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ABSTRACT

Data classification is an important data mining problem that aims to determine
the membership of different instances to a number of different sets. Traditional
approaches that are based on partitioning the data sets into two groups need some
modifications for multi-class data classification problems. These modifications affect
the efficiency and make the models more complex. In this thesis, a novel mixed
integer programming based hyper-box enclosure approach is presented for multi-
class data classification problems. In order to deal with large data sets, a three-stage
mathematical programming based approach is developed for training part analysis of
hyper-box enclosure method.  Training set is preprocessed to identify the
observations that are more difficult to classify, and seed finding and sub grouping
algorithms are applied in the first stage. Then, optimization model is formulated
considering these observations and seeds. Finally, assignments of non-problematic
instances, intersection elimination and box combination algorithms are carried out.
After training analysis with this three stage approach, the efficiency of the method is
tested by the simple distance based testing algorithm. The efficiency of the proposed
three-stage method is tested on two separate benchmark problems; the protein folding
type prediction problem and the UCI Repository data sets. The computational results
on the illustrative example and the benchmark problems show the accuracy of the

proposed method.
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OZET

Veri Siniflandirma, farkli 6zelliklere sahip 6rneklerin bilinen siniflara olan iiyeligini
belirlemeye ¢alisan 6nemli bir veri madenciligi problemidir. Veri setini iki gruba ayiran
geleneksel yontemleri ¢ok sinifli veri siniflandirma problemlerine uygulayabilmek i¢in bazi
diizenlemelere gerek vardir. Yapilan bu degisiklikler kullanilan yontemin verimliligini
etkilemekte ve modeli daha karmagsik bir hale getirmektedir. Bu tezde ¢ok gruplu veri
siniflandirma problemi icin gelistirilmis tamsay1 karisik programlamaya dayali yeni ¢ok
boyutlu kutu yaklasimi anlatilmaktadir. Biiyiik veri kiimeleri ile c¢alisabilmek i¢in ¢ok
boyutlu kutu yaklasiminin egitici boliimiinde kullanilmak iizere ii¢ asamali matematiksel
programlamaya dayali bir yontem gelistirilmistir. Birinci asamada, egitici kiimedeki
siniflandirmas1 zor olan Ornekler belirlenerek, tohum bulma ve alt kiime olusturma
algoritmalar1 uygulanmaktadir. Daha sonra edinilen bu gozlem ve tohumlar kullanilarak
eniyileme modeli ¢oziilmektedir. Son olarak da problemsiz orneklerin kutulara atanmasi,
kesisme engelleme ve kutu birlestirme algoritmalar1 uygulanmaktadir. Bu ii¢ asamali
egitici ¢aligmalar sonrasinda, metodun verimliligi uzakliga dayali basit bir test algoritmasi
ile 6l¢iilmiistiir. Bu ii¢ asamali modelin verimliligi veri siniflandirilmasinda ¢ok bilinen ve
cok kullanilan veri setleri {izerinde test edilmistir. Bunlar protein katlanma tahmin problemi
ve UCI veri havuzu problemleridir. Ornek problem ve bilenen veri setleri kullanilarak elde
edilen sonuclar Onerilen yontemin c¢ok smifli veri siniflandirma problemine 6nemli bir

katkida bulundugunu kanitlamaktadir.
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Chapter 1

INTRODUCTION

Customer information becomes very important for companies as it is necessary to
achieve power and success in the market. Due to recent advances in sophisticated
hardware and software technologies, large quantities of data can be acquired, processed and
stored. However, the amount of collected data frequently increases and constitutes large
complicated databases. As a result of these structures, database management and data
mining studies receive considerable attention. Data mining is the process of investigating
and extracting implicit, previously unknown and potentially useful information form large
data by using one or more computer-based learning techniques. The objective of data
mining is to discover general patterns and similar characteristics of available data. Many
different data mining methods exist; for example clustering, classification, association
analysis, feature selection and characterization. Of these methods, data classification is the

most important and widely studied topic [1].
1.1 Data Classification

Data classification, sometimes referred as pattern recognition or discriminant
analysis, is a supervised learning strategy that analyzes the organization and categorization
of data in distinct classes [2]. Generally, a training set, in which all objects are already
associated with known class labels, is used by classification methods. The data
classification algorithm works on this set by using the input attributes and builds a model to

classify new objects. In other words, the algorithm predicts output attribute values. Output
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attribute of the developed model is categorical. For instance, a bank could attempt to
understand the behavior of its customers via credit analysis, and customers can be assigned
one of three possible labels; “safe”, “risky”, and “very risky”. The generated model could
be used either to accept or reject future credit requests [1].

Classification has several significant differences from clustering, a related data
mining technique. The class labels and the number of classes are not known in clustering.
On the other hand, the class labels and the number of classes are known a priori for
classification. In addition, there is no output attribute in clustering, thus, clustering
algorithms attempt to group instances into two or more classes by using some measure of
cluster quality [3]. Unlike clustering, prediction has an output attribute. However, the
purpose of prediction is to determine future outcome rather than current behavior. In
classification, an output attribute is categorical, whereas the output attribute of a predictive
model can be either categorical or numerical. In summary, classification places emphasize
on building models that are able to assign new instances to one of a set of well-defined
classes [2].

There are many applications of data classification in finance [2, 3], health care [2],
sports [2], engineering [2, 4], and science [4]. In finance, especially in risk management,
data classification is applied to determine insurance rates, manage investment portfolios,
and differentiate between individuals who have good or poor credit risks [3]. Furthermore,
financial institutions use data classification to detect which customers are using which
products so they can offer the right mix of products and services to better meet customer
needs. Another application used by financial institutions is fraud detection in credit card
and large cash transactions [2].

Additionally, several health care studies such as medical diagnoses and treatment
effectiveness can be analyzed by the help of classification [2]. For instance, information

about patients who have had or not yet had a heart attack is collected. A person’s risk for
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heart attack can be predicted using data classification methods. By considering these risk
values, precautions are taken and certain medical treatments are applied to high risk
patients [2].

In case of sports, data classification studies are carried out for horse racing and
lottery. Data related to past matches between the teams are collected. Then, while playing
chance games, gamblers use these past data and estimate the result of the future match and
the winner [2].

Customer Relationship Management (CRM) is a well-known application of data
classification in business that involves the management of interactions with customers [3].
For this purpose, information related to each customer is collected and this data are used to
increase the efficiency of interaction with the customers in all stages. In CRM,
classification is generally used to assign a score to a particular customer or prospect
indicating the likelihood that the individual will behave in such a way that revenues and
customer satisfaction levels are improved. For example, the inclination to respond to a
particular offer or to switch to a product from a competitor could be measured by a score.
Moreover, characterization of customer segmentation into groups with similar behavior,
such as buying a particular product, can be identified by classification. Consequently, data
classification models can add tremendous value to organizations both in finance and
business [2, 3].

Data classification has a wide range of security related applications as well:
fingerprint and facial recognition are the most studied topics. Another widely used
application of data classification is in the area of bioinformatics; classification methods are
being used in order to get valuable information on the characteristics of genes and proteins.
Many classification methods are used in micro array analysis to predict sample phenotypes
based on gene expression patterns [4]. Another problem in bioinformatics that attracted a

lot of attention in the literature is the prediction of secondary structure of a protein from its
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amino acid sequence [4]. Moreover, protein folding type prediction is also studied with
different classification methods [4]. In conclusion, data classification is an important
problem that has applications in a diverse set of areas ranging from finance to

bioinformatics.
1.2 Data Classification Methods

Typical classification algorithms have three basic steps; model construction, model
evaluation, and model use [1]. Each instance in training set is assumed to belong to a
predefined class. By examining input attributes of the training samples, a classification
model defining the general characteristics of existing classes is obtained during the model
construction step. Depending on the solution approach, the model can be represented in
different forms such as mathematical formulae, rule, or a computer program. The next
step, model evaluation, is the accuracy estimation of the model based on a test set. In this
evaluation part, known labels of each of the test samples are compared with the results of
the model. The percentage of test set samples that are correctly classified by the model
constitutes the accuracy value of the method. Selecting the instances of the test set is very
critical: the test set must be independent of training set in order to obtain reliable results.
Finally, if the accuracy of the developed model is preferable, then it is used to classify the
unseen samples by assigning labels for them.

A broad range of methods exists for data classification problems including Neural
Networks (NN), Support Vector Machines (SVM), Mathematical Programming, Decision
Trees, K-nearest Neighbor, Logistic Regression, Bayesian Networks, Genetic algorithms,
Rough Set Theory, and Fuzzy Sets. An overall view of classification methods is published
by Weiss and Kulikowski [5]. In this study, available classification and prediction methods
from statistics, neural networks, machine learning and expert systems are reviewed.

Widely studied data classification methods are explained briefly in the following

subtitles.
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1.2.1 Neural Networks

A neural network is a data structure that attempts to simulate the behavior of
neurons in a biological brain. While the human brain consists of billions of neurons, a
typical neural network is composed of layers of interconnected nodes up to 100. From one
unit to another, messages are passed along these connections. Through this transfer, a
message can change based on the weight of the connection and the value in the node.
Neural networks operate in two phases; learning and output. During the network learning,
attribute values of the training instances enter the network at the input layer. The network
connection weights and attribute values are practiced to compute the output for each
training instance. These output values are compared with the desired network output and
any error between these two values is calculated to modify the weights of the
interconnections. Learning phase terminates after a predetermined number of iterations or
minimum error rate is achieved. Finally, network weights are fixed and the network is
used to compute output values for new instances in the output phase [2].

A major shortcoming of the neural network approach is a lack of explanation of
established model. Moreover, converting categorical values to numerical ones could be a
challenging issue. In addition, although the prediction accuracy is generally high, neural
networks need long training times [4, 6]. Moreover, the training procedures can lead to

both over fitting problem [7, 8] and gets stuck at a local optimum of the cost function.
1.2.2 Support Vector Machines

Support Vector Machines (SVM) is a new classification technique developed by
Vapnik and his group [9]. They operate by finding a hyper surface that will split the
classes so that the distance between the hyper surface and the nearest of the points in the
groups has the largest value. The main goal is to generate a separating hyper surface which

maximizes the margin and produces good generalization ability [4]. In recent years, SVM
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has been considered one of the most efficient methods for two-class classification problems
[10].

On the other hand, the SVM has some important drawbacks. First, a combination
of SVMs has to be used in order to solve the multi-group classification problems. Second,
some approximation algorithms are used in order to reduce the computational time for
SVMs while learning the large scale of data. However, this computational improvement
could cause less efficient performance values. Additionally, choice of the Kernel Function
and the values of parameters are important decisions that directly affect the performance.

To overcome the above problems, many variants of SVM have been suggested
including the use of SVM ensemble with bagging or boosting rather than the use of a single
SVM [11]. Hsu et al. [12] compared the performance values of “all-together” and binary
classification based methods such as “one-against-all”’, “one-against-one” and direct
acyclic graph (DAG) SVM.

The one-against-all method is the earliest used implementation for SVM multi-class
classification. It constructs K SVM models where £ is the number of classes. The i SVM
is trained with all of the examples in the i class with positive labels, and all other
examples with negative labels. One piece at a time each class is separated from the others.

Conversely, one-against-one method constructs k(k-1)/2 classifiers where each one
is trained on data from two classes. In the testing part, if sign of the model says x is in the
i class, then the vote for the i” class is added by one. Otherwise, the j* is increased by
one. Finally, x is predicted to be in the class with the largest vote.

Direct acyclic graph SVM method’s training phase is the same as the one-against-
one method by solving k(k-1)/2 binary SVMs. However, in the testing phase, it uses a
rooted binary directed acyclic graph which has k(k-1)/2 internal nodes and & leaves. Each
node is a binary SVM of i and j” classes. Given a test sample x, starting at root node, the

binary decision function is evaluated. It then moves either left or right depending on the
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output value. Therefore, it goes through a path before reaching a leaf node which indicates
the predicted class.

Hsu et al. [12] conclude that “one-against-one” and DAG binary classification
methods are more suitable for practical use than the other methods. Nevertheless, for
solving multi-class SVM in one step, a much larger optimization problem is required so

experiments are limited to small data sets.
1.2.3 Mathematical Programming Approaches

The mathematical programming approach to linear discriminant analysis was first
introduced in early 1980’s. Since then, numerous mathematical programming models have
appeared in literature. As an extension of complement to these, Erenguc and Koehler made
a comprehensive review [13]. In their research, they formulate a typical mathematical

programming (MP) approach as follows:

minimize fw,c) (1.1)
subject to: X;w<cl (1.2)
Xow=>(c+e)l (1.3)
w#0 (1.4)

By this general formulation MP approach tries to determine a scalar ¢ and a non-
zero vector wER? such that the hyper plane w’x = ¢ partitions the m-dimensional (m: the

number of attributes) Euclidean space R" into a closed half-space w ’x <¢ and an open half-
space w’x > c¢. In the formulation, € represents an arbitrarily small positive number. An

interior and exterior deviation term for each group are defined for MP approaches. An

interior deviation is the deviation from the hyper plane of a properly classified point. An

exterior deviation is the deviation from the hyper plane of an improperly classified point.
Many distinct MP methods with different objective functions are developed in

literature. These include; minimizing the maximum exterior deviation, minimizing the
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weighted sum of exterior deviations, minimizing a measure of exterior deviations while
maximizing a measure of interior deviations, minimizing the number of misclassifications,
and minimizing a generalized distance measure. Most of these methods modeled data
classification as linear programming (LP) problems which optimize a distance function.
Contrary to LP problems, mixed-integer linear programming (MILP) problems with
minimizing the misclassifications on the design data set are also widely studied [12].

MP methods have certain advantages over the parametric ones. For instance, they
are free from parametric assumptions and weights to be adjusted. Moreover, varied
objectives and more complex problem formulations can easily be accommodated by using
MP methods. On the other hand, obtaining a solution without any discriminating power,
unbounded solutions and excessive computational effort requirement are some of the

problems in MP based methods.
1.2.4 Decision Trees

Decision Trees are one of the most popular top-down induction techniques in data
classification. One of the main reasons behind this popularity appears to be their
transparency and relative advantage in terms of interpretability. Moreover, there exist two
powerful implementations of decision trees; CART [14] and C4.5 [15]. Most decision tree
induction algorithms construct a tree in a top-down manner by selecting attributes one at a
time and splitting the data according to the values of those attributes. The most important
attribute is selected as the top split node, and so forth. For example, in C4.5 attributes are
chosen to maximize the information gain ratio in the split [15]. The basic steps of a
decision tree algorithm are as follows [2]:

1. Let T be the set of training instances.
2. Choose an attribute that best differentiates the instances contained in 7.
3. Create a tree node whose value is the chosen attribute. Create child links

from this node where each link represents a unique value for the chosen
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attribute. Use the child link values to further subdivide the instances into
subclasses.
4. For each subclass created in step 3:

a. If the instances in the subclass satisfy predefined criteria or if the set
of remaining attribute choices for this path of the tree is null, specify
the classification for new instances following the decision path.

b. If the subclass does not satisty the predefined criteria and there is at
least one attribute to further subdivide the path of the tree, let 7 be
the current set of subset classes and return to step 2.

Existing decision tree algorithms are computationally efficient and practically
successful. However, the fact that they are limited to constructing axis-parallel separating
planes limits their effectiveness in applications where some combinations of attributes are
highly predictive of the class [16]. A further drawback lies in the fact that continuous
variables are implicitly discretized by the splitting process, losing information along the
way. Moreover, most decision tree algorithms are known to be unstable when dealing with
a large data set where it can be impractical to access all data at once and construct a single

decision tree [17].
1.2.5 K-Nearest Neighbor Algorithm

The nearest neighbor method is a non-parametric classification technique proposed
by Fix and Hodges [18] and then modified by Cover and Hart [19]. The K-nearest
neighbor (K-NN) classifies unlabeled samples based on their similarity with the
observations in the training set. Thus, for a given unlabeled sample, we find the “K-
closest” labeled observations in the training set and assign the unlabeled samples to class
that appears most frequently within & subset. Experimental studies show that K-nearest

neighbor is computationally expensive for a large data set, but it is simple and running
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faster than other classification methods. Moreover, the misclassification rate of K-NN rule
approaches the optimal error rate asymptotically as k increases.

The K-NN algorithm uses the metric properties of the data space. The most
commonly used metrics in measuring the distance of a sample from a given training set

X E[xl, Xy, o xm] are as follows:

e Fuclidean Distance:

4,00, X% = (3 (x, - x)’ (1.5)

e Minkowski Distance:

dAKXﬂzdihfﬁq (1.6)
i=1

¢ Elliptical Distance:

d(x, X% =3, -2 (1.7)
i=l

The major weakness of K-nearest neighbors lays in both choices the value of & and
calculation of case neighborhood: for this one, one needs to define a metric that measures
the distance between data items. In most application areas, it is not clear how to, other than
by trial and error, define a metric in such a way that the relative importance of data
components is reflected in the metric. Furthermore, as the size of the training set becomes
large, distance calculation process becomes very expensive. Moreover, it needs a large
storage, because it runs using the entire training set and highly sensitive to the curse of

dimensionality.
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1.2.6 Logistic Regression

Logistic Regression is a nonlinear regression technique that associates a conditional
probability score with each data instance [2]. It is useful when the dependent variable is
either binomial or multinomial values. Binomial logistic regression is a form of regression
which is used when the dependent variable is a binary and the independent variables are
continuous, categorical or both. On the other hand, multinomial logistic regression exists
to handle the case of more than two dependent variables [20].

Generally, logistic regression produces a formula that predicts the probability of the
dependent variable as a function of the independent variables. It produces Odds Ratios
(Equation 1.8) by the help of the term p(k=I|x), the probability of seeing the class
associated with £ = 1 given the values contained in the feature vector x. As it is producing
odds ratios as functions of predictors, the regression coefficient in the logistic regression
model has no interpretation of the linear correlation.

plk=1]x)

1= p(k=1]x) 49

For any feature vector x, the odds indicate how often the class associated with £ =1
is seen relative to the frequency in which the class associated with & = 0 is observed for the
binomial case. After taking the natural log of this odds ratio and some transformations,
logistic regression model given in Equation 1.9 will be obtained. The method iteratively
tries to determine the coefficient values for the exponent term ax+c in Equation 1.9.
Convergence occurs when the logarithmic summation is close to zero or when the value

does not change from one iteration to the next [2].

e
plk=1[x)=——- (1.9)
l+e
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1.2.7 Bayesian Networks

Bayes classifier is a simple but powerful data classification technique. The model
assumes all input attributes to be of equal importance and independent of one another. The
classifier is based on Bayes Theorem given in Equation 1.10 where H is a hypothesis to be
tested and E is evidence associated with hypothesis. Hypothesis is the dependent variable
and represents the class. The evidence is determined by input attributes. P(E|H) is the
conditional probability that H is true given evidence E. P(H) is an a priori probability,
which denotes the probability of the hypothesis before any evidence is given [2].

P(E|H)P(H)

P(H | E) = P(E)

(1.10)

A Bayesian network is a directed acyclic graph G that model probabilistic
relationships among a set of random variables where each variable has specific classes.
Each node in the graph represents a random variable and each edge captures the direct
dependencies between variables. The network encodes the conditional independence
relationships that each node is independent of its non-descendants given its parents [21].

The popular Bayesian network implementation is Naive Bayes method.
1.2.8 Other Methods

Genetic Algorithms are used in data classification problems that are difficult to
solve using conventional methods. It is based on Darwinian principle of natural selection;
crossover and mutation are the most widely used genetic operators. In a basic genetic
learning algorithm, a population P of n elements is initialized which often referred to as
chromosomes. A fitness function is used to evaluate each element of current solution. If
an element passes fitness criteria, it remains in P. By using genetic operators new elements
are created and added to the population. This procedure is carried on until a specified

termination condition is satisfied [4].
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Rough Set Theory (RST) can be approached as an extension of the Classical Set
Theory [2]. Rough sets are considered as the sets with fuzzy boundaries, in other words the
sets that cannot be precisely characterized using the available set of attributes. In data
classification, it is inconvenient to describe the similarity among data with the
indiscerniblity relation because two data x and z cannot be guaranteed in the same class
even though a couple of data x and y are contained in the same class and another couple of
data y and z are also contained in the same class. In other words, the transitivity property is
not always useful in the problem of data classification. This non-transitivity property is
more salient for the data within the boundary region. For this reason, a tolerant relation
appropriate for the data classification problem is studied by some researchers.

In contrast, Fuzzy Sets are based on Fuzzy Logic [4]. Fuzzy logic is an extension of
Boolean logic (YES or NO) dealing with the concept of partial truth. Whereas, classical
logic holds that everything can be expressed in binary terms (0 or 1, yes or no), fuzzy logic

replaces Boolean truth values with degrees of truth.
1.3 Performance Evaluation

In evaluating the performances of classification methods, the percentage of
correctly classified instances, accuracies, are estimated and compared. Accuracies
estimated on the training set are called as self-consistency results. It is widely known that
self-consistency test results tend to be biased. Hence, two different error estimation

methods are recommended to have unbiased performance evaluation.
1.3.1 Training and Test Sets

Training set is a sample of data that is used to build classification rules and
functions. In order to test the performance of the classification method, another
independent data set, test set, is used. True classes of the instances in that test set are

known but are not shown to the classifier. Finally, predicted and true classes of test set
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instances are compared and classification performance is estimated by the number of
correctly classified instances. As test set instances are unseen by the classifier, this
performance estimate is unbiased. When a data set is given, conventionally a 2/3 of the
data set 1s selected randomly and used as test set. The classifier is trained on the remaining
data and then tested on the test data. There exists a small loss of efficiency due to not use
the full sample as training but this is not a major problem for large data sets. Generally,
this type of performance evaluation is adopted when the number of instances are much

larger than 1000 [22].
1.3.2 Cross-validation

For moderate size samples, the cross validation is preferred. In cross-validation,
data set is divided into m equal-sized sub samples randomly. Each sub sample is treated as
a test set and predicted via the classification rule constructed from the remaining (m-1) sub
samples. The classification performance is estimated by taking the average of these m sub
samples. In this way, the classification rate is calculated efficiently and in an unbiased
way. Leave-one-out (LOO) rate is simply applying the cross-validation with m equal to the
number of instances. LOO and 10 fold cross-validation (10FCV) are very popular

performance evaluation methods [22].
1.3.3 Sensitivity and Specificity

In classification methods, giving only the accuracy values are not sufficient to
analyze the results. There exist other values to be estimated and analyzed such as
sensitivity, specificity, Mathews Correlation Coefficient and performance with respect to
random prediction. In order to define these values easily, a representative confusion matrix
given in Table 1.1 will be used. The values a, b, ¢ and d are the number of correct
predictions for the respective classes 1, 2, 3, and 4. Moreover, ab is the number of

incorrect predictions where Class 1 instance is predicted as Class 2 and ba is the number of
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incorrect predictions where Class 2 instance is predicted as Class 1. The other values of

the confusion matrix are similar definitions with ab and ba.

Table 1.1 A representative confusion matrix for a four-grouped data classification problem.
ACTUAL PREDICTED CLASSES
CLASSES Class1 Class2 Class3 Class 4

Class 1 a ab ac ad
Class 2 ba b bc bd
Class 3 ca cb c cd
Class 4 da db dc d

Furthermore, in order to simplify the equations of performance measures, we need
to define five more parameters. Total number of instances in the data set is symbolized by
N. In Table 1.1, N will be total sum of the values in each of the rows and columns of the
confusion matrix. C represents the correctly classified instances in class k. For example,
in Table 1.1, C; will equal to a. NCy is used to give the number of correctly classified
instance not in class k. In Table 1.1, NC; will equal to (a+c+d). Additionally, the number
of under-predicted instances and over-predicted instances for class k are defined by U; and
Oy, respectively. U; will be the sum (ac+bc+dc) and O; will be the sum (ca+cb+cd) from
Table 1.1. Using these four new parameters, other performance measure definitions will be
much simpler.

The sensitivity is the ratio of correct and all predictions for a given structural class

[23]. The sensitivity value of class k is given in Equation (1.11).

Sensivity, = o (1.11)
k + k
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The specificity is the ratio between the correct and all predictions for proteins that
should be excluded for a given class [23]. The specificity value of class k is given in
Equations (1.12).

N-C,-0,-U,

1.12
N-C, -0, (1.12)

Specificity, =

Generally, average specificity and sensitivity values are given for classification
methods. These values can be calculated taking the weighted averages of individual
specificity and sensitivity values with respect to the class sizes. In Equations (1.13) and

(1.14), formal definitions of average sensitivity and specificity values are presented,

respectively.
C.+0
Sensivity = Z S’ sensivity, (1.13)
N
C, +0,

Specificity = Z specificity, (1.14)
k

N

1.3.4 Mathews Correlation Coefficient

Mathews Correlation Coefficient (MCC) is a limited number between -1 and 1. If
there is no relationship between the predicted values and actual values, the MCC should be
0 or very low (the predicted numbers are not better than random numbers). In contrast, the
MCC value would increase as the strength of the relationship between the predicted values
and actual values increases. It is obvious that a perfect fit gives a coefficient of 1. The
higher MCC indicates the better performance of the prediction [24]. The MMC value for
class k can be calculated using Equation (1.15).

[c,NC, -U,0,]

1.15
JC +U.0C, +0,JNC, =U,JNC. +0,) (1.15)

MCC, =
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1.3.5 Performance with Respect to Random Prediction
Performance with respect to random prediction can be calculated by Equation
(1.17). For a perfect prediction, S; should be equal to 1 while for the predictions that are no
better than random it would be equal to zero [24].
(C, +UC, +0,)+(NC, +U, \NC, +0,)
N

RTotal, = (1.16)

g - C, + NC, — RTotal,

1.17
‘ N — RTotal, (117)

Besides giving the accuracy values of the studied data sets, we will investigate these
performance measures and analyze the results deeper.
1.3.6 P-value Analysis

When comparing supervised classification models, the P-value (paired t-test)
analysis based on hypothesis testing need to be carried out in order to examine the
differences in a statistical manner. P-value represents the difference between two models
with 95% confidence. If P-value is greater than 2, the difference between the results of the
models is not due to chance. Otherwise, the accuracies of the models are very close to each
other and no significant improvement achieved. P-value can be calculated using Equation
(1.18). In this equation, E; and E are the error rates of two models; ¢ is the average of two
error rates; n; and n, are the number of instances in the test sets of two models.

_ B, - E,|
\/Q(I_Q)(l/nl +1/n,)

(1.18)

1.4 Ideal Characteristics of Classification Methods

While evaluating the data classification methods, some important properties of the
model have to be considered in detail. Firstly, methods are usually evaluated on the test
data. Prediction accuracy, ability of the model to correctly predict the class label, is a very

considerable point for evaluation. Most of the comparisons between the models are done
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by looking directly to these prediction accuracy values. On the other hand, time to
construct the model and time to use it also has a big role in real life applications. For a
preferable data classification model, computational time must be reasonable. Thirdly, for
an ideal data classifier, it should have a few parameters to tune in the system as possible.
In Neural Networks, the weights between the nodes have to be adjusted. Since all of the
existing weights need to be optimized, it is not easy to incorporate the domain knowledge
and they possess a long training time. Moreover, it is difficult to understand the learned
function. Similarly, SVM method has the biggest limitation of choosing the kernel
function. Once the kernel is fixed, SVM classifiers have only one user-chosen parameter,
error penalty. However, kernel is a very important decision criterion. Another important
characteristic of an ideal data classifier is the ability to form a decision boundary that
minimizes the amount of misclassification for all of the overlapping classes in the training
set.

Some of the methods mentioned above can only be used for the two class cases,
such as yes (classl) or no (class 2). However, the number of classes to be classified is
generally more than two in real life problems. Existing methods can be somehow modified
or developed for multi-class case. In that situation, the accuracy values of the models
decrease [4]. For instance, SVMs are originally a model for two class problems and are
more effective. For multi-class case, combinations of SVMs should be used. Since SVMs
use some approximation algorithms in order to reduce the computational time, increasing
number of these approximation algorithms causes the degradation of classification
performance. Thus, the performance does not improve as much as in binary case.
Therefore, there is a need for new approaches that are able to address multi-group problems
effectively. In this study, a novel mixed-integer programming approach for multi-class
data classification problem has been developed. The proposed approach is based on the

use of hyper-boxes for defining boundaries of the classes that include all or some of the
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points in that set. The computational results on the studied datasets show that the

suggested method is accurate and efficient on multi-class data classification problems.
1.5 Contributions

This thesis presents a novel three-stage mathematical programming based hyper-
box enclosure approach for multi-class data classification problems. A mixed-integer
programming model is developed for representing existence of hyper-boxes which define
the boundaries of the classes for the training set. In order to overcome the computational
difficulties for large data sets, a three-stage approach is developed for training part analysis
of hyper-box enclosure approach. The performance of the model is tested by applying the
testing part of the proposed method. Main contributions of this thesis can be summarized
as follows:

One of the most important contributions is that the proposed data classification
method based on mixed-integer programming allows the use of hyper-boxes for defining
boundaries of the classes that enclose all or some of the points in that set. This approach in
the training problem can indirectly effect and improve the prediction accuracy of the
model. This may be one of the reasons behind the high classification accuracy values
obtained by the proposed model.

The suggested model can be used for both binary and multi-class cases without any
modifications or additions. High classification accuracies are observed for binary and
multi-class problems.

The proposed model has only one parameter to initialize (big-M parameter) and this
parameter does not require adjusting during the training of the model. Furthermore, the
model can operate without a priori knowledge about the underlying distribution of the data.

From the computational time perspective, the proposed three-stage MILP approach

is applicable to obtain solutions to large multi-class data classification problems.
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Furthermore, the testing algorithm is computationally tractable for high dimensional data
sets. As observed from the examined data sets, total computational time for proposed
approach is reasonable and less than the other methods used for these data sets.

The proposed approach in this thesis gives high accuracy values on the studied
benchmark data sets. Hence, the developed multi-class data classification model is at least
as accurate as the other models including NN, SVM, Decision Trees, K-Nearest Neighbor,
Logistic Regression, Bayesian Classifier, etc.

In summary, by the development of this new approach, solutions to multi-class data
classification problems can be obtained and the prediction accuracies can be improved. In
addition to this, the simplicity and the understandability of the proposed model are

preferable.

1.6 Outline

This thesis contains six chapters. Chapter 2 provides a literature review on data
classification summarizing distinct methods reported. Moreover, existing mathematical
programming based approaches to data classification are investigated in detail. The
literature on protein folding type problem is also mentioned in Chapter 2. The developed
three-stage MILP based hyper-box enclosure approach to multi-class data classification is
presented in Chapter 3. The mixed-integer programming formulation, sub grouping
algorithm, seed finding algorithm, intersection elimination algorithm and box combination
algorithm for the training part of the problem are discussed in detail. In addition, original
and new testing algorithms are explained and compared. The method is also illustrated on
a small illustrative example in Chapter 3. The application of the proposed approach on
existing protein folding type benchmark data sets are illustrated and results are examined in
Chapter 4. Furthermore, the efficiency of the proposed method on existing eleven UCI

Repository benchmark data sets is tested and results are given in Chapter 5. The thesis is
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concluded with short summary, conclusions, and directions on future research work with

Chapter 6.
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Chapter 2

LITERATURE REVIEW

Data classification is a multidisciplinary problem which is a very active area of
study and research. Classification problems have been intensively studied by a diverse
group of researchers including statisticians, engineers, biologists, computer scientists.
There are variety of methods for solving classification problems such as Neural Networks
(NN), Support Vector Machines (SVM), Decision Trees, Bayesian Networks, Logistic
Regression, K-nearest neighbor, tolerant rough sets, fuzzy logic and Mathematical
Programming [25]. In this chapter, a literature review on data classification methods,
mathematical programming based methods and an important problem, prediction of folding

type of proteins, is provided.

2.1 Literature Review on Data Classification Methods

An overall view of classification methods is published by Weiss & Kulikowski [5].
In this book, available classification and prediction methods from statistics, neural
networks, machine learning and expert systems are reviewed. Hand [26] investigates the
statistical approach of data classification and pattern detection in the fields of medicine,
psychology and finance. More recently, Webb provides an introduction to statistical
pattern recognition theory and techniques in his book [27]. In that book, descriptions of
today’s pattern recognition techniques including many of the recent advances in
nonparametric approaches to data classification in the statistics literature are provided.

Moreover, the techniques are illustrated with examples of real-world applications. The
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estimation of error rates in discriminant analysis is explored by Lachenbruch & Mickey
[28]. In this study, leave-one-out cross-validations tests are proposed for error estimation.
N (number of data points) separate times, the classification function is trained on all the
data except for one point and a prediction is made for that point in leave-one-out cross-
validation tests. Average error is computed and used to evaluate the model. The
evaluation given by this cross-validation test error is good, but computing the result of
leave-one-out tests takes very long time. Kendall et al. [29] give a comprehensive
exposition about the statistical approach of data classification and advance theory of
statistics. ~ Furthermore, McLachlan studied on a thorough treatment of statistical
procedures in discriminant analysis and pattern recognition [30].

The study by Hertz ef al. [31] is one of the most detailed and reliable information
guides for neural network approach in data classification. They propose an introduction to
neural computation and explain the theory of the neural network approach. Additionally,
Simpson [32] developed a fuzzy min-max classification neural network in which pattern
classes are utilized as fuzzy sets. In this study, learning in the neural network was
performed by properly placing and adjusting hyper boxes in the pattern space. Simpson
defines a fuzzy set hyper-box as an n-dimensional box defined by a min and a max point
with a corresponding membership function. The min-max membership function defines a
fuzzy set, hyper-box fuzzy sets are aggregated to form a single fuzzy set class, and the
resulting structure fits naturally into a neural network framework. Therefore, this
classification system is referred as fuzzy min-max classification neural network. Since it
uses only a min and a max point in the n-dimensional space and combines fuzzy sets with
the neural network idea, this model has a different approach as compared to the proposed
model in this thesis. Moreover, Zhang [33] gave a review of the use of feed-forward neural
networks for classification. In data classification problems, neural networks have the

ability to learn nonlinear input or output relationships while propagating and adopting itself
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with a given training set by training procedures. The learning process involves updating
network architecture and connection weights in order to achieve efficiency by the help of
some learning algorithms. The most common types of neural networks that are used for
data classification are feed forward neural networks (FFNN) which includes multilayer
Perceptron and Radial Basis Functions (RBFs) [34-37]. In FFNNSs, the neurons are
organized in different layers and each of the neurons in one layer can receive an input from
units in the previous layers without loss of generality. On the other hand, RBF network is
capable to perform a nonlinear mapping between the input and output vector space. It is
widely used in data classification problems such as speech recognition, medical diagnosis,
handwriting recognition, image processing, and fault diagnosis. The other popular network
is Kohonen network (self organizing map (SOM)) [38] in which two dimensional
discretized representation of the input space of the training samples are produced during
the training phase. SOMs are different than other neural networks in the sense that they
use a neighborhood function to preserve the topological properties of the input space.

On the other hand, Devijver & Kittler [39] concentrate on the K-nearest neighbor
approach for data classification problems from the perspective of statistical approach. A
comprehensive review of K-NN and many of the important contributions to the literature
are included in Dasarathy [40]. The performance of the K-NN depends on the choice of .
If the value of £ is larger, the procedure is more robust but needs more computation. Hans
[41] mentioned that £ must be smaller than the minimum of #;, the number of observations
in class j. Otherwise, the neighborhood is no longer the local neighborhood of the sample.

. 2 172
Other choices of k are n”” 8, n’ 8, and n'’

, subject to rounding up to the nearest integer,
where 7 is the total number of observations in the training set [37]. While the optimal

value of k£ depends on the size and nature of the data, typical values are 3, 5, or 7.
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One of the first papers published on data classification introduces fuzzy adaptive
resonance theory (ART) which is a fast and reliable analog pattern clustering system. In
this study, Carpenter and Grossberg combine the fuzzy logic with the idea of ART and try
to develop an efficient classifier [42]. A general neural-network model for fuzzy logic
control and decision systems including the data classification problem is discussed in [14].

Rough set theory introduced by Pawlak [43] is a mathematical tool to deal with
vagueness and uncertainty in machine learning and pattern recognition. Two applications
of logic for classification using rough set approach are presented in [44]. The multi-model
logics is employed for automatic feature selection while a rough-set-based inductive
reasoning is used for discovering optimal feature set with respect to the quality of
classification as well as for improving the performance of decision algorithms. Another
approach in data classification is to use rough sets by tolerating the relationships among the
objects for pattern classification [45]. A data classification method based on the tolerant
rough set that combines the use of logic and the tolerance relation among the objects is
presented in [46]. The performance of this approach is tested on the UCI Repository data
sets [47]. Furthermore, Castro et al. [48] presented a method to learn maximal structure
rules in fuzzy logic to deal with the one of the UCI Repository data sets, Iris. Chen et al.
[49], Hong et al. [50], Lin et al. [S1] and Wu et al. [52] presented different methods to
generate fuzzy rules from training instances based on genetic algorithms to study UCI
Repository data sets. Most recently, Chen et al. [53] developed a new model based on
distributions of training instances. Their proposed method achieves a higher average
classification accuracy rate than existing methods. On the other hand, Uney and Turkay
[54] proposed a mixed-integer linear programming approach and tested the performance of
the method on Iris data set.

The training procedure of support vector machines (SVMs) usually requires huge

memory space and significant computation time due to the enormous amounts of training
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data and quadratic programming problem [55]. Some of the researcher proposed
incremental training or active learning to shorten the training time [56]. The main idea is
to select a subset of training samples while preserving the performance as using all the
training samples. Syed et al. [57] and Campbell et al. [58] proposed two different
incremental learning procedures. On the other hand, multi-group data classification
problems are solved either by constructing several two class classifier such as one-against-
one, one-against-all, and DAG SVMs [12] or by constructing multi-class classifier directly
such as k&-SVM [59]. Recently, Zhu et al. [60] proposed a multi-class classification
algorithm which adopted the minimum enclosing spheres to classify a new example and
showed that the resulting classifier performed comparable to the standard SVMs. Based on
Zhu et al. [60], Wang et al. [61] and Lee et al. [62] also proposed a new classification rule
on the basis of Bayesian optimal decision theory.

Mathematical optimization techniques have been applied directly in the optimal
construction of decision boundaries in the decision tree induction. Bennett [63] introduced
an extension of linear programming techniques to decision tree construction for two class
problems. Kennedy et al. [64] first developed a genetic algorithm for optimizing decision
trees. In their approach, a binary tree is represented by a number of unit sub trees each
having a root node and two branches. When using genetic algorithm to optimize the tree,
the growth of the tree could not be controlled as genetic algorithm does not evaluate the
size of the tree. Therefore, the resulting tree may become overly deep and complex or may
be too simple. To address this problem, Niimi and Tazaki [65] combine genetic
programming with association rule algorithm for decision tree construction. In this
approach, rules generated by apriori association rule discovery algorithm are taken as the
initial individual decision trees for a subsequent genetic programming algorithm.

In summary, a large number of data classification methods have been developed up

to now; however each of them has some drawbacks which make them unattractive. Thus,
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researchers have been studying to develop more accurate and more efficient methods or to

improve the existing methods.

2.2 Literature Review on Mathematical Programming Based Methods

Mathematical Programming (MP) based data classification models are used to
generate linear discriminant functions, or separating hyper-planes, which optimally
separate observations in a training set. Generally, two group data classification problems
are considered by MP techniques and they can be extended to multi-group problems [66,
67]. Erenguc and Koehler [13] summarized the existing mathematical programming
models and their experimental results.

Mangasarian [68] is the first researcher who proposed a linear programming model
to determine separating hyper-planes, namely linear discriminant function, for two linearly
separable classes. In the case of linearly inseparable classes, Freed and Glover [67]
proposed a mathematical model which tries to minimize the sum of the deviations (MSD)
of misclassified instances from the separating hyper-plane. In addition to that, Hand [69]
developed a mathematical model with an objective function of maximization of the
minimum deviation (MMD) of the misclassified instances from the separating hyper-plane.
For multi-group problems, a model based on goal programming was also suggested by
Freed and Glover [70]. An alternative LP approach for multi-group data classification
problems has been proposed in [71]. In addition to being non-parametric, LP and other MP
based approaches are also more flexible than statistical methods.

In LP based methods, deviations from the separating hyper-planes are used as
measures of misclassification as mentioned above. On the other hand, the number of
misclassifications can be considered directly in mixed integer linear programming (MILP)
models in which binary variables are used to indicate whether instances are correctly or
incorrectly classified. For two-group data classification problem, Bajgier and Hill [72]

included the number of misclassifications and the deviations in the objective function of a
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MILP model. On the other hand, Gehrlein [66] proposed a MILP approach for minimizing
the number of misclassified instances in multi-group data classification problems, while
Wilson [73] suggested an alternative MILP formulation and solution methods for these
problems. Stam and Joachimsthaler [74] argued that these MILP based methods may be
superior to both LP based techniques and statistical approaches. However, MILP
approaches can be used to solve problems involving small number of instances due to
computational reasons.

The problems that may appear in mathematical programming formulations for data
classification are summarized by Koehler [75]. Specific problems include the choice of
objective function, unacceptable or improper solutions, inconsistencies, gaps, and
balancing of misclassifications. MP based data classification models must be normalized
to prevent the generation of discriminant functions in which the variable coefficients and
the constant term are zero. This normalization requirement can cause difficulties, and
unlike statistical approaches, variables can not be selected in a computationally efficient
way with MP models. Glen [76] developed two integer programming (IP) methods for
normalizing MP discriminant analysis models. In the first method, binary variables are
used to represent the constant term, but with this normalization functions with a zero
constant term can not be generated. Moreover, the variable coefficients are not invariant
under origin shifts. These limitations are overcome by the second method by using IP to
constrain the sum of the absolute values of the variable coefficients to a constant [76].
Pavur and Loucopoulos [77] examined conditions under which degenerate solutions can
occur in MILP models for the classification problem for more than two groups. They
presented a multiple-group MSD model and a two-goal approach to the multiple-group data
classification problem. Lam and Moy [78] proposed an aggregate model which
simultaneously determines the cut-off values for the different classification functions in

order to provide better estimates of the group boundaries.
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Silva and Stam [79] introduced a computationally attractive algorithm, the Divide
and Conquer (D&C), for determining classification rules which minimize the number of
misclassifications in the training set for two-group data classification problems. The D&C
algorithm partitioned the problem in smaller and more easily handled sub problems and
solved the problem to the exact optimal solution by allowing analysis of much larger
training sets than previous methods. On the other hand, Glen [80] developed an iterative
MILP model to allow classification accuracy maximizing discriminant functions to be
generated for problems with many more instances that can be considered by the standard
MILP formulations. First, a discriminant function is generated by using a MSD based
mathematical programming formulation for the complete set of instances. Then, a
neighborhood of instances is defined and a MILP model is used to generate a discriminant
function that maximizes classification accuracy within this neighborhood. This procedure
is repeated until there is no improvement in the total number of instances classified
correctly. This iterative MILP method is applied to a two-group classification problem
involving 690 observations.

There are some very good MP based heuristics [81, 82] that can solve real world
two-group data classification problems fast. Although there exist ways to solve a multi-
group data classification problem by means of solving several two-group problems, such
approaches bring about new problems [83]. Hence, Adem and Gochet [25] presented a MP
based heuristic that avoid these problems and can tackle with multi-group data
classification problems directly. The basic idea is to improve an LP-generated classifier
with respect to the number of misclassifications on the design data set. The performance of
the proposed approach is tested on both simulated and real world data sets.

In addition to the standard MP based data classification methods in which
discriminant functions are generated by solving a single MP model, two-stage based MP

methods have also been developed. Stam and Ragsdale [84] proposed a two-stage method



Chapter 2: Literature Review 30

which is particularly suitable for data classification problems with outlier contaminated
data. In the first stage, a discriminant function is generated by solving the MSD based
model. In that model, some of the instances could be misclassified. In the second stage,
the objective is to generate a new discriminant function that minimizes a measure of total
misclassification while ensuring that the correctly classified instances in the first stage
remain correctly classified. Detailed information related to two-stage MP based methods
and comparisons with standard MP based methods are given by Glen [85]. The results
from comparisons of methods on one real data set and six simulated data configurations
indicate that a single technique will not produce good linear classifier under all data
conditions. Several methods should consider in developing classification models, with the

most appropriate method chosen for a particular problem.
2.3 Literature Review on Protein Folding Type Prediction

Proteins are the molecules of life that play a key role in realizing the functions of
any biological organism. Discovery of the functions of proteins will enable us to
understand the principles of life and working mechanisms of any organism. In the case of
humans, this discovery will lead to the design of new drugs that will regulate the functions
of proteins in order to improve the quality of life. Functions of proteins are highly
correlated to their three dimensional structure. There exist some experimental methods to
determine the protein structure including X-ray diffraction and nuclear magnetic resonance
(NMR). These experimental methods require long experimental times and large amounts
of resources. In order to overcome these shortcomings of experimental methods,
researchers have developed a host of methods to predict the protein structures. Due to the
importance of protein structure in understanding the biological and chemical activities in
any biological system, protein structure determination and prediction has been a focal
research subject in computational biology and bioinformatics. The knowledge of folding

type of proteins is an important part of protein structure prediction and determination
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studies. The results of the secondary structure prediction [86, 87] and the efficiency of
searching the possible conformations of the tertiary structure [88, 89] could be significantly
improved by incorporating the knowledge on folding types of protein. Another factor that
motivates protein folding type prediction studies is the substantial gap between number of
proteins for which structure is known and thus structural class can be assigned manually
(approximately 30 000 proteins are stored in Protein Data Bank [90] and SCOP [91]) and
the total number of currently known proteins (NCBI database contains over 2 million
proteins). Therefore, development of a reliable method for prediction of folding types of
proteins for new and undetermined protein sequences is very important.

A protein molecule is the chain(s) of amino acids (also called residues). There are
20 types of amino acids in nature and their names, three-letter representations and single-
letter representations are provided in Table 2.1. Residue content and order in chain(s) is
unique for each protein just like specificity of gene sequence.

Starting with the sequence of residues in the chain(s) making up protein, there are 4
basic structural phases: primary structure, secondary structure, tertiary structure and
quaternary structure. The secondary structure (folding type) of a segment of polypeptide
chain is the local spatial arrangement of its main-chain atoms without regard to the
conformation of its side chains or to its relationship with other segments. This is the shape
formed by amino acid sequences due to interactions between different parts of molecules.
There are mainly three types of secondary structural shapes: a-helices, S-sheets and other
structures connecting these such as loops, turns or coils. Alpha-helices are spiral strings
formed by hydrogen bonds between CO and NH groups in residues. Beta-sheets are plain
strands formed by stretched polypeptide backbone. When p-sheets come together,
hydrogen bonds form between C=0 and NH groups of residues of adjacent chains, keeping
them together. Connecting structures do not have regular shapes; they connect a-helices

and f-sheets to each other.
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Table 2.1 List of amino acids, their three-letter and single-letter representations.

Three Single Three Single
Amino Acid Letter Letter Amino Acid Letter Letter
alanine ALA A leucine LEU L
arginine ARG R lysine LYS K
asparagine ASN N methionine MET M
aspartic acid ASP D phenylalanine PHE F
cysteine CYS C proline PRO P
glutamic acid GLU Q serine SER S
glutamine GLN E threonine THR T
glycine GLY G tryptophan TRP Y
histidine HIS H tyrosine TYR Y
isoleucine ILE I valine VAL v

The proportion of a-helices and f-sheets in the secondary structures of proteins are
used to determine the folding type of proteins. Protein folding type definitions were

initially developed in 1980s and redefined multiple times since then (Table 2.2).
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Table 2.2 Definitions of Protein Structural Classes.

Reference Folding Helix (¢) Strand (#)  Additional constraints
Type amount amount

a proteins >15% <10%
[ proteins <15% >10%
a+f proteins >15% >10% Contains dominantly

[92] antiparallel S-sheets
o/ proteins >15% >10% Contains dominantly

parallel S-sheets

Irregular Otherwise
a proteins >40% <5%
J proteins <5% >40%
a +f proteins >15% >15% More than 60%

[93] antiparallel S-sheets
o/ proteins >15% >15% More than 60% parallel

[-sheets

Irregular <10% <10%
a proteins >15% <10%
J proteins <15% >10%

-] Mixed proteins >15% >10%
Irregular Otherwise
a proteins NA NA Manual classification
[ proteins NA NA Manual classification

SCOP[91] a+f proteins NA NA Manual classification

o/ proteins NA NA Manual classification
+7 other classes NA NA Manual classification
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The main differences were in the thresholds used to define amount of strands for
all-a proteins, and amount of helices for all-f proteins. Nakashima and colleagues [92]
defined five structural classes in 1986. Then, Chou [93] proposed classification into again
five classes by using different thresholds in 1995. The change was due to Nakashima’s
classification, which set the thresholds for all-a proteins and all-§ proteins that were not
large enough to reflect the real features of the two structural classes. Chou also defined
content of the secondary structures using the Dictionary of Secondary Structure of Proteins
(DSSP) [94]. Eisenhaber and colleagues [95] proposed another definition which merges
the a+f and the a/f classes into so-called mixed class and thus considers only four in 1996.
In all above classifications, irregular proteins, &, are omitted from classification as they are
small in numbers.

The threshold based classifications were replaced by the manually performed SCOP
classification. The descriptions of the structural and evolutionary relationships of proteins
from the Protein Data Bank (PDB) [90] are considered in the SCOP database [91]. The
SCOP classifies proteins on multiple levels including structural classes, but also as
belonging to different families, super families and containing different domains. Domain is
defined as a structurally conserved part of a protein sequence, and together with the entire
sequences is currently a target of structure prediction. The SCOP’s classification does not
incorporate hard coded rules for structural classes. Intuitively, it makes decisions based on
structural elements that are located in individual domains that constitute the protein.
Researchers claim that the SCOP classification is more “natural” and provides more
reliable information to study protein structural classes when compared to classification
based on the percentage amounts of the secondary structures [91, 96, 97]. The SCOP
classification currently includes 11 classes [98]: (1) all-a proteins; (2) all-f proteins; (3) o/
proteins; (4) at+f proteins; (5) multi-domain proteins; (6) membrane and cell surface

proteins; (7) small proteins; (8) coiled coils proteins; (9) low resolutions proteins; (10)
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peptides; and (11) designed proteins. Usually, only the first four categories are considered
for computational prediction purposes as they include significant majority of the protein
sequences.

It is postulated that overall folding type of a protein depends on its amino acid
composition [92]. There have been several methods proposed to exploit this postulate for
predicting folding type of a protein. Chou [99] developed a new prediction algorithm
which incorporates coupling effect between different amino acid components. By the help
of this component-coupled algorithm, prediction quality was significantly improved.
Another important progress in this area was achieved by Bahar ef al. [89]. In their study, a
compact lattice model was proposed in predicting structural class from amino acid
composition and 81% accuracy achieved using singular value decomposition method [89].
In this method, each protein is represented by a 19-dimensional array of fluctuations in
fractions of residues of different types. The j element of this vector is the difference
between the composition of the amino acid type j and the average fraction of amino acid j
in the group of n structures. The distance of a protein from the four type of structural
classes are calculated using 19-dimensional array of the protein by applying singular value
decomposition method. The smallest of the four distances obtained for each protein
determines the structural class of that protein. Although they use the same data set and
mathematically identical method with Chou, their accuracy is somehow less. They explore
this puzzling difference and came up with the result that the data files used in these studies
are different. Chou used files that contained fewer residues (chains of amino acids)
compared with intact Protein Data Bank (PDB) files. Eisenhaber ef al. [95] found that
component coupling effect between amino acid components did not improve the class
prediction, using a different dataset constructed according to their definition. In order to
clarify this paradox, Zhou [100], Chou et al. [101] and Cai [102] showed that component-

coupled algorithm significantly improved the prediction accuracy. The reasons why
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Eisenhaber ef al. come up with that result are misusing the component-coupled algorithm
and using a conceptually incorrect rule to classify protein structural classes. On the other
hand, Bu ef al. [103] come up with a new idea, using amino acid index rather than
composition in order to predict the structural classes. The overall predictive accuracy of
the new proposed method for the jackknife test was 5-7% higher than the accuracy based
only on the composition. However, many researchers continued studying on the first case,
based on only the amino acid composition. Cai et al. [104] applied T. Kohonen’s self-
organization neural network on two data sets composed of 277 and 498 domains,
respectively. They showed that this approach can be a powerful tool for protein structural
class prediction. Furthermore, support vector machine (SVM) method was performed
based on the same data sets by [100]. The SVM method applies for two class problems.
Thus, “one-against other” method is used to transfer it into two class problems. Most
recently, Kurgan and Homaeiang [23] provided a comprehensive literature survey and
analyzed the impact of prediction algorithms and test procedures on accuracy.
Consequently, the prediction of folding types from amino acid composition alone is an
important topic, which has been the object of many recent researches. Existing data
classification methods applied to protein folding type prediction is mainly appropriate for
two-class problems. These methods can be modified for multi-class problems.
Unfortunately, these modifications can cause the degradation of classification performance.
Therefore, developed three-stage mathematical programming based hyper-box enclosure
approach, which is capable of solving multi-class problems without any modification, can
be used to classify a given primary protein structure into folding types according to its
amino acid composition effectively.

