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ABSTRACT

It has been recognized that coordinating the shipments of manufacturing parts from the

suppliers with the production schedule takes important roles on the smooth continuation of

production in mass production systems. In this thesis, we investigate two problems that we

encountered while analyzing the sourcing operations of a leading coach bus manufacturer

in Turkey. The first problem addresses unorganized delivery operations while the second

considers unreliable supplier capability. We optimize the parts ordering decisions under

these two settings.

In the first part of the thesis, we study the multiple-item lot-sizing problem for a manu-

facturer that sources parts from a single supplier over a multi-period planning horizon. In

order to operate more efficiently, the manufacturer controls its suppliers’ delivery process

in addition to its own parts ordering process. Since transportation costs are charged to

the manufacturer, the manufacturer optimizes the ordering and shipment decisions. We

consider the option of delaying transportation of a less-than-full truckload to the next pe-

riod by allowing the use of items in the safety stock of the manufacturer. We develop a

mixed integer programming model that minimizes the sum of transportation and inventory

holding costs incurred to the manufacturer under the proposed policy. We investigate the

effects of delaying shipments on both cost and service levels under stochastic environments

by numerical experiments. The results indicate that the proposed policy is especially effec-

tive in reducing cost when frequent shipments with small sizes arise without creating much

stock-out risk.

In the second part of the thesis, we study the dynamic lot-sizing problem under random

supply where the supplier’s shipment behavior is represented by a model that assumes a

random portion of the current order is shipped in every period. To improve the sourcing

process, we propose a method that enables the manufacturer to obtain more information

about the supplier reliability throughout its ordering process. For this purpose, we develop

a dynamic programming model with Bayesian Updates of supplier capability. There is no
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information available about the supplier capability at the beginning of the planning horizon.

We try to estimate the supplier’s capability by using information on previous orders’ ordered

and received amounts. In this method the ordering decisions are optimized by considering

the available information until that point. We then compare the proposed algorithm with

the cases under Perfect Information as well as the case with No Information on supplier

capability. In the Perfect Information case, the optimal sourcing decision is found by as-

suming that the supplier ships the given order with a binomial distribution and the supplier

capability (reliability) parameter is known by the manufacturer. In the No Information case,

the supplier shipment behavior is again binomially distributed but the reliability parameter

is not known. By computational experiments, we show that the Bayesian Update approach

provides significantly better expected total cost values than the No Information case. Fur-

thermore, the optimal expected costs found by the Bayesian Update approach are close to

those found in the Perfect Information case. With the proposed approach, the state space

grows faster compared to the Perfect Information and No Information cases with problem

size and input data magnitude. For this reason, problems with only moderate size can be

solved in reasonable time with this approach. To overcome this computational difficulty, we

develop an approach that reduces state space and solves larger problems approximately in

reasonable solution time.



ÖZETÇE

Üretim parçalarının tedariğinin üretim planlamasıyla birlikte koordinasyonu sağlanarak

yapılması, seri üretim sistemlerinin sürerli devamlılığında önemli bir rol oynamaktadır. Bu

tezde çalışılan problemlerle Türkiye’de faaliyet gösteren bir otobüs üreticisinin tedarik zinciri

incelenirken karşılaşılmıştır. İlk problem problem sevkiyattaki düzensizlik ile, ikinci problem

tedarikçinin değişken sevkiyat miktarı ile ilgilidir. Bu iki tespit için üretim parçalarının

sipariş verme kararları eniyilenmektedir.

Tezin ilk kısmında çok dönemli planlama çevreninde, üretim planlamasını sağlamak

amacıyla tek tedarikçiden çok sayıda ürünün tedariğini gerçekleştiren üreticiler için sipariş

büyüklüğünün belirlenmesi problemi üzerine çalışılmaktadır. Sevkiyat maliyetlerinin üretici

tarafından ödendiği sistemlerde, üretici en iyi sipariş çizelgesini belirlerken aynı zamanda

sevkiyat çizelgesini de kontrol altında tutmak istiyor. Verilen siparişleri taşımak için kul-

lanılacak araçlar sipariş verildikten hemen sonra gönderilmek yerine, tam dolu olmayan

araçların sevkiyatını ertelenebilme seçeneğini göz önünde bulunduruyoruz. Bir sonraki

sevkiyat dönemine ertelenmiş olan ürünler için üretici kendi deposunda emniyet stoğu olarak

tuttuğu ürünleri kullanabilmektedir. Önerilen politika altında üretici tarafından ödenen

sevkiyat ve stokta tutma maliyetlerini enküçükleyen bir karmaşık tamsayı programlama

modeli geliştirdik ve bu modeli kullanarak en iyi sipariş ve sevkiyat planını buluyoruz. Kısmi

olarak ertelenmiş sevkiyattan doğabilecek maliyet ve hizmet kalitesi analizleri, bir otobüs

üreticisinden alınmış verilerle ve benzetim koşumlarıyla yapılmıştır. Talep yüzünden sık ve

küçük miktarlarla yapılması gereken sevkiyat sistemlerinde, önerilen politika daha verimli

sonuçlar vermektedir.

Tezin ikinci kısmında rassal tedarik ortamında dinamik sipariş büyüklüğünün belirlen-

mesi problemi üzerinde çalışılmaktadır. Tedarikçi her sipariş döneminde verilen siparişin

rassal olarak belirlenmiş bir bölümünü üreticiye göndermektedir. Sipariş sistemini geliştirmek

için üreticinin planlama dönemi boyunca verdiği siparişlerin ve elde ettiği miktarların bil-

gisini kullanarak tedarikçisinin rassallığını tahmin etmeye çalıştığı bir modelleme öneriyoruz.
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Bu sebeple dinamik sipariş büyüklüğünün belirlenmesi problemine tedarikçinin yeterliliğini

güncelleyen bir Bayes güncellemesi modeli geliştirdik. Üretici planlama döneminin başında

tedarikçinin yeterliliği ile ilgili olarak her hangi bir bilgi bilmemektedir. Daha önceki periy-

otlarda elde edilen başarılı ve başarısız sipariş miktarlarını kullanarak tedarikçinin yeterliliği

tahmin edilmeye çalışılıyor. Önerdiğimiz modelin performansının nasıl olduğunu göstermek

için Tam Bilgi ve Hiçbir Bilgi durumlarıyla toplam maliyetleri karşılaştırdık. Tam Bilgi du-

rumunda, tedarikçinin gönderdiği miktarlar verilen sipariş miktarı ve tedarikçi yeterlilik

parametresine bağlı olarak Binom dağılım ile belirlenmektedir. Tam Bilgi durumunda

üretici tedarikçinin yeterlilik parametresini bilmekte ve sipariş miktarlarını ona göre be-

lirlemektedir. Hiçbir Bilgi durumunda gelen miktarlar yine Binom dağılımla belirlenmekte

ancak tedarikçinin yeterlilik parametresi üretici tarafından bilinmemektedir. Hesaplamalı

deneylerle, önerdiğimiz Bayes güncellemesinin Hiçbir Bilgi durumundan çok daha iyi toplam

beklenen maliyet verdiğini göstermekteyiz ve aynı zamanda Bayes güncellemesinin önerildiği

model sonuçlarının Tam Bilgi durumuna çok yakın değerler vermektedir. Belirtilen üç du-

rum için de dinamik programlama modelleri çözülmektedir. Önerilen yaklaşım ile dinamik

programlamadaki durum kümesinin boyutu problem büyüdükçe Tam ve Hiçbir Bilgi du-

rumlarına göre daha hızlı büyümektedir. Çözüm zamanındaki büyümeyi azaltabilmek için

durum kümesini küçülten ve daha büyük problemlerin çözülmesini sağlayan bir yaklaşık

çözüm modeli geliştirdik.
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Chapter 1

INTRODUCTION

The need to coordinate the shipment of parts from suppliers with the production schedule

has long been recognized by manufacturing companies. The smooth continuation of pro-

duction is especially critical in mass production lines, such as those in the automotive and

electrical home appliances industries, where the absence of a single part at the required

time may lead to halts in the manufacturing process. It is important for the production

that the purchased manufacturing parts are received on time and desired amount. Hence,

manufacturers focus on controlling both their parts inventory and the shipment of their

orders from the suppliers, in order to receive the required parts on time and in requested

amounts, with minimum costs. Frequent shipments from suppliers lead to high transporta-

tion costs, whereas ordering in large quantities incurs high holding costs and may even

be prohibited due to space constraints. As the number of end product types increases,

these costs accumulate to significant figures and the underlying planning problem gets more

complicated.

The relationship between manufacturers and suppliers are studied in the supply chain

management problems a lot. In the first part of the thesis, we study the multi-item dynamic

lot sizing problem for a manufacturer that sources parts from a single supplier over a multi-

period planning horizon. We have a manufacturer that tries to source its manufacturing

parts from a single supplier. According to the contract between the manufacturer and the

supplier, the transportation costs of parts shipped from the supplier to the manufacturer are

charged to the manufacturer. Since the transportation costs are not paid by the supplier,

the supplier does not execute an efficient shipment plan and this causes a cost burden

on the manufacturer. For this reason, the manufacturer wants to control its suppliers’

delivery process in addition to its own parts ordering process. While deciding on the order

quantities, the manufacturer also determines the shipment plan of parts from the supplier
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to the manufacturer. In the literature, there are lots of studies that combine inventory

management and transportation. A detailed literature review on this topic is given in

Section 2.1.

For the second chapter of the thesis we study dynamic lot sizing problem under random

supply. We consider a stochastic environment where the amount of given order will not

match with the received amount. According to its production plan the manufacturer tries

to source its manufacturing parts with dynamic lot sizing. However, the supplier is not

reliable and cannot send the entire amount ordered. There is a random difference between

ordered and received amounts at each period an order is given. Because of this uncertainty

in the supply, the manufacturer will face stockouts which is not a desired situation in the

production systems. For this reason, the manufacturer should adjust its ordering plan

so that he/she can deal with the uncertainties in the system. One way of dealing with

the supply uncertainty is ordering more than the demand according to the distribution of

randomness. A detailed literature review on the supplier uncertainty is given in Section 3.1.
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Chapter 2

MULTI-ITEM DYNAMIC LOT-SIZING WITH DELAYED

TRANSPORTATION POLICY

2.1 Introduction

In this chapter of the thesis, we propose a sourcing policy for the multi-item dynamic lot

sizing problem.

In general, two kinds of purchasing situations exist: procurement from a single source

(supplier) or multiple sourcing. In our setting, a manufacturer works with multiple suppliers

but sources each part from a single supplier with whom a long-term relationship has been

established. As opposed to Just-In-Time (JIT) sourcing, we consider a push approach with

an MRP system. The manufacturer orders multiple parts to be used in production, from

a single supplier over a multi-period planning horizon with known demands. When the

manufacturer places an order with a supplier that consists of different quantities of multiple

parts with given due dates, the supplier arranges a shipment plan. The supplier either takes

care of the shipment using its own fleet, or as a common practice, it utilizes a third party

logistics service provider. The parts that are to be shipped in the same period are packed

into trucks and are directly shipped to the manufacturer. Here, we study the case where

the incurred transportation cost is charged to the manufacturer. The transportation cost

consists of a fixed cost per truck plus a variable cost that depends on the distance traveled,

and thus, can be represented by a per truck per trip cost. The problem we focus on is to

find a cost-efficient joint transportation and ordering policy for the manufacturer.

We encountered the problem we study while analyzing the sourcing operations of a

leading coach bus manufacturer in Turkey, and since then have found it to be a common

issue with manufacturers that have to pay for the costs of shipments from the suppliers.

The bus manufacturer had been experiencing several problems with its local suppliers. Most

local suppliers lack an organized delivery system. Some are even unaware of their shipping

quantities and mostly ship their parts several times in a day in less-than-full truck loads to
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the manufacturer. While this frequent shipment has clear advantages in terms of inventory

costs, it causes a significant financial burden on the manufacturer in the long run. In order

to operate more efficiently, the manufacturer wanted to control its suppliers’ delivery process

in addition to its own parts ordering process.

The savings in total costs realized from optimization and coordination of inventory

control and transportation planning in a multi-item inventory system motivated many re-

searchers to analyze the joint problem in both retailing and production settings. We provide

a classification of the studies in this area in Figure 2.1. Retail chain models differ from the

ones in the manufacturing context mainly with respect to the demand characteristics while

coordinating the ordering decisions with inbound or outbound logistics. In retail chain mod-

els, demand is either considered to be uncertain (for example, Cardos and Garcia-Sabater

[2006]) or occurs at a constant rate (for example, Speranza and Ukovich [1994]). On the

other hand, models studying the sourcing of manufacturing parts differ in pull and push

systems. For example, Ben-Khendger and Yano [1994] proposed a heuristic solution proce-

dure for the problem of scheduling the delivery of multiple items from a single supplier to a

manufacturer in a JIT context. There is a fixed cost per truck and inventory holding cost

on end-of-period inventory. Our focus in this study is on push systems, and as such, the

ordering decisions are made for a multi-period planning horizon with given demand values.

Multi-period lot-sizing has been one of the most frequently studied problems in produc-

tion and inventory management literature since Wagner and Whitin [1958]. Its extension to

the case of multiple-items that are shipped together has also attracted significant interest,

especially in the context of optimizing supply chain operations. As seen in Figure 1, the

shipping can be in the form of 1) direct shipment from a single supplier, or 2) consolidation.

In the latter, items at multiple suppliers are collected by vehicle routes. Thus, such sourcing

problems fall under the extensively-studied inventory-routing problem (see Campbell et al.

[1998] for a review on the subject).

Here, we focus on the case of single sourcing with direct shipment of the items from the

supplier and review studies that fall under this category. The shipment costs have been mod-

eled in various ways according to the contracts between the supplier and the manufacturer.

Lee et al. [2002] analyzed the dynamic lot-sizing model with pre-shipping and late-shipping

options, where the transportation costs are stepwise cargo cost functions. They character-
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Figure 2.1: A classification of studies on multi-item transportation and inventory manage-
ment

ized the properties of the problem and developed a polynomial time algorithm to compute

the optimal solution. Li et al. [2004] developed a solution method for the lot-sizing problem

where the cost structure includes a fixed charge for each order, a variable unit purchase

cost, and a delivery cost with a truck load discount structure. Norden and Velde [2005]

provided an integer linear programming formulation and developed a Lagrangian relaxation

algorithm for the multi-product lot-sizing problem under a transportation capacity reserva-

tion contract with direct shipping. Lee et al. [2005] analyzed a dynamic lot-sizing problem

in which the order size of multiple products is optimized to minimize the sum of production,

inventory holding, and freight costs that are proportional to the number of containers used.

A heuristic algorithm with an adjustment mechanism based on the properties of the optimal

solution is proposed.

Several other studies with direct shipment of items have generalized the classical lot-

sizing problem by making the fixed ordering cost dependent on the lot-size. Anily and Tzur

[2005] studied the sourcing of multiple-items from a warehouse or a plant by a retailer. They

assumed that items of identical size are packed into identical capacitated vehicles that incur a

fixed cost per trip. Given dynamic deterministic demand of items over a planning horizon,
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they developed a dynamic programming algorithm that generates an optimal shipment

plan. The proposed algorithm has polynomial time complexity for a fixed number of items.

