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ÖZETÇE

6 boyutlu komutatif olmayan düz uzay-zamanda reel, kütleli φ3 etkileşmeli skaler alanın

kuantizasyonu gözden geçirilecektir. 1 halkada saçılma genliklerinin pertürbatif renor-

malizasyonu ve renormalizasyon grup denklemlerinin çıkarılmasıaçıkça gösterilecektir.Bu

denklemlerin incelenmesi bu kuantum alan teorisinin asimptotik özgürlüg̃ünü verecektir.

Pertürbasyon hesaplarından elde edilen nicel sonuçlar kesin hesaplarla karşılaştırılacaktır.



ABSTRACT

Quantization of a real, massive scalar field with φ3 interactions in D=6 dimensional

noncommutative flat space-time will be reviewed. 1- loop perturbative renormalization of

the scattering amplitudes and the derivation of the renormalization group equations will

be shown explicitly. Analysis of these equations will show the asymptotic freedom of this

particular quantum field theory. Quantitative results from perturbative calculations will be

compared to those from exact calculations.
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my choices, my father and I visited Koç University to see around and meet some of the

faculty to hear what they would suggest for my further education. Unfortunately none of

the physics people were then present but I had the chance to talk with Prof. Mete Soner.

He told me that Prof. Tekin Dereli would join the Physics Department of Koç University
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Chapter 1

INTRODUCTION

Näıvely, the theory of both small and fast is known as quantum field theory. More rigorously,

it is an attempt at incorporating special relativity of Einstein which explains the dynamics

of bodies moving close to speed of light into quantum mechanics which is the theory of

the tiniest constituents of matter surrounding us. Thanks to the ingenius method of path

integral quantization invented by Feynman [1], for free theory we are able to solve exactly the

contribution of a path to the transition amplitude from an initial configuration to a final one.

However, due to the highly complicated nature of the interactions we resort to a perturbative

approach based on our exact result for the free theory. Then, even at first order, one realizes

that for every analytic expression coming from our calculations of the expansion we can

draw some diagrams to represent that particular contribution. These so-called Stueckelberg-

Feynman diagrams come along with some rules assigned to each component of the graph(in

graph-theoretical sense) which are finally embodied in some integral representation. Then

what one needs to do is close his eyes, imagine all topologically distinct possible diagrams

at each order foreseen by the previously derived rules and write down the corresponding

integrals which are yet to be evaluated. However, it was realized as early as the 1930’s

by Dirac, Jordan, Heisenberg and Born that even at the classical level (Abraham-Lorentz

theory) some of those expressions were ill-defined. In principle the singular and the finite

parts of the Feynman integrals can be separated adopting some regularization scheme like

Pauli-Villars, cut-off method, analytic or lattice regularization among which dimensional

regularization due to ’t Hooft [2] is the most suitable in many contexts (as it preserves the

gauge as well as Lorentz symmetries of the theory at each intermediate step of computation).

In this method, the dimension d of the space-time is treated as a continuous parameter

of the theory in which the infinite integrals now converge. Upon analytically continuing

to physical space-time dimension it is seen that the singular behavior shows itself as the
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simple poles arising from the Gamma functions resulting from the dimensional regularization

which can be traced back to the arbitrary splitting of the Lagrangian as the free and

the interacting parts. Hence we can modify the Lagrangian by adding what are called

counterterms which serve to cancel those infinities, to wit ∞−∞ =finite. Effectively this

corresponds to a redefinition of the terms in the original Lagrangian and we can sweep

the divergences into the unobservable elements of our theory through this redefinition,

rendering the observables finite. In a strict sense, the theories which allow such a procedure

at each order of the perturbative expansion without any need to introduce new terms into

the Lagrangian are called renormalizable [3]. But, it is true that there is seemingly an

ambiguity in ‘how much’ of the remaining finite part to put into the swept away infinity

since ∞ + finite=∞. Technically, this is nothing more than a choice of a renormalization

scheme among which there is the on-shell renormalization (momentum subtraction) and the

minimal (and generalized minimal) subtraction (MS and MS resp.) schemes. In MS only

the singular part (in the form of a simple pole of the Gamma function from the previously

employed dimensional regularization) is thrown away, whereas in MS one also gets rid of

the irrelevant unphysical finite part which insists at each order. Although renormalizability

is one of the most efficient tools currently at hand to make physical sense out of a model,

obviously non-renormalizable theories constitute a much greater subset of all mathematically

sensible field theories. So the notion is of utmost importance for high-energy physicists. It

was observed as early as [4] that introducing a noncommutative character on the space-

time coordinates would serve as a UV cut-off at very short lengths for field theories built

upon such a space which would subsequently improve the renormalizability of the theory.

Elaboration of this point for a specific scalar model to be defined below on a particular type

on noncommutative space-time will be the main aim of this project. (For a review of string

theory or condensed matter related topics in noncommutative field theories, NCQFT, see

[5, 6]) More explicitly, non-commutative field theories are mathematical models for the usual

scalar, fermionic and gauge fields whose space-time arguments get replaced by Hermitian

operators upon quantization which satisfy the following non-trivial commutation relation:

[x̂μ, x̂ν ] = iθμν μ, ν = 0, ..., d − 1 (1.1)

where θμν is a constant, second-rank, real, anti-symmetric tensor of units length squared, d is

the dimension of the space-time, and i is there to ensure that commutator of two Hermitian
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operators is again Hermitian. As clearly seen this commutation relation very much resembles

the Heisenberg commutation relations for the Hermitian operators corresponding to the

conjugate position-momentum variables of standard quantum mechanics and as such it

implies the similar uncertainty relation, this time among the space-time points:

ΔxμΔxν ≥ θμν

2
. (1.2)

This in turn results in the discretization of space-time into hypercubes of dimensions of

order Planck scale and hence we substitute an appropriate Hilbert space for the space-time

manifold. It is in this context we construct our field theory. However, at this point it is

appropriate to inform the reader that such noncommutativity in its full content (θ0j �= 0)

implies that the interaction term involves infinite number of time derivatives which signals

the theory being non-local in time and hence has been argued in many papers ([7], [8] and

references therein) to violate unitarity and also causality. These results were in contrast

with the earlier remark [9] that if proper time ordering of the field operators are taken into

account even in space-time noncommutative case unitarity could be established owing to the

Hamiltonian being (formally) self-adjoint. This comment was mostly ignored until when

the connection was revived in [10] where also the two-point function of noncommutative

φ3 theory was shown to preserve unitarity at one loop in the Yang-Feldman[11] sense.

Motivated by this work, Liao and Sibold showed that given the explicit Hermiticity of the

(nonlocal) Lagrangian for a noncommutative scalar field theory the standard time-ordered

perturbation theory suitably extended to noncommutative realm ensures the unitarity of

the model [12]. As we will see in Chapter 4, some rules can be invented to simplify the

appearance of a Feynman graph while leaving its topological properties invariant. In [13]

it was shown that such naive considerations of these rules are just a consequence of Gell-

Mann Low formula still valid for a space-time commutative theory but need to be modified

in a space-time noncommutative context as in their framework the interaction vertices are

dependent on on-shell momenta of the particles involved in the process which will change

drastically the character of the Green’s function as the complex contour integration over

k0 is now totally different. To circumvent such complications in our construction we will

consider purely space-space non-commutativity for which θ0j = 0. Hence the outline of

the paper will be as follows. In the following section we give the basic formal aspects

of non-commutative algebras and its consequences for the construction of a field theory
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in a six-dimensional Minkowskian space-time with signature (+,−,−,−,−,−) with a self

interaction of the form −gφ3/3! at the classical level and deduce some results concerning

classical symmetries of the theory. In Chapter 3 we go on to quantizing this theory path-

integral methods and as in the commutative case we consider a quantum effective action and

its diagrammatic expansion up to one loop. Then on we can derive Feynman rules for the

interaction under consideration and examine the structures of the corresponding Feynman

diagrams. A review of the standard methods of dimensional analysis and power counting will

be given in Chapter 4 which will be followed by the extension to noncommutative theories.

In Chapter 5 using dimensional regularization expressions for all the diagrams contributing

to the UV divergent N-point functions of the theory up to one loop will be calculated

explicitly and we will discover a new phenomena called UV-IR mixing. We will adopt the

MS scheme for our renormalization conditions and as a result in Chapter 6 accordingly set

up our renormalization group equations whose solution at one loop will yield the expected

qualitative behavior of asymptotic freedom of the theory. However, in Chapter 7 we will

quote some recent results and comment on the disagreement of the perturbative result with

the scale dependence of the exact beta function and draw some conclusions.

1.1 Mathematical Preliminaries

It is obvious that the perturbative approach we physicists are used take is to use real valued

functions rather than operator valued ones satisfying equation (1.1). To proceed in this

direction, in this section we follow a procedure, due to Hermann Weyl [14], of assigning a

function of space-time variables (or probably of momentum upon Fourier transforming) to

a quantum operator. This in essence allows one to work with the usual commutative ring

of real numbers on which lives the algebra of functions obeying a deformed multiplication

law. We first define the Weyl symbol for Schwartz class of real functions1 f(x):

Ŵ [f ] :=
1

(2π)d

∫
ddk f̃(k) eikix̂

i
(1.3)

where f̃(k) is the usual Fourier transform of f(x). We may introduce a Hermitian operator

in terms of which we write the above definition allowing us to give f(x) the meaning of the

1functions whose position and momentum space derivatives vanish to all orders at infinity
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position space representation of the Weyl symbol:

Δ̂(x) =
1

(2π)d

∫
ddk e−ikix

i
eikix̂

i
(1.4)

so that equation (1.3) becomes

Ŵ [f ] =
∫

ddx f(x) Δ̂(x). (1.5)

Since any field theory, whether conventional or non-commutative, is defined through an

action functional of fields and their derivatives, we now continue by defining some abstract

properties of this linear operation:

[∂̂i, ∂̂j ] = 0, (1.6)

[∂̂i, x̂
j ] = δi

j. (1.7)

It can be easily seen that this operator is the generator for translations, i.e.

eiai∂̂
i

Δ̂(x) e−iai∂̂
i
= Δ̂(x + a) (1.8)

explicitly suggested from the following identity which comes out automatically when we

take the commutator of this operator with Δ̂(x) given by (1.4):

[∂̂i , Δ̂(x)] = −∂i Δ̂(x) . (1.9)

Again taking the commutator of ∂̂i with the Weyl symbol as in (1.5) turns

[∂̂i, Ŵ [f ]] =
∫

ddk f(x) [∂̂i, Δ̂(x)] = −
∫

ddk f(x) ∂iΔ̂(x) (1.10)

and recalling the assumptions made on the commutative algebra of functions on Rd inte-

gration by parts gives us the next important result we will need to use in constructing our

model:

[∂̂i , Ŵ [f ]] =
∫

ddx ∂if(x) , Δ̂(x) = Ŵ [∂if ] . (1.11)

Equation (1.8) reveals yet another important property for the algebra. Upon taking the

trace of both sides and using the cyclic property for the trace we discover that Tr(Δ̂(x))

does not depend on the particular space-time point it is evaluated and hence we are free to

choose a conventional normalization of Tr(Δ̂(x)) = 1 Hence taking the trace of equation

(1.5) we obtain:

Tr(Ŵ [f ]) =
∫

ddx f(x) . (1.12)
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Indeed this relation can be inverted and the mapping f(x) ↔ Ŵ [f ] mediated by Δ̂(x) is

known as Weyl-Wigner correspondence. To see how this works in practice, consider first

the product of two such intermediary operators:

Δ̂(x) Δ̂(y) =
∫∫

ddk

(2π)d
ddk′

(2π)d
ei(k+k′)ix̂

i
e−

i
2

θijkik
′
j e−ikix

i−ik′
iy

i

=
∫∫∫

ddz
ddk

(2π)d
ddk′

(2π)d
Δ̂(z) ei(k+k′)izi

e−
i
2

θijkik
′
j e−ikixi−ik′

iy
i

=
1

πd|det θ|
∫

ddz Δ̂(z) e−2i(x−z)i(θ−1)ij(y−z)j
(1.13)

where in the first equality we made use of Baker-Campbell-Hausdorf (BCH) formula, inverse-

Fourier transforming on equation (1.4) and exchanging the order of integration in the second,

and finally doing out the Gaussian integration on k and k′ in getting the last equality. Now,

taking the trace of both sides of (1.13) and using the previously agreed normalization of

Tr(Δ̂) = 1 we immediately obtain

Tr(Δ̂(x)Δ̂(y)) = δd(x− y) (1.14)

When combined with (1.5), this gives the sought after Wigner distribution function:

f(x) = Tr(Ŵ [f ]Δ̂(x)) (1.15)

Since while we write down actions for our field theories it includes some powers of the fields,

and now we know product of at least two operators connecting the Weyl operators to the

Wigner functions, we need to calculate some sort of product of two Weyl symbols:

Tr(Ŵ [f ]Ŵ [g]Δ̂(x)) = Tr

∫∫
ddyddzf(y)g(z)Δ̂(y)Δ̂(z)Δ̂(x)

=
1

πd|det θ|Tr

∫∫∫
ddyddzddz′f(y)g(z)Δ̂(z′)Δ̂(x) e−2i(y−z′)i(θ−1)ij(z−z′)j

=
1

πd|det θ|
∫∫∫

ddyddzddz′f(y)g(z)δd(z′ − x) e−2i(y−z′)i(θ−1)ij (z−z′)j

=
1

πd|det θ|
∫∫

ddyddzf(y)g(z) e−2i(x−y)i(θ−1)ij (x−z)j
(1.16)

where in the first line we used the definition (1.5), in the second line the result (1.13), in the

third line equation (1.14). The above equation serves as the position space representation of

the product of two Weyl symbols. We can also explicitly calculate this product in momentum

space and assign it a unique Weyl symbol:

Ŵ [f ]Ŵ [g] =
∫∫

ddk

(2π)d
ddk′

(2π)d
f̃(k)g̃(k′) eikix̂i

eik′
j x̂j
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=
∫∫

ddk

(2π)d
ddk′

(2π)d
f̃(k)g̃(k′) e−

i
2
kiθijk′

j ei(ki+k′
i)x̂

i

=: Ŵ [f 
 g] (1.17)

where we used the definition (1.3) in the first equality and BCH formula in the second. The

so-called Groenewold-Moyal star product as defined in the last equality above can be given

a coordinate space representation:

f(x) 
 g(x) = f(x) exp
(

i

2
←−
∂i θij −→∂j

)
g(x) (1.18)

The arrows on the partial derivatives are self-explanatory and they are there to account for

which momentum contribution to the contraction with the θ tensor in the exponential came

from the Fourier expansion of which (f or g) function in the second line of (1.17). There is

another way to keep track of this: Shift the space coordinates of the two functions to be

star multiplied by two different parameters (say α and β) and differentiate with respect to

the respective parameter. When these parameters are set to zero at the end, it will have

the same effect of the arrows on the partial derivatives:

(f 
 g)(x) ≡ [e
i
2
θμν∂αμ∂βν f(x + α)g(x + β)]α=β=0 (1.19)

where we again used the full Lorentz indices to keep the covariance although we will consider

(see below) only space-space noncommutativities. As a special case of the above identity

take the two functions to be coordinate basis and take their commutator with the standard

multiplication replaced by the star product. This is called the Moyal bracket and amounts

to the position space representation of expression (1.1):

[xμ, xν ]MB := xμ 
 xν − xν 
 xμ = iθμν (1.20)

As a side-remark notice that the exponential factor in equation (1.16) plays the role of

an integral kernel, K(y, z;x), which can be written as the star product of two Dirac-delta

functions, δd(z− x) 
 δd(z− y). We will have something more to say about this result when

we consider the dynamics of our quantum field theory. At this point, we can list some

properties of this product which will be useful in our discussion of the field theory:

1. Since the simplest and usually the most convenient basis to expand our physical fields

is the plane wave basis the star product of two exponentials is rewarding to know:

eikμxμ

 eiqνxν

= ei(k+q)σxσ
e−

i
2
kρθρτ kτ (1.21)
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2. The star product is associative as easily seen from the momentum space representation:

[f(x) 
 g(x)] 
 h(x) = f(x) 
 [g(x) 
 h(x)] (1.22)

3. The star product obeys a cyclic property based on the cyclicity of the operator trace:

∫
ddx(f1(x) 
 f2(x) 
 ... 
 fm(x)) = Tr(Ŵ [f1]Ŵ [f2]...Ŵ [fm])

= Tr(Ŵ [fm]Ŵ [f1]...Ŵ [fm−1])

=
∫

ddx(fm(x) 
 f1(x) 
 ... 
 fm−1(x))(1.23)

In particular the star product of two functions under integral sign behaves as the usual

commutative pointwise multiplication:

∫
ddxf(x) 
 g(x) =

∫
ddxf(x).g(x) (1.24)

4. Complex conjugation:

[f(x) 
 g(x)]∗ = g∗(x) 
 f∗(x) (1.25)

Specifically, f 
 f is real if f is real.

All these mathematical tools at hand we can now proceed to building some physical models.

In the next chapter we demonstrate this for a simple toy model.
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Chapter 2

CONSTRUCTION OF CLASSICAL NONCOMMUTATIVE FIELD

THEORY

In this section we first write the action for a massive, scalar φ3 theory in 6 dimensional

Minkowski space-time in terms of the Weyl symbol of the real, scalar function φ(x). How-

ever, it should be noted that at the classical level its energy is not bounded from below

due to the interaction term. In the next chapter, upon quantization of the classical theory,

this will translate into the fact that the theory does not have any stable vacua and that

the states of the theory will decay beyond any limit. We do study this model just for its

simplicity and hence having the advantage to convey the basic computational tools needed

for noncommutative field theories escaping further conceptual difficulties faced with while

dealing with gauge theories or theories involving fermionic fields. The action functional in

its operator form is written as below:

S[φ] = Tr

(
1
2

[
∂̂i, Ŵ [φ]

]2 − m2

2
Ŵ [φ]2 − λ

3!
Ŵ [φ]3

)
(2.1)

Using the Weyl-Wigner correspondence derived in the previous chapter, we can write this

action in terms of the star product as:

S[φ] =
∫

d6x

[
1
2
∂μφ∂μφ− m2

2
φ2 − λ

3!
φ 
 φ 
 φ

]
(2.2)

where we used equations (1.11), (1.12), (1.23), (1.24), respectively. In the following we

will refer to the interaction Lagrangian as V�(φ) and the action defined by this part of the

Lagrangian as Sint. As immediately read from the action, the free part is the same as in

the conventional scalar field theory and hence will receive no changes to the Feynman rules

in the quantization procedure on the top of the commutative case. This we will review in

the next chapter for the sake of being self-contained. Now, we are interested in the classical

equations of motion which is formally calculated as in the commutative case. The only

difference we can trace is due to the interaction:
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∫
d6x

(
V�(φ + δφ) − V�(φ)

)
=

λ

3!

∫
d6x

[
(φ + δφ) 
 (φ + δφ) 
 (φ + δφ)− φ 
 φ 
 φ

]

=
λ

3!

∫
d6x[φ 
 φ 
 φ + φ 
 φ 
 δφ + φ 
 δφ 
 φ + δφ 
 φ 
 φ

− φ 
 φ 
 φ]

=
λ

2

∫
d6x[φ 
 φ 
 δφ]

=
λ

2

∫
d6x[(φ 
 φ)δφ] =:

∫
d6x

δV�(φ)
δφ(x)

δφ(x) (2.3)

where we ignored the second order variations in the field. Thus the equations of motion are

as below:
δS

δφ(x)
= 0 ⇒ (� + m2)φc(x) = −λ

2
φc(x) 
 φc(x) (2.4)

Under our assumption that we only consider theories with θ0j = 0 it is obvious that the

conjugate momentum to the field is as in the commutative case since the only time derivative

appears in the kinetic Lagrangian:

π(x) =
∂L

∂φ̇(x)
= φ̇(x) (2.5)

For theories with non-zero time-like noncommutativities, interaction part brings in an infi-

nite number of time derivatives from the expansion of the exponential, leading to a theory

non-local in time and hence, as mentioned before, has acausal behavior. As we have been

discussing the φ3 model at the classical level it is instructive to examine its invariances

under classical symmetries. Since it does not have any internal global symmetries(nor even

discrete Z2 is applicable here), we proceed with an application of external symmetry such

as space-time translations. That is we want our action to be invariant under the following

infinitesimal translations:

xμ → x′μ = xμ + aμ

φ(x) → φ(x′) = φ(x) + aμ∂μφ := φ + δφ (2.6)

For the classical path φc we know that the variation in the action vanishes and we are left

with the expression below:

δS|φc = 0 = S(φc + δφc)− S(φc)

=
∫

d6x∂μ
[1
2
(∂μφc 
 ∂νφc + ∂νφc 
 ∂μφc)− ημνL

]
aν (2.7)
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from which it can be deduced that, for an arbitrary shift in the space-time variable, if we

make the below definition

Tμν =
1
2
(∂μφc 
 ∂νφc + ∂νφc 
 ∂μφc)− ημνL (2.8)

then under the integral sign we get the following identity:
∫

d6x ∂μTμν = 0 (2.9)

There are two observations to make from the above discussion. First, it is remarkable that

the assignment (2.8) we made for the energy-momentum tensor is automatically symmetric

as in the case of the conventional scalar theory. However, this need not be always true for

noncommutative field theories. After all the rotational sector of Lorentz symmetry which,

through the local conservation of angular momentum density, implies the symmetry of the

energy-momentum tensor is broken by the constant (noncovariantly transforming) noncom-

mutativity parameter θ (see [15] for a discussion Noether procedure at operator level.)

