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ABSTRACT

In this thesis, we analyze the reliability and maintenance of a mission-based system
where the mission process is the minimal semi-Markov process corresponding to a Markov
renewal process. The system is a complex one with multiple components that have arbitrary
lifetime distributions. The mission has different stages or phases with random sequence and
durations. We assume that the failure parameters of the components and the configuration
of the system change according to the phases of the mission. In other words, an external
mission process modulates the deterioration or age process of the system. We analyze several
performance measures under two repair policies: namely, maximal repair and no repair. We
also discuss optimal maintenance policies minimizing the expected total discounted cost. We
consider simpler models with Markovian mission and deterioration to obtain more explicit
and computationally tractable results.

In the first two chapters, we give a brief review of the related literature, and introduce
the notation, terminology, and symbols used through the thesis. The structure of the
mission and age processes are discussed in detail as well as the failure probabilities of the
components.

In Chapter 3, we present the reliability analysis of mission-based systems under both
maximal and no repair policies. Three different reliability measures are characterized:
namely, the probability of survival (system reliability), the probability of completing a
number of phases (mission reliability), and the probability of completing a critical phase
(phase reliability). We also give more explicit formulations and structural characteriza-
tions by making additional assumptions on the system structure, mission structure, and
component lifetimes.

In Chapter 4, the mean time to failure of mission-based systems is analyzed under both
maximal and no repair policies. In both cases, we first define a Poisson equation whose solu-
tion characterizes the mean time to failure and solve it under some reasonable assumptions

which guarantee the existence and uniqueness of the solution. Our main assumption simply
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states that the system may fail after a finite number of successfully completed phases with a
positive probability whatever the initial phase is. We also analyze some interesting special
cases by making additional assumptions on the mission structure.

Chapter 5 focuses on the availability of mission-based systems under both maximal and
no repair policies. The availability is characterized by applying some limiting results for
the solutions of Markov renewal equations. It is shown that irreducibility of the mission
process is sufficient for the existence of the limit under some reasonable assumptions. We
also provide a system of linear equations whose solution allows us to write the availability
under the maximal repair policy in terms of the limiting probabilities of the mission process.

In Chapter 6, we analyze the reliability, mean time to failure and availability of systems
working under a fixed phase with exponentially distributed component lifetimes. We show
that the reliability and mean time to failure of coherent systems can be represented as
a difference of two convex functions and we also obtain their explicit representations. It
is also shown that the availability of coherent systems, and the mean time to failure and
availability of series connection of standby redundant subsystems can be represented as a
ratio of two polynomials with positive coefficients.

In Chapter 7, we consider the optimal maintenance problem of mission-based systems
with multiple components whose lifetimes are generally distributed. The optimal replace-
ment problem is first investigated and several monotonicity properties of the optimal policy
minimizing the expected total discounted cost are proved under some increasing failure
rate assumptions. We also study the optimal repair problem under similar assumptions by
considering several cost structures and obtain interesting properties of the optimal policy.

In the last chapter, all of the previous analysis is repeated for the case where the mission
and deterioration processes of the system have Markovian structures. The main incentive
behind this simplification is to obtain more computationally tractable results. We obtain
matrix exponential formulations for system reliability and phase reliability. We give explicit
formulas for mission reliability, mean time to failure, and availability. We provide many
numerical illustrations showing the applicability of our results. The optimal maintenance
problem of such a system is also discussed. We prove that the optimal replacement policy

has a control-limit structure under some monotonicity assumptions and provide many useful



properties of the optimal repair policy under different cost structures. Detailed numerical
examples are also given showing that our assumptions are really needed for the validity of

our results on the structure of the optimal policies.



OZETCE

Bu tezde gorev-tabanli sistemlerin giivenirligi ve bakimi ile ilgili problemler analiz edilmis-
tir. Ele alinan gorev-tabanl sistemin yerine getirdigi gorev, bir Markov yenileme siirecinin
en kiiciik yari-Markov siireci ile temsil edilmektedir. Dolayisiyla, gorevin agsamalarinin sirasi
rassaldir ve agamalarin siireleri genel dagilima sahip rassal degigkenlerdir. Sistem ise yagam
siireleri genel dagilimlara sahip birden fazla bilesenden olugsan kompleks bir yapidir. Tez
boyunca sistemin yapisinin ve sistem bilesenlerine ait hasar parametrelerinin gorevin asa-
malarina gore degistigi varsayilmigtir. Diger bir ifade ile, sistemin bozulma veya yaslanma
siirecinin parametreleri, harici bir rassal siirece gére zaman iginde degismektedir. Bu sek-
ilde tanimlanmig bir sisteme ait gegitli performans olgiitleri, maksimum bakim ve sifir bakim
politikalar1 altinda tanimlanmis ve analiz edilmistir. Ayrica, toplam maliyetin simdiki bek-
lenen degerini enkiigiikleyen bakim politikalarinin yapisi ortaya ¢ikarilmigtir. Son olarak,
gorev siirecinin ve gorevin her agamasindaki sistemin bozulma siirecinin birer Markov siireci
oldugu varsayilarak daha ¢nce yapilan tiim analizler tekrar edilmistir. Bu son béliimdeki
amag, niimerik olarak daha kolay hesaplanabilen ifadeler elde etmektir.

Tezin ilk iki boliimiinde 6ncelikle daha ¢nce yapilmig ilgili akademik ¢aligmalar 6zetlen-
mis ve tez boyunca kullanilan terimler, semboller ve notasyon agiklanmistir. Gorev ve
yaglanma siireclerinin yapilar1 ve ayrica bilegenlerin bozulma olasiliklar1 detayl bir sekilde
tarif edilmigtir.

Bolim 3’de gorev-tabanl sistemlerin giivenirligi, maksimum ve sifir bakim politikalar
altinda ele alinmigtir. Analiz edilen ii¢ farkhi giivenirlik olgiitii sunlardir: sistemin belli
bir siire bozulmadan ¢aligma olasihig: (sistem giivenirligi), gorevin belirli sayida agamasimin
bagariyla tamamlanma olasiligi (gorev giivenirligi) ve kritik bir agamanimn belli bir siire
icinde tamamlanma olasihigr (kritik agama giivenirligi). Ayrica, sistem yapisi, gérev yapisi
ve bilegen yasam siireleri hakkinda gegitli varsayimlar yaparak daha agik formiiller elde
edilmisg ve bu formiillerin temel yapisal 6zellikleri ortaya cikarilmistir.

Bolim 4’de gorev-tabanl sistemlerin beklenen yagam siiresi, maksimum ve sifir bakim
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politikalar: altinda analiz edilmistir. Her iki politika icin oéncelikle, ¢oziimii, beklenen yagsam
siiresini belirleyen bir Poisson denklemi tanimlanmistir. Daha sonra bu denklem, ¢oziimiin
varligim ve tekligini garanti eden varsayimlar altinda ¢oziilmiigtiir. Bu analizdeki en temel
varsayim, sistemin herhangi bir agamadan baglayarak sonlu sayida, bagariyla tamamlanmig
asamadan sonra bozulma olasiginin sifirdan biiyiik olmasidir. Bu boliimde de gorev siireci
ile ilgili cesitli varsayimlar yapilarak olugturulan cesitli 6zel durumlar incelenmigtir.

Boliim 5’de gorev-tabanli sistemlerin maksimum ve sifir bakim politikalar altindaki kul-
lanilabilirligine odaklanilmigtir. Kullanilabilirlik, bir Markov yenileme denkleminin ¢oziimii-
niin limiti i¢in geligtirilmis neticelerin yardimiyla karakterize edilmigtir. Gorev siirecinin
indirgenemezliginin, baz1 makul varsayimlar altinda, limitin varligi i¢in yeterli oldugu goste-
rilmistir. Ayrica, maksimum bakim politikas: altinda kullanilabilirligi, gorev siirecinin limit
olasiliklar: cinsinden yazabilmeyi olanakl kilan bir dogrusal denklem sistemi elde edilmistir.

Boliim 6, tek asamali bir gorevi yapan ve yagsam siireleri {istel dagilan bilesenlerden
olusan sistemlerin giivenilirligi, beklenen yasam siiresi ve kullanilabilirligi tizerinedir. Tu-
tarli bir sistemin sistem giivenirliginin ve beklenen yagam siiresinin, bilegenlerin hasar hiz-
larina gore dig biikey olan iki fonksiyonun farki olarak yazilabilecegi gosterilmig ve bu gos-
terimin acik formiilasyonu verilmistir. Ayrica, tutarl yapilarin kullanilabilirliginin ve sira
dizili doniistimlii kogut alt sistemlerin beklenen yasam siiresi ve kullanilabilirliginin pozitif
katsayili iki polinomun orani olarak yazilabilecegi gosterilmistir.

Bolim 7’de yagam siireleri genel dagilima sahip birden fazla bilesenden olusan gorev-
tabanl sistemlerin eniyi bakim problemi incelenmistir. 1k olarak eniyi degistirme problemi
analiz edilmis ve toplam maliyetin simdiki beklenen degerini enkiigiikleyen degistirme poli-
tikasinin bircok monotonluk 6zelligi, artan hasar hizi gibi ¢esitli monotonluk varsayimlar
altinda ispatlanmistir. Daha sonra eniyi tamir problemi benzer varsayimlar altinda analiz
edilmig ve gesitli maliyetlendirme yapilar1 kullanilarak eniyi tamir politikasinin bazi ilging
ozellikleri ortaya gikarilmigtir.

Son boliimde daha 6nce yapilmig olan tiim analizler, ¢énceden ele alinan modelin ba-
sitlestirilmis bir hali i¢cin tekrarlanmigtir. Bu daha basit modelde gorev siirecinin ve gérevin
her agsamasindaki sistemin bozulma siirecinin birer Markov siireci oldugu varsayilmistir. Bu

basitlestirmeyle elde edilmek istenen, sayisal olarak daha kolay hesaplanabilen sonuclar elde



etmektir. Sistem giivenirligi ve kritik agama giivenirligi igin iistel matris yapisinda formiiller
elde edilmistir. Gorev giivenirligi, beklenen yagam siiresi ve kullanilabilirlik i¢in oldukca agik
formiilasyonlara ulagilmigtir. Ayrica, elde ettigimiz sonuglarin uygulanabilirligini gostermek
i¢in birgok sayisal 6rnek verilmigtir. Daha sonra bu tarz bir sistem i¢in eniyi bakim problem-
leri tanimlanmig ve ayrintili bir sekilde analiz edilmiglerdir. Eniyi degistirme politikasinin
kontrol-sinir yapisina sahip oldugu gosterilmis ve eniyi tamir politikasinin birgok ilging 6zel-
ligi, fakli maliyetlendirme yapilar1 i¢in ispatlanmigtir. Ayrica, yaptigimiz varsayimlarin

gercekten gerekli oldugunu gosteren sayisal 6rnekler iiretilmistir.
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Chapter 1

INTRODUCTION

This thesis focuses on the reliability and the maintenance of mission-based systems.
Many missions which have to be accomplished by a complex system have different stages
in which the deterioration of the components and the configuration of the system change
dramatically from one stage to another. Such systems are called mission-based systems or
phased-mission systems in the literature and each stage is called a phase. The sequence
and the duration of the phases can be deterministic or random and the system can be
repairable or non-repairable. Moreover, all stochastic and deterministic failure properties
of the components of the system depend on the phase of the mission that is performed at a
given time. These systems were introduced by Esary and Ziehms [I] and a vast literature
has accumulated since then.

Most of the literature on phased-mission systems in the literature assume that the se-
quence of the phases is deterministic, and we will summarize some important papers on
this type of phased-mission systems. Esary and Ziehms [1], Burdick et al. [2] and Veatch
[3] analyze phased-mission systems with non-repairable components. Alam and Al-Saggaf
[4] introduce a method for repairable systems with deterministic phase durations. Then,
Kim and Park [5] extend this work to systems with generally distributed phase durations.
An algorithm for non-repairable systems with general failure distribution, which is based on
binary decision trees, is proposed by Zang et al. [6]. Vaurio [7] discusses a fault tree analy-
sis for repairable systems with general repair and failure distributions. Xing and Dugan
[8] analyze a more general class of systems which includes phased-mission systems with
combinatorial phase requirement and imperfect coverage where the failure of the system is
determined by the failures of the components by logical rules (and, or, k-out-of-m) and the
failure of a component can be transient or permanent. Other important recent papers on

generalized phased-mission systems are Xing and Dugan [9] and Xing and Dugan [10]. Fur-
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thermore, phased-mission systems with multimode failures in which different failure modes
have different failure rates and effects are analyzed by Tang and Dugan [I1] using binary
decision diagrams. Tang et al. [I2] use these diagrams to analyze the reliability of a phased-
mission system with common cause failures (simultaneous failure of multiple components
due to a common cause).

Phased-mission systems with random sequence of phases were first introduced by Mura
and Bondavalli [I3] assuming that the phase durations were deterministic. After that,
a methodology to analyze the reliability of phased-mission systems with random phase
sequence and generally distributed phase durations is provided by Mura and Bondavalli [14]
using Markov regenerative stochastic petri nets. Bondavalli and Filippini [I5] apply the
methodology in Mura and Bondavalli [14] to scheduled maintenance systems. Bondavalli
et al. [16] describe a solution procedure, DEEM, which can handle both deterministic and
random sequence of phases.