Consequently, Anily and Tzur [2006] proposed a different approach for the same problem: a

search algorithm that generates different shipment schedules, and a shortest-path approach

that selects a schedule among those. Ertogral [2008] suggested a Lagrangian decomposition

based solution procedure for the multi-item uncapacitated dynamic lot-sizing problem with

transportation costs. The transportation cost is assumed to be a piecewise linear function

of the amount transported. Cost savings are observed with the integrated approach through

numerical experiments.

In this chapter of the thesis, we study a multi-item lot-sizing problem where the ship-

ments are from a single supplier to a manufacturer, and per truck-per trip transportation

costs are incurred to the manufacturer. This problem is similar to the ones studied in Anily

and Tzur [2005], Anily and Tzur [2006] and Ertogral [2008]. Here, we develop a Mixed

Integer Programming (MIP) model to determine the order quantities that minimize total

transportation and inventory holding costs over a multi-period planning horizon with given

time-varying deterministic demand values. We propose and test a shipment strategy called

the delayed transportation policy with the goal of utilizing truck capacities more efficiently,

and optimize the order quantities under this policy. In finding the number of trucks needed,

we do not assume uniform part size as in Anily and Tzur [2005] and Anily and Tzur [2006]

but calculate the number of pallets required for each item based on its size. However, we

still ignore the associated truck packing problem which would give a better estimate of the

number of trucks needed.

Section 2.2 describes the problem and the developed mathematical model. In Section 2.3,

benefits and risks of the delayed transportation policy are demonstrated by computational

tests.

2.2 Lot-sizing under the Delayed Transportation Policy

The goal of the proposed policy is to optimize the order quantities so that the truck capacities

are utilized efficiently. When an order is given to a supplier for the shipment of several items,

these items are packed into trucks in pallets. Depending on the amounts to be shipped and

the truck capacity, less-than-full truck loads (LTL) may arise frequently, while the full
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truck cost must be paid. To increase the truck load percentages, we consider delaying

transportation of a portion of the order to the next period. That is, instead of shipping

the required number of trucks whenever an order is given in a period, if a small truck load

is left, we allow delaying the shipment of those items to the next period and keep them at

the supplier. At the same time, we maintain a minimum safety stock of each part at the

manufacturer so that the production plan is not disrupted due to the delays. We refer to

this policy as the Delayed Transportation Policy (DTP).

2.2.1 Assumptions

Two main assumptions made for the sake of simplicity are the zero transportation lead time

and volume based truck packing assumptions.

The proposed policy is suitable for a system with small transportation times. The

manufacturer and its supplier are in close proximity to each other in the bus manufacturer

case mentioned above. For this reason, the transportation lead time is assumed to be zero in

the model. When the manufacturer puts in an order, the supplier sends the whole amount to

be shipped with zero lead time because of the short distance and the make-to-stock strategy

of the supplier.

The second assumption is about the packing of items into the trucks. Instead of modeling

the three-dimensional packing of items and pallets, we model the utilization of the trucks

by dividing the truck capacity by the volume of the pallets. This is a common assumption

in similar work in the literature (for instance, Ben-Khendger and Yano [1994] and Ertogral

[2008]). Each product is packed into a specific pallet type and how many products fit into

its corresponding pallet type is known. The maximum number of a specific pallet type

that can be packed into one truck is also known. By using these numbers, we calculate the

number of trucks needed to carry the total order in a period.

2.2.2 Mathematical Models with and without DTP

We have per trip per truck shipment cost and holding cost, the initial stock level, pallet

and truck capacities, and demand of each part in each period as inputs to our model.

By using these parameters we calculate the optimal number of parts to be shipped, the

inventory levels, the numbers of trucks to be used, and delayed amount for each product
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in each period. At each period, the model calculates the number of trucks needed with

and without delayed transportation option. The mathematical model for the Multi-Item

Dynamic Lot-Sizing Model with Delayed Transportation policy (MILS-DT) is given below.

Sets:

Set of parts I

Set of periods N

Decision variables:

xin: number of units of part i ordered from the supplier at period n

yin: number of units of part i stored in the manufacturer’s warehouse at period n

zn: number of trucks sent from supplier to the manufacturer at period n by using delayed

transportation

fn: number of trucks that would be sent from supplier to manufacturer at period n

without considering delayed transportation

tin: number of pallets for part i used at period n with delayed amount of period n

gin: number of pallets for part i used at period n without delayed amount of period n

bin: number of units of part i delayed at period n

Parameters:

pi: number of part i per corresponding pallet type

ri: number of pallets of part i that fit into one truck

c: cost of one truck

hi: holding cost of part i in manufacturer’s warehouse

Si: safety stock for part i in manufacturer’s warehouse

din: demand for part i at period n

Ii: initial stock for part i at the beginning of the planning horizon

Objective Function:

min

N∑
n=1

(
(czn) +

I∑
i=1

(yin + bin)hi

)
. (2.1)

s.t.
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yin = Ii for all i ∈ I , (2.2)

bi0 = 0 for all i ∈ I , (2.3)

biN = 0 for all i ∈ I , (2.4)

yin = yi(n−1) + xin − din − bin + bi(n−1) for all i ∈ I, n ∈ N , (2.5)

bin + yin ≥ Si for all i ∈ I, n ∈ N , (2.6)

gin ≥
xin + bi(n−1)

pi
for all i ∈ I, n ∈ N , (2.7)

fn ≥
I∑

i=1

gin

ri
for all n ∈ N , (2.8)

fn ≤
I∑

i=1

gin

ri
+ 1 for all n ∈ N , (2.9)

bin ≤ xin + bi(n−1) for all i ∈ I, n ∈ N , (2.10)

I∑
i=1

bin
piri
≤
(

1−
(
fn −

I∑
i=1

gin

ri

))
for all n ∈ N , (2.11)

tin ≥
xin + bi(n−1) − bin

pi
for all i ∈ I, n ∈ N , (2.12)

zn ≥
I∑

i=1

tin
ri

for all n ∈ N , (2.13)

zn ≤
I∑

i=1

tin
ri

+ 1 for all n ∈ N , (2.14)

xin, yin, zn, fn, tin, gin, bin ≥ 0 for all i ∈ I, n ∈ N , (2.15)

bin, xin, yin, zn, fn, tin, gin integers for all i ∈ I, n ∈ N , (2.16)

In the model, Constraints (2.2) set the initial stock for part i. Constraints (2.3) and

(2.4) set the numbers of part i delayed at the initial and final periods to zero. Constraints

(2.5) are the inventory balance equations, and calculate the number of part i stored in

the manufacturer’s stock in each period by using the previous period’s inventory level, the

number of part i shipped in that period, demand for part i and the delayed amount (if there

is any). This is illustrated in Figure 2.2, where the material flow of part i in the nth period

is represented.
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Figure 2.2: Representation of material flow for part i

Constraints (2.6) set the sum of stocks at manufacturer and delayed amount at the

supplier to the safety stock limits so that the delayed amount can be used from the safety

stock at the manufacturer. In constraints (2.7), the number of pallets for each part in a

given period is calculated. The delayed amount of the previous period is also considered

while calculating this number. Constraints (2.8) and (2.9) are used to find the number of

trucks needed for the demand in period n without considering delaying. Constraints (2.10)

set an upper bound for the maximum amount of delayed parts. The delayed amount cannot

be more than the amount ordered in this period plus the delayed amount from the previous

period. In Constraints (2.11), the total delayed amount is set to be less than or equal to

the partial truck load. Constraints (2.12) calculate the number of pallets for each part in a

given period while considering the delayed amount of previous period and current period.

Constraints (2.13) and (2.14) are used to find the number of trucks needed for the demand

in period n with delayed transportation policy.

The model described above is used for the Multi-item Dynamic Lot-sizing Model with

Delayed Transportation Policy. A simplified model can be used to solve the same problem

without allowing delayed transportation. This model, which we call Multi-item Dynamic

Lot-sizing Model (MILS), is obtained by making the following modifications to the MILS-

DT model. The decision variables bin, zn and tin are removed. The objective function is

changed as:
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min

N∑
n=1

(
(czn) +

I∑
i=1

yinhi

)
. (2.17)

Constraint set (2.5) is changed as:

yin = yi(n−1) + xin − din . (2.18)

Constraint set (2.6) is changed as:

yin ≥ Si . (2.19)

Constraint set (2.7) is changed as:

gin ≥
xin

pi
, (2.20)

and Constraints (2.3), (2.4), (2.10), (2.11), (2.12), (2.13), and (2.14) are removed from

the model. In this form, this model solves a multiple-item lot sizing problem, where the

setup costs are calculated with respect to the order quantities by figuring out how many

trucks would be needed to ship the order amount in a period. Note that Florian et al.

[1980] proved that this problem is NP-hard, which implies that the more general version

with delayed transportation is also NP-hard. However, in our computational tests we found

both models could be solved within reasonable time by a commercial solver for instances

of realistic size. Hence, we were able to analyze the DTP computationally under different

settings as presented in the next section.

2.3 Analysis of the Delayed Transportation Policy

In this section, we analyze the benefits and risks of using the delayed transportation policy

numerically with a test bed of problem instances generated from the data of the bus manu-

facturer. We first investigate the benefits of adopting DTP under deterministic time-varying

demand and explain the reasons for the cost savings. We then conduct computational ex-

periments to evaluate the potential risks of adopting the proposed policy by evaluating the

model solution in terms of service levels in various random settings such as uncertain de-

mand pattern, contingency changes in the production plan, and an unreliable supplier with

uncertain supply quantities. Next, we discuss how DTP can be implemented in practice,
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and test several versions of the policy for practical purposes. Finally, we investigate the

solution of a capacitated version of the multi-item dynamic lot-sizing model with DTP.

Our test instances are based on the problem faced by the coach bus manufacturer in

Turkey. The manufacturer refers to its suppliers that are within 150 kilometers distance

to its production facility as the local suppliers and it works with approximately 60 local

suppliers. For each supplier, the number of products sourced varies between 50 and 150. We

obtained weekly demand data for 50 class A and class B items sourced from a problematic

local supplier over a year. Having observed that part demands do not show seasonality or

trend over the one-year period, we also generated instances with a planning horizon of 12

weeks.

The manufacturer has the policy of keeping one week’s average demand as safety stock

to avoid stock-outs in case of unexpected events. The holding costs are calculated on the

basis of 20 % annual holding rate, and transportation cost is charged at 1 per kilometer

travelled by each truck. In total we have 52 periods of demand data for 40 products, and

we generated different data sets from this data by grouping it by products and periods.

We divided the 40 products to 4 groups of 10 products randomly to obtain the 10 product

instances. Similarly, we divided the 40 products randomly into 2 groups of 20 products.

Thus, we obtained the instances with 52 weeks and 10, 20, 40 products listed in Table 2.1.

Furthermore, we generated instances with a 12 week planning horizon by dividing the yearly

demand data into four quarters. In Table 2.1, an instance type is defined for all instances

with the same problem size and the total number of instances with the given problem size

is listed.

Table 2.1: Test instances

Number of Products Number of Periods Number of Instances Instance Type

10 Products 12 weeks 16 10P12N

20 Products 12 weeks 8 20P12N

40 Products 12 weeks 4 40P12N

10 Products 52 weeks 4 10P52N

20 Products 52 weeks 2 20P52N

40 Products 52 weeks 1 40P52N
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Instances with 10, 20, and 40 products, and 12 periods could be solved to optimality

with GAMS IDE (22.4) on a PC-platform using CPLEX 10.2 with default settings. The

model solution with 20 items and 12 periods took on the average 16 seconds, and at most

26 seconds. In order to investigate how the model scales up, we solved instances with 40,

20, 10 items and 52 periods to optimality and found that the computation time was around

300 minutes on the average, with a maximum run time of 10 hours.

2.3.1 Benefits of the DTP

In the DTP, the delayed amounts are produced by the supplier in a given period but not

shipped to the manufacturer to reduce the transportation costs. They are ready to be

shipped in the next period and holding costs for these items are paid by the manufacturer.

Since we know the amounts delayed are ready in the supplier stocks and they can be sent

whenever requested in a short time, the manufacturer may utilize items kept in its safety

stock instead of the delayed items. The amount used in this way from the safety stock is

bounded by the delayed quantity.

To explain how cost savings are realized, let us consider a problem where 2 products are

sourced from a supplier. The MILS and MILS-DT models are solved for an 8 period horizon

with data and results reported in Table 2.2. The Demand row shows the requirements

for products 1 and 2 in parentheses. The Shipping Qts row gives the optimal shipment

quantities of the two products for the given model. In the # Trucks Used row, the number

of trucks needed to carry the shipment amounts is given and the % Load row shows the

truck utilizations for each period. For example, 2.25 in this row means that 2 trucks are

fully loaded and one truck is 25 % loaded. The Inv @Manuf and Inv @Supplier rows

indicate where the inventory is held in each period. For MILS model, all of the inventory

is held at the manufacturer, whereas in MILS-DT we allow to hold some of the inventory

at the supplier’s warehouse if there is delaying in that period. For instance, for the 2nd

period, 10 units of product 1 and 15 units of product 2 are stored at the manufacturer’s

warehouse according the MILS model solution. In the MILS-DT model solution, 15 units of

product 2 are stored at the manufacturer’s warehouse, but 10 units of product 1 are stored

at the supplier’s warehouse. The total cost for the MILS and MILS-DT model solutions are

e1649.13 and e1509.09, respectively. The relative cost saving from the proposed policy is
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about 8.5 %.

Table 2.2: Solutions of MILS and MILS-DT for 2 products, 8 periods example

Periods

1 2 3 4 5 6 7 8

Demand ( 20,25 ) ( 40,35 ) ( 30,30 ) ( 20,20 ) ( 20,10 ) ( 30,30 ) ( 30,20 ) ( 20,20 )

Optimal Plan for MILS

Shipping Qts ( 30,45 ) ( 40,30 ) ( 30,35 ) ( 20,15 ) ( 20,15 ) ( 32,36 ) ( 28,9 ) ( 20,10 )

# Trucks Used 3 2 2 1 1 2 1 1

% Load 2.25 2 1.92 1 1 2 1 0.83

Inv @ Manuf ( 10,20 ) ( 10,15 ) ( 10,20 ) ( 10,15 ) ( 10,20 ) ( 12,26 ) ( 10,15 ) ( 10,15 )

Inv @ Supplier ( 0,0 ) ( 0,0 ) ( 0,0 ) ( 0,0 ) ( 0,0 ) ( 0,0 ) ( 0,0 ) ( 0,0 )

Optimal Plan for MILS-DT

Shipping Qts ( 28,39 ) ( 32,36 ) ( 40,30 ) ( 16,18 ) ( 24,12 ) ( 20,15 ) ( 40,30 ) ( 20,15 )

# Trucks Used 2 2 2 1 1 1 2 1

% Load 2 2 2 1 1 1 2 1

Inv @ Manuf ( 8,14 ) ( 0,15 ) ( 10,15 ) ( 6,13 ) ( 10,15 ) ( 10,10 ) ( 10,15 ) ( 10,15 )

Inv @ Supplier ( 2,1 ) ( 10,0 ) ( 0,0 ) ( 4,2 ) ( 0,0 ) ( 10,15 ) ( 0,5 ) ( 0,0 )

We investigate the cost savings that are realized with the DTP by comparing the solu-

tions to the MILS and MILS-DT models for our test instances. The two models are solved to

optimality and the average, minimum and maximum values of the transportation, holding

and total cost of the optimal solutions over instances of the same problem size are reported

in Table 2.3.

