
1e0gA|W.C. 1h5pA|W.C. 1jrmA|W.C. 1n32C|107-207 1qb3B|W.C. 2fdn_|W.C. 
1e1hA|W.C. 1h6hA|W.C. 1jruA|W.C. 1n32C|2-106 1qddA|W.C. 2fmr_|W.C. 
1e1hD|W.C. 1h6kY|W.C. 1jw3A|W.C. 1n32I|W.C. 1qdnA|86-201 2igd_|W.C. 
1e44A|W.C. 1h6vC|367-495 1jyoA|W.C. 1n32J|W.C. 1qfcA|W.C. 2jdxA|W.C. 
1e5uI|90-187 1h8cA|W.C. 1k0kA|W.C. 1n4wA|319-450 1qg7A|W.C. 2nef_|W.C. 
1e7kA|W.C. 1hbnB|2-188 1k1gA|W.C. 1n62C|1-177 1qhkA|W.C. 2nmtA|34-218 
1e7lA|1-103 1he8A|144-321 1k3eA|W.C. 1n62C|178-286 1qkfA|W.C. 2pleA|W.C. 
1e87A|W.C. 1hl6D|W.C. 1k4iA|W.C. 1n62D|2-81 1qkiB|200-434 2proB|4-85 
1e9yA|1-105 1hmjA|W.C. 1k5nA|1-181 1n6zA|W.C. 1qkiB|450-511 2proB|86-158 
1earA|75-142 1hq6A|W.C. 1k83K|W.C. 1neiA|W.C. 1qklA|W.C. 2sak_|W.C. 
1eayC|W.C. 1hqi_|W.C. 1k8bA|W.C. 1nh7A|211-284 1ql0A|W.C. 2sxl_|W.C. 
1eb6A|W.C. 1hqz1|W.C. 1k8kF|W.C. 1nkiA|W.C. 1qmtA|W.C. 2tbd_|W.C. 
1ecsA|W.C. 1hv2A|W.C. 1k92A|189-444 1no5A|W.C. 1qolA|W.C. 2tldI|W.C. 
1ef5A|W.C. 1hywA|W.C. 1kafD|W.C. 1nr3A|W.C. 1qr5A|W.C. 2u1a_|W.C. 
1eggB|W.C. 1hz6B|W.C. 1kanA|1-125 1nrjA|W.C. 1qs1A|265-461 2vil_|W.C. 
1egwA|W.C. 1hztA|W.C. 1kcgC|W.C. 1nskl|W.C. 1qs1A|60-264 3gcc_|W.C. 
1ektA|W.C. 1i0vA|W.C. 1kcqA|W.C. 1nvjD|W.C. 1qsoA|W.C. 3lzt_|W.C. 
1el6A|W.C. 1i12A|W.C. 1kf6B|1-105 1nwwB|W.C. 1qstA|W.C. 3seb_|122-238 
1emwA|W.C. 1i17A|W.C. 1kg0C|W.C. 1nwzA|W.C. 1qtoA|W.C. 3znbA|W.C. 
1eqkA|W.C. 1i35A|W.C. 1kjkA|W.C. 1nxiA|W.C. 1qxyA|W.C.  
1eqrA|107-287 1i7eA|W.C. 1kjqB|113-318 1nz8A|W.C. 1qymA|W.C.  
1eqrA|288-420 1i9yA|W.C. 1kn0A|W.C. 1o0pA|W.C. 1qynA|W.C.  
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