The analysis and the structure of mission-based systems or phased-mission systems are
quite similar to systems working under random environments. In reliability modeling, a
device generally consists of a large number of components with stochastically dependent
lifetimes. Random environments are used to provide a tractable model of dependence since
this is taken as an external process that affects the deterioration, aging and failure of all of
the components. Since all components are subjected to the same environmental conditions,
their lifetimes are dependent via their common environmental process. Thus, the environ-
mental process is actually a factor of variation in the failure structure of the components.
An interesting model was introduced by Cilar and Ozekici [I7] where stochastic depen-
dence is introduced by a randomly changing common environment that all components of
the system are subjected to. This model is based on the simple observation that the aging
or deterioration process of any component depends very much on the environment that
the component is operating in. They propose to construct an intrinsic clock which ticks
differently in different environments to measure the intrinsic age of the device. The envi-
ronment is modeled by a semi-Markov jump process and the intrinsic age is represented
by the cumulative hazard accumulated in time during the operation of the device in the
randomly varying environment. This is a rather stylish choice which envisions that the

intrinsic lifetime of any device has an exponential distribution with parameter 1. The con-
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cept of random hazard functions is also used by Gaver [I§] and Arjas [19]. The intrinsic
aging model of Cinlar and Ozekici [17] is studied further in Cinlar et al. [20] to determine
the conditions that lead to associated component lifetimes, as well as multivariate increas-
ing failure rate (IFR) and new better than used (NBU) life distribution characterizations.
It was also extended in Shaked and Shanthikumar [2I] by discussions on several different
models with multicomponent replacement policies. Lindley and Singpurwalla [22] discuss
the effects of the random environment on the reliability of a system consisting of compo-
nents which share the same environment. Although the initial state of the environment is
random, they assume that it remains constant in time and components have exponential
life distributions in each possible environment. This model is also studied by Lefévre and
Malice [23] to determine partial orderings on the number of functioning components and the
reliability of k-out-of-n systems, for different partial orderings of the probability distribution
on the environmental state. The association of the lifetimes of components subjected to a
randomly varying environment is discussed by Lefévre and Milhaud [24]. Singpurwalla and
Youngren [25] also discuss multivariate distributions that arise in models where a dynamic
environment affects the failure rates of the components. In a recent article, Singpurvalla
[26] provides a review by discussing hazard potentials in reliability modelling.

The use of random environments is not limited to applications in reliability models.
There is now considerable amount of literature on modulation in a variety of applications.
An example in queueing is provided by Prabhu and Zhu [27] where customer arrival and
service rates are modulated by a Markov process. Erdem and Ozekici [28] consider inven-
tory models with a demand process that fluctuates with respect to stochastically changing
economic conditions. A general discussion on the idea can be found in Ozekici [29] who
discusses the use of random environments in complex models in operations research with
applications in reliability, inventory, and queueing. An interested reader is referred to Rol-
ski et al. [30] for further applications in queueing, insurance and finance. More recently,
Celikyurt and Ozekici [31] applied the idea to various multiperiod portfolio optimization
problems. In their setting, the correlation among returns in different periods is formulated
by a stochastic market representing underlying financial, economic, social, and other factors
that affect returns on risky assets.

Reliability, mean time to failure (MTTF), and availability of complex systems are very
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important active research topics in operations research literature. There are many recent
papers that consider various system structures. For example, Wang et al. [32] compare
reliability and availability of four different system configurations with warm standby com-
ponents and standby switching failures. They also obtain explicit expressions for MTTF
and the steady state availability. A cold standby repairable system with one repairman and
two dissimilar components that have different priorities in use is analyzed by Zhang and
Wang [33]. They derive formulas to compute system availability, reliability, MTTF, rate of
occurrence of failure and the idle probability of the repairman. Kharoufeh et al. [34] con-
sider a periodically inspected system with hidden failures where a continuous-time Markov
chain modulates the wear rate and damage is induced by a Poisson shock process. Explicit
formulations for the system lifetime distribution, MTTF, and the limiting average availabil-
ity are obtained. Several properties of the mean residual life function of a k-out-of-n system
with independent and identical components are examined by Asadi and Bayramoglu [35].
Kiureghian et al. [36] analyze a general system where component failures are assumed to
be homogeneous Poisson events in time and repair durations are exponentially distributed.
They give closed form expressions for the steady-state availability, mean rate of failure,
mean duration of downtime, and lower bound reliability.

Maintenance actions are vital for companies to increase reliability and availability of the
production system and to decrease production costs. At the same time, Bevilacquaa and
Bragliab [37] states that maintenance may require extensive expenditures which may vary
from 15% to 70% of the total production cost depending on the industry. For instance, the
total amount spent for maintenance is more than 200 billion dollars in the United States
every year as observed by Chu et al. [38]. Moreover, a significant portion of the total work
force in a company is employed in maintenance departments; Waeyenbergh and Pintelon [39]
estimates that this is up to 30% or more in chemical process industries. These observations
indicate that optimizing the obvious trade-off between maintenance costs and productivity
will have a very significant impact on the total cost. This is why it is not surprising that an
extensive body of literature on optimal maintenance problems has been accumulated. The
review papers [40, [41] [42], 43 [44], [45] 46, [47, 48, [49, (501 51, 52, 53], 54}, [55] survey hundreds
of papers on optimal maintenance problems.

The primary purpose of this thesis is to analyze reliability and maintenance problems
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related to mission-based systems in a very general setting. We generally assume that the
mission process is the semi-Markov process corresponding to a Markov renewal process.
Therefore, the sequence of the phases follows a Markov chain and the durations of the
phases are generally distributed. The system is a complex one with multiple components and
generally distributed component lifetimes. The mission process modulates all deterministic
and random failure properties of the components as well as the configuration of the system.

We first analyze several performance measures including system reliability (the probabil-
ity of survival), mission reliability (the probability of completing n phases), phase reliability
(the probability of completing a critical phase), MTTF, and availability under two repair
policies: namely, maximal repair and no repair. In the former one, it is assumed that all
components are replaced by brand new ones once a new phase starts. However, the worn
system continues to work without any maintenance after completing a phase under the no
repair policy. System reliability, mission reliability, and the phase reliability are analyzed
using Markov renewal theory and intrinsic aging concepts described in Cinlar and Ozekici
[17]. In the MTTF analysis, we first define a Poisson equation whose solution characterizes
the MTTF and solve it under some reasonable assumptions which guarantee the existence
and uniqueness of the solution. Our main assumption simply states that the system may
fail after a finite number of successfully completed phases with a positive probability what-
ever the initial phase is. We analyze the availability by applying some limiting results for
the solutions of Markov renewal equations and show that the irreducibility of the mission
process suffices for the existence of the limit under some reasonable assumptions.

We also discuss the optimal replacement and repair problems of mission-based systems.
We obtain several monotonicity properties of the optimal replacement policy, minimizing
the expected total discounted cost, under some increasing failure rate assumptions. We
also analyze the optimal repair policy under similar assumptions by considering several cost
structures.

In the last part of the thesis, all of the previous analyses are repeated for mission-
based systems with Markovian mission and deterioration where the mission process is a
Markov process, the deterioration process of the system is a Markov process modulated by
another Markov process, and the deterioration level of the system can be classified into a

finite number of states at any time. The main incentive behind this simplification is to
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obtain more explicit and computationally tractable results. We obtain matrix exponential
formulations for the system reliability and the phase reliability. We give explicit results
for the mission reliability, MTTF, and availability. We prove that the optimal replacement
policy has a control-limit structure under some increasing failure rate assumptions and
provide many useful properties of the optimal repair policy under some interesting cost
structures.

The secondary purpose of this thesis is to derive some reliability functions which can be
used in optimization models and have explicit forms in terms of the lifetime parameters. It
is clear that the results obtained by using a very general model may not be computationally
tractable and sufficiently explicit to be used directly in an optimization model which can be
solved by using some numerical algorithms. Thus, after deriving the general results, we try
to obtain more computationally tractable formulations by making some additional assump-
tions on the system structure, mission structure, and component lifetimes. We obtain many
explicit formulations for some special cases where all component lifetimes are exponentially
distributed. We also discuss some structural properties of the mission reliability functions
in terms of the failure rates of the components. For example, we prove that the mission
reliability of series connection of k-out-of-n subsystems is a linear combination of product of
nonnegative, nonincreasing and convex functions provided that the component lifetimes are
exponentially distributed. Furthermore, we study the reliability, MTTF, and availability of
systems working under a fixed phase with exponentially distributed component lifetimes.
It is shown that the reliability and MTTF of coherent systems (CS) are representable as a
difference of convex (DC) functions, and the MTTF and availability of series connection of
standby redundant subsystems (RS) can be represented as a ratio of two polynomials with
positive coefficients.

In Chapter the structure of the mission and age processes as well as the failure
probabilities of the components in a fixed phase are described in detail. Chapter [3| is on
the reliability analysis of mission-based systems under the maximal and no repair policies.
The details of the MTTF analysis are presented in Chapter Chapter [5| includes the
results of the availability analysis. In Chapter [6] we analyze the reliability, MTTF, and
availability of systems working under a fixed phase and obtain some structural properties.

In Chapter [7| we consider the optimal maintenance of mission-based systems with a semi-
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Markov structure. Chapter|8|is on the reliability and optimal maintenance of mission-based

systems with Markovian mission and deterioration.
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Chapter 2

MISSION AND AGE PROCESSES

2.1 Mission Process as an Environmental Process

Reliability models in random environments provide a perfect opportunity in order to analyze
mission-based systems. These systems involve devices or machines that are designed to
perform or assigned to missions consisting of a number of phases. The sequence as well
as the durations of the phases may be random and, as in all random environment models,
all stochastic and deterministic failure properties depend on the phases of the mission that
is performed at a given time. Therefore, the mission process is the random environmental
process in such models.

Let X,, denote the nth phase of the mission and 7T}, denote the time at which the nth
phase starts with 7y = 0. The main assumption is that the process (X,T) = {(X,,, T,,);n >
0} is a Markov renewal process on the countable state space F with some semi-Markov
kernel (). The state space E is actually that of the process X and it is implicitly understood
that the process T' always takes values in Ry = [0, +00) since they denote times at which
certain events occur. We refer the reader to Cinlar [56] for a more rigorous and detailed
treatment of Markov renewal processes and theory. The Markov renewal property states

that

P{Xn—H =7 Tn+1 -1, < t|X0» o, Xy T, e aTn} = P{Xn-i-l = jaTn-i-l -1, < t|Xn}
(2.1)

where we suppose that the process is time-homogeneous with the semi-Markov kernel
Q(i,j,t) = P{Xn-i-l = jan—I—l -1, < t|Xn = 7,} (2-2)

for all 4,5 € E and t € R,. It is well-known that X is a Markov chain on E with transition
matrix P(i,7) = P{Xn+1 = j|Xn =i} = Q(4,],+00). We further assume that the Markov

renewal process has infinite lifetime so that sup,, 7, = +00. The probabilistic structure of
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T is given by the conditional distributions

. , , i,7,t
G(Z,j,t) = P{Tn—‘rl -T, < t’Xn =1, Xnt1 = ]} = M (2'3)
P(i, j)
for P(i,7) > 0. Moreover, it is easy to see that
Fi(t)=1-F;(t) = P{Ty <t|Xo =i} = Y _ Q(i,j,t) (2.4)

JjEE

denotes the distribution of the duration of phase ¢. We let

m (i) = /0+00Fi (s) ds

denote the mean sojourn time in phase i € E. Finally, the mission process Y = {Y;;t € Ry}
is the minimal semi-Markov process associated with (X, T") so that Y; is the stage or phase
of the mission at time t. More precisely, Y; = X, whenever T, <t < Tp41.

By saying that the mission process is a semi-Markov process, we implicitly mean that
phase durations have general distributions depending on the phases, and the sequence of the
phases follows a Markov chain. Most of the literature on phased-mission systems assume
that the sequence of the phases are deterministic, and that the durations are either determin-
istic or exponentially distributed. The main reason is that random durations and sequence
make the analysis more complex. There are only a few papers which consider dynamic phase
sequences that are modified according to the states of the system. Therefore, our model
provides some generalizations on classical phased-mission systems. The motivation for this
generalization comes from previous work and real-life applications. Deterministic phase du-
rations may be realistic for some applications, such as aerospace applications discussed by
Mura and Bondavalli [14] where phases are preplanned on the ground. However, Alam and
Al-Saggaf [4] state that random phase durations are more realistic in many systems such
as real-time control for aircraft and space vehicles in which different sets of computational
tasks are executed during different phases of the control process. Since the exponential
distribution is not suitable to model all phase durations due to its long tail behavior, as
stated by Mura et al. [57], phase durations should be modeled by general random variables.
It is also clear that the sequence of the phases may be random. In NASA’s Mars Explo-
ration Rover Mission, for example, the mission consists of many phases like vehicle launch;

cruise; approach; entry, descent and landing to Mars; rover egress; and a number of surface
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operations that involve scientific data collection and transmission to earth. What the rover
actually does on the surface depends on complex calculations and evaluations performed
by the science and engineering teams. The scientific investigations involve further phases
with random sequence and durations. Moreover, systems may be affected by sources of
randomness that are of an exogenous nature. For example, the performance of the rovers
depends on various atmospheric conditions which can be defined as different phases affect-
ing the system. These conditions can be evaluated statistically using past data and Markov
renewal processes provide quite powerful tools to model such environmental variations.