In Table 2.3, the Holding Cost, Transportation Cost, and Total Cost columns give the

average values for each instance type, for both MILS-DT and MILS models. The Average

Relative Difference column shows the percentage cost saving from the proposed policy,

whereas the Min Relative Difference and the Max Relative Difference columns show the

minimum and maximum relative difference over all instances of the same type. In all cases

there is a significant cost saving from using DTP, but when a small number of products

is ordered from the supplier, the DTP is more advantageous. As the number of products

increases, the options for grouping the items ordered in the same period into trucks increases

and thus products can be packed into trucks more efficiently in the MILS. Hence, the
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Table 2.3: Results of MILS and MILS-DT model solutions

Instance Holding Transportation Total Relative Differences

Type Model Cost Cost Cost Average Min Max

MILS e1,307 e1,069 e2,376

10P12N MILS-DT e1,240 e966 e2,206 7.15% 3.38% 13.38%

MILS e2,362 e1,819 e4,181

20P12N MILS-DT e2,199 e1,781 e3,980 4.81% 2.38% 7.45%

MILS e4,283 e3,600 e7,883

40P12N MILS-DT e4,207 e3,563 e7,770 1.44% 0.43% 2.44%

MILS e5,526 e5,526 e11,052

10P52N MILS-DT e5,411 e4,826 e10,237 7.38% 6.93% 12.16%

MILS e9,631 e7,725 e17,356

20P52N MILS-DT e8,949 e7,500 e16,449 5.22% 3.99% 7.67%

MILS e17,708 e14,850 e32,558

40P52N MILS-DT e17,168 e14,700 e31,868 2.12% 2.12% 2.12%

small truck loads disappear and the opportunity for transportation cost savings with DTP

decreases. When we compare the solutions of MILS-DT and MILS models, we see that DTP

provides a 0.5 % to 13.5 % reduction in total cost over all instances. In all the runs, delayed

transportation was advantageous, with gains ranging between around e100 to e440 for 12

week periods. Although this may seem to be small at first sight, if the proposed model

is applied to all suppliers and their all products, the savings will accumulate to significant

amounts. The manufacturer considered in this study has around 60 local suppliers providing

on the average around 100 products each. If we realize similar savings for each supplier,

the total gain is estimated to be around e150,000 per year. Since in the automotive and

electrical home appliances sectors, the number of suppliers and parts supplied from each

supplier are typically quite large, potential savings of using this policy may be significant.

The results in Table 2.3 also show that increasing the planning horizon provides slightly

more cost savings from DTP, but to save from computation time, we used the 12 week

instances only in the further analyses.
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2.3.2 Risks of the DTP

In the proposed policy, since safety stock is used in place of delayed items, this may create

risks in a random setting or when changes occur in the production plan. Although the

demand for the parts in the manufacturer’s system is essentially deterministic demand, the

manufacturer keeps safety stocks against possible variability in demand and contingencies

such as unexpected changes in the demand pattern as well as uncertainty in supplied quan-

tities. To see how the proposed policy affects the service levels, we observe the stock-out

percentages when MILS-DT and MILS solutions are subject to these random changes by

a simulation study. Three types of randomness analysis are conducted: 1) demand uncer-

tainty, 2) contingency changes in the production plan, and 3) supplier unreliability.

Demand Uncertainty

The demand uncertainty will not be observed frequently in a stable mass production system,

such as the one pertinent to the coach bus manufacturer in Turkey, as the demand is

predictable and the production quantities of the end items are fixed for a predefined planning

horizon. However, because of the unforeseen changes the manufacturer may need to alter

its production plan. Such changes will reflect on the demand for parts and components used

in production. In this analysis, we investigate the robustness of the order schedule under

random variations in demand by a simulation study.

We keep the ordering and transportation policy given in the model solutions and measure

the Type I and Type II service levels under demand scenarios generated randomly. Note

that in Type I service level the total number of periods with a stock-out situation is taken

into account, and in Type II service level the total number of items that are stocked out is

calculated (Nahmias [2005]). The following procedure is used to obtain the results shown

in Table 2.4.

The Procedure for Evaluating the Robustness of the Solution under Demand Uncertainty

Step 1: Given an instance, for each product i define a truncated normal distribution for

demand in a period by setting the mean, µi, to the average demand of product i over 52

weeks and the variance, σi
2, to the sample variance of 52 weeks’ demand quantities.

Step 2: Generate K demand matrices, Dk = (din)k for k = 1, . . . ,K, with a size of 10
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products and 12 periods, randomly using the demand distributions defined in Step 1.

Step 3: For k = 1, . . . ,K:

Step 3.1: For each demand matrix Dk, solve the MILS and MILS-DT models and report

the kth optimal shipment schedules.

Step 3.2: For each demand matrix Dk, generate N demand matrices from the distribu-

tions defined in Step 1. We denote each such matrix as Dn
k for n = 1, . . . , N .

Step 3.3: For n = 1, . . . , N :

Step 3.3.1: Evaluate the performance of the kth optimal solutions of MILS and

MILS-DT under demand given as Dn
k:

Step 3.3.1.1: Calculate the positive or negative inventory in each period.

Step 3.3.1.2: Calculate the number of periods with a stock-out situation.

Step 3.3.1.3: Calculate the Type I and Type II service levels.

Step 3.4: Report average Type I and Type II service levels over all N scenarios for the

kth MILS and MILS-DT solutions.

Step 4: Report the average service levels of MILS and MILS-DT over allK demand matrices.

Table 2.4: Service levels for MILS and MILS-DT under demand uncertainty

Service Level Type I Service Level Type II

MILS MILS-DT Difference MILS MILS-DT Difference

K=1 70.95% 65.71% 5.24% 93.46% 91.62% 1.84%

K=2 53.85% 50.88% 2.97% 86.26% 84.63% 1.63%

K=3 64.29% 60.83% 3.46% 90.45% 88.66% 1.79%

K=4 53.81% 51.49% 2.32% 85.75% 84.69% 1.06%

K=5 60.62% 55.44% 5.18% 89.43% 87.02% 2.41%

K=6 69.24% 67.55% 1.69% 92.17% 91.49% 0.68%

K=7 62.05% 56.62% 5.43% 89.43% 86.59% 2.84%

K=8 67.88% 64.87% 3.01% 90.21% 89.16% 1.05%

K=9 75.68% 71.83% 3.85% 94.99% 93.86% 1.13%

K=10 70.98% 66.36% 4.62% 93.93% 92.32% 1.61%

Average 64.94% 61.16% 3.78% 90.61% 89.00% 1.60%
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In our analysis, K and N are set to 10 and 100, respectively. From the results given in

Table 2.4, we see that MILS-DT solutions perform 3.78% and 1.6% worse on the average

in terms of Type I and Type II service levels, respectively, compared to the corresponding

MILS solutions. The results show that applying DTP decreases both types of service levels,

but the differences are quite small, despite large demand variability as observed from the

low service levels. In practice, demand variability will most likely be less than it is in the

simulations. Furthermore, in cases where the distance between the manufacturer and the

supplier is short, the delayed amount can be shipped immediately to the manufacturer when

a stock-out occurs. In conclusion, the risks of DTP will most likely be at tolerable levels

and could be weighed against the cost savings by a numerical analysis.

We next investigate the cost and service level differences in the MILS and MILS-DT

models under varying safety stock levels. In practice, typically, the safety stock for each

product is set with respect to demand variability during lead time or variance of the forecast

error. In Figure 2.3, total costs and Type II service levels versus safety stock amounts are

plotted. The X-axis in this graph shows the given safety stock amount for the manufacturer

and the Y-axis is for the cost and service level values. For each level of the safety stock,

which is a predefined parameter for the manufacturer, total costs and Type II service levels

are calculated for both MILS and MILS-DT solutions. We observe that the difference in the

total cost increases until the safety stock reaches a certain value. After that point increasing

the safety stock level is not cost-advantageous for the manufacturer as the increase in holding

costs dominates the cost saving from the proposed policy.

Contingency Changes in the Production Plan

Revisions in the planned order release values for parent items may affect the requirements

for an item. We try to capture this kind of demand variation with lead time changes (shifts

in demand to adjacent periods) or quantity adjustments (increase or decrease of demand

quantity in a period) without changing the total demand of an item over the planning

horizon. We created such changes in the demand pattern randomly and used the following

procedure to evaluate service levels for both MILS and MILS-DT model solutions.

The Procedure for Evaluating the Robustness of the Solution under Contingency Changes
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Figure 2.3: Total cost and type II service level vs. safety stock amount graph

Step 1: Define psp, psn, pi, and pd values between 0 and 1, according to the environment to

be tested.

Step 2: For each 10P12N instance:

Step 2.1: Obtain the optimal solutions of MILS and MILS-DT models.

Step 2.2: Perturb the demand data to generate N scenarios with demand matrix Dn,

n = 1, . . . , N , according to the following rules:

Shift the demand of a given period to the previous period with probability psp.

Shift the demand of a given period to the next period with probability psn.

Increase the demand of each period by 20 % with probability pi.

Decrease the demand of each period by 20 % with probability pd.

Step 2.3: For n = 1, . . . , N :

Step 2.3.1: Evaluate the performance of both optimal solutions of MILS and MILS-

DT models in each scenario n, using order amounts from the optimal solutions and Dn.

Step 2.3.1.1: Calculate the positive and negative inventory amounts.

Step 2.3.1.2: Calculate the number of periods with a stock-out situation.

Step 2.3.1.3: Calculate Type I and Type II service levels.

Step 2.4: Calculate the average Type I and Type II service levels over all N scenarios.

Step 3: Report the average, minimum and maximum service level differences over all 10P12N



Chapter 2: Multi-item Dynamic Lot-sizing with Delayed Transportation Policy 20

instances.

In our tests, we used 3 levels of demand perturbation by setting the probability param-

eters as follows. Level 1 has the lowest probability values; psp and psn are set to 0.05, while

both pi and pd are set to 0.1. For level 2, psp and psn are set to 0.1; pi and pd are set to

0.2. Finally, for level 3 we set psp and psn to 0.2; pi and pd to 0.4. The above procedure is

applied for each level and for 16 instances of 10P12N with N equals to 100. The results are

given in Table 2.5.

Table 2.5: Service levels for MILS and MILS-DT solutions under demand perturbation

Service Level Type I Service Level Type II

MILS MILS-DT Difference MILS MILS-DT Difference

Average 97.64% 89.80% 7.83% 99.77% 99.26% 0.52%

Level 1 Min 96.96% 92.83% 4.13% 99.70% 99.49% 0.21%

Max 98.11% 84.83% 13.28% 99.82% 98.93% 0.89%

Average 94.76% 84.52% 10.24% 99.51% 98.64% 0.87%

Level 2 Min 92.75% 87.47% 5.28% 99.28% 98.93% 0.35%

Max 95.18% 77.84% 17.34% 99.55% 98.08% 1.47%

Average 89.80% 78.59% 11.21% 98.96% 97.62% 1.34%

Level 3 Min 86.94% 81.23% 5.71% 98.58% 98.08% 0.50%

Max 89.03% 70.14% 18.89% 99.08% 96.95% 2.13%

When we observe the percentage drop in the service level with MILS-DT in Table 2.5,

we see that a difference of minimum 4.1% and maximum 18.9% exists for Type I service

level, whereas the differences are much smaller for Type II. As the level of the perturbations

increases, Type I service level decreases much faster than Type II service level, but the

difference between the MILS and MILS-DT models does not increase as fast. The difference

between the two models for Type I service level is at most 11.21% on the average. Note that

this analysis measures how the initial optimal solution will perform under the stochastic

environment. In real life, the shipment schedule would most likely be modified after several

demand changes are experienced and a more favorable service level would be realized.
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Supplier Unreliability

The received amount from the supplier may not be exactly the amount ordered because

of factors such as capacity and production scheduling restrictions at the supplier, or unex-

pected disruptions at the supplier. We investigate how DTP will be affected when amounts

received from the supplier may differ from the amounts ordered. We simulate a stochastic

environment for the unreliable supply pattern as follows. There are 10 levels of unreliability

and one fully reliable case (level 10). In each level k = 0, 1, . . . , 9, with probability 0.5 the

supplier sends all of the order quantity for each product at the given period, and with prob-

ability 0.5 a random percentage, which we refer to as the shipping percentage is shipped

to the manufacturer. The shipping percentage is uniformly distributed between (10k, 100).

We generate different shipping percentages for each product in the same period coming from

the same distribution. Level 10 represents a 100% reliable supplier and we receive exactly

the amount we order. In this stochastic environment, we test DTP by evaluating Type I

and Type II service levels by means of a simulation study.

The Procedure for Evaluating the Robustness of the Solution under Supplier Unreliability

Step 1: For each of the 10P12N instances, simulate N supply pattern scenarios for each

reliability level k, k = 1, . . . , 10.

Step 2: Evaluate the performance of the optimal solutions of MILS and MILS-DT models

in each scenario n, n = 1, . . . , N , for each reliability level k, k = 1, . . . , 10 by calculating

Type I and Type II service levels.

Step 3: Calculate the average Type I and Type II service levels over all N scenarios for

each set of 10P12N instances for each reliability level k, k = 1, . . . , 10.

Step 4: Report the average service levels over all data sets of 10P12N instances for each

reliability level k, k = 1, . . . , 10.

The performance of the proposed policy under different supplier unreliability cases is

investigated in this analysis. The scenario number N is set to 100, that is for each level

of reliability and for each set of 10P12N instances, we generated 100 different shipping

percentage matrices for 10 products and 12 periods. The average service levels for each

reliability level k, k = 1, . . . , 10 are reported in Table 2.6.
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Table 2.6: Service levels for MILS and MILS-DT under supplier unreliability

Service Level Type I Service Level Type II

MILS MILS-DT Difference MILS MILS-DT Difference

Level 0 92.84% 86.65% 6.19% 99.04% 98.29% 0.75%

Level 1 94.17% 87.70% 6.47% 99.32% 98.68% 0.64%

Level 2 95.38% 88.77% 6.60% 99.56% 99.01% 0.55%

Level 3 96.56% 89.75% 6.81% 99.72% 99.25% 0.46%

Level 4 97.61% 90.84% 6.78% 99.84% 99.47% 0.37%

Level 5 98.47% 91.90% 6.57% 99.92% 99.64% 0.28%

Level 6 99.18% 92.91% 6.27% 99.97% 99.76% 0.20%

Level 7 99.68% 93.63% 6.05% 99.99% 99.85% 0.14%

Level 8 99.92% 94.27% 5.65% 100.00% 99.92% 0.08%

Level 9 99.99% 95.06% 4.93% 100.00% 99.97% 0.03%

Level 10 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%

For both MILS and MILS-DT models, Type I and Type II service levels are increasing

as the reliability level increases because of the decrease in the uncertainty. The difference

between Type I service level of MILS and MILS-DT is much higher than the difference

between Type II service levels. For the Type I service level, using the DTP performs at

most 6.81% worse on the average of 16 10P12N instances. There is at most 0.75% difference

in the worst case reliability scenario. When there is a shipment with missing amounts

because of the unreliability, safety stock absorbs part of the missing amount. Here, with

the given safety stock levels the service levels turned to be high and applying DTP did not

degrade them much.