In conclusion, there exists restricted number of methods for multi class data
classification problems in literature. This thesis addresses the need for efficient and

reliable methods for multi-class problems by introducing a new mixed-integer
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programming approach. Moreover, the important and widely used data sets, the protein
folding type data set and UCI Repository data sets are studied to analyze the performance
of the developed model. The results on these data sets show that the prediction accuracy
of the developed model is as good as the existing data classification models in literature.
Furthermore, developed model gets rid of some drawbacks of the available multi-class data
classification models with only one adjustable parameter, rather short learning and
computational time, no need to know the underlying distribution of the data and well-

construction of the class boundaries.
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Chapter 3

MILP BASED HYPER-BOX ENCLOSURE APPROACH

The objective in data classification is to assign instances that are described by
several attributes into a predefined number of classes. The use of hyper-boxes for defining
boundaries of the sets that include all or some of the instances in that set as shown in
Figure 3.1 can be very accurate on multi-class problems. If it is necessary, more than one
hyper-box could be used in order to represent a class as shown in Figure 3.1. When the
classes that are indicated by square and triangle instances are both represented with a single
hyper-box respectively, the boundaries of these hyper-boxes overlap. Thus, two boxes are
constructed in order to eliminate this overlapping. A very important consideration in using
hyper-boxes is the number of boxes used to define a class. If the total number of hyper-
boxes is equal to the number of classes, then the data classification is very efficient. On the
other hand; if there are as many hyper-boxes of a class as the number of instances in a

class, then the data classification is inefficient.

The data classification problem is considered in two parts as training and testing.
Determination of the characteristics of the instances that belong to a certain class and
differentiating them from the instances that belong to other classes are the main objectives
of the training part. The hyper-boxes that determine the characteristics of the classes are
constructed in the training part by the help of mixed-integer linear programming (MILP)
formulation. After the distinguishing characteristics of the classes are determined, then the

effectiveness of the classification is observed by the help of distance-based testing
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algorithm. Predictive accuracy of the developed model is performed on a test data set

during the test part.
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Figure 3.1 Schematic representation of multi-class data classification using hyper-boxes.
3.1 Training Algorithm: MILP Formulation

Training part studies are performed on a training data set composed of a number of
instances i. The instances are represented by the parameter a;, that denotes the value of
attribute m for the instance i. The class k that the instance i belongs to are given by the set
Dj.. Each existing hyper-box / encloses a number of instances belonging to the class k.
Moreover, bounds n (lower, upper) of each hyper-box is determined by solving the training

problem. M and N represents the total number of attributes and bounds, respectively.
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Given these parameters and the sets, the following binary and continuous variables
are sufficient to model the data classification problem with hyper-boxes. The existence of
hyper-box [/ is represented by binary variable yb,. The binary variable ypb; indicates the
position (inside or outside) of the instance i with respect to box /. The binary variables
vbcy and ypcy indicate the assigned class & of instance i and hyper-box /, respectively. If
the instance i is within the bound » with respect to attribute m of hyper-box /, then the
binary variable ypbn;, is 1, otherwise 0. Similarly, ypbm;;,, indicates whether the instance
i is within the bounds of attribute m of hyper-box / or not. Finally, yp; indicate the
misclassification of instance i to class &. In order to define the boundaries of hyper-boxes,
two continuous variables are required: Xj,, is the one that models bounds » for box / on
attribute m. Correspondingly, bounds » for box / of class & on attribute m are defined with

the continuous variable XD .

The following MILP problem models the training part of data classification method

using hyper-boxes:

min z=) > yp, + ). b (3.1)
ik /

subject to
XD, <a,ypb, +O(1—-ypb,) Vik,I,mn|n=Ilower (3.2)
XD,,.=a, ypb, Nik,l,mn|n=upper 3.3)
XD, <Oybc, Vk,l,m,n 34
> XD, =X, Vilmn (3.5)
k
ypbn, == é(X,mn —-a,,) Vilmmn|n=upper (3.6)

ypbn, == é(a"’" -X,.,) Vilmn|n=Ilower (3.7)
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D ypb, =1 Vi (3.8)

1
D wpe, =1 Vi (3.9)

p
Zypb,., = Zypcik Vi (3.10)
Zybc,k =yb, VI (3.11)

p

ybc, < z ypb, Y1k (3.12)
ybc, < Z ype, V1k (3.13)
> ypbn,,, — ypbm,, <N -1 Vi,l,m (3.14)
> ypbm,, —ypc, <M -1 Vil k (3.15)
ypc, <yp, Vik&D, (3.16)
X, XD, >0 (3.17)
by, ypby, ype,  ybey, ypbn,,, . ypbm,, . yp, € (0.1} (3.18)

Minimization of the misclassified instances in the data set with the minimum
number of hyper-boxes is the objective of the MILP model given in (3.1). The lower and
upper bounds of the hyper-boxes are determined by the instances that are enclosed within
the hyper-boxes. Hence, lower and upper bounds of hyper-boxes are calculated by
equations (3.2) and (3.3), respectively. Eq. (3.4) enforces the bounds of hyper-boxes exist
if and only if this hyper-box is assigned to a class. The relationship between two
continuous variables is given in Eq. (3.5). The position of an instance with respect to the
bounds on attribute m for a hyper-box is given in Egs. (3.6) and (3.7). The binary variable

ypbni,, helps to identify whether the instance i is within the hyper-box /. Two constraints,
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one for the lower bound and one for the upper bound, are needed for this purpose (Egs.
(3.6) and (3.7)). Since these constraints establish a relation between continuous and binary
variables, a large parameter, Q, is included. Q generally takes the maximum attribute value
in the data set. The assignment of an instance to a single hyper-box / and a single class £ is
established by the equations (3.8) and (3.9), respectively. The equivalence between Eqs.
(3.8) and (3.9) is given in Eq. (3.10); indicating that if there is an instance in the class &,
then there must be a hyper-box / to represent the class k& and vice versa. The existence of a
hyper-box implies the assignment of that hyper-box to a class as shown in Eq. (3.11). Ifa
class is represented by a hyper-box, there must be at least one instance within that hyper-
box as in Eq. (3.12). In the same manner, if a hyper-box represents a class, there must be at
least an instance within that class as given in Eq. (3.13). The Eq. (3.14) represents the
condition of an instance being within the bounds of a box in attribute m. If an instance is
within the bounds of all attributes of a box, then it must be in the box as shown in Eq.
(3.15). When an instance is assigned to a class that it is not a member of, a penalty applies
as indicated in Eq. (3.16). Finally, last two constraints Eq. (3.17) and (3.18) give non-
negativity and integrality of decision variables. The model has LMN + LKMN continuous
variables, L + LK + 3IK + IL + ILMN + ILM binary variables and O(IKLM) constraints.

3.2 Three-Stage Approach

Solving the proposed MILP problem to optimality is computationally expensive for
large multi-group data classification problems. The major source of computational
difficulty is the potentially large number of binary variables. Hence, we propose a three-
stage decomposition algorithm (shown in Figure 3.2) for obtaining optimal solutions to

MILP model.
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Figure 3.2 Flowchart of the decomposition algorithm for solving multi-class classification

algorithm using hyper-boxes.
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Instances that are difficult to classify are identified in the first stage that is referred
to as preprocessing. Moreover, sub grouping and seed finding algorithms are applied to
improve the computational efficiency. With greater emphasis given to these observations,
solution to the problem is obtained in the second stage using the MILP formulation. Last,
final assignments, elimination of box intersections and box combination procedures are

carried out in the third step.
3.2.1 Preprocessing

First, maximum and minimum attribute values for each class are determined. Then,
the boundaries of the classes are compared to check whether they overlap or not. If the
boundaries of the classes overlap, then the instances that are enclosed by other classes are
identified. These instances are called as ‘problematic’ instances, since they are not
separable from the instances of the other classes with a single hyper-box. In the case of
having large number of ‘problematic’ instances, the same procedure is repeated to reduce
the total number of such instances. In some cases, applying one or two times the same
procedure do not reduce the number of problematic instances as we want. For those cases,
we proposed a sub grouping algorithm in order to obtain small sub groups from the data
sets efficiently.

The proposed MILP model has O(LKMN) continuous variables, O(/LMN) binary
variables and O(IKLM) constraints. For each instance removed in the preprocessing step,
the binary variables and constraints in the MILP model are reduced by O(LMN) and
O(KLM), respectively.

3.2.2 Threshold Value for the Number of Problematic Instances

In order to give more formal threshold value for the number of problematic
instances, we perform some runs with different number of instances. For this purpose, sub

problems of a protein folding type data set are used. By increasing the number of
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instances, we try to observe the CPU times of the runs with respect to the change in the size
of the problem (Figure 3.3.). For each problem size, we perform 10 different runs and give
the average results. In this graph, / represents the number of instances, K represents the
number of classes and M represents the number of attributes. The problem size is given by
the products of cardinalities of /, M and K. As this product increases, the number of binary
and continuous variables in the MILP model increases. Thus, the required solution time
increases by the increase in the problem size. After some point, this increase is much more
significant. As it could be observed from the graph, the threshold value is 2'* (4096).
After card(/MK) achieves that value, the required CPU time is high and unfavorable.
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Figure 3.3 Problem size versus CPU time of algorithm.
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3.2.3 Sub Grouping Algorithm

For some of the data classification problems, the number of problematic instances is
so high that this step does not make enough improvement in the computational time of the
given problem. Hence, for this type of problems a sub grouping algorithm is proposed in
order to improve the computational efficiency. Sub grouping is a method that constitutes a
given number of subsets of the given data set by selecting instances considering some
similarity-dissimilarity measure.

The determination of subsets is crucial: the instances for each subset must be
chosen to ensure that they are separated well from other instances. We develop a pure
integer programming (IP) formulation to accomplish this task.

As in the MILP, instances are represented by the parameter a;, that denotes the
value of attribute m for the instances i. The class & of instance i belongs to is given by the
set Dy. NI represents the number of instances in class k. Moreover, DB;;> represents the
distance between two data points i and i". This distance is calculated using Euclidean

distance in m-dimensional space as given in Equation (3.19).

DB, = )Z(aim -a, )’ (3.19)

Given these parameters and the sets, the similarity, S;, and dissimilarity, DS;, of an
instance 7 can be calculated as in Equations (3.20) and (3.21), respectively. Similarity, S;,
is the average distance from instance i to instances i’ that exist in the same class with
instance i. On the other hand, dissimilarity, DS,, is the average distance from instance i to
instances i’ that are not in the same class with instance i.

> DB,

S, =" (3.20)
NIk:ieD,»k
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> DB,

i'eDy
DS, = (3.21)

(Z N]k j - N]k:ieDik
k

The binary variable SP;, that indicates whether the instances i is selected for this sub

group or not, is sufficient to model sub grouping problem. Furthermore, SS is the number
of instances that exist in each of the constructed sub groups from the given data set D. TS
is the number of sub groups that should be obtained. 7S and SS can be determined by using
the Equations (3.22) and (3.23).

TS = ( %W (3.22)
s5 = card(D) (3.23)
TS

The following IP-Sub Group models the sub grouping problem and select SS
number of instances to form a sub group:

[P-Sub Group:

min z =) SP,(S, - DS,) (3.24)

subject to
> SP =SS (3.25)
SP. {01} Vi (3.26)

The objective of the IP-Sub Group problem given in Eq. (3.24) is to minimize the
similarities measures and maximize the dissimilarities measures of selected instances.
Equation (3.25) states that the number of selected instances must be exactly SS. Finally,
integrality of the decision variable SP; is given by (3.26).
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This IP-Sub Group model constitutes a single subset, S;, from a given data set D. In
order to obtain each subset, one should solve 75-1 consecutive IP-Sub Group model while
in each case updating the new dataset D,.,, as D,;,\S;. Hence, by solving IP-Sub Group
models, we will obtain 7§ sub groups of data set D. As MILP is based on hyper-boxes
approach, this sub group decomposition will not affect the inherent properties of this
approach. Moreover, sub grouping will improve the computational efficiency of the

overall data classification method.

Further investigation on the proposed IP-Sub Group model leads us to the following
property.
Property 3.1: Total Unimodularity Property [105]

Let 4 be an mxn integer matrix with a rank of m. 4 is unimodular if the determinant
of every basis matrix B of 4 has value +1 or -1 as given by Ahuja et al. [105]. Thus,
relying on this, we can state that if an integer valued matrix 4 is unimodular, then every
basic feasible solution of the polyhedron defined by the constraints 4x = b where x > 0, is
integer for every integer valued right hand side vector b. If every square submatrix of 4
has a determinant of 0 or +1, then the matrix A4 is totally unimodular. Moreover, every
totally unimodular matrix is unimodular since each basis matrix B of the matrix 4 has a

determinant +1 [105].
Proposition 3.1: The constraint set of the IP-Sub Group model has the total unimodularity
property.
Proof: For the equation 3.25, [ is the total number of instances. The corresponding A
matrix of the IP-Sub Group model can be stated algebraically as follows.
SP, SP, ... SP;... SP.;SP,
A=l 1 1 1 1]
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The rank of above Ix/ matrix is equal to 1 since it consists of only one row.

Moreover, every square submatrix of 4 has a determinant +1 and therefore it is a totally

unimodular matrix. Thus, IP-Sub Group model has the total Unimodularity property. [

Using this property, we can conclude that every basic feasible solution of the LP
relaxation of IP-Sub Group model defined by Equation 3.25 is integer. Therefore, optimal

solution of LP-relaxation is the optimal solution of IP-Sub Group model which means that

solution of IP-Sub Group model could be easily obtained in a small amount of time.

In order to clarify the sub grouping approach, we tested IP-Sub Group model on an

illustrative example given in Figure 3.4.

In this illustrative example, there exist 100

instances (25 from each of the four classes) represented by two attributes values.
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Figure 3.4 Illustrative example for sub grouping algorithm.
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When the IP-Sub Group problem is solved for this illustrative example, we
constitute two sub groups with 50 instances. The resulting sub groups are shown in Figures
3.5 and 3.6. As it can be seen from obtained sub groups, IP-Sub Group model efficiently
selects the instances and constitute easier sub problems for MILP model. Solving the
overall problem takes much more computational time with respect to solving two sub
group problems separately. Hence, by solving Sub Group 1 and Sub Group 2 instances one
by one using MILP, we obtain the constructed hyper-boxes in a reasonable amount of time.
In some cases, obtaining the optimal solution of the overall problem takes more than a
week/month. Therefore, in those cases solving the IP-Sub Group model and decompose

the overall problem into smaller sub groups is favorable and preferable.
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Figure 3.5 Sub Group 1 of given illustrative example.
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Figure 3.6 Sub Group 2 of given illustrative example.
3.2.4 Seed Finding Algorithm

Another method to improve the computational efficiency is determining
representative seeds for each class. Seed finding is a method that selects an instance (seed)
for each class and fixes assignments of these instances to their respective classes before
solving the problem. The seeds improve the computational performance of the model
without changing the optimal solution.

The determination of seeds is a critical task: the seeds for each class must be chosen
to ensure that seeds are separated well from each other as well as being a good example of
the group of instances in the same class. We develop a pure integer programming (IP)
formulation to accomplish this task. As in the MILP formulation, instances are represented
by the parameter a;,, that denotes the value of attribute m for the instances i. The class k of

instance i belongs to is given by the set Dy. Moreover, PP; represents the distance
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between two instances i and i. This distance is calculated using Euclidean distance in m-

dimensional space as given in Equation (3.27).

\/Z (a, —a,) (3.27)

Given these parameters and the sets, the binary variable YP,, that indicates whether
the instance i is selected as seed or not, is sufficient to model the seed finding problem.
The following IP-Seed models the seed finding problem:

IP-Seed: min z = Z Z P, (Cdl’d(l . k)J * Z Z Z PP,YP (3.28)

ick i'ek k iek i'¢k

subject to
D YP =1 Vk (3.29)
i€k
YP {01} Vi (3.30)

The objective of the IP-Seed problem given in Eq. (3.28) is to minimize the
distances from each seed to instance of its group (in-class distances) and maximize the
average distances from each seed to the instances that belong to other classes (out-class
distances). Equation (3.29) states that every class must have exactly one seed. Finally,
integrality of the decision variable YP; is given by (3.30).

We performed a set of experiments on MILP model without seeds to compare its
results with the one initiated with seeds. One can observe the positive effect of seed
finding algorithm on the solution of MILP model, in terms of improvement in the number
of iterations, the number of nodes and the CPU times required to construct the hyper-boxes
by comparing the results given in Table 3.1. In Table 3.1, i is the number of instances,
Cons. is the number of constraints, BVar is the number of binary variables and CVar is the

number of continuous variables in the model. When we analyze the Table 3.1, we see that



Chapter 3: MILP Based Hyper-Box Enclosure Approach

33

CPU times, number of iterations and nodes decrease significantly as introducing seeds to

the model. Hence, seed finding algorithm improves the computational time requirement of

the MILP model.

Table 3.1 A comparison of MILP model with and without seeds.

Problem Characteristics MILP without seeds MILP with seeds

i # of # of # of # of # of CPU # of # of CPU

Cons. BVar CVar Iterations  nodes (sec.) Iterations  nodes (sec.)
10 12,265 6,190 2,081 57,543 331 81.14 15 0 0.468
20 22,435 12,330 2,161 114,470 239  458.843 1,152 0 2.296
30 32,605 18,470 2,241 187,769 603 1062.90 3,467 10 3.796
40 42,775 24,610 2,321 297,133 350 2154.35 26,390 270 27.593
50 52,945 30,750 2,401 432,922 862 4786.1 22,945 283  29.343

The seeds found by IP-Seed model are given in Figure 3.7. As it can be observed,

seeds found by IP-Seed well exemplify the class properties.
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Figure 3.7 Seeds found by IP-Seed are circled on an illustrative example.
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Further investigation on the proposed IP-Seed model leads us to the following
property.
Proposition 3.2: The constraint set of the IP-Seed model has the total unimodularity
property.
Proof: For the Equation 3.29, [ is the total number of instances, K is the total number of

classes, ¢ is the total number of class 1 instances and ¢ is the total number of class 2

instances. The corresponding 4 matrix of the IP-Seed model can be stated algebraically as

follows.
YP; YP; ... YP.YPey YPois .. YPoy .. ... YP, YP,
1ft 1 - 100 -0 -+ - 0 O]
2000 - 01 1 -+ 1 o -+ 0
e . e .
KOO 00 0 -+ 0 « - 1 1]

The above Kx/ matrix is 0-1 matrix and its rank is equal to n since it is consists of n
linearly independent rows. Moreover, every square submatrix of 4 has a determinant 0 or
+1 and therefore it is a totally unimodular matrix. Thus, [P-Seed model has the total

Unimodularity property. [

By the help of this property, we can conclude every basic feasible solution of the
LP relaxation of IP-Seed model defined by Constraint 3.29 is integer. Therefore, optimal
solution of LP-relaxation is the optimal solution of IP-Seed model which means that

solution of IP-Seed model could be easily obtained in a small amount of time.
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3.2.5 MILP Model

Once the £ seeds to be assigned to the & classes are determined by IP-Seed model,
we can solve MILP model for ‘problematic instances’ with these seeds. Assignment of the
instances selected as seed in the MILP model means that we are setting the variables
corresponding to these instances to a specific value. Hence, optimal values for associated
variables are given and do not need to be optimized. This means that, some of the
solutions in the solution space are eliminated by fixing these values. Thus, this approach is
capable of obtaining alternative optimal solutions for MILP model with smaller

computational effort.
3.2.6 Final assignment and Intersection Elimination

Since the MILP model is solved for ‘problematic instances’ only, the ‘non-
problematic instances’ are assigned to hyper-boxes in a straight forward way. We define £
hyper-boxes for each class and assign a ‘non-problematic instance’ to corresponding newly
defined hyper-box. Each ‘non-problematic instance’ is considered one by one until all of
these instances are assigned to a hyper-box. Finally, the bounds of these new hyper-boxes
are determined by considering the maximum and minimum attribute values of all instances
in these hyper-boxes. It is possible that these hyper-boxes have intersections. Instances are
separated from the original hyper-box until all intersections are eliminated. The eliminated
instances are grouped in a new box and intersection checking and elimination procedure is
repeated until no more intersections occur between all of the constructed and defined
hyper-boxes. After intersection elimination, box combination algorithm is included in

order to get tight hyper-boxes for each class.
3.2.7 Box Combination

Box combination is the last step in the three-stage hyper-box enclosure approach.

Since we do not solve problematic and non-problematic instances together, we could have
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some hyper-boxes that could be combined without causing any intersection. As we want to
differentiate the class boundaries with minimum number of hyper-boxes, combination of
these hyper-boxes and decreasing the number of overall hyper-boxes is preferable. Hence,
we developed an integer programming (IP) formulation to accomplish this task. As in the
MILP formulation, X, represents the bounds of existing hyper-boxes or the hyper-boxes
obtained at the end of intersection elimination algorithm. The index / represents the
existing hyper-boxes and the index [/’ represents the hyper-boxes that are obtained by
combinations of the existing ones. The class k of hyper-box / belongs to is given by the set
BCy. NXpm, represents the bounds of hyper-boxes [/’ that is obtained by combining the
existing hyper-boxes that are in the same class. The class £ of hyper-box /” belongs to is
given by the set NBCyx. In order to define the box intersections, we need to use center and
length of the hyper-boxes. The centers Cj, and C;, can be calculated using the Equations
(3.31) and (3.32), respectively. The lengths L;, and L;, can be calculated using the
Equations (3.33) and (3.34), respectively. If the difference between the centers of the
hyper-boxes is greater than the average lengths of the hyper-boxes for an attribute, then
there is no intersection between these hyper-boxes for that attribute. Otherwise, these

hyper-boxes will intersect on that attribute (Figure 3.8).

X pnimewver T X imminetower
Clm — Imn|n=upper 2 Imn|n=Ilower (33 1)
NX ! = er + NX 'mn|n=Ilower
C,, =—= > — (3.32)
le = Imn|n=upper ~ X/mn\n:lower (333)
Ll'm = NX/'mn\n:upper - NX/'mn\n:lower (334)

Given these parameters and the sets, the binary variables IN1;,, and IN2j,, are

necessary to indicate the intersection of hyper-boxes / and /” for each attribute m. 10 is a
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binary variable that represents the intersection of hyper-box / and /°. The binary variable
COy is 1 if there is an intersection related to newly defined hyper-box /°. Finally, SO, is a
binary variable which takes the value 1 when the hyper-box /” could be obtained without
causing any intersection. The parameter SI;- is 1 if the hyper-box /’ is not obtained by any
combination of the hyper-box / with other hyper-boxes and 0 otherwise. This parameter is
necessary to check intersection for only the rest of the hyper-boxes that are not combined.
Furthermore, the parameter is SNy is 1 if hyper-box /’ and hyper-box /'’ is obtained by
combination of a common hyper-box and 0 otherwise. This parameter is necessary to

eliminate the multiple selections of hyper-box / for combination.

Box2

Figure 3.8 Hyper-box intersection check via the centers and lengths of hyper-boxes.
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Using these binary variables and the parameters, the following IP-Box Combine
models the box combination problem:

IP-Box Combine:

max z = SO, (3.35)

-

subject to

L +L,
C, —C, +Q-IN1, > % te  YLI'Nm|SI, =1 (3.36)

L, +L,
C, —C, +0-IN2,, > %Jr e YLIm|SI, =1 (3.37)
S (N1, +IN2,,) -2 *card(m)+1< 10, VLI SI, =1 (3.38)
10, <CO, LIS, =1 (3.39)
€O, +S0,<1 VI (3.40)
SO, +S0, <1 VI'I"|SN,. =1 (3.41)
S0,,C0,,10,,IN1,, ,IN2, {0} YILI' m (3.42)

The objective of the IP-Box Combine problem given in Eq. (3.35) is to maximize
the number of newly obtained hyper-boxes that represents the combination of old ones.
Equation (3.36) and (3.37) are necessary to count the intersections of existing and newly
obtained hyper-boxes for an attribute. In order to give the relationship between the centers
and lengths and intersections, a large parameter Q and ¢ are included in these constraints.
If hyper-boxes intersect for all of the attributes, then the binary variable /0 is 1 with

Equation (3.38). If newly-obtained hyper-box /’ has any intersection with existing ones,
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then the corresponding binary variable CO; will be 1 to represent the infeasibility of
obtaining hyper-box /’ (3.39). If obtaining the hyper-box [/’ is feasible, then the binary
variable SO is 1, and 0 otherwise by Equation (3.40). The Equation (3.41) states that only
one combination related to hyper-box / could be selected. Finally, integrality of the

decision variables is given by (3.42).

The IP-Box Combine model tries to find the maximum number of hyper-box
combinations and obtain combined hyper-boxes. It is not possible to get all of the hyper-
box combinations after a single run. We should iteratively solve IP-Box Combine model
until the objective function value is 0. In Figure 3.9, there is an artificial example to
observe the behaviors of the IP-Box Combine model. After the first run of IP-Box
Combine model, some of the hyper-boxes are combined but there are some more feasible
combinations (Figure 3.10). After the second run of IP-Box Combine, all of the feasible

combinations are obtained (Figure 3.11).
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Figure 3.9 Artificial example for IP-Box Combine analysis.
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Figure 3.10 Combined hyper-boxes after the first run of IP-Box Combine model.
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Figure 3.11 Combined hyper-boxes after the second run of IP-Box Combine model.
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3.3 Testing Algorithm
3.3.1 Original Testing Algorithm

The original testing algorithm proposed in master thesis [106] is briefly explained
in this section. If a new instance with an unknown class is given, it is necessary to assign
this instance to one of the classes. There are two possibilities for a new instance when
determining its class:

1. the new instance is within the boundaries of a hyper-box,

ii. the new instance is not enclosed in any of the hyper-boxes determined in the

training problem.

When the first possibility is realized for the new instance, the classification is made
by directly assigning this instance to the class that was represented by the hyper-box
enclosing the data point. In the case when the second possibility applies, the assignment of
the new instance to a class requires some analysis. If the instance is within the lower and
upper bounds of all but not one of the attributes (i.e., m') defining the box, then the shortest
distance between the new instance and the hyper-box is calculated using the minimum
distance between hyper-planes defining the hyper-box and the new instance. The
minimum distance between the new data point i and the hyper-box is calculated using Eq.
(3.43) considering the fact that the minimum distance is given by the normal of the hyper-

plane.

DH,, = min{a,, - X, |} (3.43)

When the data point is between the bounds of smaller than or equal to M-2
attributes, then the smallest distance between the point and the hyper-box is obtained by
calculating the minimum distance between edges of the hyper-box and the new point. An
edge is a finite segment consists of the points of a line that are between two possible pairs

of extreme points £Pj; and EP;, where j and ¢ represent the rank of extreme points. As the
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number of extreme points for a given box is 2* but the number of edges is M2, not all of
the indexes will be used for edge calculation. This issue will be controlled by given the
possible extreme point combinations as a set, EPP (extreme point pairs). Cardinality of
EPP set is M2"/. The value of attribute m for data point i is represented by the parameter

a,, and ep,, and ep,, are the values of attribute m for two possible pairs of extreme points

j and ¢t. The minimum distance between the new data point i and one of the segment of the

hyper-box determined by two extreme points is calculated using Eq. (3.50).

Wiljtm = aim - epljm (344)
Viljtm = epljm - epltm (345)
Z Wiljtm viljtm
Clyy, === (3.46)
\/Z W;jtm \/z vizljtm
Z VitjomViljm
C2p = == (3.47)
\/ Z Vijim \/ Z Vijim
bilitm = Cliljtm / C2iljtm (3.48)
pbilitm =epy, + bilitm Vitjim (3.49)
. 2
DED, = min { \/z (@, = Pbyn) } (3.50)
(yeepp LV m

When data point is not within the lower and upper bounds of any attributes defining
the box, then the shortest distance between the new point and the hyper-box is calculated
using the minimum distance between extreme points of the hyper-box and the new data.
The minimum distance between the new data point i and one of the extreme points ep;, of

the hyper-box is calculated using Eq. (3.51).
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DEF, = rnjm{\/z (a,, = epljm)z } (3.51)

The following algorithm assigns a new data point i with attribute values a;,, to class k:

Step 0: Initialize inAtt,=0.

Step 1: For each / and m, if X, <a,, <X, Vn =lower,n'=upper, set inAtty, = inAtty,
+ 1.

Step 2: If inAtt;, =M, then go to Step 3. Otherwise, continue. If inAtt;,<M-1, then go to
Step 4.

Step 3: Assign the new data point to class £ where ybcy is equal to 1 for the hyper-box in
Step 2. Stop.

Step 4: If inAtt;,, = M-1, then dist;= DH;,.
If 0 < inAtt, < M-1, then dist; = DED;.
If inAtt;,, = 0, then dist; = DEP;;.

Step 5: Select the minimum between rn[in{disti,} to determine the hyper-box / that is

closest to the new data point i. Assign the new data point to class k where ybcy is
equal to 1 for the hyper-box /. Stop.
After finding the assigned classes of test instances, we must compare the assigned
and original classes in order to calculate the accuracy of the proposed model. The
proportion of correctly classified instances will give the efficiency and accuracy of the

algorithm.

3.3.2 Improved Testing Algorithm
The original testing algorithm is computationally intractable for high-dimensional
problems due to high number of extreme point calculations. Hence, an improved testing

algorithm that approximates the original algorithm is developed. The testing results for
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large data classification problems can be computed in a very smaller amount of time with
the improved testing algorithm compared to the original algorithm. The following new
algorithm assigns a new data point i with attribute values a;,, to class &:
Step 1: For each / and m,

If a,, > X,,, where n=upper,then d, =(a, —X,,) .

im

If a, < X,, where n'=lower,then d,, =(X,, —a,).

Imn'

Ifx,, <a,<X,, where n=upper and n'=lower ,then d,, =0.

ilm

Step 2: Calculate distance from data point i to box / by using Equation 3.1.

Ndist, = XZ d, (3.52)

Step 3: Select the minimum between mlin{Ndisti,} to determine the hyper-box / that is

closest to the new data point i. Assign the new data point to class £ where ybcy is

equal to 1 for the hyper-box /. Stop.
3.3.3 Comparison of Original and Improved Testing Algorithms

There exists four possible cases for the position of an instance i with respect to a
hyper-box / in the original testing algorithm (Figure 3.12). These cases can be listed as
follows:

Case I: Instance i is enclosed by the hyper-box /.

Case II: Instance i is within the lower and upper bounds of all but not one of the attributes
(m’) of hyper-box /.

Case III: Instance i is between the bounds of smaller than or equal to M-2 attributes of
hyper-box /.

Case IV: Instance i is not within the lower and upper bounds of any attributes of hyper-

box /.
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Figure 3.12 The possible positions of an instance with respect to a hyper-box.

The following analysis can be done for each case.
Case I: If instance i is inside the hyper-box /, then it is directly assigned to the
corresponding class of hyper-box / in the original testing algorithm. Similarly, in the

improved testing algorithm X, . <a, <X,k holdsand d,, will be 0 for each attribute m.
This will result ind, = 0. Hence, the closest hyper-box to that instance i will be hyper-box

[ and instance i will be assigned to the corresponding class of hyper-box /. Therefore,
improved testing algorithm gives the same results as the original algorithm for Case 1.

Case II: 1f an instance i is within the lower and upper bounds of all but not one of the
attributes (m’) of hyper-box /, minimum distance form that instance i to the hyper-box / is
calculated by using Equation 3.43 in the original testing algorithm. For the improved

testing algorithm, as X, <a,, <X, holds for all attributes except m', d,, will be zero
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for those attributes and d,,. will be greater than zero (Equation 3.53). Hence, distance

from instance i to the hyper-box / is calculated using Equation 3.54 in the improved testing
algorithm. As Eq. (3.54) and Eq. (3.43) are identical, both of the testing algorithms are

identical for Case II.

d,p = min{(@,, — X,,,,)’} (3.53)

2

di/ = V dilm' = Innln|aim - X/mn

Case III: If an instance i is between the bounds of smaller than or equal to M-2 attributes

(3.54)

of hyper-box /, the original algorithm will calculate the distances from instance i to each
edge of the hyper-box /. Then, it selects the smallest one from m2™ edges as given in Eq.
(3.50). On the other hand, the improved algorithm will find out the closest extreme point
of the hyper-box [/ that is the one of the extreme points of the closest edge found with the
original algorithm. Then, the improved algorithm calculates the Euclidean distance from
instance i to that extreme point. Hence, the improved algorithm’s distance value will
always be greater than the distance value of the old algorithm.

In order to prove this more formally, assume that the closest extreme point of

X X X ). For the improved

hyper-box [ to instance i is (X Laupper > ++> X ttupper >+ > X imupper

Nupper >

algorithm, distance from instance i to hyper-box / is calculated as in Eq. (3.55).

Y +..(a, - X (3.55)

) 2
lkupper im Imupper

dil = \/(ail _)(Ilupper)2 +"'+(aik _X

As neighboring extreme points have (m-1) attribute values in common, the closest
edge to instance i will be the one with an end point

X X X ). Assume the other end point of this edge is

Nupper > <> [2upper >* * * > <> lkupper > * * * > “* Imupper

(X ttupper > X raupper -+ > X tkiower s+ > X pmpper ) @S Only one attribute value changes for neighbor

extreme points. Then, the closest point on that edge to instance i is
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(X upper > X 12upper s+ -+ s (X ttower +b(X tpper = X ttower N+ +> X tupper ) where b is that ratio that

shows how far instance i from start point of that edge. This b is given in Eq. (3.48).
Hence, from Eq. (3.50), the original algorithm gives the minimum distance from instance i

to hyper-box / as follows:

Origdil = \/(ail - Xllupper)2 +...t (aik -X - k(Xlkupper - Xlklower ))2 +... (aim -X

) 2
lklower Imupper

(3.56)

All terms of d; and origd; are equal to each other except (a, —X Ikuppe,)zand

(a, —X — k(X yopper = X pioner))* - We only need to compare these terms to give the

lklower
superiority relationship between d;; and origd,;.

Claim: d, > origd,, .

Proof: As mentioned before, all terms are equal in these distance values except

(aik - X ? and (aik - X - k(Xlkupper - Xlklower ))2 . Hencea we need to Compare

lkupper ) lklower

these two terms in order to conclude. As closest extreme point consists of Xjuper,

then0.5<k <land q,, > X holds.

Imupper

9

(@5 = X papper)” 25 = X piprr =KX per = X i)’ (3.57)
s = X g |2l = X =K K = X i) (3.58)
= X 2 = Xy =KX = X i) (3.59)
(k=) X gy 20k =D X g, (3.50)

X 2 X (3.61)
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Since X, 18 always greater than or equal to X, ., the claim d, > origd,is
true. In the same manner, the case where instance i is closer to Xpwer can be proved.
Therefore, the improved testing algorithm gives distance values greater than or equal to the
original distance value for Case III.
Case IV: If an instance i is not within the lower and upper bounds of any attributes of
hyper-box /, the original algorithm calculates the distances from instance i to each extreme
points of hyper-box /. Then, it will select the smallest one from 2" extreme points as given
in Eq. (3.51). On the other hand, the proposed improved algorithm tries to find the closest
bound (either lower or upper) for each attribute. Then, the closest extreme point will be
found out by these closest bounds. Hence, the same distance value will be obtained as in
the original testing algorithm. Both algorithms give identical distance values for Case IV.
Therefore, the improved testing algorithm is an approximation of the original
testing algorithm. In Cases I, II and IV, calculated distance values will be same. On the
other hand, for Case IIl improved testing algorithm will give a higher distance value.

Hence, the improved testing algorithm is an approximation of the original one.
3.3.4 Computational Complexities of the Original and Improved Testing Algorithms

The original testing algorithm has a poor computational performance on data sets
with large number of attributes. The improved algorithm is an approximation of the
original algorithm. Therefore, a worse performance can be expected from the new
algorithm. However, the computational complexity of the improved algorithm is far
superior to the original one. Therefore, we compare the computational complexities of two
testing algorithms. The number of algebraic operations for the original testing algorithm is
O(M2"") whereas that for the new testing algorithm is O(LM) (see Table 3.2). Thus, the
original testing algorithm is an exponential algorithm that depends one the number of
attributes M. However, the improved testing algorithm is a polynomial algorithm that

depends on the number of hyper-boxes L and number of attributes M. Hence, the improved
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testing algorithm is preferable in the case of data classification problems with large number
of attributes.

Table 3.2. Computational complexities of two testing algorithms.

Original Testing Algorithm New Testing Algorithm
Place Computation Time Place Computation Time
Step 1 O(LM) Step 0 O(LM)

Step 4 O(N), 02", o(M2™"y  Step 3 O(L)
Step 5 O(L)

Overall O(M2M'I ) Overall O(LM)
Complexity Complexity

3.4 Illustrative Example

We applied the proposed three-stage MILP based approach on set of 105 training

data points in four different classes given in Figure 3.13.
3.4.1 Training Part

When we apply proposed three-stage algorithm, we first calculate the boundaries of
classes and compare whether they overlap or not. As shown in Figure 3.14, overlapping
between the classes exists. The instances that are enclosed by other classes are identified
as ‘problematic instances’. For this data set, there exist 18 data points which fall into the
bounds of other classes. These problematic instances are enclosed by dashed points in
Figure 3.15. Using these problematic instances, IP-Seed model is solved to find a seed for
each class. Seeds are indicated with circles in Figure 3.15. Once four seeds to be assigned
to the four classes are determined, we solve MILP model for these ‘problematic instances’
with fixed assignment of these seeds. The constructed hyper-boxes for these problematic

instances are shown in Figure 3.16.
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Figure 3.13 Data points in the illustrative example and their graphical representation.
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Figure 3.14 Maximum and minimum attribute values for each class.
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Figure 3.15 Problematic instances are enclosed by dashed points and seeds with circles.
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Figure 3.16 Constructed hyper-boxes for problematic instances.
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Figure 3.17 Defined and constructed hyper-boxes for illustrative example.
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Figure 3.18 Hyper-boxes after intersection elimination for illustrative example.
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Figure 3.19 Final solution for illustrative example.

The next step is the assignment of non-problematic instances. New hyper-boxes for
each class are defined and remaining 87 non-problematic instances are assigned to the
hyper-boxes that correspond to their own classes. Then, the bounds of the newly defined
hyper-boxes are calculated by obtaining the maximum and minimum attribute values of
instances belonging to them (Figure 3.17). As it can be seen from Figure 3.17, there are
some intersections between constructed and defined hyper-boxes. In order to get rid of
these intersections, instances in the defined hyper-boxes are separated one by one until
intersections are eliminated. Then, the eliminated instances are grouped in a new hyper-
box. Resulting hyper-boxes do not intersect each other as shown in Figure 3.18. After
that, [P-Box Combine model is studied and the feasible combination of hyper-boxes is
obtained (Figure 3.19). The final solution for this illustrative example is found. At last,

without any misclassifications of training set instances, 8 hyper-boxes are obtained.
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Hence, the proposed three-stage MILP approach categorized the 105 training instances into
their corresponding classes with a training accuracy value of 100%. The characteristics of

each of the steps of proposed approach on illustrative example are given in Table 3.3.

Table 3.3 Problem characteristics for illustrative example.

Problem Characteristics

18 tazze};;gioach #of  #of # of #of #of CPU
Nodes Iterations Constraints BVar CVar (sec.)
Problematic Instances --- --- --- --- --- 0.093
Seed Finding 0 0 59 72 0 0.078
MILP with Seeds 0 22 1509 858 265 0.265
Defined Hyper-boxes --- --- --- --- --- 0.063
Intersection --- --- --- --- --- 0.203
Elimination
Box Combination 0 0 4045 222 0 0.109
Testing --- --- --- --- --- 0.016
3.4.2 Testing

After classifying the training data perfectly, the 52 test instances (shown in Figure
3.20) are assigned to the constructed hyper-boxes by applying the improved testing
algorithm. After improved test set analysis, it is observed that all of test instances are
assigned to their original classes. Hence, accuracy of the proposed three-stage approach is

100% for this illustrative example using the testing algorithm.
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Figure 3.20 Test instances for illustrative example.

On the other hand, the same illustrative example is studied with different types of

classifiers available in the well-known Weka. Weka is a collection of machine learning

algorithms for data mining tasks including data classification [107]. In Table 3.4, different

classification methods and their accuracy values are listed. The best accuracy value is

96.1% received by the classifier NNge (Nearest neighbor like algorithm using non-nested

generalized exemplars).
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Table 3.4 Accuracies of different data classification methods for illustrative example.

Classifier Accuracy Classifier Accuracy
BayesNet 84.6% Decorate 90.3%
NaiveBayes 92.3% END 88.4%
NaiveBayesSimple 94.2% FilteredClassifier 84.6%
NaiveBayesUpdateable 92.3% LogitBoost 82.6%
Logistic 86.5% MultiClassClassifier (RBF) 88.4%
MultiLayerPerceptron 88.4% MultiClassClassifier 86.5%

(MultiLayerPerceptron)
RBFNetwork 94.2% RandomCommittee 92.3%
SimpleLogistic 88.4% BFTree 92.3%
SMO 92.3% J48 84.6%
IB1 92.3% NBTree 94.2%
B2 92.3% RandomForest 92.3%
IB3 94.2% RandomTree 88.4%
1B4 92.3% REPTree 94.2%
IB5 94.2% SimpleCart 92.3%
1B6 94.2% NNge 96.1%
KStar 94.2% Bagging 94.2%
LWL 94.2% Ridor 92.3%

AttributeSelectedClassifier 88.4% ClassificationviaRegression 90.3%

As a result, suggested three-stage approach performs better than other data
classification methods that are listed in Table 3.4 for this illustrative example. Thus, this

new method can be attractive for real life data classification problems. For further
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investigation to the performance of the developed MILP based algorithm, distinct

benchmark problems are examined in the next chapter of the thesis.

3.4.3 The Original and New Testing Algorithms’ Performances on New Thyroid Data
Set

In this part of the study, the efficiencies of original and new testing algorithms are
compared on new thyroid dataset [108]. This data set is composed of 215 samples with 5
different attribute values and 3 different classes: euthyroidism (class 1), hypothyroidism
(class 2), or hyperthyroidism (Class 3). In this dataset, 150 of instances belong to class 1,
35 of them belong to class 2 and remaining 30 belong to class 3.

For thyroid data set, 10-fold cross-validation approach is used to estimate the
performance of three-stage MILP based approach with both original and new testing
algorithms.

In Table 3.5, results for the new and original testing algorithms are listed. As it is
seen in Table 3.5, the new testing algorithm has better in overall accuracy for thyroid
dataset. For the runs 2, 3, 5, 7 and 8, both algorithms give the same accuracy values. On
the other hand, in runs 1, 4, 6 and 10 the new testing algorithm has a higher accuracy value.
Interestingly, the original testing algorithm has 100% accuracy for run 9, which is more
accurate than the new testing algorithm. To sum up, we could not conclude that the new
testing algorithm is always better than the original algorithm with respect to accuracy.
However, it gives better results on most of the cases and has higher average classification

accuracy for thyroid data set.
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Table 3.5 Prediction results for Thyroid data set for original and new testing algorithm.

# of run Accuracy with the original Accuracy with the new

testing algorithm testing algorithm
1 90.90% 95.45%
2 95.45% 95.45%
3 95.45% 95.45%
4 86.36% 90.90%
5 100% 100%
6 95.23% 100%
7 100% 100%
8 95.23% 95.23%
9 100% 90.47%
10 76.19% 80.95%

Overall 93.48% 94.39%
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Chapter 4

COMPUTATIONAL RESULTS ON PROTEIN FOLDING TYPE PREDICTION

The performance of proposed three-stage approach is evaluated on distinct protein
folding type prediction benchmark data sets. The prediction results and comparisons with

other data classification methods are examined in this chapter.

4.1 Protein Folding Type Prediction Problem

The prediction of protein folding type is a typical multi-group data classification
problem. The are four different classes; all-alpha (o), all-beta (P), alphat+beta (a+p),
alpha/beta (a/B). 20 amino acid compositions constitute the attributes of protein folding

type prediction problem.

4.2 Protein Folding Type Data Sets

In order to observe the performance of the proposed approach, the following four
data sets from [97] are tested: 138 domains in Table A.1, 253 domains in Table A.2, 359
domains in Table A.3, 1601 domains in Table A.4, 225 Domains in Table A.5, 510
Domains in Table A.6, 2438 Domains in Table A.7. Moreover, two data sets from [100]
are studied: 277 Domains in Table A.8 and 498 Domains in Table A.9. Finally, two more
data sets from [23] are tested: 1189 Domains in Table A.10 and 25PDB in Table A.11.
Each of these data sets is constructed from SCOP [91] and Protein Data Bank [90]. The
unit of classification in the SCOP database is usually the protein domain. Small proteins
and most medium-size proteins have single domain. Domains in large proteins are usually

classified individually. Therefore, the sequence of a domain considered here is either the
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whole chain or a partial chain of a protein. Each domain is represented by a symbol of
X|Y, where first four character of X is the corresponding PDB code and the fifth character
indicates the specific chain of the protein. If itis , then the corresponding protein has only
one chain. If Y=W.C., it means the domain is constituted by the whole chain. Otherwise,
Y contains two number to indicate starting and end points along the sequence.

In the SCOP database, protein domains are classified into the following 11
categories [91]: (1) all-a proteins; (2) all-B proteins; (3) o/ proteins; (4) a+p proteins; (5)
multi-domain proteins; (6) membrane and cell surface proteins; (7) small proteins; (8)
coiled coils proteins; (9) low resolution proteins; (10) peptides; and (11) designed proteins.
Usually, only the first four categories are considered for computational prediction purposes
as they include significant majority of the protein sequences.

For 138, 253, 359, 225, 510, 277, 498, 1189 and 25PDB protein data sets, they are
assumed to have four different classes. On the other hand, for 1601 and 2438 protein
domains seven different structural classes, i.e. all a, all B, o+f, o/p, multi domain (p), small
protein (o) and peptides (p), were used. Details related to these seven classes were given in
[23,97].

The leave-one-out (LOO) results of 138, 253, 359 and 1601 data sets are given in
[97] and [109]. Moreover, the prediction quality is also examined by independent training
and test data sets as in [97] and [110]. The training data set is composed of 225 protein
domains and the corresponding test data set contains 510 protein domains. Furthermore,
1601 protein domains are used as training set in order to test the performance on 2438
protein domains. On the other hand, LOO results of 277 and 498 domain data sets are
given in [100], [104] and [109]. Finally, 10-fold cross-validation (10FCV) results of 1189
and 25PDB data sets are mentioned in [23].
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4.3 Classification Algorithms

In order to compare the results of proposed MILP approach, WEKA classification
algorithms J48, RBF Network, Logistic, Naive Bayes (NB), SMO, Random Forest (RF)
and IB1 are also studied (Table 4.1).
classifiers given by [23] are used to perform the studies on the given data sets. Moreover,
well-known support vector machine implementation LibSVM given by [111] is also
studied to observe the accuracy values. For each of the data sets, parameters related to
SVM algorithm are optimized by performing 10FCV validation with different

combinations of cost and gamma values.

Optimized parameter values of these WEKA

The optimal values that achieve the highest

10FCV accuracy are used to obtain the LOO results for each data set (Table 4.2).

Table 4.2 Optimal parameter values of LibSVM for each of the data sets.

Data Sets Kernel Type c g
(Cost) (Gamma)
138 Protein Domains Radial Basis Function = 2048 8
253 Protein Domains Radial Basis Function = 8192 8
359 Protein Domains Radial Basis Function 512 8
277 Protein Domains Radial Basis Function = 2048 8
498 Protein Domains Radial Basis Function = 2048 8
225&510 Protein Domains Radial Basis Function 32 2
1601&2438 Protein Domains Radial Basis Function 128 8
1189 Protein Domains Radial Basis Function 512 0.5
25PDB Protein Domains Radial Basis Function 8 8
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Table 4.1 Summary of the applied classification algorithms of WEKA.

Classifier Reference Short Description

Naive
Bayes

RBF
Network

IB1

J48

Random
Forest

JRip

SMO

Logistic

[112]

[113]

[114]

[115]
[116]

[117]

[118]

[119]

e Class for a Naive Bayes classifier using estimator classes.

e Numeric estimator precision values are chosen based on
analysis of the training data.

e Class that implements a normalized Gaussian radial basis
function network.

o It uses the k-means clustering algorithm to provide the
basis functions and learns either a logistic regression
(discrete class problems) or linear regression (numeric
class problems) on top of that.

e It standardizes all numeric attributes to zero mean and
unit variance.

¢ [BI-type classifier.

e Uses a simple distance measure to find the training
instance closest to the given test instance, and predict the
same class as this training instance.

e If multiple instances are the same (smallest) distance to
the test instance, the first one found is used.

e Class for generating an unpruned or a pruned C4.5
decision tree.

¢ Decision tree type algorithm

e Class for constructing random forests.

e This class implements a propositional rule learner,
Repeated Incremental Pruning to Produce Error
Reduction (RIPPER), which is proposed by William W.
Cohen as an optimized version of IREP.

e Implements John C. Platt's sequential minimal
optimization algorithm for training a support vector
classifier using polynomial kernels.

¢ Transforms output of SVM into probabilities by applying
a standard sigmoid function that is not fitted to the data.

e Class for building a logistic regression model using
LogitBoost.

e Incorporates attribute selection by fitting simple
regression functions in LogitBoost.
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Furthermore, the existing results of distance-based classification methods based on
Hamming Distance (HD), Euclidean Distance (ED) and Component-coupled (CC)
algorithms given in [97] and [100], the reported results of SVM algorithm used in [110]
and [109], and the existing result of Neural Networks method given in [104] are also

investigated for comparison.

4.4 Results for Independent Data Sets

Using the 225 training set samples given in [97] (Table A.5), the proposed three-
stage MILP model is solved in GAMS [120] using ILOG CPLEX Solver version 10.0
[121] on a notebook computer with Inter Pentium M 1.73 Ghz Processor and 512 MB of
RAM. The characteristics of the constructed model for 225 training samples are listed in
Table 4.3.

After classifying the training data perfectly (self-consistency test result is 100%),
the test set given in Table A.6 is assigned to constructed hyper-boxes by applying the
testing algorithm. The assignment of data in the test set to structural classes is done
without a prior knowledge on their membership to a class. For each member of the test
data set, testing algorithm is applied and an assignment to a structural class is done. After
all, the accuracy of the developed model is checked by comparing the original and assigned
structural classes of proteins. At the end of the testing, it is realized that 489 proteins in the

test set are correctly classified. On the other hand, 21 proteins are misclassified.

Table 4.3 Characteristics of the MILP model for 225 training samples.

ITEM VALUE
# of continuous variables 2401
# of binary variables 30750
# of constraints 52495
# of nodes 283
# of iterations 22945
Solver Memory (MB) 12

CPU time (sec) 29.343
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Table 4.4 Performance results for the 510 protein domains in the test set.