Throughout this thesis, we consider a complex device with an arbitrary structure and
m components. We let S = {1,---,m} denote the set of all components in the system and
L(k) denote the lifetime of component k& € S. The lifetime of the whole system is denoted
by L. There is, of course, a relationship between the system and component failure times.
For example, L = min{L(k);k € S} for a series system and L = max{L(k);k € S} for
a parallel system. We suppose that the system structure is quite general unless otherwise
indicated. Since all components perform the same phase at a given time, their lifetimes are
dependent via their common mission process. We assume that the mission process explains
all dependence among the component lifetimes and, hence, they are independent during any
phase. Our model is motivated by Cmlar and Ozekici [I7] who analyze complex systems
in random environments where the deterioration of system components all depend on the
common environmental state that they all operate in. The environmental process not only
modulates the reliability model, but it is also the source of stochastic dependence among
the components. In our setting, the mission process is the environmental process.

Unless otherwise specified, 0 and 1 are column vectors with all entries being equal to 0

T is a row vector. If

and 1 respectively, any vector ¢ is a column vector and its transpose c
A is a square matrix, A~ denotes the inverse of A”. If a and b are vectors with the same
size, we will use a > (<)b, a # b, and a 5 b when a (k) > (<) b (k) for every k, a(k) # b(k)
for at least one k, and a < b with a # b respectively. If b is a vector and x is a scalar, we

will use b > z, and b > = when b (k) > z, b(k) > x, respectively, for every k. Through the

remainder of this thesis, Stieltjes integrals f; are defined over the closed set [a,b] for all
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a,b € Ry, I denotes the identity matrix, and B = {0,1} denotes the binary set. We let

1 if condition holds
I{condition} = 0 oth .
otherwise

be the indicator function for any condition, e.g., a < b, z € A, etc. We will use the standard
symbols N = {1,2,---} and R = (—o00,+00) to denote the sets of natural numbers and
real numbers respectively. For k € N and any set A, A* is defined as k-fold Cartesian
product A x --- x A. To simplify the notation, we write P; {-} = P{-|Xo =} and E;[] =
E[-|Xo = i] to denote conditional probability and the conditional expectation given that
Xo = i respectively. Moreover, for any pair of sets A and B, we let A\B = AN B¢ where
B¢ is the complement of B.

2.2 Maximal Repair Model

Under the maximal repair policy, all of the system components are replaced by brand new
ones at the end of each successfully completed phase. This implies that the system lifetime

always has the same distribution for a given phase. We therefore let
Bi(t) =1 —pi (t) = P{L > ]Y =i} (2.5)

denote the survival probability of the brand new system in phase i for ¢ units of time. In
other words, p; denotes the survival function in phase i where the condition {Y = i} in
means {Y; = i for all ¢ > 0} so that the whole mission consists of phase 7 only. We
therefore suppose that the system survival function is p; whenever phase ¢ of the mission is
performed. As soon as a new phase j of the mission starts, the survival function changes
accordingly to p; with a brand new system.

If the system structure is coherent with structure function ¢; and component k has an
exponentially distributed lifetime with parameter \; (k) for all £ € S during phase 4, then

we have

D; (1) = ¢y(e MW e L e Aimty, (2.6)

If the system is a series one, this becomes

pi (1) = ¢ (MO, (2.7)
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If the system consists of a serial connection of m redundant subsystems where subsystem k
has n; (k) active components during phase 7, then
m
n=]] <1 - (1 - e—Mfc)t)”i(’“)) (2.8)
k=1
assuming that all components of subsystem k have independent and exponentially distrib-
uted lifetimes with parameter \; (k) during phase i.
If the system consists of a serial connection of m standby redundant subsystems where
subsystem k has n; (k) components, and all components of subsystem k have independent

and exponentially distributed lifetimes with parameter \; (k) during phase i, then we have

m (k) =1 5\ (k) r
_ e M (A (k) )™
pi -] 3y 0
k=1 'I‘k:O

The maximal repair policy may appear to be reasonable for a very limited set of real-life
applications at first glance. However, we can find important examples which the maximal
repair policy is very reasonable for and do not include a complete system replacement after
each phase. The main point of the maximal repair policy is that the lifetime distribution
of the system during a given phase is independent of the ages of the components and
whenever the system performs that phase, it survives according to the same distribution.
In this regard, if component lifetimes are exponentially distributed and all failed components
are replaced before a new phase starts, then the maximal repair policy assumption holds
by the memorylessness of the exponential distribution. Another example for which the
maximal repair policy is reasonable is the case where different sets of components are used
during different phases of a mission. Although the whole system is not brand new, the
components used in a given phase are brand new and the maximal repair condition is still
satisfied. The maximal repair policy is also reasonable for this case even if component
lifetimes are not exponentially distributed provided that every phase is performed only
once. It is obvious that the maximal repair policy is applicable for a series system with
exponentially distributed component lifetimes. Moreover, it may provide approximations for
series systems with many components and general component lifetimes. Drenick [58] shows
that the lifetime of a series system with n components tends to be exponentially distributed
as n — oo. This implies that the lifetime of a series system with many components is almost

independent of the ages of its components and, hence, maximal repair is a very reasonable
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assumption for this type of systems. Furthermore, another important justification for the
maximal repair policy is its mathematical and computational tractability. If the maximal
repair policy is not applied, and after completing a phase, worn components are used during
the next phase without any replacement, we need to define an aging function for each
component and for each phase. Then, we may need to enlarge the state space enormously,
which will increase the time needed to evaluate the solutions when we apply Markovian
analysis techniques. It is also certain that the mathematical analysis will be more difficult,

especially for the case where the component lifetimes are generally distributed.

2.3 No Repair Model

Under the no repair policy, the system will not experience any maintenance until system
failure. Therefore, the worn system will continue to work after completing a phase and the
survival probability of the system in a given phase depends on the deterioration level of the
system at the beginning of that phase. Since the lifetimes of the components have general
distributions, the concept of "aging" comes into consideration. For this purpose, we will
use the "intrinsic aging" model introduced by Cimnlar and Ozekici [17].

Let Hy (i,t) be the cumulative hazard of component k at time ¢ in phase ¢ which is

assumed to be continuously differentiable in . Then, we have the well-known equality
P{L(k)>tlY =i} = e~ Hi(it)

Note that if L (k) has a continuously differentiable distribution function in phase i, then
Hj, (i,t) is continuously differentiable in ¢. The intrinsic age of component k at time ¢ is
defined as Hy, (i,t) provided that the system performs phase ¢ throughout [0,¢]. The intrinsic

aging rate of component k£ during phase ¢ is defined as

: d :
T (1,a) = %Hk (i,t) \t:H?(i’a) (2.9)

at any age a € Ry where H 1(i,a) is the time at which the intrinsic age of component

becomes a if the system performs phase i; or
H, ' (i,a) = inf {t € Ry; Hy (3,t) > a}.

It is known that Hy (i,t) is increasing in ¢ and, hence, Hy (i, Hk_1 (1, a)) =a.
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Let A (k) denote the intrinsic age process of component k for all k£ € S. We assume that

the intrinsic age process satisfies

dA¢ (k)
dt

for 0 < ¢t < min{L(k), L}. Therefore, if the intrinsic age of component k at time s when

=1 (Ye, Ar (k)

phase i starts is A (k) = a, then after ¢ units of time its age becomes
Agye (k) = hy (4,a,t) = Hg (i, Hy ' (i,a) + 1) . (2.10)

Note that this definition requires that both component k& and the system are functioning
at time s +¢. Let By (k) = Ap (k) and define an embedded process B(k) = {By (k);n =

0,1,---} recursively through
Bn+1 (k) = hk (Xn7 Bn (k) 7Tn+1 - Tn)

for n > 0. The intrinsic aging process A = {A.(k);t € Ry, k € S} of the whole system
consists of the aging processes of the components. Note that A; € F = @T = [0, +o0]™ for
all t € Ry and F is the state space of A. The intrinsic age process of component k can be

constructed recursively by

Ar,44(k) = hi (Xn, Bn(k),1)

provided that t < T,11 — T}, and both the component and the whole system are functioning
at time T, +t. As soon as component k fails at some time L(k), we set the intrinsic age
to AL(k)th(k) = 400 for all ¢ € R;. Clearly, +00 denotes the failure state. We extend the
definition of hj in such that hy (i,+00,t) = +oo since a failed component remains
failed.

Following the construction in Cinlar and Ozekici [I7], it is clear that component k is not
in a failed state at time ¢ if and only if A; (k) < L (k) where L (k) is the intrinsic lifetime of

component k. These also imply that component k fails at time
L(k) = inf{t € Ry; Ay (k) > L(k)}

when its intrinsic age exceeds its intrinsic lifetime. Furthermore, since the intrinsic life-
times {L (k)} are independent and identically distributed random variables that have the

exponential distribution with rate 1, we can write

P{L (k) >t|Ay (k) =a} =P, {E (k) > Ag (k)| Ao (k) = a} = E [e—“t(’f)—“)mo (k) =a].
(2.11)
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Let h (i,a,t) denote the vector with elements hy (i,a (k) ,t). We let

1 ifh(i,a,t)=0
H (i,a,t;db) =
0 otherwise

for alli € F and a,b € F.
Unless otherwise specified, we let ¢, be the structure function of the system defined on

F during phase ¢ such that

b (a) 1 if the system is in working condition at intrinsic age a
7

0 otherwise

for all @ € F. It can be determined by using the reliability structure of the whole system.

For instance, if the system is a series one with m components during phase i, then
m
i) = [ Ty <oy
k=1

If the system is a parallel one during phase 4, then

m

¥i(0) = 1= T (1 = Lry<o0y) -

k=1
More generally, if we have a coherent structure with some structure function ¢, defined on

B™ during phase 4, then it suffices to take

P;(b) = ¢; (Lp1)<too} Lip@)<+oo}s > Lip(m)<+oo} ) -

If the system is at age a initially, the probability that the system is working at time s

and the new age is in db is

Dia(s,db) = P{A, € db, L > s|Y =i, Ag = a} = t;() [] By (5. db(k)) (2.12)
k=1

during phase ¢ where

e~ (b(k)—a(k)) if a(k) < +o0, b(k) = hy (i,a(k),s) < +oo
1 — e~ (heialk)s)=a(k))  if q(k) < 400, b(k) = +oo

Driy (5, db(k)) =
1 if a(k) = +oo, b(k) = +o0
0 otherwise.

(2.13)
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Note that follows from our assumption that the aging of the components are inde-
pendent during any given phase. As long as the phase of the mission is fixed, aging occurs
deterministically according to h (i,a,t) and any component fails as soon as the age exceeds
the exponential threshold.

Through the remainder of this thesis, to simplify the notation, we write P {-} =
P{|Xo =1i,A = a,L > 0} and E;,[] = E[|Xo = ¢,A0 = a,L > 0] to denote, respec-
tively, the conditional probability and the conditional expectation given that the initial
phase of the mission is ¢ and the system is initially in working condition with intrinsic age

a.



Chapter 3: Reliability Analysis 17

Chapter 3

RELIABILITY ANALYSIS

3.1 Models with Maximal Repair

Suppose that the system performs the mission such that at the beginning of each phase it
is replaced by a brand new one. This simplifying assumption allows us to obtain various

reliability measures quite easily by using the renewal property.

3.1.1 System Reliability

The probability that the system will function until time ¢ > 0 will be determined using
Markov renewal theory. Let f (i,t) = P; {L > t} denote the desired probability given that

the initial phase is ¢. Then, conditioning on 77,

fGt) = P{L>tTh >t} +P{L>tT <t}

t
= P{L>tTy >t}B~{T1>t}+Z/ P{L>t,T €ds, X, = j}
0

JjeEE
= BT+ Y [ Qi BL> T € ds, X0 = )
jer o
= BOFO+Y [ QUid)p ()16t~
jer”0
= g(i,t)+Q* f(it) (3.1)

where g (i,t) = p; (t) F; (t) and Q (i,5,ds) = Q (i,7,ds)p; (s) for all i,j € E, and s € Ry.
@ is the semi-Markov kernel of a new Markov renewal process which follows the mission
process until a system failure and jumps to an absorbing state when the system fails. Let A
denote this absorbing failure state. Clearly, f(A,t) = g(A,t) = 0. Then, is a Markov
renewal equation and, since the state space is finite, it has the unique solution f = R x g so
that

t t_ _
Pl-{L>t}:Z/OR(i,j,ds)g(j,t—s):Z/OR(z’,j,ds)pj(t—s)Fj(t—s) (32)

JjeEE jeE
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+oo
where R = Z Q" is the Markov renewal kernel corresponding to @. The uniqueness of the

n=0
solution follows from the fact that lim, ., T, = +oc.

Ey

A b

L S RRE L LR R LR R R ERELERLEE e Mission process

: —— Lifetime
F2 T S— : -
: : Y
i .—
=01 T, T 7, : T, time

age 1 3 4

\

Figure 3.1: A typical representation of the structure of Y.

We can actually obtain the Markov renewal processes ()? ) T) with semi-Markov kernel

@ through its minimal semi-Markov process Y defined through

~ Y, ift<lL
A ift> L.