2.3.3 Implementation of the Policy in Practice

Our numerical experiments on the benefits and risks of the proposed policy show that

using the DTP will be advantageous for the manufacturer. The implementation of the

policy requires the manufacturer to provide the supplier with a shipment plan indicating

the actual quantities to be shipped and delayed. An easy way to implement this policy

may be by defining a control parameter R, the minimum allowable truckload percentage,

according to the cost structures and the capacity constraints of the system. This control
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parameter implies that the trucks dispatched from the supplier should not be loaded with

less than R % of the capacity. Then, the manufacturer needs to provide only the order

quantities to the supplier, and the parameter R. For the bus manufacturer case, we tried

the control parameter values of 50 % and 100 %. We modified the MILS-DT model to solve

the problem with control parameter R by adding the constraint set 2.21 and named the

resulting model as MILS-DT-R.

zn −
I∑

i=1

tin
ri
≤ 1−R for all n ∈ N . (2.21)

Table 2.7 gives the total cost values for MILS, DTP with ”full truck” or with ”at least

half-load”, and MILS-DT. With the data of the coach bus manufacturer, 50 % truck load

results in total costs close to the MILS-DT costs, whereas 100 % truck load results in slightly

better solutions than MILS. In this case, the ”at least half-load” restriction can be used for

ease of implementation.

Table 2.7: Total costs for MILS, MILS-DT, and truckload percentages 50 % and 100 %

10P12N Holding Transportation Total Relative % of Order

Instances Model R Value Cost Cost Cost Difference Amounts Delayed

Set 1 MILS - e1,713 e1,650 e3,363 - -

MILS-DT-R 100% e1,869 e1,350 e3,219 4.27% 12.32%

MILS-DT-R 50% e1,705 e1,350 e3,055 9.15% 20.12%

MILS-DT - e1,705 e1,350 e3,055 9.15% 22.37%

Set 2 MILS - e2,060 e1,200 e3,260 - -

MILS-DT-R 100% e1,822 e1,050 e2,872 11.91% 22.50%

MILS-DT-R 50% e1,774 e1,050 e2,824 13.38% 27.06%

MILS-DT - e1,774 e1,050 e2,824 13.38% 26.63%

2.3.4 Capacitated Version of the Problem

It is possible to incorporate various capacity limitations to the MIP models. In fact, one may

add a capacity constraint for each type of arc in Figure 2.2; namely, capacity for the units

produced, capacity for the stock level in the manufacturer and the supplier, and capacity
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for the units shipped. To see how the solution complexity increases and how the results

change, we solved the capacitated version of the problem. With respect to the average four

weeks demand, a production upper limit, Ui, is defined for each product i, and the following

constraint is added into both MILS and MILS-DT models:

xin ≤ Ui for all i ∈ I, n ∈ N . (2.22)

For the 20-product data set, we found a slight increase in the solution time of the

Capacitated MILS (C-MILS) and Capacitated MILS-DT (C-MILS-DT) models. Solution

of C-MILS took about 30 seconds on the average, whereas without the capacity limit this

was 16 seconds. The C-MILS-DT took at most 72 seconds, as opposed to 26 seconds of

the uncapacitated case. As a result, the solution times were still in reasonable range. For

10-product and 20-product instances, we compare the optimal costs of the C-MILS-DT and

C-MILS models in Table 2.8. For the capacitated case of the problem, the relative cost

differences and the delayed amounts in solutions of the models with and without DTP are

generally smaller, compared to the uncapacitated case, but there is still a significant cost

saving from using the proposed policy.

2.4 Conclusion

The computational tests show that the proposed policy is advantageous for the multi item

dynamic lot sizing problems with short lead times and frequent shipments. Over all data

sets, Delayed Transportation Policy provides significant improvement on the total costs

with less significant decrease on the service levels in case of unexpected changes in the

manufacturer’s procurement plans. The risk analysis will give different results for different

cost structures and demand patterns. However, implementing such an analysis for different

systems is not difficult, and the risks and benefits can be easily evaluated as demonstrated

in this study.
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Table 2.8: Results for the capacitated MILS-DT and MILS models

Data Used Total Relative Total Relative

Demand Product Period # Model Cost Difference Model Cost Difference

Quarter 1 10 Products 12 weeks C-MILS e3,518 MILS e3,363

Set 1 C-MILS-DT e3,224 8.35% MILS-DT e3,055 9.15%

Quarter 2 10 Products 12 weeks C-MILS e3,376 MILS e3,260

Set 1 C-MILS-DT e2,958 12.38% MILS-DT e2,824 13.38%

Quarter 3 10 Products 12 weeks C-MILS e3,061 MILS e3,038

Set 1 C-MILS-DT e2,860 6.57% MILS-DT e2,819 7.22%

Quarter 4 10 Products 12 weeks C-MILS e2,703 MILS e2,629

Set 1 C-MILS-DT e2,531 6.37% MILS-DT e2,445 7.01%

Quarter 1 20 Products 12 weeks C-MILS e5,259 MILS e5,093

Set 1 C-MILS-DT e5,049 3.99% MILS-DT e4,880 4.19%

Quarter 2 20 Products 12 weeks C-MILS e5,630 MILS e5,596

Set 1 C-MILS-DT e5,441 3.35% MILS-DT e5,380 3.87%

Quarter 3 20 Products 12 weeks C-MILS e5,599 MILS e5,481

Set 1 C-MILS-DT e5,346 4.52% MILS-DT e5,249 4.24%

Quarter 4 20 Products 12 weeks C-MILS e6,247 MILS e5,813

Set 1 C-MILS-DT e5,969 4.44% MILS-DT e5,526 4.94%
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Chapter 3

DYNAMIC LOT-SIZING UNDER RANDOM SUPPLY WITH

BAYESIAN UPDATES OF SUPPLIER CAPABILITY

3.1 Introduction

In this chapter of the thesis, we address the dynamic lot sizing problem under random

supply and propose a Bayesian update approach to obtain and use information about the

supplier’s capability of fulfilling the requested orders while optimizing the ordering decisions

of the manufacturer

Different from Chapter 2, in this chapter we do not consider the transportation of the

sourcing operation. However, while determining the order quantities we consider that the

manufacturer faces uncertainty in the sourcing because of the randomness in the supply.

When an order is given to the supplier, the manufacturer does not know the exact amount

and arrival time of the order to be received. There are different kinds of supply uncertainty

encountered in practice and studied in the literature, as mentioned in Snyder and Shen

[2008]. Lead time uncertainty is the first type of supply uncertainty. In studies addressing

the lead time uncertainty, it is assumed that the time between giving and receiving an order

is a random variable and the distribution of the lead time is known. Another source of

uncertainty is due to the supply disruptions arising from several reasons such as machine

breakdowns or stopping of production at economical crisis times. In this kind of uncertainty,

the requested parts are unavailable at random time intervals and any given order for this

portion may not be satisfied by the supplier at the desired time. The final uncertainty type

analyzed in the literature is yield uncertainty where the quantity produced or received is

different from the ordered amount due to mostly quality and supplier capability problems.

These random supply environments are investigated under various inventory models. In

this part of the thesis, we focus on lot sizing under random yield, which is observed while

sourcing manufacturing parts under push production control systems.

The problem studied in this chapter is encountered while analyzing the ordering and
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receiving process of a leading coach bus manufacturer in Turkey. When the order amounts

and the received amounts are compared over long time periods, a large gap between these

amounts is recognized for some periods. Often the bus manufacturer gives an order but

cannot receive the desired amounts from most of its suppliers. An example of the real life

case analysis is given in Figure 3.1. For some periods, the received amount is much below the

ordered amount. To prevent shortages, it is essential to include this yield uncertainty into

the lot sizing decisions. For this purpose, a distribution is defined for the yield uncertainty

and it is assumed that the supplier sends each order according to this distribution while

considering order quantities.

Figure 3.1: Given orders and received amounts for Product X

We next provide a literature review for the supply uncertainty classification defined

above. Since in this part of the thesis we focus on lot sizing under yield randomness, we

only mention a few studies on lead time uncertainty and supply disruption uncertainty, and

place more emphasis on studies on yield randomness.

In case of lead time uncertainty. Nevison and Burstein [1984] suggest a dynamic pro-

gramming (DP) approach for the dynamic lot sizing problem with deterministic demands

but stochastic lead times. Alp et al. [2003] also study lot sizing under dynamic deterministic
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demand and stochastic lead time. They minimize sum of holding, shortage, and stepwise

fixed transportation cost by suggesting a DP algorithm solution method. Brennan and

Gupta [1993] investigate the effects of demand and lead time uncertainties on MRP systems

by a simulation model. In addition to these studies, the performance of many others exist

on inventory management under lead time uncertainty.

The significance of supply disruptions has been recognized in the last decade in the sup-

ply chain management domain (Sheffi [2005]). Arreola-Risa and DeCroix [1998] proposed a

modified (s,S) policy for the management of inventory with stochastic demand and random

supply disruptions. The source of disruption is defined as process related or market related.

The inter arrival time of supply disruptions and the length of supply disruptions are ex-

ponentially distributed. Güllü et al. [1999] propose a stochastic DP model for a periodic

review, single item inventory model under supply uncertainty. The supply uncertainty is

modeled in terms of completely available, partially available, and unavailable orders. Op-

timality of order-up-to policies are investigated. Schmitt et al. [2008] examine the optimal

base stock inventory policies for a single supplier and single retailer model where the retailer

is subject to stochastic disruptions. Infinite-state discrete time Markov chain with state rep-

resenting the number of consecutive disrupted periods is used to model the disruptions in

their model.

An extended literature review on random yield was given by Yano and Lee [1995] and

Mula et al. [2006]. While investigating the literature in yield uncertainty, we classify the

studies according to the inventory models used. Parlar and Wang [1993] analyze sourcing

from two suppliers where shipments are a random function of the amount requisitioned for

both EOQ and newsboy models. Fadiloglu et al. [2008] characterize the optimal replenish-

ment policy for the EOQ type inventory setting with multiple suppliers each with binomial

yield. Maddah et al. [2009] extend the classical single period and EOQ models by accounting

for randomness in the supply process. There are two types of items with different qualities:

perfect and imperfect quality items. The percentage of perfect quality items is assumed to

be a random variable with known probability distribution.

Henig and Gerchak [1990] provide an analysis of a general periodic review produc-

tion/inventory model with yield uncertainty, where the amount of material received is a

random multiple of the amount ordered. Wang and Gerchak [1996] formulate a stochas-
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tic DP model for a periodic review production planning problem to minimize the total

discounted expected costs under the uncertainties of variable production capacity, random

yield, and uncertain demand. Bollapragada and Morton [1999] proposed a myopic policy for

a single item periodic review inventory problem with random yield and stochastic demand

and showed by numerical experiments that their policy is a very good approximation to

the optimal policy under fairly general conditions. However, later Inderfurth and Transchel

[2007] showed that the evaluation of the optimality condition is not correct in the Bollapra-

gada and Morton [1999] article under some specific conditions. Erdem and Özekici [2002]

consider a single item whose yield is random due to the random capacity of the vendor and

develop general periodic-review inventory model that incorporates both random yield and

random environment parameter. Finally, for the periodic review inventory models, Li et al.

[2008] construct upper and lower bounds for the optimal threshold value considering the

structure of the optimal policy under uncertain yield and demand.

Yield uncertainty has been also studied in MRP systems. Mazzola et al. [1987] formu-

lated a DP model for dynamic lot-sizing under binomial yield with time varying deterministic

demand and developed several heuristic algorithms. Our DP model with Bayesian Updates

is built on the model given in Mazzola et al. [1987]. We define the yield randomness with a

binomial distribution as in Mazzola et al. [1987] and propose a Bayesian update approach to

update the parameter of binomial yield. Tomlin [2009] characterizes the optimal sourcing

policy with Bayesian updating for a firm that works with unreliable suppliers. Each order

is recieved either in full or not at all for all suppliers. There is one supplier with known

reliability parameter and there are multiple available suppliers with unknown parameters

that manufacturer selects one of them according to their cost and reliability parameters as

second source. In each period the model decides on with which supplier to place an order

for deterministic demand. For the finite horizon problem, inventory left at the end of each

period is salvaged and unfilled sales are lost. This property enables decomposition of the

finite horizon problem into T single period problems. Then in each period, the order quan-

tity must be equal to the demand value. The supplier from which the order is requested

can be determined by a comparison of costs. This approach generalizes to the case with

two periods, where inventory is carried from the first period to the second period without

much additional computational burden. However, the approach does not scale to the gen-
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eral multi-period problem with inventory due to the computational difficulty. In the article,

general yield distribution case is handled by calculating the expected cost for all possible

order quantities. Hence, an efficient algorithm is not proposed to solve the general yield

problem. Chen et al. [2009] proposed a Bayesian model for the same problem described

in Tomlin [2009] with inventory carryover. But the uncertainty in the supply process is

defined as supply disruptions and the supplier will be up or down with some probability.

When the supplier is up, the the order is delivered in full amount and on time. On the

other hand, when supplier is down, some portion of the ordered amount will be delivered.

For the multiple period analysis a DP algorithm is given with states described by inventory

level at the beginning of each period, the availability of the suppliers, and the total number

of observations for each possible disruption value. According to the recieved amounts from

each supplier the inventory level is updated and expected cost calculated for each period.

With these state descriptions the DP algorithm is not efficient to solve for the large data

instances.

Until recently, Bayesian update was used in inventory models to update the parameters

of demand distributions to represent the learning effect in demand forecasting. Crowston

et al. [1973] proposed a forecast revision to determine a posterior distribution for total

demand by applying the Bayes’ theorem for multistage production planning of seasonal

goods. Azoury [1985] gave a DP algorithm for the periodic review inventory problem with

a Bayesian formulation to estimate one or more parameters of the demand distribution.

Bradford and Sugrue [1990] used a Bayesian procedure for two-period style goods inventory

problem for a firm which stocks items having Poisson demands. Hill [1997] applied the

Bayesian approach to estimate the parameters of the demand distribution in the single

period inventory model. Lee [2008] used the Bayesian approach to forecast demand in

a newsboy problem. While Tomlin [2009] and Chen et al. [2009] use Bayesian Update

approach for yield randomness and supply disruption, to the best of our knowledge there is

no solution time efficient Bayesian update approach to update the parameters of the yield

distributions for the lot sizing models. We provide a DP solution algorithm for dynamic lot

sizing problem under binomial yield with Bayesian update of the yield parameter to capture

the learning process of the manufacturer by tracking the received orders from the supplier

with an approximation algorithm that performs significantly efficient solution time.
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Section 3.2 describes the problem and the developed DP models for different cases of

information availability. In Section 3.3 results of computational experiments are summa-

rized and an approximation algorithm is proposed to overcome the inherent computational

difficulty. Extensions of the results are given in Section 3.4.