Second, although in (2.9) we found that under the integral sign Tμν is divergenceless ( we

still have to check if it is conserved. In order to do this we explicitly begin by differentiating

(2.8) and use equations of motion wherever necessary:

∂μTμν =
1
2

(
�φ 
 ∂νΦ + ∂μφ 
 ∂μ∂νφ + ∂μ∂νφ 
 ∂μφ + ∂νφ 
 �φ

)

−1
2

(
∂ν∂μφ 
 ∂μφ + ∂μφ 
 ∂μ∂νφ

)
+

m2

2

(
∂νφ 
 φ + φ 
 ∂νφ

)

+
λ

3!

(
∂νφ 
 φ�2 + φ 
 ∂νφ 
 φ + φ�2 
 ∂νφ

)

= − λ

2 · 2
(
φ�2 
 ∂νφ + ∂νφ 
 φ�2

)

+
λ

3!

(
∂νφ 
 φ�2 + φ 
 ∂νφ 
 φ + φ�2 
 ∂νφ

)

= − λ

12
∂νφ 
 φ�2 +

λ

6
φ 
 ∂νφ 
 φ− λ

12
φ�2 
 ∂νφ

=
λ

12

[
[φ, ∂νφ]MB , φ

]
MB

(2.10)

where φ�2 = φ 
 φ and we made used of (2.4) in the second equality above. Although

the concept of a conserved current is modified 1, the Moyal bracket vanishes in the θ → 0

1In [16] it is discussed that for a massless noncommutative field theory the improved energy-momentum
tensor in the sense of [17] can be brought to a locally conserved form. However, this will not be trace-
less which is not problematic because of the non-scale invariance of the theory due to the dimensionful
noncommutativity parameter.
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limit and we recover the standard Noether’s theorem. This result can be better analyzed by

considering some generalizations to Noether’s theorem which states that to every continuous

global symmetry of the action there corresponds a conserved current and a conserved charge

derived from this current. This translates into the action being invariant whether evaluated

along the original path or the infinitesimally shifted path S[φ] = S[φ + εδφ], where ε is

constant. However, if we let the small deformation parameter be space-time dependent we

have no other choice but the following identity to hold:

S[φ + ε(x)δφ] − S[φ] = δS =
∫

ddxJ μ∂με(x) (2.11)

because we expect the difference give zero when x-dependence of ε is taken away and because

this is the way to construct a Lorentz invariant since the action is a scalar. Using the first

line of (2.7) and integrating by parts gives the following result:

∫
ddx ε(x)∂μJ μ[φ] = 0 (2.12)

In commutative algebra of fields this would read as for an arbitrary ε(x) the current is

conserved. However, since for any two functions f(x) and g(x) we know that using (1.24)

0 =
∫

ddx
(
f(x) · g(x) − g(x) · f(x)

)
=

∫
ddx

(
f(x) 
 g(x) − g(x) 
 f(x)

)

=
∫

ddx[f(x), g(x)]MB (2.13)

and hence for noncommutative theories in any space-time dimensions the following modifi-

cation takes place:

∂μJ μ[φ(x)] =
[
F1[φ(x)], F2[φ(x)]

]
MB

(2.14)

where F1 and F2 are some functionals of the fields (and most probably of their derivatives)

since on the right hand the current depends on φ explicitly. These functionals are to be

determined specifically from the theory under consideration and for the global symmetry

whose current is looked for. For example, for our model (2.2) we deduced in (2.10) that

F1[φ] ≡ [φ, ∂νφ]MB

F2[φ] ≡ φ (2.15)

It should be noted that although we use the word “current vector” for the conserved quantity

it need not be of a truly vector nature as in the case for space-time translational invariance



Chapter 2: Construction of Classical Noncommutative Field Theory 13

since the deformation parameter of the path itself had an extra Lorentz index as opposed to

internal symmetries of a theory. Then this can be understood as a vector equation for each

of the six uncontracted indices ν in the expression ∂μTμν ∝ [[φ, ∂νφ]MB , φ]MB . Although the

way the current is conserved has been changed, for the purely space-space noncommutative

theories we are considering there still exists some conserved quantity as easily can be seen

by the argument below:

∫
d5x[f, g]MB =

∫∫∫
d5xd6kd6qf̃(k)g̃(q)

(
e−

i
2
kρθρσqσ − e−

i
2
qρθρσkσ

)
ei(k+q)μxμ

=
∫∫

d6kd6qf̃(k)g̃(q)
(
e−

i
2
kiθ

ijqj − e−
i
2
qiθ

ijkj

)
ei(k+q)0x0

∫
d5xe−i(k+q)ix

i

=
∫∫

d6kd6qf̃(k)g̃(q)
(
e−

i
2
kiθ

ijqj − e−
i
2
qiθ

ijkj

)
ei(k+q)0x0

δ5(k − q)

= 0 (2.16)

where the last equality follows from the antisymmetry of the θ. Then using the right hand

side of equation (2.14):

∫
d5x(∂0J 0 + ∂iJ i) = 0

= ∂0

∫
d5xJ 0 +

∫
d5x�∇. �J

=
∂

∂t
Q (2.17)

where the second term in second to the last equation is a total divergence and vanishes under

appropriate boundary conditions and we defined the conserved charge Q corresponding to

our symmetry transformation.
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Chapter 3

QUANTIZATION OF THE NONCOMMUTATIVE SCALAR FIELD

THEORY

As we usually consider in the commutative field theory there are mainly two basic

quantizations: canonical and path integral methods. In this section we will start considering

mainly path integral quantization for noncommutative scalar field theories and make some

comments on canonical quantization wherever suitable. We have seen that the free part of

the action is exactly the same as the commutative theory, so upon quantization it will give

us the same Feynman rules for the propagator. Hence, let us review this procedure for the

free theory and then continue with the self-interacting model of our interest.

3.1 Path Integral Approach to the Free Theory

In this section, we follow a more heuristic approach to deriving the Feynman propagator

whereas the same treatment would be done in terms of functional analogue of the usual

Gaussian type integrands [18]. We set forth by defining Z0 , the vacuum-vacuum transition

amplitude in the absence of a genuine interaction:

Z0[J ] =
∫
Dφ ei

∫
d6x[L0+J(x)φ(x)+ i

2
εφ2] (3.1)

where Dφ denotes integration over all possible histories in the space of field configurations

of the process under consideration and the integral in the exponent is over a six dimensional

Minkowski space-time. We also included the small real, positive constant ε to ensure the

convergence of the path integral but we always keep in mind to set it to zero at the end of

our calculations. Z0 is a functional of the source J which in turn depends on the coordinates

x themselves and the Lagrangian of a single, scalar, non-interacting field is given by:

L0 =
1
2
(∇φ)2 − 1

2
m2φ2 (3.2)

After integrating by parts, converting the first term to a surface term by 6 dimensional

Gauss theorem and assuming that φ → 0 as x → ∞, the (∂μφ)(∂μφ) term in the integral
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above can be written as:
∫

(∂μφ)(∂μφ)d6x = −
∫

φ�φ d6x (3.3)

hence leading to the expression

Z0[J ] =
∫
Dφ e−i

∫
d6x[ 1

2
φ(�+m2−iε)φ+J(x)φ(x)] (3.4)

Now if we define a new field φ′ = φ + φ0 with φ0 satisfying the same assumption as before

and the relation

(� + m2 − iε)φ0(x) = J(x) (3.5)

the integrand of the exponent in (3.4) in terms of the new field
∫

d6x [
1
2
φ(�+m2− iε)φ+φ(�+m2− iε)φ0 +

1
2
φ0(�+m2− iε)φ0−J(x)φ(x)−J(x)φ0(x)]

(3.6)

boils down to the simpler expression
∫

d6x
1
2
[φ(� + m2 − iε)φ− J(x)φ0(x)] (3.7)

Now, we can suggest an integral representation for φ0 of the following form in terms of the

so-called Feynman propagator Δ(x)

φ0(x) = −
∫

d6x1 Δ(x− x1)J(x1) (3.8)

where Δ(x) is a Green’s function for the Klein-Gordon equation:

(� + m2 − iε)Δ(x) = −δ6(x) (3.9)

As a result, Z0 becomes

Z0[J ] =
∫
Dφ e−

i
2

∫
d6xφ(�+m2−iε)φ × e−

i
2

∫
d6x1d6x2J(x1)Δ(x1−x2)J(x2) (3.10)

However, the first term being integrated over the whole configuration space of fields gives

a C-number. Although this might be severely divergent it will not cause a problem for us

since we will be interested in appropriately normalized transition amplitudes. Hence, our

final result for vacuum-to-vacuum transition amplitude in the presence of an external source

becomes

Z0[J ] = N e−
i
2

∫
d6x1d6x2J(x1)Δ(x1−x2)J(x2) (3.11)
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We usually work in momentum space so it is useful to consider the Fourier transform of

equation (3.9):

Δ(x) =
1

(2π)6

∫
d6k

e−ikx

k2 −m2 + iε
(3.12)

We see that the extra small pure imaginary part we added to the Lagrangian to improve its

convergence properties at the beginning, now defines a contour in the k0 plane where the

poles of the propagator are at k0 = ∓(�k 2 + m2)1/2 ± iδ = ∓Ek ± iδ. However as we said

before, it is always understood that ε → 0 limit shall be taken at the end. We illustrate

the pole structure of the propagator in Figure 3.1, and how the path of integration gets

deformed accordingly when this limit is realized in Figure 3.2 (see [19] for a comparison of

the deformed contours for the advanced and the retarded propagators).