Methods Class-based Accuracy Overall
a B a+p a/p Accuracy
MILP 93.58% 96.15% 96.32%  97.04% 95.88%
IB1 90.83% 94.62% 98.53% 97.78% 95.68%
SVM NA NA NA NA 94.90%
Random Forest 93.58% 96.15% 86.76%  95.56% 92.94%
Component-coupled 74.31% 90.00% 87.50% 91.85% 86.47%
J48 80.73%  59.23%  82.35%  79.26% 75.29%
LibSVM 63.30% 78.46% 50.00% 42.22% 58.04%
RBF Network 46.79% 58.46% 51.47% 66.67% 56.27%
Logistic 68.81% 77.69% 30.15% 50.37% 55.88%
Naive Bayes 45.87% 69.23% 24.26% 77.78% 54.50%
SMO 50.46% 49.23% 49.26% 50.37% 49.80%
JRip 18.35% 66.15% 74.26% 26.67% 47.64%
Euclidean Distance 50.46% 75.38% 23.53% 41.48% 47.25%
Hamming Distance 60.55% 73.08% 22.06% 36.30% 47.06%

The overall accuracy of the proposed model on 510 protein domains is 95.88%.
The results of distance-based classification methods Hamming Distance, Euclidean
Distance and Component-coupled algorithms [97] and the result of SVM algorithm [110]
are listed in Table 4.4. Morcover, LibSVM and classifiers found in WEKA are also studied
to observe the accuracy values. Proposed three-stage MILP approach gives the highest
accuracy for this test set as shown in Table 4.4. IB1, instance-based classifier, has the
closest accuracy value to MILP approach. SVM result given in [110] has a higher accuracy
value compared to well-known support vector machine implementations SMO and

LibSVM. As Cai et al. [110] did not provide individual accuracy values of classes and
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detailed confusion matrix; we could not compare classed-based accuracies. Hamming
Distance and Euclidean Distance algorithm has the worst accuracy values for this data set.
In the same manner, 1601 domains data set (Table A.4) is studied by proposed
three-stage MILP approach. After classifying the training data perfectly self-consistency
test result is 100%), the test set composed of 2438 domains given in Table A.7 is assigned
to constructed hyper-boxes by applying the testing problem algorithm. The accuracy of the
developed model is checked by comparing the original and assigned structural classes of
proteins. At the end of the testing, it is realized that 2318 proteins in the test set are

correctly classified. On the other hand, 120 proteins are misclassified.

Table 4.5 Performance results for the 2438 protein domain in the test set.

Class-based Accuracy Overall
Methods
o B o+p o/p n c p Accuracy
MILP 96.44% 95.74% 95.72% 97.25% T71.74% 87.34% 85.00% 95.08%
IB1 95.17% 94.18% 97.20% 95.48% 89.13% 94.30% 65.00% 95.03%
SVM NA NA NA NA NA NA NA 94.50%
RF 93.38% 92.76% 94.74% 92.14% 86.96% 96.84% 75.00% 93.23%
J48 83.72% 87.93% 87.34% 88.41% 71.74% 85.44% 35.00% 86.54%
LibSVM 79.39% 92.90% 79.11% 87.43% 90.00% 96.20% 0.0% 84.58%
CC 68.70% 78.27% 69.74% 86.44% 76.09% 90.51% 75.00% 77.03%
JRip 64.12% 91.05% 44.57% 51.47% 13.04% 89.24% 60.00% 65.01%
RBF 65.14% 70.17% 52.63% 68.76% 41.30% 85.44% 35.00% 64.84%
SMO 58.78% 72.44% 60.36% 64.83%  0.00% 76.58%  0.00% 63.94%
Logistic 63.87% 76.28% 51.64% 60.90%  0.00% 79.11%  0.00% 63.04%
NB 58.78% 67.05% 26.64% 72.69% 28.26% 80.38% 40.00% 56.72%
ED 56.23% 57.10% 23.52% 49.51% 50.00% 77.22%  5.00% 47.74%

HD 47.08% 58.81% 10.36% 45.58% 47.83% 74.05%  0.00% 42.38%
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The overall accuracy of the proposed model on 2438 protein domains is 95.08%. In
Table 4.5, accuracy results given in [97] and [110] are listed. Moreover, LibSVM and the
same classifiers found in WEKA are also studied. Proposed three-stage MILP approach
gives the highest accuracy for this test data set than Hamming Distance, Euclidean
Distance, Component-coupled and SVM methods. However, the accuracy values of MILP
approach is much closer to IB1 accuracy value. SVM result compared to well-known

support vector machine classifiers LibSVM and SMO.
4.5 Results for Self-consistency Tests

For self-consistency tests, data sets with 138, 253, 359, 1601, 277 and 498 protein
domains given in Appendix are used. Using these data sets, the proposed three-stage MILP
model is solved in GAMS [120] using ILOG CPLEX Solver version 10.0 [121] on a
notebook computer with Inter Pentium M 1.73 Ghz Processor and 512 MB of RAM. For
each data set, as we will perform LOO tests, training runs are carried out. Average self-
consistency test results for 138, 253, 359 and 1601 data sets are given in Table 4.6.
Moreover, average self-consistency test results for 277 and 498 domains are listed in Table

4.7.

Table 4.6 Self-consistency test results for 138, 253, 359 and 1601 Domains.

Methods 138 Domains 253 Domains 359 Domains
Hamming Distance [97] 55.8% 52.57% 55.15%
Euclidean Distance [97] 57.25% 53.36% 52.37%
Component-coupled [97] 97.83% 95.26% 94.43%
SVM [110] 100% 100% 93%

3-Stage MILP Approach 100% 100% 100%
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Table 4.7 Self-consistency test results for 277 and 498 Domains.

Methods 277 Domains 498 Domains
Hamming Distance [100] 62.8% 65.5%
Euclidean Distance [100] 58.8% 64.3%
Component-coupled [100] 94.2% 95.8%
NN [104] 93.5% 94.6%
SVM [109] 100% 100%
3-Stage MILP Approach 100% 100%

Self-consistency test results indicate the percentage of information grasped during
the training studies that captures the relationship between amino acid composition and
protein folding type. As it could be observed from Table 4.6 and Table 4.7., proposed
three-stage MILP approach gives highest self-consistency results for each one of the data
sets. Hence, the relationship between amino acid composition and protein folding type is

fully grasped by the developed approach.

4.6 Results for Leave-one-out Tests

In this part, structural classes of leaved-out proteins are predicted by the results
derived using all other proteins in the training set. LOO test results for 138 protein
domains are given in Table 4.8. LibSVM method has the highest LOO test result for 138
protein domains data set with accuracy of 70.29%. Proposed MILP approach has the
second best LOO accuracy value, 67.39%, for 138 protein domains data set. IB1 classifier
of WEKA also has a very close result to MILP approach. Detailed comparison of these

methods based on hypothesis testing is given in Section 4.8.
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Table 4.8 LOO test results for 138 protein domains.

Class-based Accuracy Overall
Methods

o B o+p o/p  Accuracy
LibSVM 80.56% 75.86% 65.85% 59.40% = 70.29%
MILP 83.33% 79.31% 63.41% 43.80% 67.39%
IB1 61.11% 79.31% 58.54% 71.90% 66.67%
Component-coupled 77.78% 55.17% 85.37% 28.12% 63.77%
SMO 63.89% 75.86% 53.66% 53.10% 60.87%
J48 63.89% 72.41% 58.54% 50.00% 60.87%
Random Forest 66.67% 65.52% 56.10% 53.10% 60.14%
RBF Network 63.89% 62.07% 56.10% 50.00% 57.97%
SVM 52.77% 75.86% 58.50% 43.75% 57.24%
Naive Bayes 63.89% 65.52% 34.15% 56.30% 53.62%
Logistic 61.11% 65.52% 46.34% 40.60% 52.90%
Hamming Distance 61.11% 55.17% 36.59% 43.75% 48.55%
Euclidean Distance 61.11% 51.72% 34.15% 40.62% 46.38%
JRip 50.00% 58.62% 48.78% 18.80% 44.20%

Existing and calculated LOO test results for 253 protein domains are given in Table

4.9. Proposed three-stage MILP approach has the highest LOO test result for 253 protein

domains with accuracy of 87.65%. Instance-based classifier IB1 has the second best result

with accuracy value of 86.45%.

classification accuracy values with respect to other methods.

Random Forest classifier and LibSVM have also high
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Table 4.9 LOO test results for 253 protein domains.

Class-based Accuracy Overall
Methods

o B o+p o/fp  Accuracy
MILP 91.94% 85.96% 92.96% 78.69%  87.65%
IB1 90.32% 85.96% 80.28% 90.16% 86.45%
Random Forest 87.10% 80.70% 80.28% 83.61% 82.86%
LibSVM 88.71% 77.19% 76.06% 85.25% 81.67%
J48 80.65% 68.42% 67.61% 73.77% 72.51%
Component-coupled  84.13% 79.31% 70.49% 81.69% 63.77%
JRip 66.13% 61.40% 63.38% 55.74% 61.75%
SMO 67.74% 70.18% 52.11% 52.46% 60.15%
RBF Network 66.13% 66.67% 53.52% 52.46% 59.36%
Naive Bayes 69.35% 59.65% 40.85% 68.85% 58.96%
SVM 84.12% 79.31% 81.96% 87.32% 57.24%
Logistic 61.29% 63.16% 49.30% 37.70% 52.58%

Hamming Distance 60.32% 60.34% 47.54% 29.58% 48.55%
Euclidean Distance 58.73% 62.07% 47.54% 35.21% 46.38%

Table 4.10 shows the LOO test results for 359 protein domains. Proposed three-
stage MILP based approach has the highest LOO test result for 359 protein domains with
accuracy of 96.38%. The accuracy value of the SVM method given in [110] is the second
best result. However, the well-known support vector machine classifiers LibSVM and
SMO have surprisingly lower results than this SVM result. Instance-based classifier IB1

and LibSVM has also higher classification accuracy values than other existing methods.



Chapter 4: Computational Results on Protein Folding Type Prediction 90

Table 4.10 LOO test results for 359 protein domains.

Class-based Accuracy Overall
Methods

o B o+p o/fp  Accuracy
MILP 98.78%  97.65% 92.47% 96.97%  96.38%
SVM 92.68% 96.47% 96.77%  94.94% 95.26%
IB1 93.90% 94.12% 88.17% 97.98% 93.59%
LibSVM 92.68% 90.59% 86.02% 96.97% 91.64%
Random Forest 89.02% 88.24% 82.80% 94.95% 88.85%
Component-coupled 89.02% 83.53% 78.49% 85.85% 84.12%
J48 76.83% 88.24% 69.89% 85.86% 80.22%
JRip 76.83% 74.12% 63.44% 77.78% 72.98%
RBF Network 67.07% 65.88% 53.76%  69.70% 64.06%
SMO 65.85% 69.41% 45.16% 70.71% 62.67%
Naive Bayes 68.29% 67.06% 36.56% 73.74% 61.28%
Logistic 57.32% 65.88% 47.31% 53.54% 55.71%

HammingDistance 57.32% 60.00% 33.33% 59.60% 52.37%
Euclidean Distance 62.20% 60.00% 34.41% 43.43% 41.22%

LOO test results for 277 protein domains are given in Table 4.11. LibSVM method
has the highest LOO test result for 277 protein domains with accuracy value of 84.48%.
Ibl has a very close accuracy value of 84.11% for 277 protein data set. Proposed three-
stage MILP based approach has the third highest LOO test result for 277 protein domains

data set with accuracy value of 81.50%.
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Table 4.11 LOO test results for 277 protein domains.

Class-based Accuracy Overall
Methods

o B a+p o/fp  Accuracy
LibSVM 82.86%  88.52% 75.83% 90.12%  84.48%
IB1 80.00% 88.52%  73.85%  92.59% 84.11%
MILP 87.14% 75.41% 72.31% 88.89% 81.50%
SVM 7430% 82.00% 72.30% 87.70% 79.40%
Component-coupled 84.30% 82.00% 67.70% 81.50% 79.10%
Random Forest 75.71% 83.61% 70.77%  85.19% 79.06%
J48 77.14% 77.05% 64.62% 85.19% 76.53%
Neural Network 68.60% 85.20% 56.90% 86.40% 74.70%
RBF Network 77.14% 68.85% 53.85% 77.78% 70.03%
SMO 72.86% 75.41% 44.62% 77.78% 68.23%
JRip 64.29% 75.41% 55.38% 76.54% 68.23%
Naive Bayes 74.29% 57.38% 47.69% 77.78% 65.34%
Logistic 71.43% 67.21% 44.62% 58.02% 60.28%

City—blOCkDistance 72.90% 62.30% 43.10% 60.50% 59.90%
Euclidean Distance 71.40% 54.10% 41.50% 53.10% 55.20%

Table 4.12 shows the LOO test results for 498 protein domains. The overall
accuracy of the proposed MILP model on 498 protein domains is 92.97%. On the other
hand, the best accuracy value is 93.20% received by SVM given in [110]. However, the
accuracy value of MILP approach is closer to SVM accuracy value. Moreover, the
accuracy values of LibSVM and SMO classifiers are 92.17% and 76.30%, respectively,
which are lower with respect to SVM result given in [110]. As they did not give any
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detailed information related to predicted results for 498 data sets, we could not investigate

the results in deeper.

Table 4.12 LOO test results for 498 protein domains.

Class-based Accuracy Overall
Methods

o B o+p o/fp  Accuracy
SVM 88.80% 95.20% 91.50% 96.30% 93.20%
MILP 91.59% 94.44% 93.80% 91.91% 92.97%
IB1 89.72% 96.83% 88.37% 95.59% 92.77%
LibSVM 91.59% 94.44% 89.92% 92.65% 92.17%
Random Forest 89.72% 92.86% 89.92% 94.12% 91.76%
Component-coupled 93.50% 88.90% 84.50% 90.40% 89.20%
Neural Network 86.00% 96.00% 86.00% 88.20% 89.20%
JRip 87.85% 88.89% 83.72% 88.24% 87.14%
J48 84.11% 88.89% 86.82% 87.50% 86.94%
SMO 71.03% 71.43% 74.42% 86.76% 76.30%
Logistic 68.22% 79.70% 65.89% 82.35% 74.29%
RBF Network 68.22% 75.40% 68.22% 74.26% 71.68%
Naive Bayes 76.64%  72.22% 55.81% 75.00% 69.67%
Euclidean Distance 73.80% 65.10% 56.60%  60.30% 63.50%
City-block Distance 64.50% 68.30% 50.40% 67.70% 62.70%

4.7 Results for 10-Fold Cross-validation Tests

For the 1189 and 25PDB data sets, there exists 10-fold cross validation results in
literature. Therefore, we investigate the performance of these data sets by applying 10-fold

cross-validation (10FCV). The 10FCV test results for 1189 protein domains are given in
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Table 4.13. The overall accuracy of the proposed model on 1189 protein domains is
53.30% with the highest accuracy value. LibSVM and Logistic classifiers has second and
third best results for 1189 data set. On the other hand, the IBI1 classifier which gives
generally better results for the above data sets has the worst accuracy value for 1189 data

set. This is a surprising result.

Table 4.13 10FCV test results for 1189 protein domains.

Class-based Accuracy Overall
Methods

a B o+p o/fp  Accuracy
MILP 76.23% 59.86% 36.52% 44.31%  53.30%
LibSVM 47.09% 65.99% 12.03% 74.55% 52.84%
Logistic 51.57% 67.35% 15.35% 66.17% 52.29%
SMO 46.19% 63.61% 8.29% 75.15% 51.37%
RBF Network 45.74%  53.40% 24.07% 71.86% 51.01%
Naive Bayes 45.74% 50.68% 14.11% 79.04% 50.27%
Random Forest 47.53% 58.50% 21.99% 48.50% 45.15%
JRip 25.56% 45.24% 1.66%  82.63% 43.04%
J48 41.26% 48.30% 24.48% 51.20% 42.49%
IBI1 39.46% 46.60% 19.08%  54.79% 41.57%

10FCV test results for 25PDB protein domains are given in Table 4.14. The overall
accuracy of the proposed model on 1189 protein domains is 51.82%. The highest accuracy
value is achieved by LibSVM method with 52.54%. SMO classifier has a very close
accuracy value to LibSVM. MILP approach has the third best accuracy value as Logistic
classifier. On the other hand, the IB1 classifier which gives generally better results for the

above data sets has the second worst accuracy value for 25PDB data set.
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Table 4.14 10FCV test results for 25PDB protein domains.

Class-based Accuracy Overall
Methods

o B o+p o/p  Accuracy
LibSVM 65.69% 59.37% 29.48% 56.36%  52.54%
SMO 67.49% 63.66% 34.01% 40.17% 52.00%
MILP 60.95% 56.43% 53.47% 36.73% 51.82%
Logistic 66.82% 62.75% 34.24% 41.04% 51.82%
RBF Network 57.11% 52.37% 29.93% 60.69%  49.43%
Naive Bayes 51.02% 45.82% 29.25% 69.36% 47.69%
Random Forest 5824% 52.60% 27.44% 36.42% = 44.11%
J48 49.21% 42.44% 31.29% 38.15% 40.40%
IB1 40.18% 35.89% 27.44% 49.13% 37.53%
JRip 42.89%  39.50% 2.49% 19.94% 26.59%

4.8 Statistical Analysis of the Results
In order to analyze the results in detail, sensitivity (SEN), specificity (SPE), MCC

and S values of each of the protein data sets are calculated and examined (Table 4.15 -
Table 4.24). The specificity values are always significantly greater compared to
sensitivity. High average specificity means that the number of under predicted proteins is
low. Thus, low accuracy is a result of relatively low sensitivity values. Moreover, as
sensitivity values increases, the difference between sensitivity and specificity decreases.
Therefore, observing high specificity values do not mean that the values of classification
accuracy are good as expected.

MCC value gives the strength of relationship between the actual and predicted
values. A perfect fit will give a MCC value of 1. Due to the low sensitivity for 138
Domains data set, MCC and S values are low for each of the classes. This means that the

classifier could not effectively capture the characteristics of that class. For a perfect
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prediction, S value should be equal to 1 and 0 for vice versa. On the other hand, when we
observe the results of each data set in overall, each of the classes have higher and lower
MCC and S values with respect to the remaining classes. Hence, we could not say that
MILP based hyper-box enclosure approach performs rather purely for any of the classes.

Depending on the data sets, proposed data classification approach works well for each of

the classes.

Table 4.15 Values of performance measures for the 138 protein domains.

Classifier SEN SPE mec >

o B otp o/ a B otp o/p
LibSVM 70.29% 89.79% 0.62 0.66 0.53 0.51 0.51 0.5 0.47 0.45
MILP 67.39% 88.59% 0.65 0.58 0.49 038 0.5 046 044 0.36
IB1 66.67% 89.35% 0.54 0.66 0.55 0.42 0.44 048 0.45 0.39
Component-coupled 63.77% NA NA NA NA NA NA NA NA NA
SMO 60.87% 86.55% 0.48 0.64 0.34 031 04 044 033 0.32
J48 60.87% 86.38% 0.45 0.56 0.35 0.38 0.39 042 0.34 0.35
Random Forest 60.14% 86.01% 0.41 0.54 0.34 0.42 037 041 0.33 0.37
RBF Network 57.97% 85.54% 0.47 0.44 031 0.33 0.38 037 031 0.32
SVM 57.24%  NA NA NA NA NA NA NA NA NA
Naive Bayes 53.62% 85.06% 0.44 0.41 0.23 0.24 035 034 0.26 0.26
Logistic 52.90% 84.21% 0.38 042 024 0.17 033 0.34 027 0.24
Hamming Distance 48.55%  NA NA NA NA NA NA NA NA NA
Euclidean Distance  46.38% NA NA NA NA NA NA NA NA NA
JRip 44.20% 79.72% 0.22 0.41 0.03 -0.03 025 03 0.12 0.16
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Table 4.16 Values of performance measures for the 253 protein domains.

Classifier SEN SPE mee >

o B otfp a/fp a B atp a/p
MILP 87.65% 95.87% 0.84 0.84 0.88 0.76 0.74 0.72 0.76 0.7
IB1 86.45% 95.47% 0.87 0.84 0.78 0.79 0.73 0.71 0.71 0.71
Random Forest 82.86% 94.11% 0.79 0.78 0.71 0.78 0.67 0.65 0.65 0.66
LibSVM 81.67% 93.86% 0.79 0.71 0.7 08 0.65 0.61 0.63 0.65
J48 72.51% 90.71% 0.7 0.6 0.55 0.61 0.54 0.5 049 0.51
Component-coupled 63.77% NA NA NA NA NA NA NA NA NA
JRip 61.75% 86.54% 0.59 0.54 0.33 0.37 044 042 0.33 0.36
SMO 60.15% 86.54% 0.53 0.58 0.34 0.27 041 042 033 0.29
RBF Network 59.36% 86.08% 0.49 054 03 033 04 041 031 0.33
Naive Bayes 58.96% 86.40% 0.56 0.46 03 035 041 038 03 0.33
SVM 57.24% NA NA NA NA NA NA NA NA NA
Logistic 52.58% 84.07% 038 043 026 0.12 033 0.35 0.28 0.21

Hamming Distance 48.55% NA NA NA NA NA NA NA NA NA
Euclidean Distance 46.38% NA NA NA NA NA NA NA NA NA

For 2438 Domain data set, there are 7 different classes. Similar to above
observations, specificity values are higher than the sensitivity values (Table 4.21 & Table
4.22). Furthermore, MCC and S values of classes a, B, a+p and o/p are greater than the
MCC and S values of classes p, o and p. As the number of proteins belongs to the classes
a, B, a+P and o/ are higher, proposed approach grasped the characteristics of these classes
well. On the other hand, instances in p, 6 and p classes are very low with respect to the

other classes. Hence, MCC and S values of these classes are low.
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Table 4.17 Values of performance measures for the 359 protein domains.
Classifier SEN SPE mece >
o B otp ofp a B otp a/p
MILP 96.38% 98.77% 0.97 097 0.92 0.95 091 091 091 0.91
SVM 9526% NA NA NA NA NA NA NA NA NA
IB1 93.59% 97.81% 0.93 094 0.84 0.95 0.84 0.85 0.83 0.86
LibSVM 91.64% 97.20% 0.88 0.9 0.84 092 08 0.8 0.8 0.83
Random Forest 88.85% 96.29% 0.82 0.87 0.81 0.89 0.74 0.75 0.74 0.78
Component-coupled 84.12% NA NA NA NA NA NA NA NA NA
J48 80.22% 93.31% 0.73 0.78 0.65 0.75 0.61 0.63 0.58 0.63
JRip 72.98% 90.77% 0.69 0.64 0.55 0.61 0.54 0.52 0.48 0.52
RBF Network 64.06% 87.70% 0.58 0.52 0.38 0.47 0.44 042 0.36 0.41
SMO 62.67% 87.35% 0.6 0.54 0.16 0.62 0.44 0.43 0.18 0.46
Naive Bayes 61.28% 86.55% 0.58 0.52 0.27 0.41 0.43 041 0.29 0.37
Logistic 55.71% 84.87% 04 047 03 025 035 0.37 031 0.27
Hamming Distance 5237% NA NA NA NA NA NA NA NA NA
Euclidean Distance 41.22% NA NA NA NA NA NA NA NA NA
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Table 4.18 Values of performance measures for the 277 protein domains.

MCC S
Classifier SEN SPE
a B otp o/fp a B aotp o/p
LibSVM 84.48% 94.72% 0.76 0.82 0.75 0.82 0.67 0.68 0.65 0.71
IB1 84.11% 94.19% 0.8 0.82 0.79 0.75 0.67 0.68 0.66 0.68
MILP 81.50% 93.74% 0.7 0.73 0.73 0.82 0.63 0.61 0.61 0.67
SVM 79.40% NA NA NA NA NA NA NA NA NA

Component-coupled 79.10% NA NA NA NA NA NA NA NA NA
Random Forest 79.06% 92.91% 0.69 0.73 0.68 0.74 0.59 0.6 0.57 0.62

J48 76.53% 92.18% 0.66 0.69 0.56 0.76 0.56 0.56 0.5 0.61
NN 7470% NA NA NA NA NA NA NA NA NA
RBF Network 70.03% 89.54% 0.64 0.6 048 0.57 051 048 043 0.49
SMO 68.23% 88.74% 0.68 0.61 041 0.51 0.5 0.48 0.38 045
JRip 68.23% 88.95% 0.52 0.63 0.49 0.55 045 049 042 047
Naive Bayes 65.34% 87.62% 0.63 0.51 039 0.48 047 042 037 0.42
Logistic 60.28% 86.31% 0.55 0.51 03 034 042 04 031 033

Hamming Distance 59.90% NA NA NA NA NA NA NA NA NA
Euclidean Distance 55.20% NA NA NA NA NA NA NA NA NA




Chapter 4: Computational Results on Protein Folding Type Prediction 99
Table 4.19 Values of performance measures for the 498 protein domains.
Classifier SEN SPE mece

a B aotp of «a B atp a/p

SVM 93.20% NA NA NA NA NA NA NA NA NA
MILP 92.97% 97.65% 0.89 093 09 09 082 0.84 0.84 0.84
IB1 92.77% 97.53% 0.89 093 0.89 09 081 0.84 0.83 0.84
LibSVM 92.17% 97.40% 0.88 092 0.88 0.89 0.8 0.83 0.82 0.83
Random Forest 91.76% 97.25% 0.87 0.9 087 091 0.79 0.81 0.81 0.82
Component-coupled 89.20%  NA NA NA NA NA NA NA NA NA
NN 89.20% NA NA NA NA NA NA NA NA NA
JRip 87.14% 95.63% 0.84 0.83 0.82 0.81 0.72 0.73 0.72 0.73
J48 86.94% 95.62% 0.79 0.87 0.81 0.81 0.7 0.73 0.72 0.73
SMO 76.30% 91.84% 0.65 0.68 0.72 0.65 0.54 0.56 0.57 0.56
Logistic 74.29% 91.25% 0.6 0.73 0.59 0.64 0.51 0.56 0.51 0.54
RBF Network 71.68% 90.30% 0.62 062 06 056 05 051 05 0.49
Naive Bayes 69.67% 89.74% 0.61 0.65 0.54 0.52 049 05 0.45 0.46
Euclidean Distance  63.50%  NA NA NA NA NA NA NA NA NA
Hamming Distance  62.70%  NA NA NA NA NA NA NA NA NA




Chapter 4: Computational Results on Protein Folding Type Prediction 100
Table 4.20 Values of performance measures for the 510 protein domains.
Classifier SEN SPE mee >

a B aotf a/p a B aotp o/p
MILP 95.88% 98.60% 0.93 094 095 095 089 09 09 09
IB1 95.68% 98.52% 0.92 093 0.96 095 0.88 0.89 09 09
SVM 94.90% NA NA NA NA NA NA NA NA NA
Random Forest 92.94% 97.69% 0.89 093 0.87 092 0.82 0.84 0.83 0.84
Component-coupled 86.47% NA NA NA NA NA NA NA NA NA
J48 75.29% 91.97% 0.63 0.6 0.81 0.61 0.53 0.51 0.6 0.54
LibSVM 58.04% 86.02% 04 0.61 0.27 028 036 043 029 03
RBF Network 56.27% 84.93% 04 033 0.25 046 035 032 028 0.37
Logistic 55.88% 83.60% 0.39 0.54 0.07 0.34 034 0.39 0.15 0.32
Naive Bayes 54.50% 84.26% 0.42 039 0.1 042 034 034 02 0.35
SMO 49.80% 82.24% 0.48 041 0.07 02 034 032 0.13 0.25
JRip 47.64% 81.27% 032 04 0.18 0.14 0.27 032 0.18 0.22
Euclidean Distance 47.25% NA NA NA NA NA NA NA NA NA
Hamming Distance 47.06% NA NA NA NA NA NA NA NA NA
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Table 4.21 Values of performance measures-1 for the 2438 protein domains.
Classifier ACC SPE mec

(SEN) o B atp o/p p c n
MILP 95.08% 98.51% 091 094 094 096 0.9 093 0.82
IB1 95.03% 98.78% 094 095 096 09 0.78 095 0.85
SVM 94.50% NA NA NA NA NA NA NA NA
Random Forest 93.23% 98.11% 092 091 093 0.88 0.79 0.95 0.93
J48 86.54% 96.27% 0.79 0.84 0.83 0.82 0.57 0.9 0.8
LibSVM 84.58% 95.46% 0.78 0.86 0.77 0.75 0.86 0.97 0
Component-coupled 77.03% NA NA NA NA NA NA NA NA
JRip 65.01% 87.34% 0.66 0.46 0.56 0.53 0.58 0.86 0.29
RBF Network 64.84% 90.49% 0.58 0.57 0.44 046 036 0.79 0.32
SMO 63.94% 88.99% 0.51 0.52 047 045 0 0.79 0
Logistic 63.04% 89.22% 047 0.55 042 045 O 0.75 0
Naive Bayes 56.72% 88.79% 0.52 0.49 0.26 0.35 033 0.77 0.16
Euclidean Distance 47.74% NA NA NA NA NA NA NA NA
Hamming Distance 42.38% NA NA NA NA NA NA NA NA
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Table 4.22 Values of performance measures-2 for the 2438 protein domains.

Classifier ACC SPE >
(SEN) o B otp op p c n
MILP 95.08% 98.51% 0.85 0.89 0.88 0.87 0.54 0.74 0.57
IB1 95.03% 98.78% 0.85 0.89 0.88 0.86 0.52 0.75 0.6
SVM 94.50% NA NA NA NA NA NA NA NA
Random Forest 93.23% 98.11% 0.8 0.85 0.84 0.82 0.51 0.71 0.57
J48 86.54% 96.27% 0.66 0.73 0.72 0.7 0.47 059 0.5
LibSVM 84.58% 95.46% 0.63 0.72 0.67 0.66 0.48 0.59 0.43

Component-coupled 77.03% NA NA NA NA NA NA NA NA

JRip 65.01% 87.34% 0.45 039 042 042 04 045 0.39
RBF Network 64.84% 90.49% 0.43 046 039 04 039 044 0.38
SMO 63.94% 88.99% 0.41 043 041 039 038 043 0.38
Logistic 63.04% 89.22% 0.39 0.44 038 039 038 043 0.37
Naive Bayes 56.72% 88.79% 0.38 0.39 0.28 032 036 04 034

Euclidean Distance  47.74% NA NA NA NA NA NA NA NA
Hamming Distance  42.38% NA NA NA NA NA NA NA NA
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Table 4.23 Values of performance measures for the 1189 protein domains.

Classifier (1;]5(;‘115) SPE . BMC“C"'B P a B Su+|3 op
MILP 53.30% 84,91% 0.37 0.36 0.285 0.28 0.31 0.33 0.3 0.28
LibSVM 52.84% 81,90% 0.37 0.39 0.025 0.3 033 033 0.2 0.28
Logistic 52.28% 82,45% 0.36 0.39 0.045 0.27 0.32 0.33 0.21 0.27
SMO 51.37% 81,30% 0.35 0.35 0.028 0.27 0.31 0.32 0.21 0.26
RBF Network 51.00% 82,29% 0.31 0.31 0.07 031 03 0.3 0.21 0.29
Naive Bayes  50.27% 81,26% 0.33 0.3 0.019 03 03 029 02 0.27
Random Forest 45.14% 80,85% 0.24 0.23 -0.01 0.14 0.26 0.25 0.17 0.21
JRip 43.04% 76,81% 0.18 0.23 -0.08 0.14 0.24 0.25 0.19 0.14
J48 42.49% 80,22% 0.14 0.13 -0.02 0.14 0.22 0.21 0.17 0.21
IB1 41.57% 79,49% 0.1 0.22 -0.07 0.07 0.21 0.24 0.15 0.16

Table 4.24 Values of performance measures for the 25PDB protein domains.

Classifier (é§§) SPE a BMCS"'B op  a B Sa+|3 o/p
LibSVM 52.54% 84.20% 0.42 0.35 0.082 0.32 0.34 032 0.19 0.31
SMO 52.00% 83.64% 0.42 0.35 0.096 0.25 034 031 0.19 0.28
MILP 51.82% 83.74% 0.39 0.29 0.322 0.13 0.33 029 031 0.21
Logistic 51.82% 83.54% 0.4 0.33 0.107 0.26 0.34 031 02 0.29
RBF Network 49.43% 83.30% 0.36 0.29 0.038 0.3 031 029 0.16 0.29
Naive Bayes  47.69% 83.31% 0.32 0.26 0.054 0.27 0.29 0.27 0.18 0.26
Random Forest 44.11% 80.87% 0.22 0.18 -0 0.16 024 023 0.15 0.24
J48 40.40% 79.75% 0.15 0.07 -0.04 0.12 021 0.18 0.12 0.21
IB1 37.53% 79.79% 0.11 0.07 -0.08 0.04 0.2 0.18 0.11 0.16
JRip 26.59% 74.05% -0.26 -0.3 -0.1 0.03 -0 -0.01 0.14 0.16




Chapter 4: Computational Results on Protein Folding Type Prediction 104

In order to evaluate if there is any statistical significant difference between the
existing and proposed data classification approaches tested on the same data sets, P-value
(paired test) analysis are carried out. The results of P-value test results are given in Table
4.25 and in Table 4.26.

Table 4.25 The results of P-value analyses.

138 253 359 277 498 510 2438 1189 25PDB

Compared Methods P P P P P P P P P
Value Value Value Value Value Value Value Value Value

MILP vs HD 291 944 135 558 10.77 16.15 3923 NA NA
MILP vs ED 327 989 1595 6.65 1053 16.1 36.09 NA NA
MILP vs CC 037 629 553 0.71 1.17  3.63 1757 NA NA
MILP vs SVM 148 139 074 062 106 1.06 0.12 NA NA
MILP vs LibSVM 052 187 268 093 048 1435 12.13 0.22 0.42
MILP vs SMO .13 7.04 11.19 4.09 729 1654 2694 09 0.1

MILP vs NN NA NA NA 193 1.17 NA NA NA NA
MILP vs IB1 0.13 0.4 1.71 0.81 0.12 0.16 0.08 5.49 8.31
MILP vs J48 1.13 426 674 163 3.16 936 1032 506  6.63

MILP vs Random Forest 125 152 386 082 072 204 275 381 4.64
MILP vs RBF Network 1.62 721 10.87 3.58 881 1483 2638 1.08 1.38

MILP vs JRip 3.88 6.7 8.7 4.09 3.07 17.11 2627 479 1495
MILP vs NaiveBayes 234 729 1151 49 9.43 153 3131 1.42 2.39
MILP vs Logistic 246 862 1277 625 729 1493 2749 048 0

The accuracy values of MILP approach on each of the data sets is statistically
significant than the accuracies of the distance based algorithms HD and ED given in [97]
and [100]. Since there are not any existing literature results of these methods for 1189 and
25PDB data sets, P-value analysis for these data sets are not available. On the other hand,

there is no statistical difference between the CC algorithm and MILP approach for 138, 277
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and 498 data sets. However, MILP approach is statistically significant than CC algorithm
for the data sets 253, 359, 510 and 2438. There is no statistically significant difference
between the accuracy values of SVM given in [109] and [110] and proposed MILP
approach. However, the results given in [110] are not consistent with the results achieved
by LibSVM and SMO.

Table 4.26 The results of P-test.

138 253 359 277 498 510 2438 1189 25PDB
P P P P P P P P

Compared Methods

Test Test Test Test Test Test Test Test Test

Result Result Result Result Result Result Result Result Result
MILP vs HD ++ ++ ++ ++ ++ ++ ++ NA NA
MILP vs ED ++ ++ ++ ++ ++ ++ ++ NA NA
MILP vs CC == ++ ++ == == ++ ++ NA NA
MILP vs SVM == == == == == == == NA NA
MILP vs LibSVM == == ++ == == ++ ++ == ==
MILP vs SMO == ++ ++ ++ ++ + + ++ == ==
MILP vs NN NA NA NA == == NA NA NA NA
MILP vs IB1 == == == == == —= —= ++ ++
MILP vs J48 == ++ ++ == ++ ++ ++ ++ ++
MILP vs Random Forest == == ++ == == ++ ++ ++ ++
MILP vs RBF Network == ++ ++ ++ ++ ++ ++ == ==
MILP vs JRip ++ ++ ++ ++ ++ ++ ++ ++ ++
MILP vs NaiveBayes ++ ++ + + ++ + + + + + + == + +
MILP vs Logistic ++ ++ ++ ++ ++ ++ ++ ++ ==

+ + denotes that the first method is statistically significantly better than the second method. - - represents that
the second method is statistically significantly better than the first method. = = indicates that there is no
significant difference between the results of the methods. HD: Hamming Distance. ED: Euclidean Distance.
CC: Component-coupled. SVM: Support Vector Machines. NN: Neural Networks.
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MILP approach is statistically significantly better than the support vector machine
algorithms implemented in LibSVM and WEKA for some of the data sets. Similarly, there
is no statistically significant difference between the LOO results of Neural Network given
in [104] and MILP approach on 277 and 498 data sets. On the other hand, MILP approach
is statistically significant than the Neural Network classifier found in WEKA (RBF
Network) for most of the data sets. There is no statistically significant difference between
the results of IB1 classifier and MILP approach for each of the data sets except 1189 and
25PDB. Surprisingly, IB1 has worse accuracy value with respect to MILP approach for
data sets 1189 and 25PDB. Finally, MILP approach has statistically significant accuracy
values for the methods J48, Random Forest (RF), JRip, Naive Bayes (NB) and Logistic for
most of the data sets.

In order to compare the existing data classification methods with MILP, some of the
ordered P-value graphs are shown in Figure 4.1 to Figure 4.6. In Figure 4.1, the ordered
P-values of MILP versus LibSVM for each of the nine data sets are shown. For three data
sets, the P-values are greater than 2 and very close to 15 which is a considerably high P-
value. In general, MILP is preferable since it performs quite well for each of the existing
benchmark data sets. However, LibSVM method performs poorly with respect to MILP
approach for 3 of the data sets. Hence, we could say that MILP approach is significantly
better than LibSVM method in general. We could come up with the same conclusion for
IB1 and MILP methods (Figure 4.2). In a similar way, IB1 method performs worse for
two of the data sets despite its high efficiency for the rest of the data sets. Thus, MILP
approach is statistically better than IB1 method in general. MILP approach is statistically
significant than SMO, Logistic and RBF Network algorithms found in WEKA in most of
the data sets (Figure 4.3, 4.4 and 4.5). Moreover, the highest P-value for these methods is
close to 30 which mean that the difference between the performances of the methods and

MILP is highly significant. Finally, proposed MILP approach is statistically significantly
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better than Random Forest algorithm for half of the data sets (Figure 4.6). For the rest, the
difference between the accuracies of two methods is not significant. Moreover, P-values
are not very high for Random Forest algorithm compared to the rest of the listed methods
in Figure 2. For each of the existing protein folding type benchmark data sets, MILP
approach generally achieves high accuracy values and mostly ranks in first three positions
with respect to accuracy. Furthermore, MILP is statistically significantly better than the
existing data classification methods for protein folding type prediction problems on given

nine distinct benchmark data sets.
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Figure 4.1 P-value graph of MILP versus LibSVM.
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Figure 4.2 P-value graph of MILP versus IB1.

P-values

MILP vs SMO

ONPOOONIAD

ﬁﬁﬂﬂﬂﬂ |

< R i

) (%) Q >
) 2} N o)
(f:gz DS o) 1) ’1?‘

Datasets

Figure 4.3 P-value graph of MILP versus SMO.
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Figure 4.4 P-value graph of MILP versus Logistic.
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Figure 4.5 P-value graph of MILP versus RBF Network.
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MILP vs Random Forest
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Figure 4.6 P-value graph of MILP versus Random Forest.

4.9 Problematic Instance Analysis

In order to analyze whether there exists any relation between the performance of the
proposed approach and the number of problematic instances in the data sets, we investigate
the results of these data sets in detail. In Table 4.27, the number of problematic instances is
given by average, maximum and minimum values for each of the protein folding type
benchmark data sets. As 225 and 1601 data sets are used for training sets for the test sets
510 and 2438 data sets, they do not have any maximum and minimum number of
problematic instances. On the other hand, since for the data sets 138, 253, 359, 277 and
498 LOO tests are carried, their problematic instance analyses are comprehensive (Figure
4.7 and 4.11). Furthermore, the number of problematic instances for 1189 and 25PDB data
sets change from one run to another as 10FCV results are obtained for them (Figure 4.12 —

Figure 4.13).
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As it can be observed from the Table 4.27, the number of problematic instances
does not affect the performance of the proposed approach. For the same percentage of
problematic instances as in 359 and 498 data sets, the proposed approach could achieve the
best and second best results for 359 and 498 data sets, respectively. Moreover, for the data
sets that have high percentage of problematic instances as 1601 data set, proposed approach
could very high accuracy value, 95.88%. Hence, considering only the number of

problematic instances could not be sufficient to analyze the difficulty of the data sets.

Table 4.27 Number of problematic instances for each of the protein folding type data sets.

Data % of Av. Number of Problematic
Accuracy Accuracy .
Set (%) Rank Problematic Instances

Name 0 Instances  Average Max. Min.
138 67.39% 2 53% 73 74 69
253 87.65% 1 65% 164 165 157
359 96.38% 1 65% 233 234 228
277 81.50% 3 60% 167 168 161
498 92.97% 2 65% 322 323 312
225 95.88% 1 78% 179 N/A N/A
1601 95.08% 1 97% 1554 N/A N/A
1189 53.30% 1 88% 959 962 956

25PDB 51.82% 3 89% 1486 1489 1482
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Figure 4.7 The number of problematic instances for 138 data set.

Frequency

40
20

180 -
160
140 -
120 -
100 -
80 -
60 -

# of Problematic Instances

253 Data Set LOO Analysis
162
81
1 2 1 2 5
—_— —_— | —
157 160 162 163 164 165

Figure 4.8 The number of problematic instances for 253 data set.
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Figure 4.9 The number of problematic instances for 359 data set.
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Figure 4.10 The number of problematic instances for 277 data set.
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Figure 4.11 The number of problematic instances for 498 data set.
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Figure 4.12 The number of problematic instances for 1189 data set.
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Figure 4.13 The number of problematic instances for 25PDB data set.
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Chapter 5

COMPUTATIONAL RESULTS ON UCI REPOSITORY DATA SETS

The performance of proposed three-stage approach is evaluated on eleven UCI
repository benchmark data sets [108]. The prediction results and comparisons with other

data classification methods are examined in this chapter.

5.1 UCI Repository Data Sets

The UCI Machine Learning Repository is a collection of databases, domain
theories, and data generators that are used by the machine learning community for the
empirical analysis of machine learning algorithms. The archive was created in 1987 by
David Aha and fellow graduate students at UC Irvine. Since that time, it has been widely
used by students, educators, and researchers all over the world as a primary source of
machine learning data sets [108].

In order to observe the performance of the proposed MILP based hyper-box
enclosure approach, the following eleven data sets from [108] are tested. First five of them

are binary-class data classification data sets and the rest are multi-class data sets.

5.1.1 Johns Hopkins University lonosphere Database

This database contains the radar data collected by a system in Goose Bay, Labrador.
This system consists of a phased array of 16 high-frequency antennas with a total
transmitted power on the order of 6.4 kilowatts. Free electrons in the ionosphere are the

targets of this study. “Good” radar returns are those showing evidence of some type of
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structure in the ionosphere. On the other hand, “Bad” radar returns are those that do not

show any evidence and their signals pass through the ionosphere.

Received signals were processed using an autocorrelation function that depends on
the time of the pulse and the pulse number. There were 17 pulse numbers for the Goose
Bay system. Instances in this database are described by 2 attributes per pulse number,
corresponding to the complex values returned by the function resulting from the complex
electromagnetic signal. The overall characteristics of the database are given in Table 5.1.

This data set is referred as “lonosphere”.

Table 5.1 Binary-class UCI Repository data sets and their characteristics.

Data Set # of # of # of # of # of
. Instances Instances
Name Attributes Classes Instances . .

in Class 1 in Class 2
Ionosphere 34 2 351 225 126
Pima 8 2 768 500 268
Blood 4 2 748 570 178
WDBC 9 2 683 444 239
Liver 6 2 345 200 145

5.1.2 Pima Indians Diabetes Database

This database consists of female patients at least 21 years old who have Pima Indian
Heritage. The given 8 properties related to the patients are used to test the diabetes for
each one of them. The overall characteristics of the database are given in Table 5.1. This

data set is referred as “Pima”.
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5.1.3 Blood Transfusion Service Center Data Set

This data set is taken from the donor database of Blood Transfusion Service Center
in Hsin-Chu City in Taiwan. 748 donors are randomly selected from the databases with
information related to the months since last donation, months since first donation, total
blood donated in c.c., total number of donation. The class variable represents whether
she/he donated blood in March 2007. The overall characteristics of the data set are given

in Table 5.1. This data set is referred as “Blood”.
5.1.4 Wisconsin Diagnostic Breast Cancer (WDBC)

This breast cancer database was obtained from the University of Wisconsin
Hospitals, Madison from Dr. William H. Wolberg. Using the 9 different information
related to the patients, one is trying to find out whether the patient has a breast cancer or
not. The overall characteristics of the database are given in Table 5.1. This data set is

referred as “WDBC”.
5.1.5 Liver Disorders Data Set

This data set is consists of the records of male individuals with 5 blood test values
which are thought to be sensitive to liver disorders that might arise from excessive alcohol
consumption. Moreover, each individual have an attribute value related to the number of
half-pint equivalents of alcoholic beverages drunk per day. The class variable represents
whether he has a liver disorder or not. The overall characteristics of the data set are given

in Table 5.1. This data set is referred as “Liver”.
5.1.6 Wine Recognition Data

These data are the results of a chemical analysis of wines grown in the same region

in Italy but derived from three different cultivars. The analysis determined the quantities of
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13 constituents found in each of the three types of wines. The overall characteristics of the

data set are given in Table 5.2. This data set is referred as “Wine”.

Table 5.2 Multi-class UCI Repository data sets and their characteristics.

Data Set # # # # of Instances in each class
Att. Classes Ins. C1 C2 C3 C4 C5 C6 C7 C8 (C9 Cu1o

Wine 13 3 178 59 71 48 - - o e e e e
Iris 4 3 150 50 50 50 - --- emeememem e
Thyroid 5 3 215 150 35 30 - - -em e eem e e
Glass 9 6 214 70 76 17 13 9 29 - - m -
Ecoli 7 8 336 143 77 2 2 35 20 5 52 - -
Yeast 8 10 1484 244 429 463 44 35 51 163 30 20 5

5.1.7 Iris Data Set

Iris data is the best known data set to be found in the pattern recognition literature.
The sepal length, sepal width, petal length, and petal width are measured in centimeters on
50 iris specimens from each of three species, Iris setosa, I. versicolor, and I. virginica.
The overall characteristics of the data set are given in Table 5.2. This data set is referred as
“Iris”.
5.1.8 Thyroid Gland Data

This data set composed of five laboratory tests of patients to predict whether a
patient's thyroid to the class euthyroidism, hypothyroidism or hyperthyroidism. The
diagnosis (the class label) was based on a complete medical record, including anamnesis,
scan, etc. The overall characteristics of the data set are given in Table 5.2. This data set is

referred as “Thyroid”.
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5.1.9 Glass Identification Database

This database is composed of 6 different types of glasses with having some
chemical properties to differentiate. The aim is to classify the glasses using the 9
characteristics of instances exist in the data set. The overall characteristics of the data set

are given in Table 5.2. This data set is referred as “Glass”.
5.1.10 Ecoli Data Set

This data set is composed of proteins with 7 different score values and a
localization site. There are 8 different sites that proteins are localized. The overall

characteristics of the data set are given in Table 5.2. This data set is referred as “Ecoli”.
5.1.11 Yeast Data Set

This data set is also composed of proteins with 8 different score values and a
cellular localization site. There are 10 different cellular sites that proteins are localized.
The overall characteristics of the data set are given in Table 5.2. This data set is referred as

“Yeast”.
5.2 Classification Algorithms

In order to compare the results of proposed MILP approach, WEKA classification
algorithms J48, RBF Network, Logistic, Naive Bayes (NB), SMO, Random Forest (RF)
and IB1 are studied (Table 5.3). Optimized parameter values of these WEKA classifiers
are determined and used to perform the studies on the given data sets. Moreover, well-
known support vector machine implementation LibSVM given by [111] is also studied to
observe the accuracy values. For each of the data sets, parameters related to SVM
algorithm are optimized by performing 10FCV validation with different combinations of
cost and gamma values. The optimal values that achieve the highest 10FCV accuracy are

used to obtain the results for each data set (Table 5.4).
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Table 5.3 Summary of the applied classification algorithms of WEKA.

Classifier Reference Short Description

Naive
Bayes

RBF
Network

IB1

J48

Random
Forest

JRip

SMO

Logistic

[112]

[113]

[114]

[115]
[116]

[117]

[118]

[119]

e Class for a Naive Bayes classifier using estimator classes.

e Numeric estimator precision values are chosen based on
analysis of the training data.

e Class that implements a normalized Gaussian radial basis
function network.

e [t uses the k-means clustering algorithm to provide the basis
functions and learns either a logistic regression (discrete
class problems) or linear regression (numeric class
problems) on top of that.

e [t standardizes all numeric attributes to zero mean and unit
variance.

e [B1-type classifier.

e Uses a simple distance measure to find the training instance
closest to the given test instance, and predict the same class
as this training instance.

e [f multiple instances are the same (smallest) distance to the
test instance, the first one found is used.

e Class for generating an unpruned or a pruned C4.5 decision
tree.

e Decision tree type algorithm

e (Class for constructing random forests.

e This class implements a propositional rule learner, Repeated
Incremental Pruning to Produce Error Reduction (RIPPER),
which is proposed by William W. Cohen as an optimized
version of IREP.

e Implements John C. Platt's sequential minimal optimization
algorithm for training a support vector classifier using
polynomial kernels.

¢ Transforms output of SVM into probabilities by applying a
standard sigmoid function that is not fitted to the data.

e Class for building a logistic regression model using
LogitBoost.

e Incorporates attribute selection by fitting simple regression
functions in LogitBoost.
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Table 5.4 Optimal parameter values of LibSVM for each of the data sets.

Data Sets Kernel Type ¢ (Cost) g (Gamma)
Ionosphere Radial Basis Function 8192 0.5
Pima Radial Basis Function 8 0.00003
Blood Radial Basis Function 2048 0.00012
WDBC Radial Basis Function 32768 0.00003
Liver Radial Basis Function 2 0.00012
Wine Radial Basis Function 8192 0.00003
Iris Radial Basis Function 2 0.125
Thyroid Radial Basis Function 512 0.00003
Glass Radial Basis Function 32768 0.03125
Ecoli Radial Basis Function 0.5 8
Yeast Radial Basis Function 0.5 8

5.3 10-Fold Cross-validation Results for Binary-Class Data Sets

For 10-fold cross-validation tests (10FCV), five binary-class data sets including
Ionosphere, Pima, Blood, WDBC, and Liver are used. Using these data sets, the proposed
three-stage MILP model is solved in GAMS [120] using ILOG CPLEX Solver version 10.0
[121] on a notebook computer with Inter Pentium M 1.73 Ghz Processor and 512 MB of
RAM. For each data set, 10 different runs are carried out and average 10FCV results are
given.

10FCV test results for Ionosphere data set are given in Table 5.5. The overall
accuracy of the proposed model on Ionosphere data set is 94.59%. MILP approach has the
second best accuracy value. The highest accuracy value is achieved by LibSVM method

with 94.87%. Random Forest classifier has a very close accuracy value to LibSVM and
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MILP with 93.45%. On the other hand, the Naive Bayes classifier has the worst accuracy

value for Ionosphere data set. The rest of the classifiers have moderate accuracy values.

Table 5.5 10FCV results for lonosphere data set.

Class-based Accuracy Overall

Methods
C1 C2 Accuracy
LibSVM 95.56% 93.65%  94.87%
MILP 97.33% 89.68%  94.59%

Random Forest 96.44% 88.10% 93.45%
RBF Network 93.33% 90.48%  92.31%

J48 96.44% 82.54%  91.45%
JRip 91.56% 86.51%  89.74%
Logistic 94.22% 79.37%  88.89%
SMO 96.89% 73.81%  88.60%
IB1 96.89% 67.46%  86.32%
Naive Bayes 80.44% 86.51%  82.62%

10FCV test results for Pima data set are given in Table 5.6. The highest accuracy
value is achieved by proposed MILP approach with 81.25%. SMO and Logistic classifiers
are the ones that have the closest accuracy value to the MILP approach’s accuracy. As
expected, LibSVM has also high accuracy with respect to other classifiers with 76.43%.
On the other hand, decision tree based classifiers J48 and Random Forest has low accuracy
values compared to the MILP approach. Furthermore, the IB1 classifier has the worst

accuracy value for Pima data set.