3.2 Problem Description

Consider periodic ordering where at the beginning of each period, the inventory level is

observed and a replenishment quantity is determined. We assume that the demand in each

period is known in advance, and the objective is to minimize the sum of holding and shortage

costs in a finite horizon of length N . Different from the usual setting, we consider the case

of an unreliable supplier, who only delivers a random portion of the order. To model

the supplier’s unreliability, we assume that the delivered number of items in a period is

binomially distributed with parameters x and p, where x denotes the original replenishment

quantity and p denotes the probability that an ordered unit will be delivered. Note that this

assumption implies that each unit in the order is delivered with probability p, and that the

delivery of each unit is independent of other units. This may be considered as a restrictive

assumption; however, the same assumption for yield randomness was also made in Mazzola

et al. [1987] and other studies including Fadiloglu et al. [2008]. The delivered quantity, Y

is a random variable where

P (Y = y|x) =
(
x

y

)
py(1− p)x−y . (3.1)

We assume that the supplier enforces a minimum order quantity of m, and a maximum

order quantity of M to the manufacturer. This indicates that receiving orders of less than m

units is not economical for the supplier and furthermore, because of capacity limitations, the

supplier can supply at most M units. Together m, M , and p values represent the capability

of the supplier. Furthermore, we assume that the manufacturer is subject to a warehouse

space constraint; hence, the on-hand inventory of the part cannot exceed w units.

In our setting, the manufacturer treats shortages as backorders, which incur a charge of

s dollars per unit per period. The holding costs are calculated using a unit holding cost of

h dollars per unit per period. The variable costs incurred per each received item, such as

purchasing and transportation, are modeled using a linear cost term with a unit cost of c
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dollars.

Let Dk denote the known demand in period k, where k = 0, 1, . . . , N − 1. The on hand

inventory at the beginning of period k is denoted by ik. With the given information, we

would like to minimize the total expected cost over N periods. The total cost function

contains the holding cost of positive inventory, shortage cost of negative inventory, and unit

purchasing and transportation cost of items received at each period. At the beginning of

each period k, we observe the inventory level ik and determine the optimal order quantity,

xk. The lead time is assumed to be zero, as the items can be shipped in less than a period

because of the short distance between the manufacturer and the supplier. Hence, as the

manufacturer puts in an order of xk units to the supplier, the supplier sends yk items with

zero lead time. Then, a demand of Dk units is realized by the manufacturer during that

period. The decision epochs and actions are shown in Figure 3.2.

Figure 3.2: Decision epochs and actions

3.2.1 Perfect Information on Supplier Reliability (The PI Case)

In this case, we assume that the manufacturer knows the supplier reliability parameter,

p. The parameter may change with time and order quantity, but for the simplicity of

presentation we use constant p and discuss the case where p is a function of the order

quantity in Section 3.4.2. The manufacturer determines his/her orders according to this

known p value. The DP model defined in this section is similar to the one defined in

Mazzola et al. [1987], but it differs in that we do not have a setup cost for each order given

and we pay purchase cost just for the received amount, not for the ordered amount. This

cost structure was the actual case in our motivating application at the bus manufacturer.

The system evolves according to the equation

ik+1 = ik + yk −Dk . (3.2)
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Then, the DP formulation is

JN (iN ) = 0 ∀iN ∈

{
−

N−1∑
t=0

Dt, . . . , w

}
, (3.3)

Jk(ik) = min
xk∈{0,1,2,...,M}

[ xk∑
y=0

(
xk

y

)
py(1− p)xk−y

(
c y + h(ik −Dk + y)+

+s(−ik +Dk − y)+ + Jk+1(ik −Dk + y)
)]

for all k = 0, 1, . . . , N − 1, ∀ik ∈

{
−

k−1∑
t=0

Dt, . . . , w

}
. (3.4)

3.2.2 No Information on Supplier Reliability (The NI Case)

In this case the manufacturer calculates the replenishment quantities without any infor-

mation on the supplier’s reliability. That is, the manufacturer assumes that the supplier

reliability parameter, p is uniformly distributed between 0 and 1. Then, the DP formulation

becomes

JN (iN ) = 0 ∀iN ∈

{
−

N−1∑
t=0

Dt, . . . , w

}
, (3.5)

Jk(ik) = min
xk∈{0,1,2,...,M}

∫ 1

0

[ xk∑
y=0

(
xk

y

)
qy(1− q)xk−y

(
c y + h(ik −Dk + y)+

+s(−ik +Dk − y)+ + Jk+1

(
ik −Dk + y

))]
dq

for all k = 0, 1, . . . , N − 1, ∀ik ∈

{
−

k−1∑
t=0

Dt, . . . , w

}
. (3.6)

3.2.3 Learning about Supplier Reliability through Bayesian Updates (The BU Case)

Finally, we consider the possibility of using past supplier performance while determining

the order quantities.

We assume that at the beginning of the period no information on the supplier is known,

although we can also consider situations in which certain expectations on the value of p

have already been formed. To reflect the fact that nothing on the supplier’s reliability is

known, we take the uniform distribution as a prior distribution. That is, we assume that

the binomial parameter, p is distributed uniformly in [0, 1] range (i.e., f0(p) = 1, 0 ≤ p ≤ 1).

Note that p = 1 represents a perfectly reliable supplier who always delivers the quantity
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ordered. The uniform distribution is actually a special case of the Beta distribution with

parameters m0 = n0 = 1. We know that the posterior distribution of the Beta distribution

is also Beta with updated parameters of m + m0 and n + n0, where m + n is the number

observations and m denotes the number of successes in m+ n observations.

We will carry information on the observed delivered quantities. That is, the state is

described by ik and nk. For the Beta distribution two shape parameters should be defined

and updated at each period. For our model, these parameters are the successful observa-

tions, mk, and failed observations, nk. The successful amounts mk will be calculated using

inventory level and cumulative demand:

mk = ik +
k−1∑
t=0

Dt +m0 . (3.7)

The state variables are updated according to the following

ik+1 = ik + yk −Dk , (3.8)

nk+1 = nk + xk − yk . (3.9)

Then, the DP formulation is:

JN (iN , nN ) = 0 ∀iN ∈

{
−

N−1∑
t=0

Dt, . . . , w

}
, ∀nN ∈ {n0, . . . , n0 +NM} , (3.10)

Jk(ik, nk) = min
xk∈{0,1,2,...,M}

∫ 1

0

[ xk∑
y=0

(
xk

y

)
qy(1− q)xk−y

(
c y + h(ik −Dk + y)+

+s(−ik +Dk − y)+ + Jk+1(ik −Dk + y, nk + (xk − y))
)]

Γ(mk + nk)
Γ(mk)Γ(nk)

qmk−1(1− q)nk−1dq for all k = 0, 1, . . . , N − 1,

∀ik ∈

{
−

k−1∑
t=0

Dt, . . . , w

}
, ∀nk ∈ {n0, . . . , n0 + kM} . (3.11)

To solve the three DP formulations given above in Sections 3.2.1, 3.2.2, and 3.3, Matlab

R2008a codes were prepared. The Algoritms 4, 5, and 6, given in the Appendix, are used

for the PI, NI, and BU cases, respectively.
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3.2.4 Numerical Example on PI, NI, and BU

To understand the DP algorithm solutions and the differences between the solution of each

model, let us consider a problem where the manufacturer wants to source a demand of

D = [2 0 1 2] over 4 periods from its supplier. For this small example, holding, shortage and

unit variable purchasing/transportation costs are set to 1, 6, and 3, respectively. Maximum

order quantity limit is 5 units and inventory limit is defined as 5 units. The reliability

parameter of the supplier, p, is set to be 0.7. While solving the DP algorithm for the PI

case, this reliability parameter is known. However, for the NI and BU cases, there is no

information about the exact value of the reliability parameter. For the BU model initial

parameters of Beta distribution are set to 1 (m0 = 1 and n0 = 1). Tables 3.1, 3.3, 3.5, 3.6,

and 3.7 give the optimal order quantities for the corresponding cases.

Table 3.1: Optimal order quantities for the PI case

Stage 0 Stage 1 Stage 2 Stage 3

i π0(i) π1(i) π2(i) π3(i)

-3 5

-2 4 5 5

-1 2 4 4

0 4 0 3 2

1 0 0 1

2 0 0 0

3 0 0 0

4 0 0

5 0 0

In Table 3.1, for each stage k and for each possible inventory level i, the optimal ordering

quantities are given in the πk(i) columns. For this Perfect Information case, the reliability

parameter is known to be p = 0.7. The manufacturer will determine its order level by

using this table according to its inventory level at each stage k. To see the actions of

the manufacturer, we run a simulation where we generate the received amounts for the

corresponding order amounts, and the given reliability parameter. Assume at the beginning

of the planning horizon the manufacturer has 0 initial inventory and wants to order using
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Table 3.2: Sample Path of order schedule for the PI case

Stage 0 Stage 1 Stage 2 Stage 3

Demand, Dk 2 0 1 2

Starting Inventory, ik 0 1 1 0

Given Order, πk(ik) 4 0 0 2

Received Amount, yk 3 0 0 2

Next Inventory Level, ik+1 1 1 0 0

the DP solutions. According to Table 3.1, the manufacturer orders π0(0) = 4. After the

manufacturer gives this order, the supplier sends y0 which is binomially distributed with

parameter 4 and 0.7. If the received amount that is generated in this simulation is y0 = 3,

then the inventory level becomes i1 = 1 since D0 = 2. So, for the next stage the starting

inventory level becomes 1, and the manufacturer gives an order of π1(1) = 0. Since no order

is given, nothing is received and the inventory level is updated according to the demand

of that period, D1 = 0. The inventory level of the second stage becomes i2 = 1, and the

corresponding order quantity is again π2(1) = 0. After the demand D2 = 1 is realized, the

inventory level i3 becomes 0. Finally, in the last stage the order quantity is determined

from π3(0) as 2. And the received amount y3 is binomially distributed with parameters 2

and 0.7. The simulation results for this example are summarized in Table 3.2. There is no

single ordering plan in this stochastic environment as the order schedule changes according

to the realized received amounts, yk for all k = 0, 1, ..., N − 1.

In Table 3.3, the optimal ordering quantities, πk(i), are given for the No Information

case. The order quantities are determined with respect to the expected total cost over p,

where p is uniformly distributed between 0 and 1. The actual reliability parameter, will be a

number between 0 and 1 and the realized received amounts are distributed with the binomial

distribution using the actual reliability parameter and order quantity. As an example of how

the manufacturer orders according to the NI results, assume an initial inventory of 0. From

the results of Table 3.3, the manufacturer orders π0(0) = 5. According to the actual supplier

reliability p (assume that p = 0.7) and order quantity 5, the manufacturer will receive y0 = 4

(a simulation result). The inventory level becomes i1 = 2 and the manufacturer orders

π1(2) = 0. Since there is no demand and order for this stage the inventory level for the
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Table 3.3: Optimal order quantities for the NI case

Stage 0 Stage 1 Stage 2 Stage 3

i π0(i) π1(i) π2(i) π3(i)

-3 5

-2 5 5 5

-1 4 5 4

0 5 1 3 2

1 0 2 1

2 0 1 0

3 0 0 0

4 0 0

5 0 0

Table 3.4: Sample Path of order schedule for the NI case

Stage 0 Stage 1 Stage 2 Stage 3

Demand, Dk 2 0 1 2

Starting Inventory, ik 0 2 2 2

Given Order, πk(ik) 5 0 1 0

Received Amount, yk 4 0 1 0

Next Inventory Level, ik+1 2 2 2 0
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next stage remains at i2 = 2. For this inventory level, the manufacturer orders π2(2) = 1

and receives y2 = 1. The inventory level becomes i3 = 2 and the order quantity is set to be

π3(2) = 0. The results of this simulation are summarized in Table 3.4.

Table 3.5: Optimal order quantities for the BU case, Stages 0 and 1

Stage 0 Stage 1

π0(i, n) π1(i, n)

(i,n) 1 (i,n) 1 2 3 4 5 6

-3 -3

-2 -2 5 5 5 5 5 5

-1 -1 2 4 5 5 5

0 5 0 0 0 1 1

1 1 0 0 0

2 2 0 0

3 3 0

4 4

5 5

For the BU case, to include the learning effect of the supplier capability into the DP

model, we need to keep the data of unsuccessful orders. For this reason, at each stage the

states are described with inventory level i and the number of unsuccessful orders up to that

stage, n. Tables 3.5, 3.6, and 3.7 gives the optimal order quantities πk(i, n) for each stage

k = 0, 1, ..., N − 1, for each possible inventory level i, and for each possible unsuccessful

order size n. The manufacturer will determine its order level using these tables according

to the current inventory and unsuccessful order levels. To show how the manufacturer will

act by using these order quantities, assume at the beginning of the planning horizon the

manufacturer has zero initial inventory and wants to order using the solutions of Tables

3.5, 3.6, and 3.7. At the beginning, the parameters of the Beta distribution, m0 and n0,

are both set to 1. Then, in the first stage the manufacturer orders for i0 = 0 and n0 = 1

which is π0(0, 1) = 5. After the manufacturer gives this order, the supplier sends y0 units

which is binomially distributed with parameter π0(0, 1) and actual reliability parameter p.

Assume that the received amount is y0 = 4, then the inventory level becomes i1 = 2 and the

unsuccessful order amount becomes n1 = 2. By using this information, the manufacturer
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Table 3.6: Optimal order quantities for the BU case, Stage 2

Stage 2

π2(i, n)

(i,n) 1 2 3 4 5 6 7 8 9 10 11

-3

-2 5 5 5 5 5 5 5 5 5 5 5

-1 4 5 5 5 5 5 5 5 5 5

0 3 3 3 4 4 5 5 5 5

1 0 0 2 2 2 2 2 2

2 0 0 0 1 1 1 1

3 0 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0

Table 3.7: Optimal order quantities for the BU case, Stage 3

Stage 3

π3(i, n)

(i,n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

-2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5

-1 3 4 4 5 5 5 5 5 5 5 5 5 5 5

0 2 2 3 3 3 3 4 4 4 5 5 5 5

1 1 1 1 1 1 1 1 1 2 2 2 2

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0
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Table 3.8: Sample Path of order schedule for the BU case

Stage 0 Stage 1 Stage 2 Stage 3

Demand, Dk 2 0 1 2

Unsuccessful Order Amount, nk 1 2 2 2

Starting Inventory, ik 0 2 2 1

Given Order, πk(ik) 5 0 0 1

Received Amount, yk 4 0 0 1

Next Inventory Level, ik+1 2 2 1 0

orders nothing, π1(2, 2) = 0. Because of no order and demand, the inventory level and the

unsuccessful order amount do not change. With i2 = 2 and n2 = 2, the manufacturer again

orders nothing (π2(2, 2) = 0). After realizing D2 = 1, the inventory level decreases by 1.

For the final stage, with i2 = 1 and n2 = 2 the optimal order quantity is π3(1, 2) = 1. And

the received amount y3 will be binomially distributed with parameters x = 1 and p = 0.7.

The simulation results with p = 0.7 are summarized in Table 3.8.