Figure 3.1: The poles of the propagator and integration path along real k0

Figure 3.2: The choice of contour for ε→ 0

The free theory being the same at the classical level and hence having the same quantization

procedure both in commutative and noncommutative scalar field theories allows us to use

the same Fock space and its vacuum state in both theories and hence expand our fields in
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terms of the usual creation and annihilation operators:

φ(x) =
∑
k

a(k)e−ikx + a†(k)eikx (3.13)

The path integral measure in (3.4) can then be understood better if we define a new but

natural measure for our noncommutative theory as:

(Dφ(x))� := lim
N→∞

dφ(x1) 
 dφ(x2) 
 ... 
 dφ(xN ) (3.14)

If we make use of equation (3.13) here, then all the star products in (3.14) will combine to

give a momentum dependent phase factor which can be redefined into N of (3.11). It is

worth mentioning at the end of this section that with the conjugate momentum we found

in (2.5) we can impose the usual equal time commutation relations(see [20] for a suggestion

of the method on space-time noncommutativities)

[φ(�x, t), π(�y, t)] = iδ3(�x− �y) (3.15)

3.2 A Diagrammatic Approach to the Quantum Effective Action

We know from the conventional field theory that Z[J ] embodies much more information

than indeed needed in calculations yielding physical results. In particular, it involves the

disconnected diagrams which do not talk to each other and hence do not contribute to the

off diagonal entries of the scattering matrix [21]. Hence we define the generating functional

W [J ] for connected diagrams as

Z[J ] = eiW [J ] (3.16)

Even this object has excess data in the sense that it gives rise to diagrams which can be built

from some smaller basic diagrams. Thus we Legendre transform W [J ] to obtain the effective

action Γ[φ], or equivalently the generating functional for those connected diagrams which

cannot be separated into two disconnected diagrams by cutting an internal propagator, the

so-called 1-particle irreducible (1PI) graphs.

Γ[φc] = W [J ]−
∫

d6xJ(x)φc(x) (3.17)

where the classical path satisfies

φc(x) =
δW [J ]
δJ(x)

(3.18)
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From here it is easy to derive the effective field equations:

δΓ[φc]
δφc(x)

= −J(x) (3.19)

Our aim now is to express these field equations as a set of functional differential equations

and try to solve them approximating through a series expansion in h̄. We assume appropriate

boundary conditions so that the functional generalization of the property that the integral

of a total derivative vanishes also holds:

0 =
∫
Dφ

h̄

i

δ

δφ(x)
e

i
h̄
S(φ)+ i

h̄

∫
J(y)φ(y) dy]

=
∫
Dφ

(
δS

δφ(x)
+ J(x)

)
e

i
h̄
S(φ)+ i

h̄

∫
J(y)φ(y) dy (3.20)

Conventionally, to do the integration on the first term of the above expression we replace the

fields down with the functional derivatives with respect to the external source J so that they

will bring down as many φ’s as needed in the first derivative of the action. However, star

product among the interaction term complicates things a little more, but we will now show,

particularly for our φ3 theory, that the results from both commutative and noncommutative

calculations agree at least at a formal level. Plugging from (2.3) into the problematic first

term of (3.20): ∫
Dφ (φ(x) 
 φ(x)) e

i
h̄
S(φ)+ i

h̄

∫
J(y)φ(y) dy

=
[
e

i
2
θμν∂αμ∂βν

∫
Dφ φ(x + α)φ(x + β)e

i
h̄
S(φ)+ i

h̄

∫
J(y)φ(y) dy

]
α=β=0

=
h̄3

i2

[
e

i
2
θμν∂αμ∂βν

δ

δJ(x + α)
δ

δJ(x + β)
e

i
h̄

W [J ]
]
α=β=0

=
(

h̄

i

)2 (
δ

δJ(x)



δ

δJ(x)

)
(x) e

i
h̄

W [J ] (3.21)

The exact meaning embedded in this star product of functional derivatives will become clear

when we try to deduce Feynman rules for the interaction vertex of our theory. For now, we

can continue from the step we were left with at (3.20), by using the functional version of

the well-known trick:

F (∂x) eg(x) = eg(x) F (g′(x) + ∂x) (3.22)

Hence (3.20) becomes

0 =
[( δS

δφ(x)

)
φ(x)→ h̄

i
δ

δJ(x)

+J(x)
]
e

i
h̄

W [J ] = e
i
h̄

W [J ]
[( δS

δφ(x)

)
φ(x)→ δW

δJ(x)
+ h̄

i
δ

δJ(x)

+J(x)
]

(3.23)
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so that
δS

δφ(x)

∣∣∣∣∣
φ(x)→ δW

δJ(x)
+ h̄

i
δ

δJ(x)

+ J(x) = 0 (3.24)

or equivalently upon using (3.18) and functional generalization of the chain rule we get

δΓ
δφc(x)

=
(

δS
δφ(x)

)
φ(x)→φc(x)+ h̄

i

∫
d6yGφc(x,y) δ

δφc(y)

(3.25)

where Gφc(x, y) and its inverse satisfy the following identities:

Gφc(x, y) =
δφc(y)
δJ(x)

=
δ2W [J ]

δJ(x)δJ(y)

G−1
φc

(x, y) =
δJ(x)
δφc(y)

= − δ2Γ[φc]
δφc(x)δφc(y)

∫
d6zGφc(x, z)

δ2Γ[φc]
δφc(z)δφc(y)

= −δ6(x− y) (3.26)

Knowing these we can now compute the 1-loop effective action; that is we take the already

derived result (2.3) and make the substitution in (3.25):
(

δSint

δφ(x)

)
φ→φc+

h̄
i

∫
G δ

δφc

= −λ

2

(
φc(x) +

h̄

i

∫
d6y G(x, y)

δ

δφc(y)

)

 φc(x) (3.27)

= −λ

2
(φc(x) 
 φc(x)) − λ

2
h̄

i

∫
d6y G(x, y)

δ

δφc(y)

 φc(x)

The first term is the classical part and the second term includes the quantum corrections

coming from the loop effects. Hence computing the star products on the second term, we

explicitly see the 1-loop contribution to the effective action:

−λ

2
h̄

i

∫
d6y G(x, y)

δ

δφc(y)

 φc(x) ∝

[
e

i
2
θμν∂αμ∂βν

∫
d6yG(x + α, y)

δ

φc(y)
φ(x + β)

]
α=β=0

∝
[
e

i
2
θμν∂αμ∂βν

∫
d6yG(x + α, y)δ6(y − x− β)

]
α=β=0

∝
[
e

i
2
θμν∂αμ∂βν G(x + α, x + β)

]
α=β=0

∝
[
e

i
2
θμν∂αμ∂βν

∫
d6kG̃(k)eik(α−β)

]
α=β=0

∝
∫

d6kG̃(k) = G(0) (3.28)

where in the first line we employed the definition of star product, in the fourth line we used

the translational invariance of the propagator and its Fourier transform and in the last line
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the anti-commutativity of the θ. So, if we assume an expansion of the effective action Γ

and the two point function G(x, y) in increasing powers of h̄1, comparison of h̄’s in (3.27)

with respect to the ones in (3.25) gives the following result:

δΓ1

δφc(x)
= −λ

2
G0(0) (3.29)

To find the 1-loop effective action this equality needs to be integrated. However, there is

a nicer and simpler argument concerning diagrammatics of the theory. After all, since the

free theory is the same as the commutative one, we can still identify the classical propagator

G(x, y) with a straight line with the ends labeled the space-time points x and y. To this

end we first derive the 3-vertex rule given by the third functional derivative of the classical

action:

δ2Sint

δφ(x1)δφ(x2)
= −λ

2
Re

[
e

i
2
θμν∂αμ∂βν [ δ6(x1 + α− x2) φ(x1 + β)

+ δ6(x1 + β − x2) φ(x1 + α)]
]

(3.30)

δ3Sint

δφ(x1)δφ(x2)φ(x3)
= −λ

2
Re

[
e

i
2
θμν∂αμ∂βν [δ6(x1 + α− x2) δ6(x1 + β − x3)

+ δ6(x1 + β − x2) δ6(x1 + α− x3)
]

= −λ

2
Re

[ ∫
d6k2d

6k3e
i
2
θμν∂αμ∂βν [eik2(x1+α−x2) eik3(x1+β−x3)

+ eik2(x1+β−x2) eik3(x1+α−x3)
]

= −λ Re

[ ∫
d6k2d

6k3e
ik2(x1−x2) eik3(x1−x3) cos

k2θk3

2

]

= −λ

3
Re

[ ∫
d6k1d

6k2d
6k3(2π)6δ6(k1 + k2 + k3)e−ik1x1−ik2x2−ik3x3 ×(

cos
k1θk2

2
+ cos

k1θk3

2
+ cos

k2θk3

2

) ]
(3.31)

where in the second equality we wrote the delta functions in momentum space and in the last

equality we added a delta function from out by hand which is indeed needed to symmetrize

over the momenta entering the vertex. Hence we see that on the top of the commutative

Feynman rules for the vertex we have to multiply with a symmetric combination of cosine

functions of the momenta coming to the interaction vertex. As a side note it is obvious

1For a proof of the fact that powers of h̄ in this expansion actually counts the number of loops in that
term of the action, see [22].
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that some of the terms arising from such vertex factors can heavily change the behavior of

the Feynman integrals. We will come to this point in the next chapter. For now, as usual

we can also differentiate the propagator and using the last identity of (3.26) at the zeroth

order we obtain:

0 =
∫

d6z

[
δG0(x1, z)
δφc(x3)

δ2Γ0[φc]
δφc(z)δφc(x2)

+ G0(x1, z)
δ3Γ0[φc]

δφc(z)δφc(x2)δφc(x3)

]

⇒ δG0(x1, x2)
δφc(x3)

=
∫

d6yd6zG0(x1, y)
δ3S[φc]

δφc(y)δφc(x3)δφc(z)
G0(z, x2) (3.32)

which in the light of the above rules can be diagrammatically represented as:

δ

δφc(x3)

( )
= (3.33)

The effect of differentiating the free propagator with respect to a field at space-time point

x3 has been to add an external line labeled with the same space-time point. Keeping these

in mind we will now give an ansatz for the diagrammatic representation of derivative of the

one-loop effective action and show that it gives the same expression as we found in (3.29):

δΓ1

δφc(x)
=

1
2

=
1
2

∫
d6y d6z G0(y, z)

δ3S
δφ(y)δφ(z)δφ(x)

= −λ

4

∫
d6y d6z G0(y, z)

[
e

i
2
θμν∂αμ∂βν [δ6(x + α− y) δ6(x + β − z)

+ δ6(x + β − y) δ6(x + α− z)]
]

= −λ

4
e

i
2
θμν∂αμ∂βν [G0(x + α, x + β) + G0(x + β, x + α)]