Table 5.7 gives the 10FCV test results for Blood data set. The highest accuracy
value is achieved by proposed MILP approach with 79.95%. The neural network based
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classifier RBF Network has a very close accuracy value to the MILP. Rule based classifier
JRip and decision tree based classifier J48 have also high accuracy value for Blood data
set. Support vector machine based classifier LibSVM and SMO have relatively low
classification accuracies. The nearest neighborhood based classifier IB1 has the lowest

accuracy value, 68.58%, for Blood data set.

Table 5.6 10FCV results for Pima data set.

Class-based Accuracy Overall

Methods

C1 C2 Accuracy
MILP 62.69% 91.20%  81.25%
SMO 54.10% 89.80%  77.34%
Logistic 57.09% 88.00%  77.21%
LibSVM 52.24% 89.40%  76.43%
Naive Bayes 61.19% 77.80%  76.30%
RBF Network 54.10% 86.80%  75.39%
JRip 57.46% 84.20%  74.87%
J48 59.70% 81.40%  73.83%
Random Forest 61.19% 77.80%  72.01%
IB1 52.99% 79.40%  70.18%

10FCYV test results for WDBC data set are given in Table 5.8. The highest accuracy
value is achieved by proposed MILP approach with 97.36%. SMO, LibSVM and Logistic
classifiers are the ones that have the closest accuracy value to the MILP approach’s
accuracy. Naive Bayes, Random Forest, JRip, IB1 and J48 have moderate accuracy values
approximately 96%. Furthermore, neural network based classifier RBF Network has the

worst accuracy value for WDBC data set, 95.75%.
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Table 5.7 10FCV results for Blood data set.

Class-based Accuracy Overall

Methods

C1 C2 Accuracy
MILP 42.13%  91.75%  79.95%
RBF Network 25.84%  96.49%  79.68%
JRip 41.57%  90.53%  78.88%
J48 43.26%  88.60%  77.81%
LibSVM 3483%  91.23%  77.81%
Logistic 12.36%  97.37%  77.14%
SMO 0.00% 100.00%  76.20%
Naive Bayes 20.22%  92.63%  75.40%
Random Forest 32.58% 84.74%  72.33%
IB1 37.08%  78.42%  68.58%

Table 5.8 10FCV results for WDBC data set.

Class-based Accuracy Overall

Methods

C1 C2 Accuracy
MILP 98.87% 94.56% 97.36%
SMO 97.30% 96.65%  97.07%
Logistic 97.75% 94.98%  96.78%
LibSVM 97.52% 95.40%  96.78%
Naive Bayes 95.72% 97.49%  96.34%
Random Forest 97.52% 93.72%  96.19%
JRip 96.40% 95.82%  96.19%
IB1 97.52% 93.31%  96.05%
J48 96.40% 95.40%  96.05%

RBF Network 95.72% 95.82% 95.75%
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Table 5.9 10FCV results for Liver data set.

Methods Class-based Accuracy Overall
C1 C2 Accuracy
LibSVM 64.83% 81% 74.20%
MILP 65.52% 79% 73.33%
J48 53.10% 80% 68.70%
Logistic 53.10% 79% 68.12%
Random Forest 62.76% 69% 66.38%
JRip 46.90% 77% 64.35%
RBF Network 51.72% 73.50% 64.35%
IB1 56.55% 67.50% 62.90%
SMO 0.69% 100% 58.26%
Naive Bayes 76.55% 40% 55.36%

10FCV test results for Liver data set are given in Table 5.9. The overall accuracy
of the proposed model on Liver data set is 73.33%. MILP approach has the second best
accuracy value. The highest accuracy value is achieved by LibSVM method with 74.20%.
J48 and Logistic classifiers have a closer accuracy values with 68.70% and 68.12%,
respectively. On the other hand, the famous probabilistic classifier Naive Bayes has the
worst accuracy value for Liver data set. The rest of the classifiers have moderate accuracy

values ranging from 58% to 66%.
5.4 10-Fold Cross-validation Results for Multi-Class Data Sets

For 10-fold cross-validation tests (10FCV) of multi-class problems, six data sets
including Wine, Iris, Thyroid, Glass, Ecoli and Yeast are used. Using these data sets, the
proposed three-stage MILP model is solved in GAMS [120] using ILOG CPLEX Solver

version 10.0 [121] on a notebook computer with Inter Pentium M 1.73 Ghz Processor and
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512 MB of RAM. Similar to two-class case, 10 different runs are carried out and average
10FCV results are given for each of the data sets.
Table 5.10 10FCV results for Wine data set.

Methods Class-based Accuracy Overall
C1 C2 C3 Accuracy
SMO 100%  95.77% 100%  98.31%

Random Forest 100% 95.77% 100% 98.31%
RBF Network 96.61% 100% 97.92% 98.31%

Logistic 98.31%  95.77%  97.92%  97.19%
Naive Bayes 94.92%  95.77% 100%  96.63%
MILP 94.92%  95.77%  93.75%  94.94%
IB1 100%  87.32% 100%  94.94%
JRip 91.53%  9437%  95.83%  93.82%
J48 98.31%  9437%  87.50%  93.82%
LibSVM 94.92%  90.14%  91.67%  92.13%

10FCV test results for Wine data set are given in Table 5.10. The overall accuracy
of the proposed model on Ionosphere data set is 94.94%. MILP approach has the fourth
best accuracy value as distance based classifier IB1. The highest accuracy value is
achieved by SMO, Random Forest and RBF Network methods with 98.31%. Logistic and
Naive Bayes classifiers have also higher accuracy values than MILP approach with 97.19%
and 96.63%, respectively. On the other hand, the famous decision tree classifier J48 and
rule based classifier have the same accuracy value, 93.83%, for Wine data set.
Surprisingly, LibSVM has the worst accuracy value, 92.13%, for this data set.

10FCV test results for Iris data set are given in Table 5.11. The overall accuracy of
the proposed model on Iris data set is 96%. MILP approach has the second best accuracy
value. The highest accuracy value is achieved by LibSVM method with 98%. Logistic,
J48, Naive Bayes and SMO classifiers have the same accuracy value with the MILP
approach. On the other hand, Random Forest, IB1 and RBF Network have equal accuracy
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value, 95.33%, for Iris data set. The lowest accuracy value, 94%, is achieved by the rule

based classifier JRip.
Table 5.11 10FCV results for Iris data set.
Methods Class-based Accuracy  Overall

C1 C2 C3 Accuracy
LibSVM 100% 96% 98% 98%
MILP 100% 94% 94% 96%
Logistic 100% 92% 96% 96%
J48 98% 94% 96% 96%
Naive Bayes 100% 96%  92% 96%
SMO 100% 98% 90% 96%
Random Forest 100% 96%  90% 95.33%
IB1 100% 94% 92% 95.33%
RBF Network 100% 92% 94% 95.33%
JRip 100% 90%  92% 94%

Table 5.12 gives the 10FCV test results for Thyroid data set. The highest accuracy
value is achieved by proposed MILP approach with 97.21%. The nearest neighborhood
based classifier IB1 has the same accuracy value with MILP approach. The famous
probabilistic classifier Naive Bayes and Logistic classifier has the second best results with
the accuracy value of 96.74%. RBF Network has 95.35% accuracy and stand at the third
order. Random forest and LibSVM has the same accuracy values, 93.95%. The support
vector machine based classifier SMO has the lowest accuracy value, 89.77%, for Thyroid

data set.
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Table 5.12 10FCYV results for Thyroid data set.

Class-based Accuracy Overall

Methods
C1 C2 C3  Accuracy
MILP 98.67% 91.43% 93.33% 97.21%
IB1 99.33% 94.29% 86.67%  97.21%
Naive Bayes  97.33% 94.29% 86.67%  96.74%
Logistic 100% 57.14% 76.67%  96.74%

RBF Network 98% 97.14% 93.33%  95.35%
Random Forest 94.67% 88.57% 83.33%  93.95%

LibSVM 97.33% 85.71% 86.67%  93.95%
JRip 94.67% 85.71% 93.33%  93.02%
J48 99.33% 82.86% 80.00%  92.09%
SMO 98% 94.29% 96.67%  89.77%

10FCYV test results for Glass data set are given in Table 5.13. The overall accuracy
of the proposed model on Iris data set is 76.17%. MILP approach has the second best
accuracy value. The highest accuracy value is achieved by Random Forest classifier with
77.57%. LibSVM and IBI have accuracy value greater than 70% and are following the
MILP approach. On the other hand, JRip, Logistic, J48 and RBF Network have some how
closer accuracies to each other for Glass data set. The lowest accuracy value, 49.53%, is

achieved by the probabilistic classifier Naive Bayes.
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Table 5.13 10FCV results for Glass data set.

Class-based Accuracy Overall
Methods

C1 C2 C3 C4 Cs C6 Accuracy

Random Forest 82.86% 78.95% 29.41% 76.92% 88.89% 86.21%  77.57%
MILP 75.71% 78.95% 47.06% 76.92% 77.78% 86.21% 76.17%
LibSVM 70% 78.95% 17.65% 76.92% 66.67% 86.21% 71.50%
IB1 77.14% 67.11% 35.29% 76.92% 66.67% 82.76% 70.56%
JRip 61.43% 76.32% 5.88% 69.23% 77.78% 82.76% 66.36%
Logistic 67.14% 67.11% 5.88% 76.92% 88.89% 86.21% 66.36%
J48 71.43% 56.58% 29.41% 84.62% 88.89% 82.76% 65.89%
RBF Network 72.86% 63.16% 11.76% 53.85% 77.78% 89.66% 65.89%
SMO 44.29% 85.53% 0.00% 15.38% 0.00% 86.21% 57.48%
Naive Bayes 71.43% 19.74% 35.29% 23.08% 88.89% 82.76% 49.53%

10FCYV test results for Ecoli data set are given in Table 5.14. The overall accuracy

of the proposed model on Iris data set is 86.61%. MILP approach has the second best

accuracy value. The highest accuracy value is achieved by LibSVM classifier with

87.50%. Logistic classifier has a very close accuracy value to the MILP approach with

86.31%. As the number of instances in the classes C3 and C4 are very low (Table 5.2), the

class-based accuracy values for these classes are 0 for each of the methods. As two

instances are not sufficient to capture the class characteristic for this large Ecoli data set,

these results are not surprising. On the other hand, Naive Bayes, RBF Network, J48, SMO,

and Random Forest have some how closer and moderate accuracies to each other for Ecoli

data set. The lowest accuracy value, 80.36%, is achieved by the instance based classifier

IB1 and the rule based classifier JRip.
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Table 5.14 10FCV results for Ecoli data set.

Methods Class-based Accuracy Overall
C1 C2 C3 C4 C5 cé6 C7 C8  Accuracy
LibSVM 98.60% 84.42% 0% 0% 62.86% 80% 80% 88.46% 87.50%
MILP 97.90% 83.12% 0% 0% 60% 80% 80% 88.46% 86.61%
Logistic 96.50% 84.42% 0% 0% 60% 80% 100% 86.54% 86.31%
Naive Bayes  95.80% 72.73% 0% 0% 82.86% 90% 60% 84.62% 85.42%
RBF Network  96.50% 80.52% 0% 0% 54.29% 75% 80% 88.46% 84.52%
J48 95.10% 84.42% 0% 0% 60.00% 70% 60% 84.62% 84.23%
SMO 98.60% 83.12% 0% 0% 25.71% 75% 100% 90.38% 83.63%
Random Forest 95.80% 81.82% 0% 0% 45.71% 90% 60% 84.62% 83.63%
IB1 93.01% 72.73% 0% 0% 48.57% 75% 100% 84.62% 80.36%
JRip 95.80% 75.32% 0% 0% 51.43% 75% 20% 78.85% 80.36%
Table 5.15 10FCV results for Yeast data set.
Class-based Accuracy Overall
Methods
Cl C2 C3 C4 C5 C6 C7 C8 (€9 C10 Accuracy
MILP 57% 50% 76% 89% 49% 45% 84% 10% 45% 40% 63%
LibSVM 55% 50% 74% 82% 49% 37% 78% 3% 35% 20% 60%
RBF Network  56% 53% 64% 80% 63% 29% 80% 0% 45% 100% 59%
Random Forest 61% 57% 60% 75% 49% 35% 80% 0% 25% 20% 59%
Logistic 57% 46% 70% 64% 49% 37% 81% 0% 45% 80% 59%
JRip 50% 53% 64% 73% 49% 35% 80% 0% 55% 80% 58%
Naive Bayes  61% 40% 70% 61% 69% 39% 80% 0% 45% 40% 58%
SMO 56% 35% 78% 80% 29% 20% 78% 0% 55% 60% 57%
J48 54% 51% 56% 82% 43% 43% 83% 0% 25% 80% 56%
IB1 48% 48% 56% 68% 49% 33% 68% 7% 45% 100% 52%
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Table 5.15 gives the 10FCV test results for Yeast data set. The highest accuracy
value is achieved by proposed MILP approach with 63%. The support vector machine
based classifier LibSVM has the closest accuracy value to MILP approach with 60%. RBF
Network, Random forest and Logistic classifiers achieved the third best results, 59%, for
Yeast data set. The JRip, Naive Bayes, SMO and J48 have moderate results with 58%,
58%, 57%, and 56%, respectively. The instance based classifier IB1 has the lowest

accuracy value, 52%, for Yeast data set.

5.5 Statistical Analysis of the Results

In order to analyze the results in detail, average sensitivity (SEN), average
specificity (SPE), MCC and S values of each of the protein data sets are calculated and
examined (Table 5.16 - Table 5.28). The average sensitivity values are same as the overall
accuracy values. Hence, each of the tables are arranged so as to show the ordering of the
methods based on sensitivity values. The average specificity values are generally
significantly lower compared to average sensitivity values for the two-class data sets (Table
5.16 — Table 5.20). On the other hand, this observation is not valid for multi-class
problems. For six multi-class benchmark data sets, the average specificity values are
significantly higher than average sensitivity values (Table 5.17 — Table 5.28). High
average specificity means that the number of under predicted proteins is low. Thus, low
accuracy is a result of relatively low sensitivity values. Moreover, as average sensitivity
values increases, the difference between average sensitivity and average specificity
decreases for multi-class problems. Nevertheless, for two-class benchmark data sets, the
difference between average sensitivity and average specificity values decreases, as average
sensitivity value decreases.

MCC value gives the strength of relationship between the actual and predicted
values. A perfect fit will give a MCC value of 1. For two-class benchmark data sets, MCC

and S values are equal to the each other for each one of the classes (Table 5.16 — Table
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5.20). Moreover, MCC values are always higher than the S values for both two-class and
multi-class data sets. On the other hand, each one of the classes in multi-class benchmark
data sets has different MCC and S values (Table 5.17 — Table 5.28). Due to the low
accuracy values for Blood and Yeast data sets, MCC and S values are low for each of the
classes (Table 5.18, Table 5.27, and Table 5.28). This means that the classifier could not
effectively capture the characteristics of that class. As accuracy values of data sets
including Ionosphere, WDBC, Wine, Iris, Thyroid and Ecoli are high, the MCC and S
values are also high for these data sets (Table 5.16, Table 5.19, Table 5.21, Table 5.22,
Table 5.23, Table 5.25, and Table 5.26). Furthermore, the data sets Pima, Liver and Glass
have moderate MCC and S values as they have moderate accuracy values (Table 5.17,

Table 5.20, and Table 5.24).

Table 5.16 Values of performance measures for the lonosphere data set.

Average  Average MCC S
Classifier
Sensitivity Specificity C1 cC2 C1 2
LibSVM 94.87% 94.33% 0.89 0.89 0.89 0.89
MILP 94.59% 92.43% 0.88 0.88 0.88 0.88

Random Forest 93.45% 91.09% 0.86 0.86 0.86 0.86
RBF Network 92.31% 91.50% 0.83 0.83 0.83 0.83

J48 91.45% 87.53% 0.81 0.81 0.81 0.81
JRip 89.74% 88.32% 0.78 0.78 0.78 0.78
Logistic 88.89% 84.70% 0.76 0.76 0.75 0.75
SMO 88.60% 82.09% 0.75 0.75 0.74 0.74
IB1 86.32% 78.02% 0.70 0.70 0.68 0.68

Naive Bayes 82.62% 84.33% 0.65 0.65 0.64 0.64
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For a perfect prediction, S value should be equal to 1 and 0 for vice versa.
Depending on the characteristics of the data sets such as complexity and dimensionality,
the prediction accuracies could be low as in the Blood and Yeast data sets (Table 5.18,
Table 5.27, and Table 5.28). Hence, the S values for these data sets are very low. On the
other hand, when we observe the results of each data set in overall, each of the classes have
higher and lower MCC and S values with respect to the remaining classes. Hence, we
could not say that MILP based hyper-box enclosure approach performs rather purely for
any of the classes. Depending on the data set characteristics, proposed data classification

approach works well for each of the classes.

Table 5.17 Values of performance measures for the Pima data set.

Classifier Average  Average MCC S
Sensitivity Specificity C1 C2 Cl C2
MILP 81.25% 72.64% 0.57 057 0.56 0.56
SMO 77.34% 66.56% 048 048 047 047
Logistic 77.21% 67.88% 048 048 047 047
LibSVM 76.43% 65.21% 046 046 045 045
Naive Bayes 76.30% 69.29% 047 047 047 047
RBF Network 75.39% 65.51% 044 044 043 043
JRip 74.87% 66.79% 043 043 043 043
J48 73.83% 67.27% 042 042 042 042

Random Forest 72.01% 66.99% 0.39 039 039 039
IB1 70.18% 62.20% 033 033 033 0.33
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Table 5.18 Values of performance measures for the Blood data set.

Classifier Average  Average MCC S
Sensitivity Specificity C1 C2 C1 C2
MILP 79.95% 75.58% 0.39 039 038 0.38
RBF Network 79.68% 42.65% 034 034 029 0.29
JRip 78.88% 53.22% 036 036 036 0.36
J48 77.81% 54.05% 035 035 034 0.34
LibSVM 77.81% 48.25% 031  0.31 0.30 0.30
Logistic 77.14% 32.59% 0.19 0.19 0.13 0.13
SMO 76.20% 23.80% NA NA  0.00 0.00
Naive Bayes 75.40% 37.46% 0.18 0.18 0.16 0.16
Random Forest 72.33% 4499% 0.19 0.19 0.19 0.19
IB1 68.58% 46.92% 0.15 0.15 0.15 0.15

Table 5.19 Values of performance measures for the WDBC data set.

Classifier Average  Average MCC S
Sensitivity Specificity C1 C2 C1 C2
MILP 97.36% 96.07% 094 094 094 094
SMO 97.07% 96.88% 094 094 094 094
Logistic 96.78% 95.95% 093 093 093 0.93
LibSVM 96.78% 96.14% 093 093 093 0.93
Naive Bayes 96.34% 96.87% 092 092 092 092
Random Forest 96.19% 95.05% 092 092 092 092
JRip 96.19% 96.02% 092 092 092 092
IB1 96.05% 94.78% 091 091 091 091
J48 96.05% 95.75% 091 091 091 091
RBF Network 95.75% 95.78% 091 091 091 091
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Table 5.20 Values of performance measures for the Liver data set.

Classifier Average  Average MCC S
Sensitivity Specificity Cl1 C2 C1 C2
LibSVM 74.20% 71.62% 047 047 046 0.46
MILP 73.33% 71.18% 0.45 045 045 045
J48 68.70% 64.41% 035 035 034 034
Logistic 68.12% 63.99% 033 033 033 033
Random Forest 66.38% 65.38% 032 032 032 032
JRip 64.35% 59.55% 025 025 025 0.25
RBF Network 64.35% 60.88% 026 026 026 0.26
IB1 62.90% 61.15% 024 024 024 024
SMO 58.26% 42.43% 0.06 0.06 0.01 0.01
Naive Bayes 55.36% 61.19% 0.17 0.17 0.15 0.15

Table 5.21 Values of performance measures for the Wine data set.

Classifier Average  Average MCC S

Sensitivity Specificity C1 C2 C3 C1 C2 C3
RBF Network 98.31% 98.88% 0.97 0.97 0.99 0.96 0.97 0.96
SMO 98.31% 99.31% 0.99 0.97 097 0.96 0.96 0.96
Random Forest 98.31% 99.31% 0.99 0.97 0.97 0.96 0.96 0.96
Logistic 97.19% 98.56% 0.97 0.94 0.96 0.94 0.94 0.93
Naive Bayes 96.63% 98.26% 0.96 0.93 0.96 0.93 0.93 0.92
IB1 94.94% 97.78% 0.94 0.90 0.95 0.90 0.89 0.89
MILP 94.94% 97.16% 0.94 0.91 0.93 0.89 0.90 0.88
J48 93.82% 96.44% 0.94 0.88 0.90 0.87 0.87 0.85
JRip 93.82% 96.44% 0.88 0.88 0.96 0.86 0.87 0.86
LibSVM 92.13% 95.82% 0.91 0.85 0.88 0.83 0.84 0.81
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Table 5.22 Values of performance measures for the Iris data set.

Classifier Average  Average MCC S

Sensitivity Specificity C1 C2 C3 C1 C2 C3
LibSVM 98% 99% 1.00 0.95 0.96 0.96 0.95 0.96
Naive Bayes 96% 98% 1.00 0.91 0.91 0.92 091 0.91
Logistic 96% 98% 1.00 0.91 0.91 0.92 091 0.91
SMO 96% 98% 1.00 0.91 0.91 0.92 091 0.91
J48 96% 98% 0.98 0.91 0.93 0.92 091 0.91
MILP 96% 98% 1.00 0.91 0.91 0.92 091 0.91
Random Forest 95.33 97.67% 1.00 0.90 0.89 0.91 0.90 0.89
IB1 95.33 97.67% 1.00 0.90 0.89 0.91 0.90 0.89
RBF Network 95.33 97.67% 1.00 0.89 0.90 0.91 0.89 0.90
JRip 94% 97% 0.98 0.86 0.88 0.88 0.86 0.87

Table 5.23 Values of performance measures for the Thyroid data set.

Classifier Average  Average MCC S

Sensitivity Specificity C1 C2 C3 C1 C2 C3
MILP 97.21% 96.55% 0.93 0.97 0.93 0.93 091 0.89
IB1 97.21% 96.52% 0.93 0.95 0.94 0.93 0.91 0.89
Naive Bayes 96.74% 93.48% 0.92 0.97 0.90 0.92 0.89 0.87
Logistic 96.74% 94.47% 0.92 0.93 0.94 0.92 0.89 0.88
RBF Network 95.35% 93.23% 0.89 0.93 0.88 0.89 0.85 0.82
Random Forest 93.95% 90.02% 0.85 0.89 0.86 0.85 0.81 0.79
LibSVM 93.95% 87.04% 0.86 0.89 0.86 0.85 0.80 0.78
JRip 93.02% 91.81% 0.84 0.83 0.90 0.84 0.78 0.78
J48 92.09% 89.66% 0.81 0.85 0.84 0.81 0.76 0.74
SMO 89.77% 76.39% 0.76 0.73 0.86 0.73 0.64 0.69
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Table 5.24 Values of performance measures for the Glass data set.

Classifier SEN SPE mee >

Cl C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 cCo
Random Forest 78% 91% 0.67 0.63 0.32 0.75 0.94 0.87 0.59 0.58 0.39 0.50 0.50 0.58
MILP 76% 91% 0.63 0.63 0.42 0.72 0.82 0.87 0.56 0.57 0.41 0.48 0.48 0.57
LibSVM 71% 89% 0.54 0.59 0.13 0.72 0.74 0.83 0.48 0.52 0.32 0.46 0.45 0.53
IB1 71% 89% 0.59 0.51 0.27 0.66 0.69 0.83 0.51 0.47 036 0.45 0.44 0.52
JRip 66% 85% 0.45 0.45 0.08 0.63 0.68 0.85 0.41 0.41 033 042 0.42 0.49
Logistic 66% 86% 0.43 0.43 0.03 0.69 0.88 0.85 0.40 0.41 032 0.43 0.44 0.49
J48 66% 87% 0.48 0.39 0.21 0.74 0.79 0.81 0.43 0.37 0.34 0.44 0.43 0.48
RBF Network  66% 86% 0.47 0.44 0.08 0.50 0.88 0.80 0.43 0.41 0.32 0.40 0.43 0.49
SMO 57% 78% 0.30 0.33 NA 0.24 NA 0.84 030 0.28 032 0.34 0.34 0.44
Naive Bayes 50% 82% 0.21 0.11 0.14 0.16 0.75 0.79 0.22 0.18 0.27 0.30 0.35 0.38

Table 5.25 Values of performance measures I for the Ecoli data set.

MCC

Classifier  SEN SPE ~o1—6"¢3 ¢4 5 C6 €7 C8
SMO 87.50% 96.14% 0.94 0.75 NA 0.00 0.63 0.89 0.89 0.86
Naive Bayes 86.61% 95.81% 0.93 0.73 NA 0.00 0.61 0.86 0.89 0.86
MILP 86.31% 96.37% 0.92 0.78 NA NA 0.60 0.81 091 0.83
Random Forest 85.42% 96.35% 0.91 0.74 0.00 NA 0.67 0.87 0.77 0.80
LibSVM 84.52% 96.01% 0.93 0.71 0.00 NA 0.54 0.83 0.80 0.83
Logistic 84.23% 96.04% 0.91 0.76 NA NA 0.59 0.68 0.59 0.81
IB1 83.63% 94.81% 0.92 0.69 NA NA 0.36 0.86 0.70 0.84
J48 83.63% 95.39% 0.91 0.72 NA NA 0.47 0.83 0.77 0.78
JRip 80.36% 94.59% 0.86 0.64 NA NA 0.43 0.80 0.91 0.76
RBF Network 80.36% 93.87% 0.85 0.71 NA NA 0.44 0.78 0.17 0.77
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Table 5.26 Values of performance measures II for the Ecoli data set.
Classifier SEN  SPE S
Cl C2 C3 C4 C5 C6 C71 cC8
SMO 87.50% 96.14% 0.79 0.70 0.45 0.45 0.56 0.59 0.50 0.69
Naive Bayes 86.61% 95.81% 0.78 0.68 045 0.45 0.54 0.57 0.50 0.68
MILP 86.31% 96.37% 0.77 0.69 045 0.43 0.53 0.56 0.51 0.67
Random Forest 85.42% 96.35% 0.76 0.66 0.44 0.44 0.57 0.58 0.48 0.65
LibSVM 84.52% 96.01% 0.75 0.65 0.44 0.43 0.49 0.55 0.48 0.65
Logistic 84.23% 96.04% 0.74 0.66 045 043 0.52 0.52 047 0.64
IB1 83.63% 94.81% 0.74 0.63 0.45 0.45 038 0.54 0.48 0.64
J48 83.63% 95.39% 0.73 0.64 0.45 0.45 045 0.55 0.47 0.62
JRip 80.36% 94.59% 0.69 0.57 044 043 042 0.52 0.48 0.59
RBF Network 80.36% 93.87% 0.68 0.60 0.44 0.43 043 0.51 0.42 0.59
Table 5.27 Values of performance measures I for the Yeast data set.
Classifier SEN SPE mec
Cl C2 C3 C4 C5 C6 C7T €C8 (9 C10
LibSVM 63.14% 86.56% 0.53 0.40 0.40 0.78 0.59 0.49 0.81 0.31 0.55 0.63
MILP 60.38% 85.51% 0.49 0.36 0.35 0.73 0.59 0.42 0.76 0.18 0.46 0.45
Logistic 59.10% 86.04% 0.51 0.33 0.32 0.69 0.57 0.34 0.71 -0.01 0.55 0.91
Naive Bayes 58.89% 86.48% 0.48 0.34 0.33 0.70 0.51 0.37 0.73 -0.02 0.42 0.25
RBF Network 58.63% 85.68% 0.48 0.33 0.32 0.61 0.51 0.37 0.75 -0.01 0.57 0.73
J48 58.09% 85.08% 0.48 0.34 0.28 0.68 0.54 0.39 0.71 -0.01 0.63 0.89
SMO 57.61% 86.29% 0.50 0.31 0.32 0.59 0.48 0.34 0.75 -0.01 0.55 0.63
Random Forest 57.01% 84.14% 0.46 0.29 0.32 0.69 0.44 0.28 0.75 NA 0.63 0.77
IB1 55.86% 85.53% 0.39 0.27 0.27 0.78 0.45 0.40 0.74 -0.02 0.39 0.80
JRip 52.29% 85.07% 0.33 0.23 0.24 0.66 0.43 0.31 0.64 0.04 0.39 1.00
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Table 5.28 Values of performance measures Il for the Yeast data set.

Classifier SEN SPE 5
Cl C2 C3 C4 C5 Co6 C7 €C8 (9 cC10
LibSVM 63.14% 86.56% 0.41 0.37 0.37 0.41 0.39 0.39 0.46 0.38 0.39 0.39
MILP 60.38% 85.51% 0.39 0.34 0.33 0.39 0.38 0.37 0.43 0.36 0.38 0.38
Logistic 59.10% 86.04% 0.39 0.32 0.32 0.39 0.38 0.36 0.42 0.36 0.37 0.37

Naive Bayes  58.89% 86.48% 0.38 0.33 0.33 0.38 0.37 0.36 0.42 0.36 0.37 0.37
RBF Network 58.63% 85.68% 0.38 0.32 0.31 0.38 0.37 0.36 0.42 0.36 0.37 0.37

J48 58.09% 85.08% 0.37 0.33 0.29 0.38 0.37 0.36 0.41 0.35 0.37 0.37
SMO 57.61% 86.29% 0.38 0.31 0.31 0.37 0.36 0.35 0.42 0.35 0.37 0.37
Random Forest 57.01% 84.14% 0.37 0.29 0.29 0.38 0.36 0.35 0.41 0.35 0.37 0.36
IB1 55.86% 85.53% 0.34 0.29 0.29 0.38 0.36 0.35 0.41 0.34 0.36 0.36
JRip 52.29% 85.07% 0.31 0.26 0.26 0.35 0.34 0.33 0.37 0.33 0.34 0.35

In order to evaluate if there is any statistical significant difference between the
existing and proposed data classification approaches tested on the same data sets, P-value
(paired test) analysis are carried out. The results of P-value test for two-class benchmark
data sets are given in Table 5.29 and Table 5.30. There is no statistical significant
difference between the results LibSVM and MILP approach on two-class problems except
Pima data set. MILP approach is statistically significant than the LibSVM method for
Pima data set. On the other hand, there is no significant difference between the results of
SMO, support vector implementation of WEKA, and MILP approach for the data sets
Pima, Blood and WDBC. However, MILP approach is statistically significant than the
accuracies of the SMO classifier on Ionosphere and Liver data sets. The accuracy values of
MILP approach on each of the data sets is statistically significant than the accuracies of the
distance based algorithm IB1 except the WDBC data set. There is no statistically

significant difference between the accuracies of the decision tree based classifier J48 and
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MILP approach except the Pima data set. MILP approach is statistically significant than
the J48 classifier for Pima data set. There is no statistical significant difference between
the results of Random Forest and RBF Network classifier with the MILP approach except
the two data sets. MILP approach is statistically significant than the results of Random
Forest classifier for Pima and Blood data sets. Furthermore, MILP approach is statistically
significant than the results of RBF Network classifier for Pima and Liver data sets. Fro
most of the data sets; MILP approach has statistically significant accuracy values from the
classifiers JRip and Naive Bayes. Finally, there is no significant difference between the
results of MILP approach and Logistic classifier for each of the data sets except
Ionosphere. When we observe the results from the data sets one by one, each of the
methods applied to WDBC data set have statistically equivalent results. For the rest of the

data sets, MILP approach statistically dominates the results of some of the classifiers.

Table 5.29 The results of P-value analyses for two-class data sets.

Ionosphere Pima Blood WDBC Liver

Compared
P P P P P
Methods
Value Value Value Value Value
MILP vs LibSVM 0.17 231 1.02 0.64 0.26
MILP vs SMO 2.86 1.89 1.75 0.33 4.17
MILP vs IB1 3.73 5.06 5.03 1.36 2.94
MILP vs J48 1.63 349 1.02 1.36 1.34
MILP vs Random Forest 0.64 428 346 1.22 1.99
MILP vs RBF Network 1.22 2.79 0.13 1.63 2.55
MILP vs JRip 2.39 3.02 0.1 1.22 2.55
MILP vs Naive Bayes 4.99 237  2.11 1.08 4.93

MILP vs Logistic 2.74 195 132 0.64 150
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Table 5.30 The results of P-test for two-class data sets.
Ionosphere Pima Blood WDBC Liver

Compared
Methods P Test PTest PTest PTest P Test
Result Result Result Result Result
MILP vs LibSVM == ++ == == ==
MILP vs SMO ++ == == == ++
MILP vs IB1 ++ ++ ++ == + +
MILP vs J48 == ++ == == ==
MILP vs Random Forest == ++ ++ == ==
MILP vs RBF Network == ++ == == + +
MILP vs JRip ++ ++ == == + +
MILP vs Naive Bayes ++ ++ ++ == ++
MILP vs Logistic ++ == == == ==

+ + denotes that the first method is statistically significantly better than the second method. - -
represents that the second method is statistically significantly better than the first method. = =

indicates that there is no significant difference between the results of the methods.

The results of P-value test for multi-class benchmark data sets are given in Table
5.31 and Table 5.32. There is no statistical significant difference between the results
LibSVM and MILP approach on each one of the multi-class benchmark problems. On the
other hand, MILP approach is statistically significant than the accuracies of the SMO
classifier on half of the data sets (Thyroid, Glass and Yeast) and there is no significant
difference between the results of SMO and MILP approach on half of the data sets (Wine,
Iris and Ecoli). There is no statistically significant difference between the performances of
the methods IB1 and MILP on each of the multi-class data sets except Ecoli and Yeast.
The result of MILP approach is significantly better than the IB1 classifier fro the data sets
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Ecoli and Yeast. Similar to SMO classifier, MILP approach is statistically significant than
the results of the J48 classifier on half of the data sets (Thyroid, Glass and Yeast) and there
is no significant difference between the results of J48 and MILP approach on half of the
data sets (Wine, Iris and Ecoli).

Table 5.31 The results of P-value analyses for multi-class data sets.

Wine Iris Thyroid Glass Ecoli Yeast

Compared
P P P P P P
Methods
Value Value Value Value Value Value
MILP vs LibSVM 1.08 1.02 1.64 1.10 034 1.55
MILP vs SMO 1.76 0 3.13 4.11 1.08 341
MILP vs IB1 0 0.28 0 1.31 2.18 598
MILP vs J48 0.46 0 2.36 234 0.88 4.04

MILP vs Random Forest 1.76 0.28 1.64 034 1.08 237
MILP vs RBF Network 1.76 0.28 1.02 234 077 2.26

MILP vs JRip 0.46 0.79 2.01 224 218 282
MILP vs Naive Bayes 0.79 0 0.28 570 045 3.08
MILP vs Logistic 1.09 0 0.28 224  0.11 252

The performances of the methods Random Forest and MILP are not statistically
significant for each one of the data sets except Yeast. For the Yeast data set, MILP
approach is significantly better than the classifier Random Forest. The neural network
based classifier RBF Network and MILP approach do not have statistically significant
results for each one of the data sets except Glass and Yeast. However, the performance of
MILP approach is statistically significant than the RBF Network classifier for the data sets
Glass and Yeast. The accuracy values of MILP approach on each of the data sets is

statistically significant than the accuracies of the rule based classifier JRip except the data
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sets Wine and Iris. Similar to RBF Network classifier, Naive Bayes and Logistic classifiers
have no statistically significant results than the MILP approach for the data sets Glass and
Yeast. On the other hand, the performances of the methods MILP and Naive Bayes and
Logistic classifiers are not significant in statistical manner for the rest of the multi-class

benchmark data sets.

Table 5.32 The results of P-test for multi-class data sets.
Wine Iris Thyroid Glass Ecoli  Yeast

Compared
Methods PTest PTest PTest PTest PTest PTest
Result Result Result Result Result Result
MILP vs LibSVM == == == == == ==
MILP vs SMO == == ++ ++ - = T
MILP vs IB1 == == == == T+ ++
MILP vs J48 == == ++ ++ == ++
MILP vs Random Forest == == == == == ++
MILP vs RBF Network == == == ++ == + +
MILP vs JRip == == ++ ++ ++ + 4
MILP vs Naive Bayes == == == ++ == ++
MILP vs Logistic == == == ++ == + 4

+ + denotes that the first method is statistically significantly better than the second method. - - represents
that the second method is statistically significantly better than the first method. = = indicates that there is

no significant difference between the results of the methods.

In order to compare the existing data classification methods with MILP, some of the
ordered P-value graphs are shown in Figure 5.1 to Figure 5.9. In Figure 5.1, the ordered
P-values of MILP versus LibSVM for each of the eleven data sets are shown. For only one
data set, the P-value is greater than 2. In general, MILP is preferable since it performs

quite well for each of the existing benchmark data sets. However, LibSVM method
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performs poorly with respect to MILP approach for one of the data sets (Pima). Hence, we
could say that MILP approach is significantly better than LibSVM method in general. For
more than half of the data sets, MILP approach is statistically significant than SMO, IB1,
JRip, and Naive Bayes classifiers (Figure 5.2, Figure 5.3, Figure 5.7, Figure 5.8). Thus,
MILP approach is statistically better than these 4 methods in general. For three data sets,
the P-values are greater than 2 for the classifiers Random Forest and Logistic (Figure 5.5
and Figure 5.9). For the rest of the data sets, the difference between the accuracies of two
methods is not significant. Finally, proposed MILP approach is statistically significantly
better than J48 and RBF Network classifiers for four of the data sets (Figure 5.4 and Figure
5.6).

MILP vs LibSVM
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Data Sets

Figure 5.1 P-value graph of MILP versus LibSVM for UCI Benchmark data sets.
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For each of the eleven UCI Repository data sets, MILP approach generally achieves
high accuracy values and mostly ranks in first three positions with respect to accuracy.
Furthermore, MILP is statistically significantly better than the existing data classification

methods for these benchmark problems on given eleven distinct benchmark data sets.
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Figure 5.2 P-value graph of MILP versus SMO for UCI Benchmark data sets.
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Figure 5.3 P-value graph of MILP versus IB1 for UCI Benchmark data sets.
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Figure 5.4 P-value graph of MILP versus J48 for UCI Benchmark data sets.
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Figure 5.5 P-value graph of MILP versus Random Forest for UCI Benchmark data sets.
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Figure 5.6 P-value graph of MILP versus RBF Network for UCI Benchmark data sets.
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Figure 5.7 P-value graph of MILP versus JRip for UCI Benchmark data sets.
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Figure 5.8 P-value graph of MILP versus Naive Bayes for UCI Benchmark data sets.
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Figure 5.9 P-value graph of MILP versus Logistic for UCI Benchmark data sets.

5.6 Problematic Instance Analysis

In order to analyze whether there exists any relation between the performance of the
proposed approach and the number of problematic instances in the data sets, we investigate
the results of these data sets in detail. In Table 5.33, the number of problematic instances is
given by average, maximum and minimum values for each of the protein folding type
benchmark data sets. Furthermore, the number of problematic instances for 1189 and
25PDB data sets change from one run to another as 10FCV results are obtained for them
(Figure 5.10 — Figure 5.20).

As it can be observed from the Table 5.33, the number of problematic instances
does not affect the performance of the proposed approach. For example, for the data sets

WDBC and thyroid which have 67% and 10% problematic instances proposed approach
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achieved approximately 97% accuracy. Hence, considering only the number of

problematic instances could not be sufficient to analyze the difficulty of the data sets.

Table 5.33 Number of problematic instances for each of UCI repository data sets.

% of Av. Number of Problematic
Data Set Accuracy Accuracy .
Name (%) Rank Problematic Instances
Instances Average Max. Min.
Ionosphere 94.59% 2 60% 212 217 206
Pima 81.25% 1 87% 666 677 641
Blood 79.95% 1 89% 664 666 662
WDBC 97.36% 1 67% 458 471 430
Liver 73.33% 2 80% 275 279 269
Wine 94.94% 4 6% 10 12 9
Iris 96.00% 2 15% 22 25 16
Thyroid 97.21% 1 10% 21 24 15
Glass 76.17% 2 65% 140 143 134
Ecoli 87.50% 2 48% 162 170 151
Yeast 63.00% 1 88% 1299 1307 1290
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Figure 5.10 The number of problematic instances for lonosphere data set.
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Figure 5.11 The number of problematic instances for Pima data set.
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Figure 5.12 The number of problematic instances for Blood data set.



Chapter 5: Computational Results on UCI Repository Data Sets 153
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Figure 5.13 The number of problematic instances for WDBC data set.
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Figure 5.14 The number of problematic instances for Liver data set.
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Figure 5.15 The number of problematic instances for Wine data set.
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Figure 5.16 The number of problematic instances for Iris data set.
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Figure 5.17 The number of problematic instances for Thyroid data set.
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Figure 5.18 The number of problematic instances for Glass data set.
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Ecoli Data Set 10FCV Analysis
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Figure 5.19 The number of problematic instances for Ecoli data set.
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Figure 5.20 The number of problematic instances for Yeast data set.
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Chapter 6

CONCLUSION

With the rapid increase in the availability of data for exploration and analysis, it is
important to develop techniques that efficiently perform data mining studies. As data
classification is one of the important issues in these studies, many researchers study this
concept. Classification involves the supervised assignment of data points to predefined or
known classes. Here, there exists a collection of classes with labels and the problem is to
label a new instance as belonging to one or more of the classes. The field of data
classification is wide and covers a broad range of areas including bioinformatics, decision
sciences, finance, sports and health care. A large number of data classification methods
have been developed to date; however, each of them has several drawbacks which make
them unattractive. Thus, researchers have been studying to develop more accurate and
more efficient methods or to improve the existing methods.

In this thesis, a new three-stage mathematical programming based hyper-box
enclosure approach for multi-class data classification problem is proposed. A mixed-
integer programming model is developed for representing existence of hyper-boxes which
define the boundaries of the classes for the training set. In order to overcome the
computational difficulties for large data sets, a three-stage approach is developed for
training part analysis of hyper-box enclosure approach. The performance of the model is
tested by the testing part of the proposed method and compared with existing multi-class
data classification methods on two widely used challenging problems; the protein folding

type prediction problem and UCI Repository benchmark problems.
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The developed three-stage MILP based hyper-box enclosure approach to multi-
class data classification is described in Chapter 3. In the training part of the proposed
approach, the characteristics of data points belonging to a certain class are determined by
the construction of hyper-boxes. The hyper-boxes define the boundaries of the classes that
include all or some of the points in that set. In order to represent the existence of hyper-
boxes and their boundaries, a mixed-integer programming model is developed.

Solving the proposed MILP formulation to optimality is computationally expensive
for large multi-group data classification problems. The major source of computational
difficulty is the potentially large number of binary variables. Hence, we proposed a three-
stage decomposition algorithm for obtaining solutions to MILP model. Instances that are
difficult to classify are identified in the first stage that is referred to as preprocessing.
Moreover, sub grouping and seed finding algorithms are applied to improve the
computational efficiency. With greater emphasis given to these observations, solution to
the problem is obtained in the second stage using the MILP formulation. Last, final
assignments, elimination of box intersections and box combination procedures are carried
out in the third step.

After distinguishing characteristics of the classes are determined in the training part,
the performance of the model is tested by the distance based algorithm introduced in testing
problem formulation part. While the original and proposed testing algorithms are
compared and investigated in detail, the advantages of proposed testing algorithm are
shown. If a new data point with an unknown membership arrives, it is necessary to assign
this data point to one of the classes. For each member of the test data set, testing algorithm
is applied and assignments to a class are done. After all, by checking the original classes of
the test set samples the performance of the developed model is evaluated.

The proposed model is illustrated on a small illustrative example. By this

illustrative example, the main steps of the developed three-stage MILP based hyper-box
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enclosure approach are understood. Moreover, the comparison of the results of distinct
models available for data classification is performed. The suggested model’s result is
accurate and efficient in this small example with regard to the other methods listed in Table
3.3.

In Chapter 4, proposed three-stage MILP approach is applied to the protein folding
type prediction problem. Different performance evaluation techniques and measures are
examined in order to investigate the details of results and compare different algorithms.
The performance of proposed three-stage MILP based approach is compared with the
results in [97], [100] and [23] for nine distinct data sets. Two independent datasets (225
training - 510 testing and 1601 training - 2438 testing) results are calculated and pretty
good results are obtained. Furthermore, LOO test results are given for 138, 253, 277, 35
and 498 protein data sets and 10FCV results are studied for 1189 and 25PDB data sets.
Results indicate that proposed MILP approach gives generally high accuracy values and
mostly rank in the first or second position. Moreover, P-value analyses show that MILP
approach is statistically significantly better than the existing distance based algorithms HD,
ED and CC algorithm. Moreover, MILP approach is statistically better than the LibSVM
and well-known WEKA classifiers for protein folding type prediction problems on given
nine distinct benchmark data sets. In summary, proposed MILP based hyper-box enclosure
approach is a powerful and efficient computational method for predicting folding types of
proteins with its favorable results and characteristics.

In Chapter 5, the performance of proposed three-stage approach is evaluated on
eleven UCI repository benchmark data sets [108]. In order to observe the performance of
the proposed MILP based hyper-box enclosure approach, the eleven data sets including
Ionosphere, Pima, Blood, WDBC, Liver, Wine, Iris, Thyroid, Glass, Ecoli and Yeast are
tested. First five of them are binary-class data classification data sets and the rest are

multi-class data sets. In order to compare the results of proposed MILP approach, WEKA
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classification algorithms J48, RBF Network, Logistic, Naive Bayes (NB), SMO, Random
Forest (RF) and IB1 are studied (Table 5.3). Moreover, well-known support vector
machine implementation LibSVM given by [111] is also studied. Using these data sets, the
proposed three-stage MILP model is solved in GAMS [120] using ILOG CPLEX Solver
version 10.0 [121] on a notebook computer with Inter Pentium M 1.73 Ghz Processor and
512 MB of RAM. For each data set, 10 different runs are carried out and average 10FCV
results are calculated. In order to analyze the results in detail, average sensitivity (SEN),
average specificity (SPE), MCC and S values of each of the protein data sets are
investigated (Table 5.16 - Table 5.28). Depending on the data set characteristics, proposed
data classification approach works well for each of the classes. In order to evaluate if there
is any statistical significant difference between the existing and proposed data classification
approaches tested on the same data sets, P-value (paired test) analysis are carried out. For
each of the eleven UCI Repository data sets, MILP approach generally achieves high
accuracy values and mostly ranks in first three positions with respect to accuracy.
Furthermore, MILP is statistically significantly better than the existing data classification
methods for these benchmark problems on given eleven distinct benchmark data sets.

In conclusion, this thesis introduces a new three-stage mathematical programming
based hyper-box enclosure method for multi-class data classification problem. One of the
most important characteristics of the proposed approach is allowing the use of hyper-boxes
for defining the boundaries of the classes that enclose all or some of the points in that set.
In other words, if necessary, more than one hyper-box is constructed for a specific class in
the training part. Moreover, well-construction of the boundaries of each class provides the
lack of misclassifications in the training set and indirectly improves the accuracy of the
model. In addition, the model does not need to know the underlying distribution of the
training data set and learns from the training set in a reasonable time. With only one

parameter to be initialized, the suggested model is simple and easily understandable.
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Furthermore, the proposed model can be used for both binary and multi-class data
classification problems without any modifications or additions. The accuracy, simplicity
and understandability of the proposed model are favorable. Proposed three-stage MILP
approach is applicable to obtain solutions to large multi-class data classification problems.
These characteristics make the proposed approach efficient, simple and easily
implementable.

The advantage of the mathematical programming approach in the context of
supervised classification lies in its power to model more complex real world problems.
Future studies should further evaluate the performance of the proposed approach on data
sets with categorical attributes. Since the proposed approach depends on a geometrical
idea, it is efficient for data sets including continuous and integer valued attributes. In
literature, there exist data classification problems which include both categorical and
numerical attributes. Hence, MILP approach could be modified in order to deal with
categorical attributes. Moreover, overall method could be implemented in a computer
package and could be parallelized. Finally, proposed data classification approach could be
implemented in WEKA. In that case, there will be some solver related problems since
MILP approach needs an IP solver such as GAMS. If these problems could be solved,
MILP approach could be tested by many researchers by the help of WEKA.
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APPENDIX A: PROTEIN FOLDING TYPE PREDICTION DATA SETS

Table A.1 The 138 Protein Domains.

36 all-a domains

1hbiA|W.C. IsctA[W.C. lytc_|W.C. Iboc_[W.C. etz [W.C. [troA[W.C.
1fipA|W.C. 1hddC|W.C. 1dprA|65-136 Itnt_[W.C. lerc_[W.C. 2tct_[W.C.
laca |W.C. 1vasA[W.C. 1lynA|W.C. lhsm_|[W.C. 1rprA|W.C. 3wrp_[W.C.
Ipou_|W.C. largA|W.C. ImykA|W.C. ImylA|W.C. Ibpd_[9-91 1lis_|W.C.
lolhA|W.C. 1pesA[W.C. 1rpo_|W.C. lhns_|[W.C. ltag |57-177 1rhgA[W.C.
Ityc [228-319 loxy [1-379 Ipgn [177-473  lcsi |W.C. 1phb |W.C. 11la [2-379

29 all-f domains
ImdtA|381-535  lcgt |580-684  lges [1-85 Ipnf |1-140 Ipng_|5-140 lgog |151-537
lgog |1-150 1tnfA|W.C. lhivA|W.C. 2ctvA[W.C. lapnA[W.C. lcgt |383-494
1bib_[271-317 1bfb [W.C. 2bfh |[W.C. Ibfg [W.C. larc_|W.C. IhpcA|W.C.
1bcmA481-560  1hve |[W.C. 1hbp_|[W.C. Ifen_|W.C. IsIfB|W.C. 1kraC|2-129
lazm |W.C. 1srgA|W.C. 1sleB|W.C. 1cyhA|W.C. 3cysA|W.C.

32 o/p domains

legt |1-382 lexe |1-382 Ibtb [W.C. IbrsD|W.C. 1fnd |155-314 1garA|W.C.
4ts1A[1-217 IselA|W.C. 1cdoA|176-324  1hldA|175-324  lhorA|W.C. 3pgk |[W.C.
Icia |[W.C. 1pnt_[W.C. 2hnp |W.C. 1tho |[W.C. llam |1-159 lolcA[W.C.
1gdtA|1-140 3hsc_|3-188 lidm_|W.C. lede |[W.C. lcddA|W.C. Ipkm_[396-530
ImhtA|W.C. lalhA[W.C. 8atcA|l1-150 2ctec_|W.C. ldrl_[W.C. 2rsIA[W.C.
1dj_|W.C. 2bgt |W.C.

41 o+p domains
Ifut |[W.C. 2baa [W.C. laec_[W.C. 2rat_|[W.C. 2rms_|W.C. Imrk [W.C.
Irbd_|W.C. lkraA[W.C. Ipgb [W.C. 2igg [W.C. 2secl|W.C. ImldA|145-313
3monA|W.C. 1frtA[1-178 1kj_|W.C. 2tecl|W.C. 11ttA|W.C. 11taA[W.C.
3mdsA|93-203 legpA|W.C. Imns_[3-132 lgrl [137-190  1r1dS 2act_[W.C.
lcomA|W.C. 1sphA[W.C. 1gaeO|149-312 1mstA|W.C. lgrb [364-478 1molA|W.C.
1KIA|W.C. 11ckA|117-226  1sceA|W.C. Itsy_|[W.C. 3b5c_[W.C. Ixrb_[1-101
1tbpAJ61-155 Ixrc |1-101 lglv [123-316  3dni |[W.C. 1dnkA|W.C.