(3.3)

It is clear that P, {L >t} = 1 — P{Y; = A}. The structure of Y is as described in Figure
B.1
We will describe the Markov renewal process ()? , f) in more detail. The equation ([3.3])

implies that
~ 0 ifn=0

T, = ~ ~ ~
inf {¢ > T, ;% # V5 } ifn>1

and X,, = f’f for n > 0. Clearly, the state space of (X,T) is E = E U {A} and its
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semi-Markov kernel is obtained by extending the definition of @ to E such that

p;(5)Q (i, 4, ds) ifi,jeE
Q(i,j,ds) = Fi(s)pi(ds) ifieE, j=A (3.4)
0 ifi,j=A

for all 4,5 € E. If 1,7 € E'in , then this means that the system survives until time s
and starts to perform phase j after completing phase ¢ at time s. If i € E and j = A, this
means that the system fails at time s and the duration of phase ¢ is larger than s. We can
find the transition matrix of the Markov chain X as

- oo _

~ “+o00
Bi,j)=Q g +o00)= | GQijds) = /0 P, (5) Q (i 7, ds) (3.5)

0
for all i,j € E, and
- too__
P, A) = / T () ps (ds) (3.6)
0

for all i € E. Note that @(A,j,t) =0forallt e Ry, j€ E and IS(A,A) =1land Pisa

transition matrix since

~ +°° +oo
S BGg) = Y P+ 2/ Q (i, j.ds) + /O F; () pr (ds)

jEE JjEE jEE

“+o00 +o<>7
- /0 B (s)Fi(ds)+ | Fi(s)pi(ds) = 1.

0

In plain words, the new process Y is obtained by “stopping” or “killing” the process Y
whenever the system fails at time L. At the time of failure, the process is dumped to the
absorbing state A that denotes system failure. The state space is therefore extended by
including this new state A.

Both the semi-Markov kernel @ and the corresponding transition matrix P are possibly

defective on E since Y. P (i,j) = 1 — P (i, A) < 1. As a matter of fact, we will suppose

JjeEE
that they are indeed defective and there is an i € E such that P (i, A) > 0. Otherwise, we

have a trivial situation and the system can never fail.

3.1.2 Mission Reliability

In a given application, it may be important to calculate the probability that the system will

complete the first n phases successfully. In this part, we will show that this probability can



Chapter 3: Reliability Analysis 20

be calculated using a recursive formula and then obtain an explicit solution. We first find
the probability that the first phase will be completed without failure. Note that
PA{L>T}=> PA{L>T, X =j} (3.7)
JEE

and

+00
PZ'{L>T1,X1=j} = / B{L>S,X1=j,T1€dS}
0

+o0
- | meeGia. (35)
Using (3.7) and ({3.8]), it easily follows that
+oo
PZ{L>T1} = Z/ Z],dS) (7])

jeE
+oo +oo
> / Qinsids) = [ pi(s) Fias) (3.9)

which gives the probability that the first phase is completed successfully.
We trivially have
PAL>To 1} =P{L>Th1 | L>T1} P{L>T} (3.10)
for any n > 2 and
PAL>Top1 | L>Th} = Y PAL>Toa | L>T, X1 =5} Pi{X;=j|L>Ty}
JjEE
= > P{L>T}(P{L > T, X1 =j} /P{L>Ti}). (3.11)
JjEE
The first term in the right-hand side of (3.11)) comes from the maximal repair assumption
and the definition of conditional probability is used to obtain the second term. Using (3.8]),
(3.10), and (3.11]), we have

PAL> Ty} = > P{L>T,}PB{L>Ty,X; =j}
JjeEE
= ZP {L>T, }/ (i,7,ds) (3.12)
jeE

which is a recursive relationship for n > 0 with the boundary condition P; {L > Tp} = 1.

Using (3.5) and -, we have

PAL> Ty} =Y P(i,5) P{L>T,}. (3.13)
jeE
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Letting fy, (i) = P;{L > T,}, we can rewrite (3.13]) as
fn+1 an (3.14)

for n > 0 with the boundary condition fo = 1. Then, it is clear that f; = Pfo, f» = Pf1 =
p? fo, and more generally, f, = P fno1= pn fo so that the solution is
fu (i) = P"fo(i) = > P" (i, §) (3.15)
jerE
It is also possible to obtain the same solution by noting that
B{L>Tn}:Pi{)?n eE} =3 " P'(i,j)=1-P"(i,A) (3.16)
JEE
since the nth phase of the mission is successfully completed if X, # A.
The probability that the whole mission is completed without failure can be determined

from

hm P{L>T}—1— lim P"(i,A) (3.17)

n—-+oo
by using standard Markovian analysis since P is a Markov transition matrix. If all states
i € F are transient, then this probability is 0 since the process will eventually be absorbed in
state A. But, if there is another absorbing state S € F that is used to denote the successful
termination of the whole mission, then mission reliability is not necessarily equal to
0.

In a typical application, the mission will end as soon as the process Y enters a so-
called success state, say ig € F, and Y is absorbed in this success state. Thus, one can
think of entering this phase ig as the successful completion of the mission. Then, letting
Egs = E\{ig} denote the set of all other operational phases excluding ig, the probability

that the whole mission will be completed successfully satisfies

P{L =40} = E;[P{L=+0c0|X1,T1}]

_ /;oo (5)Q (i, i, ds) + Z/M Q (i, j,ds) P; {L = +00)

jeEg

= P(iis)+ Y Ps(i,j) P {L = +oo} (3.18)
Jj€Es

which is a system of linear equations of the form h = g+ ﬁsh where ]55 is matrix defined on

Eg with Pg (i,5) = P (i,7) for i,j € Eg and h (i) = P; {L = +o0o} is the mission reliability
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if the initial phase is i € Eg and ¢(i) = P (i,ig). Clearly, Pj; {L = +o0} = 1 is a boundary

condition. The solution is
h(i) = P;{L = +o00} = (I — Pg)~'g(d) (3.19)

which is an explicit expression for the mission reliability. Note that (I — ]35)_1 exists since
]35 is a defective transition matrix.

An example about how (3.16|) and can be applied will be given later. However, it
may be interesting to give a more elementary example that does not include a probabilistic

sequence of phases.

3.1.2.1 Deterministic Sequence of Phases with Exponential Lifetimes

In this special case, there is a fixed sequence of phases with random durations {D;;i € E}
where there are n phases so that E = {1,2,--- ,n} and all phases must be completed without
failure. Let A denote the set of all failure rates. We will determine explicit expressions for
the mission reliability R (\) and obtain some of its structural properties in terms of the

failure rates of the components for different system structures.

Series System

Suppose that we have a series system in all phases and the lifetime of component j is
exponentially distributed with rate \; (j) during phase ¢ for all j € C; where C; denotes the

set of components in use during phase ¢. Then, we have

= — =S

pi(s)=e

where \; = Z‘ec Ai (j) is the total failure rate during phase i. To complete phase i,
WASSZS

lifetimes of all components must be longer than the duration of phase ¢. So,
P {L > Di|D;} = e NP
and, using the memoryless property, we have

RO =PAL>T}=E|[[_ e =] &) (3.20)

where £; (o) = E [exp {—aD;}] is the Laplace transform of D; and

A={Xi(j);i€ E,jeCi}.
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If the duration of phase i is exponentially distributed with parameter §;, then

R(/\):Pi{L>Tn}:Hj:1< i )

i+ Ai
Lemma 3.1 The transform LF (cTa) = F [e*(CTa)Din] is a nomnegative, conver and
nonincreasing function of o = (a1,---,a,) € R, for all ¢ = (c1,---,¢,) € R} and
k=0,1,---.

Proof. Since D; is a nonnegative random variable, LF (cTa) > 0 for all k. The gradient

of L¥ (T'ar) is

oLk (ca
) e [ (PN = e () <0
forallj=1,--- n. Thus, Ef (cTa) is nonincreasing. The second order partial derivatives

of Lk (caT) are given by the Hessian matrix

_ Lk (")

—(cTa)D; Wk _ k
0 da;0a =cjql [e (cTa) D; +2} =cjqL; +2 (cTa) >0

] ()]
foralli,j=1,--- n. Take any z € R™ and consider
LHF () 2 = £8P (T a) Z Z (cizi) (cjzj) = LT (cTa) (crzn + -+ + cnzn)? > 0.
i=1 j=1

Therefore, sz () is positive semidefinite and, hence, L; (cTa) 1s conver. A

Taking £ = 0 in Lemma it follows that the reliability function R () in (3.20]) for a

series system is the product of nonnegative, nonincreasing and convex functions.

Series Connection of Redundant Subsystems

In this case, the system is a series of subsystems such that each subsystem must function
during any phase of the mission. Moreover, all of the components in a subsystem are
identical and work simultaneously in a parallel connection and a subsystem works if at least
one component operates in the subsystem. Let n; (k) denote the number of components in
use in subsystem k during phase i. We modify our notation slightly so that \; (k) is the
failure rate of any one of the n; (k) components in subsystem k during phase i. Then, we

have

R\ = :‘:1 Ri () (3.21)
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where

rRV= 1] <1 - (1- e—Ai(k)Di)”"(k)> (3.22)

keJ;

is the probability that phase 7 will be successfully completed, J; denotes the set of subsys-

tems in use during phase ¢ and
A={Ni(j);i€E,je T}

We label the subsystems so J; = {ji1, ji2, - - - , Jii; } Where there are [; subsystems used during
phase 7 and j;, is the label of the nth one. The following lemma is useful to find an explicit

formula for (3.21]).

Lemma 3.2 For any ag,a1,--- ,a, € R and n > 0,

n 1 1

N . .
[0 =32 3 (0P oo
k=0

Jo=0 Jn=0
Proof. Suppose that n = 0. Then,

n 0 1

[[a-a)=T[(-a)=1-a=(-1"a§+(~1)'ah =3 (~1) aff

k=0 k=0 jo=0
trivially. To prove the result by induction, suppose that the hypothesis holds for n — 1 and

consider it for n. Then,

n n—1 n—1 n—1
[[a-a) = Q-ap)(1—ap) =[] —ar) - []Q-ar)an
k=0 k=0 k=0 k=0

1 1
n— 0 47L—
SRV BT
] : _ :

1 1

_ Z . Z (_1)jo+~~+jn ago . ,a7j1n

Jjo=0 Jn=0

which completes the proof. M

By using Lemma [3.2]

1 1
=5 Y (cyr g [Xﬁl'“Xjflj (3.23)

=0 5;,;,=0
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where

X = (10D ®) _ yo ( > (1) TN D:

=0 Tk

In the summation ({3.23)), if there are m subsystems with nonzero j values ( j1+---+7j;, = m)

labeled as s1, 82, , Sm, then
i n; nl(sl ni(sm) ros oot
E |:in1 o le } Z Z r (=1)"™ "
Tsmfo Sm
Xﬁi (rs; Ad (81) e, N (5m)) - (3.24)

Here,we use the convention that (3.24)) is equal to 1 when m = 0. Then,

i i (= 1yl nf) "g) <n ) (ni(sm)>

: h r
71=0 J1,=0 T91_0 Ty =0 sm

7

X (=1)T T e Lo (g A (81) 4 -+ T Ai (Sm))

follows. If D; is exponentially distributed with parameter d;, then (3.24]) takes the explicit
form

n;(s1) n;(Sm)

n;(s1) ni(sm)
E [ijlll . le } Z Z ( ' > ( > (—1)Tsl+"'+’rsnb

rs; =0 Tspm =0 Tsm
( :

X
8i + 75, N (1) +

T Ad (Sm)> ’

resulting in

i i (= 1yl nf) ”i”( ) (ni(sm)>

j1:0 ‘”L =0 715170 TS"Lio TSnl
% (_1)Tsl+~--+r5m 0 .
di +T81)‘ (Sl)+"'+rsm)‘i (Sm)

(3.25)

By Lemma[3.1] the Laplace transform of a random variable is nonnegative, nonincreasing
and convex. It can therefore be concluded that R; ()) is a linear combination of nonnega-
tive, nonincreasing and convex functions and R (\) is a product of linear combinations of
nonnegative, nonincreasing convex functions and hence it is a linear combination of product

of nonnegative, nonincreasing and convex functions.

Example 3.3 Suppose that there are two subsystems with two and three parallel compo-

nents. The mission consists of two stages, i.e. E = {1,2}, and the phase set-ups are
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Ji = {1} and Jo = {1,2}. In other words, the mission requires only the first subsystem
during the first phase, and both subsystems during the second phase. Thus, l1 =1, lo = 2,
n1(1l) = na(l) =2, and n1(2) = n2(2) = 3. Then,

1 1
Ri(\) = Z Z Jl+j2E[Xj1X]2} =1-E[X4]
Jj1=0752=0

oy (2) -7 s )

r
r1=0 1

= 2L (M (1) = L1 (2M (1))

Similarly,

Ry = Y03 (-1 RE [X{lxﬂ —1-E[Xy] - E[X1] + E [X1 Xo]

- 1-— 22: (i) (=1)™ Lo (112 (1)) — 23: <3> (—=1)" L2 (1222 (2))

r1=0 ro0 \T'2

= 6L ()\2 (1 ) +A2(2)) —6L2 (A2 (1) +2A2(2)) +2L2 (A2 (1) + 322 (2))
—3L2 (2A2 (1) + A2 (2)) +3L2 (2A2 (1) + 2A2 (2)) — L2 (2A2 (1) + 3X2(2)) .