= −λ

2
e

i
2
θμν∂αμ∂βν

∫
d6kG̃0(k)eik(α−β)

= −λ

2

∫
d6kG̃0(k)eikθk

= −λ

2
G0(0) (3.34)

where in the second line we used the first equality of (3.31), in the third line we evaluated

the six-dimensional delta functions, in the fourth we Fourier transformed the position space

propagator together with the property that it is translational invariant and symmetric in

its arguments, and finally the anti-symmetry of the noncommutativity tensor in the last line.
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This result is the same as the one found in (3.29) and thus this suggests that we can

assign a diagram for the one loop effective action to our theory as below:

Γ[φc] = • +
(

h̄

i

)
1
2

+ · · · (3.35)

where · · · denotes the higher order loops in the effective action. We see that the effective

action for the noncommutative theory matches with that of commutative at least at one-loop

order.
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Chapter 4

INTERLUDE:

EXPOSITION OF DIVERGENCES IN N-POINT FUNCTIONS,

DIMENSIONAL ANALYSIS, POWER COUNTING AND ALL THAT

To begin this chapter, we will first review the power counting method in the usual

conventional field theory which allows one to make conclusions about the renormalizabilty

of the theory following mainly [23]. For applications to dimensional regularization method

that will be elaborated later on, we take our space-time of the generic dimensions d =

6 − ε from the beginning. After that we will make the necessary connections with the

noncommutative theory. In conventional field theory we consider an alternative way to

improve the convergence properties of the oscillating behavior of the generating functional

Z which was tried to be cured by including a small imaginary part in the action in the

exponential of (3.1). This new method allows one to make a so-called Wick rotation, that

is define a new imaginary time coordinate x0 = −ixD so that the generating functional can

be written as

Z[J ] = N
∫
Dφ e−S0

E+
∫

ddxJ(x)φ0(x) (4.1)

where

S0
E =

∫
ddx

(
1
2
∂μφ0∂μφ0 +

m2
0

2
φ2

0 +
λ0

3!
φ3

0

)
(4.2)

We denoted the field, coupling and mass with the subscript zero in reference to bare pa-

rameters whose meaning will become clear shortly, and the integrals are considered over

a d dimensional Euclidean space. However, there is a problem with this procedure in

noncommutative field theories due to the nonlocality inherent in the formalism. For non-

commutative space-times the twist factor eik0θ0jkj blows up on rotating in the momentum

space and not allowing analytic continuation. (For example see [24] for an example where

a graph converges in Minkowski space and diverges upon performing a Wick rotation.) For

our case of pure space-space noncommutativity the situation may be said to be better: the

Osterwalder-Schrader positivity which ensures the positivity of transition amplitude is lost
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upon analytic continuation. But we go on with performing it because it allow to discover

some new physics called UV/IR mixing whose Minkowskian counterpart has not been dis-

covered yet and not expected much to be found. Of course this rotation into the Euclidean

plane will cause some changes in the Feynman rules (such as pole structure of the prop-

agator). First thing to notice from the above expression is that since the action is in the

exponential it should be dimensionless to admit a meaningful series expansion. This in turn

means that Lagrangian must have a mass dimension d since it is being integrated over a d

dimensional space and we know that [m] = [x]−1 = 1. Hence [ ∂
∂x ] = 1 and [φ0] = [m]

(d−2)
2

which, upon considering the interaction term, implies [λ0] = [m]3−
d
2 and call this power δ3

for future references. We observe that the coupling is dimensionless in d = 6 dimensions.

This result will have important consequences for the renormalizability of our model. How-

ever, outside 6 dimensions it is not dimensionless anymore and we would like to introduce

a dimensionless coupling g defined as λ = μεg. Then together with this definition, we can

separate the above given bare action in terms of what is called a renormalized action and a

counter term, S0
E = SR

E + S(c.t)
E , where

SR
E =

∫
ddx

[
1
2
∂μφ∂μφ +

m2φ2

2
+

μεg

3!
φ 
 φ 
 φ

]
(4.3)

S(c.t)
E =

∫
ddx

[
1
2
(Z3 − 1)∂μφ∂μφ +

δm2φ2

2
+

μεg

3!
(Z1 − 1)φ 
 φ 
 φ

]
(4.4)

Now the main entity which allows a model’s validity to be tested in the laboratory is the

scattering amplitude A. This amplitude for a graph with L number of loops, V number of

vertices and I number of internal propagators, N number of external legs can be schemati-

cally be expressed as

A = λV F (p1, p2, · · · , pN ) (4.5)

So this amplitude for a particular process contributing to some N-point function of the

theory will have the same dimensions as Γ̃N (p1, p2, · · · , pN ) since the function F is a purely

numerical factor specific to the process under consideration resulting from the integrations

over loop momenta. Hence we can write

[F ] := [m]δ = [m][Γ̃
N ]−V 6−d

2 (4.6)

To obtain the mass dimension of Γ̃N (p1, p2, · · · , pN ), which is the Fourier transform of

ΓN (x1, x2, · · · , xN ), we have to recall that they are the expansion coefficients of the effective
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action in the basis of fields:

Γ[φ] =
∞∑

N=0

1
N !

∫
ddx1 ddx2 ...ddxN ΓN (x1, x2, ..., xN )φ(x1)...φ(xN ) (4.7)

(2π)dδd(p1 + ... + pN )Γ̃N (p1, ..., pN ) =
∫

ddx1...d
dxNei(p1x1+...+pNxN )Γ(x1, ..., xN ) (4.8)

From equation (4.7) we see that the dimension of the proper N-vertex is [m]
Nd
2

+N because

Γ[φ] being an action is dimensionless. Together with this, using the fact that [δd(p)] = [m]−d,

equation (4.8) gives the mass dimensions of its Fourier transform as [Γ̃N (p1, p2, · · · , pN )] =

[m]d−N(d
2
−1). Thus, plugging this expression in (4.6) gives the following equation for φ3

theory in a d-dimensional space-time:

δ = d−N(
d

2
− 1)− V δ3 (4.9)

Let us now try to extract the physical meaning out of this expression. F is the contribution

of the internal kinematical factors of the graph under consideration. Since Feynman rules

dictate using a propagator for each internal line, we get a power of 2I in denominator, and

each independent loop momenta brings an integration of dimension d hence in total a power

of dL in numerator. However, since momentum conservation at each vertex tells us to write

down a delta function, not all of the I internal momenta are independent but only L=I-V+1,

where the extra 1 is added due to the overall momentum conservation in (4.8). Since in our

theory from every vertex 3 legs are emanated and N of them are external whereas internal

lines are connected pairwise to each vertex, holds the relation 3V = N+2I which can be used

to eliminate I. Hence we can deduce from this simple power counting that in the presence

of an ultraviolet cut-off for the upper boundary of a Feynman integral corresponding to

a particular process of an arbitrary order, its high-energy behavior is determined by the

above derived δ, the so-called superficial degree of divergence. This means if the powers

of loop momenta in numerator dominates then δ > 0 and this particular integral certainly

diverges. But, this does not mean that it will ensure the convergence of integrals with δ < 0

because the graph may consist of some smaller parts called subgraphs which has themselves

non-negative superficial degree of divergences. To see this more explicitly for φ3 theory in

6 dimensions, plug in d=6 in (4.9) and it gives that the critical value of δc = 0 separating

the diverging and seemingly converging N point functions of the theory occurs for N = 3.
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Hence we should expect that any loop correction to the propagator (2-point function) and

the proper vertex (3-point function) will diverge. These are called primitive divergences

and the fact that there are finitely many of them in a theory is a very important aspect of

its renormalizability. We will return to the renormalization of these expressions in the next

chapter. But the graphs with 4 or more external lines do not necessarily yield automatically

finite answers as seen from the Figure 4.1 that the subgraph contributes to the divergent

1-loop correction of the 3-point vertex of the theory.

Figure 4.1: Superficially convergent 4-point function of φ3 theory with a divergent subgraph

With this in mind we can focus our attention closer to search for infinities out of a smaller

subset of all diagrams of a theory with the help the following theorem (for a proof see

[25],[26])

Theorem 1 (Weinberg’s) A Feynman diagram for any kind of quantum field theory at an

arbitrary order will converge if the superficial degree of divergence of the graph itself together

with those of all of its subgraphs (the graphs obtained from the original one by cutting some

internal lines) are negative.

Up to this point what we all considered was the review of the results for the old, conventional

commutative field theories. To understand the situation for the noncommutative case, we

would better alter a bit our perception of the newly introduced vertex factors in (3.31).

(Since we can trace noncommutativity only throughout interactions consideration of just

such factors is enough.) Indeed we know that from (1.21) the star product of two plane waves

will bring the non-local momentum dependent factor and hence even without symmetrizing

in the momenta flowing into a vertex as in (3.31), momentum space expansion of Sint
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would introduce a phase of the form e
− i

2

∑3

1≤i<j
kiθ

ijkj which is only cyclically symmetric

due to momentum conservation ensuring delta function coming from the x-integration of

the other part from BCH formula. Since it is not arbitrarily symmetric under exchanges of

the momenta flowing into the vertex, the order of the momenta appearing in such a vertex

should be somehow taken care of. One of the most efficient ways to do this is to use ribbon

graphs introduced by ’t Hooft to handle matrix field theory models [27]. Then using what

are called Filk moves [28] one can reduce the complexity of a graph constituted from such

lines.
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Filk Move 1 Two vertices V1 and V2 of a graph that are connected by an internal line

carrying momentum q can be contracted(keeping the order and orientation of the original

lines) to give a single vertex V as follows:

V1(k1, ..., kn1 , q)V2(−q, kn1+1, ..., kn2) = V (k1, ..., kn2)δ(k1 + ... + kn1 + q) (4.10)

Filk Move 2 A loop which does not cross other lines can be eliminated as follows:

V1(k1, ..., kn1 , q, kn1+1, ..., kn2 ,−q) = V (k1, ..., kn2),
n2∑

i=n1+1

ki = 0 (4.11)

After the usage of these moves any diagram can be reduced to a generic vertex with the same

external lines as the original ones along with some closed loops connected to this vertex.

This vertex can contribute to the structure of the Feynman amplitude in two ways: either it

may involve a phase factor which is a function of only external momenta in which case the

original graph is called a planar graph, or it may also have dependence on the internal loop

momenta which could not be eliminated from the original diagram for which it is called a

non-planar diagram. From the topological point of view this ribbon diagrams allows us to

define the Euler characteristic of a graph with V number of vertices, E number of edges

and F number of faces1 as χ = V −E + F . Then planar graphs have Euler characteristic 2

through the relation χ = 2− 2g i.e. they can be drawn without any crossings of the ribbon

propagators on the plane whose genus is g = 0, and non-planar graphs have g ≥ 1 and can

be drawn on a surface of genus g without crossings [6]. It is known that nonplanar graphs

will be finite 2 unless they host divergent planar subgraphs [30].