* Each domain is represented by a symbol of X|Y, where first four character of X is the corresponding PDB
code and the fifth character indicates the specific chain of the protein. If it is , then the corresponding
protein has only one chain. If Y=W.C., it means the domain is constituted by the whole chain. Otherwise, Y
contains two number to indicate starting and end points along the sequence.
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Table A.2 The 253 Protein Domains.

63 all-a domains
1hbiA|W.C. IsctA[W.C. lytc_[W.C. lerj_|[W.C. 1hddC[W.C. Iglm_[W.C.
1dprA|65-136 Itnt |W.C. lerc |W.C. laca |W.C. 1vasA[W.C. 2tct |[W.C.
1lynA|W.C. lhsm_|W.C. LrprA|W.C. Irpo_[W.C. Ipou [W.C. 2tsl_|228-319
ledn_|W.C. largA|W.C. ImykA|W.C. ImylA|W.C. Ibpd_[9-91 lesh_ [W.C.
lolhA|W.C. IpesA|W.C. lhns_|W.C. ltag |57-177 4ts1A228-319 loelA2-136
Ityc [228-319  loxy |1-379 Ipgn [177-473  lcsi_ [W.C. Iphb_[W.C. 1lp [W.C.
1troA|W.C. 3wrp_|W.C. 3sdhAW.C. lycc_|W.C. lenh_|[W.C. Iphc_[W.C.
1dtr_|65-191 Itns_[W.C. Ibal |[W.C. lerl [W.C. 2abd [W.C. Irtm1|73-104
2end |W.C. 1lis_|W.C. laab_|[W.C. 1rhgA|W.C. 1ropA|W.C. 11la_|2-379
loctC|5-75 4icb_|W.C. 1parA|W.C. 2bpfA[9-91 lolgA|W.C. 1fiaA|W.C.
lhnr [W.C. 2wrpR|W.C. 2pgd [177-473

58 all-B domains
ImdtA381-535 1lcgt 580-684 lges |1-85 Ipnf |1-140 Ipnf |5-140 2sil [W.C.
1gog |1-150 ItnfA|W.C. 2ctvA|W.C. lapnA|W.C. 1bib_|271-317 2pec_|W.C.
1bfb_[W.C. 2bfh_|[W.C. Ibfg [W.C. larc_[W.C. 1bcmAJ481-560  1gtrA|339-547
1hpxA|W.C. lhve |W.C. 1hbp |W.C. 1fen_|[W.C. 1sIfB|W.C. 1gof |151-537
1srgA|W.C. 1sleB|W.C. lcyhA|W.C. 3cysA|W.C. 1gog |151-537  1htp |W.C.
lcgt [383-494  lhug |W.C. ThpcA|W.C. 1kraCJ2-129 1ddt_|381-535 2kauC[2-129
lcdg 582-686 laac_|W.C. 4ger |1-85 Ipgs_[4-140 1gof |1-150 lheb [W.C.
ItnrA[W.C. Ithw_|[W.C. Iscs [W.C. 1bglA[731-1023  1bia 271-317 1kapP[247-470
11tsD|W.C. 4fgf [W.C. 1fnb |19-154 larb_[W.C. Ibco |481-560  2cpl [W.C.
1difA|W.C. lhbq |W.C. lcdg |383-495  IsriA|W.C.

61 o/f domains
legt [1-382 Icxe [1-382 Ibtb_[W.C. 1brsD|W.C. Ifnd |155-314  7acn_[2-528
4ts1A[1-217 1cdoA|176-324  1hldA|175-324  1horA|W.C. 2secE|W.C. Lett |1-150
Icia [W.C. Ipnt [W.C. 2hnp [W.C. Itrx_[W.C. 1lam_|1-159 3pgk [W.C.
1gdtA|1-140 3hsc [3-188 lede [W.C. lcddA|W.C. ImhtA|W.C. laliA|W.C.
2ctc |W.C. ldrl_|W.C. 2anhA|W.C. Ixab [W.C. 1raiA|1-150 Ixaa |W.C.
2bgt [W.C. ldrk [W.C. lolcA|W.C. ledg |1-382 Ibta [W.C. 2bgu_[W.C.
Ifnb |155-314  2ts] |1-217 20hxA|175-324  1deaA|W.C. leseE[W.C. lubsB|W.C.
3cla |[W.C. Iphr [W.C. 2hnq [W.C. 2trxA|W.C. 1trkA|535-680  2dri [W.C.
Ipkm_|396-530  1lcpA|1-159 2rsIA|W.C. lhpm_ |4-188 1garA|W.C. lora |1-149
lhmy |W.C. TaatA|W.C. lulb |W.C. lack |W.C. 2ctb [W.C. 20lbA[W.C.
8dfr [W.C.

71 a+p domains
Ifut |[W.C. 2baa |W.C. laecc [W.C. 2rat [W.C. 2ms_|[W.C. Ipuc_[W.C.
Irbd_|W.C. 1kraA|W.C. 1pgb |W.C. 2igg |[W.C. 3monA|W.C. Ixrb |1-101
1frtA[1-178 1fkj |W.C. 2secl|W.C. legpA|W.C. 2tecl|W.C. 11tsA|W.C.
3mdsA[93-203  1mns_[3-132 Igrl |137-190  IrldS|W.C. lcomA|W.C. IsryA|l111-421
1gac0]149-312  1mstA|W.C. lgrb [364-478  1IkIA|W.C. 11ckA|177-226  2glt |123-316
1sphA[W.C. IsceA|W.C. Itsy |[W.C. 3b5c [W.C. 1tbpA|61-155 ItlcA|W.C.
Ixrc |1-101 Iglv |123-316  3dni |W.C. 1dnkA|W.C. Imrk [W.C. 2dnjA[W.C.
11taA[W.C. 1ttA|W.C. Ifus [W.C. lensA|W.C. 2act |W.C. Ieyo [W.C.
Trsa_|[W.C. 2kauA|W.C. ligd |W.C. 3cox_[319-450 ImolA|W.C. ImldA|145-313
1fruA|1-178 1fkd [W.C. Iesel|W.C. 1mngA[93-203  lvih_|[W.C. 1ytbAl61-155
2mnr_|3-132 loelA|137-190  3rubS|W.C. 2chsA|W.C. 1gadO|149-312  1mrj |[W.C.
3sic]W.C. 2ms2A|W.C. 3grs |364-478  11kkA|W.C. lhid |W.C.
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Table A.3 The 359 Protein Domains.

82 all-a domains
1hbiA|W.C. IsctA|W.C. lytc_|[W.C. Iboc_|W.C. letz [W.C. 2ts1_[228-319
1fipA|W.C. 1hddC|W.C. 1dprA|65-136  1tnt [W.C. 1bbl_[W.C. lesh [W.C.
lerc_|W.C. laca_|W.C. 1vasA|W.C. 1lynA|W.C. lhme_|W.C. loelA2-136
lhsm_|W.C. lgnc_[W.C. 1rprA|W.C. Ipou_[W.C. ledn |[W.C. Hlp_[W.C.
Icih_|[W.C. largA|W.C. ImykA|W.C. ImylA|W.C. Ibpd_[9-91 Iphc_|[W.C.
lolhA|W.C. 1pesA|W.C. 1rpo_ |W.C. lhns_|[W.C. Itag |57-177 Irtm1|73-104
1bod_|W.C. 2pccB|W.C. 4ts1AJ228-319  Ityc_[228-319  llgaA|W.C. 11la_|2-379
loxy_|1-379 Inol_|1-379 Ipgn_|177-473  lyeb_|W.C. 2utgA[W.C. 1fiaA|W.C.
3gly [W.C. lesi |[W.C. lese [W.C. Iphb_|W.C. 3fisA|W.C. 2pgd |177-473
1troA|W.C. 3wrp [W.C. 1trrA|W.C. lgrl |6-136 Iraq_|[W.C. 2wrpR[W.C.
lafb1(73-104 3sdhA|W.C. lyce |W.C. lenh_|W.C. 1dtr_|65-191 lglm_|W.C.
Itns [W.C. 1bal |W.C. lerl |W.C. 2abd_|W.C. 2end |W.C. 2tct |W.C.
1lis_|W.C. laab_|[W.C. 1rhgA[W.C. IropA[W.C. loctC|5-75 lhnr |W.C.
4icb |W.C. 1parA|W.C. 2bpfA]9-91 1olgA|W.C.

85 all-B domains
ImdtA381-535  lcgt |580-684  lcxe [582-686 laaj [W.C. ImdaA|W.C. IsriA|W.C.
lges |1-85 1pnf |1-140 1png_|5-140 1gog |1-150 1tnfA|W.C. lheb [W.C.
1hivA|W.C. Ithu |W.C. 2ctvA|W.C. 2tunA[W.C. lapnA|W.C. 2cpl [W.C.
2cna_|W.C. 1bib_[271-317  11taD|W.C. 1bfb_[W.C. 2bfh |[W.C. 1kapP[247-470
Ibfg [W.C. Ibas [W.C. 1fnd |19-154 larc_[W.C. 1bcmAJ481-560  2sil [W.C.
ThpxA|W.C. 1thv_|[W.C. 1hshA|W.C. 1bzm_[W.C. 1cpiA[W.C. 2pec_|W.C.
lhve |[W.C. 1hefE|W.C. lhvsA|W.C. 1gtsA[339-547  1hbp [W.C. lgof |151-537
1fen_[W.C. 1fga |W.C. lerb |[W.C. IsIfB[W.C. lazm_|W.C. lhtp [W.C.
1srgA|W.C. 1srjA|W.C. 1ptsA|W.C. 1sleB|W.C. lcyhA|W.C. lcdg |383-495
3cysA|W.C. 2sim_|[W.C. lgog |151-537 lcgt [383-494 lexe |383-495  2kauC|2-129
lhug |[W.C. ImikA[W.C. lhuh_[W.C. lakl [247-470  1hpcA[W.C. lhbq [W.C.
1kraC[2-129 1ddt 381-535  lcdg |582-686 laac |[W.C. 4ger |1-85 1gtrA[339-547
Ipgs |4-140 1gof |1-150 1tnrA|W.C. Ithw_|W.C. Iscs [W.C. 1difA|W.C.
1bglA[731-1023  1bia_[271-317  1ltsD|W.C. 4fef |W.C. 1fnb_|19-154 Ibco_|481-560
larb |[W.C.

99 o/p domains
legt |1-382 lexe |1-382 legv [1-382 Ibtb |[W.C. 1brsD|W.C. lulb |W.C.
lexf [1-382 Ifnd_|155-314  4ts1A[1-217 IselA|W.C. lcdoA|176-324  1xaa_|W.C.
1hldA[175-324  lhorA[W.C. 2secE|W.C. Icia [W.C. Ifmn_[155-314 2bgu_[W.C.
Ipnt_|[W.C. 2hnp_|W.C. 1tybE|1-217 Itho_|[W.C. 1tkbA|535-680  lack_|W.C.
Ilam_|1-159 1blIE[1-159 1gdtA|1-140 3hsc_|3-188 lidm_|W.C. lubsB/W.C.
Ingi |4-188 latr |2-188 lede |W.C. lgrcA|W.C. lcddA|W.C. 2dri [W.C.
ImhtA|W.C. lama_|W.C. lalhA|W.C. lula_[W.C. Ingb_|4-188 2ctb_|W.C.
Irhd |1-149 Itrx |[W.C. lamn_|W.C. 8atcA|1-150 lacj [W.C. lora |1-149
lalkA|W.C. 2ctc |W.C. ldrl_|W.C. 1drj |W.C. lhqaA|W.C. 20lbA[W.C.
lajdA|W.C. lacl |[W.C. Ingg |3-188 lajcA|W.C. 1dbp_[W.C. 8dfr (W.C.
Ixab_|[W.C. lraiA|W.C. IscnE[W.C. 1ttqB[W.C. 1wsyB|W.C. 7acn_|2-528
lorb |1-149 lajaA|W.C. 2anhA|W.C. Sacn |1-528 Scpa_ |[W.C. Lett |1-150
2bgt |W.C. ldrk |W.C. lacmA|1-150 Ingh_|4-188 lolcA[W.C. laliA|W.C.
Ictu_|1-150 ledg |1-382 Ibta_ [W.C. Ifnb |155-314  2ts] |1-217 3pgk |W.C.
20hxA[175-324  1deaA|W.C. leseE|W.C. 3cla_|[W.C. Iphr [W.C. TaatA|W.C.
2hng [W.C. 2trxA|W.C. 1trkA|535-680  1pkm [396-530  1llcpA|l-159 lhmy |W.C.
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2rs1A|W.C. lhpm [4-188 1garA|W.C.
93 o+p domains

1fut |W.C. 2baa_|[W.C. laec_|W.C. 2rat|W.C. 2rns_|W.C. 11kkA|W.C.
Iras_|[W.C. 1ssbA[W.C. 1rbd_|W.C. 1kraA|W.C. Ipgx [W.C. leyo [W.C.
Ipgb_|W.C. ligcA|W.C. 2igg |[W.C. 2igh_[W.C. 2secl|W.C. ImldA|145-313
Icoy [319-450  3monA[W.C. 1fitA[1-178 1fkj_|[W.C. 2tecl|W.C. Thid_|W.C.
11ttA|W.C. legl [W.C. IsbnI|W.C. 3mdsA[93-203  1vig_|[W.C. 1ytbA|61-155
legpA|W.C. 1fkl_|W.C. Imns_|3-132 lgrl_|137-190 1fccC|W.C. Imrj_[W.C.
1rldS|W.C. lcomA|W.C. 1sphA[W.C. 1gae0|149-312  1mstA[W.C. Ipuc_|W.C.
lgrb_[364-478 1kIA|W.C. 11cjA|W.C. 11ckA|117-226  1sceA|W.C. Ixrb_|1-101
IsetAl111-421 1sibI|W.C. ItsdA|W.C. 1htIA|W.C. IbmsA|W.C. 11tsA|W.C.
2hpr_|W.C. Itsy |W.C. Itys [W.C. 3bSc_[W.C. 1tbpA|61-155 IsryA|111-421
Ixrc_|1-101 Iglv_|123-316  2tscA|W.C. 3dni_|W.C. 1dnkA|W.C. 2glt |123-316
4mdhA|155-333  lmrk [W.C. 11taA[W.C. 11tgA|W.C. 1fus_|[W.C. 1tlcA|W.C.
lensA|W.C. 2act |W.C. Trsa_|W.C. 2kauA|W.C. ligd [W.C. 2dnjA[W.C.
3cox_[319-450  1molA|W.C. 1fruA|1-178 1fkd_|[W.C. Lesel|W.C. 3grs_[364-478
ImngA|[93-203  1vih [W.C. 2mnr_[3-132 loelA|137-190  3rubS|W.C. 2ms2A[W.C.
2chsA|W.C. 1gadO]149-312  3sicl|W.C.
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Table A.4 The 1601 Protein Domains.
273 all-a domains
3sdhA|W.C. 1flp_|W.C. 2hbg |W.C. 1bve [W.C. 2myc [W.C. lutg [W.C.
2mb5_|W.C. Imls_[W.C. Imbw_|W.C. Imod_|W.C. 2mga [W.C. ScscA|W.C.
Imba_|W.C. Imbs_|W.C. ImygA|W.C. lymb_|W.C. ImniA|W.C. loxa_[W.C.
lemy [W.C. 11ht |W.C. Imyt [W.C. leca |W.C. 2gdm_|W.C. laorA[211-605
11hl_|W.C. 2hhbA|W.C. 2hbcA[W.C. 1cohA|W.C. 1dshA|W.C. loelA[2-136
2mhbA[W.C. 1hdsA|W.C. 1hdaA|W.C. 2pghA|W.C. 1pbxA|W.C. 1pshA|W.C.
2mhbB|W.C. 1hbeB|W.C. IcohB|W.C. 2hhe3|W.C. 1fdhG|W.C. 4p2p [W.C.
2hhbB|W.C. 1hdsB|W.C. 1hdaB|W.C. 2pgh3|W.C. 1pbxB|W.C. 2ztaA[W.C.
2lhb_|W.C. lithA|W.C. lash [W.C. 1hlb_|W.C. lepcA|W.C. litk |[W.C.
lgrj [2-79 IsryA|1-110 lidsA|W.C. 3sdpAJ5-834 lisaA|1-82 leed [W.C.
labmA|1-83 1mngA|1-92 lycc |[W.C. lesw |[W.C. lesv |W.C. 2cts |[W.C.
lhre_|[W.C. lcer [W.C. ScytR|W.C. leye |[W.C. 3c2¢ |[W.C. lept |W.C.
1c2rA|W.C. lexe |W.C. lery [W.C. lcot |W.C. leeS |[W.C. 1bvpl1|1-120
leor |W.C. 451c |[W.C. 2mtaC|W.C. leyi [W.C. 1fcdC|W.C. lecmA[W.C.
lenh [W.C. lyrnA[W.C. 11fb_|[W.C. loctC|102-161 1ftt [W.C. 1pp2R|W.C.
lhdp_ [W.C. locp |[W.C. lhom |W.C. 1ftz [W.C. lherA|W.C. 1bunA|W.C.
1gdtA[141-183  Imbe [W.C. 1pdnC|W.C. Ibia |1-63 llea [W.C. 1d66A[49-64
lcgpA|138-205  1hstA[W.C. Ighc |W.C. 1fliA|W.C. letc [W.C. Lifl_ |[W.C.
IstwA[W.C. lhks [W.C. 2hts_[W.C. 1dtr_|4-64 1dtr |65-191 Iglm [W.C.
Itns [W.C. 2spcA|W.C. 1fc2C|W.C. 1bal |W.C. 2pdd |W.C. Iphc [W.C.
lerl [W.C. lerd [W.C. lerp |[W.C. lacp |W.C. 2abd |[W.C. 1fiaA|W.C.
2end [W.C. 1lis_|W.C. laab_[W.C. lhma |[W.C. lhryA|W.C. 2sbIB|150-838
1bfmA|W.C. ImmoG|W.C. llpe [W.C. 1led4 |W.C. 1le2 [W.C. lesmA[W.C.
2asr |W.C. 21ligA|W.C. 256bA|W.C. 2ccyA|W.C. 1bbhA|W.C. Ippa_[W.C.
legn [W.C. lego [W.C. 2hmzA|W.C. 2mhr_ |[W.C. 2tmvP|W.C. LclpAW.C.
legmE|W.C. 1bucA|233-383 3mddA|242-395 1bcfA[W.C. Itha [W.C. IpyiA[72-117
lhrs [W.C. Ired [W.C. 1ribA|W.C. Immo3|W.C. IrhgA|W.C. 2ifo |[W.C.
Ibge |W.C. IbgeA|W.C. 11ki_|[W.C. 3hhrA|W.C. lilk |W.C. Icle |135-574
1gmfA|W.C. Ircb [W.C. litl [W.C. 1hulA|W.C. lirl |W.C. Tepp [W.C.
1rfbA|W.C. 1ropA|W.C. leciA|W.C. loctC|5-75 1Imb3|W.C. 1prcC|W.C.
1r69 |W.C. 2cro_|[W.C. ladr [W.C. Ineq [W.C. 1pnrA|3-58 2tct [W.C.
1lccA|W.C. lcoo [W.C. ImdyA|W.C. 4icb_|W.C. lebl |W.C. Ipoc_[W.C.
Isra_|[W.C. Irro [W.C. ledp |W.C. Ipvb_[W.C. Spal_|[W.C. Ibbc [W.C.
1rtpl|W.C. 1top_|[W.C. Stnc_|[W.C. lrec |W.C. 2scpA|W.C. 1rtm1[73-104
2sas_|W.C. lcll_[W.C. 1lin_|W.C. 3cin_|W.C. lefd [W.C. 1ifj [W.C.
losa [W.C. IscmB|W.C. IsemC|W.C. IparA[W.C. ImntA|W.C. lesh [W.C.
lcmbA|W.C. 1dsbA|65-128 2gstA|85-217 1glqA[79-209 1gsrA[77-207 2hpdA|W.C.
1gssA[77-207 lhna |85-217 1gseA|81-222 2gsq [76-202 Igta [81-218 2wrpR|W.C.
1bmtA[651-740  1c5a_[W.C. lhyp |[W.C. 11pt_[W.C. lip_[W.C. 1fps_ [W.C.
Ibip_|[W.C. 2bpfA[9-91 lolgA|W.C. IsakA|W.C. lhnr [W.C. Ipoa [W.C.
ThueA|W.C. laep |W.C. laxn_|W.C. lala |[W.C. lhvd |W.C. 4bp2_|W.C.
2ran_[W.C. lann_[W.C. 1tadA|57-177 lgia |51-181 lezm_[154-298  1lhup |88-111
8tInE|156-316 4tmnE|156-316 Inpc |157-317  2tsl_|228-319 2hmx_|W.C. lifm_|W.C.
1lp |W.C. laru_|[W.C. 2cyp_|W.C. lcee |W.C. lepd [W.C. 2pgd |177-473
Imnp_|W.C. lapxA[W.C. ImhIA|W.C. ImypA|W.C. Ipth_[74-583 1he2 |5-398
2abk [W.C. Igln |306-468 1lla_|2-379
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461 all-f domains

Ibec_[3-117
1bbjL[1-109
ligiL|1-107
2fbjL|1-109
lacyL|1-108
6fabL|1-108
IvfaAW.C.
Incal|1-108
IrmfL|1-112
libgL|2-107
liaiL|1-108
2rhe |W.C.
ImcdA[1-111
1hnf |4-104
7fabL|104-204
1dbaL|108-211
2f19L|109-214
1fvdA|109-214
InbvL|113-219
2cgrL|113-219
3hfmL|109-214
ImrdL|109-211
ligeL|109-213
liail|109-214
ImceA|112-216
1fruA|179-269
1vabA|182-274
3cd4_[98-178
Itlk_[W.C.
lcyg 1492-574
lctn_[24-132
lcfb_|610-709
Inoa [W.C.
1xs0A[W.C.
lexg [W.C.
leyg [575-680
2pcdM|W.C.
9pcy |W.C.
lazcA|W.C.
Inif [8-166
2stv_|[W.C.
lewpA[W.C.
lcgx_|383-495
leqpAl9-137
11pbB|337-449
Ibia_[271-317
Ise2_|1-120
larb_|[W.C.
lahtL|W.C.
4cms_|W.C.
2rmcA|W.C.

8fabA|3-105
1hilA|1-108
ligmL|W.C.
1fgvL|W.C.
ImamL|1-108
1gigL|1-110
1jhILIW.C.
1forL|1-108
1fptL|1-108
ImIbA|1-108
liaiM|1-109
IbjmA|W.C.
ImceA|l-111
ledcA|W.C.
1bafL|109-214
1dfbL|106-212
2fb4L|110-214
1ggbL|108-211
ltetL|108-211
1figL[108-214
1jelL[109-212
1fbiL|108-214
libgL|108-214
liaiM|110-215
ImewM|112-216
Ibmg_ [W.C.
lhocA|182-272
Icid_[106-177
Itnm |W.C.
Iciu_[496-578
1ggtA[8-190
3hhrB|32-130
lacx [W.C.
IsrdA[W.C.
[tupA|W.C.
lciu_|579-683
lhoe [W.C.
Ipla_|W.C.
larn_|[W.C.
lafnA|11-166
IsmvA|W.C.
2bbvA[W.C.
1ppi_|404-496
Ictm_[231-249
1hgiA[W.C.
2pni_|W.C.
lino |[W.C.
1gbeA|W.C.
lhcgA|W.C.
1dynA|W.C.
2sil_|W.C.

7fabL|1-103
1dbaL|1-107
1indL|2-109
2imm_|W.C.
InbvL|1-112
2cgrL|1-112
3hf1L|1-106
leapA|1-107
1ikfL|1-107
InmbL|W.C.
IplgL|1-112
IwtlA|W.C.
ImewM]|1-111
lcd8 |W.C.
1bbdL|115-219
1igfL|108-214
2fbjL|108-213
lacyL|109-211
1fIrL|113-219
1frgL[112-217
Incal|109-214
IrmfL|113-219
1ImlbA[109-214
1plgL|113-215
1fc1AJ238-341
2clrA|182-275
ImhcA|182-272
1hnf |105-182
1gof 538-639
11la_|380-628
2hft |1-106
1ggtA|516-627
lakp |[W.C.
ljev_[W.C.
letm |1-167
1ttaA|W.C.
2ait |[W.C.
2plt_[W.C.
LilsA|W.C.
laozA|1-129
Ibmv1|W.C.
1bbt1|W.C.
2cba |W.C.
2kauC|2-129
Iscs [W.C.
IsemA[W.C.
Igpc |W.C.
2tgt |W.C.
1hvlA|W.C.
lhbq_|[W.C.
lgof |151-537

1bafL|1-108
1dfbL|1-106
2f19L|1-108
1fvcAW.C.
ItetL|1-107
1figL|1-108
3hfmL|1-108
ImrdL|1-108
1ImkA|2-127
lopgL|1-107
LivIA|W.C.
1breA[W.C.
3cd4_|1-97
Ibec_|118-246
1bbjL|110-211
ligiL|108-213
2fgwl|109-214
ImamL|109-214
6fabL[109-214
11dIL|108-214
1forL|108-210
1fptL|108-213
lopgL|108-214
ImcoL|112-216
11tC[239-341
1hsaA|182-276
1d1hA|82-182
1hngA|101-176
ledg 1496-581
1he2_[399-653
1fna |W.C.
InciA[W.C.
IsxcA|W.C.
1rsy |W.C.
ledg |582-686
1ttcA|W.C.
laac_|W.C.
1paz_|[W.C.
lazrA|W.C.
2bpal|W.C.
4sbvA[W.C.
2cas_|[W.C.
lheb_|W.C.
1ruj1{W.C.
1loeA|W.C.
1psf |W.C.
1barA[W.C.
1trnA|W.C.
2rspA|W.C.
Imup_ |[W.C.
leyg [379-491

1bbdL|1-114
ligfL|1-107
2fb4L|1-109
1ggbL|1-107
IflrL|1-112
1frgL|1-108
ljelL|1-108
1fbiL|1-107
ligcL|1-108
InsnL|1-107
IreiA|W.C.
ImcoL|1-111
Icid |1-105
8fabA|106-208
1hilA[109-211
lindL|110-212
ImcpL|115-219
ImfbL[112-212
1gigL|111-210
3hflL|107-212
leapA|108-214
1ikfL|108-214
InsnL|108-211
ImcdA|112-216
Ipfc_[W.C.
1hsbA|182-270
1vcaAl|1-90
lcgx |496-581
Icle |35-134
Iten |W.C.
2mem_|W.C.
1spdA[W.C.
1ddt_|381-535
legx |582-686
2pcdA[W.C.
Iple [W.C.
Ipmy |W.C.
leyx [W.C.
1gff1|W.C.
2tbvA|W.C.
4rhv1|W.C.
IvcaA|91-199
1vmoA|W.C.
Itmel|W.C.
Iepn [W.C.
11tsD|W.C.
labrB|1-140
4gch [W.C.
4er4E|W.C.
1ftpA|W.C.
lhny_[404-496

1r081|W.C.
lcovl|W.C.
1dhx_|W.C.
1hplA[337-449
1bvp1[121-254
Ithw_|W.C.
lite_|W.C.
2ayh [W.C.
IcelA|W.C.
loacA|301-724
Ipht_[W.C.
1gbrA|W.C.
1qweA|W.C.
1qorAJ2-135
1prtD|W.C.
1tssAl1-93
1pyp_|W.C.
Ibgh_[W.C.
4fgf [W.C.
2aaiB|1-135
1fnb_|19-154
left |313-405
1gbdA|W.C.
1ppcE[W.C.
1brbE[W.C.
2gmt |W.C.
7estE|W.C.
InrpL|W.C.
Iton_|[W.C.
1difA|W.C.
lidaA|W.C.
ler8E[W.C.
1psoE|W.C.
1lybA|W.C.
Idro_[W.C.
1pkyA|70-157
lepbA|W.C.
Imde [W.C.
1pmpA|W.C.
2cpl |[W.C.
1fbl_|272-466
InscA[W.C.
2pec [W.C.
4ger |1-85
Ixnb_[W.C.
1prtF|W.C.
2cnd |11-124
lelt |W.C.
1htrP|W.C.
1stiA[W.C.
lenx [W.C.
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leva |W.C. 1dlc_[290-499 Itsp_|W.C. 1wapA[W.C. lgpr [W.C. 1povO[W.C.
2rhn1|W.C. 2bb2_[2-85 Ipgs_|4-140 4hmgA|W.C. 21tnA|W.C. 11gcA|W.C.
IsltA|W.C. 1xnd_|W.C. IckaA|W.C. 1shg |W.C. lhsq |[W.C. 20hxA|1-174
1chpD|W.C. Isnc_|[W.C. lasyA|68-204 2prd_|W.C. Irip_|W.C. 2afgA|W.C.
Itie_|[W.C. Indh_[3-125 2sga_|[W.C. lhpgA|W.C. Igbt_[W.C. 1bit_|[W.C.
1ppfE|W.C. lihsL|W.C. lhylA|W.C. IImwAW.C. 4hvpA|W.C. ImvpA[W.C.
1ppmE(W.C. Impp_|W.C. Ibw3_|W.C. Ipls_|[W.C. Irbp_[W.C. lhms_|W.C.
lebs_|[W.C. IstsB|W.C. lcynA|W.C. Innc_|W.C. 2bbkH|W.C. 1ciul383-495
lamg [358-416  4ca2_|W.C. lenb_|W.C. ImsaA[W.C. llxa_[W.C. lhtp |W.C.
1f3g [W.C. Ipvel|W.C. Irlal|W.C. Iprr_|1-90 1gof |1-150 lknb_|W.C.
1lesA|W.C. Isba_|[W.C. 1hlcA|W.C. Ixyn_|[W.C. IshfA|W.C. 11ckA|63-116
Isrl_|[W.C. 6adhA|1-174 1bovA|W.C. Isty |W.C. lkrs_|[W.C. Imjc_|W.C.
1prcH[37-258 lilb_[W.C. Iwbc_|W.C. 2pia_1-103 1sgpE[W.C. Isgt |W.C.
1tabE|W.C. Itry |W.C. lelg |W.C. lhahL|W.C. 3rp2A[W.C. 2snv_|W.C.
1hteA|W.C. IsivA|W.C. 2apr |[W.C. 1hrA[W.C. 1gtrA[339-547 Ipkn_[116-217
IrIbE|W.C. lifc_|W.C. 1cbiA|W.C. 2aviA|W.C. Iclh_|[W.C. Innb_[W.C.
3aahA|W.C. 2aaa |374-476 lamy [347-402  lcim_[W.C. 1dmxA|W.C. 1kapP|247-470
2phlA|W.C. llab_|[W.C. 2kauB[W.C. 2mev1|W.C. 1fpv_|W.C. 2sblB|7-149
1dlc_|500-643 1tnrA|W.C. 1led |W.C. 1gbg [W.C. IsacA|W.C. 1xyoA[W.C.
laboA|W.C. 1griA|1-63 leskA|W.C. 1dehA|1-174 1prtB|88-197 Isye |[W.C.
11ylA|14-153 lesp [W.C. IpcrH[36-250 lilr1|W.C. lhee [W.C. left |213-312
2alp_|W.C. 4ptp_|W.C. ImctA|W.C. 3gctA|W.C. leleE|W.C. labjL|W.C.
2pkaA[W.C. 1bco_|481-560 1fivA|W.C. lepnE|W.C. 3psg |[W.C. 1smrA|W.C.
Ibtn_[W.C. Ipkm |116-217  1bbpA[W.C. 1lib_[W.C. lopaA[W.C. IsmpI|W.C.
lhxn_[W.C. 6nn9 [W.C. lcdg |383-495  6taa [374-476 lheb |[W.C. lhec_|[W.C.
3bcl [W.C. Isat [247-470 IcauA|W.C. 1bncA|331-446  1dupA[W.C.

332 o/B domains
ledg |1-382 legx [1-382 leyg |1-378 Iciu |1-382 2aaa |1-353 lopr |W.C.
6taa |1-353 1ppi|1-403 lhny |1-403 lamg_|1-357 lamy |1-346 ladmA|W.C.
Ibyb [W.C. lceo [W.C. 2exo |[W.C. 1ghsA|W.C. lghr [W.C. lart [W.C.
1xyzA[W.C. lcbg [W.C. 1pbgA|W.C. Inar [W.C. lenv [W.C. 2dkb_|[W.C.
1llo_[W.C. 2ebn_|[W.C. ledt [W.C. letn |133-441 ladd |[W.C. lack [W.C.
2kauCl|130-422  1pta [W.C. Inall|W.C. lald [W.C. 1fbaA[W.C. 2had_[W.C.
2acs_|W.C. Iral_|W.C. 4enl_|142-436 1pdz_|140-433 2mnr_|133-359  1tib_|[W.C.
2chr [127-370 loyb [W.C. lgox_|[W.C. 2tmdA|1-340 11tdA[98-511 1hplA|1-336
lubsA[W.C. 1pii_|1-252 Ipkm_|12-115  Ipkn_[12-115 1pkyA[1-69 8dfr [W.C.
1dik_|510-874 3rubL|148-467 lausL|148-463 1rblA|148-475 S5rubA|138-457  lajbA|W.C.
1tph1|W.C. 1htiA|W.C. 7timA|W.C. ItreA|W.C. ItmhA[W.C. 4at1A|1-150
IbtmA|W.C. 6xia_[W.C. 1dxiA|W.C. 2gyiA|W.C. 2xis_[W.C. laco [2-528
Ixih_[W.C. 4xiaA|W.C. 1xIbA|W.C. 1ximA|W.C. 2xinA[W.C. IminA|W.C.
1brlA|W.C. Infp W.C. 1fvpA|W.C. Itml_|W.C. 2tmdA490-645  lagx [W.C.
3cox_[5-318 Ipbe [1-173 Idoc |1-173 lgal |3-324 3grs |18-165 labe |W.C.
1gerA[3-146 ltde [1-118 Inpx_|1-119 2tprA|1-168 3ladA|1-158 1tIfA[W.C.
1fcdA|1-114 1dik_[377-505 7acn_|529-754 laco_|529-754 loelAJ191-375 11st_|W.C.
Ibta |W.C. Ibnh |W.C. liceA|W.C. ludh_|W.C. Imla |3-127 et [W.C.
3chy [W.C. 2chf W.C. Intr |W.C. IscuA|122-288 IscuB|245-388  1pxtA[28-293
2fcr |W.C. 2fx2_|W.C. Ircf |W.C. lofv_|W.C. 4fxn_|W.C. loroA|W.C.
1bmtA|741-896  lordA|1-107 lcus [W.C. lesc |W.C. 2nacA|1-147 1dctA|W.C.
1gdhA2-100 1psdA|7-107 1dldA|1-103 1fnb_|155-314 2cnd |125-270  lase |W.C.
Indh_|126-272  2pia_[104-223 2ts1_|1-217 1gtrA|8-338 Igln_|1-305 lordA|108-569
1gpmA|208-404  2tmdA|[341-489 20hxA|175-324  6adhA|175-324 1dehA|175-324  1fssA|W.C.
1qorA[136-265  1hdcA|W.C. 1dhr |W.C. lhdr |W.C. leny |W.C. 1thtA|W.C.
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1gadO|0-148 1gd10]0-148 IcerO|1-148 1hdgO|1-148 1ggaO|l-164 Ithg_[W.C.
1gypAl|l-165 1gpdGl1-148 3gpdR|1-150 1dpgA|l1-181 1dih_[2-130 11bpBJ1-336
2nacA|148-335  1gdhA|101-291 1psdA[108-295  2dIdA[104-300 Im1dA|1-144 1dhfA|W.C.
2cmd_|1-145 1bmdA|0-154 1hlpA21-146 lhyhAJ21-166 OldtA|1-162 Ixaa_|W.C.
21dx_|1-159 11dm_|1-160 11dnAJ15-162 1lc_|13-164 111dA[7-149 IragA|1-150
2pgd_|1-176 IscuA|l-121 IbncA|l-114 2dIn_|1-96 2glt |1-122 3pmgA|1-190
IpydA|2-181 1pvdAJ2-181 1powA|183-365 1nbaA|W.C. ldeaA|W.C. 2bgu_|W.C.
1powA[9-182 1trkA|3-337 Igky [W.C. lukz |W.C. 3adk_|W.C. 3pgal|W.C.
2ak3A[W.C. lakeA|W.C. laky |[W.C. 5p21_|[W.C. lerr |[W.C. 2gbp_|[W.C.
Iplk_[W.C. 1tadAJ27-56 lgia_[34-60 lhurA[W.C. left |1-212 2lbp_|W.C.
ldts_|W.C. ladeA|W.C. InipA|W.C. 2reb_[3-268 Ichd_|[W.C. Isbp_|W.C.
lcseE|W.C. 1thm |W.C. Ist3_|W.C. Isup_|W.C. 2sbt_|W.C. lovb_[W.C.
2prk_[W.C. ImeeAW.C. Impt_|W.C. 3cla_|W.C. Iqca_|W.C. lctt |1-150
leaf |W.C. Iphr_[W.C. 2hnq_|W.C. lyts [W.C. 2trxA|W.C. 11faA|W.C.
Ithx_[W.C. 3trx_|[W.C. laazA|W.C. 1dsbA|1-64 1gplA[W.C. TaatA|W.C.
2gstA|1-84 1glqA|1-78 1gsrA|1-76 1gssA|1-76 lhna |1-84 Ispa_|[W.C.
1gseA|2-80 2gsq |1-75 lgta |1-80 1trkA|535-680 Ipkm_[396-530  lulb_|[W.C.
Ipkn [396-530  1pkyA|351-470 1lcpA|1-159 leriA|W.C. IrvaA[W.C. ImahA|W.C.
1bam_[W.C. 1pvuA|W.C. 2rslA|W.C. lhpm_[4-188 Ingh |4-188 Itca |[W.C.
2btfA|2-146 2yhx_[2-202 lhkg [2-202 1glaGJ4-253 IchmA|[2-156 lerl [W.C.
2m2_|[W.C. lgob [W.C. Iril_[W.C. 1vrtAj430-539 1hnvA430-556  2ctb_[W.C.
Irdd_[W.C. lvsd_[W.C. litg [W.C. Ibco |258-480 1kfd [324-518 ldyr [W.C.
1hjrA|W.C. 3pgm_ |W.C. Irpa |[W.C. 1gph1|235-465 1hmpA[W.C. 1xac |W.C.
lubsB|W.C. 3pgk |[W.C. Igpb |W.C. 1pfkA|W.C. lgea |[W.C. 1pnrA|59-340
Impb_|W.C. lovt |5-334 1garA|W.C. lakbA|W.C. laam_|W.C. 1pbn_|W.C.
IwhtA|W.C. 3tgl [W.C. IcleA|W.C. 11cpA|160-484  4dfrA|W.C. lide [W.C.
lora_|[W.C. 1php |W.C. 1pygA|W.C. 3ptk |W.C. Ipea |[W.C. 20lbA|W.C.
1hslA|W.C. 1tfd [W.C. lhmy [W.C. 2cstA|W.C. 1tpl A]W.C. 1gpmA|[3-207
lysc_[W.C. Itia_|W.C. 1tahB[W.C. lamp |[W.C. laliA|W.C. lidf |W.C.
7acn_[2-528 ImioA|W.C. 3ecaA|W.C. 2dri_ |[W.C. 2liv_|[W.C. Ipda |3-219
1dppA|W.C. 11fg |1-334

297 o+ domains
1fus_[W.C. 9rnt_[W.C. Irgk [W.C. 1trpA[W.C. lgmpA[W.C. 11tdA[10-97
1brL|W.C. 1bscA|W.C. IbanA|W.C. Irms [W.C. lensA|W.C. 2polA|1-122
1931_|[W.C. IremA[W.C. 3lym [W.C. 6lyz [W.C. llze [W.C. IscuB|1-244
1351 |[W.C. 1hhl_[W.C. 1ghlA|W.C. IbqlY[W.C. 2ihl_[W.C. 1pnkA|W.C.
1lzr_[W.C. 11z5_|W.C. 11hk_[W.C. 2eql_|W.C. 1lmq_|W.C. 1hlpA|147-328
lale_|W.C. 1hml_[W.C. 41zm_|W.C. 1192_|W.C. 1301_|W.C. 11dnA|163-330
1631 |[W.C. 1131 W.C. 1124 |W.C. 1163_|W.C. llyg [W.C. labrA|W.C.
1149 _|W.C. 1461_|W.C. 115_[W.C. 1141_|W.C. 1101_[W.C. 1prtA|W.C.
1198_|W.C. 1151_|W.C. 1171_[W.C. 1153_|W.C. 1195_|W.C. lafal|105-226
2051_|W.C. 1761A|W.C. 1891_|W.C. 1531_|[W.C. Igbs_[W.C. Imat_|W.C.
2act |[W.C. 1ppn_|W.C. Spad_|W.C. 1ppo_ |W.C. ThucA|W.C. Iplg [1-126
1theA[W.C. lgecE|W.C. lgeb |W.C. 1ggtA|191-515 Trsa_|W.C. 1dik |2-376
8rat [W.C. IrnnE[W.C. Irbn_|W.C. Irbh_|W.C. lonc |W.C. IpyaA|W.C.
1bsrA[W.C. lang [W.C. lagi [W.C. 2kauA|W.C. InapA|W.C. 1hyhA|167-329
3il8 [W.C. 1plfA|W.C. 1rhpA|W.C. ImgsA|W.C. lThumA|W.C. 1llc_|165-333
IrtoA[W.C. Isso |[W.C. Isap |[W.C. Ipkp [78-147 ligd [W.C. lapa |W.C.
2ptl [W.C. lubi_|[W.C. 1frd [W.C. 4fxc |W.C. 1fxiA|W.C. 1dmaA|W.C.
ldox |W.C. 1frrA|W.C. 2pia_[224-320 Iput |W.C. 1tssA[94-194 1prtB[4-87
Isc2 |121-239 1tif [W.C. 3cox_[319-450  1pbe |174-275 ldoc |174-275 1ytbAl61-155
lgal |518-582 ImolA|W.C. leyv |[W.C. IstfI|W.C. loacA|91-185 2glt [123-316
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Istd_|W.C. ludil|W.C. 1fruA|1-178 1dIhA[3-81 2clrA|1-181 2dnjA|W.C.
lhsaA|1-181 1hsbA|1-181 IvabA|1-181 lhocA|1-181 ImhcA|1-181 ImldA|145-313
laak |[W.C. 2uce [W.C. 1fkd [W.C. Ifkr [W.C. lyat [W.C. 91dtA|163-331
letn |516-560 lgrj [80-157 1dhy |1-132 lhan_|2-132 Icsel|W.C. 111dA|150-319
1sibl|W.C. 2snil|W.C. Itin_|[W.C. 1mngA|[93-203 labmA|84-198 Irte [W.C.
3sdpAj84-190 lisaA|83-192 1idsA|86-199 Letf [W.C. 2reb_[269-328 lesl |1-118
Istu_|[W.C. Ipkp [4-77 Ipda |220-306  lvih_|W.C. 1gpmA|405-525 3pmgA421-561
2mnr_[3-132 4enla_|1-141 Ipdz |1-139 2chr_[1-126 loelAJ137-190  2dIn_|97-306
1fxd_|W.C. 1fdx_|W.C. Ifca_[W.C. lelf [W.C. 5fd1_|[W.C. laorA|1-210
1fij_|[W.C. 1fxrA|W.C. 2fxb_|W.C. 4at1B|8-100 IragE|1-100 2cmd |146-312
Ipba_|W.C. 1spbP|W.C. 1pil_|W.C. InueA|W.C. Inpk [W.C. 21dx_|160-331
InsqA[W.C. InhkR|W.C. lurnA|W.C. Isxl_[W.C. 2bopA|W.C. Imrj_|[W.C.
3rubL|22-147 lausL|20-147 1rb1A[9-147 SrubA[2-137 laps [W.C. 1tsA|W.C.
Iris_ [W.C. IregX|W.C. 1psdA[327-410  1mla [128-197 Ivhh_|W.C. lhup [112-228
Itig [W.C. life [W.C. 1kptA|W.C. 3rubS|W.C. lausS|W.C. Ixrb_|1-101
IrbIM|W.C. 1dchA[W.C. IxxaAW.C. 2chsA[W.C. LotfA|W.C. IbncA|115-330
1otgA|W .C. 1gadO[149-312  1gd10[149-312  lcerO[149-312  1hdgO|149-312  1gphl|1-234
1gga0|165-333  1gypA|166-334 1gpdG|149-312  3gpdR|151-314  1dih_[131-240 1bmdA|155-332
1dpgA|182-412  loacA|5-90 3sicl|W.C. 2ms2A|W.C. 1frsA[W.C. 11dm_|161-329
3grs_[364-478 1gerA|336-450 Inpx_[322-447  2tprA[358-482 3ladA[349-472 Imrg_|[W.C.
1fcdA[328-401 lezm |1-153 8tInE|1-155 4tmnE|1-155 Inpe |1-156 1ddt |1-187
last |[W.C. liag |W.C. lat1A|W.C. 1kapP|1-239 Isat_|4-239 2msbA|W.C.
lhfc |W.C. Imnc_|[W.C. Immq_|W.C. 2srt [W.C. 1fbl |100-271 IsmnA[W.C.
1IKkA|W.C. IshaA[W.C. IshdA|W.C. layaA|W.C. 1griA|64-156 lordA|570-730
2pna_|[W.C. lab2 |[W.C. 2pldA[W.C. lhid |W.C. Iptf |[W.C. lyua [1-65
1poh |W.C. Ipch_ [W.C. 1zer |W.C. 1gtqA|W.C. Ipuc |[W.C. lvee [W.C.
IcksA[W.C. 1dksA|W.C. IsryA|l111-421 11ylA|161-502 lasyA[205-557  1chmA|157-402
1bia_|64-270 lvil [W.C. Isvq |W.C. 2prf [W.C. lacf [W.C. leyo [W.C.
1pne [W.C. 1pfl |W.C. 2phy |W.C. Imut |[W.C. 1tlcA|W.C. 1lba_|W.C.
Itsv [W.C. 4tms [W.C. Itis |W.C.
31 multi (1) domains

lcdkA[W.C. 1daaA|W.C. Imml [W.C. 1spiA|W.C. 1bucA|1-232 4blmA|W.C.
1hleA|W.C. 2cpkE[W.C. 1ckiA[W.C. 1vrtA[4-429 2hhmA|W C. 3mddA|11-241
lathA|W.C. lovaA|W.C. 2achA|W.C. lesn [W.C. llgr |W.C. linp |[W.C.
2bItA|W.C. 3pte [W.C. 1btl [W.C. 9apiA[W.C. lirk [W.C. lecl [W.C.
SfbpA[W.C. 8catA[W.C. lcae [W.C. 3blm_[W.C. lattA|W.C. 1ftaA[W.C.
1kfd |519-928

168 small protein (c) domains
6rIxA|W.C. lcphA[W.C. 1trzA[W.C. 3insA[W.C. 2gfl [W.C. 2drpA|103-139
IbomA|W.C. letl [W.C. 1wgtA|1-52 lhev_[W.C. Imme_[W.C. 1pyiA[30-71
Imctl|W.C. 1ppel|W.C. 4cpal|W.C. 2eti [W.C. 1kal |W.C. lhra_|[W.C.
lomc [W.C. lomn_|W.C. lomg_ |[W.C. loma [W.C. leit |W.C. 1rdg |W.C.
2sn3_|W.C. lvna [W.C. Inra_[W.C. Iptx_[W.C. Imtx [W.C. 1ragB|101-153
Isxm_|[W.C. 2crd_|W.C. Iscy |W.C. lagt |W.C. Ichl |W.C. ldme [W.C.
Isis [W.C. lpnh |W.C. 1ktx [W.C. lica [W.C. Igpt [W.C. lard |W.C.
lgps_[W.C. 11pbAl6-44 1bi6H|8-31 1tabI|W.C. Ipmc_[W.C. leld [W.C.
3ebx |W.C. 1tgxA|W.C. 1fas [W.C. Intn_|[W.C. lcdtA|W.C. laaf |W.C.
2ctx [W.C. 1Isi_[W.C. 1tfs |W.C. labtA|W.C. 1kbaA|W.C. 6rxn_[W.C.
2cdx_[W.C. 2cex_|W.C. lere [W.C. 2crs |W.C. Icod |W.C. Iche |W.C.
Inea |[W.C. Intx_|[W.C. Inor |W.C. 1drs_|W.C. lerg [W.C. ladn_[W.C.
1bpi_|[W.C. 4tpil|W.C. 1bpt [W.C. laapA|W.C. lknt [W.C. 1znf |W.C.
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ldtx_[W.C. IbunB[W.C. Ishp_[W.C. 1dtk_|[W.C. ldem_|W.C. 1gatA|W.C.
Itap |[W.C. 1dfnA|W.C. Ibnb_|W.C. Ibds_|W.C. Ishl_[W.C. Imea_|W.C.
latx_|W.C. lahl [W.C. lans_|W.C. 11dl_|W.C. lesl [119-156 liro_|W.C.
lhcgB|W.C. lapo_|W.C. Ipth_[33-73 legf [W.C. 2tgf [W.C. Imhu_|W.C.
lixa_[W.C. lurk |6-49 Itpg |51-91 lhre |W.C. 1zaq |W.C. Iptq |W.C.
lenr [W.C. Ibhp_[W.C. 2plh_|W.C. 1pk4_[W.C. 1tpkA|W.C. Ibbo_|1-28
lceaA[W.C. 2pf2_|1-65 2hppP|W.C. lkdu_|W.C. 1fbr_|1-46 11atA|W.C.
1tpg |W.C. IsgpI|W.C. 3ovo_|W.C. lhpt |W.C. 1tgsI|W.C. 1tfi_|W.C.
lbus_|W.C. Ipce |W.C. 4sgbl|W.C. Itih_ [W.C. 1pspA|1-53 lcaa_|[W.C.
1pdgA|W.C. 2tgi [W.C. 1bndA|W.C. Ibet_|W.C. lhenA[W.C. Imrb_|[W.C.
1hth_|1-63 Iteg |[W.C. 2ech_|W.C. 1fvl_|W.C. kst [W.C. 1d66A[8-48
ledn_|W.C. Isrb_|[W.C. lahtI|W.C. lihsI|W.C. 1fphI|W.C. lhcgA|W.C.
2hgtI|W.C. ldec_|W.C. 2bbkL|W.C. 2madL|W.C. Ipdc_|[W.C. 8rxnA|W.C.
lata [W.C. IncfA[11-70 lafp [W.C. 2cy3 [W.C. 2cdv_|[W.C. 4at1B|101-153
lisuA|W.C. lhip |W.C. 2hipA|W.C. lhpi [W.C. 1zaaC|W.C. 4mt2 |W.C.

39 peptides (p) domains

1grmA[W.C. 3aahB|W.C. Isut [W.C. 1smfl|W.C. Igna |[W.C. 1lyp_[W.C.
laml_[W.C. Ibba_|[W.C. 193dC|W.C. leth [W.C. laty [W.C. 1paj_[W.C.
Ipsm_|W.C. lrpv_[W.C. Ippt [W.C. 185dA|W.C. lale [W.C. 1 bdk [W.C.
Ipan_[W.C. 2mltA|W.C. lefg [W.C. 2dtb [W.C. Isol [W.C. 1fct |W.C.
Ibha [W.C. 1kb7_|[W.C. Iter [W.C. lhph [W.C. 2da8A[W.C. lalf [W.C.
Ivtp [W.C. 1btq_|W.C. Irpc_[W.C. 1wfbA|W.C. Igen [W.C. Itor |W.C.
Itvs [W.C. Iplp [W.C. Ispf [W.C.
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Table A.5 The 225 Protein Domains.