If the durations of the first and second phases are both exponentially distributed with para-

meters 61 and J2 respectively, then

B () = <51 fill (1)> - <51 +gl)\1 (1)> (3:26)

and

o 6(52 652
B = (52 + A2 (1) + A (2)> - <52 + A2 (1) +2X2 (2)> (3.27)

2(52 352
+ <52 e (D) + 3% (2)> - (52 T2 () 1 (2))

3(52 52
N _ . (3.28
(52—{-2)\2 (1) + 2\ (2)) (52+2)\2 (1) + 3\ (2)) ( )
It is clear that mission reliability is the product of Ry (\) and Ry (\), and the result

18 a linear combination of the product of Laplace transforms.
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Series Connection of Standby Redundant Subsystems

In this model, the system has a series of subsystems as in the previous special case, but in
a subsystem, only one component works at any time and whenever the working component
fails, another component starts to work. For a phase to be completed successfully, the
number of failures during the phase must be less than the number of components in all
subsystems. Since the lifetime of each component is exponentially distributed, the number
of failures in an interval has the Poisson distribution. Let n; (k) denote the number of
components in use in subsystem k during phase ¢ and [; denote the number of subsystems
in use during phase i. We assume that \; (k) is the failure rate of any one of the n; (k)

components in subsystem k during phase ¢. Then,

RO =TT, BN
where
e i(N (k) D;)'*
R\ = E|]] E«i'() ) (3.29)
keTi ri=0 k'

n;(1)—1 n;(l;)—1 ,,,i ri ) )
1 . AN R
_ Z Z i ( ) )\; !(lz) r 6_(/\i(1)+...+)\i(lz.))DiDi1+ +ry,

rl— rl =0 li

and this implies that

n;(1)—1 nll)l Ti

For an illustration, suppose that D; is exponentially distributed with rate §;. Then,

using the substitution o + 6; =y,

+o0 +oo
L () = / e~ wgkge 0 dy = 5i/ e~ (0T Lk g
0 0

0; +oo Y k 0s +oo
Oz+(5i/0 ‘ (a+5i> Y (a+6i)k+l/o v
5:T (k +1) 5k

(a+6)F T (a4 6"+
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This implies that

n;(1)— n;(l;)—1

Ri(\) = Z Z (M A () 5i (ri 4 47!
i = .. .rli ! (A (1) 4o D+ 6i>r§+...+rl"i+1

n;(1)—1 nz(l

— '+rlii)! 9
- L xS ()

: (Qfﬁi)ﬂi - (Qifiﬁi)% 31

where \; = \; (1) R .Y (ll)

Example 3.4 Suppose that there are two subsystems with three parallel components each
of which will perform two tasks. Then, E = {1,2} ,n1 (1) = n1 (2) = na(l) =n2(2) =3

and
2 2

>\z r% 7 4rd
=22 W, ST LT (N (1) 4 (2)

7'1 =0 ré—U

2 2 2 2 1 1 2 2
AL (1) A1 (2)2 A2 (1) X9 (2)"
RO) = Z Z Z Z rilrdir2r2)

LT (O (1) 4 A (2)) L5177 (g (1) + A0 (2))

2 2 2 2 1 1 2 2
AL (1) A1 (2)2 X2 (1) N (2)"2
R() = Z Z Z Z r%!r%!r%!r%!

" ( 01 (r}—kr%)! ) ( 09 (T%—i—r%)! )
(81 + M (1) + A (2) 124 )\ (85 + Ao (1) + Mo (2))7TH73H |

Series Connection of k-out-of-n Subsystems

In this model, at least k; (j) out of m; (j) components must be in working condition in
subsystem j during phase ¢ to make the subsystem function and there are [; subsystems
used in phase i. We assume that \; (j) is the failure rate of any one of the n; (j) components

in subsystem j during phase . So that we have
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where
ni(j) ni (5) NPT \G) ni(j)—r}
Ri(\) = i (e ; ) (l—e ) (3.32)
) T,
J€Ti ri=ki () J
n;(1) n;(l;) ' 1
_ <” §1>> . <” (il’))sl (%, 7)) (3.33)
) 71 T ¢
ri=k;(1) r;i:kl(l,) i
and .
_Din’;Ai(]) l; n(j)—r
Si (7“17 ,7“11) =FE]]e g=t (1 —i(7) )
j=1
for phase 1.

Using the binomial expansion,

- L
—Di Y NG | L itz —r : :
. = J <7”LZ (z:) — T;Z> st o) D

i( ( Li n; (5) _ gt
S —7"
2R H( @-_Tx) L, zsA (330
i i i j
where s* = s + .- + sfi and 7 = 7% 4+ .. + rfz Thus, combining 1) and 1' and

rearranging the combinations, we have

n;(1) l;)  mi(1) n; (1) l; ni (]) Si- S i
SR SIS 3 I("") ()| e zsx

ri=k;(1) Tli_k (1;) st=ri sli—rli

(3.35)
If the duration of phase ¢ is exponentially distributed with parameter J;, then
o L )
_ gt—pt . nL(]) st
n;i(1) ni(l;) ni(1) n;(l;) ( 1) di H( 5 )(Tz)
7=1
Z JPIRDIEEDY ; - (3:36)
ST e = A D 5% 3)
j=1

Since the Laplace transform of a random variable is nonnegative, nonincreasing and

convex; R; (\) is a linear combination of nonnegative, nonincreasing convex functions, and
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R () is a product of linear combinations of nonnegative, nonincreasing convex functions
and, hence, it is a linear combination of product of nonnegative, nonincreasing and convex

functions.

Example 3.5 Suppose that there are two subsystems with three parallel components which
will perform two tasks. At least two of three components must work to make the subsystems
function. Then, E = {1,2},J; = {1,2} fori € E;ni (1) = n1(2) = na(1) = na(2) =
3, k1 (1) =k1(2) =k2(1) =ka(2) =2 and

3 )
S22 3 () () ot s 2)
5/ \T5
Z 2 ’L 2 S'L 77,1 SZ ’L
fori=1,2. If D; is exponentially distributed with parameter &; for every i, then

S Yy Y Y <31)< )(i) <32) (1)pishoriors

i 7 [
ri=2r} 231—r152—r2

05 >
X - . .
(5i + 510 (1) + 55 (2)
3.1.2.2 Markovian Mission with Exponential Lifetimes
Suppose that the mission process is a finite state Markov process with transition rates
{6i;1 € E} and transition matrix P. We will show that how (3.16)) can be used to calculate
the mission reliability of such a mission-based system with different system structures.

To apply l} each entry of the matrix P has to be determined using {D Therefore,
we should first find the semi-Markov kernel ). Using the properties of Markov process,

Qi,j,s) = P{X1=jT1 <t|Xo=1i}
= P{N <t[Xo=1,X1 =7} P{X1=j|Xo=1i}
= P{T1 <|Xo =14} P{X1 = j[Xo =1}
- (1 - 6_5"5) P (i,5) (3.37)

and

Q (i, j,ds) = 6; %P (i, 7) ds. (3.38)
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Then, using (3.5 and (3.38)),

+00 +0oo
B (i,j) = /0 B (5)Q(ij,ds) = / Bi () 815 P (i, ) ds

0
+o00
= PG [ m(s)e s
0

= P(i,7) E[p; (Di)] (3.39)

for i,7 # A, and
P(i,A)=1-=Y P(i,j)=1-E[p;(D:)].
S

It is clear that to calculate the mission reliability using (3.16|), the function p; (s) has to be

determined. We will obtain it for different system structures.

Series System

Suppose that we have a series system in all phases and the lifetime of component j is
exponentially distributed with rate A; (j) during phase i for all j € C;. Since the minimum

of exponentially distributed random variables is also exponentially distributed,
pi (s) = e=N, (3.40)

So that using (3.39)),

= o DN o < d; .
Pwﬁ=P@ﬁEFQﬂ=P@ﬁ&00=Q+%>PWﬁ (3.41)
for all ¢,j € F, and
~ 51

jeE
It is clear that P (i,7) is a multiple of the Laplace transform of a random variable for
1,7 € E. To calculate an entry of the squared matrix ]52, each element of a row of P is
multiplied by the corresponding elements of a column of P. By Lemma p? (i,7) is
a nonnegative combination of product of nonnegative, nonincreasing and convex functions
for i,j7 € E. Using this reasoning inductively, pn (7,7) is a nonnegative combination of
product of nonnegative, nonincreasing and convex functions for ¢,j € E and shows
that P; {L > T, } has the same property.
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Example 3.6 Suppose that there are two components which will perform 2 tasks so that

E ={1,2} ,m = 2, and the transition matriz is

0.50 0.50
P = . (3.42)
0.60 0.40
Then,
0.503;  0.500;
o1+ 1+ 51+>\1
P = | 0605 0.405,
Sa+Xa oo 52+>\2
0 0
and

2

PP (1,1) =025 (51) +0.3 ( ) < )

d1+A(1) 01 +)\

~ 5 2

P<2>(1,2):0.25( 1) +02o< >< )
01+ M (51-1—)\1 (52-}-)\2

P® (2,1) :0.30< o1_ > < o2 > +0.24< %2_ )
01+ M\ 52+)\2 b2 + Ao

~2) 51 3 i\’
P® (2,2) =0.30 - +0.16 — ) .
51+ A1/ \d2+ A d2 + Ao

Finally, the mission reliability functions are

51 \? 51 5o
P {L > Ty} =050 — ) 4050 _ _
51+ M 81+ M1/ \ 02+ A

(51 (52 62 2
P {L > Ty} = 0.60 _ — ) +0.40 ).
01+ A1/ \d2+ A2 d2 + Ao

Example 3.7 Suppose that there are two components which will perform 8 tasks where the

and

third task is the success state so that E = {1,2,3}, m = 2, ig = 3 and the transition matriz
18
0.40 0.40 0.2
P=1030 030 04]- (3.43)

0 0 1

Then, using ,

0405, 0405,  0.20
01+ Sitd diFM
0305, 0305,  0.405;
d2+Ao d2+Ao d2+A2

4
0 0 3
03+A3

e
I
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from which we obtain
0.406;  0.408;
Pg = d1+A1 d1+M
0.3003  0.308;
0242 d2+A2

and

0.2001
51+A1
0.4002
Sa+A2

Finally, using , the reliability functions are

g:

Ri(\) = PL{L =400} = (I —Ps) 'g(1)
01 (362 + QXQ)
30109 + 6(51X2 + 7(52X1 + 10X1X2

and

Ry(N) = Py {L = +o0} = (I —Ps) 'g(2)
0o (3(51 + 4)\1)
301609 + 651X2 + 7(52X1 + 10X1X2 )

Series Connection of Redundant Subsystems

For this structure, the system works properly if all subsystems work properly which implies
that at least one component functions in each subsystem. Let n; (k) denote the number of
components in use in subsystem k during phase i. We assume that \; (k) is the failure rate
of any one of the n; (k) components in subsystem k during phase i. Then, it is clear that

pi(s) =] (1 - (1 — e—M(MS)"i(k)) , (3.44)

keJ;

To calculate P, the expected value of p, (D;) has to be determined. Since E[p; (D;)] = Ri())
in for every i, the explicit formula can be used to determine the matrix P via
. The following example shows how.

By and , P (i,7) is a multiple of the Laplace transform of a random variable
for all 4,7 € E. Using the same steps as in the previous subsection for series systems, it can
be shown that P; {L > T,,} is a linear combination of product of nonnegative, nonincreasing

and convex functions.
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Example 3.8 Consider Ezample[3.3 and suppose that the transition matriz of the sequence
of phases mission process is . Then,

0.50R; (A) 0.50R; (A)
0.60Ry (A) 0.40R3 (\)

where Ry (\) and Ry (\) are as in (3.26) and (3.27). This further implies that

o | 025R1 () R (N) +03RU () Ry (A) 025R; (3) Ry (3) +0.2R1 () Ry (3)
0.30R; ()\) Ry ()\) + 0.24 Ry ()\) Ry ()\) 0.30R; ()\) Ry ()\) + 0.16 Ry ()\) Ry (/\)
Therefore,
P {L > TQ} = 0.50R; ()\) (Rl ()\) + Ry (/\))
and

Py {L > TQ} =Ry ()\) (O.GORl ()\) + 0.40R5 ()\)) .

The analysis can be repeated for any n to compute the corresponding mission reliability.

Example 3.9 Suppose that there are two subsystems with two parallel components each of
which perform three tasks where the third one is critical, so that E = {1,2,3}, J; = {1,2}

foralli € E,ig =3 and n; (k) =1; =2 for any k and i. Assume that the transition matriz

18 . Then, we have

0.40R; (\) 0.40R; (\) 0.2R; ()
P = |0.30Ry(\) 0.30R2(\) 0.4Rs(\)

0 0 Rz (\)
where
1 1
R,(\) = Z Z (—1)7*i2 [Xflxﬂ =1-E[X|] - E[Xo]+ E[X1X5)]
71=0 j2=0
2. /2 o e (2 e
- 1—7;0(“) (=1)"™ L; (r1Ai (1)) T;(J(TJ( 1) L; (12X (2))
- - 2 2 r1+r2

= 4L (M (1) + A (2)) = 2L; (A (1) + 22 (2))
—2[,2‘ (2>\Z (1) + )\2 (2)) + £z (2)\1 (1) + 2)‘1' (2)) )
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which becomes

B = (6,- + A (Li(;zr Ai (2)> - <5i +A <21(;i+ Ai (2))

- (& TN ?f) Y (2)> * (&- +2)\i(fi o, (2))

when phase durations are distributed exponentially with parameters §; for i =1,2,3. This

further implies that
~ 0.40R1 (\) 0.40R; (M)

S =
0.30R; () 0.30Rz ()\)

and

0.2R; (\)
0.4R5 ()

Then, using the result , the reliability functions are

B (N) (B2 (N) +2)
10 — 4R; (\) — 3R2 (V)

P{L=+o00|Yy =1} = (I—ﬁsylg(l) =

P{L=+4x|Yy =2} = (I B ﬁs)_lg@) - 10}%—24(1/;3)1(2L A) f;](g/: ()/\)

Series Connection of Standby Redundant Subsystems

For this structure, for a phase to be completed successfully, the number of failures during
the phase must be less than the number of components in all subsystems. Let n; (k) denote
the number of components in use in subsystem & during phase i. Suppose that \; (k) is the

failure rate of any one of the n; (k) components in subsystem k during phase i. Then, it is

clear that
ni(k)—1 rt
)\Z' k k
=™ | Y Qi (k) s)'* ) (3.45)
r?l
ke ri=0 k

To calculate P, the expected value of p; (D;) has to be determined. Since E[p; (D;)] = Ri())
in ) for every i, the explicit formula () can be used to determine the matrix P via
(13.39). The following example shows how.
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Example 3.10 Consider Example[3.4] and suppose that the transition matriz of the mission
process s . Then, we have the same P and P as in Ezample where

2 2 vy (o
Ry = 303 MEAEE i ) 4 )

100 |
ri=0rj=0 T

RS IV
100 rilrd) Xi (1) + X (2)+ 65

%

% (AZ- 1) ilxii()z) + 5i>ﬂ <)\i ) 4)—\2>\(j()2) ¥ 51)%

fori=1,2.