1Faces are the closed single lines of a graph that can be traced continuously.

2For a general convergence theorem depending on power counting in terms of the topology of the 2
dimensional surface on which the genus-g graph is drawn, see [29].
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Chapter 5

DIMENSIONAL REGULARIZATION AND 1-LOOP

RENORMALIZATION OF NONCOMMUTATIVE φ3 THEORY

As we saw in the previous chapter that the only graphs contributing to the divergences

of the scattering amplitude of φ3 theory in six dimensions are the two point and three

point functions. Hence we begin by considering the two point function at one loop whose

diagrammatic representation is given below in Figure 5.1. (for a similar investigation of

noncommutative φ4
4 see [31, 32])

Γ2 = + + (5.1)

Figure 5.1: Γ(2) at one loop

The first graph is the usual free propagator inverse which does not get any modifications in

noncommutative theory as we already argued and hence gives the contribution p2+m2. The

third graph is the graphical representation for the yet to be determined counterterms up to

one loop appearing in (4.4). The second one is the 1 loop contribution to the self energy

and is indeed the symmetric vertex representative of the planar and nonplanar graphs of

the theory as shown in Figure 5.2.

k

p

k

p

Figure 5.2: Contributions from planar and nonplanar graphs to the mass correction of
noncommutative φ3 theory at one loop



Chapter 5: Dim.Reg and 1-Loop Renorm. of φ3 Theory 30

By considering the Feynman rules for the Euclidean action we derived earlier we can sep-

arate the contributions coming from each type of graph as below. Here we consider the

integrals over a d = 6− ε dimensional Euclidean space:

=
λ2

9

∫
ddk

(2π)d

[
cos

pθk

2
+ cos

pθ(p− k)
2

+ cos
(p − k)θk

2

]2 1
(k2 + m2)[(p − k)2 + m2]

= λ2
∫

ddk

(2π)d
cos2 pθk

2
1

(k2 + m2)[(p − k)2 + m2]

= λ2
∫

ddk

(2π)d
cos pθk + 1

2
1

(k2 + m2)[(p − k)2 + m2]

=
λ2

2(2π)d

∫ 1

0
dx

∫
ddk(cos pθk + 1)

1
[k2 + m2 + x(1− x)p2]2

=
λ2

2(2π)d

∫ ∞

0
dα α

∫ 1

0
dx

∫
ddkeikθp−α[k2+m2+x(1−x)p2]

+
λ2

2(2π)d

∫ 1

0
dx

∫
ddk

1
[k2 + m2 + x(1− x)p2]2

≡ Γnon−planar
2 + Γplanar

2 (5.2)

where in the third equality above we used the trigonometric identity cos 2β = 2cos2 β − 1,

in the fourth equality the Feynman parametrization

1
AB

=
∫ 1

0

dx

xA + (1− x)B
(5.3)

and in the first line of the last equality of (5.2) the Schwinger parametrization

1
k2 + m2

=
∫ ∞

0
dα e−α(k2+m2) (5.4)

being differentiated with respect to the Euclidean propagator leading to:

∂(k2 + m2)−1

∂(k2 + m2)
= −(k2 + m2)−2 = −

∫ ∞

0
dα α e−α(k2+m2) (5.5)

We identify the first term of the result with nonplanar contribution and even at a qual-

itative level we can argue that it will be finite at high loop momenta due to the rapidly

oscillating behavior of the exponential unless the noncommutativity parameter or the ex-

ternal momenta vanishes. To extract more physics out of the discussion we will consider the

momentum integral for this term directly in d=6 dimensions and first by using Gaussian

integrals we reduce the non-planar(N.P.) part to

N.P. =
λ2

27π3

∫ ∞

0
dα α

∫ 1

0
dx

e−α[m2+x(1−x)p2]− p◦p
4α

α3
(5.6)
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where we introduced the positive definite inner product p ◦ p = piθ
ikθjkpj . As we see the

UV behavior of the momentum integrals manifests itself as a small α divergence which we

will regularize by e−1/4αΛ2
. Then the integral over the α’s give modified Bessel functions

[33]:

N.P. =
λ2

27π3

∫ 1

0
dx

∫ ∞

0
dα

e−α[m2+x(1−x)p2]− p◦p
4α

− 1
4αΛ2

α2

=
λ2Λeff

28π3

∫ 1

0
dx
√

m2 + x(1− x)p2 K1

(√
[p2x(1− x) + m2]Λ−2

eff

)
(5.7)

where we introduced the effective cut-off Λ−2
eff = p ◦ p + Λ−2. First of all, one has to

observe that the above representation is valid for the non-zero arguments of the function.

So, the integral remains finite in the Λ→∞ limit which is a quantitative translation of the

argument that the wild behavior of the integrand was smoothed by the oscillatory phase.

As a note, we keep in mind that both θ → 0 and pnc → 0 result in Λ2
eff = 1/p ◦ p blowing

up. For for small arguments of the irregular modified Bessel function, the below expansion

holds [34]:

K1(z) ≈ 1
z

+
1
2
z ln(z) + (

1
2
γ − 1

4
− 1

2
ln(2))z +O(z3) (5.8)

Applying this expansion non-planar and the planar (which is of the same functional form

with θ = 0, i.e. Λeff = Λ) are found to be:

Γnon−planar
2 = − λ2

28π3
Λ2

eff +
λ2

293π3
(p2 + 6m2) ln(

Λ2
eff

m2
) +O(1) (5.9)

Γplanar
2 = − λ2

28π3
Λ2 +

λ2

293π3
(p2 + 6m2) ln(

Λ2

m2
) +O(1) (5.10)

where we simply set θ = 0 from passing to non-planar to planar expressions (although we

will calculate explicitly the planar graphs below, it is useful to write them like this here

for the clarity of the coming discussion). Hence the 1-loop effective action which yields the

above 1PI 2-point functions is written as:

S2 =
∫

d6pφR(p)φR(−p)
1
2

(
p2 + m2

R −
λ2Λ2

eff

28π3
+

λ2

293π3
(p2 + 6m2

R) ln(
Λ2

eff

m2
R

) + ...

)
(5.11)

where mR is the planar renormalized mass and φR the renormalized scalar field to be

determined using dimensional regularization shortly. Now we would like to consider two

different limits on this action:
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1. p ◦ p << 1/Λ2 or effectively p→ 0 for which Λeff ≈ Λ:

S2 ≈
∫ 1

2
(p2 + m′2

R)φR(p)φR(−p)

which diverges as Λ→∞ if mR is cut-off independent by choice.

2. p ◦ p >> 1/Λ2 or effectively Λ→∞ for which Λ2
eff ≈ 1 p ◦ p:

S2 ≈
∫ 1

2

(
p2 + m2

R −
λ2

28π3p ◦ p
+

λ2

293π3
(p2 + 6m2

R) ln(
1

m2
R p ◦ p

)

)
φR(p)φR(−p)

The divergence above being non-local does not allow for a definition of standard mass

counter term and hence spoils the otherwise renormalizability of the theory. From the

discussion above it is clearly seen that the two limits considered are not interchangable.

This is the so-called UV/IR mixing first realized by Seiberg et.al. in [35]. More explicitly,

the high frequency integration region gives rise to the zero momentum pole in the above

scalar propagator [5]. This kind of high energy internal dynamics effecting the low momenta

particle dynamics has no counterpart in the commutative case. After all, facing with IR

divergences in a massive theory is at best surprising to the conventional mind. A very

important remark is in order here. The vacuum for our model, being already unstable due

to the unboundedness from below of the corresponding classical theory as we discussed,

possesses another unstability because the scalar field has a non-zero expectation value for

small momanta as to satisfy (p2 + m2
R)p ◦ p < O(g2).1

However, there is a way out of this mixing phenomena as Grosse and Wulkenhaar [37, 38]

showed by adding a harmonic potential term to the action which serves as a IR cut-off and

hence defining a new ‘vulcanized’ action:

S[φ] =
∫

d6x

[
1
2
∂μφ∂μφ− m2

2
φ2 + Ω2 x̃μφ x̃μφ− λ

3!
φ 
 φ 
 φ

]
(5.12)

where x̃ = 2θ−1x. Although they worked on φ4 specifically, the same procedure can be

applied to our model and as a result, since it decouples the different scales of the theory, the

perturbative renormalizability of the scalar theory could be achieved as will be shown con-

sidering renormalization group method. Furthermore, this term restores the symmetry what

1This may sound trivial, but as stressed in [35] φ4
4 theory suitably coupled to fermions through Yukawa

interaction exhibits a similar instability whose low energy character requires detailed examination
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is called the Langmann-Szabo (L-S) duality. In [39] it was realized that the action written in

direct space and the momentum phase space respected the following transformation which

transformed one into the other:

φ̃(p)↔ π2
√
|det θ|φ(x); pμ ↔ x̃μ (5.13)

Then the vulcanization implies the following mapping for the action itself [40]:

S[φ;m,λ,Ω]↔ S
[
φ;

m

Ω
,

λ

Ω2
,
1
Ω

]
(5.14)

which for Ω = 1 gets mapped onto itself; in some sense the theory for this value is called

self-dual. Having taken care of IR divergences, we will be mainly interested with the UV

behavior of the theory. The divergences of the second term in (5.2) are identified using

dimensional regularization as in the conventional case [41, 42]. Since the momentum integral

has explicit rotational symmetry, the angular integrals are easily evaluated yielding the d−1

dimensional sphere surface area Sd−1 embedded in the d dimensional Euclidean space-time:

Iε ≡ Sd−1

(2π)d

∫ 1

0
dx

∫ ∞

0

kd−1dk

(k2 + α)2
(5.15)

where we wrote for

α := x(1− x)p2 + m2

Sd−1 =
(2π)d/2

Γ(d/2)
(5.16)

To evaluate the integral in (5.15) we now make a change of variables as u = k2 so that its

differential becomes dk = du/2u1/2 and use the identity below:

∫ ∞

0

uwdu

(u + a)v
= aw+1−v Γ(w + 1)Γ(v − w − 1)

Γ(v)
(5.17)

Hence the radial integration in (5.15) becomes

∫ ∞

0

kd−1dk

(k2 + α)2
=

1
2

∫ ∞

0

u
d
2
−1du

(u + α)2
=

α
d
2
−2

2
Γ(d

2 )Γ(2− d
2)