61 all-a domains
3sdhA|W.C. lgrj |2-79 lycc |[W.C. lenh [W.C. 1dtr_|65-191 2tct [W.C.
Itns [W.C. 2spcA|W.C. 1fc2C|W.C. 1bal |W.C. lerl |W.C. 1rtm1[73-104
lacp_|W.C. 2abd_|W.C. 2end_|W.C. 1lis_|[W.C. laab_|W.C. 1fps_[W.C.
ImmoG|W.C. 1lpe |W.C. 1bcfA|W.C. 1rhgA[W.C. 1ropA|W.C. loelA|2-136
leciA|W.C. loctC|5-75 lcoo [W.C. ImdyA|W.C. 4icb_|W.C. lecmA|W.C.
IparA[W.C. 1dsbA|65-128 2gstA|85-217 1bmtA|651-740 1c5a |[W.C. 2sbIB|150-838
lhyp |W.C. 2bpfA[9-91 lolgA|W.C. lhnr |W.C. laep |[W.C. 1poc [W.C.
laxn_|[W.C. 1tadA|57-177 lezm |154-298  2ts1 [228-319  2hmx_[W.C. 1bvpl|1-120
1lp [W.C. 2abk |[W.C. Igln_[306-468  1lla_|2-379 2pgd |177-473  laorA|211-605
lutg [W.C. Iglm |W.C. lcsh |W.C. Iphc [W.C. 1fiaA|W.C. 2wrpR|W.C.
1prcC|W.C.

45 all-B domains
1ddt |381-535 lcdg |582-686 lhoe [W.C. laac_|W.C. 2bpal|W.C. 2pec_|W.C.
4ger [1-85 2sbIB|7-149 1pgs_[4-140 1gof |1-150 1bvpl|1-217 1lxa |[W.C.
lknb_[W.C. ItnrA[W.C. Ithw_[W.C. Iscs [W.C. 1bglA[731-1023  2phlA|W.C.
Ibia |271-317 11tsD|W.C. 1prcHW.C. 4fgf [W.C. 1fnb |19-154 lhtp [W.C.
left |313-405 larb_[W.C. Ibco |481-560  1difA|W.C. 1gtrA|339-547 2kauC|2-129
Ibtn_|W.C. Ipkn |116-217  1hbq [W.C. IsriA|W.C. 2¢cpl [W.C. 1kapP[247-470
lhxn_[W.C. 2sil [W.C. lgof |151-537  3aahA[W.C. ledg |383-495 ImsaA[W.C.
lheb [W.C. 3bcl |W.C. 1vmoA|W.C.

56 o/p domains
ledg |1-382 Itml_|[W.C. 2tmdA|490-645 1dik |377-505  1bta |[W.C. 3ecaA|W.C.
Ibnh_|W.C. liceA|W.C. Imla_[3-127 Ifnb |155-314  2ts1 |1-217 Lett |1-150
2tmdA|[341-489  20hxA|175-324  1bncA|l-114 IpydAJ2-181 InbaA|W.C. 1pfkA|W.C.
1deaA|W.C. Igky |W.C. Ichd [W.C. leseE|W.C. 3cla_|[W.C. 2dri_[W.C.
Iphr_|[W.C. 2hnq_|[W.C. 2trxA|W.C. 1trkA|535-680  1pkm [396-530  20lbA|W.C.
11cpAJ1-159 leriA|W.C. 2rs1A|W.C. lhpm 4-188 3pgm_|W.C. 2bgu_|W.C.
1gph1235-465 11faA[W.C. lgarA|[W.C. lhmy [W.C. TaatA[W.C. 1pxtA[28-293
lulb |W.C. 1gpmA|3-207 lack |W.C. 2ctb_|[W.C. 8dfr |[W.C. ImioA|W.C.
laliA|W.C. Ixaa |W.C. 4at1 A|1-150 lubsB|W.C. lora |1-149 3pgk |W.C.
7acn [2-528 3pmgA|1-190

63 o+ domains
1fus |W.C. lensA[W.C. 2act |[W.C. Trsa_|[W.C. 2kauA|W.C. Imrj |W.C.
InapA|W.C. Isso |[W.C. Ipkp [78-147 ligd |W.C. 3cox_[319-450 11tsA|W.C.
ImolA|W.C. 1fruA|1-178 laak |[W.C. 1fkd [W.C. 1dhy |1-132 lesl |1-118
Iesel|W.C. ImngA|[93-203  lctf [W.C. 2reb |269-328  1stu_|W.C. ImldA|145-313
Ivih_|W.C. 1gpmA|405-525 2mnr_[3-132 loelA|137-190  1fxd |[W.C. IpyaA[W.C.
Itig [W.C. 1kptA|W.C. 3rubS|W.C. 1dchA|W.C. 2chsA[W.C. 1gphl|1-234
1otfA|W.C. 1gadO|149-312  loacAl|5-90 3sicl|W.C. 2ms2A|W.C. laorA|1-210
3grs [364-478 lezm |1-153 11IkKkA|W.C. lhid_[W.C. Ipuc [W.C. 2dnjA[W.C.
IsryA|111-421 Ivil [W.C. 2prf [W.C. Imut_[W.C. 1tlcA|W.C. 2¢lt |123-316
1lba_|W.C. leyo [W.C. lvee |[W.C. lordA|570-730  1smnA|W.C. 2polA|1-122
1chmA|157-402  1ytbA|61-155  Ixrb [1-101




Appendix 185
Table A.6 The 510 Protein Domains.

109 all-o domains
IsctA|W.C. lytc |W.C. lyea |[W.C. lyeb_[W.C. 2pceB|W.C. Iphd_|W.C.
1thb |W.C. Icih |W.C. Icie [W.C. lesu |W.C. lerj |W.C. Inoo |W.C.
lesw_[W.C. lesx_|[W.C. leri [W.C. Ichi_|[W.C. leig |[W.C. lgrl_|6-136
lerh |[W.C. Iraq_|W.C. letz_[W.C. Ichj_[W.C. Leif [W.C. Iphg |W.C.
lesv_[W.C. lerg |[W.C. Ichh_|W.C. lety [W.C. Irap_|W.C. 3fisA|W.C.
1hddC|W.C. 1dprA|65-136 Itnt [W.C. 1bbl_[W.C. lerc [W.C. lafb1|73-104
laca_|W.C. IvasA|W.C. lenj_[W.C. lenk [W.C. leni_|W.C. Iphf W.C.
1lynA|W.C. lhme_|[W.C. Ihmf |[W.C. lhsm_[W.C. lhsn_|W.C. 1fipA|W.C.
Inhm_|W.C. Inhn_[W.C. Ignc |W.C. 1rprA|W.C. Irpo_|[W.C. lafal|73-104
Ipou |W.C. ledn [W.C. 1bod |W.C. 1boc [W.C. 2bca_|[W.C. Iphe [W.C.
2bcb_|[W.C. Ielb [W.C. largA|W.C. larrA|W.C. ImykA[W.C. ItroA|W.C.
ImylA|W.C. 1bpd [9-91 2bpgA|9-91 lolhA|W.C. IpesA|W.C. lafd1|73-104
1petA|W.C. IseaA|W.C. 1safA|W.C. 1sagA[W.C. 1sahA|W.C. Iepd W.C.
1saiA|W.C. 1sajA|W.C. 1sakA|W.C. 1salA|W.C. lhns_|[W.C. 1trrA|W.C.
ltag_|57-177 1tndA|57-177 Ityc_[228-319  ItydE[228-319  1tybE[228-319  Ipha_|W.C.
1tyaE|228-319  1lgaA|W.C. loxy |1-379 Inol [1-279 1pgn |177-473  2cpp_|W.C.
Ipgo [177-473  1pgp |177-473  1pgg |177-473 3gly |W.C. 1dog_ |W.C. Iphb_|W.C.
lagm |W.C. lesi |[W.C. less |W.C. lesr [W.C. lese [W.C. ScscA|W.C.
Scts [W.C.

130 all-B domains
ImdtA|381-535 lcgt |580-684  lcxe |582-686  lcxi [582-686 lexg |582-686  lcxi [383-495
Icxh |582-686  lcxf |582-686  lcgv |582-686  lcgw |582-686  lcgy [582-686  lcgw |383-495
legx |582-686  lcgu |580-684  laaj [W.C. laan_|[W.C. 2mtaA[W.C. lerm [W.C.
ImdaA[W.C. lges |1-85 1pnf [1-140 Ipng_|5-140 1gog |1-150 lakl [247-470
Igoh |1-150 ItnfA|W.C. 2tunA[W.C. Ithv_|[W.C. Ithu [W.C. lexg |383-495
2ctvA[W.C. Iscr [W.C. lconA[W.C. ScnaA|W.C. lapnA[W.C. legy [383-495
2cna_[W.C. lenlA[W.C. Ibib_271-317  11taD|W.C. 11ttD|W.C. lazm [W.C.
11tgD|W.C. 11tbD|W.C. 1htID|W.C. 1bfb [W.C. Ibfc [W.C. lhpcA|W.C.
1fga |W.C. 2bfh_|W.C. Ibfg_|W.C. Ibas_|W.C. 1fnd_|19-154 lcxh_|383-495
Ifnc |19-154 1frn_|19-154 larc_ [W.C. 1bcmA481-560  1hpxA[W.C. legx [383-495
1hihA|W.C. 1hvjA|W.C. 1hvkA|W.C. 1hivA|W.C. 1hpvA|W.C. Ibzm [W.C.
1hsgA|W.C. 1hshA|W.C. 1hvlA|W.C. IcpiA[W.C. 1hvrA|W.C. 1kraC|2-129
1htgA|W.C. lhve |[W.C. 4phvA|W.C. lhosA[W.C. IsbgA[W.C. lexf |383-495
lhhp_|W.C. 5hvpA|W.C. 1hbvA|W.C. 1hefE|W.C. 1hpsA|W.C. lcgu_|383-494
1hsiA|W.C. lhegE|W.C. laagA[W.C. 1htfA|W.C. lhteA|W.C. lezm |[W.C.
3hvp_|[W.C. 3phv_|W.C. 1hvsA|W.C. 1gtsA[339-547  1hbp_|W.C. 1krbC[2-129
Ifen |W.C. lerb |W.C. Ifel |W.C. Ifem [W.C. IsIfB|W.C. legv |383-495
IsrgA[W.C. IsreA|W.C. IstjA[W.C. 1slgB|W.C. IptsA|W.C. lhug |W.C.
IsleB|W.C. IsrfA|W.C. IstrB|W.C. IstsB|W.C. 1sldB|W.C. lhuh |W.C.
IsthA|W.C. Istp [W.C. lcyhA|W.C. ImikA|W.C. 2rmaA[W.C. 1krcC|2-129
lewaA|W.C. lewcA|W.C. 2rmbA|W.C. lewbAW.C. 3cysA|W.C. Icxe [383-495
2sim_|[W.C. 1gog [151-537  1goh [151-537 lcgt [383-494

135 o/p domains

legt |1-382 lexe |1-382 lexi [1-382 lexg [1-382 lexh [1-382 IracA|1-150
loxf [1-382 legv |1-382 logw [1-382  lcgy |1-382 logx_|1-382 1rahA[1-150
legu |1-382 Ibtb |W.C. 1brsD|W.C. 1bgsE[W.C. 1fnd |155-314  1wsyB|W.C.
Ifnc_|155-314  1frn_|155-314  1tyc_|1-217 1tydE|1-217 1tybE|1-217 1dbp_|W.C.
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ItyaE|1-217 lcdoA|176-324  1hldA|175-324  20xiA[175-324  ladbA|175-324  1radA|1-150
ladg |175-324  ladf |175-324  8adh_|175-324 1ladcA|175-324  6adhA|175-324  8atcA|1-150
ThorA[W.C. 1hotA|W.C. 2secE|W.C. Isca_|[W.C. 1scnE[W.C. lorb |1-149
Iscd_|W.C. Iscb_|W.C. Isbc_|W.C. IselA|W.C. Icia |[W.C. 1dr_|W.C.
Ipnt_[W.C. Ibvh_|W.C. 2hnp [W.C. 2tir_[W.C. Itho_|W.C. IraeAl1-150
1tkbA[535-680  1tkcA|535-680  1tkaA|535-680  1lam_|1-159 11anA|1-159 lacmA|1-150
IbIIE|1-159 1lap|1-159 Ibpm_[1-159 Ibpn_|1-159 1gdtA|1-140 Irhd_|1-149
3hsc_|3-188 Ingj_|3-188 Ingi_[4-188 Ingb_[4-188 Ingf |3-188 lolcA|W.C.
Inga |4-188 Inge |4-188 Ingc |4-188 Ingg [3-188 Ingh [4-188 IrafA|1-150
latr_[2-188 Ingd_[4-188 lats_|2-188 lede |[W.C. lgrecA|W.C. 1ttqB[W.C.
lcddA|W.C. ImhtA|W.C. lama_ |W.C. Imaq_|W.C. 1tarA|W.C. 2bgt |W.C.
Imap_|W.C. ItasA|W.C. ItatA[W.C. lakaA|W.C. lakbA|W.C. lolaA|W.C.
lakcA|W.C. lula_|W.C. lamn_|W.C. lacj_|[W.C. lacl |[W.C. IragA|1-150
lace |W.C. 2ctc_|[W.C. Scpa_|[W.C. lcbx [W.C. leps [W.C. 1ttpB|W.C.
ldrl_|[W.C. 1dr3_|[W.C. 1dr2 [W.C. 1dr6_|[W.C. 1drd [W.C. ldrk [W.C.
1dr5_|W.C. 1dr7_|W.C. 2anhA|W.C. lhqaA|W.C. lalkA|W.C. Ictu |1-150
lajaA|W.C. lajdA|W.C. lanjA|W.C. laljA|W.C. laniA|W.C. IrabA|1-150
lalhA|W.C. 1ajbA|W.C. lajcA|W.C. 1xab_ [W.C. lipd_|W.C. IraaA|1-150
lhex |[W.C. lidm [W.C. 1raiA|l1-150

136 o+ domains
1fut |W.C. Irck |[W.C. Ircl |W.C. 2baa_|[W.C. laec |W.C. 3tms_|W.C.
2rat [W.C. 1rpg_ |W.C. Irhb_|W.C. Imc_|[W.C. 2rns_|W.C. 3b5c_|W.C.
Irnd_|W.C. 3m3 |W.C. Irbx_[W.C. lrob_|W.C. Irnu_[W.C. 3dni_|[W.C.
Iras [W.C. Imv_|W.C. ImnE[W.C. 1mo_|W.C. Irar |W.C. Ites |[W.C.
Irbw_[W.C. IrnmE[W.C. Irha [W.C. Irsm_[W.C. Irbn_[W.C. 1htlIA|W.C.
Imq_|W.C. IsscA|W.C. 1ssbA|W.C. Irca |W.C. 1srnA[W.C. Itsx_|W.C.
Irpf [W.C. Irph_[W.C. 1rbbA|W.C. IrenE[W.C. IrtaE[W.C. 1tbpA|61-155
Irtb [W.C. IrbjA|W.C. Irbh_[W.C. 2aas [W.C. Irbd [W.C. 1dnkA|W.C.
Irbi_ [W.C. 2rlnE[W.C. lkraA|W.C. Irbe [W.C. Irbg [W.C. 11taA|W.C.
1rbf [W.C. Irbc_[W.C. Ipga [W.C. 1krbA|W.C. lkrcA|W.C. Ixrc_|1-101
Ipgx_|[W.C. Ipgb_[W.C. 2igh [W.C. ligcA|W.C. 1fccClW.C. latnD|W.C.
1gbl |[W.C. 2igg |[W.C. 1fkb [W.C. lcoy |319-450  3monA|W.C. 11ttA[W.C.
1frtA|1-178 1fkj [W.C. 1tkg [W.C. 1fkf [W.C. 1fkl [W.C. Itsv_[W.C.
2fke |W.C. 1fkh_|[W.C. 1tkt_|[W.C. 1fkk_|[W.C. 1fkiA|W.C. Ixra_|1-101
Ifkr [W.C. 1tks [W.C. lacbI|W.C. 2secl|W.C. legpA|W.C. 4mdhA|155-333
Imeel|W.C. 2tecl|W.C. lvig [W.C. legl |W.C. 1sbnl|W.C. 11tgA|W.C.
1sibIW.C. 3mdsA[93-203  1rlcS|W.C. Imns_|3-132 Imdr_|3-132 Itys |W.C.
lgrl |137-190 1rldS|W.C. 1bmsA[W.C. lcomA|W.C. 2chtA|W.C. lglv_|123-316
1gac0]149-312  1mstA|W.C. lgrf |364-478  1msc |[W.C. lgrb |364-478  1mrk [W.C.
lgra |364-478  lgre_|364-478  1IckA|117-226 1grg |364-478  4grl [364-478 11tbA|W.C.
11kIA|W.C. 11cjA|W.C. IsesA[111-421  1sphA|W.C. 2hpr_|W.C. Itsw_|[W.C.
IsceA|W.C. IsetA|111-421  1synA|W.C. IserA|111-421 2tscA|W.C. Itsy [W.C.
1tsdA|W.C. 2bbgA[W.C. 1tsz |W.C. 1ssaA[W.C.
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Table A.7 The 2438 Protein Domains.

393 all-a domains

laca_|W.C.
lafb1[73-104
lafd1[73-104
lagm_|[W.C.
lanwA[W.C.
lanxA|W.C.
lapc_|W.C.
larp_|[W.C.
largA[W.C.
larrA|W.C.
larv_|[W.C.
larw_|W.C.
larx_|[W.C.
lary |[W.C.
lavhA|W.C.
lavr |[W.C.
laypA|W.C.
1babA[W.C.
1babB|W.C.
1bbbA|W.C.
1bbbB[W.C.
1bbl_|W.C.
Ibbn_|W.C.
Iben [W.C.
Ibgd_|[W.C.
1bib_[2-63
Iboc_|[W.C.
Ibod [W.C.
Ibpd_|W.C.
1bpq [W.C.
Ibvd_|W.C.
1cblA|W.C.
1cbIB[W.C.
lcbmA|W.C.
1cbmB|W.C.
lcca [W.C.
lecb [W.C.
lcce |W.C.
lceg |W.C.
lcch |[W.C.
leep |[W.C.
ledlA_|W.C.

ledmA_|W.C.

ledn [W.C.
lceh |W.C.
lcfe [W.C.

lepe |W.C.
lepf [W.C.
lepg [W.C.
lercA|W.C.
lerg [W.C.
lerh |W.C.
leri [W.C.
ley |W.C.
lesgA|W.C.
lesi |[W.C.
lesr [W.C.
less |W.C.
lesu |W.C.
lesx |W.C.
lctaA|W.C.
1ctdA|W.C.
letr |W.C.
lety [W.C.
letz [W.C.
lexa |W.C.
leyf [W.C.
leyj [W.C.
leyl [W.C.
Idcc |W.C.
ldog [W.C.
1dprA|3-64
1dprA|65-136
ldvh_[W.C.
ldxtA_|[W.C.
1dxtB|W.C.
1dxuA|W.C.
1dxuB|W.C.
1dxvA[W.C.
1dxvB|W.C.
lecd |[W.C.
lecn |[W.C.
leco |W.C.
leni [W.C.
lenj |W.C.
lenk [W.C.
lerc |W.C.
lesp |W.C.
1fes |[W.C.
1fhb_[W.C.
1fipA|W.C.
1fw4_[W.C.

1hbbB|W.C.
1hbhA|W.C.
1hbhB[W.C.
1hbsA|W.C.
1hbsB|W.C.
lhel_[W.C.
1hce3_|5-398
lhed4_[W.C.
lhe5_|[W.C.
1hc6_|5-398
lhey_[W.C.
1hdbA|W.C.
1hdbB|W.C.
1hgaA|W.C.
lhgaB|W.C.
1hgbA|W.C.
1hgbB|W.C.
lhgcA|W.C.
lhgeB|W.C.
lhgu_|W.C.
1hhoA|W.C.
1hhoB|W.C.
1hij_|[W.C.
lhik_[W.C.
1hkt [W.C.
1hlm_|W.C.
1hmdA|W.C.
lhme |W.C.
1hmf |[W.C.
1hmoA|W.C.
1hnbA|85-217
1hncA|W.C.
lhns |W.C.
lhrm_ [W.C.
lhsm_|W.C.
lhsn_|W.C.
lhsy |W.C.
lThuw_|W.C.
lhve_[W.C.
1hvf [W.C.
lhvg |W.C.
lhyt [156-316
lifd_[W.C.
lifi_[W.C.
lisbA|1-82
liscA|1-82

Imbi_[W.C.
Imbj_|W.C.
Imbk [W.C.
Imbo_|W.C.
Imcy [W.C.
Imgn_|W.C.
Imlf [W.C.

Imlg [W.C.
Imlh_[W.C.
Imlj_[W.C.

Imlk [W.C.
Imll_[W.C.

Imlm_|W.C.
Imln_|[W.C.
Imlo_|[W.C.
Imlq |[W.C.
Imlr |W.C.

Imlu_|[W.C.
Imnh |W.C.
ImnjA|W.C.

ImnkA[W.C.

Imoa_|W.C.
Imob_|W.C.
Imoc_|W.C.
ImrrA|W.C.
ImsdA|1-83
Imti_|W.C.

Imtj_[W.C.

Imtk [W.C.
Imyf [W.C.

ImyhA[W.C.

ImyiA|W.C.
ImyjA|W.C.

ImykA[W.C.

1mylA[W.C.

Imym_|[W.C.

Iner |W.C.

Inhm |W.C.
Inhn_[W.C.
InihA|W.C.
InihB[W.C.

Inol |W.C.

Inoo |W.C.
lolhA|W.C.
lomd |W.C.
loxy |1-379

Ipra_|W.C.
1prhA|74-586
Ipru_|W.C.
Iprv_[W.C.
1pvaA|W.C.
1r36_[W.C.
Irap |[W.C.
Iraq |[W.C.
Ircc |W.C.
Irce |W.C.
Ircg [W.C.
Irci_ [W.C.
Ires |W.C.
Iret |W.C.
IrnrA|W.C.
Irpo_|W.C.
IrprA[W.C.
IsacA|W.C.
IsafA|W.C.
IsagA|W.C.
1sahA[W.C.
1saiA|W.C.
1sajA|W.C.
IsalA|W.C.
Isan_|W.C.
IsctA|W.C.
IsesA[W.C.
IsetA|W.C.
Ispe [W.C.
Iswm_|W.C.
Itag |W.C.
1thbA|W.C.
1thbB|W.C.
1thl_|[W.C.
I1tlpE|156-316
1tndA|W.C.
Itnp |[W.C.
Itnq |[W.C.
Itnt |W.C.
Itnw_|W.C.
Itnx_|[W.C.
1tef [W.C.
1trlA|W.C.
1tyaE[228-319
1tybE[228-319
Ityc [W.C.

2dhbA[W.C.
2dhbB[W.C.
2fal [W.C.
2fam_|W.C.
2frc |W.C.
2glrA[79-209
2hbdA[W.C.
2hbdB[W.C.
2hbeA[W.C.
2hbeB[W.C.
2hbfA|W.C.
2hbfB|W.C.
2hcoA[W.C.
2hcoB[W.C.
2hhdA[W.C.
2hhdB[W.C.
2hmqA[W.C.
2hoa |W.C.
2ifn_|[W.C.
2int_|W.C.
21h2_|W.C.
21h6_|W.C.
21h7_|W.C.
2mgb_ [W.C.
2mge_ [W.C.
2mgd [W.C.
2mge |W.C.
2mgf |[W.C.
2mgg |W.C.
2mgh [W.C.
2mgi |[W.C.
2mgj [W.C.
2mgk [W.C.
2mgl |[W.C.
2mgm_|W.C.
2mml_|W.C.
2mya_[W.C.
2myb |W.C.
2myd |W.C.
2mye |[W.C.
2pac_|W.C.
2pas_|W.C.
2pcbA[W.C.
2pcbBW.C.
2pccA|W.C.
2pceB|W.C.
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Ichh [W.C. 1gclA|W.C. liti_[W.C. IpesA|W.C. ItydE_|W.C. 2pde |[W.C.
Ichi |W.C. lgemA|W.C. litm_[W.C. 1petA|W.C. Iwas_|[W.C. 2phiA|W.C.
Ichj [W.C. lgdd |W.C. 1leb |W.C. Ipgn_|W.C. IwatA|W.C. 2spl_[W.C.
Icie |[W.C. lgdi |W.C. 11gaA|W.C. 1pgo_|177-473 lycaA|W.C. 2spm_|W.C.
Leif [W.C. lgdj_[W.C. 11h3_|W.C. Ipgp |177-473  1ycbA|W.C. 2spn_[W.C.
leig [W.C. 1gdk [W.C. 11h5_|W.C. 1pgq [W.C. lyea |[W.C. 2spo_|W.C.
lcih_ [W.C. lgdl_[W.C. 11hs_[W.C. Ipha |W.C. lyeb_|[W.C. 2sttA[W.C.
leib_|[W.C. lgfi_|61-181 1lih_|[W.C. Iphb_|[W.C. lyma_[W.C. 3fisA|W.C.
lelm_[W.C. lgil |61-181 1InaE|156-316 Iphd_|[W.C. lymc_[W.C. 3gly [W.C.
lemcA[W.C. 1glpA[79-209 1InbE_|W.C. Iphe |W.C. lytc_|[W.C. 3hsf |[W.C.
lemf [W.C. lgne [W.C. lincE_|[W.C. Iphf [W.C. 2bbmA|W.C. 3inkC|W.C.
lemg |W.C. lgne |80-232 1IndE_|W.C. Iphg_[W.C. 2bbnA|W.C. 2mdeA|242-395
lemp_|W.C. lgrl |6-136 llneE_|156-316  1pir_|[W.C. 2bca_|W.C. 3mdsA|W.C.
lemq [W.C. 1gsdA|W.C. 1InfE_[W.C. 1pis_|[W.C. 2bcb_|W.C. 3pat_|[W.C.
lemt [W.C. 1gsfA|81-222 1lynA_[W.C. 1pmbA|W.C. 2bmhA[W.C. 4cpv_|[W.C.
lemu_ |[W.C. lgtb [W.C. Imbc_|W.C. 1pobA|W.C. 2bpp_[W.C. 4mbn_[W.C.
lemyA|W.C. 1guhA|W.C. Imbd_|W.C. 1pod |W.C. 2cep_|W.C. 155¢ |[W.C.
lemyB|W.C. 1hbaA|W.C. Imbf |W.C. 1poeA|W.C. 2cmm_|[W.C.
1copD|W.C. 1hbaB|W.C. Imbg_ |[W.C. 1pog_ |W.C. 2cxbA|W.C.
lepd [W.C. 1hbbA|W.C. Imbh |W.C. Ipou |W.C. 2cyk [W.C.

704 all- domains
laaj |[W.C. 1cpiA[W.C. 1gmcA|W.C. 1kreB[W.C. Iplb_|[W.C. 1vibA[W.C.
laan_|[W.C. lepm |W.C. I1gmdA|W.C. 1krcC[2-129 Ipnc |W.C. Ixnc [W.C.
laagA|W.C. lcra |W.C. Igmh_ |[W.C. 1krt |W.C. Ipnd |W.C. IxypA|W.C.
labiL|W.C. lerb [W.C. 1gog |1-150 llac [W.C. Ipnf |1-140 lyda |[W.C.
labq [W.C. lerm [W.C. 1gog |151-537 llec [W.C. Ipng_|5-140 lydb |W.C.
lacbE|W.C. lesq |W.C. 1gog |538-639 1lemA[W.C. 1pnj_|W.C. lyde |[W.C.
ladbA|1-174 levb [W.C. Igoh |1-150 1lenA|W.C. 1ppbL|W.C. lydd_|[W.C.
ladcA|1-174 leve [W.C. lgoh |151-537  11gbA|W.C. 1ppgE[W.C. lyhaA[W.C.
ladf |1-174 levd [W.C. lgoh |538-639  llic [W.C. 1pphE[W.C. lyhb |[W.C.
ladg |1-174 leve [W.C. 1hagE[W.C. 1lid_[W.C. 1ppkE[W.C. 1ystH|36-260
ladl [W.C. levf [W.C. 1haiL|W.C. llie [W.C. 1pplE[W.C. 2azaA[W.C.
lafcA|W.C. levh [W.C. lhapL|W.C. 11if [W.C. 1prlC|W.C. 2bat [W.C.
laizA|W.C. lewaA|W.C. lhbp [W.C. 1loaA|W.C. IprmC|W.C. 2bth_|W.C.
lakl [247-470 lcwbA[W.C. 1hbtL|W.C. 11obA[W.C. Iprs1[W.C. 2cab_|[W.C.
lalb_|[W.C. lewcA[W.C. 1hbvA|W.C. llocA[W.C. 1psaA|W.C. 2cbb |W.C.
lapnA|W.C. lexe |383-495 lhcl [399-653 1lodA|W.C. Ipse [W.C. 2cbe |W.C.
laptE|W.C. lexe 1496-581 1hc3 [399-653 11ofA|W.C. Ipsn_|[W.C. 2cbd [W.C.
lapuE[W.C. lcxe |582-686  1hc4 [399-653 1logA|W.C. 1pssH[36-248  2cbe [W.C.
lapvE|W.C. lexf |582-686 1he5_|399-653 11paB|337-449 1pstH[36-248  2cgaA|W.C.
lapwE[W.C. lexf |383-495 1hc6_|399-653 11taD|W.C. 1ptoB|88-197  2cha |[W.C.
larc [W.C. lexf |496-581 lhca |W.C. 11tbD|W.C. IptoD|W.C. 2chbD|W.C.
lasoA|1-129 lcxg |383-495  lhed [W.C. 11tgD|W.C. IptoF|W.C. 2cna_|[W.C.
laspAll1-129 lexg [582-686  lhcy |399-653 11ttD|W.C. IptsA|W.C. 2ctvA|W.C.
lasqA|1-129 lexh [383-495  1hdtL|W.C. 1lyaA|W.C. 1pza |[W.C. lexg |496-581
lavdA|W.C. lcxh_|496-581  1hdxA|1-174 ImacA|W.C. Ipzb_|W.C. 2dblL|1-107
laveA|W.C. lcxh |582-686  1hdyA|l-174 Imaj_|[W.C. Ipzc_[W.C. 2dblL|108-211
lazbA|W.C. lexi |383-495 1hdzA|1-174 Imak [W.C. 1qwfA|W.C. 2eipA|W.C.
lazm |[W.C. lexi |496-581 lhea |W.C. ImcbA|1-111 1r091|W.C. 2enb |[W.C.
laznA|W.C. lexi |582-686 lhed |W.C. ImcbA|112-216  1ray |W.C. 2erOE|W.C.
lazu |W.C. lcyhA|W.C. 1hefE|W.C. ImecA|l-111 Iraz_|W.C. 2er6E|W.C.
Ibas [W.C. leyw |[W.C. lhegE|W.C. ImccA|112-216  1rinA|W.C. 2er7E|W.C.
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1bbrL|W.C. lezm [W.C. lhgdA|W.C. ImcfA|l-111 IrlpCIW.C. 2er9E[W.C.
Ibbs_|W.C. 1dbbL|1-107 lhgeA|W.C. ImcfA|112-216  1rlqC|W.C. 2gn5_[W.C.
Ibed_[W.C. 1dbbL|108-211  1hgfA|W.C. ImchA|l-111 Ime [W.C. 2gvaA[W.C.
1bcmA|[481-560 1dbjL|1-107 lhggA|W.C. ImchA|112-216  1rucl|W.C. 2gvbA|W.C.
Ibex_|W.C. 1dbjL|108-211 1hghA|W.C. ImciA|l-111 Irud1|W.C. 2hmb_|W.C.
1bfb_[W.C. 1dbkL|1-107 1hgjA|W.C. ImciA|112-216  1ruel|W.C. 2hntL|W.C.
Ibfc_[W.C. 1dbkL|108-211  1hhgA|182-275  1mcjA|l-111 Irufl|W.C. 2hpeA[W.C.
Ibfg [W.C. 1dbmL|1-107 1hhhA|182-275  1mcjA[112-216  lrugl|W.C. 2hpfA|W.C.
1bib_[271-317 1dbmL|108-211 1hhiA|182-275  ImckA|l-111 Iruh1|W.C. 2hpqL|W.C.
Ibic_|W.C. ldca_|W.C. 1hhjA[182-275  1mckA|112-216  1ruil|W.C. 2hsp_[W.C.
1bilA|W.C. ldcb_|[W.C. 1hhkA|182-275  ImclA|1-111 Irza_|[W.C. 2hwbl|W.C.
1bimA|W.C. 1ldmyA|W.C. lhhp |W.C. ImclA|112-216  1rzb_|[W.C. 2hwel|W.C.
1bIbA|W.C. 1dwbL|W.C. 1hib_|W.C. ImenA|l-111 Irze_|W.C. 2hwd1[W.C.
1bmaA|W.C. 1dwcL|W.C. 1hihA|W.C. ImcnAl112-216  1rzd |W.C. 2hwel|W.C.
lbra_|[W.C. 1dwdL|W.C. 1hiiA|W.C. ImcqA|l-111 Irze |W.C. 2hwfl|W.C.
1brcE[W.C. IdweL|W.C. 1himL|1-108 ImcqA|l112-216  1sbgA[W.C. 2ifb_|W.C.
1brp_|[W.C. leas [W.C. 1himL|109-211  ImecrA|l-111 Iscr [W.C. 2iffL|1-106
lbrq [W.C. leat [W.C. 1hinL|1-108 ImerA|112-216  1sdaB[W.C. 2iffL|107-212
1btb_[W.C. leau |[W.C. 1hinL|109-211 ImcsA|l-111 IsdyA|W.C. 2ig2L|1-109
IbtwA|W.C. leedP|W.C. 1hivA|W.C. ImesA|112-216  1sge |[W.C. 2ig2L|110-214
1btxA|W.C. lelaA|W.C. 1hldA|1-174 ImdaA|W.C. 1sgqE|W.C. 2imn_|W.C.
Ibty [W.C. lelbA[W.C. 1hItL|W.C. ImdaH[W.C. 1sgrE|W.C. 2jew_|W.C.
1btzA|W.C. lelcA|W.C. Ihmr [W.C. ImdtA381-535  1sip [W.C. 2kaiA|W.C.
Ibw4 |W.C. leldE[W.C. Ihmt [W.C. Imecl|W.C. IslaA|W.C. 2lalA|W.C.
byh [W.C. lelf [W.C. 1hneE[W.C. ImfeL[1-111 1sIbA[W.C. 2megl|1-111
1bzm_|W.C. lena |[W.C. lhosA|W.C. ImfcL|112-212  1slcA|W.C. 2mcgl|112-216
Ica3_[W.C. lenc_[W.C. 1hpcA|W.C. ImfdL|1-111 1sldB|W.C. 2mhaA|182-270
lcah [W.C. lentE|W.C. 1hpsA|W.C. ImfdL|112-212  1sleB|W.C. 2mib_[W.C.
lcai [W.C. lenxA[W.C. 1hpvA|W.C. ImfeL|1-111 IsIfB[W.C. 2mipA[W.C.
lcaj [W.C. lepaA|W.C. 1hpxA|W.C. Imfel|112-211  1slgB|W.C. 2nrd_|8-166
lcak [W.C. leplE|W.C. 1hril|W.C. ImikA|W.C. Isnm_|[W.C. 20xiA|l1-174
lcal [W.C. lepmE[W.C. 1hrtL|W.C. 1mlcA|1-108 1sosA|W.C. 2pabA|W.C.
lcam |W.C. lepoE|W.C. 1hrvl|W.C. ImlcA[109-214  1sreA|W.C. 2plvl|W.C.
lcan_ |[W.C. leppE|W.C. lhsgA|W.C. ImrcL|1-108 IsrfA|W.C. 2ptcE|W.C.
lcao [W.C. lepqE|W.C. 1hshA[W.C. ImrcL|109-211  1srgA|W.C. 2ptn_|W.C.
lcavA|W.C. leprE|W.C. 1hsiA|W.C. ImreL|1-108 IsthA[W.C. 2r041|W.C.
lcawA[W.C. leptA[W.C. 1htbA|1-174 ImreL|109-211  1sijA|W.C. 2r061|W.C.
lcaxA|W.C. lerb |W.C. 1htfA|W.C. ImrfL|1-108 Isrm_[W.C. 2r071|W.C.
lcay [W.C. lesa |W.C. 1htgA|W.C. ImrfL[109-211  1srp_[247-470  2rcrH|36-255
lcaz |[W.C. lesb |W.C. 1htID|W.C. Imua_ [W.C. Ista [W.C. 2ren_|W.C.
lcbg [W.C. letal|[W.C. lhug [W.C. IncbL|1-108 Istb [W.C. 2rm21|W.C.
lcbrA|W.C. letb1|W.C. lhuh_[W.C. IncbL|109-214  Istg [W.C. 2rmaA|W.C.
lees |[W.C. letrL|W.C. lhva [W.C. IncbN|W.C. Isth [W.C. 2rmbA|W.C.
leet [W.C. letsL|W.C. lhve [W.C. InccL|1-108 Istn_[W.C. 2rmul|W.C.
lecu |[W.C. lettL|W.C. 1hviA|W.C. InccL|109-214  1Istp |[W.C. 2rr11|W.C.
ledb [W.C. lexh [W.C. 1hvjA|W.C. InceN|W.C. IstrB|W.C. 2rs11|W.C.
ledh_|1-97 1faiL|1-108 1hvkA|W.C. IncdL|1-108 IsxaA[W.C. 2rs31|W.C.
lcdh |98-178 1fail|109-214 1hvrA|W.C. IncdL|109-211  1sxBA[W.C. 2rs51|W.C.
lcdoA|1-175 1fccA238-341 lhvsA[W.C. IncdN|W.C. Isyb |[W.C. 2sam_|W.C.
legiE[W.C. Ifel [W.C. liecm |W.C. Incg [W.C. Isyc [W.C. 2sim_|[W.C.
1cgjEW.C. Ifem_ [W.C. licn_|W.C. InchA|W.C. Isyd |[W.C. 2sns_|[W.C.
legsL|1-112 Ifen_[W.C. lidbA|W.C. IncoA[W.C. Isyf [W.C. 2snwA([W.C.
legsL|113-219 1fga |W.C. 1ifhL|1-108 InesE[W.C. Isyg |[W.C. 2sob_|W.C.
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legt |580-684 1fmd1|W.C. 1ifthL|109-211 1niaA|8-166 Itgb_|W.C. 2tbs_[W.C.
legt [383-494 Ifnc_[19-154 ligjA[1-107 1nibA|[8-166 Itge_|[W.C. 2tga_[W.C.
legt_|495-579 1fnd_|19-154 ligjA[108-211 Inic_|8-166 Itgn_|W.C. 2tgd_[W.C.
legu |383-494 Ifnf |1142-123  ligp |[W.C. Inid_[8-166 1thaA|W.C. 2tgpZ|W.C.
legu_|495-579 1fod1|W.C. lihtL|W.C. Inie |8-166 1thcA|W.C. 2trm_[W.C.
legu_|580-684 1fpcL|W.C. LiluA[W.C. InmaL|W.C. 1thrL|W.C. 2tsaA|W.C.
legv_|383-495 1frn_|19-154 linc_|[W.C. InmaN|W.C. 1thsL|W.C. 2tsbA[W.C.
legv_|496-581 1fveA|1-108 lineL|2-109 Inn2_|W.C. Ithu_|W.C. 2tunA[W.C.
legv_|582-686 1fveA|109-214  1lineL|110-212 Inna |W.C. Ithv_|W.C. 2vaaA|182-274
legw_|383-495 1gbaA|W.C. linv_|[W.C. Inol_|380-628 1tld_|[W.C. 3app_[W.C.
legw_|496-581 1gbbA|W.C. linw_|W.C. InmL|W.C. ItimA[W.C. 3bjIA|W.C.
legw_|582-686 1gbcA|W.C. linx_|W.C. InroL|W.C. ItmbL|W.C. 3cysA|W.C.
legy [383-495 1gbfA|W.C. liny |W.C. InrqL|W.C. ItmcB|W.C. 3er3E|W.C.
legy 1496-581 1gbhA|W.C. lirp_ [W.C. InrrL|W.C. Itmf1[W.C. 3er5E[W.C.
legy |582-686 1gbiA|W.C. livb_[W.C. InrsL|W.C. ItmtL|W.C. 3hatL|W.C.
Ichg [W.C. 1gbjA|W.C. live_|[W.C. InsbA|W.C. ItmuL|W.C. 3hudA|1-174
1choE[W.C. 1gbkA|W.C. livd_[W.C. InsdA|W.C. 1tnfA|W.C. 3ptb_[W.C.
1chgD|W.C. 1gblA|W.C. live |W.C. Intp_|[W.C. Itng |[W.C. 4ape |W.C.
lcil_|W.C. 1gbmA|W.C. livf |W.C. InzrA|W.C. Itnh_|[W.C. 4azuA[W.C.
lein_|[W.C. lged [W.C. livg |W.C. lopbA|W.C. Itni_[W.C. 4erlE|W.C.
1ckbA[W.C. lges |1-85 livpA|W.C. loxy [380-627  1tnj [W.C. 4htcL|W.C.
lenlA|W.C. 1gfe |W.C. livqA|W.C. 1p01AW.C. Itnk |[W.C. 4pep_|W.C.
lenc |W.C. 1gfd |W.C. 1jim_|W.C. 1p02A|W.C. Itnl |W.C. 4rcrH|36-248
lcneA|11-124 1ggeL|1-107 lkaa [W.C. 1p03AW.C. Itnn_|W.C. Scac_|W.C.
lenf |11-124 lggcL|108-211  1kab |[W.C. 1p04A|W.C. ItpaE[W.C. 5chaA|W.C.
leng [W.C. 1ggil|1-107 lkda [W.C. 1p05SAW.C. Itpo_ |[W.C. ScnaA|W.C.
lenh [W.C. 1ggil |108-211 1kdb |[W.C. 1p06A|W.C. Itpp_|W.C. Ser2E[W.C.
leni [W.C. 1ghaE[W.C. lkde [W.C. 1p09A|W.C. Itps [W.C. 9lprA|W.C.
lenj [W.C. 1ghbE[W.C. 1knoA|1-108 1p10A|W.C. 1trmA|W.C. 12ca [W.C.
lenk [W.C. 1glbF|W.C. 1knoA[109-214  Ipl1EW.C. 1ttbA|W.C. 31bi [W.C.
lenw |W.C. 1glcF|W.C. 1kraB|W.C. 1p12E|W.C. 1ttf [W.C.
leny [W.C. 1gldF|W.C. 1kraCJ2-129 1pivl|W.C. Ittg [W.C.
1cobA[W.C. 1gleF|W.C. 1krbB|W.C. Ipks |[W.C. Ityn [W.C.
lconA|W.C. Iglh [W.C. 1krbC[2-129 Ipkt [W.C. 1tyrA|W.C.

608 o+p domains
laarA|W.C. lglv |123-316 1164 _|W.C. Imri_|[W.C. Irsm_[W.C. AltyA|W.C.
lacbI|W.C. 1gmqA[W.C. 1165 _|W.C. Imrk [W.C. IrsnA|W.C. 4mdhA|155-333
lacmB|8-100 1gmrA|W.C. 1166_|W.C. Imsc_|W.C. Irtb_|W.C. 51dh_|163-331
lacc [W.C. lgra |364-478 1167 _[W.C. ImsdA|84-198 IrtnA[W.C. 6fdr [W.C.
lafb1|105-221 lgrb_[364-478  1168_|W.C. ImsgA|W.C. 1rusA[3-137 6ldh_|161-329
lafd1|105-221 lgre |364-478 1169_[W.C. ImshA|W.C. Isbnl|W.C. olyt [W.C.
laha |W.C. lgrf |364-478 1170_|W.C. ImstA|W.C. IsceA|W.C. 8atcB|8-100
lahb [W.C. lgrg [364-478  1172_|[W.C. IndaA[358-484  1sesA|111-421 9ldb_|163-331
lahc |[W.C. lgrl [137-190 1173 _|W.C. Indc [W.C. IsetA|111-421  9pap |W.C.
lakl_|1-239 lhesB[W.C. 1174_|W.C. Indk_|[W.C. IshbA|W.C. 1021_|W.C.
latnD|W.C. 1hctB|W.C. 1175_|W.C. IndIA|W.C. IsphA|W.C. 1031_|W.C.
laybA[W.C. lhdn_[W.C. 1176_|W.C. IndpA[W.C. IsprA|W.C. 1041A|W.C.
laycA|W.C. lhel |W.C. 1177_|W.C. Inel [1-141 IspsA[W.C. 1071 |W.C.
layd [W.C. lhem_ [W.C. 1179 _|W.C. Inhb_|W.C. IsrnAW.C. 1081 |W.C.
1baoA|W.C. lhen_|W.C. 1180_|W.C. Inhp [322-447  1srp_|4-239 1091_[W.C.
1bdmA|155-332 lheo [W.C. 1181_|W.C. Inhq [322-447  1ssaA[W.C. 1101_[W.C.
1bgsA|W.C. lhep_|W.C. 1182_|W.C. Inhr |322-447 1ssbA|W.C. 1111_[W.C.
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1bib_|64-270 lheq [W.C. 1183_|W.C. Inhs_|322-447  1sscA[W.C. 1121_[W.C.
I1bmsA[W.C. lher_[W.C. 1184_|W.C. InlkR|W.C. Isvr_[W.C. 1141_[W.C.
1bneA|W.C. lhew_|W.C. 1185_|W.C. InskR|W.C. 1synA|W.C. 1151_[W.C.
1bnfA|W.C. lhhgA|1-181 1186_|W.C. Insp_|W.C. Itay|W.C. 1181_[W.C.
1bngA|W.C. 1hhhA|1-181 1187_|W.C. IpafA|W.C. 1tbeA|W.C. 1191_[W.C.
1bniA|W.C. 1hhiA|1-181 1188_[W.C. IpagAW.C. ItbpAj61-155 1201 |W.C.
1bnjA|W.C. 1hhjA|1-181 1189_|W.C. Ipbb_|174-275  1tby_|[W.C. 1221_[W.C.
Ibnr_|W.C. 1hhkA|1-181 1190_[W.C. Ipbc |174-275  1tes_|[W.C. 1231_|W.C.
1bnsA|W.C. lhnl_[W.C. 1191_[W.C. Ipbd_[174-275 1ty |[W.C. 1251_[W.C.
1brgA|W.C. 1htdA|W.C. 1193_|W.C. 1pbf |174-275 Itda_|[W.C. 1261_|W.C.
1brhA|W.C. 1htIA|W.C. 1194_|W.C. Ipdh_|174-275  1tdb_|[W.C. 1271_[W.C.
1briA|W.C. ThunA|W.C. 1196_|W.C. Ipdy_|1-139 Itde_|[W.C. 1281_|[W.C.
1brjA|W.C. lhymA|W.C. 1197A|W.C. Ipe6_[W.C. Itdy_|[W.C. 1291_|W.C.
1brkA|W.C. lhyt_|1-155 1199_|W.C. Ipth_[W.C. Itew_[W.C. 1311_|[W.C.
1brsA[W.C. liaa_|[W.C. 1laa_|W.C. IpfmA[W.C. 1thl_[1-155 1321_|[W.C.
1bsaA|W.C. liab_[W.C. llca_|W.C. IphAW.C. Ithy |[W.C. 1331_|[W.C.
1bsbA|W.C. liac_|[W.C. llcb_[W.C. Ipgb_[W.C. Itla_|[W.C. 1341_|W.C.
1bsdA|W.C. liad_[W.C. llce_|[W.C. Ipgx_[W.C. ItlpE[1-155 1351_|[W.C.
1bseA[W.C. liae_|[W.C. 1cjA[W.C. 1pipA|W.C. Itme_[W.C. 1371IA|W.C.
lcge |W.C. likl_|[W.C. 11coA|10-97 Iplr_|1-126 1trqA|W.C. 1381_|[W.C.
lcgfA|W.C. likm_|W.C. 11db_[163-331 IpnlA|W.C. ItsdA[W.C. 1391_|W.C.
lcglA|W.C. 1isbA|83-192 11dcA[10-97 IpnmA[W.C. Itsw_|[W.C. 1401_|W.C.
1cigA|W.C. liscA[83-192 11hh_|[W.C. 1popA[W.C. Itsx_|[W.C. 1411_|W.C.
IcirA|W.C. lius_|174-275 11hi_|[W.C. Ippd_[W.C. Itsy_|[W.C. 1421_|W.C.
Icoal[W.C. liut_|174-275 11hj_|W.C. Ippp_[W.C. Itsz_|W.C. 1431_|W.C.
lcomA[W.C. liuu_|174-275 11hl_|W.C. IptoA|W.C. 1typA[359-487 1441 |[W.C.
lcoy |319-450 lkraA|W.C. 1lhm_|W.C. 1ptoB|4-87 Itys_|[W.C. 1451_|[W.C.
lepjA|W.C. 1krbA|W.C. 1KIA|W.C. Ipxa_[174-275  1tytA|359-487 1471_[W.C.
lcsbA[W.C. 1krcA|W.C. Ilma_[W.C. Ipxb_|174-275  lubq_ [W.C. 148IE|W.C.
IcteA|W.C. 1100_|W.C. Ilme_[W.C. Ipxc_[174-275  1lumsA[W.C. 1491_|W.C.
leyo [W.C. 1102_|W.C. Ilmn_|W.C. 1raaB|1-100 TumtA|W.C. 1501A|W.C.
leyu [W.C. 1103_|W.C. 1lmo_|W.C. 1rabB|1-100 1vibC|W.C. 1511_|[W.C.
1dktA|W.C. 1104_|W.C. 1lmp_[W.C. IracB|1-100 lvig_[W.C. 1521_|[W.C.
1dob_|174-275 1105_|W.C. llmt_[W.C. 1radB|1-100 Ixra_|1-101 1541_|W.C.
1dod_|174-275 1106_|W.C. 1InaE|1-155 IraeB|1-100 Ixrc_|1-101 1551 |[W.C.
ldoe |174-275 1107_|W.C. 1InbE|1-155 1rafB|1-100 1xxbA[W.C. 1561_|[W.C.
ldoy_ |[W.C. 1108_|W.C. 1IncE|1-155 1rahB|1-100 1xxcA[W.C. 1571_|W.C.
ldtp_|[W.C. 1109_|W.C. 1IndE|1-155 1raiB|1-100 lyam_ |[W.C. 1581_|[W.C.
ldya |[W.C. 1110_|W.C. 11neE|1-155 Irar [W.C. lyan_|W.C. 1591 |W.C.
ldyb_[W.C. 111_|[W.C. 1InfE|1-155 Iras_[W.C. lyao_[W.C. 1601_|W.C.
ldyc_|W.C. 1112_|W.C. 11pfA[349-472 IrbaA|5-137 lyap_|W.C. 1611_|[W.C.
ldyd_|[W.C. 1113_|W.C. Ilra_|W.C. 1rbbA|W.C. lyaq W.C. 1621_|[W.C.
ldye [W.C. 1114 |W.C. 11sa_|W.C. Irbe |W.C. lypal|W.C. 1641 |W.C.
ldyf [W.C. 1116_|W.C. 11sb_|[W.C. Irbd_[W.C. lypbI|W.C. 1651_|[W.C.
ldyg |W.C. 117 _|W.C. l1sc_|W.C. Irbe |W.C. lypcl|W.C. 1661 |W.C.
le8l_|W.C. 1118_|W.C. 11sd_|[W.C. 1rbf |[W.C. 2aadA|W.C. 1671A|W.C.
lebgA|l-141 1119_|W.C. lse_|W.C. Irbg_[W.C. 2aae_|W.C. 1681A|W.C.
lebhA|1-141 1120_|W.C. 1sf [W.C. Irbw_|W.C. 2aas_|[W.C. 1691A|W.C.
legl |W.C. 1121 |W.C. 11sg_|[W.C. Irbx_|W.C. 2acg [W.C. 1701 |W.C.
legpA|W.C. 1122 |W.C. 1Ism_[W.C. Irca [W.C. 2atcB|1-100 1711 |W.C.
lels_|1-141 1123 _|W.C. lsn_|[W.C. Irck_[W.C. 2baa_|[W.C. 1721_|W.C.
lemd |146-312 1125 _|[W.C. sp_[W.C. Ircl_[W.C. 2bbgA[W.C. 1731_|[W.C.
lesp_|1-156 1126_|W.C. lsy_|[W.C. Irdil|W.C. 2chtA[W.C. 1741A|W.C.
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1fcbA|1-97 1127_|W.C. 11sz_|[W.C. 1rdj1W.C. 2ci2|W.C. 1751A|W.C.
1fccCIW.C. 1128_|W.C. 11taA|W.C. 1rdk1|W.C. 2fke |W.C. 1771_|W.C.
1fd2_|W.C. 1129_|[W.C. 11tbA|W.C. Irdl1[W.C. 2hpr_[W.C. 1781_|[W.C.
1fda_|W.C. 1130_|W.C. 11tgA|W.C. Irdm1|W.C. 2iffY|W.C. 1791_|W.C.
1fdb_|W.C. 1131_|[W.C. 11thR|150-319 Irdnl|W.C. 2igg |[W.C. 180IA|W.C.
1fdd_|W.C. 1132_|W.C. 1ttA|W.C. Irdol|W.C. 2igh [W.C. 1811_[W.C.
1fdn_|W.C. 1133_|W.C. 11vl_|336-458 Irds_|[W.C. 2178_|W.C. 1821_[W.C.
Ifer_[W.C. 1134_|W.C. Ilyd_[W.C. Irga |[W.C. 21z2_|[W.C. 1831_[W.C.
1fkb_|[W.C. 1135_|[W.C. Ilye |[W.C. IrgcA|W.C. 2lzt_|W.C. 1841_[W.C.
1fkf [W.C. 1136_|W.C. 1yf [W.C. Irgl_[W.C. 2mhaA|l-181 1851_[W.C.
1fkg [W.C. 1137_|W.C. Ilyh_[W.C. Irha_[W.C. 2nckR|W.C. 1861_[W.C.
1fkh_[W.C. 1138_|W.C. Ilyi [W.C. Irhb_|[W.C. 2phh_|174-275 1871_|W.C.
1fkiA|W.C. 1139_|[W.C. 1lyj_|[W.C. IrlcL|22-147 2pleA[W.C. 1881_[W.C.
1kj_[W.C. 1140_|W.C. 1lysA[W.C. IrleS|W.C. 2pnb_|W.C. 1901_|W.C.
1fkk_|W.C. 1142_|W.C. 11z1_[W.C. 1rldAR2-147  2rlnE[W.C. 1911_|W.C.
1fkl_|W.C. 1143_|W.C. 11z4_[W.C. IrldS|W.C. 2rns_|W.C. 1921_|W.C.
1fks_|W.C. 1144_|W.C. llza |[W.C. Irls_|W.C. 2rusA2-137 1941_|W.C.
1fkt_[W.C. 1145_|[W.C. 11zb_[W.C. Im4_[W.C. 2sarA[W.C. 1951_|[W.C.
Ifmp_[W.C. 1146_|W.C. llze [W.C. Irnc_[W.C. 2secl|W.C. 1961_|W.C.
1frh_|[W.C. 1147_|W.C. 11zd_[W.C. Irnd_[W.C. 2tcl_|W.C. 1971_|W.C.
1fri |W.C. 1148_|W.C. llzg_[W.C. ImlA[W.C. 2tdd_|W.C. 1981_|[W.C.
1frk [W.C. 1150_|W.C. 11zsA[W.C. IrmmE[W.C. 2tdm_|W.C. 1991_|W.C.
1frl |W.C. 1152_|W.C. llzy_[W.C. Irno_[W.C. 2tecl|W.C. 2001_|W.C.
1frm_ [W.C. 1154_|W.C. Imdr_|3-132 Irnq_[W.C. 2tscA[W.C. 2011A|W.C.
Ifrx_[W.C. 1155_|[W.C. ImdtA|1-187 Irnu_[W.C. 2vaaA|W.C. 2161A|W.C.
Ifut_[W.C. 1156_|W.C. Imit_[W.C. Imv_[W.C. 3ci2_|[W.C. 2171_|W.C.
1fxaA|W.C. 1157_|[W.C. ImlcE|W.C. Irob_[W.C. 3dni_|[W.C. 2211 [W.C.
1gacO|149-312 1158_|[W.C. ImmpA[W.C. Irpf [W.C. 3mdsA[93-203 2241 [W.C.
1gbl_[W.C. 1159 _|[W.C. Immr_[W.C. Irpg_[W.C. 3monA[W.C.
1gesA[336-450 1160_|W.C. Imns_[3-132 Irph_[W.C. 3m3_[W.C.
1getA|336-450 1161 |W.C. Imom_ |W.C. 1rcsA|9-147 3ssi [W.C.
1geuA[336-450 1162_|[W.C. Imrh_[W.C. IrscM[W.C. 4grl |364-478