Example 3.11 Consider Example[3.]] and suppose that the transition matriz of the mission

PTOCESS 1S . Then, ]3, ﬁg, g and the reliability functions will be the same as in Example
where

2 2
>\Z rl )\ T'L-‘,-ri
RO = Y ,,”c O (1) 4 X (2)
rl_O r§=0 2
. i 2 Tl + T2) 52
a '7‘2' )\i (1) +)‘i (2) +6i
rl_Or =0

X

<Ai (1) +14&-1()2) n 5> <Ai W iA@()z) n 5i>ré

fori=1,23.

Series Connection of k-out-of-n Subsystems

Suppose that each subsystem j € J; has n; (j) number of active parallel components and
at least k; (j) of these components must be in working condition to make the subsystem

function during phase ¢. Then,

ni(f) .
=11 2 (” 5”) (@)’
JeTirizk) S I
and, using and (3.39),
P (i,1) = E]] Z ( , )(e&(a‘wi)rﬁ (1_6,wwi>m(a‘>—r]

]Ejz ’r’ 7](1 (])

i

(1~ e—m-(j)s)”i“)’"; (3.46)
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for all 4,1 € E. To calculate P, the expected value of P; (D;) has to be determined. Since
Elp; (D;)] = Ri(\) in for every i, the explicit formulas ([3.35)-(3.36)) can be used to
compute the entries of the matrix P via . The following example shows how.
By and -, (i,1) is a multiple of the Laplace transform of a random variable
for all 4,1 € E. Using the same steps as in the previous subsection for series systems, it can
be shown that P; {L > T,,} is a linear combination of product of nonnegative, nonincreasing

and convex functions.

Example 3.12 Consider Example[3.5 and suppose that the transition matriz of the mission
process is . Then, we have the same P and P?; hence Py {L > Ty} and Py {L > Ty}
are as in Example [3.8 where

- 55 e

7
2r2 251 7‘152 r2

0
X - -
<5z + Sll)\z‘ (1) + Sé)\i (2))
fori=1,2.

Example 3.13 Suppose that there are two subsystems with three parallel components which
will perform three tasks where the third one is critical. At least two of three components
must work to make the subsystems function. Then, E = {1,2,3}, J; = {1,2} for alli € E,
lh=la=13=2,1i¢ =3, and n;(j) =3, ki (j) =2 forall j = 1,2, 1 = 1,2,3. Assume
that the transition matriz of the sequence of the phases is . Then, we have the same
P, Ps, and g; hence P{L = +oo|Yy = 1} and P {L = +oo|Yy = 2} are as in Ezample

v=23 5 3 (DD v (i am)

7
2r2 251 7”182 7“2

where

fori=1,2,3.

3.1.3 Phase Reliability

For a complex system, a given critical phase may be more important than the others due
to the overall objective of the mission. Therefore, the probability that this phase will be

completed in a fixed time period is an important measure to represent the reliability of the
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system. For instance, consider the NASA’s Mars Exploration Rover Mission example given
in Section [2.I] where the mission consists of phases like vehicle launch; cruise; approach;
entry, descent and landing to Mars; rover egress; and a number of surface operations that
involve scientific data collection and transmission to earth. Since one of the main aims of
the whole mission is determining past water activity on the surface, scientific investigations
and transmission of data are very critical towards this goal for the success of the mission.
Therefore, reliability of such a critical phase is of extreme importance.

Suppose that one is interested in the successful completion of a given critical phase j of
the mission. Letting

Uj=inf{t > 0;Y; #Y,_ = j}

denote the first time that the mission process leaves state j, we are interested in determining

the phase reliability function P;{U; <t, L > U;} for phase j.

E E
Y S
A A — Mission process
B | L Fe e —— Lifetime
— 7
i — i - —_—
j E— j B P———
| —_— : : | —
i — i —_—
L7 7
s L. L. T T

Figure 3.2: A typical representation of the structure of Y.

We can now define another Markov renewal process (Y, T) as appropriate through its

minimal semi-Markov process Y. The new process is defined by
Y; ift <min{L,U;}
Yi=4 A if L <min{t,U;} (3.47)
S; if U <min{t, L}
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so that we now extend E to E = E U {A,S;}. With this construction, we now let the
semi-Markov mission process Y go to the absorbing state A as soon as the system fails
before completing phase j, or to the absorbing state S; as soon as phase j is completed
without failure. Thus, if X,, = A or X,, = Sj, then T,41 = +o00. The structure of Y is as
described in Figure The semi-Markov kernel of (Y, T) is

Qik,ds) ifieE—{j},keE

_ Qi,A,ds) ifieEk=A

Q (i, k,ds) = (3.48)
Fj(ds)ﬁj(s) ifi:jEE,kZ:Sj

0 otherwise

\
for i,k € E. Note that Q (S},7,t) = Q(A,j,t) =0forallt >0, j € E, and P(S},5;) =
P(A,A) =1. Ifi € E—{j}, and k € E, then phase i is completed successfully before
system failure and hence Q (i, k,ds) = @(i,k,ds). If i € E and k = A, then Q (i, k,ds)
represents the probability of failure during phase ¢ in the vicinity of time s, which means that
the duration of phase i is longer than s units of time and a failure will occur in the vicinity
of time s. Therefore, this probability is equal to @ (i,A,ds) = F;(s)p; (ds). Moreover,
Q (7, Sj,ds) represents the probability that the system will complete phase j in the vicinity
of time s given that the system is in working condition at the beginning of phase j. This
situation occurs if the duration of phase j is in the vicinity of time s and the system survives
more than s units of time in these conditions; hence, Q (4, S, ds) = Fj (ds) p; (s). It is clear
from the definition of the process (Y, T) that the states S; and A are absorbing states.
Therefore, if the process gets into states S; or A, it remains there forever where S; now

represents the “success” state and A represents the “failure” state.

The transition matrix P of the Markov chain X is such that
P (i, k) ific E—{j},keE
P (i,A) ificE,k=A
TOF;(ds)Py(s) ifi=j€ B k=S

\ 0 otherwise

for i,k € E. Note, once more, that both the semi-Markov kernel @ and the corresponding
transition matrix P are possibly defective on E and E. We do assume that they are, in fact,

defective to avoid trivialities in reliability analysis.
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Using the Markov renewal process (Y, T), reliability of phase j is simply
P{U; <t,L >U;} =P {Y;=S;} = R(i,5;,1) (3.49)

where R = ZG” is the Markov renewal kernel corresponding to Q. This follows trivially
from Proposintion (10.5.4) in Cmnlar [59].

Note that X has two absorbing states and and all the other states are transient. If one
wants to find the probability of ever completing phase j, this is equal to the probability of
being absorbed at state S; before A. Using first step analysis, this probability can be easily

calculated.

3.1.3.1 Series System with Markovian Missions and Exponential Lifetimes

In this section, we identify the computational simplification provided by Markovian missions
in order to compute the reliability measures discussed before. We further suppose that
the system is a series one with m components where component k£ has an exponentially
distributed lifetime with parameter A; (k) during phase i. The mission process {Y;;t > 0}
is a Markov process with transition rate vector §, transition matrix P, and infinitesimal
generator

—d; ifj=1

0;P(i,5) if j #1.

In this special case, it is clear that

Qi.i,s) = (1= e™) P(i.y) (3.50)
so that
Fi(t)=1—e %
and
p; (s) = e i (3.51)

o m
where A; = > A; (j) since the minimum of exponentially distributed random variables is
=1

also exponentzally distributed.
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For the mission reliability analysis, note that (3.50) and (3.51)) gives

~ +oo oo
Bij) = /0 P (5) Q (i, ds) = /J Py () 8¢5 P (i, ) ds

_ (&iM>P@ﬁ (3.52)

for i,7 # A, and

A
o; + XL

. “+o00 - —+o00 . _
P(i,A) = / Fi(s)pi(ds) = / e 0 N e NS ds = (3.53)
0 0

in and . The explicit form of P can be used in (|3.16|) and d3.1.2|) to compute

mission reliability by simple linear algebra.
For the phase reliability analysis, note that ¥ = {?t;t > 0} is also a Markov process

with the infinitesimal generator

((5.P(ik) ifikeE,i#jork

i ific B k=A

G(i,k) =< &, ifi=jeB k=25 (3.54)
—(6i+XN) ifi=keE

0 otherwise

for i,k € E. Then, the phase reliability has the matrix exponential form

R{Ujgt,L>Uj} = R{?t:Sj}:eXp (—ét) (i,Sj)

—+o0 - n
" —m, . . Gt .
= E OEG (1,85) = nkr—ir-loo <I + n> (2,55).

There are various methods to compute the matrix exponential exactly or approximately
and the reader is referred to Moler and Loan [60] for these computational issues. It is
also well-known that these probabilities can be estimated by solving Kolmogorov backward

equations (or forward equations).

Example 3.14 Suppose that there are three phases and phase 2 is the critical one. Using
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Kolmogorov backward equations and , we have

Plg, () = G(1,2) Pas, (1) + G (1,3) Pss, (1) + G (1,A) Pasg, (t)

+G (1,52) Ps,s, (t) — 01P1s, (t)
Phs, (1) = G(2,1) Pis, (t) + G (2,3) Pas, (t) + G (2,A) Pas, (1)

+G (2, 89) Ps,s, (t) — 62Pag, (1) (3.55)
Pys, (1) = G(3,1) Pis, (t) + G (3,2) Pas, (t) + G (3,A) Pas, (1)

+G (3,92) Ps,s, (t) — 63P3s, (1)

where P (t) = Pi{Y: =k} and 6; = (8; + \i). By the definition of Y, G (2,1) = G (2,3) =
G(1,85) =G (3,52) = Pas, (t) =0 and Pg,s, (t) = 1. Therefore, simplifies to

Pis, (t) = G(1,2) Pag, (t) + G (1,3) P3s, (t) — 61 P1s, (t)
Pag, (1) = G(2,5) — 02Pag, (t) (3.56)
Pis, (1) = G(3,1) Pis, (t) + G (3,2) Pas, (t) — 35 P3s, (1)

The second equation in s a differential equation in the form of
y' +P(2)y=Q () (3.57)

where y (t) = Pag, (t), P (z) = 02, and Q (z) = G (2,S2). It is known that the solution of

1
y:w/v@)@(wdt,

where

v (t) _ ef P(t)dt_

Therefore, in our case

v(t) = 52t

and, hence,

Pas, (t) = 6_32757(; (%’ 52) (eg2t + C) .
2

Since Pag, (0) =0, C = —1 and this implies that

Pys, (t) = G(?sfg) (1-e7). (359
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By using , simplifies to

!/

Pis, (t) = —061P1s, (t) + G (1,3) P3s, (t) + G (1,2) Pag, (1) (3.59)

Py, (t) = Pis, (t) — 03P3s, (t) + G (3,2) Pas, (1) -

We will use the standard procedure for solving such systems of differential equations. Let

define

A 7—51 G(17,3)
G(3,1) —03
The eigenvalues of A are
51 53 1 = <= \2 i al
no= 22 G -5) 4 (3T
oy 63 1 [~ = = -
re = —51—53—5 (51—53)2+4G(173)G(371)

and it is clear that 1 # r9. By solving the equation (A — rI)u = 0 where r is a scalar and

u=[ 1w wuy ', we have

G (1,3) 03+
Uy = = U2 = = ug.
o1+ G(S,l)

If r =17y and r = re, it can be shown that

6(1,3) _ O3+
31—1-7“ G(3,1).