Γ(2)
(5.18)

As a result, upon using (5.16), (5.15) becomes

Iε =
Sd−1

2(2π)d
Γ(

d

2
)Γ(

4− d

2
)
∫ 1

0
dx [x(1− x)p2 + m2]

d−4
2
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=
(2π)d/2

2
Γ(

4− d

2
)
∫ 1

0
dx [x(1 − x)p2 + m2]

d−4
2 (5.19)

Using d = 6 − ε, we can expand the d dependent terms at each step of our calculation

entering the above expression up to order such that at the end it will not give O(ε) terms

or higher since we will take the ε→ 0 limit. Using the Gamma function property
(

ε

2
− 1

)
Γ(

ε

2
− 1) = Γ(

ε

2
) =

2
ε

+ γ +O(ε)

⇒ Γ(
ε

2
− 1) = −

(
2
ε

+ γ +O(ε)
)(

ε

2
+ 1 +O(ε2)

)
=
(

2
ε

+ γ + 1
)

+O(ε2) (5.20)

and expanding the other terms as below

(2π)−d/2 = (2π)−3
(

1 +
ε

2
ln 2π

)
(5.21)

μ2ε = 1 + ε ln μ2 (5.22)

(x(1− x)p2 + m2)1−
ε
2 = (x(1− x)p2 + m2)(1− ε

2
ln(x(1− x)p2 + m2))

= m2(1 + x(1− x)
p2

m2
)(1 − ε

2
ln m2 − ε

2
ln(1 + x(1− x)

p2

m2
))

= m2(1 + x(1− x)
p2

m2
)

− ε

2
m2(1 + x(1− x)

p2

m2
) ln m2

− ε

2
m2(1 + x(1− x)

p2

m2
) ln(1 + x(1− x)

p2

m2
)) (5.23)

The first term above appearing in (5.19) under integral can be easily evaluated to give
∫ 1

0
dx(1 + x(1− x)

p2

m2
) = 1 +

p2

m2

(
1
2
− 1

3

)
= 1 +

p2

6m2
(5.24)

Thus one loop correction to the propagator becomes

μ2εg2Iε =
g2

2
(2π)−3 × (1 + ε ln μ2)× (1 + ε ln 2π +O(ε2))×

(
−2

ε
+ γ − 1 +O(ε)

)

×
[
m2

(
1 +

p2

6m2

)
− ε

2

(
1 +

p2

6m2

)
m2 lnm2 − ε

2
m2

∫ 1

0
dx F (x, p2/m2)

]

=
g2

16π3
(1 + ε ln μ2)(1 + ε ln 2π)

(
− 2

ε
m2(1 +

p2

6m2
) + (γ − 1)m2(1 +

p2

6m2
)

+ m2 ln m2(1 +
p2

6m2
) + m2

∫ 1

0
dx F (x, p2/m2)

)
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where F given by (+x(1 − x)p2 + m2) ln(+x(1 − x)p2 + m2) yields a finite value being

integrated over [0, 1]. Hence the two point function becomes

Γ2 = p2 + m2 + δm2
1 −

m2g2

8π3

1
ε
(1 +

p2

6m2
)− m2g2

8π3
(1 +

p2

6m2
) ln(

2πμ2

m2
)

+
(γ − 1)m2g2

16π3
(1 +

p2

6m2
) +

m2g2

16π3

∫ 1

0
dxF (5.25)

The fourth term in the above expression gives the pole term. In the minimal subtraction

scheme we just take away the poles and do not touch any already finite parts. The first

part of this term can be identified with a mass counterterm and the second momentum

dependent one need wavefunction renormalization to be carried away. So upon making the

choice for our counterterms as

δm2
1 =

m2g2

8π3

1
ε

(5.26)

Z
(1)
3 − 1 =

g2

48π3ε
(5.27)

the renormalized full propagator up to one loop becomes

Γ2 = p2 + m2 − m2g2

8π3
(1 +

p2

6m2
) ln(

2πμ2

m2
)

+
(γ − 1)m2g2

16π3
(1 +

p2

6m2
) +

m2g2

16π3

∫ 1

0
dxF (5.28)

This completes the renormalization of the two point function at one loop. Another expres-

sion to be renormalized is the planar part of the 1-loop contribution to the 3-vertex. In

Figure 5.3 the full 3-point function is given.

Γ3 = (5.29)

Figure 5.3: Γ(3) at one loop
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The first term is the bare vertex contributing a factor of −μεg. The second one is the

1-loop order vertex counter term −μεg(Z(1)
1 − 1) of the S

(c.t.)
R of equation (4.4). The third

term is the one loop correction to the interaction vertex whose symmetric factor, getting

contributions from the planar and non-planar diagrams in Figure 5.4, is a little more com-

plicated than that of 1-loop 2-point graph calculated previously so we compute it below

separately.

Figure 5.4: Contributions from planar and nonplanar graphs to the interaction vertex of
noncommutative φ3 theory at one loop

Calling the external momenta p, q, r and the independent loop momentum k, we see that

due to the overall momentum conservation q + r = −p ≡ P we simplify the vertex factor

V (p, q, r; k) as

V (p, q, r; k) =
(

1
3

)3 (
cos

rθ(k + q)
2

+ cos
rθ(k + P )

2
+ cos

(k + P )θ(k + q)
2

)

×
(

cos
kθ(k + q)

2
+ cos

kθq

2
+ cos

qθ(k + q)
2

)

×
(

cos
kθp

2
+ cos

kθ(k + P )
2

+ cos
pθ(k + P )

2

)

= cos
rθ(k + q)

2
× cos

kθq

2
× cos

kθp

2

=
1
2
cos

rθ(k + q)
2

×
(

cos
kθ(q + p)

2
+ cos

kθ(q − p)
2

)

=
1
2

(
cos

rθ(k + q)
2

cos
kθ(q + p)

2
+ cos

rθ(k + q)
2

cos
kθ(q − p)

2

)
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=
1
4

(
cos

rθk + rθq + kθ(−r)
2

+ cos
rθk + rθq − kθ(−r)

2

+ cos
rθk + rθq + kθq − kθp

2
+ cos

rθk + rθq − kθq + kθp

2

)

=
1
4

(
cos

(
rθk +

rθq

2

)
+ cos

(
kθq +

rθq

2

)
+ cos

(
kθp +

rθq

2

)
+ cos

(
rθq

2

))

The last term being solely dependent on the external momenta can be easily symmetrized

using the overall momentum conserving delta to yield

1
12

cos

(
pθq

2

)
+ cos

(
rθp

2

)
+ cos

(
rθq

2

)
≡ P(r, p, q) (5.30)

which contributes to planar graph yet to be renormalized shortly. This symmetrization

procedure applies equally well to the first three terms also, but it is more convenient to

write this contribution as an exponential phase as below for the calculation of the non-

planar digrams ∑
j

ajeicj(p)+ibj(p)θk (5.31)

For now we return to the calculation of the planar diagrams which will be considered mod-

ulo the external momenta dependent phase factor:

Planar ∝ −μ3εg3

3!3!3!
9.6.3.4.2.

1
(2π)d

∫
ddk

1
k2 + m2

1
(q + k)2 + m2

1
(P + k)2 + m2

(5.32)

The integrand can be simplified as before by using Feynman parametrization; this time a

more general identity holds:

1
ABC

= 2
∫ 1

0

∫ 1

0

dx1 dx2

[Ax1 + Bx2 + C(1− x1 − x2)]3
(5.33)

If we make a change of variables l ≡ k + x2q + (1 − x1 − x2)P so that ddk = ddl then the

momentum integral becomes neglecting the numerical symmetry factor for now

Sd−1

(2π)d

∫ 1

0

∫ 1

0
dx1dx2

∫ ∞

0

ld−1dl

(l2 + β)3
(5.34)

where β = x2(1− x2)q2 + (1− x1− x2)(x1 + x2)P 2 − 2x2(1− x1− x2)Pq + m2. Proceeding
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as before and using (5.17) with u = l2 the momentum integral becomes

1
2

∫ ∞

0

u
d
2
−1du

(u + β)3
=

β
d−6
2

2
Γ(d/2)Γ(3 − d/2)

Γ(3)
(5.35)

Hence equation (5.34) becomes

1
4

Sd−1

(2π)d
Γ(

d

2
)Γ(

6− d

2
)
∫ 1

0

∫ 1

0
dx1dx2β

d−6
2 (5.36)

As we are in d = 6 − ε dimensions on using (5.16) and since in MS scheme we are only

interested in the exact form of only the pole we obtain

Γ3 = −μεg − μεg[Z1 − 1 + 6μ2εg2
(

1
16π3ε

+ finite

)
P(r, p, q)]

= −μεg − μεg[Z1 − 1 +

(
3g2

8π3ε
+ finite

)
P(r, p, q)] (5.37)

As we choose the pole parts for counter terms in MS scheme we have

Z
(1)
1 =

1
12

(1− 3g2

8π3ε
)

(
cos

(
pθq

2

)
+ cos

(
rθp

2

)
+ cos

(
rθq

2

))
(5.38)
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Chapter 6

RENORMALIZATION GROUP EQUATIONS AND ASYMPTOTIC

FREEDOM OF NONCOMMUTATIVE φ3 THEORY IN SIX

DIMENSIONS

Our choice of the renormalization scheme as minimal subtraction involves some arbitrariness

in the sense that also the finite part including the Euler constant and the logarithmic part

would also be taken into the definition of counterterm. However, this seemingly drawback of

renormalization program indeed turns out to be an invaluable outcome upon realizing that

any two renormalized N-point functions Γ̃N = Z
−N/2
3 Γ̃N

R = Z ′
3
−N/2Γ̃′N

R are equivalent up to

another finite renormalization Z = Z ′
3/Z3 so that Γ̃′N

R = ZN/2Γ̃N . First to understand why

the renormalization of the N-point function we have to go back to (4.4) and realize that it

actually amounts to the redefinitions below

λ0 = Z1 Z−2
3 λ (6.1)

φ0 = Z
1/2
3 φ (6.2)

m2
0 = (m2 − δm2)/Z3 (6.3)

Since he N-point function involves N fields, the renormalized N-point function is related to

the bare one with the Z
−N/2
3 behavior above. And as Z is just the ratio of two renormalized

quantities it remains finite in the limiting behavior of the regulator. Thus, the supposedly

arbitrary choice of the renormalization scheme is indeed intimately restricted by the col-

lection of all such finite transformations which takes one configuration in the parameter

space of the theory to another one. They constitute a semigroup (because it lacks a unique

inverse) called renormalization group. μ being an intermediate parameter used as a tool

for computation, no physical entity should depend on it at the end. Also from the above

additive renormalization definition we can turn to equivalent multiplicative renormalization

by defining
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λ0 = Zgμ
ε g, Zg := Z1 Z−2

3 (6.4)

m2
0 = Z1/2

m m (6.5)

Naturally the bare parameters are not supposed to be dependent on this mass parameter.