3.3 Insights on the Value of Information and Learning

In this section we investigate the value of information for the dynamic lot-sizing problem

under random supply by computational experiments. In a situation where the supplier

reliability parameter, p, is not known, we show that implementing the learning aspect into

the DP algorithm improves the total expected cost. In our problem setting we assume

that the manufacturer knows that the supplier will send some portion of the given order.

The perfect and no information cases differ in terms of the information about the success

probability of each item to be sent (i.e. the supplier reliability). When p is unknown at the

beginning of the planning horizon, the NI and BU approaches defined in Section 3.2.2 and

are used. To see how effective the BU model with respect to the NI model is, we compare

the total expected cost values of each model with the PI model.



Chapter 3: Dynamic Lot-sizing under Random Supply with Bayesian Updates 41

3.3.1 Computational Experiments

To test the models, we use three different demand sets. The first demand set is generated

using a triangular distribution with parameters a = 3, b = 7, and c = 5 (Figure 3.3).

The second demand set is again generated using a triangular distribution, but with a high

variance, with parameters a = 0, b = 10, and c = 5. The third demand set is obtained by

modifying the data taken from the coach bus manufacturer. We normalized the demand

values so that the mean over the planning horizon is close to 5. This demand set has the

highest variance. The planning horizon for the test cases are defined as 12 periods and 10

instances for each data set are generated using these parameters to test the performance of

the BU model. The summary of the demand sets are given in Table 3.9.

Figure 3.3: Probability density function of the triangular distribution

Table 3.9: Summary of demand sets used for calculations

Instance Number of Number of Triangular Distribution Parameters

Set Instances Periods a b c µ σ

Set 1 10 12 3 7 5 5 0.817

Set 2 10 12 0 10 5 5 2.041

Set 3 10 12 – Real Life Data – 5.03 6.314

The holding cost, shortage cost, and unit variable transportation and purchase cost

is defined as $1, $6, and $3, respectively. The warehouse limit, w, is set to 10 and the
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minimum order quantity, m, is defined as 0. For the maximum order quantity, we set

M = [10, 15, 20, 30], to see the effect of the order size on the total expected cost.

As shown in Section 3.2.4, the optimal order quantities of each model differ according

to the states defined for that model and each model has different total expected cost value

J0. We cannot compare the J0 values of the PI, NI, and BU cases since the actual p value

is not known while solving the NI and BU cases and J0 is found by taking expectation over

all possible values of p. For any given actual p value the realized cost will be different than

the total expected cost. But there is no single decision path for any given actual p, at each

period the inventory level will change according to the realized received amounts, which

is binomailly distributed with given order quantity and p, and for each different inventory

level the order quantities will be different. So, it will not be reasonable to compare the

model solutions by a single sample path as the path changes with respect to the probability

distribution of the received amounts. For this reason, to compare the models with each

other we define a simulation run that calculates the average total cost of a given solution

over K replications. We set the number of replications as K = 10, 000. In each replication,

the received amounts change; hence, the actions taken and the associated cost also change.

After completing the 10,000 replications, we report the average of the total costs of these

replications and compare PI, NI, and BU models with respect to this average total cost.

The algorithms for the PI, NI and BU models are given in the Algorithm 1, 2, and 3,

respectively. The results of the simulation runs are summarized in the Tables 3.10, 3.11,

3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19.

In Tables 3.10, 3.11, 3.12, and 3.13, the average total cost of 10,000 scenarios are reported

for one instance of the demand Set 2. The p column gives which reliability parameter is

used in the simulation. For the NI and BU models, the reliability factor is not used while

calculating the optimal order quantities, but in the simulations the received amounts are

calculated using these reliability factors. In each table, p starts from a different level. We

saw in our numerical tests that the results depend on the maximum order size M and the

reliability level p. As p decreases, the manufacturer tries to order more to satisfy its demand.

However, after some level of p, the order sizes given by the three models (PI,NI, and BU)
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Algorithm 1 The Simulation Procedure to Calculate the Average Total Cost for the PI

model
Define the maximum order size M , M will be [10, 15, 20, 30]

for each supplier reliability parameter p, p = [0.1, 0.2, . . . , 1] do

for each demand set Dj , j ∈ {Set 1,Set 2, Set 3} do

Solve the PI model and report the optimal order quantities πPI,j,p

for t = 1, . . . ,K do

for each period k = 0, 1, . . . , N − 1 in the planning horizon do

Determine the optimal order quantity xk
t = πk

PI,j,p(ikt)

Generate a received amount yk
t = Binomial(xk

t, p)

Update ik+1
t = ik

t + yk
t −Dk

j

end for

Calculate the total cost for scenario t

end for

Report the average total cost over K scenarios

end for

Report the average total cost over all instances of demand Set 1, Set 2, and Set 3

end for

Report Results for each p, p = [0.1, 0.2, . . . , 1]

Table 3.10: Simulation results of first instance for the demand Set 2, for M = 10

% Diff of % Diff of % Diff of

p Avg TC (PI) Avg TC (NI) Avg TC (BU) NI from PI NI from BU BU from PI

0.6 291.58 293.58 292.56 0.68% 0.35% 0.33%

0.7 232.28 249.80 235.01 7.54% 6.29% 1.18%

0.8 222.68 263.13 229.19 18.16% 14.81% 2.92%

0.9 214.77 273.98 221.33 27.57% 23.79% 3.05%

1 198.00 282.00 209.00 42.42% 34.93% 5.56%



Chapter 3: Dynamic Lot-sizing under Random Supply with Bayesian Updates 44

Algorithm 2 The Simulation Procedure to Calculate the Average Total Cost for the NI

model
Define the maximum order size M , M will be [10, 15, 20, 30]

for each demand set Dj , j ∈ {Set 1, Set 2, Set 3} do

Solve the NI model and report the optimal order quantities πNI,j

for each supplier reliability parameter p, p = [0.1, 0.2, . . . , 1] do

for t = 1, . . . ,K do

for each period k = 0, 1, . . . , N − 1 in the planning horizon do

Determine the optimal order quantity xk
t = πk

NI,j(ikt)

Generate a received amount yk
t = Binomial(xk

t, p)

Update ik+1
t = ik

t + yk
t −Dk

j

end for

Calculate the total cost for scenario t

end for

Report the average total cost over K scenarios

end for

Report Results for each p, p = [0.1, 0.2, . . . , 1]

end for

Report the average total cost over all instances of demand Set 1, Set 2, and Set 3

Table 3.11: Simulation results of first instance for the demand Set 2, for M = 15

% Diff of % Diff of % Diff of

p Avg TC (PI) Avg TC (NI) Avg TC (BU) NI from PI NI from BU BU from PI

0.4 339.27 341.89 342.40 0.77% -0.15% 0.93%

0.5 238.18 244.07 240.45 2.47% 1.51% 0.95%

0.6 228.43 251.81 233.53 10.23% 7.83% 2.23%

0.7 223.21 262.25 229.67 17.49% 14.19% 2.89%

0.8 218.61 270.50 225.93 23.74% 19.73% 3.35%

0.9 213.04 277.23 222.90 30.13% 24.37% 4.63%

1 198.00 283.00 216.00 42.93% 31.02% 9.09%
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Algorithm 3 The Simulation Procedure to Calculate the Average Total Cost for the BU

model
Define the maximum order size M , M will be [10, 15, 20, 30]

for each demand set Dj , j ∈ {Set 1, Set 2, Set 3} do

Solve the BU model and report the optimal order quantities πBU,j

for each supplier reliability parameter p, p = [0.1, 0.2, . . . , 1] do

for t = 1, . . . ,K do

for each period k = 0, 1, . . . , N − 1 in the planning horizon do

Determine the optimal order quantity xk
t = πk

BU,j(ikt)

Generate a received amount yk
t = Binomial(xk

t, p)

Update ik+1
t = ik

t + yk
t −Dk

j

Update nk+1
t = nk

t + xk
t − yk

t

end for

Calculate the total cost for scenario t

end for

Report the average total cost over K scenarios

end for

Report Results for each p, p = [0.1, 0.2, . . . , 1]

end for

Report the average total cost over all instances of demand Set 1, Set 2, and Set 3

Table 3.12: Simulation results of first instance for the demand Set 2, for M = 20

% Diff of % Diff of % Diff of

p Avg TC (PI) Avg TC (NI) Avg TC (BU) NI from PI NI from BU BU from PI

0.3 463.04 474.47 467.71 2.47% 1.45% 1.01%

0.4 256.18 259.73 258.88 1.39% 0.33% 1.06%

0.5 231.06 241.17 233.71 4.37% 3.19% 1.15%

0.6 225.66 251.98 229.94 11.66% 9.59% 1.90%

0.7 222.40 262.02 227.75 17.81% 15.05% 2.40%

0.8 218.62 269.52 226.31 23.28% 19.09% 3.52%

0.9 213.13 275.54 224.91 29.29% 22.52% 5.53%

1 198.00 280.00 219.00 41.41% 27.85% 10.61%
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Table 3.13: Simulation results of first instance of demand Set 2, for M = 30

% Diff of % Diff of % Diff of

p Avg TC (PI) Avg TC (NI) Avg TC (BU) NI from PI NI from BU BU from PI

0.2 812.75 818.35 812.71 0.69% 0.69% 0.00%

0.3 405.28 416.74 406.94 2.83% 2.41% 0.41%

0.4 254.64 258.06 256.40 1.34% 0.65% 0.69%

0.5 230.84 241.01 233.14 4.40% 3.37% 1.00%

0.6 225.43 251.28 229.42 11.47% 9.53% 1.77%

0.7 222.40 260.08 227.43 16.94% 14.36% 2.26%

0.8 218.60 266.37 226.35 21.85% 17.68% 3.54%

0.9 213.19 271.07 224.92 27.15% 20.52% 5.50%

1 198.00 275.00 219.00 38.89% 25.57% 10.61%

will usually be equal to M . This level of p is determined from the average demand over the

planning horizon (µD) and the maximum order size (M). On the average, the manufacturer

tries to receive at least µD units to satisfy its demand in a period and can order a maximum

of M at each period. We know that the supply quantity is binomially distributed with given

order x and the reliability p. The expected supply quantity for this binomially distributed

supply will be xp and this should be close to µD on the average to satisfy the demand. We

have a relation between p and µD as xp = µD. Since x will be at most M , the minimum p

value that gives order quantities different from M is:

p >
µD

M
. (3.12)

Since the order quantities are fixed to M , and there is no difference between the three

policies for the p values that are smaller than the lower bound defined in Equation 3.12, we

just report the results of p values that yield order sizes smaller than M . For this reason,

possible outcomes of p increases as we increase M used in the calculations. Together p and

M parameters define the capability of the supplier. If one of these parameters is low, than

the other parameter should be high enough to satisfy the demand. For a supplier with both

low values of p and M , the cost incurred to the manufacturer will be high because of the

unsatisfied demand and working with such a supplier will not be preferred.
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Avg TC (PI), Avg TC (NI), and Avg TC (BU) columns in Tables 3.10, 3.11, 3.12,

and 3.13 give the average total cost of 10,000 replications for the PI, NI, and BU models,

respectively. Since the total cost over 12 periods is different for each simulation run, we

give the average comparisons. % Diff of NI from PI, % Diff of NI from BU and % Diff

of BU from PI colums represent the percentage difference between the total cost of NI

model from PI and BU models and BU model from the PI model. The base model for the

comparisons is the PI model since we consider that there is a supplier reliability parameter

but the manufacturer does not know it.

From the results of Tables 3.10, 3.11, 3.12, and 3.13, it can be concluded that the

proposed BU model gives better average total cost than the NI model for each p > µD/M .

The lower bound for p decreases by increasing M . On the average the difference from the

perfect information case is decreased to 3.08 % from 16.99 %. This improvement is for just

one instance of the Set 2. The average results over 10 instances of Set 1, Set 2, and Set 3

are summarized in the Tables 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19 for M = 10 and M = 15.

Table 3.14: Average results for 10 instances of Set 1, M = 10

% Diff of NI from PI % Diff of BU from PI

p Avg TC min TC max TC Avg TC min TC max TC

0.6 7.55% 2.28% 11.91% 1.56% 0.89% 3.04%

0.7 18.52% 12.35% 22.34% 2.29% 0.99% 4.18%

0.8 26.55% 21.59% 29.79% 2.54% 1.39% 3.71%

0.9 34.07% 30.01% 37.08% 2.65% 1.72% 3.79%

1 48.30% 44.28% 51.72% 5.89% 4.48% 7.53%

The first column in Tables 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19 gives the possible p

values. The average demand on each data set is equal to 5. For M = 10, lower bound for

p is greater than 5/10 = 0.5 (p ≥ 0.6) and for M = 15, results are interesting only for p

greater than 5/15 = 0.33 (p ≥ 0.4). The next three columns give the average, minimum, and

maximum total cost differences of the NI model from the PI model for the corresponding

demand set. The last three columns give the average, minimum, and maximum total cost

differences of the BU model from the PI model for the corresponding demand set.

The results of the simulation runs show that, the proposed BU approach performs better
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Table 3.15: Average results for 10 instances of Set 2, M = 10

% Diff of NI from PI % Diff of BU from PI

p Avg TC min TC max TC Avg TC min TC max TC

0.6 4.17% 0.54% 8.30% 1.35% 0.33% 2.21%

0.7 13.63% 7.54% 18.48% 2.04% 1.06% 3.59%

0.8 22.60% 18.02% 28.17% 2.49% 1.05% 4.23%

0.9 30.64% 24.38% 37.22% 2.53% 0.84% 3.68%

1 44.71% 37.59% 51.61% 5.08% 3.65% 6.67%

Table 3.16: Average results for 10 instances of Set 3, M = 10

% Diff of NI from PI % Diff of BU from PI

p Avg TC min TC max TC Avg TC min TC max TC

0.6 2.96% 0.56% 12.20% 2.44% 0.34% 7.42%

0.7 8.48% 1.20% 24.04% 4.11% -0.12% 10.91%

0.8 14.55% 2.54% 31.03% 5.04% 0.17% 11.37%

0.9 21.82% 4.41% 38.23% 5.65% -0.02% 11.71%

1 35.43% 12.41% 54.59% 8.60% 0.00% 15.34%

Table 3.17: Average results for 10 instances of Set 1, M = 15

% Diff of NI from PI % Diff of BU from PI

p Avg TC min TC max TC Avg TC min TC max TC

0.4 2.11% 1.63% 2.60% 1.01% 0.24% 1.55%

0.5 7.16% 5.65% 8.51% 1.53% 0.92% 2.39%

0.6 13.51% 11.95% 15.66% 2.09% 1.24% 2.78%

0.7 18.88% 16.47% 21.42% 2.74% 1.84% 3.56%

0.8 23.95% 21.07% 26.68% 3.80% 2.50% 4.49%

0.9 29.70% 26.44% 32.68% 5.28% 3.38% 6.07%

1 42.53% 39.18% 46.24% 10.26% 7.46% 11.83%
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Table 3.18: Average results for 10 instances of Set 2, M = 15

% Diff of NI from PI % Diff of BU from PI

p Avg TC min TC max TC Avg TC min TC max TC

0.4 1.83% 0.77% 3.53% 1.14% 0.70% 1.64%

0.5 5.09% 2.47% 7.42% 1.46% 0.81% 2.16%

0.6 11.78% 8.27% 14.43% 2.02% 1.28% 2.70%

0.7 17.80% 13.17% 20.72% 2.41% 1.21% 3.17%

0.8 23.25% 18.20% 27.42% 3.03% 1.67% 4.05%

0.9 29.10% 23.06% 34.06% 4.32% 2.40% 6.16%

1 41.67% 34.75% 47.06% 8.71% 5.82% 11.85%

Table 3.19: Average results for 10 instances of Set 3, M = 15

% Diff of NI from PI % Diff of BU from PI

p Avg TC min TC max TC Avg TC min TC max TC

0.4 1.06% 0.37% 1.76% 1.33% 0.15% 3.16%

0.5 3.26% 0.62% 9.35% 2.80% 0.57% 7.34%

0.6 7.24% 0.76% 16.79% 3.81% 0.40% 8.30%

0.7 12.53% 1.65% 25.51% 4.58% 0.36% 8.85%

0.8 18.40% 4.05% 32.59% 5.26% 0.45% 9.77%

0.9 25.52% 6.05% 39.08% 6.22% 0.21% 11.28%

1 37.44% 5.09% 54.95% 9.21% 0.00% 15.76%
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than the NI approach on the defined data sets over 10 instances and for each possible p

value. In all instances, the percentage difference of the average total cost of the BU model

is smaller than the NI model; that is the BU model gives closer results to the PI model than

the NI model. For M = 10, on the average the NI model gives 22.27 % worse results than

the PI model where as, the BU model gives 3.62 % worse results. For M = 15,the NI model

gives 17.8 % worse results than the PI mode, and the BU model gives 3.95 % worse results

than the PI on the average. For larger p values, the improvement in the average total cost

is noteworthy since the BU model updates the reliability parameter. At the beginning of

the planning horizon the NI and BU models assume that p is uniformly distributed between

0 and 1. The expected reliability parameter (p̃) is 0.5 for this distribution. If the actual p

value is larger than p̃, the BU model observes this difference after some period and updates

p according to its observations. Observing and updating the value of p in the BU model

reduces the average total cost to become closer to the PI case.