Then, choose
S34ry 93412
v = |GG | and u@ = | GB1)
1

Without right hand side, we have the special solution

03+ 71 03 419
P ) = cj———¢"? 2 Zerat
152 (¢) "G (3,1) *G(3,1)
Pas, (1) = c1e™ 4 e,

03 + — -
Ky t g™ = CL)Ps®

K (t) et + Kb (t) e = G(3,2) Pas, (t)
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in terms of K1 and K}. The solution is

Pas, (t) (G(1,2) G (3,1) — G (3,2) 83 — G (3,2) r2) e

Ki(1) = -ge
Ky(t) = P25, () (-G (1,2 GG, 1)7’1+_G7‘(23’ 2)034+ G (3,2)ry) e "2t

and this implies that

me__cuz&MG@nGgﬁwwnam%—G@gwg<5vﬁm5_€m>
02 (r1 —12) R o
Ky () = G(2,5) (-G(1,2)G(3,1) + TG (3,2)5:+ G (3,2) 1) (e(rzm)t ) er2t> |
92 (r = r2) r9 + 02 o
Therefore,
Proy (1) = Clgi(—i;zl) e+ CQ%GTﬂ + K (t) f;(;rll)e”t + K5 (t) gj(;?f) rat
Pas, (t) = c1e™ +cae™ + K1 (t) €™ + Ko (t) "™,

Since P1g, (0) = Pag, (0) =0,
—G(2,9) (-G (1,2)G(3,1)+ G (3,2) 63+ G (3,2) 12)
(r1 —72) 71 (r1 + d2)
G(2,5) (-G (1,2)G(3,1) + G (3,2) 05+ G (3,2) 1)
(ri1 —ra)re (7“2 + 32) ’
We also have G (2, S2) = 62, G (1,2) = 61 P (1,2), G (1,3) =61 P (1,3), G (3,1) = 63P (3,1),
G (3,2) = 63P (3,2). Then, using ,

(53 + X3) +7r1 ot g (53 + X3) + 7o
53P (3,1) > 55P (3,1)

c1 =

Cop =

rot

?152 (t) =

(034 A3) +r1 ., (63+X3) +72 ..,
+K; (t) —(53P 3.1) et + Ko (t) —(53P 3.1) e
Pas, (t) = c1e™ 4 ce™ + Ky (t) e 4 Ky (t) 2!
where
K () - 82 (01P (1,2)63P (3,1) — 63P (3,2) (63 + A (3)) — 03P (3,2) r2)
! (62 + ) (r1 —72)
€—<T1+52+X2)t e~ Tt
>< — J—
r1+ 02 + A2 1
K (t) O ((51P (1, 2) 03P (3, 1) — 03P (3, 2) ((53 + Xg) — 03P (3, 2) 7”1)
2 =

(52 +X2) (’1“1 — T‘Q)

€—<7’2+52+X2)t e~ T2t
X =~ )
T2 + 02 + A2 T2
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—85 (—01P (1,2) 63P (3,1) + 63P (3,2) (63 + A3) + 03P (3,2) r2)
(ri—ro)re (7"1 + 2 + XQ)
09 (—(51P (1, 2) 03P (3, 1) + 03P (3, 2) (53 + Xg) + 03P (3, 2) 7”1)

Cy = — ,
(r1 —r2) r2 (r2 + 62 + A2)

1 =

and

01 +A1 O3+ A3

r = -
2 2
1 ~ T~ \2
+§\/(51 + A — 03 — )\3) + 401 P (1, 2) o3P (3, 1)
1+ O3+ X3
ro = — -

2 2

1 — —
—5V (143 = 85— Xs)? +46,P (1,2)65P (3,1).

3.2 Models with No Repair

In this section, we remove the simplifying assumption of the previous section that the
system is repaired maximally so that it is brand new at the beginning of each phase. There
is no repair now and, hence, the system will get deteriorate or get older in time. Since
the lifetimes of the components have general distributions, the concept of “aging” comes
into consideration. For this purpose, we will use the “intrinsic aging” model introduced by
Qmlar and Ozekici [17] (For details of the model and the related notation, see Section .
The analysis will be presented for a general and arbitrary reliability system. In this regard,
we extend Cinlar and Ozekici [I7] who considered the system reliability of a series system

where the whole system fails as soon as any component fails.
3.2.1 Reliability of a Series System

3.2.1.1 Mission Reliability

Suppose that we have a series system. We focus on computing mission reliability involving
the first n phases of the mission. We first find the probability that the first phase will be
completed by conditioning on the next phase so that

Pu{L>Ti} =) Pu{L>T1,X1=j}=> Puf{L>T|X1=4}P(,j). (3.60)
jEE jeE
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Note that

Pull>TiXi =) = [ Pu{l>TTi € ds, By e i = j)
.FXR+
_ / e 10O G (i, j, ds) H (i, a, 5;db) (3.61)

FxRy

Combining equations (3.60)) and (3.61)), we obtain

Po{L>T}=)_ / e 1" (0=0Q (i, 4, ds) H (i, a, s; db) . (3.62)
jEEj'—XR+

Similarly, we can obtain a recursive relationship
Piq {L > Tn+1} = Zpia {L > Tn+1|X1 = ]}P(Za])
JEE
= > [ Pull>Tun Ty cds B e dbfXs =) PG.d)
jeEfXR+
=y e V' O=0Q (i, j, ds) H (i, a, s;db) P {L > Tp,} (3.63)

J€EF R,
for n > 0. Let @5 (1,a;7,db;ds) = Q (i, 4,ds) H (i, a, s; db) eilT(b*“), and define
Ps (i,a; j, db) = Qs (i, a; j, db; +00) = Pig {X1 = j, B1 € db}
and
PEtY (i a;4,db) = /Fﬁg (i, a; k,dc) Ps (k, ¢; j,db) = P {X,, = j, By € db}  (3.64)
keE

for all n > 1.

Then, it follows from (3.62)) that

Po{L>T} = Y. / Qs (i, a; j, db; ds) = > /f Qs (i, a; j,db; +00)  (3.65)

I€Er R, jEE

= ¥ [ B, (3.66)

jEE

Now, using induction, we will show that

PalL>T} =Y [ P§ (it (3.67)
jep’F
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for all n > 1. Note that P, {L > Tp} = 1 trivially. We have already shown that (3.67))
holds for n = 1. Suppose that

P {L > T} = Z/fﬁé (i, a; 5, db)

jeE
for all & < n. Then, using (3.63)) and ([3.64)),

Po{lL>Tun} = > | Qs(i,a;j,db;ds) Pp{L > T,}

jEEfXR+

- Y [ Peiaian Y [ gk (3.69)
jeE F keE’F

— Z/ﬁg“ (i, a; ,db) . (3.69)
jee’F

3.2.1.2 Phase Reliability

Suppose that there is a critical phase j and we are interested in computing the probability
P, {U; <t,L > Uj} that phase j will be completed successfully by time ¢. Using a similar
approach as in Section we note that the process Y defined by equation is a
semi-regenerative process. In this case, the semi-Markov kernel corresponding to the Markov

renewal process ((X, B),T) is given by

( Qi k,ds)H (i,a,5:db) e "0~ ific BE—{j}, ke E

_ F; (s) H (i,a,s;db) Ui, (ds) ifieFE, k=A
Qg(i,a; k,db;ds) = . (3.70)
F; (ds) H (i, a,s;db) et ¢=a) ifi=j, k=25,

| 0 otherwise

for all i,k € E, and a,b € F where
Uia (s) = 1 — ¢ 1" (hiass)=a), (3.71)

Note that Qg (Sj,a;5;,db;t) = Qg (A, a; A, db;t) = 0 trivially for all ¢t € Ry, a,b € F and
Pg(Sj,a;8;,da) = Pg (A, a;A,da) = 1for all a € F. It is clear that ((X, B),T) is dumped

to absorbing states (A, a) and (S}, a) when the system fails and completes the critical phase
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successfully with age a € F respectively. Using Markov renewal arguments,

f(ivaat) = Pz'a {?t:k,At Edb}

= Pm {?t = k,At S db,Tl > t} -+ Pia {?t = k,At S db,Tl < t} (372)
= I{k:i}l{b:a}q (Z7 a, t) + Z / @S’ (Za a; la dC, dS) -Plc {?t—s - k7 At—s S db}
I€EEF[0,t]
= Ipeplpeayq (ia,t) + > / Qs (i,a;l,dc;ds) f (I, ¢,t — s) (3.73)
IEEF[0,4]
where
q(i,a,t) = Py {Tl > t} =1- Z/Qs(i,a;l,db;t). (3.74)
—JF
leE

We have a Markov renewal equation f = g + Qg * f with

g9(i,a,t) = I—jy Ip=ayq (i, @, t) - (3.75)

Following Proposition A.2 in Cinlar and Ozekici [17], (3.73) has a unique solution

fiot) = Y [ Rstialdad)get-
LEEF[0,4]

= R (i,a; k,db;ds) q (k,b,t — s) (3.76)
[0,¢]

where Rg = 3. Q4 is the Markov renewal kernel corresponding to Q.

n
Then, using (3.76)),

Pm{Uj St,L>Uj} = /Pm {?tZSj,AtGdb}
f

= / Rs (i,a; S, db;ds) q (S;,b,t — s) (3.77)
Fx1[0,t]
= Rg(i,a; S, F;t). (3.78)

3.2.2 Reliability of General Systems

In this section, we discuss the reliability of a more general system with structure function
1; during phase ¢ by extending the work in the previous section.
We can determine the conditional lifetime distribution of the system during any phase

using (2.12). Let viq (s) = P{L < s|Y =i, Ag = a} be the probability that the system will
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work at most s units of time during phase ¢ if the initial system age is a. Then,
Via(8) = 1 — Tia (s) = 1 — / By (5. db) (3.79)
:F

3.2.2.1 System Reliability

Using a Markov renewal argument for the system reliability function f (i, a,t) = P, {L > t},

we can write

fli,a,t) = P {L>tTi >ty + P,{L>tT <t}
= W OF O+, [ QUid)p (s d) Pl >t )
ISEF o,
= Ta(OFi )+ Q (i,a; j, db; ds) f (j,b,t — s). (3.80)
I€E £ 0,4]

Thus, we have a Markov renewal equation f = g+ @ x f where
g (iya,t) = Vi (t) F; (t)

and

Q (1, a; j,db; ds) = p;, (5,db) Q (4,7, ds) .

Since @ (4, j,ds) is nonnegative and 0 < p,, (s, F) < 1,

Q (i, a; §, F; ds) = /f@ (4,7, ds) Diq (s,db) < Q (i, ], ds). (3.81)

By Proposition A.1 and Proposition 4.2 in Qmlar and Ozekici [I7], the Markov renewal
equation 1) has a unique solution f = R« g, or

Pa{L >t} =) / R(i,a; j,db; ds)Fj (t — s) Uy (t — )
I€EE0,4]
where R = :{i% @" is the Markov renewal kernel corresponding to C~2
It is clear to observe that the process (Y, A) is, in fact, a semi-regenerative process

on the Markov renewal process (X,T). We aggregate the 2 processes by defining a new

semi-Markov process Y* = {Y,%;t > 0} so that

Y;:a = (Xna Bn)
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whenever T}, < t < T,,11. We can now obtain a new Markov renewal process (X, A),T)
through its minimal semi-Markov process Y defined through
o ¢ ift<L
t =
A ift>L

where A is the absorbing state denoting system failure. This also implies that

~ 0 ifn=20
T, =

inf{t>fn_1;i“7él~/j€f } ifn>1
n—1

and (X,, A,) = }75,2 for n > 0. Clearly, the state space of (X, A),T)is E x F = ExFU{A}

EuA
21}
Al Mission process
i . e Intrinsic lifetime (1)
N P — : Intrinsic lifetime (2)
: : : 1. Component
(2] PO L —_— — — 2. Component
; — P 3 Blue 7
T —_—
T,=0¢ o o— 0 - >
I I, L T time
CO - Geares ———— _——
Intrinsic
age : :
—
[
S A
/?
/ .
-

Figure 3.3: A typical representation of the structure of Y for a parallel system with two
components.

and its semi-Markov kernel is obtained by extending the definition of @ to E/>\</.7: such that

Q(i7j7d8)ﬁia(87db) 1fZ,]€E7j7éZ
Q (i,a; 4, dbs ds) = ¢ F; (s) via (ds) ifieE, (j,b)=A (3.82)
0

otherwise
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for (i,a),(j,b) € E x F. This new process Y follows the process Y until system failure
and whenever the system fails at time L, it is dumped to the absorbing state A which
denotes system failure. The structure of Y for a series system with two components is as

described in Figure We can find the transition kernel of the Markov chain (X, A) as

—+00

P (i,a;5,db) = Q(i,a;j,db;+00) = Q (i,a;7,db; ds)
0
—+o00

= Q (iaj7 dS) ﬁm (S,db) (383)
0

for (i,a),(j,b) € E x F, and

~ oo _
Pliaia)= [ Fi(s)via(ds)
0

for (i,a) € Ex F. Note that Q (A;j,db:t) = 0 for allt € Ry, (j,b) € E x F and P (A; A) =
1. Both the semi-Markov kernel @ and the corresponding transition kernel P are possibly
defective on E x F since
Z/ﬁ(i,a;j,db) =1-P(i,a;A) < 1.
jee’F
As a matter of fact, we will suppose that they are indeed defective and there is an (i,a) €
E x F such that P (7,a; A) > 0. Otherwise, we have a trivial situation and the system can

never fail.