509 o/B domains
laaw_|W.C. lcec |[W.C. 1ffa |[W.C. 1lap_|160-484 IraeA|1-150 lula [W.C.
laba_[W.C. Icen_|[W.C. 1ffo_|[W.C. llav_[W.C. IrafA|1-150 1vIzA|W.C.
labbA|W.C. Icey [W.C. Iffc_[W.C. llaw_[W.C. IrahA|1-150 1vruA|430-539
labf [W.C. legt |1-382 1ffd |W.C. 1lbs_|[W.C. 1raiA[1-150 lvse |W.C.
lace [W.C. legu [1-382 Iffe |W.C. 1bt [W.C. IrbaA|138-441  1vsf [W.C.
lacj_[W.C. legv_|1-382 Iflv_[W.C. llcf |1-334 Irbr [W.C. IwhsA[W.C.
lacl [W.C. legw |1-382 Ifnc |155-314 11coA[98-511 Irbs [W.C. IwsyA|W.C.
lacmA|1-150 legy |1-382 1fnd_|[155-314 11db_|15-162 Irbt_|W.C. 1wsyB|W.C.
ladbA|175-324 Ichn_|W.C. 1frn_|155-314 11dcA[98-511 Irbu_|W.C. Ixab_|W.C.
ladcA|175-324 Icia_|[W.C. 1fx1_[W.C. 11fh_|1-334 Irbv_[W.C. Ixad_[W.C.
ladf |175-324 lene [125-270  1gaeO|0-148 11fi_|1-334 Irda_|W.C. 1xib_|[W.C.
ladg [175-324 lenf [125-270 lgeg [W.C. 11gbC|W.C. Irdb_|W.C. Ixic [W.C.
lads [W.C. lcoy [4-318 lgdd [9-60 11paB|1-336 Irde |W.C. Ixid |[W.C.
lagp [W.C. leps |W.C. 1gesA|3-146 11pfA|1-158 Irhd |1-149 Ixie |W.C.
laheA|W.C. lepy [W.C. 1getA|3-146 1lpm_|[W.C. IrlcL|148-467  1xif |W.C.
lahfA|W.C. lerp [W.C. 1geuA|3-146 1lpn_|W.C. 1rldA|148-467  1xig [W.C.
lahgA|W.C. lerqg [W.C. 1gfi |33-60 1lpo |W.C. Imh_[W.C. Ixii_|[W.C.
lahxA[W.C. Ictu_[1-150 1gil_|34-60 lpp_|[W.C. Irpt [W.C. 1xij_|[W.C.
lahyA|W.C. lexe |W.C. 1glbGJ4-253 1lps_|[W.C. IrscA|148-475  1xlaA|W.C.
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laiaA|W.C. lexf [1-382 1glcGl4-253 11thR|7-149 1rthA[430-543  1xIcA|W.C.
1aibA|W.C. lexg |1-382 1gldGj4-253 11vl_|1-150 IrtiA[430-543  1xIdA|W.C.
laicA|W.C. lexh |1-382 1gleGl4-253 Imap_|W.C. IrtjA[430-543  1xleA|W.C.
lajaA|W.C. lexi |1-382 Iglg [W.C. Imaq_|[W.C. 1s01_[W.C. IxIfA|W.C.
lajcAW.C. leye [1-382 1glpA|1-78 ImdiA|W.C. 1s02_[W.C. IxIgA[W.C.
1ajdA|W.C. 1dbp_|W.C. lglv_|1-122 ImdjA[W.C. Isbc_[W.C. IxIhA|W.C.
lakaA|W.C. 1dbs_|W.C. lgne |1-79 ImdkA|W.C. Isbh_[W.C. IxliIA[W.C.
lakcA|W.C. 1ddrA|W.C. lgnp_|W.C. Imdp1|W.C. Isbi_|W.C. IxjA[W.C.
lalhA|W.C. 1ddsA|W.C. lgng |[W.C. Imdq_[W.C. 1sbnE[W.C. IxIkA|W.C.
laljA|W.C. ldgd_|[W.C. lgnr |[W.C. Imdr_|133-359  1sca_|[W.C. IxIIA|W.C.
lalkA|W.C. ldge_[W.C. 1goa_|W.C. Imns_|133-359  1scb_|W.C. IxyaA|W.C.
lama_|W.C. 1dhiA|W.C. lgoc_|W.C. Impc_|W.C. Iscd_[W.C. IxybA|W.C.
lami_[2-528 1dhjA|W.C. 1gpaA|W.C. Impd_|W.C. IscnE[W.C. IxycA[W.C.
lami_|529-754 1didA|W.C. 1gpy |W.C. 1ImssA|W.C. IselA|W.C. IxylA|W.C.
lamj [2-528 1dieA|W.C. lgra |18-165 IndaAj4-169 Ist2 [W.C. IxymA[W.C.
lamj_|529-754 1dirA|W.C. lgrb_|18-165 Inel_|142-436 Isto_|W.C. lymuA[W.C.
lamn_|W.C. 1dis_[W.C. 1grcA|W.C. Inga [4-188 Isub_|[W.C. lymv_|[W.C.
lamq_|W.C. 1diu_|W.C. lgre [18-165 Ingb |4-188 Isuc |W.C. 1ypiA|W.C.
lamr [W.C. 1dka [W.C. 1grf |18-165 Ingc [4-188 Isud |[W.C. 1yptA|W.C.
lams [W.C. 1dlr |W.C. lgrg [18-165 Ingd |4-188 Itag |27-56 2acq_|W.C.
laniA|W.C. 1dls_|[W.C. lgrl |191-375 Inge [4-188 ItarA|W.C. 2acr_|[W.C.
lanjA[W.C. 1dmb_|W.C. lgro |W.C. Ingf |3-188 ItasA|W.C. 2acu_|W.C.
lankA|W.C. 1dob |1-173 lgrp |W.C. Ingg [3-188 1tatA|W.C. 2ada_|W.C.
lapb_ [W.C. 1dod |1-173 lgrx |W.C. Ingi [4-188 1tcbA|W.C. 2anhA|W.C.
largA|W.C. 1doe |1-173 1gsdA2-80 Ingj [3-188 ItccA[W.C. 2bgt [W.C.
larhA|W.C. ldot |1-334 1gsfA[2-80 Inhp |1-119 1tdf [1-118 2che [W.C.
lariA|W.C. 1dpb_[W.C. Igtb [1-80 Inhq |1-119 1tdrA|W.C. 2ctc_[W.C.
lars [W.C. 1dpc [W.C. 1guhA[2-80 Inhr |1-119 1tho |[W.C. 2cut_|W.C.
lasa [W.C. 1dpd [W.C. 1gylA|W.C. Inhs_[1-119 1tkaA[3-337 2dhc [W.C.
lasb [W.C. ldrl_[W.C. 1hdxA|175-324  1nis_[2-528 1tkaA|535-680 2dhd [W.C.
lasc_|W.C. ldr2_|W.C. 1hdyA|175-324  1nis_|529-754 1tkbA[3-337 2dhe |W.C.
lasd [W.C. 1dr3_|[W.C. 1hdzA|175-324  1nit [2-528 1tkbA|535-680 2eda [W.C.
lasf [W.C. ldrd |[W.C. lhex [W.C. Init |529-754 1tkcA3-337 2edc [W.C.
lasg [W.C. 1dr5_|W.C. lhey [W.C. Innt |W.C. 1tkcA|535-680  2gIrA|1-78
laslA|W.C. ldr6_|W.C. 1hldAJ175-324  lolaA|W.C. 1tndA27-56 2hnp [W.C.
lasmA[W.C. 1dr7_[W.C. 1hmvA|430-554  lolcA[W.C. Itpb1|W.C. 2hsdA[W.C.
lasnA|W.C. 1draA[W.C. 1hnbA|1-84 lomp |W.C. Itpcl|W.C. 2lao_|W.C.
lasu_|W.C. 1drbA|W.C. lhncA|1-84 lorb_|1-149 1tpdA|W.C. 2nadA|1-147
lasv_|[W.C. 1drf [W.C. 1hniA|430-556  loya|W.C. Itpe [W.C. 2nadA|148-335
lasw_|W.C. 1drh_|W.C. lhorA[W.C. loyc [W.C. 1tpfA|W.C. 20xiA|175-324
latnA|0-146 ldgj_|W.C. 1hotA|W.C. Ipbb_|1-173 1tpuA|W.C. 2phh_|1-173
latr [2-188 ldrk [W.C. lhqaA|W.C. Ipbc [1-173 1tpvA|W.C. 2pke [W.C.
lats |2-188 1dsn_|W.C. 1hrhA|W.C. Ipbd_[1-173 1tpwA|W.C. 2pri_ |[W.C.
Ibap_|W.C. 1dvrA|W.C. 1htbA[175-324  1pbf |1-173 Itrb_|1-118 2prj_[W.C.
1bcmA|[257-480 1dyhA|W.C. lhvm_|W.C. 1pbp_|W.C. 1trdA|W.C. 2rusA|138-457
IberA|W.C. 1dyiA|W.C. lhvq [W.C. 1pdh_[1-173 Itrh |W.C. 2secE|W.C.
1besA|W.C. 1dyjA[W.C. lidd_[W.C. Ipdy_[140-433  1tri_|[W.C. 2ts1_[W.C.
1bdmA|0-154 leaa |W.C. lide |W.C. 1pekE[W.C. Itrs |[W.C. 2tecE|W.C.
1bgsE|W.C. leab |W.C. lidm |[W.C. Ipgn_|1-176 Itru |W.C. 2tir |W.C.
IblIE|1-159 leac |W.C. lika [W.C. Ipgo |1-176 Itrv_|W.C. 3drcA|W.C.
1blIE|160-484 lead_|W.C. likb_[W.C. Ipgp |1-176 Itrw_[W.C. 3hsc_|3-188
Ibpm_|1-159 leae [W.C. lipd_[W.C. Ipgq |1-176 1tsiA|W.C. 3hudA|175-324

Ibpm_|160-484  lebgA[142-436  lius [1-173 Iphh_|1-173 Itti [W.C. 3hvtA430-556
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Ibpn_|1-159 lebhA|142-436  liut |1-173 Iplj_[W.C. 1ty |W.C. 3sc2A|W.C.
Ibpn_|160-484 ledb [W.C. liuu |1-173 Ipll [W.C. 1ttpA|W.C. 4orl |18-165
1brsD|W.C. ledd [W.C. 1kraC|130-422 Ipnt [W.C. 1ttpB|W.C. 4mdhA|l1-154
Ibtb [W.C. lede |W.C. 1krbC|130-422  1poxA|9-182 1ttqA|W.C. 4921 |W.C.
Ibtc_|[W.C. lego [W.C. 1krcC|130-422 1poxA|183-365  1ttqB|W.C. Sabp_ [W.C.
1bvh_|W.C. legr |W.C. 11afE|W.C. Iptk [W.C. ItyaE|1-217 5ldh_|1-162
Ibya [W.C. lels_|142-436 1lagE|W.C. Ipxa |1-173 1tybE|1-217 6ldh_|1-160
Ibyc |W.C. lemd |1-145 11ahE|W.C. Ipxb_|1-173 Ityc [1-217 6q21AW.C.
lbyd [W.C. lenz |W.C. Ilam_|1-159 Ipxc |1-173 1tydE|1-217 8atcA|1-150
Iecbx |W.C. lesd [W.C. Ilam_|160-484  lraaA|l-150 ItypAJ1-169 9icd_|[W.C.
leddA|W.C. lese |[W.C. 1lanAJ1-159 IrabA|1-150 1tytA|1-169 91dbA|1-162
lede [W.C. letu [W.C. 11anA|160-484 IracA|1-150 ludg [W.C. 121p_|W.C.
1cdoA|176-324 1fcbA98-511 1lap [1-159 IradAl1-150 luky [W.C.

158 o domains
laalA|W.C. lcoe |[W.C. 1hfi_ |W.C. Inag [W.C. IradB|101-153  2crt |[W.C.
lacmB|101-153 lerf [W.C. lhic_[W.C. IncpC|W.C. IraeB|101-153  2cthA|W.C.
lagg |W.C. lern [W.C. 1higA|W.C. Ineh [W.C. 1rafB[101-153  2cwgA|1-52
laphA|W.C. Icti [W.C. 1hisA|W.C. Inrb |W.C. 1rahB|101-153  2cym_[W.C.
lare [W.C. levo [W.C. 1hitA|W.C. Inxb_|[W.C. 1raiB|101-153  2gda |W.C.
larf |W.C. lexn [W.C. 1hlsA|W.C. loav_[W.C. Irgd |W.C. 2hir |W.C.
latb |[W.C. lexo [W.C. 1hrf [W.C. loaw_|W.C. 1sgql|W.C. 2hiuA|W.C.
latd |[W.C. lden_ [W.C. ThrpA[W.C. lomb_|W.C. Isgrl|W.C. 2hpqP|W.C.
late [W.C. 1dmd |W.C. lhrq |W.C. lomt |[W.C. Ishi [W.C. 2kail|W.C.
1bbi_[W.C. ldme |[W.C. lhrr [W.C. lomu_|[W.C. Itch_ [W.C. 2let_ |[W.C.
1bonA|W.C. ldmf |[W.C. 1hrtl]W.C. Ipaa_|[W.C. Itcj [W.C. 2nbtA|W.C.
1bphA|W.C. 1dphA|W.C. ligl [W.C. Ipen_|1-44 Itck [W.C. 2pfl |36-65
1brcl|W.C. ledp [W.C. 1ihtI|W.C. Ipco_[1-44 Itep |W.C. 2ptcl|W.C.
1btgA|W.C. lehs |W.C. lim_|W.C. Ipcp |1-53 1tfg [W.C. 2spt_|1-65
1bti |[W.C. lepg [W.C. liva |W.C. 1pi2_|[W.C. Itmr |W.C. 2tciA|W.C.
lcad [W.C. leph [W.C. lizaA|W.C. Ipih_[W.C. Itpal|W.C. 2tgpIl|W.C.
lcbn [W.C. lepi |[W.C. 1izbA|W.C. 1pij [W.C. Itpm_[W.C. 2wgcA|1-52
leef [W.C. lepj [W.C. 1ldr_|[W.C. 1pit [W.C. Itpn_|W.C. 3cyr [W.C.
leem [W.C. lera [W.C. 1lpaAl|6-44 Ipk2 [W.C. Itur [W.C. 3mthA[W.C.
leen [W.C. letm [W.C. ImaeL|W.C. Ipkr |W.C. Itus [W.C. 4htcI|W.C.
ledq [W.C. letn |W.C. ImafL|W.C. 1pmkA|W.C. 1tylA|W.C. Spti_ |W.C.
ledr W.C. Ifan_[W.C. ImdaL|[W.C. IpmlIA|W.C. ItymA|W.C. 8atcB|101-153
leds [W.C. 1fra |[W.C. Imed |W.C. 1prhA[33-73 lvnb_[W.C. 9wgaA|l-52
lcebA[W.C. Ifsc [W.C. ImhiA|W.C. Iptr [W.C. lzrp [W.C.
legil|W.C. lgde [W.C. ImhjA|W.C. 1raaB|101-153  2abxA[W.C.
legl|W.C. lhee |[W.C. ImpjA|W.C. 1rabB|101-153  2atcB|101-152
Ichol|W.C. lhep [W.C. Imrt |W.C. IracB|101-153  2cco |W.C.

46 p domains
lantI|W.C. Ibpd [92-335 1fbfA|W.C. 1fprA|W.C. limeA|W.C. 2bpc_ |[W.C.
lapmE|W.C. Ibpe [92-335 1fbgA|W.C. lhar |W.C. limf |[W.C. 2cah |W.C.
latpE|W.C. 1ckjA|W.C. 1fbhA|W.C. 1hmvA|1-429 ImblA|W.C. 2glsA|W.C.
Iblc_ [W.C. lecmkE[W.C. 1fpbA|W.C. 1hniA|1-429 1pioA|W.C. 21gsA|W.C.
Iblh_|W.C. lctpE[W.C. 1fpdA|W.C. limaA|W.C. 1rthA[2-429 3hvtA2-429
Iblp [W.C. 1fbcA[W.C. 1fpeA|W.C. limbA|W.C. 1rtiA2-429 3mdeA|11-241
IbIsA[W.C. 1fbdA|W.C. 1fpfA|W.C. limcA|W.C. IrtjA2-429
1bpb [W.C. 1fbeA|W.C. 1fpgA|W.C. 1limdA|W.C. 1vruA|3-429

20 p domains
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lamb_|W.C. 1bhb_|W.C. Ibtt |[W.C. 1kb8 |[W.C. Ipak |[W.C. Itiv_|[W.C.
lamc_|W.C. 1btr |W.C. 1dtc |W.C. Inil |W.C. Ipao [W.C. Itos [W.C.
1bct [W.C. 1bts [W.C. Ignb |W.C. Inim_|W.C. Irpb_|W.C. Itvt |W.C.

1wfaA[W.C. 1xy2 [W.C.
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Table A.8 The 277 Protein Domains.

70 all-a domains

1hbiA|W.C. IsctA|W.C. lytc_|[W.C. lyea_|W.C. lyeb_|W.C. lese [W.C.
2pccB|W.C. 1thb |W.C. Icih |W.C. Icie [W.C. lesu [W.C. 1troA|W.C.
Lerj_|W.C. lesw_|[W.C. lesx_[W.C. Ichi_|W.C. leig [W.C. ScscsA|W.C.
lerh_[W.C. Iraq_[W.C. etz [W.C. Ichj_|[W.C. Lcif [W.C. 3wrp_|W.C.
lesv_[W.C. lerg |[W.C. Ichh_|[W.C. lrap_|[W.C. 1hddC|W.C. Iphb_|W.C.
1dprA|65-136 Itnt |W.C. 1bbl_|W.C. lerc |W.C. laca |[W.C. 1trrA|W.C.
IvasA|W.C. lenk [W.C. leni [W.C. 1lynA|W.C. lhme_|[W.C. 3fisA|W.C.
lhsm_|W.C. lgnc_[W.C. IrprA|W.C. 1rpo_|W.C. 1pou_[W.C. lgrl 16-136
ledn [W.C. 1bod |W.C. 1boc [W.C. larqA|W.C. 1mykA|W.C. 1fipA|W.C.
ImylA|W.C. 1bpd |W.C. lolhA|W.C. 1pesA[W.C. lhns_|[W.C. 1afb1|73-104
Itag_|57-177 4ts1A228-319  1tyc |228-319  1lgaA[W.C. loxy_|1-379 lesi_|[W.C.
Inol |1-379 1pgn [177-473  2utgA|W.C. 3gly [W.C.

61 all-B domains
ImdtA|381-535  lcgt |580-684 Icxe [582-686  laaj [W.C. ImdaA|W.C. lgog [151-537
lges |W.C. 1pnf |1-140 Ipng_|5-140 1gog |1-150 1tnfA|W.C. lazm_ |[W.C.
2tunA|W.C. 1thv_|[W.C. 1thu_|[W.C. 2ctvA|W.C. lapnA|W.C. 1kraC|2-129
2cna_|W.C. 1bib_[271-317 11taD|W.C. 1bfb [W.C. 1fga [W.C. lcgt [383-494
2bth_|W.C. Ibfg [W.C. Ibas_|[W.C. 1fnd |19-154 1frn_[19-154 1bzm|W.C.
larc_[W.C. 1bcmAJ481-560 1hpxA[W.C. lhivA|W.C. 1hshA|W.C. Icxe [383-495
1cpiA|W.C. ThvrA|W.C. lhve [W.C. 4phvA|W.C. 1hefE|W.C. lhuh_|W.C.
laagA|W.C. 1ThvsA|W.C. 1gtsA|339-547  1hbp_ |W.C. 1fen_|W.C. lhug |W.C.
lerb |[W.C. 1slfB [W.C. IsrgA|W.C. IstjA[W.C. IptsA|W.C. lakl |247-470
1sleB|W.C. lcyhA|W.C. ImikA|W.C. 3cysA[W.C. 2sim_|W.C. lerm |W.C.
1hpcS|W.C.

81 a+P domains
legt |1-382 lcxe [1-382 Texf [1-382 legv [1-382 legw |1-382 2bgt |[W.C.
legy |1-382 legx |1-382 lcgu |1-382 Ibtb [W.C. 1brsD|W.C. Ictu |1-150
1bgsE[W.C. 1fnd |155-314 Ifrn_|155-314  4ts1AJ1-217 Ityc_|1-217 1wsyB|W.C.
1tydE[1-217 ltybE|1-217 ltyaE|1-217 1cdoA|176-324  1hldA|175-324  1drk_|W.C.
ThorA[W.C. 2secE|W.C. IscnE[W.C. 1selA|W.C. Icia [W.C. lorb |1-149
Ipnt [W.C. 2hnp [W.C. Itrx_[W.C. 2tir [W.C. Itho [W.C. 1dbp [W.C.
1tkbA[535-680  1lam_|1-159 1blIE[1-159 1gdtA|1-140 3hsc_|3-188 Irhd_|1-149
Ingi |4-188 Ingb |4-188 Inga [4-188 Ingg |3-188 Ingh |4-188 1dg |W.C.
latr |2-188 lcde [W.C. 1grcA|W.C. 1cddA|W.C. ImhtA|W.C. Sacn_|1-528
lama |[W.C. lakaA|W.C. lula [W.C. lamn_[W.C. lacj [W.C. lolcA|W.C.
lacl |[W.C. 2ctc_|W.C. Scpa |[W.C. ldrl_|W.C. 2anhA|W.C. 1ttgB|W.C.
lhgaA|W.C. lalkA[W.C. lajaA|W.C. lajdA|W.C. lanjA|W.C. lacmA|1-150
laljA|W.C. laniA[W.C. lalhA|W.C. lajcA|W.C. Ixab [W.C. 8atcA|1-150
lipd |W.C. lidm [W.C. 1raiA]1-150

65 o/p domains
1fut |W.C. 2baa_|[W.C. laec_|W.C. 2rat |W.C. 2rns_|W.C. Itsw_|[W.C.
Iras_|[W.C. IsscA[W.C. 1ssbA|W.C. Issa_|[W.C. Irbd_[W.C. 11taA|W.C.
1kraA|W.C. Ipgx [W.C. Ipgb [W.C. lige [W.C. 1fccC|W.C. 11ttA|W.C.
2igg [W.C. 2igh |W.C. Icoy [319-450 3monA[W.C. 1frtA[1-178 11tgA|W.C.
1fkj |W.C. 1kl |W.C. 2secl|lW.C. legpA|W.C. 2tecl|W.C. 1htlIA|W.C.
legl |W.C. Isbnl|W.C. 1sib|W.C. 3mdsA[93-203  lvig |W.C. Imrk |W.C.
Imns_|3-132 l1grl_[137-190 IrldS|W.C. lcomA|W.C. 1gae0[149-312  1glv_|123-316
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1mstA[W.C. 1bmsA[W.C. Imsc_[W.C.  lgrb_[364-478  1IKIA|W.C. 3dni_|W.C.
1jA|W.C. 1IckA|117-226  1sphA|W.C.  2hpr [W.C. IsceA[W.C. 1dnkA|W.C.
IsetA[111-421  2tscA[W.C. 1tsdA[W.C. 2bbgA[W.C. Itsy_[W.C. 4dmhA|155-333
Ixrc_|1-101 ltsx_[W.C. Itys [W.C. 3bSc_[W.C. 1tbpA[61-155
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Table A.9 The 498 Protein Domains.

107 all-a domains

1hbiA|W.C. IsctA[W.C. lytc_|[W.C. lyea_|W.C. lyeb_|W.C. Iphe |[W.C.
2pccB|W.C. 1thb |W.C. Icih |W.C. Icie [W.C. lcsu-[W.C. 1troA|W.C.
lerj_|[W.C. lesw_|W.C. lesx_|[W.C. Ichi_|W.C. leig [W.C. lafal|73-104
lerh |[W.C. Iraq_|W.C. letz_|[W.C. Ichj_[W.C. Leif [W.C. lep4_|W.C.
lesv_[W.C. lerg |W.C. Ichh_[W.C. Irap |W.C. 1hddC|W.C. 3wrp_|W.C.
1dprA|65-136 Itnt [W.C. 1bbl_|W.C. lerc_[W.C. laca [W.C. lafd1|73-104
IvasA|W.C. lenk [W.C. leni [W.C. 1lynA|W.C. lhme_|[W.C. Inoo_[W.C.
lhmf [W.C. lhsm_|W.C. Inhn_|W.C. lgnc_[W.C. 1rprA|W.C. 1trrA|W.C.
1rpo |W.C. 1pou |W.C. ledn [W.C. 1bod |W.C. 1boc [W.C. 3fisA|W.C.
2bca_|W.C. Iclb |W.C. largA|W.C. larrA|W.C. 1mykA|W.C. lgrl |6-316
ImylA|W.C. Ibpd_[9-91 2bpgA[9-91 lolhA|W.C. IpesA|W.C. 1fipA|W.C.
IpetA|W.C. 1sacA|W.C. 1safA|W.C. 1sagA[W.C. 1sahA|W.C. 1afb1|73-104
1saiA|W.C. 1sajA|W.C. 1sakA[W.C. 1salA|W.C. lhns_|[W.C. 1phf |W.C.
Itag |57-177 1tndA|57-177  4ts1A[228-319  1tyc [228-319  1tydE|228-319  1phg [W.C.
ItybE[228-319  1tyaE[228-319  1lgaA|W.C. loxy_|1-379 Inol_|1-379 Iphd_|W.C.
Ipgn [177-473  1pgo |177-473  1pgp |177-473  1pgq |177-473 2utgA|W.C. Ipha |[W.C.
3gly |[W.C. 1dog |W.C. lagm_|W.C. lesi |[W.C. less [W.C. 2cpp_|W.C.
lesr [W.C. lcse [W.C. Scts [W.C. ScscsA|W.C. 1phb |W.C.

126 all-p domains
ImdtA|381-535  lcgt |580-684  lcxe |582-686  lcxi |582-686  lcxf |582-686  1krcC|2-129
lcvg |582-686  lcgw |582-686  lcgy |582-686  lcgx [582-686  laaj [W.C. lhug [W.C.
laan_|W.C. 2mtaA|W.C. ImdaA|W.C. lges |1-85 1pnf |1-140 lhuh_|W.C.
Ipng_|5-140 1gog |1-150 1goh |1-150 1tnfA|W.C. 2tunA|W.C. lerm |W.C.
Ithv_|W.C. Ithu_[W.C. 2ctvA[W.C. Iscr [W.C. lconA[W.C. lakl |247-470
ScnaA[W.C. lapnA|W.C. 2cna_[W.C. lenlA|W.C. 1bib_|271-317  lazm_ |[W.C.
11taD|W.C. 11ttD|W.C. 11tgD|W.C. 11tbD|W.C. 1htID|W.C. lhpcA|W.C.
Ibfb [W.C. Ibfc [W.C. 1fga |[W.C. 2bfh_[W.C. Ibfg [W.C. Ibzm [W.C.
1bas_|W.C. 1fnd [19-154  Ifnc [19-154  1frn [19-154  larc [W.C. 1kraC|2-129
1bcmA[481-560  1hpxA[W.C. 1hihA|W.C. 1hvjA|W.C. 1hvkA|W.C. lczm |W.C.
1hivA|W.C. lhpvA|W.C. lhsgA|W.C. 1hshA|W.C. 1hvlA|W.C. 1krbC[2-129
1cpiA|W.C. 1hvrA|W.C. 1htgA|W.C. lhve [W.C. 4phvA|W.C. lexf |383-495
lhosA|W.C. 1sbgA|W.C. lhhp [W.C. ShvpA|W.C. 1hbvA|W.C. lcgu_|383-494
1hefE|W.C. lhpsA[W.C. 1hsiA|W.C. lhegE|W.C. laagA|W.C. lexh |383-495
1htfA|W.C. 1hteA|W.C. 3hvp [W.C. 3phv_|W.C. lhvsA|W.C. legx |383-495
1gtsA|339-547 lhbp |W.C. Ifen |W.C. lerb |W.C. Ifel |W.C. lexg [383-495
Ifem [W.C. IsIfB|W.C. IsrgA|W.C. IsreA|W.C. IsrjA|W.C. legy |383-495
1slgB|W.C. IptsA|W.C. 1sleB|W.C. IsrfA|W.C. IstrB|W.C. Icxe [383-495
IstsB|W.C. 1sldB[W.C. 1sthA|W.C. Istp [W.C. leyhA|W.C. lcgw [383-495
ImikA|W.C. 2rmaA|W.C. lewaA|W.C. lewcA|W.C. 2rmbA|W.C. legt |383-494
1cwbA|W.C. 3cysA|W.C. 2sim |[W.C. lgog |151-537  1goh |151-537 lcgv |383-495

136 o/p domains

legt [1-382 loxe |1-382 lexh_[1-382 loxf |1-382 logv |1-382 lracA[1-150
legw |1-382 legy [1-382 legx [1-382 legu |1-382 1btb|W.C. IrahA|1-150
1brsD|W.C. 1bgsE|W.C. 1fnd |155-314  1fnc |155-314  1frn |155-314  1wsyB|W.C.
4ts1A[1-217 ltyc [1-217 1tydE|1-217 1tybE|1-217 ltyaE|1-217 1drk_|W.C.
1cdoA|176-324  1hldA|175-324  20xiA|175-324 1adbA|175-324 ladg |175-324  lctu_|1-150
ladf |175-324 8adh_|175-324  ladcA|175-324 6adhA|175-324  lhorA[W.C. IradA|1-150
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lhotA|W.C. 2secE|W.C. Isca_|W.C. IscnE[W.C. Iscd_|[W.C. 8atcA|1-149
Iscb_|W.C. Isbc_|[W.C. IselA|W.C. Icia |[W.C. Ipnt |W.C. lorb_|1-149
1bvh_|W.C. 2hnp |W.C. 1trx_|[W.C. 2tir [W.C. 1tho |W.C. 1dbp |W.C.
1tkbA[535-680  1tkcA|535-680  1tkaA|535-680  1lam |1-159 11anA|1-159 IraeAll-150
IbIIE|1-159 1lap_|1-159 Ibpm_[1-159 Ibpn_|1-159 1gdtA|1-140 lacmA|1-150
3hsc_|3-188 Ingj_|4-188 Ingi_[4-188 Ingb _[4-188 Ingf |3-188 Irhd_|1-149
Inga |4-188 Inge |4-188 Ingc_[4-188 Ingg |3-188 Ingh |4-188 1dr_|W.C.
latr_[2-188 Ingd_[4-188 lats_[2-188 lede |[W.C. lgreA|W.C. IrafA|1-150
lcddA|W.C. ImhtA|W.C. lama_|W.C. Imag_|W.C. 1tarA|W.C. 1ttgB|W.C.
Imap_[W.C. 1tasA|W.C. 1tatA[W.C. lakaA[W.C. lakbA|W.C. Sacn_|1-528
lakcA|W.C. lula_[W.C. lamn_|W.C. lacj_|[W.C. lacl |[W.C. lolcA|W.C.
lace [W.C. 2ctc_|W.C. Scpa_|W.C. lebx_[W.C. leps_[W.C. IragA|1-150
ldrl_|[W.C. 1dr3_|[W.C. ldr2_|W.C. ldr6_|W.C. ldrd_|W.C. 1ttpB|W.C.
1dr5_|W.C. 1dr7_|W.C. 2anhA|W.C. lhqaA|W.C. lalkA|W.C. 2bgt |W.C.
lajaA|W.C. lajdA[W.C. lanjA[W.C. laljA|W.C. laniA[W.C. lolaA|W.C.
lalhA|W.C. 1ajbA|W.C. lajcA|W.C. Ixab_|W.C. lipd_|W.C. IrabA|1-150
lhex |W.C. lidm [W.C. 1raiA]1-150 1raaAll-150

129 o+ domains
1fut |W.C. 2baa_|[W.C. laec_|W.C. 2rat |W.C. 1rpg_ |W.C. Ixrc [1-101
Irhb_|W.C. Imc_[W.C. 2ms_|W.C. 1Imd_|W.C. 33 |W.C. latnD|W.C.
Irmu_|W.C. Iras |[W.C. Imv_|W.C. 1mnE[W.C. 9rsaA|W.C. 11ttA|W.C.
Imo_ |W.C. Irar |W.C. 1Irbw_|W.C. 1ImmEW.C. Irha_|[W.C. Ixra_[1-101
Irbn_|W.C. IsscA|W.C. 1ssbA|W.C. IsrnA|W.C. Irpf [W.C. 4mdhA|155-333
Irph_[W.C. 1ssaA|W.C. 1renE|W.C. IrtaE[W.C. Irtb_[W.C. 11tgA|W.C.
IrbjA|W.C. 1rbbA|W.C. 2aas_|W.C. 1rbd_|W.C. 1rbi [W.C. lglv_|123-316
2rlnE[W.C. Irbh [W.C. Irbe [W.C. 1rbg |W.C. 1rbf [W.C. Imrk |W.C.
Irbe [W.C. lkraA|W.C. 1krbA[W.C. 1krcA[W.C. 1pgx [W.C. 11tbA|W.C.
1pgb |W.C. 1pga [W.C. ligcA|W.C. 1fccC|W.C. 1gbl |W.C. 3dni_|[W.C.
2igg |[W.C. 2igh [W.C. lcoy [319-450  3monA|W.C. 111tA[1-178 Ites |W.C.
1fkj [W.C. 1fkb [W.C. 1tkf [W.C. 1kl W.C. 2fke [W.C. 1htlIA|W.C.
1fkh [W.C. 1fkg [W.C. 1fkk [W.C. 1fkiA|W.C. Ifkr [W.C. 1dnkA|W.C.
1tks |W.C. 1tkt |W.C. 2secl|W.C. legpA|W.C. Imeel|W.C. 11taA|W.C.
2tecl|W.C. lacbl|W.C. legl |W.C. 1sbnl|W.C. 1sibI|W.C. 3tms_|W.C.
3mdsA[93-203 lvig_|[W.C. Imns_|3-132 Imdr_[3-132 lgrl |137-190  1tbpAl61-155
1rldS|W.C. 1rlcS|W.C. lcomA|W.C. 2chtA|W.C. 1gaeO|149-312  1tsw_|W.C.
ImstA|W.C. 1bmsA[W.C. Imse_[W.C. lgrb |364-478  1gra |364-478  3b5c_[W.C.
lgre |364-478 lgrf |364-478  lgrg |364-478  4grl [364-478 1KIA|W.C. Itsy |W.C.
1cjA|W.C. 11ckA[117-226  1sphA|W.C. 2hpr_[W.C. IsceA|W.C. Itys_[W.C.
IsetAl111-421 IsesA|111-421  1serA|111-421  2tscA[W.C. 1tsdA|W.C. Itsv_|W.C.
2bbgA|W.C. 1synA|W.C. Itsx |[W.C.
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Table A.10 The 1189 Protein Domains.
222 all-a domains
laab_|W.C. lentl|W.C. 1ghlA|W.C. 1lis_|W.C. 1prcC|W.C. 1zymA|22-144
lab3 |[W.C. lcoo [W.C. 1gks [W.C. 11ki_[W.C. 1pueE|W.C. 256BA|W.C.
labv_|W.C. IcopD|W.C. Iglm_[W.C. 1la_|110-379 1r69_|[W.C. 2abk_|W.C.
laca_[W.C. IepcA[W.C. lgln_[306-468 11la_[2-109 Ired_[W.C. 2bct_[W.C.
lacp_|W.C. lcpeB|W.C. 1glqA[79-209 HIA[W.C. Irec_|[W.C. 2bmhA|W.C.
ladr [W.C. lepg [W.C. 1gnwA|86-211 1lpe |W.C. Ires |[W.C. 2ccyA|W.C.
ladt_|176-265 lept [W.C. lgrj_[2-79 llre [W.C. IrfbA|W.C. 2cyp_|W.C.
laep_|[W.C. lerkA|1-98 lgrl |410-523 lrv_|[W.C. Irgb_[W.C. 2end_|W.C.
laf8 |[W.C. lesgA[W.C. lgrl |6-136 Imbd_|W.C. IribA|W.C. 2gstA|85-217
lafrA|W.C. lesh [W.C. lhbg |W.C. ImdyA|W.C. Irlr |10-221 2hmqA[W.C.
lagrE|W.C. lesmA[W.C. 1he2_|136-398 ImhlA|W.C. Irom_|W.C. 2hmx_|W.C.
1aj3_|[W.C. lcuk |156-203 1he2 |5-135 ImhIC|W.C. Irpo_[W.C. 2hts_[W.C.
1ak4C|W.C. lcuk |65-142 TherA|W.C. ImmoB|W.C. Irro |[W.C. 2int |W.C.
lallA|W.C. leyi [W.C. 1hdj_|W.C. ImmoD|W.C. Iryt [2-147 21efA|W.C.
lan2A|W.C. 1djxAJ200-298  1hmcA[W.C. ImmoG|W.C. IscmB|W.C. 2lhb_|W.C.
laofA[36-133 1dnpA201-469  1hme |W.C. ImngA|1-92 IsetA|1-110 2ligA|W.C.
laorA|211-605 1dprA|3-64 lhnr [W.C. ImntA|W.C. Isfe [93-176 2mtaC|W.C.
laoy [W.C. 1dprA|65-136 1hrzA|W.C. ImykA|W.C. Isig [W.C. 2mysB[W.C.
laru_|[W.C. 1dvh_|W.C. 1hstA|W.C. Iner |[W.C. Isly [1-450 2pde |W.C.
1bbhA|W.C. leca |W.C. lhueA|W.C. Ingr |W.C. Isra |[W.C. 2pgd |177-473
1bbl_|W.C. leciA|W.C. 1hulA|W.C. Inkl |W.C. 1tadA|57-177 2sas_|[W.C.
1bcfA|W.C. lecmA[W.C. lhuw_|W.C. loccE|W.C. 1tafA|W.C. 2sblBJ|150-839
Ibeo [W.C. lenh [W.C. lhvd |W.C. loccH|W.C. 1tafB|W.C. 2scpA|W.C.
1bfmA[W.C. lerc_|W.C. lhyp |W.C. loctC|5-75 1tcoB|W.C. 2spcA|W.C.
Ibge [W.C. lerd [W.C. 1ihfB|W.C. lolgA[W.C. 1tf4A]1-460 2tct [2-67
Ibia_[1-63 lerp |W.C. lilk [W.C. lopc_|W.C. 1tfr |183-305 2wrpR|W.C.
Ibip_[W.C. lery |[W.C. limq [W.C. losa [W.C. Itns [W.C. 351c [W.C.
1bmfA[380-510  letpA|1-92 lithA|W.C. loxa |[W.C. 1tpt |1-70 3inkC[W.C.
1bmfD|358-475  letpA[93-190 ljkw_|11-161 IpbwA[W.C. lutg [W.C. 3sdhA|W.C.
1bucA233-383  1fapB[W.C. ljkw_|162-287 1pdnC|W.C. 1vii_|[W.C. 4icb_|W.C.
1bvpl(1-120 1fdcDI1-80 1jli [W.C. Iphb_[W.C. lvne |[W.C. Seas |221-548
1bvpl]255-349  1fcdD[81-174 Ljvr_|W.C. 1pnbA|W.C. 1vtmP|W.C. Seas_[24-220
IcSa [W.C. IfipA|W.C. 1Ibd |W.C. 1pnbB|W.C. 1xgsA|195-271  lash |[W.C.
lec5 [W.C. 1fjlIA|W.C. 1bu_|1-83 1pnrA[3-58 Ixsm_|W.C. 1ytfD|5-54
Icem |W.C. Iflp W.C. 1lccA|W.C. Ipoa |[W.C. lyrnA|W.C. 1pprM|157-312
lepgA|138-205  1fow |W.C. llea |[W.C. Ipoc_|W.C. lyrmB|W.C. 11h1_|W.C.
Icle |135-575 1fps [W.C. 11fb_|W.C. 1pprM|1-156 1ytfB|W.C. lgab [W.C.
1cmbA|W.C.
294 all-f domains
labrB|1-140 lcle_|35-134 1gtrA|339-547 InbcA[W.C. 1smpI|W.C. 2bb2_|86-175
labrB|141-267 lepn [W.C. lgzi [W.C. InciA|W.C. IsriA[W.C. 2bbkH|W.C.
lagjA[W.C. lcskA[W.C. lhavA|W.C. Ineu [W.C. Isro |W.C. 2bbvA|W.C.
lah9 |W.C. letm |1-167 lhbp [W.C. Infa |W.C. Isso [W.C. 2bpal|W.C.
lahsA|W.C. letm |168-230  1hc2 |399-653 Inoa |W.C. IstmA|W.C. 2bpa2|W.C.
laizA|W.C. Ictm [231-250 lhed W.C. InpoA|W.C. Isty [W.C. 2cas_|[W.C.
laly |W.C. Ictn |24-132 lhgeA|W.C. InscA[W.C. Isval|W.C. 2cbp
lamy|347-403 Icto [W.C. lhms_|W.C. LobpA|W.C. Isvb |303-395  2cnd |11-124
lanu_ [W.C. lcuk [1-64 lhoe |W.C. loccB[91-227 1tdtA|W.C. 2cpl |[W.C.
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laofA|134-567 leur |W.C. lhsq |[W.C. lospO[W.C. Iten [W.C. 2eng_ [W.C.
laol_|[W.C. lewpA[W.C. lhtp_|W.C. Ipcl [W.C. 1tf4A[461-605  2fgf W.C.
laonO|W.C. leyx [W.C. lhxn_ |W.C. Ipdr |W.C. 1thjA|W.C. 2hft [107-211
laozA|1-129 ldar_[283-400 lilb_|W.C. Ipex_|[W.C. Ithw_|W.C. 2hft |1-106
laozA|130-338  1ddt |381-535 lidaA|W.C. IpfsA|W.C. Itie [W.C. 2ila_|W.C.
laozA[339-552  1dkgA|139-197  1lidk |W.C. Ipgs_[141-314 1tiiD|W.C. 2kauB|W.C.
larb_|W.C. ldlc_[290-499 life [W.C. Ipgs_|4-140 Itiu_|W.C. 2kauC|2-129
lasyA|68-204 1dupA|W.C. lihwA|W.C. Ipht_|W.C. 1tlk_|[W.C. 2kauCl423-475
1bbpA|W.C. 1dutA|W.C. lilrl_[W.C. 1pkyA|70-167 Itmel[W.C. 2mev1|W.C.
1bbt1|W.C. 1dynA|W.C. lirsA|W.C. Iple_|[W.C. ItnfA|W.C. 2mev2|W.C.
1bbt3|W.C. leagA[W.C. liyu_|W.C. Ipls_|[W.C. Itnm_|[W.C. 2ncm_|W.C.
Ibdo_|W.C. leal [W.C. ljdc_[358-418 Ipmi_[W.C. ItnrA|W.C. 20hxA|1-163
1bebA|W.C. 1ebpA|10-116 lLjer |[W.C. Ipms_|W.C. Itsp_|W.C. 20hxA|340-374
1bglA220-333  left [213-312 1kapP|247-470 1ppi_|404-496 Itul_|W.C. 2pcdA[W.C.
1bglA[3-219 left |313-405 lkew |1-192 lprr_[1-90 1tupA|W.C. 2pcdM|W.C.
1bglA|626-730  lepbA[W.C. lkew_|193-338  1prr_[91-173 lulo_[W.C. 2pec_|W.C.
1bglA[731-1023  lepnE[W.C. lkew |347-553  1prtD|W.C. IvcaA|1-90 2phlA|11-210
1bhgA[22-225  1lesfA[1-120 lkew_|554-705  1prtF|W.C. 1vcaA91-199  2phlA[220-381
1bhgA|226-328  letal|W.C. lkew_[706-884  1pse |[W.C. IvibA|W.C. 2pia_|1-103
Ibia [71-317 leur |W.C. lkew |892-1040 1pvcl|W.C. lvie |[W.C. 2prd_[W.C.
1bmfA[24-94 lexg [W.C. 1kevA|1-139 1pve2|W.C. 1vmoA|W.C. 2rspA|W.C.
1bmfD|9-81 1fdr [2-100 lkevA|314-351 Ipve3|W.C. IwapA[W.C. 2sbIB|7-149
1bncA331-446  1fgp |[W.C. 1kit_[217-346 Ipyp_[W.C. Iwba_[W.C. 2sil_[W.C.
1bovA|W.C. 1fivA[W.C. 1kit_[25-216 Igba_|28-200 Iwhi_|[W.C. 2snv_|[W.C.
1btkA|W.C. 1fmb_[W.C. 1kit_[347-543 lqorA2-112 Iwho_|W.C. 2stv_[W.C.
Ibtn_|[W.C. 1fna_|[W.C. lknb_|W.C. 1qorA292-327  1wiu_|[W.C. 2tbvA[W.C.
Ibty [W.C. 1fnb|19-154 lksr_[W.C. Irgs |113-244 Iwkt [W.C. 2treB[W.C.
1bvpl|121-254  1fuiA[356-591 llac_[W.C. Irip_[W.C. Ixnb_|W.C. 2tssA|1-93
1bw3 |W.C. 1fyc [W.C. 1lel |[W.C. Irsy |W.C. 1xs0A|W.C. 3cd4 |1-97
lcd1al186-279 Igen_[W.C. 11la_|380-628 IsacA[W.C. lyaiA|W.C. 3cd4_[98-178
lcdeB|W.C. 1ggtA|516-627  1ltsD|W.C. Iscs [W.C. lyhb |W.C. 3dpa_[1-124
lcdg_[407-495 1ggtA|628-729  llxa_[W.C. Ise4 |1-121 1ytfCW.C. 3dpa_|125-218
lcdg 1496-581 1ggtA[8-190 11ylA|14-153 IsemA[W.C. 1ytfD|55-119 3hhrB|32-130
ledg |582-686 1ghk [W.C. Imai [W.C. IsftA|2-11 1zncA[W.C. 3nn9 |W.C.
legpAl9-137 1glaF|W.C. Imjc [W.C. 1sftA|245-383 1zxq_[1-86 3ullA|W.C.
Icid |106-177 1gof [1-150 Immd_|34-79 Isge [W.C. 1zxq_|87-192 4aahA[W.C.
Icid [1-105 1gof [151-537 Impp |W.C. IshcA|W.C. 2aaa [382-476  4bcl |[W.C.
leiy [256-461 1gof |538-639 ImsaA|W.C. Ishg |W.C. 2alp |[W.C. 4ger |1-85
IckaA|W.C. lgpc [W.C. ImspA|W.C. IslaA|W.C. 2arcA|W.C. 4ger |86-174
1ckmA|239-327  lgpr [W.C. Ilmup [W.C. IsluA[W.C. 2aviA|W.C. 4kbpA[9-120

334 o/B domains
laba_|W.C. 1dpgAj413-426  1gtmA|3-180 Infp_[W.C. 1qrdA|W.C. 2at2A|1-144
lad3A|W.C. 1dppAW.C. 1gtrA|8-338 Inhp [1-119 IraaA|l-150 2at2A|145-295
ladd |W.C. ldraA|W.C. lgym |[W.C. Inhp [120-242  1raaA|151-310  2bgu |[W.C.
ladeA|W.C. 1dsbA|W.C. 1hdcA|W.C. Inhp [243-321  1rcf |W.C. 2chr_|127-370
ladjA|326-421 ldts_|W.C. ThgxA|W.C. InipA|W.C. IreqA[2-560 2cmd_|1-145
lag8A|W.C. 1dubAW.C. IhjrA[W.C. InoyA[W.C. 1reqB|20-475 2cnd |125-270
lak5_|2-101 ldxy_[101-299  1hlpAj21-162 Insj_|W.C. IrlaA[W.C. 2ctb_|[W.C.
lak5_[222-483 ldxy_|1-100 ThmpA|W.C. InsyA|W.C. Irlr_|222-748 2dkb_|W.C.
lamp |W.C. le2b [W.C. lhmy |W.C. Intr [W.C. Irnl |5-142 2dln_|1-96
lamy_|1-346 leaf [W.C. 1hplA|1-336 InulA|W.C. Irpa_[W.C. 2dri_[W.C.
lart |W.C. lebhA|142-436  1hpm |189-381  InzyA|W.C. IrvaA|W.C. 2ebn_ |[W.C.
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lasu_|[W.C. leceA|W.C. lhpm |4-188 lobr_[W.C. IrvvA|W.C. 2fx2 |W.C.
1atiA[395-505 lecpA|W.C. 1hrdA|1-194 lofgA|1-160 Isbp_[W.C. 2glt |1-122
layl |1-227 lede |W.C. 1hrdA|195-449 1ofgA[323-381  1scuA|l-121 2gstA|1-84
layl [228-540 ledg [W.C. ThurA|W.C. lopr_[W.C. IscuA|122-288  2hnp |[W.C.
Ibam_|W.C. ledt [W.C. lhvq [W.C. lorb_|1-149 IscuB[239-388  2kauC]|130-422
1bglA[334-625  left |1-212 lhyhAJ21- 166 lorb_|150-293 Isfe |12-92 2kauCl476-567
1bksA|W.C. lego |W.C. liceA|W.C. lordA|108-569  1sftA|12-244 2lbp_|W.C.
1bksB|W.C. leny [W.C. liceBW.C. lordAJ1-107 IsrrA|W.C. 2masA|W.C.
Ible_[W.C. leriA|W.C. lidm_|[W.C. lortA|1-150 1tadA[27-56 2nacAll-147
1bmfA[95-379 lesc_|W.C. lido_|W.C. lortA|151-335 1tahB|W.C. 2nacA|148-335
1bmfD|82-357 1fcdAl1-114 ligs [W.C. loya |[W.C. Itca_|W.C. 2nacA[336-374
1bmfG 1fcdA|115-255  litg [W.C. IpauA|W.C. Itde |1-118 20hxA|164-339
IbncA|l-114 1fcdA256-327  ljdc_|1-357 IpauB|W.C. Itde_|119-244 20lbA|W.C.
1broA|W.C. 1fdr |101-248 lkevA|140-313  1pbe |1-173 Itde [245-316 2pgd_|1-176
1brsD|W.C. 1fds [W.C. 1kfd [324-518 Ipbe [276-391 1tfr |12-180 2pia_|104-223
Ibyb_|W.C. 1fmcA[W.C. 1kifA|1-194 Ipbn_|W.C. 1thtA[W.C. 2reb_[3-268
1cb2AW.C. 1fnb |155-314 1kifA[288-339 Ipbp [W.C. 1tib_[W.C. 2m2_|[W.C.
lcbg-[W.C. 1fua_[W.C. lkte [W.C. Ipda |3-219 ItIfA|W.C. 2rsl1A|W.C.
lcdg |1-406 1fuiA|1-355 Ilam_|1-159 Ipdo [W.C. Itml_[W.C. 2tmdA|1-340
Icec_|[W.C. 1gal_[3-324 1lam_|160-484 Ipea_[W.C. 1tpfA|W.C. 2tmdA|[341-489
lefr [W.C. lgal [521-583 llct [W.C. 1pfkA[W.C. 1tplA|W.C. 2tmdA|490-645
Ichd [W.C. 1garA|W.C. 11db_|15-162 Iphp [W.C. Itpt |71-335 2tmdA|646-729
IchmAJ2-156 lgca |[W.C. 11dg |18-163 Iphr [W.C. 1trkA[3-337 2tprA|1-168
lcoy [4-318 1gd10[313-333  1ldm |1-160 1pii_|1-254 1trkA[338-534  2tprA|169-285
leseE[W.C. 1gdhA|101-291  1lehA|1-134 Ipii [255-452  1trkA[535-680  2tprA[286-357
Ictn |133-443 1gdhAJ2-100 1lehA|135-364  1pkyA|168-344  ludg [W.C. 2trxA|W.C.
Iett |1-150 lgesA|147-262  11faA[W.C. 1pkyA|1-69 1v39 |[W.C. 2ts1_[W.C.
Lett |151-294 1gesA|263-335  111dA|7-149 1pkyA[351-470 1vhrA|W.C. 2xis_[W.C.
lcus |W.C. 1gesA|3-146 11st_ |W.C. 1pnrA|59-340 1vid_[W.C. 3chy |W.C.
lcydA|W.C. 1gggA|W.C. 1lucA|W.C. Ipot |[W.C. Ivtk [W.C. 3cla_[W.C.
1dapA|1-118 1ghr |W.C. 1lucB|W.C. 1poxA|183-365  1whtA|W.C. 3dfr [W.C.
1dapA269-320  1glaG|254-499 11vl |1-150 1poxA[9-182 IwhtB|W.C. 3pgm_[W.C.
1dar_|1-282 1glaGJ4-253 1Ivl_|151-265 1ppi_|1-403 1xel [W.C. 3pmgA|1-190
1dctA|W.C. lgln_|1-305 11vl_|266-335 1psdAj108-295  1xvaA|W.C. 3pmgA|191-303
ldeaA|W.C. 1glqA|1-78 Imek [W.C. 1psdA296-326  1xyzA|W.C. 3pmgA|304-420
1dhpA|W.C. lgnd |1-291 ImioA|W.C. 1psdA[7-107 lyasA[W.C. 3rubL|148-467
1dhr |W.C. Ignd [389-430  1mioB|W.C. Ipta |[W.C. 1ybvA|W.C. 3tgl [W.C.
1dih |2-130 lgnwA|2-85 Imla |198-307 Ipud [W.C. lyptA|W.C. Snul_|[W.C.
1dih_[241-273 1gpb_|[W.C. Imla_|3-127 1pvdA|182-360  1yvel|83-307 S5p21_|W.C.
1dik_[377-505  1gph1[235-465  Immd_[2-33 1pvdA]2-181 1zymA|145-249  SrubA|[138-457
1dik_|510-874 1gpmA|[208-404 1mmd_|80-759 IpvuA|W.C. 1zymA|3-21 7icd_|W.C.
1dnpA|1-200 1gpmA|3-207 Impb_|W.C. 1pxtA[28-293 2aaa [1-381 8abp_ [W.C.
1dorA|W.C. lgrl [191-366 Inall|W.C. 1qapA|130-296  2acr |[W.C. 8dfr [W.C.
1dosA[W.C. 1gseA|2-80 Inar-|W.C. Igba |338-780  2admA|W.C.
1dpgA|l1-181 1gtmA[181-419  1nbaA|W.C. 1qorA|113-291  2anhA|W.C.