3.3.2 Approximation for Bayesian Updates (PA)

From the simulation results of Section 3.3.1, we show that when there is imperfect infor-

mation about the supplier reliability, in terms of the average total cost BU model is more

advantageous than the NI model. Although the cost saving from the BU model is con-

siderable, there is a solution time disadvantage of the proposed model. To implement the

learning effect into the DP algorithm, we need to keep track of the failed order amounts

as states. This additional state description results with an increase in the state space. For

the PI and NI algorithms, the states at each stage are described using just ik and the total

number of states at stage k is

1 + w +
k−1∑
t=0

Dt . (3.13)

where w is an upper bound and
∑k−1

t=0 Dt is a lower bound for inventory (−
∑k−1

t=0 Dt ≤ ik ≤

w). Then the size of the state space over all stages is

N +N w +
N∑

k=1

k−1∑
t=0

Dt . (3.14)
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In the worst case scenario, the cumulative demand at each period will be equal to the total

demand over N periods, D =
∑N−1

t=0 Dt, and the total size of the state space becomes

N +N w +
N∑

k=1

D . (3.15)

The order of the state space is

O(N +N w +N D) . (3.16)

Since the on-hand inventory level, w, will be bigger than one, the order of state space

becomes

O(N max(w,D)) . (3.17)

On the other hand, the states at each stages of the BU algorithm are described using

both ik and nk and the total number of states at stage k is

(k M)
(

1 + w +
k−1∑
t=0

Dt

)
. (3.18)

since n0 ≤ nk ≤ n0 + kM and −
∑k−1

t=0 Dt ≤ ik ≤ w. Then, the state space over all stages

has size

M

N∑
k=1

k +M w

N∑
k=1

k +M
( N∑

k=1

k

k−1∑
t=0

Dt

)
. (3.19)

In the worst case scenario, the cumulative demand at each period will be equal to D, and

the total state space becomes

M

N∑
k=1

k +M w

N∑
k=1

k +M D
( N∑

k=1

k
)
. (3.20)

The order of the state space is

O(M N2 +M w N2 +M D N2) . (3.21)

Since the on-hand inventory level, w, will be bigger than one, the order of state space

becomes

O(N2 M max(w,D)) . (3.22)
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With this complexity, it is only possible to solve instances with small values of M , N ,

and D. For large values of M , N , and D the solution time grows rapidly. To solve large data

sets, we propose an approximation algorithm (Percentage Approximation, (PA), Algorithm)

which gives close results to the BU algorithm with significantly less solution time. We try

to estimate the number of failed orders by defining and updating a success percentage for

the past orders.

To reduce the state space, we modify the DP algorithm defined in Section 3.3. In the

original DP algorithm we carry information on the failed order quantities and the states are

described by ik, and nk. Possible outcomes of nk is between n0 and n0 + M k for the kth

period and possible outcomes of nk+1 is between n0 and n0 + M (k + 1) for the (k + 1)th

period. We will give an approximation algorithm to carry this information with smaller

state sizes. Instead of keeping the amount of failed orders, nk, we suggest to keep the ratio

of the successful orders to the total order. From the definition of the states, we know the

inventory level at each state, ik. Since we know the starting inventory in period k, ik, and

the total demand during k periods, the received amount, mk, can be easily calculated by

Equation 3.7. When the percentage of received amount until period k, say κk, is known,

then the failed amount will be

nk = n0 +
(ik +

∑k−1
t=0 Dt) (1− κk)

κk
. (3.23)

For each given mk and nk, there is a ratio of κk = (mk −m0)/((mk −m0) + (nk − n0)) and

this ratio will be any real number between 0 and 1. But keeping the real number values for

ratios is not suitable to solve the DP algorithm. To limit the state space explosion in the DP

algorithm, we need to define states of ratios discretely. For this reason in our approximation

algorithm, we divide the possible outcomes of the success percentage into R = 2l, l ∈ Z+

intervals and assign each κk to a specific interval, rk, with the following comparison,

rk − 1
R

< κk ≤
rk
R

rk ∈ {1, 2, . . . , R} . (3.24)

For each κk in the same interval rk, we use a common percentage value ρk which is the

maximum percentage value in rk. That is, if an ratio κk is in rk, then in the next period

the information about the the past successful observation will be ρk.

To understand this approximation approach by an example, assume that in period k,∑k−1
t=0 Dt = 8, ik = 1 and nk = 7. This information is carried by the state (ik, nk) = (1, 7)
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for the BU algorithm and (ik, rk) = (1, 3) for the PA algorithm with R = 4. In the exact

algorithm we know that mk = 10 and nk = 7 and κk = 0.6. Since

2
4
< κk ≤

3
4
, (3.25)

rk is set to be 3 and the corresponding percentage approximation, ρk, will be rk/R = 0.75.

So, we represent (ik, nk) = (1, 7) as (ik, rk) = (1, 3) in the PA algorithm. With state

(ik, rk) = (1, 3), nk will be estimated as

n̂k = n0 +

[
(ik +

∑k−1
t=0 Dt) (1− ρk)

ρk

]

= 1 +
[

(1 + 8) (1− 0.75)
0.75

]
= 4 .

The estimated failed amount, n̂k, will always be less than or equal to the actual failed

amount nk since for each κk within rk we use the same percentage value ρk in the ap-

proximation algorithm. By increasing the number of intervals defined in [0, 1], the error

ε = nk − n̂k will be decreased.

Proposition 1. If the number of intervals that describe the κk in the PA algorithm, R,

increases, the error ε = nk − n̂k will decrease.

Proof. Assume that the actual success percentage is κk and rk−1
R < κk ≤ rk

R for some rk ∈

{1, 2, . . . , R} and R = 2l and ρk is the estimation for this κk in the approximation algorithm.

In the PA algorithm the success probability is taken into account as ρk = rk/R. To calculate

n̂k, we multiply the received amount with (1− ρk)/ρk, where in the exact algorithm we use

(1− κk)/κk. Since κk ≤ ρk,
1− ρk

ρk
≤ 1− κk

κk
. (3.26)

The error term ε results from the difference of ρk and κk. If the difference between ρk and

κk decreases, the error ε will also decrease.

When we increase R = 2l to R = 2l+1, the ρk will be updated to two possible cases:

The first case is where κk is closer to the lower bound of rk, rk−1
R . As we increase R, the

intervals will be changed as shown in Figure 3.4. In Figure 3.4 (a), R = 2l and in Figure 3.4
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(b) R = 2l+1. As seen from the figure, for the first case increasing R decreases the upper

bound of the corresponding interval from ρk to ρ′k. Thus, the difference between ρ′k and κk

decreases, which also decreases the ε = nk − n̂k.

Figure 3.4: The effect of increasing R on ε = nk − n̂k, Case 1: (a) R = 2l, (b) R = 2l+1.

The second case is for κk closer to ρk. For this case increasing R may not improve the error.

But at some point if we continue to increase R, and create fine intervals, the ρk value will

improve and eventually the error term will decrease. Figure 3.5 shows an example of this

case.

After defining an appropriate R value, the percentage approximations, ρk, successful

observations, mk, and the estimated failed amount, nk, will be calculated as following in

the Percentage Approximation Algorithm:

ρk =
rk
R
, (3.27)

mk = ik +
k−1∑
t=0

Dt +m0 , (3.28)



Chapter 3: Dynamic Lot-sizing under Random Supply with Bayesian Updates 55

Figure 3.5: The effect of increasing R on ε = nk − n̂k, Case 2. (a) R = 2l, (b) R = 2l+1, (c)
R = 2l+2.

n̂k = n0 +

[
(ik +

∑k−1
t=0 Dt) (1− ρk)

ρk

]
. (3.29)

To describe the parameters of the Beta distribution, we need to have integer values for m

and n, so we round the estimation of the failed amount to the nearest integer. The state

variables ik and ρk are updated according to

ik+1 = ik + yk −Dk , (3.30)

rk+1 =
⌈

(mk −m0) + yk

(mk −m0) + (n̂k − n0) + xk
R

⌉
. (3.31)

In Equation 3.31, we update the interval for the next period. The actual successful obser-

vations (mk −m0) and the actual failed observations (n̂k − n0) are calculated according to

the given state. For each order quantity xk and received amount yk, we update the interval

from the ratio between total actual successful observation and the total given order. Then,

the approximate DP algorithm is:

JN (iN , rN ) = 0 , (3.32)
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Jk(ik, rk) = min
xk∈{0,1,2,...,M}

∫ 1

0

[ xk∑
y=0

(
xk

y

)
qy(1− q)xk−y

(
c y + h(ik −Dk + y)+ + s(−ik +Dk − y)+

+Jk+1(ik + y −Dk,

⌈
(mk −m0) + y

(mk −m0) + (n̂k − n0) + xk
R

⌉
)
)]

Γ(mk + n̂k)
Γ(mk)Γ(n̂k)

qmk−1(1− q)n̂k−1dq (3.33)

For this algorithm, the states at each stage are described using ik and rk and the total

number of states at stage k is

R
(

1 + w +
k−1∑
t=0

Dt

)
, (3.34)

since 1 ≤ rk ≤ R and −
∑k−1

t=0 Dt ≤ ik ≤ w. Then the state space over all stages has size

R N +N w R+R
N∑

k=1

k−1∑
t=0

Dt . (3.35)

In the worst case scenario, the cumulative demand at each period will be equal to D, and

the total state space has size

R N +N w R+R

N∑
k=1

D . (3.36)

The order of the state space is

O(R N +R w N +R D N) . (3.37)

Since the on-hand inventory level, w, will be bigger than one, the order of the state space

becomes

O(R N max(w,D)) . (3.38)

When R is set to a constant value, we have

O(N max(w,D)) . (3.39)

Then, the following proposition can be concluded:

Proposition 2. For a fixed value of R, the size of the state space of the proposed approx-

imation algorithm is decreased to O(N max(w,D)), which is the same for the PI and NI

algorithms.
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It is important to set the R parameter. Clearly, for large R values, the solution time will

increase and for small R values the solution of the PA algorithm will deviate from the exact

solution. To test how the approximation algorithm works and how to set the R values, we

solved both BU and PA algorithms for the instances defined in Table 3.9 with different R

values and report the total expected cost and solution time of each algorithm. The results

are summarized in Tables 3.20, 3.21, 3.22, 3.23, 3.24, and 3.25.

Table 3.20: Percentage difference between the expected total costs of BU and PA models
for data Set 1 and M = 10

Average Minimum Maximum Average Minimum Maximum

R Difference Difference Difference Solution Time Solution Time Solution Time

4 2.77% 1.79% 3.95% 0.18 h 0.17 h 0.20 h

8 2.09% 1.51% 2.49% 0.37 h 0.34 h 0.41 h

16 1.31% 0.96% 1.59% 0.81 h 0.75 h 0.90 h

BU - - - 2.22 h 2.03 h 2.40 h

Table 3.21: Percentage difference between the expected total costs of BU and PA models
for data Set 2 and M = 10

Average Minimum Maximum Average Minimum Maximum

R Difference Difference Difference Solution Time Solution Time Solution Time

4 3.25% 1.18% 4.90% 0.18 h 0.14 h 0.19 h

8 2.19% 1.66% 2.73% 0.36 h 0.28 h 0.40 h

16 1.32% 1.04% 1.64% 0.79 h 0.59 h 0.90 h

BU - - - 2.07 h 1.77 h 2.21 h

The R column in Tables 3.20, 3.21, 3.22, 3.23, 3.24, and 3.25 represents which value of R

is used such that that there are 4,8, and 16 possible percentage intervals in the calculations.

The success percentages are approximated with these intervals. BU represents the solutions

of the exact algorithm. Average Difference column gives the percentage difference of the

total expected cost of the approximation algorithm PA with parameter R and the exact
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Table 3.22: Percentage difference between the expected total costs of BU and PA models
for data Set 3 and M = 10

Average Minimum Maximum Average Minimum Maximum

R Difference Difference Difference Solution Time Solution Time Solution Time

4 3.28% 0.38% 5.36% 0.14 h 0.07 h 0.18 h

8 2.98% 1.81% 4.29% 0.28 h 0.14 h 0.36 h

16 1.88% 1.11% 2.54% 0.62 h 0.28 h 0.78 h

BU - - - 1.90 h 1.16 h 2.14 h

Table 3.23: Percentage difference between the expected total costs of BU and PA models
for data Set 1 and M = 15

Average Minimum Maximum Average Minimum Maximum

R Difference Difference Difference Solution Time Solution Time Solution Time

4 1.81% 1.42% 2.35% 0.31 h 0.29 h 0.35 h

8 0.67% 0.43% 1.02% 0.64 h 0.60 h 0.73 h

16 0.49% 0.28% 0.60% 1.38 h 1.28 h 1.55 h

BU - - - 7.33 h 6.74 h 8.00 h

Table 3.24: Percentage difference between the expected total costs of BU and PA models
for data Set 2 and M = 15

Average Minimum Maximum Average Minimum Maximum

R Difference Difference Difference Solution Time Solution Time Solution Time

4 1.84% 1.43% 2.32% 0.31 h 0.24 h 0.37 h

8 0.74% 0.42% 1.06% 0.64 h 0.49 h 0.74 h

16 0.51% 0.30% 0.74% 1.39 h 1.01 h 1.63 h

BU - - - 6.90 h 5.56 h 7.62 h
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Table 3.25: Percentage difference between the expected total costs of BU and PA models
for data Set 3 and M = 15

Average Minimum Maximum Average Minimum Maximum

R Difference Difference Difference Solution Time Solution Time Solution Time

4 3.13% 0.80% 6.04% 0.24 h 0.11 h 0.31 h

8 1.69% 0.56% 3.59% 0.50 h 0.23 h 0.64 h

16 1.43% 0.27% 3.79% 1.07 h 0.47 h 1.39 h

BU - - - 6.08 h 3.43 h 7.05 h

algorithm over 10 instances of the data set. Minimum Difference and Maximum Difference

shows the minimum and maximum difference values over 10 instance sets. Average Solution

Time , Minimum Solution Time, and Maximum Solution Time columns report the average,

minimum and maximum solution times of the algorithms over 10 instance sets.