Hence from this consideration we try to deduce the dependences of the renormalized ones

by differentiating the bare parameters at their constant values as follows:

μ
dλ0

dμ
= 0 = ε g + μ

d ln Zg

dμ
g + μ

dg

dμ
(6.6)

μ
dm0

dμ
= 0 =

μ

m

dm

dμ
+ μ

d ln Z
1/2
m

dμ
(6.7)

The second of which can be solved in terms of the dimensionless function γm

μ
dm

dμ
= mγm ; γm = μ

d ln Z
−1/2
m

dμ
(6.8)

and in (6.6) it is customary to define the beta function of the theory as

β

(
g,

m

μ

)
= μ

dg

dμ
(6.9)

which along with γm are well behaved in the limiting behavior. Furthermore, being di-

mensionless they are expected to depend on the dimensionless parameters g and m/μ, but

as calculated above in the minimal subtraction since the wavefunction, mass and coupling

constant renormalizations depend only on g, we will have β = β(g) and γm(g) which implies

μ
d

dμ
ln Zg = β(g)

d

dg
ln Zg (6.10)

hence 6.6 will read

μ
dg

dμ
= −εg

(
1 + g

d

dg
lnZg

)−1

(6.11)

Now we defined Zg up in 6.4 which we need up to one loop and we have Z
(1)
3 and Z

(1)
1 from

(5.27) and (5.38) respectively. Thus up to that order Zg is given by

Zg = (Z1)(Z3)−2 = (1− 3g2

8π3ε
)(1 +

g2

48π3ε
)−2P(r, p, q)

= (1− 3g2

8π3ε
)(1− 2g2

48π3ε
)P(r, p, q) = (1− 5g2

12π3
)P(r, p, q) (6.12)
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upon the use of which (6.11) in the ε→ 0 limit has the form

μ
dg

dμ
= − 5g3

6π3
(6.13)

We can make use of this equation by considering the proper vertices renormalization men-

tioned at the beginning of this chapter

Γ̃N (pi;λ0,m0, ε) = Z
−N/2
3 Γ̃N

R (pi; g,m, μ) (6.14)

As above for the bare coupling constant and the bare mass, the bare N-point function does

not depend on the intermediate mass scale hence

(
μ

∂

∂μ
+ β

∂

∂g
+ mγm

∂

∂m
− N

2
γ

)
Γ̃N

R (pi; g,m, μ) = 0 (6.15)

where we defined the new function

γ

(
g,

m

μ
, ε

)
= μ

d

dμ
ln Z3 (6.16)

However, this form is not amenable to an easy solution and the newly defined function can

be made absent from 6.15 by a redefinition as below:

F (N)(pi; g,m, μ) = e
−N

2

∫ g

0
dx

γ(x)
β(x) Γ̃N

R (pi; g,m, μ) (6.17)

written in terms of which 6.15 becomes

(
μ

∂

∂μ
+ β

∂

∂g
+ mγm

∂

∂m

)
F (N)(pi; g,m, μ) = 0 (6.18)

Then if we can solve

s
d

ds
F (N)(pi; ḡ(s), m̄(s), μ̄(s)) = 0 (6.19)

where the initial conditions with the dimensionless parameter s are given for the equation

above:

μ̄(s) = sμ (6.20)

ḡ(1, g) = g (6.21)

m̄(1,m) = m (6.22)
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Applying chain rule with respect to these variables now in 6.19 and together with 6.18 we

obtain

dḡ

d ln s
= β(ḡ(s)) (6.23)

dm̄

m̄d ln s
= γm(ḡ(s)) (6.24)

As a result for FN to be s-independent, we should solve the above subject to the conditions

given before so that the basic equation we need in terms of N-point functions becomes:

Γ̃(N)
R (pi; g,m, μ) = e

−N
2

∫ ḡ(s)

g
dx

γ(x)
β(x) Γ̃(N)

R (pi; ḡ(s), m̄(s), sμ) (6.25)

As we know a scaling argument for external momenta like pi → spi through dimensional

analysis transforms the arbitrariness on the arbitrary mass scale μ to the behavior of the

N-point function under different momenta:

Γ̃(N)
R (etpi; g,m, μ) = e

(d−Nd0)t−N
2

∫ ḡ(t)

g
dx

γ(x)
β(x) Γ̃(N)

R (pi; ḡ(t), e−tm̄(t), μ) (6.26)

dḡ(t)
dt

= β(ḡ(t)) , ḡ(0) = g (6.27)

dm̄(t)
m̄(t)dt

= γm(ḡ(t)) , m̄(0) = m (6.28)

where s = et. Then the asymptotic freedom of the theory means, since as we found in (6.13)

that this function starts as negative and has to pass through zero, upon the consideration

of (6.27) that as t→∞, g → 0 should hold for the β(ḡ(t)) to remain negative.
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Chapter 7

CONCLUSIONS: VALIDITY OF 1-LOOP β FUNCTION

Time permitting, the discussion in this paper considered the perturbative expansion of the

six-dimensional noncommutative φ3 theory up to one loop order. The approach taken mostly

serves to question the internal consistency of field theoretical concepts without giving any

reference for theoretical predictions or experimental limits on the parameters of the theory.

After all the model we examined does not represent reality in its full truth and the inter-

ested reader can check the articles given in the bibliography and the references therein for

phenomenological considerations coming from more realistic models and concentrating on

the Lorentz violation bounds [43, 44, 45, 46]. We began our discussion by considering a par-

ticular type of noncommutative space and then on translated the inherent properties of the

space into the algebra of our fields satisfying a rather modified product called Moyal prod-

uct. Having constructed the classical theory and found the differences in the consequances

of the classical symmetries to Noether currents by the noncommutativity we went on to

quantize the classical theory. The quantization for purely space-space noncommutativities

left us with a new kind of graph called non-planar graphs which upon the use of Filk moves

supplied some phase factors which helped to regularize some of the graphs. We found out

that the planar contributions obey exactly the same divergent behaviors as the commutative

case and hence the renormalization program. The standard analysis of the RGE gave us the

asymptotically free behavior of the theory embodied in the 1 loop beta function. The two

loop calculations would be similarly carried out; just with a lot more complicated internal

momenta dependent vertex factors for the non-planar graphs. Below, in Figure 7.1, we just

give the two loop contribution to the two point function of the theory. But still regardless of

the form of such a trigonometric polynomial, these factors would regularize the divergence

of the momentum integrals. And yet the planar part would still admit the usual renormal-

ization program at two loops. Even at first order we derived the qualitative conclusion that

our model is asymptotically free. However, there is big catch regarding the quantitative
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Figure 7.1: Possible non-planar contributions to the 2-point function of noncommutative φ3

theory

result above due to H. Grosse and H. Steinacker which would force the mathematically

rigorous physicist to reconsider the degree of carelessness in the applicability of the naive

perturbative approaches. We would like to conclude by summarizing their work below and

extracting the result in which we are most interested. They used the similarity between the

matrix models and NCQFT through the already mentioned ribbon graphs leading to genus

expansions(another application appears in [47]). In particular through a series of papers

[48, 49, 50] they considered the mapping from a noncommutative euclidean self-dual (Ω = 1)

φ3 theory to a Kontsevich model [51] in 2, 4, and finally 6 space-time dimensions which can

always be done for even space-time dimensions for some of its eigenvalues generated by an

external source. In particular, making use of inner derivations, the derivations satisfying

(1.6),(1.7) and further can be written as ∂iφ = −i[x̃i, φ], they could write the vulcanized

action for the special self-dual point Ω = 1 and with an imaginary coupling constant iλ̃,

which admits a sensible analytic continuation to real λ̃′, as follows:

S̃ =
∫

x̃ix̃iφφ− iλ̃ãφ +
μ2φ2

2
+

iλ̃φ3

3!
(7.1)

where a linear φ term was included to allow quantization with real ã. Then replacing the

direct space representation of trace by the operator Tr itself and making some intermediate

change of variables, the above scalar model can be written in terms of a matrix model

coupled to an external source:

S = Tr

(
1
2
MX2 +

iλ

3!
X3 − 1

3(iλ)2
M3

)
(7.2)

with X,M, a, λ defined as

X = φ +
J −M

iλ
(7.3)
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M =
√

J2 + 2a (7.4)

a = −(iλ)2ã (7.5)

λ = 2πθλ̃ (7.6)

This has the form of a Kontsevich model [52] with the source given by the operator

J = 4π(θ
∑

i

x̃ix̃i +
μ2θ

2
) (7.7)

whose eigenvalues

J |n〉 = 4π(n +
1 + μ2θ

2
)|n〉 (7.8)

suggest that it is actually the quantum mechanical harmonic oscillator Hamiltonian. As

usual the quantization of the model is given by the partition function

Z[J ] =
∫
Dφ e−S (7.9)

with the classical action given above and where the path integral measure is defined over all

now N ×N Hermitian matrices φ. The rest of the paper involves rather complicated calcu-

lations and we will suffice to outline the procedure. First n-point correlation functions are

defined from the above generating functional. Then making use of the already established

results of Kontsevich model renormalization of those functions in terms of a genus expansion

for all genera is given. The functions are finite except the genus-0 contribution which yields

well-defined contributions for finite nonzero coupling. While in 2 and four dimensions where

the theory is superrenormalizable only mass renormalization is required, wavefunction and

coupling constant renormalizations need to be performed in 6 dimensions for which the cor-

responding commutative counterpart is known to be renormalizable and asymptotically free.

The result from their analysis of the exact renormalization group equations that the flow

governing the running of the coupling constant behaves differently from the one expected

from our perturbative one loop beta function although both predict asymptotic freedom.

Specifically, their coupling constant dies more sharply with the scale dependence (lnN)−2 in

comparison to the perturbative (ln N)−1 behavior for large N. Translated into the terms we

calculated our running above, their (lnm)−2 is in remarkably severe disagreement1 with the

(ln m)−1 of first order beta. This result suggests that noncommutative field theories, being

1For a comparison of the coupling constant behavior at one loop in the φ4
4 context, see [53]
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more friendly to analytical explanations in terms of admitting exact solutions as above, may

be exploited as to put some restrictions on our notions of standard perturbation theory and

renormalization.
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