241 o+ domains
1191 |[W.C. lctn_|444-516 1gpmA|405-525 1mli [W.C. 1gbeA|W.C. 1znbA[W.C.
1931 |W.C. leyo [W.C. lgrj |80-158 1mngA[93-203 IraaB|1-100 2aak [W.C.
1ab8A|W.C. 1dapA|119-268  1grl |137-190 ImolA|W.C. IregX|W.C. 2act |W.C.
labrA|W.C. ldar |476-599 lgrl [367-409 Imgj |[W.C. Iris |W.C. 2baa [W.C.
lact [W.C. 1dar_|600-689 1gtpA|W.C. Imsk_|[W.C. IsceA|W.C. 2bopA|W.C.
ladjA2-325 ldcoA|W.C. 1gtqA|W.C. Imut_|[W.C. IscuB|1-238 2chr |1-126
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laf5_|[W.C. 1ddt |1-187 1guaB|W.C. Imxa [108-231  1se4 [122-239  2chsA|W.C.
lafi [W.C. Idef [W.C. lhan_|133-289 Imxa_|1-102 IseiA|W.C. 2cmd _|146-312
lag2 [W.C. 1dhmA|W.C. lhan [2-132 Imxa [232-383  1setA|111-421 2dIn_|97-306
lah6 |W.C. 1dih_131-240 Ihfc_|[W.C. InapA|W.C. IshaA|W.C. 2dnjA|W.C.
lahq [W.C. 1dik_[2-376 lhqi_[W.C. Inhp [322-447  1sly [451-618 2¢lt |123-316
laihA|W.C. Idiv_|1-55 1httA|4-325 Inox_|W.C. IsmnA|W.C. 2kauA|W.C.
lak7 |W.C. 1div_|56-149 ThumAW.C. Inpk [W.C. 1spbP|W.C. 2mnr_[3-132
lako |[W.C. 1dIhA[3-81 1hxpA|178-348  107bT|W.C. IsrsA|W.C. 2ms2A|W.C.
laop_|149-345 1dmaA|W.C. 1hxpA[2-177 lofgA|161-322  1std [W.C. 2phy |[W.C.
laop_|346-425 1donA|W.C. liba [W.C. lordA|570-730  1stfI[W.C. 2pia_[224-321
laop_|81-145 1dpgA|182-412  ligd [W.C. LotfA|W.C. Istu_[W.C. 2pldA|W.C.
laorA|1-210 1dpgAl427-485  ligzA|W.C. lotgA[W.C. Isvr_ |[W.C. 2pnb_|W.C.
lapa |[W.C. lebhA|1-141 1kapP|1-246 lounA|W.C. Isxl_[W.C. 2polA|1-122
laps [W.C. lefnB|W.C. 1kifA[195-287 Ipba_|[W.C. Itbd [W.C. 2polA|123-244
lapyA|W.C. leps |W.C. 1kptA|W.C. Ipbe |174-275 Itfe |W.C. 2polA|245-366
lapyB|W.C. lesfaA|121-233  lkuh [W.C. Ipda |220-307  1tif [W.C. 2ptl_[W.C.
last [W.C. lesl [1-118 1kvdA|W.C. 1pil [W.C. Itig [W.C. 2reb_|269-328
latiA|1-394 lezm |W.C. 1kvdB|W.C. Ipkp [4-77 1tpt |336-440 2sicl|W.C.
latlA 1fca [W.C. 1lba_[W.C. Ipkp [78-148 luae [W.C. 2tprA[358-482
Ibia_|64-270 1fcdA|328-401 1lbu_|84-213 Iplg_|1-126 lubi-|W.C. 2tssA|94-194
1bncA|115-330  1fd2_|W.C. 11dm_|161-329 Iplq_|127-258 ludil|W.C. 2ula [W.C.
1bpl |1-217 1fjmA[W.C. llgr |101-468 IpmaA|W.C. lupl [7-92 2vik [W.C.
1bpl |218-456  1fkd |W.C. 11gr_|1-100 IpmaB[W.C. lupl [99-182 3fib_ |[W.C.
Ibrnl [W.C. 1frd [W.C. it [W.C. Ipmd _|76-263 lurna_|W.C. 3pmgA[421-561
1bvl |[W.C. 1froA|W.C. 111dAJ150-319 1pnkA[W.C. 1vaoA[274-560  3rubL[22-147
1bvtA|W.C. 1fwp_[W.C. 1lml_[W.C. 1pnkB|W.C. 1vaoA|6-273 3rubS|W.C.
Icby [W.C. 1fxrA|W.C. 1tsA|W.C. Ipoh |W.C. Ivee [W.C. 4kbpA|121-432
lcdlA[7-185 1gbs [W.C. 1tsC|W.C. IpreA|2-84 Ivhh_|W.C. SrubAJ2-137
lcewI|W.C. lgeb [W.C. 11vl |336-458 IprtA[W.C. IvhiA|W.C. Trsa_[W.C.
1chkA|W.C. 1gd10]149-312  1lylA]161-502 1prtB[4-89 lvig [W.C. 9rnt_[W.C.
IckmA|11-238 1gesA|336-450  lmat [W.C. Iptf [W.C. Iviw_|[W.C. 1ytbA|61-155
Icoal|W.C. 1ggtA|191-515  1mbb _[201-342  Iput |W.C. 1xgsA|1-194 1gba_[201-337
Icoy |319-450  1gmpA|W.C. Imbb_|3-200 IpyaA|W.C. 1xgsA|272-295  Imla |128-197
1crkA|99-380 Ignd [292-388  ImkaA|W.C. 1qapA|8-129 1xxaAW.C. 1gphl|1-234

Ictf |W.C.
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Table A.11 The 25PDB Protein Domains.
443 all-o domains
lalw_|W.C. 1dvkB[W .C. 1h9eA[W .C. 1jr5A[W .C. 1nd9A[W.C. 1qqiA|W.C.
1a56_[W.C. 1dvoA|W.C. 1hbkA|W.C. 1jr8A[W.C. Ineq [W.C. 1qv1A[W.C.
la6m _|W.C. 1€29A|W.C. 1hciA272-396  1jumA[2-72 Ing7A[W.C. 1qwnA[412-522
lab3_[W.C. 1e52A|W.C. 1herA[W.C. 1jumA[73-187  IngnA|W.C. 1qZ4AIW.C.
labv_[W.C. 1e6bA[88-220  Thd6A[W.C. ljvr [W.C. 1nh2B|W.C. 1r2aA[W.C.
1aduB|180-265  1e6iA[W.C. 1he8A[525-725  1jw2A[W.C. Inhm_[W.C. 1r4aE[W.C.
laipH[3-53 1€71A104-157  1hfeS[W.C. 1jybA[2-147 1ni8A[W.C. Ir4gA[W.C.
1aj3_[W.C. leb7A[1-164 1hh8A|W.C. 1K04A[W.C. 1nk2P|W.C. 1r5iD|W.C.
lak0 [W.C. 1eb7A|165-323  1hkqA|W.C. 1kOmA|92-240 Inkd |W.C. 1rSrA|W.C.
lalu_|W.C. leca |W.C. 1hloA|W.C. 1k1vA|W.C. Inkl |[W.C. Ires |W.C.
laoy |W.C. leciA|W.C. 1hm7A[W.C. 1k3xA[125-213  1nkuA|W.C. 1rfbA[W.C.
lash [W.C. lef4A[W.C. 1hmwA[26-335  1k50A[W.C. InlxA[W.C. IrkcAl1-128
lavoA|[W.C. 1elkA[W.C. lhns_[W.C. 1k61D|W.C. Inom_[91-148 IrkcA|129-258
1b0nA|1-68 lelrA|W.C. 1hqlA[W.C. 1k6KA[W.C. Inp7A[205-483  1rqtA|W.C.
1b0nA[74-108  lenwA|W.C. 1hgbA|W.C. 1k8KE[W.C. 1ng4A[W.C. 11rtA[9-230
1b0nB[W.C. 1e00A|W.C. 1hryA[W.C. 1K94A|W.C. Ins1A[W.C. 1rsoA[W.C.
1b22A|W.C. leogA|W.C. 1hs5A|W.C. 1k99A|W.C. InwnA|W.C. 1rsoB|W.C.
1b28A[W.C. lerd [W.C. 1hs7A[W.C. 1ka8A[W.C. 1ny9A[W.C. lrss [W.C.
1b4uA|W.C. leteD|W.C. 1hx8BJ|167-299 1kanA|126-253 InyaA|W.C. IrykA|W.C.
1b8zA[W.C. leumA|W.C. 1hx8B22-162  1kbhA|W.C. InzpA[W.C. 1sOpA|W.C.
1bal [W.C. lexjA[3-120 1hxgA[15-220  1keyC|W.C. 104xA[110-163  1s7aA[W.C.
1bax_|W.C. leyhA|W.C. 1hxgA221-548  1kf6B[106-243  104xA[5-79 1sig [W.C.
1bbhA|W.C. 1f41A|W.C. 1hz4A|W.C. 1kftA|W.C. 1082A|W.C. 1sknP|W.C.
1bbn_|W.C. 1f5qB[147-252  1ilsA|W.C. 1kgzB|12-80 109rA|W.C. 1sly [1-450
1bc9 [W.C. 1f5qB|6-146 1i27A|W.C. 1khoA|1-249 loafA|W.C. 1t5jA|W.C.
lbea |W.C. 1f6vA[W.C. Li2tA[W.C. 1kjs_[W.C. loaiA|W.C. 1tafA|W.C.
1bg8A|W.C. 1f7cA|W.C. 1i14zA[W.C. 1ko9A|136-323  loczE[W.C. 1tbaA|W.C.
1bgf [W.C. 1fadA[W.C. liapA|W.C. 1koyA[W.C. 1ohzB[W.C. 1tfb [111-207
1bh8B|W.C. 1fafA|W.C. liblA|W.C. 1kqmB|W.C. lomrA|W.C. 1ub9A|W.C.
1bh9A|W.C. 1fexA[W.C. lichA|W.C. 1ks8A|W.C. lon7B|W.C. lucpA[W.C.
1bk6A|W.C. 1ff1A|W.C. 1ie9AW.C. 1kwfA|W.C. loohA|W.C. lucrB|W.C.
1bkrA[W.C. 1£fkS|W.C. lifyA[W.C. 1kx7A|W.C. logpA[W.C. lucvA|W.C.
1bl0A[63-124  1fipA[W.C. lig6A|W.C. 113pA[W.C. 1or6A|W.C. 1ufiBW.C.
1bI0A[9-62 1liA[W.C. liieA[W.C. 1191A|W.C. lor7F|W.C. 1ukSA|W.C.
1b09A|W.C. 1fp2A[8-108 liioA[W.C. 11b3A|W.C. lorgA|W.C. lugvA|W.C.
1bp3A[W.C. 1poC|1-76 lijyA[W.C. 1lbu_|1-83 10s6A[W.C. 1ustA|W.C.
1brOA[W.C. 1fpoC[77-171  1ik7B|W.C. 11d8A|W.C. loslA|W.C. lutg [W.C.
1bshA[87-138  1fgkAl61-181  1irdB[W.C. 11ddA|W.C. 1otk A[W.C. luw4B|W.C.
1bt6A[W.C. 1fr2 A[W.C. lirg [W.C. llea [W.C. lotrA[W.C. luzcA[W.C.
1bu2A[22-148  1fs9A|W.C. 1ifjD/W.C. 1liaA[W.C. lotwA[W.C. 1v38A|W.C.
1buyA|W.C. 1fyjA[W.C. lirl [W.C. 1j9A|W.C. loyiA|W.C. 1v3f [W.C.
1bw6AW.C.  1fzpB[W.C. lirgA[W.C. 1Imb3[W.C. loykA[W.C. 1v54H/W.C.
1c1kA|W.C. 1g03A|W.C. lirzA|W.C. 11q1A|W.C. 1p22BJ64-136 1v74B|W.C.
1c20A|W.C. 1gleB|W.C. Lit2 A[W.C. 1rAW.C. 1p3bA[W.C. 1v92A|W.C.
1¢53_[W.C. 1g6iA|W.C. litf [W.C. 11s1A[1-88 1p3bCW.C. 1vi6A[W.C.
1c75A|W.C. 1g70A]76-215 1ithA|W.C. 1IwbA|W.C. 1p3bF|W.C. 1vi6C|W.C.
1c9iA331-357  1g8eA[W.C. liufA[76-141 1lycA[W.C. 1pSSA[W.C. 1vii_ [W.C.
1cf7A|W.C. 1g8qA|W.C. liuyA|W.C. Im12AW.C. 1porA|W.C. Ivls_[W.C.
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1cf7B|W.C. 1ga3A|W.C. 1iw8D|W.C. Im15A[2-95 1p8cD|W.C. 1wifA|W.C.
Leif [W.C. 1gakA|W.C. 1ix9A|1-90 ImleB|W.C. 1p94A|W.C. IwtuA|W.C.
IlembA[W.C. 1gc6A(88-198 1jOpAW.C. ImlqA[W.C. Ipc2A|W.C. 1xbl_|[W.C.
lentd|W.C. 1gjtA|W.C. 1jOtA|W.C. Im5nS|W.C. Ipd3AW.C. 1x01A]186-290
IcokA|W.C. 1gkmA|W.C. 1j2jB|W.C. 1m70A|1-92 1pfvA[389-550 lycqA|W.C.
lcoo_[W.C. lgnc_|W.C. 1j75AW.C. 1m70A[93-190  IpgyA|W.C. 1ytfD|5-54
lcopD|W.C. 1gotG|W.C. 1j7qA|W.C. Im8yA|W.C. 1pn5A|59-151 2a0b_|W.C.
Ietj_|[W.C. 1gscA85-217 1j9iA|W.C. Im9xC|W.C. 1pnbA|W.C. 2bby_|W.C.
lcySA|W.C. lgsq |76-202 1jeiA|W.C. Imc2A|W.C. 1pnbB|W.C. 2cpgB|W.C.
1cz2A|W.C. 1gu2B|W.C. 1jfbA|W.C. ImdyB[W.C. 1pp7UW.C. 2¢iaAl17-147
1d2vA|W.C. lgumA|[81-220  1jfiA[W.C. ImhzG[W.C. Ipra_[W.C. 2erl_|[W.C.
1d2zB|W.C. 1guxB|W.C. 1jfiB[W.C. ImkdA|W.C. IpsrA[W.C. 2ezi_|W.C.
1d5vA|W.C. 1gvdW.C. ljgcA[W.C. Imn8D|W.C. IpsyA|W.C. 2ezl [W.C.
1d8bA|W.C. 1gxmB|W.C. ljgsA|W.C. ImplA[W.C. 1puoA|5-73 2ilk_[W.C.
1d§jA[W.C. 1gyzA|W.C. 1jhgA|W.C. Imr8A[W.C. 1puoA|93-164 2lefA|W.C.
1d81A|65-140 1gzsB|W.C. 1jigA|W.C. ImwbA|W.C. 1pvhB|W.C. 21fb_|W.C.
1dgnA|W.C. 1hOtB|W.C. LjjrA|W.C. ImzbA[W.C. 1pzqA|W.C. 2lisA|W.C.
1dizA[100-282  1h1jS|W.C. 1jjsA|W.C. InlfAW.C. IpzrA|W.C. 2pvbA|W.C.
1dk8A|W.C. 1h31B|W.C. 1jkuA|W.C. In32R|W.C. 1q02AW.C. 2sas_[W.C.
ldnyA|W.C. 1h3IB|W.C. ljkw_|11-161 In3kA|W.C. 1q08A|W.C. 2tmvP|W.C.
1dp3AW.C. 1h4jBIW.C. 1jkw_|162-287 1n62D]|82-160 1q2zA|W.C. 3csmA[W.C.
1dpSB|W.C. 1h4ID|W.C. LjI7AW.C. 1n69B|W.C. 1q8cA|W.C. 3hdhC|204-295
1dp7P|W.C. 1h60A|W.C. 1jli_|W.C. In89A|W.C. 1qatA[206-298 3htsB|W.C.
1dpuA|W.C. 1h8el|W.C. 1jniA|W.C. In8vA|W.C. 1qksA[9-135 3ygsP|W.C.
1dqeA|W.C. 1h97AW.C. ljoyA|W.C. In9dA|W.C. 1qntA[92-176 4ctsA|W.C.
1du6AW.C. 1h99A|54-168 1jgjD[213-333 Inc5AW.C. 1gpmA[W.C.

443 all-B domains

lalx_[W.C. learA|1-74 1h6xA[W.C. 1k8kC|W.C. InpuA[W.C. Ir2mA[W.C.
1a8vA[48-118 leazA[W.C. lhavA|W.C. 1k9cA|W.C. IngjA[W.C. 1r6jA[W.C.
la9v_[W.C. led7A|W.C. lhee [W.C. lkawA|W.C. InwbA[W.C. 1r6kA[W.C.
lagd [W.C. legxA[W.C. 1hefX|W.C. 1kd6A|W.C. InxmA[W.C. Ir75AW.C.
laiw_[W.C. lehkBJ41-168 1hdkA|W.C. 1kdmA|W.C. InycA[W.C. Irhil|W.C.
lajw_[W.C. lejfAlW.C. 1he8A[353-524  1khoA]250-370  1nz9A[W.C. 1ri9A|W.C.
lam2_[W.C. 1eo2A[W.C. 1hk6A|W.C. 1kikA|W.C. loluAW.C. Irip_|W.C.
laol_[W.C. leqrA|1-106 1hkf [W.C. 1kj2B[W.C. 103sA[8-137 1rk8C|W.C.
laonO[W.C. lernb_|10-116 lhlc_|W.C. 1knmA[W.C. 1o4tA|W.C. ItkrA[W.C.
lavgl|W.C. lethA|337-448  1hm8A|252-459  1ko6C|W.C. lod4yAW.C. Irl1A|W.C.
lax3 [W.C. leuwA|W.C. 1hmwA|[336-599 1kqlA|W.C. 1051A|1-129 IrocA|W.C.
layoA|W.C. lewiA[W.C. 1hmwA|600-699  1kqrA|W.C. loSpAW.C. IrqwA[W.C.
1b34B[W.C. lexh_|W.C. 1ht6A|348-404 lksr_[W.C. 106sB|W.C. 1s2bA|W.C.
1b35A|W.C. lexsA|W.C. Thtrp|W.C. 1kt6A|W.C. 107iB[W.C. 1s2eA[W.C.
1b55A|W.C. leysH|59-259 1hu8A|W.C. Ikum_|W.C. lod3AW.C. IselAl1-125
1b9xA|W.C. lezgA|W.C. 1hwhB|131-237  1kv7A|171-335  lodmA|W.C. Isfp_[W.C.
1bak_|W.C. 1f3uB|W.C. 1hwhBJ|32-130 1kv7A|31- 170  loekA[W.C. 1sg3A|1-187
1bbpA|W.C. 1f53AW.C. 1hxrB|W.C. lkwaA|W.C. lofzA|W.C. 1sg3A[195-343
1bci_|W.C. 1f60A[W.C. 1hzeA|W.C. 1kxgA|W.C. 10goX|202-574 1sm4A|67-207
Ibdo_[W.C. 1f86A[W.C. 1i07A|W.C. 1kxIA|W.C. logoX]3-201 Isr3AW.C.
1bdyA|W.C. 1f8eA|W.C. lil6_|[W.C. 11cAW.C. lohlAW.C. 1ssxA|W.C.
1bhu_|W.C. 1feuD|W.C. LiljA|W.C. 111nB[W.C. 1oh4AW.C. 1tfhB|107-210
16j8_|W.C. LffkN|W.C. 1i40A|W.C. 1110B[W.C. loioA|W.C. 1tfhBJ5-106
Ibpv_[W.C. 1fg9E|110-221  lidvA|W.C. 112hA|W.C. 1okOA|W.C. 1tiiD|W.C.
1bghH|W.C. 1fg9E|13-109 1i8aA[W.C. 11b6A|W.C. lop4AW.C. Itiu_|W.C.
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1br9_|[W.C. 1thoA|W.C. 1i9bA|W.C. 1f7A|W.C. logkA|W.C. ItI2A|W.C.
1bshA|1-86 1fhrA|W.C. liaoA|83-178 11ixB|160-261 lou8A|W.C. Itmel[W.C.
IbwmA[3-116  1fi2A|W.C. liarB|1-96 11ktA|W.C. louxA[W.C. Ittg [W.C.
IbymA|W.C. 1firA|W.C. liarB|97-197 1Im8V|W.C. loy2A|W.C. Itul [W.C.
1c01AW.C. 1fI0A|W.C. 1ib5A|W.C. 1ImiA|W.C. 1pOsE[W.C. 1ub4B|W.C.
1c28A|W.C. 1flmA|W.C. 1ib8A|91-164 1IplA|W.C. I1plmA|1-49 lucsA[W.C.
1c4rB|W.C. HitY|W.C. libyA|W.C. 1lugA|W.C. IpImA|331-404  1ud8AJ391-480
lcSeA|W.C. 1 fmmS|W.C. licl1AJ1-82 1lugB|W.C. 1p35CIW.C. luepA|W.C.
1c5fK|W.C. 1fod1|W.C. lic1A|83-190 ImIfB|W.C. 1p3eA[W.C. TuffA|W.C.
1eSILIW.C. 1fujA|W.C. life |W.C. Im30A|W.C. 1p4pA|W.C. TufxA|W.C.
1c8cA|W.C. 1fviA|190-293 LifrAW.C. Im4o|W.C. 1p9uA|W.C. lugl A|W.C.
1c9iA[3-330 Ifyc_|[W.C. ligg/W.C. Im5zA[W.C. Ipex_|W.C. 1ujvA|W.C.
1c90A|W.C. 1g291]241-301  1ihw|W.C. Im7eA[W.C. IpbA|W.C. lujxA|W.C.
1c9uB|W.C. 1g291302-372  1iisC|5-86 Imai_|[W.C. 1pfsSA|W.C. lulp_ [W.C.
lcawB|W.C. 1g2bA|W.C. 1iisC|87-171 ImdaH|W.C. Ipgs |141-314 TumiA|W.C.
ledb [W.C. 1g3gA|W.C. likoP|W.C. Ime6A|W.C. Ipgs |4-140 luscA|W.C.
1ci0AW.C. 1g43A|W.C. LIfAW.C. ImfgA[W.C. 1ph7A[205-328  1ut4B[W.C.
1ci5A|1-95 1g5vA|W.C. 1im3D|W.C. ImfmA[W.C. 1ph7A[36-204 luw7A|W.C.
lcid |106-177  1g6eA|W.C. lirsA|W.C. ImggA[W.C. Ipht [W.C. 1uz0OA|W.C.
Icid_|1-105 1g6zA|W.C. lis3A|W.C. Imi8A|W.C. 1pinA|6-39 1v27A|W.C.
lepm |[W.C. 1g84A|W.C. liwnA|W.C. ImjuL|108-214  1pjwA[W.C. lvie [W.C.
1cq3AW.C. 1g88A|W.C. 1j0sA|W.C. ImjuL|1-107 1pk6A|W.C. Iwbe_|W.C.
leqyA|W.C. 1g90A[W.C. 13rA|W.C. ImnnAW.C. 1pkhB|W.C. Iwhi_ [W.C.
ler5A26-107 1gc6A]199-297  1j7vR101-206 ImuzA[W.C. Iple |[W.C. 1wkt [W.C.
Icto |W.C. 1gcqC|W.C. 157vR|2-100 1mvfD|W.C. Ipms_|W.C. IxntA|W.C.
lcur |[W.C. 1gglA|W.C. ljer |W.C. ImvxA|W.C. 1pq7AW.C. 1ytfD|55-119
1d1nA|W.C. 1gjxA|W.C. 1jhjA|W.C. Imy7B|W.C. 1prtD|W.C. 2arcB|W.C.
1d3bA|W.C. 1gl4B|W.C. LjjjA|W.C. 1mzkA|W.C. 1prtF[W.C. 2bpa2|W.C.
1d7pM|W.C. 1gmiA|W.C. 1jk4A[W.C. In0fC|W.C. Ipse_[W.C. 2dynA|W.C.
1d81A|1-64 1gnhA|W.C. IjmlAW.C. In32L|W.C. 1pybA|W.C. 2hntE[W.C.
Ides_[W.C. 1gpOA|W.C. 1jo8A|W.C. In3jA|W.C. 1q67B|W.C. 2hrvA[W.C.
1ddmA|W.C. 1gppA[W.C. ljopA|W.C. In6uA|110-212  1qauA[W.C. 2ila_|[W.C.
1dg6A|W.C. 1gghD|W.C. ljovA|W.C. 1n6uA|1-109 1qdnA|1-85 2nlrA|W.C.
1dj7B|W.C. 1gqwB|W.C. 1jq7A|W.C. In8bA|W.C. 1qfoA|W.C. 2sns_|W.C.
1dqgA|W.C. 1gsgP|339-547  1jsyA|176-399 In8kA|1-163 1qksA|136-567 2stv_|W.C.
1dqiA|W.C. 1guiA[W.C. 1jsyAl6-175 1n8kA[340-374  1qleB|108-252 2tnfA|W.C.
1dqtA|W.C. 1gv9A|W.C. Ijt8A|W.C. Inct [W.C. 1qouB|W.C. 3chbD|W.C.
1ds1AW.C. lgvmF|W.C. 1jytA|W.C. Ine3A|W.C. 1qqp4|W.C. 3dpa |1-124
1dxmAW.C. lgvp [W.C. 1kOhA|W.C. InepA|W.C. IqreA|W.C. 3dpa |125-218
1dxwA[W.C. lgwmA[W.C. 1k2fA|W.C. InglAW.C. 1qw9A|385-501  3ezmA[W.C.
1dz1A[W.C. 1gxcA[W.C. 1k3bAW.C. InhOA|W.C. 1qw9A|5-17 3mspA|W.C.
1dzkA|W.C. 1gxeA|W.C. 1k3xal1-124 Inh2C|W.C. 1qwdA|W.C. 3ncmA|W.C.
1e0IA|W.C. 1gywB|W.C. 1k45AW.C. InivA|W.C. 1qwnA|523-1044  3seb_|1-121
1e44B|W.C. 1h2cA[W.C. 1k4zA|W.C. InkoA|W.C. IqwyA[W.C. 3sil_|W.C.
leScA|W.C. 1h2nA|W.C. 1k5cA|W.C. Inkr_[102-200 1qxmA|149-286  3vub_[W.C.
leSull1-89 1h2wA|1-430 1kSjA|W.C. Inkr_|6-101 1qxmAJ4-148 4aahA|W.C.
1e9gA|W.C. 1h3zA|W.C. 1k5nA|182-276  1nls_|W.C. 1qylAW.C. 4hmgA|W.C.
1e9yA|106-238  1h4aX|1-85 1k5nB[W.C. InnxA|W.C. 1rOuA|W.C. 4ull_[W.C.
leajB|W.C. 1h6fbB|W.C. 1k8hA|W.C. 1nofA[31-43 I121A|W.C.

346 o/B domains
laba_|[W.C. 1f61A[W.C. 1i24A|W.C. 11qtB|109-324 loc7A[W.C. Ir18A[W.C.
lao3A[W.C. 1OvAIW.C. 1i2zA[W.C. 11qtB|2-108 1od6A|W.C. 1126 A[W.C.
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lay7B|W.C. 1fezA|W.C. 1i4nA[W.C. 11qtB[325-456 lodgA|W.C. 1r2qA[W.C.
layl |1-227 1ftkC|W.C. li4wA|W.C. 11s1A[89-295 lodzA[W.C. 1r5pB|W.C.
layl_[228-540  1ffkG|W.C. 1i69B[W.C. 1Tu4A|W.C. loftA[W.C. Ir5xAW.C.
1b26A|179-412  1ffkL|W.C. 1i71A|113-214 ImOiA|W.C. loheA42-198 Ir5yA[W.C.
1b26A4-178 1ftkVIW.C. liagB|W.C. ImIbBW.C. lohhG|W.C. 1r6dA[W.C.
1b30A|10-109  1fo5A|W.C. libsB|167-315 ImInA|W.C. lojrA|W.C. 1r6hA[W.C.
1b30A[232-499  1fovA|W.C. 1ibsB|6-166 ImInB|W.C. lon4A|W.C. IrflIA|W.C.
1b4uB|W.C. 1fp2A[109-352  liibA[W.C. Im2dA|W.C. looyA|1-242 IrfvA|W.C.
1b8gB|W.C. 1fqkA|28-60 liiwA[W.C. Im2eA|W.C. looyA[261-481 1rthqA[W.C.
1b93A|W.C. 1fsgA|W.C. linlA|W.C. Im3gA|W.C. lorhA|W.C. 1rkuA[W.C.
IbcrA|W.C. 1fvkA[W.C. lioiA|W.C. Im4lA|W.C. 10t5A[123-460 Irpa_|W.C.
1berB|W.C. 1fvpA[W.C. litgA[W.C. Im65A|W.C. lovyA|W.C. Irrf [W.C.
1bqcAW.C. 1fyeA[W.C. 1iu9A|W.C. Im6bB|311-479  1pImA|50-330 IrtqA[W.C.
lbrt [W.C. 1fztA|W.C. lixh [W.C. 1m6bB|6-165 1p33C|W.C. IryoA[W.C.
1bvh-[W.C. 1g291/1-240 lizyA|W.C. Im7gD|W.C. 1p4cA[W.C. 1s4pB|W.C.
1bx4A|W.C. 1g5qA|W.C. 1j2rC|W.C. ImavA[W.C. IpSfA|W.C. 1sfsA|W.C.
Ibyi_|[W.C. 1g64A|W.C. 1j5sA|W.C. Imf7A[W.C. 1p5zB|W.C. IshuX|W.C.
1bykA|W.C. 1g66A|W.C. 1jdnA|W.C. Imj5A|W.C. 1p60A[W.C. Ist9A|W.C.
1c25 [W.C. 1g7eA|W.C. 1;f8A[W.C. ImldA|1-144 1p73C[W.C. Isx5A|W.C.
Icen_|W.C. 1g70A|1-75 1ji3A|W.C. Imoq_|[W.C. 1p74BJ|102-272 1t2dA1-150
1cfzZA[W.C. 1g8aA|W.C. 1jikA|W.C. ImqO0A[W.C. 1p74B|1-101 Ithx_[W.C.
lep2|W.C. 1ga6A|W.C. LJITAW.C. ImuwA[W.C. 1pb7A|W.C. 1ud8A|1-390
lcqgW.C. lgei [W.C. 1j1sB|W.C. ImwjA|W.C. 1pdo |W.C. luehA|W.C.
lcui |W.C. 1gin_|[W.C. 1jmkO|W.C. ImxiA|W.C. 1pfvA|176-388 lug6A|W.C.
lcxgA[W.C. 1gkIA|W.C. 1jmvA|W.C. In1dA|W.C. 1pfvAj4-140 luocA|W.C.
1d2hA|W.C. 1gllO)2- 253 1jn0A[313-333 In25A|W.C. 1pmoC|W.C. lursA|W.C.
1d3vA|W.C. 1g110]254-499 ljon [W.C. In20B|W.C. 1poiB|W.C. 1usOA|W.C.
1d40A|W.C. lglv |1-122 1jq3C|W.C. 1n32B|W.C. 1pwyE|W.C. luslA|W.C.
1d5tA[389-431  1gn1G[W.C. 1jqjD|1-209 In31A|W.C. 1pyoB[W.C. luwcA[W.C.
1dbwB|W.C. 1gph1235-465  1jr4A[W.C. 1n4wA[9-318 1pztA|W.C. luzbA|W.C.
1dciA|W.C. lgqoVIW.C. 1jsxA[W.C. In55A|W.C. 1qlqA|W.C. 1v2xA[W.C.
1de5B|W.C. 1gre|W.C. LjtvA|W.C. In7hB|W.C. 1q71A|W.C. IvIrA[W.C.
1dirA|W.C. lgscAll-84 1jubA|W.C. In7iB[W.C. 1q7ID|W.C. 1v8aA|W.C.
1dI3AW.C. 1gsgP|8-338 1jxiA[W.C. In8kA|164-339  1q92A|W.C. 1vguB|W.C.
1do0A|W.C. lgsq |1-75 1kOmA|6-91 In9kA|W.C. 1qc9A|W.C. IvhwF|W.C.
1dosA|W.C. 1gumA|4-80 1k7cA[W.C. InbwB|W.C. 1qdIB|W.C. IvimA|W.C.
1dqzA|W.C. 1gvfA|W.C. 1k92A(1-188 InOA|W.C. 1qfeA|W.C. 1x01A|19-18
1e0jA|W.C. lgwz |W.C. 1kgdA|W.C. Inh7A|1-210 1qgeE|W.C. lyacA|W.C.
1eSkA|W.C. 1h2wAJ431-710  1kgzB|81-344 InmpA[W.C. 1qgvA|W.C. lyub [W.C.
1e6bA|8-87 1h6jA 1ki9B|W.C. Inn5A|W.C. 1qhhA|W.C. 2at2A|1-144
lecxA|W.C. 1h6vC|14-170 1kicA[W.C. InnfA|W.C. 1qhhB|W.C. 2at2A|145-295
ledg |W.C. 1h6vC|171-292  1kjgB[2-112 InnuC|W.C. 1qhhC|W.C. 2pjtB|W.C.
leexB[W.C. 1h6vC[293-366  1kmvA|W.C. 1nofA[44-320 1qj4A|W.C. 2pth_|[W.C.
lefm_|12-190 1h75A|W.C. 1kngA|W.C. InoyA|W.C. 1qkiB|11-199 2tpsA|W.C.
lefpA2-184 1hd2A|W.C. 1kqpA|W.C. Inp6B/W.C. 1qkiB|435-449 2tsyA|W.C.
leiwA|W.C. 1hdoA|W.C. 1kr2F|W.C. Inp7A|1-204 1qlwB|W.C. 3cla_[W.C.
leizA|W.C. 1hg3A|W.C. lkte [W.C. InrjB|W.C. 1qmlA|W.C. 3fua [W.C.
lem8B|W.C. 1hjgA|W.C. 117aA|W.C. Inw8A[W.C. 1qnrA|W.C. 3hdhC|12-203
leolA|W.C. 1higA|W.C. 1180A|W.C. InzjA[W.C. 1qntA|6-91 3pviA|W.C.
leomA|W.C. 1hm8A[2-251 11c7A|W.C. 1008A|W.C. 1qoSK|W.C. 4eugA|W.C.
leqa_|[W.C. 1hqkA[W.C. 11ixB[262-439 1058A|W.C. 1qopB[W.C. 6pfkA[W.C.
les9A|W.C. 1ht6A[1-347 11ixB|57-159 107jA|W.C. 1qtnB|W.C. 7a3hA|W.C.
lethA|1-336 1htwA|W.C. 11k9A|W.C. 1o7qA|W.C. IqtwA|W.C. 7mhtA[W.C.
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lexcA|W.C. 1huxA|W.C. 11kxD|W.C. 108xA|W.C. 1qw9A|18-384 8abp_|W.C.
1f2tB|W.C. 1hxhA|W.C. 1114A[36-292 loaa_|W.C. IqwnA[31-411
If51EW.C. 1i0dB[W.C. HIfA|W.C. LoboA|W.C. 1gzmA[W.C.

441 o+ domains
1691A|W.C. leqrA[421-590  liad_|W.C. 1kn6A|W.C. 1026A|W.C. 1r29A|W.C.
la2n_[W.C. leuvA[W.C. liajB|W.C. 1ko9A|12-135 102fB|W.C. 1r52B|W.C.
la2pA|W.C. leuvB|W.C. liaoA|1-82 1kotA|W.C. 1050A(77-145 1r8hC|W.C.
la67_[W.C. levOA[W.C. 1ib8A|1-90 1kp6A|W.C. 107bT|W.C. IregY|W.C.
1a9nD|W.C. lew4A|W.C. 1ibxA|W.C. 1kpgA|W.C. 1o7nB|W.C. Irfa_|W.C.
laa3_|W.C. lexjA|121-277  1idOA|W.C. 1kptA|W.C. 108rA|W.C. 1jtA|W.C.
laf5-|W.C. 1fOSA|W.C. lidpA|W.C. 1kqfB|2-245 locyA|W.C. 1ro2A|W.C.
laihB|W.C. 1f0zA|W.C. lihrA|W.C. 1kufA|W.C. lodhAW.C. 1rrtA231-360
laipH|54-196 1f2rI|W.C. 1ijkC|W.C. 1kvdB|W.C. 1of5A|W.C. lrwzA|1-122
lako_[W.C. 1f32A|W.C. likm_|W.C. 1kveA|W.C. 1of5B|W.C. 1rwzA|123-244
laps_|W.C. 1f40A|W.C. limuA|W.C. 1kznA|W.C. lofthG|W.C. 1ry9AW.C.
lapzA|W.C. If51A|W.C. liouA|W.C. 1100A|W.C. 1oh0OA|W.C. IryjA|W.C.
lag4A|W.C. 1f60B|W.C. lipbA|W.C. 11pAW.C. 10j5AW.C. 1s0yD|W.C.
laqzB|W.C. If71A|W.C. lipgA|W.C. 113gA|W.C. lojgA|W.C. 1sOyE|W.C.
lavpA|W.C. 196AW.C. ligsA|W.C. 113kA|103-181  1oo5A[W.C. 1s5fA|W.C.
layyB|W.C. 19yAW.C. ligzA[W.C. 113kA[8-91 lopd_[W.C. 1s5uB[W.C.
1b04B|W.C. 1ffk1[1-79 liryA|W.C. 114zB|W.C. lopzA|W.C. 1s79A|W.C.
1b10A|W.C. 1ffk1[80-172 lis7K[W.C. 115pAJW.C. logjB[W.C. 1s7jA[W.C.
1b33N|W.C. 1ffkD|W.C. litpA|W.C. 119aA[W.C. loqqA[W.C. 1sb6A|W.C.
1b3aA|W.C. LffkF|W.C. 1iu3C[W.C. 119yA|W.C. logvA[W.C. 1scjB/W.C.
1bSeA|W.C. 1ffkP|W.C. liyjB|W.C. 1lbu_[84-213 logwA[W.C. 1sfOA|W.C.
1b65A|W.C. 1ffkU[W.C. Liv3A|W.C. 11kkA|W.C. lotfA[W.C. 1sgoA[W.C.
1b69A|W.C. 1ficAlW.C. livzA[W.C. 1114A[293-354 lotgA|W.C. 1sjwA|W.C.
1b6fA|W.C. 1fmOD|W.C. 1ix9A[91-205 1IBA|W.C. lowtA[W.C. Isly_|451-618
1b87A|W.C. 1fpyA[101-468  1jOgA|W.C. 1IniA|W.C. 1pOrA|W.C. 1sp4A|W.C.
1b9IA|W.C. 1fpyA|1-100 1j27A|W.C. 11o7A|W.C. 1p0zA|W.C. 1st4A[146-337
1bnlA|W.C. 1fu6A[W.C. 1j3gA|W.C. 11q9A|W.C. IpItA|W.C. 1st4A[38-145
1bob_[W.C. 1fviA|2-189 1j4wA|104-174  11tzA|W.C. 1p22B[2-59 1t0gA[W.C.
1bxyAW.C. 1fwOAW.C. 1j4wA|1-74 1ly7A|W.C. 1p32B|W.C. 1t0yA|W.C.
Iby2_[W.C. 1fx4AW.C. 1jS7TAIW.C. ImOvA|W.C. 1p4ID|W.C. 1t1dA|W.C.
1bysA|W.C. 1g61A[W.C. 1j6rA|W.C. Im15A[96-357  1p4oA[W.C. 1t2dAJ151-315
1bywA[W.C. 1g71A[W.C. 1j8cA[W.C. Im4jA|W.C. Ip65AW.C. 1tbaB|61-155
1c05A|W.C. 1gc1GIW.C. ljatA|W.C. ImbxD|W.C. 1p9kA|W.C. Itig [W.C.
1c7kA|W.C. 1gc6A(1-87 ljatB|W.C. ImbyA|W.C. 1pa4A|W.C. 1tiiC|W.C.
1cc8A|W.C. 1gdOA|W.C. 1jbiA|W.C. Ime4A[W.C. IpavA|W.C. lublA|W.C.
1cjkB|W.C. 1gh8A|W.C. 1jeSB|W.C. Img4A[W.C. Ipba [W.C. TufyA|W.C.
1ckjB|W.C. 1ghhA|W.C. 1jd21|W.C. Img7A|14-187  1pbuA[W.C. lunnC|W.C.
Ickv_|W.C. 1gk9A|W.C. 1jd2K|W.C. Img7A|188-380 1pc6B|W.C. lugSA|W.C.
leqmA[W.C. 1gk9B|W.C. 1jd2L[W.C. ImhdA[W.C. IpcfA|W.C. lusmA|W.C.
lev8_|[W.C. 1golA|W.C. 1jd2M|W.C. ImhmB|W.C. Ipil_|[W.C. luutA|W.C.
lexyA[W.C. 1gphl|1-234 1jfmA|W.C. ImkOA|W.C. 1pinAJ45-163 luuzB|W.C.
lezpA|W.C. 1gpgB|W.C. 1jh6A|W.C. Imk4A[W.C. IpgsA|W.C. luw4A|W.C.
1d5tA[292-388  1gtpA[W.C. 1jhsA[W.C. ImkbA|W.C. IprtA[W.C. 1v2yA[W.C.
1d8iA|W.C. 1gtqA|W.C. 1jidA|W.C. ImI8A|W.C. 1prtB[4-89 1v74A|W.C.
1d9uA|W.C. 1gw5S|W.C. 1jihA[390-509 ImldA[145-313  1pugC|W.C. 1vazA|W.C.
1dchA|W.C. 1gxuA|W.C. 1jk3A|W.C. ImogA|[W.C. 1pvmB|65-142 Ivec |[W.C.
1dcjA[W.C. 1gxyA|W.C. 1jknA|W.C. ImolA|W.C. IpytA|W.C. 1vhiB[W.C.

ldef [W.C. 1gy7B|W.C. 1jn0A|149-312 1mszA|W.C. 1pz4A|W.C. 1vi§B|W.C.
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1di2B|W.C. 1gyfA|W.C. 1jnzB|W.C. Imw4A[W.C. 1953A|W.C. Ivih |[W.C.
1dizA[1-99 lgyxA|W.C. 1joOA|W.C. ImwpA|W.C. 1q5yB|W.C. IxxcA|W.C.
1dokA|W.C. 1hOyA|W.C. ljosA|W.C. ImwwB|W.C. 1q81A|W.C. 2atcB1-100
1dt4A|W.C. 1h3qA|W.C. 1jrkA|W.C. In13C|W.C. 1q8rA|W.C. 2bopA|W.C.
1e0gA|W.C. 1h5pA|W.C. 1jrmA|W.C. 1n32C|107-207  1gb3B|W.C. 2fdn_|W.C.
lelhA|W.C. 1h6hA|W.C. 1jruA|W.C. 1n32CJ2-106 1qddA|W.C. 2fmr_[W.C.
lelhD|W.C. 1h6kY|W.C. 1jw3A|W.C. In321|W.C. 1qdnA[86-201 2igd [W.C.
1e44A|W.C. 1h6vC|367-495  1jyoA|W.C. In32J]W.C. 1qfcA|W.C. 2jdxA[W.C.
1e5ul|90-187 1h8cA|W.C. 1kOKA|W.C. IndwA|319-450 1qg7A[W.C. 2nef |W.C.
1e7kA|W.C. 1hbnB|2-188 1k1gA|W.C. 1n62C|1-177 1qhkA|W.C. 2nmtA|34-218
1e71A]1-103 1he8A|144-321  1k3eA|W.C. In62C|178-286  1gkfA|W.C. 2pleA|W.C.
1e87AW.C. 1hl6D|W.C. 1k4iA|W.C. 1n62D[2-81 1qkiB|200-434 2proB4-85
1e9yA|1-105 1hmjA|W.C. 1k5nA|1-181 In6zA|W.C. 1qkiBJ|450-511 2proB|86-158
learA|75-142 1hq6A|W.C. 1k83K|W.C. IneiA|W.C. 1qkIA|W.C. 2sak |[W.C.
leayC|W.C. lhqi_[W.C. 1k8bA|W.C. Inh7A211-284  1qlOA[W.C. 2sx1_[W.C.
1eb6A|W.C. 1hqzl|W.C. 1k8kF|W.C. InkiA|W.C. IqmtA|W.C. 2tbd_[W.C.
lecsA|W.C. 1hv2A|W.C. 1k92A[189-444  1no5AW.C. 1qolA|W.C. 2t1dI[W.C.
lefSAW.C. lThywA|W.C. 1kafD|W.C. Inr3A|W.C. 1qr5A|W.C. 2ula [W.C.
leggB/W.C. 1hz6B|W.C. lkanA|1-125 InjA|W.C. 1qs1AJ265-461 2vil [W.C.
legwA[W.C. 1hztA|W.C. lkegC|W.C. Inskl|W.C. 1gs1A|60-264 3gec [W.C.
lektA|W.C. 1iIOVvA|W.C. 1kcqA|W.C. InvjD|W.C. 1qsoA|W.C. 3lzt (W.C.
1el6A[W.C. LiI2AW.C. 1kf6BJ1-105 InwwB|W.C. 1gstA|W.C. 3seb [122-238
lemwA|W.C. 1i17A|W.C. 1kgOC|W.C. InwzA|W.C. 1qtoA|W.C. 3znbA|W.C.
leqkA|W.C. li35A|W.C. 1k kA[W.C. InxiA|W.C. 1qxyA[W.C.
leqrA|107-287  1i7eA|W.C. 1kjqB|113-318 Inz8A|W.C. 1qymA|W.C.
leqrA288-420  1i9yA|W.C. 1kn0A|W.C. 100pA|W.C. 1qynA[W.C.
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