In accordance with Proposition 1, for both M = 10 and M = 15 cases increasing R

improves the performance of the PA algorithm and decreases the gap between the PA and

BU models. We start to solve the PA algorithm with R = 4. The average percentage

difference between the expected costs of BU and PA models over three demand sets with 10

instances are 3.10% for M = 10 and 2.26% for M = 15, where the maximum differences are

5.36% and 6.04%, respectively. Since we know that increasing R will improve the model, we

increase R to 8 and 16. For R = 16, the average cost difference over the three demand sets

with 10 instances becomes 1.50% for M = 10 and 0.81% for M = 15, where the maximum

differences are 2.54% and 3.79%, respectively. We think that on the average 1.50% and

0.81% are sufficient to say that the PA algorithm performs well because increasing the R

increases the solution time.

For small values of M , the difference between the solution times of BU and PA models

is not noteworthy. For M = 10, the average solution time of in the BU approach is 2.06

h, while it is decreased to 0.74 h by the PA approach. However, as M increases, using the

PA approach becomes more beneficial. For M = 15, the solution time is decreased to 1.28

h from 6.77 h with the PA approach. If the M value would be large for a specific problem,

then the PA algorithm provides better benefit in terms of solution time. To show this, we
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solve one instance of demand Set 2 with M = 10, 15, 20, and 30. The results are shown in

Table 3.26.

Table 3.26: The performance of PA algorithm with different M values.

R M J0 (JPA
0 − JBU

0 )/JBU
0 Solution Time

4 10 976.4 3.94% 0.19 h

8 10 959.6 2.15% 0.39 h

16 10 949.7 1.10% 0.78 h

BU 10 939.4 - 2.21 h

4 15 723.6 1.68% 0.37 h

8 15 719.2 1.06% 0.74 h

16 15 715.1 0.49% 1.63 h

BU 15 711.6 - 7.62 h

4 20 643.5 3.69% 0.57 h

8 20 643.0 3.62% 1.14 h

16 20 632.4 1.92% 2.45 h

BU 20 620.5 - 17.89 h

4 30 574.9 2.50% 1.02 h

8 30 571.4 1.87% 2.01 h

16 30 570.5 1.73% 4.24 h

BU 30 560.9 - 55.00 h

4 40 562.3 - 1.44 h

8 40 560.6 - 2.94 h

16 40 560.1 - 6.11 h

In Table 3.26, the J0 column gives the total expected costs. In the (JPA
0 − JBU

0 )/JBU
0

column the percentage difference of PA algorithms with respect to the exact BU algorithm

is given. As seen from the results, as the R value increases, J0 takes closer values to the BU

algorithm and the percentage differences decreases. From the solution time improvements,

it can be concluded that the proposed approximation algorithm performs better for large

values of M . For M = 10 and R = 16, the solution time of PA is 35.18% of the BU
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algorithm, while this ratio decreases to 7.7% for M = 30 and R = 16.

3.4 Extensions

3.4.1 Bayesian Update Approach with Stochastic Demand

The model defined in Section 3.3 is for the deterministic demand case. When demand

is deterministic, the received amount can be calculated using Equation 3.7. In case of

stochastic demand, we cannot calculate the success amount mk since
∑k−1

t=0 dt is unknown.

For this reason, we need to keep the observed delivered quantities and modify the proposed

DP algorithm where the states are described by ik, mk, and nk, and updated according to

the following:

ik+1 = ik + yk − dk , (3.40)

mk+1 = mk + yk , (3.41)

nk+1 = nk + (xk − yk) . (3.42)

Then, the DP algorithm is:

JN (iN , ) = 0 , (3.43)

Jk(ik,mk, nk) = min
xk∈{0,1,2,...,M}

∫ 1

0
Edk

[ xk∑
y=0

(
xk

y

)
qy(1− q)xk−y

(c y + h(ik − dk + y)+ + s(−ik + dk − y)+

+JN (ik − dk + y,mk + y, nk + (xk − y)))
]

Γ(mk + nk)
Γ(mk)Γ(nk)

qmk−1(1− q)nk−1dq . (3.44)

Since the states at each stage of the BU algorithm are described using ik, mk and nk,

total number of states at stage k is

(k M)(k M)
(

1 + w +
k−1∑
t=0

Dt

)
. (3.45)

since n0 ≤ nk ≤ n0 + kM , m0 ≤ mk ≤ m0 + kM and −
∑k−1

t=0 Dt ≤ ik ≤ w. Then the state

space over all stages has size

M2
N∑

k=1

k2 +M2 w

N∑
k=1

k2 +M2
( N∑

k=1

k2
k−1∑
t=0

Dt

)
. (3.46)
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In the worst case scenario, the cumulative demand at each period will be equal to D, and

the total state space has size

M2
N∑

k=1

k2 +M2 w
N∑

k=1

k2 +M2 D
( N∑

k=1

k2
)
. (3.47)

Then, the order of the state space is

O(M2 N3 +M2 w N3 +M2 D N3) . (3.48)

Since the on-hand inventory level, w, will be bigger than one, the order of state space

becomes

O(N3 M2 max(w,D)) . (3.49)

The complexity of this algorithm is too high for practical purposes, but if the demand is

not deterministic, the information about the received amount should be included into the

states and the DP algorithm should be solved with respect to that.

3.4.2 The Case When p Varies with Order Quantity

As mentioned before, the reliability parameter may change with time and order quantity. In

this section we define reliability parameter as a function of the order quantity xk, p(xk). For

each order size m ≤ xk ≤ M , the reliability parameter changes in [1, p] with the function

defined in Figure 3.6.

Figure 3.6: Function of the reliability parameter with order quantity

To solve the PI case we modify the Equation 3.4 as following:
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Jk(ik) = min
xk∈{0,1,2,...,M}

[ xk∑
y=0

(
xk

y

)
p(xk)y(1− p(xk))xk−y

(
c y + h(ik −Dk + y)+

+s(−ik +Dk − y)+ + Jk+1(ik −Dk + y)
)]

for all k = 0, 1, . . . , N − 1, ∀ik ∈

{
−

k−1∑
t=0

Dt, . . . , w

}
. (3.50)

For the other cases, the DP formulations are not modified since the ordering quantities

are calculated without knowing the actual reliability parameter. The order quantity depen-

dent reliability parameter p(xk) is used in the simulation runs for these cases. The results

for the PI, NI and PA with R = 16 are summarized in Table 3.27.

Table 3.27: Average total cost values for the PI, PA, and NI cases with order quantity
dependent reliability parameter.

Cost Percentage

Model M p Avg TC Difference Difference

PI 30 0.5 213.43 - -

PA w/ R=16 30 0.5 221.95 8.51 3.99%

NI 30 0.5 269.03 55.59 26.05%

PI 30 0.1 224.52 - -

PA w/ R=16 30 0.1 240.33 15.81 7.04%

NI 30 0.1 256.99 32.48 14.46%

In Table 3.27, M and p columns show the maximum order quantity and the lower bound

for the reliability parameter as shown in Figure 3.6. Avg TC column gives the average total

expected cost over all simulation runs in which the reliability parameter depends on the order

quantity. Finally, Cost Difference and Percentage Difference columns report the differences

between the PA and NI models with the PI model with absolute and percentage gaps. From

the results of Table 3.27, it can be concluded that for the model in which the reliability

parameter depends on the order quantity, the proposed Bayesian update approach performs

considerably better than the NI case. For the large values of p, the difference between PA

and PI cases are close, but as p decreases this difference increases.
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3.5 Conclusion

Suppliers may not be capable of satisfying all of the order amount given by the manufacturers

at the requested time. In this study we model the capability of the supplier to fulfill the

orders by modeling the amount received in a period with a Binomial distribution. Each

item ordered is delivered with a probability that we call supplier reliability. When the

manufacturer has no information about the reliability parameter of its supplier, we propose

a Bayesian update approach to estimate the supplier reliability at each period using the

data of past orders’ ordered and recieved amounts. The developed Dp algorithm has a

computational complexity that depends on input data values such as the maximum order

quantity and total demand. We show by computational experiments that the Bayesian

update approach can be used successfully for instances with small input data size. For

problem instances with large parameter values, we propose an approximation algorithm

which gives expected costs close to those found by the exact algorithm and the order of its

computational complexity is smaller than the exact algorithm. Hence, in our experiments

the solution times of the approximation algorithm were much less compared to the exact

algorithm.
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Chapter 4

CONCLUSIONS

We studied the problem of finding a cost-efficient ordering and a shipment plan for a man-

ufacturer that sources multiple items from a supplier in the first part of the thesis. We

determine how many units of each part should be ordered and shipped from the supplier in

each period, and how many trucks to ship over a planning horizon to minimize the inventory

holding and transportation costs by solving a MIP model.

We proposed a simple policy that allows delaying the shipment of trucks with a small

truckload percentage to increase the average vehicle utilization. We investigated its benefits

and risks, as well as its practicality. Our numerical experiments indicate that the proposed

policy can be beneficial for the multiple-item sourcing problems with short lead times and

frequent shipments. In all data sets tested, the DTP improves the total costs with a small

decrease in the service level in case of unexpected changes in the manufacturer’s procurement

plans. The risk analysis will give different results for different cost structures and demand

patterns. However, implementing such an analysis for different systems is not difficult, and

the risk and benefits can be easily evaluated as demonstrated in this study.

The proposed policy can be extended to cases where vehicle types having different ca-

pacities and costs are available by modifying the proposed MIP formulation, albeit with

a slight increase in the number of integer variables, to find an optimal mix of the vehicle

types to be used. Truck packing considerations can also be incorporated into the model for

more accurate estimates of the number of trucks needed. Consolidation of the loads from

multiple suppliers as an alternative means of truck load efficiency may also be compared

against the DTP.

For the second part of the thesis, we studied the dynamic lot-sizing problem under

random supply where the supplier’s shipment behavior is represented by a model that

assumes a random portion of the given order is shipped in every period. In this stochastic

environment, we determine how many units should be ordered from the supplier in each
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period to minimize the sum of expected inventory holding, shortage and purchase costs by

solving DP algorithms.

We investigated different cases in terms of availability of information about the supplier’s

capability. The supply process of the supplier is known to be binomially distributed, but

the success probability of each item to be sent (supplier reliability) may not be known by

the manufacturer. We are interested in the case where the supplier reliability is not known.

To improve the sourcing process, we propose a method that enables the manufacturer to

obtain more information about the supplier reliability throughout its ordering process and

we develop a dynamic programming model with Bayesian updating of the supplier reliabil-

ity parameter. From the information of previous orders’ ordered and received amounts, the

supplier’s capability is estimated and the ordering decisions are optimized by considering

the available information until that point. The proposed algorithm is compared with the

case under perfect information (PI) as well as the one with no information (NI) on sup-

plier reliability. By computational experiments we show that the proposed algorithm with

Bayesian Updates (BU), gives better expected total cost values than the NI case and the

optimal expected costs found by the BU approach are close to those found in the PI case.

To overcome the computational difficulty due to the increase in the state space size of

the BU approach, we define an approximation algorithm. With this algorithm we decreased

the order of the state space from O(N2 M max(w,D)) to O(N max(w,D)) by using a fixed

number of success percentage intervals, R. The computational analysis of the PA approach

shows that the proposed approximation algorithm performs significantly better when the

maximum order size, M , is large. We both proved and showed computationally that as R

increases, the expected total cost values in the PA approach will be close to the expected

total cost values of exact algorithm, BU.
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APPENDIX

Algorithm 4 DP algorithm for the PI case
Define deterministic demand Dk, k = 0, . . . , N−1, cost parameters h, s, and c, warehouse

limit w, minimum and maximum order quantities m and M , and initial stock i0

for each period k = N,N − 1, . . . , 1 do

for each inventory level −
∑k−1

t=0 Dt ≤ ik ≤ w do

if k = N then

Set terminal cost to 0, Jk(ik) = 0

Set ordering quantity to 0, πk(ik) = 0

else

Using Equation 3.4 find the minimum expected cost and equate to Jk(ik)

Set πk(ik) to the xk that minimizes the expected cost

end if

end for

end for

for initial period, k = 0 do

Using Equation 3.4 and i0 find the minimum expected cost and equate to J0(i0)

Set π0(i0) to the x0 that minimizes the expected cost

end for
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Algorithm 5 DP algorithm for the NI case
Define deterministic demand Dk, k = 0, . . . , N−1, cost parameters h, s, and c, warehouse

limit w, minimum and maximum order quantities m and M , and initial stock i0

for each period k = N,N − 1, . . . , 1 do

for each inventory level −
∑k−1

t=0 Dt ≤ ik ≤ w do

if k = N then

Set terminal cost to 0, Jk(ik) = 0

Set ordering quantity to 0, πk(ik) = 0

else

Using Equation 3.6 find the minimum expected cost and equate to Jk(ik)

Set πk(ik) to the xk that minimizes the expected cost

end if

end for

end for

for initial period, k = 0 do

Using Equation 3.6 and i0 find the minimum expected cost and equate to J0(i0)

Set π0(i0) to the x0 that minimizes the expected cost

end for
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Algorithm 6 DP algorithm for the BU case
Define deterministic demand Dk, k = 0, . . . , N−1, cost parameters h, s, and c, warehouse

limit w, minimum and maximum order quantities m and M , initial Beta distribution

parameters m0 and n0, and initial stock i0

for each period k = N,N − 1, . . . , 1 do

for each inventory level −
∑k−1

t=0 Dt ≤ ik ≤ w do

Calculate the successful observations using Equation 3.7

for each failed observations n0 ≤ nk ≤ n0 + kM do

if k = N then

Set terminal cost to 0, Jk(ik, nk) = 0

Set ordering quantity to 0, πk(ik, nk) = 0

else

Using Equation 3.11 find the minimum expected cost and equate to Jk(ik, nk)

Set πk(ik, nk) to the xk that minimizes the expected cost

end if

end for

end for

end for

for initial period, k = 0 do

Calculate the successful observations using Equation 3.7 and i0

Using Equation 3.11, i0, m0, and n0 find the minimum expected cost and equate to

J0(i0, n0)

Set π0(i0, n0) to the x0 that minimizes the expected cost

end for
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and teaching assistant. Next year, Mr. Sancak will be a Ph.D. candidate at Industrial and

Systems Engineering Department of University of Florida.