3.2.2.2 Mission Reliability

The mission reliability can be analyzed via a similar approach as in Section The
probability of survival for the first phase is

P {L>T} = Z/+OORQ{L>T1,X1 =4, Ty €ds}
jegv0
+o0
_ Z/ Puf{l>s|X1 =i Ty ds}Qi,jds)  (3.84)
jer’0
> [T ra@ @ (3.85)
= Via (S 1,7, a8 .
jer’0
-y / Bra (5. db) Q (i, . ds) (3.56)

JEEF R,

= Y / éj(z’,a;j,db;ds):Z/Fﬁ(i,a;j,db). (3.87)

J€EF R, jeE



Chapter 3: Reliability Analysis 52

Similarly, we can find the probability of completing the nth phase as

+oo
Po{L>T,} = Z/ P {L > T,,T1 € ds, X1 = j}
0

jeE

= Z / T?z'a (S,db)ij{L>Tn_1}Q(i,j,d8)
jeE]‘—XR+

= Y | Q,a;j,db;ds) Py {L > T, 1} (3.88)
jeE]:XR+

for n > 1 recursively. Using induction, we will show that
Pu{l>T) =Y [ P (asjab (3.89)
jee’r
where

P (1,0, db) = 3 / B (i, a; kyde) PP (k, c: . db)
keg’F

defined recursively for n > 1. Due to (3.87)), (3.89)) holds if n = 1. Now, assume that (3.89))
holds for n = k and consider Py, {L > Tj4+1}. Then, using (3.88)),

Po{L>Ti} = / Q (i, a; j, db; ds) Py {L > T}

JEEFX R,

- > [ Pl (Z |7 (j,b;k,dc>>
jee’F kee’F

= z:/]?’}chl (i,a;7,db).
jep’F

The mission reliability can also be characterized through
Pu{l>T,} = Pi{()?n,ln) € E x }'}
= Z/ﬁ"(i,a;j,db) =1—P"(i,a;A)
jeg’F
and the probability that the whole mission is completed without failure can be determined

from

lim P {L>T,}=1— lim P"(i,a;A). (3.90)

n—-+00 n—-+00
If all states (i,a) € E x F are transient, then this probability is 0 since the process will
eventually be absorbed in state A. But, if there is another absorbing state S that is used
to denote the successful termination of the whole mission, then mission reliability is

not necessarily equal to 0.
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3.2.2.3 Phase Reliability

Suppose that phase j is the critical one and we want to find the probability that phase j
will be completed until time ¢ given that the initial phase and age of the system are ¢ and
a respectively, P, {U; <t,L > U;}. As we did in the maximal repair case, we will analyze
this probability by defining a new Markov renewal process ((Y, Z) ,T) through its minimal

semi-Markov process Y such that

Ve if t < min{L,U;}
Y=< A if L <min{t,U;}
S;  if Uj <min{t, L}

and, hence, we extend the state space to E x F = E x F U {A, S;}. This process is very
similar to the process (Y, T) defined in and hence it follows the mission and the
intrinsic age processes until system failure or successful completion of the critical phase 7,
whichever occurs first. If the system fails before completing phase j, then (Y, Z) jumps to
the absorbing state A at the instant of failure. On the other hand, if the system completes
phase j without any failure, (Y, Z) is dumped to another absorbing state S; at the end of

the phase which denotes the successful completion of the critical phase. The structure of

£oufps, | £ufps, |
[
S Sy
. A
71— . e — Mission process
g dpfeeeeeees s l—— Intrinsic lifetime (1)
: . : H Intrinsic lifetime (2)
" . T - —— 1. Component
| R— : — — 2. Component
: iy —— : : Blue 7¢
T-0g—— . FA L e T S L S
T T, T T, ime T, : T, T T,: time
50 S S 1§ SO S % U S I8 O O
Intrinsic : : : : Intrinsic :
age : : : : age :
o - i -
7 S
/ /
4 I
- s
- P

Figure 3.4: A typical representation of the structure of Y for a parallel system with two

components.
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Y for a series system with two components is as described in Figure The semi-Markov
kernel of ((Y, Z) ,T) is

Q(i,a;j,db:ds) ifi ke Ei#j

_ i,a; A;ds it (k,b) =A
Q (i,a; k,db; ds) = ol ) 0)
F; (ds)Tjq (s) if i = j and (k,b) = 5

\ 0 otherwise

for all (i,a), (k,b) € E x F. We can find the transition kernel of the Markov chain (X, A4)
such that
(P (i,a; k, db) ifikeE,i#j

P (i,a; A) if (k,b) = A

P (i,a; k,db) =
ST F; (ds) T (s) if i = j and (k,b) = S;

0 otherwise

for all (i,a), (k,b) € E x F. Note that Q (A;k,db;t) = Q (S;; k,db;t) = 0 for all t € R,
(k,b) € Ex F and P (A; A) = P (S};S;) = 1. Note, once more, that both the semi-Markov
kernel @ and the corresponding transition matrix P are possibly defective on E x F and
m . We do assume that they are, in fact, defective to avoid trivialities in reliability
analysis.

It is clear that Py, {U; < t,L > U;} = P {Y; = S;}. It is trivial that Pg, {Y} = 5;} =

1— Pa {?g = Sj} = 1. Then, using a Markov renewal argument, we can write

flisat) = Po{Yy =5} =P {Y, =5;T1 >t} + P {Y{=8;T1 <t}

= I{j:i}/o F; (ds)Tjq (s) + / Z@(i,a;k,dc; ds) f(k,c,t —s) (3.91)

Fx[o] *EE

for all (i,a) € E x F which is a Markov renewal equation f = g + Q * f with

t
g(ia,t) = Iy /0 F (ds) Tsa (s)

We know that @ is defective on E x F and Q (i,a;5,F;ds) < Q(i,7,ds) for all (i,a) €
E x F,j € E. Therefore, using Proposition 4.7 and A.2 in Cinlar and Ozekici [17], there
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is a unique solution f = R * g for (3.91)) such that

f(i,a,t) = Py {YZ:SJ}: Zﬁ(i,a;k,dc;ds)g(k,c,t—

Fx[o,] FEE

[0,t—s]

tlj

x[0,t
= / R (i,a;4,dc;ds) Q (j,¢; S5t — s)
x[0,t

where R =3, Q" and

s)

(i, as i, des ds) T (k, j) / F; (du) 5,0 ()

@ aldi) = [ @ Gakdeds) Q kil dbit )

Fx[o,] FEE

for all (i,a), (I,b) € E x F. Let R (i,a; S;;t) = >, Q" (i,a; Sj; t) where

@n(z,a,S]7t) = / Z@n_l (iaa;kvdc; dS)@(k’,C, SJat_

Fx[o,] FEE

/ Q"' (i, a; 4, de; ds) Q (j, ¢; Sjst—s).

Fx0,t]
Then, using (3.92)),
P {Y{ =5} = / R(i,a;4,dc; ds) Q (j,¢; St — s)
Fx[0,t]

+o0o

= > / Q" (i,a;4,de; ds) Q (4, ¢; Syt — s)

7=0r.70,4]

s)

+oo
= Y. Q" (,a:85:t) = R(i,a; Sj3t) — I ((i,a) , S))

n=0

where the last equality follows from the initial assumption that (i,a) € E x F.

(3.92)
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Chapter 4

MEAN TIME TO FAILURE ANALYSIS

4.1 Models with Maximal Repair

In this section, there is maximal repair so that the whole system is overhauled at the
completion of each phase of the mission such that it becomes good as new before the next
phase starts. The main purpose of this section is to characterize E; [L] for all ¢ € F, and
to do this, we will use the Markov renewal process ()Z' , f) defined by . Let Pa denote
the matrix obtained by deleting the row and the column corresponding to state A from the

matrix P. The potential matrix corresponding to Py is defined as

~ —+o00 ~n

Rp = ano PR,
The following is our basic assumption in this section.
Assumption 4.1 supﬁg (1, E) = sup Z ]Bﬁ (1,7) < 1 for some k > 1.

icE i€E “
JEE
This assumption simply states that whatever the initial phase is, the system may fail

after a finite number of successfully completed phases with a positive probability. In other
words, state A is reachable from any state ¢ € E. This trivially implies that P is a defective
transition probability matrix.

Note that
Ei[L) = E; [LIgp~ry] + Ei [LI{<ry] - (4.1)

By applying the law of iterated expectations,
“+oo
Ei [LIpsry) = > / E; [LI{p~ry| X1 =5, Ty € ds] Pi{X1 = j, T € ds}
jer”o

+oo
- Y [ e+ BLR @) (42)

JjeEE
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= 3 [T Q)+ LB [ R Qa9
0 i s Js j 0 i yJy

JEE JEE

400 ~
- /0 5 (s) Fy (ds) + S Pa (i.5) B [1]. (4.3)

JEE
In this derivation, (4.3)) follows from (2.4) and (3.5]), and (4.2) holds since using (3.4)),
Pi{l{r>ry =1, X1 =4, T € ds}
Pi {Xl = j, T1 S ds}
Q (i,7,ds)
Q (i,7,ds)
= Dpi(s)-

Pi {I{L>T1} = 1|X1 = j, T1 € ds} =

Suppose that the duration of the ¢th phase is s; > 0. Then,

Pi{LI{p<sy <t} = Pi{LI{<sy <t|L<s;i} P{L < s}
+P; {LI{Lgsz—} <tL> si} P {L > s;}
1 ift > s;
pi(t)+1—pi(s;) ift<s

for all £ > 0. This implies that

ift>s;

pi(si) —pi(t) ift<s

Pi{llpsy > 1} =
and

—+o00 Sy Si Si
Ei [LI{LS&}] = /0 Pl {LI{LSSz‘} > f,} dt = /(; (pi (Sl) — Di (t)) dt = /0 /t Di (ds) dt

_ /0 /0 dtp; (ds) = /0 " ops (ds) (4.4)

Then, using (4.4)),

—+o0
Ei[LIip<ry] = Ei[Bi [LIg<ry|Ti]] = /0 E; [LItp<ry|Th € ds] Fi (ds)
—+o00

— [T ws /0 i (db) (4.5)

0

Now, (4.1)), (4.3)) and (4.5) lead to

—+o0 B “+o0 S ~
E (L] = /0 T () Fr(ds)+ [ F(a) /0 i (dt)JFj%;P(%J)Ej L. (46)



Chapter 4: Mean Time to Failure Analysis 58

Let f (i) = E; [L] for every i and

“+o00

hii) = /O+Oosi(s)ﬂ(ds)+ F (ds) /Ostpi(dt)

0

(

— /;OO (spi () +/OSdU/:pi (dt)> F; (ds)

- [0+ [0 -nwa) B (1.9
( _

) +00 +o00 _
= / D; (u) du/ F; (ds) = / p; (u) Fi (u) du (4.9)
0 U 0
for every i € E. Then, (4.6 can be written in compact form as the Poisson equation
f=h+Paf. (4.10)

In our analysis, we exclude the case where E;[L] is unbounded and try to find a unique
bounded f satisfying (4.10). From now on, we therefore suppose that f is bounded.
If E is finite, then the solution of (4.10)) is

f= (I — ﬁA) 'h = Rah. (4.11)

Since Pa is a defective transition matrix, the matrix inverse in 1’ exists.
If F is not finite, then (4.10)) implies

f=h+Pah+PRf
by replacing f on the right-hand side by h + Pa f, and repeating this argument we get
f=h+Pah+---+ Pih+Pitf
for any n > 0. Therefore, we have

f=Rah+ lim PR,

It is clear that f = ﬁAh is the unique bounded solution of (4.10|) provided that lim ]53 f=

n—-+4o0o

0, and Rah is bounded. The following gives a reasonable condition for this to be true.
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Theorem 4.2 If h is bounded and Assumption holds, then Rah is bounded, and f =
Rah is the unique solution of

Proof. Suppose
PE(i,E)<1—c (4.12)

for some ¢ € (0,1) and & > 1. We now show by induction that
P (i, E) < (1—o)" (4.13)

for all n € N. For n = 1, it is true by Assumption Now, assume that it holds for
1,2,--- ,n. Then,

5(n k /.
BOTE ) = S Bk (i,g) P G, E)

jerE
< lfcz ,7) = (1 —c¢) PY" (i, E)
jerE
< (11—t (4.14)
Then,
_ +o00 _ +oo k—1 _
Ra(i,B) = Y PR(i,E)=)_ > PY"™™"(i,E)
=0 m=0 n=0
400 k—1 B
= > PR (i,j) PX" (j, E)
m=0n=0 \jeFE
+o0 k—1
< ZZ(l—c PR (i, E)
m=0n=0
+oo

k
- < +o0. (4.15)

IN
(7]
o~
_
|
&
3
|
\

~ ~ +00
. o . e P -
This also implies that . ETOOPA (i, E) = 0 since Ra = E o PA Moreover,

EAh(i) = ZRA (1,7) h (§) < suph (j ZRA (4,7)
JjeEE JEE JEE
= suph(j) Ra (i, E) < +oc. (4.16)
JjEE

Therefore, EAh exists and it is bounded and, hence, it is a solution of 1} To prove
the uniqueness, we need to show that lim ﬁg f = 0. But, this is trivially true since

lim PA (i,j) =0for all4,j € E and f is bounded |

n—-+00
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It follows from the definition of A in (4.9) that

+oo
h(i) = P{L >u,Ty >u}du
0

and we have the representation h (i) = E; [min {L,T}}]. We observe that boundedness of
h depends on the mean durations of the phases and the mean lifetime of the system under

fixed phases. Suppose that

supm (1) = supE;[T1] < +oo.
i€k icE

Then, using (4.9)),

h = suph (i) = sup/ p; (u) Fy (u) du < sup/ Fi (u) du = supm (i) < +00.
el i€EJ0 1€EJ0 el

Following similar steps, it can be shown that

h <supE [L]Y =i
i€l

to obtain another bound for h.

4.1.1 An Alternative Derivation

In this section, we will give an alternative derivation for E; [LI{ L>T1}]. Suppose that the

duration of phase ¢ is s; > 0. Then,

Pi{LI{j~sn <t} = Pi{LI{~sy <tIL> s} Pi{L> s}

+P {LI{psy <tL <si} P{L < s}

i (s4) ift <s;
= pi(si)+ >, B{L <t|X1=34,L>s;}

jEE ift > s;

X P; {Xl :]|L > SZ}PZ{L > Si}
.
pi (si) if t < s
= pi(Si)—l-ZPj{LSt—Si}

JEE ift >s;
X P; {Xl :j|L > Si}PZ‘{L > Si}

and

P; {LI{L>51-} > t} = pi (si) — ]EZE Pi{L <t—si} 1> (4.17)
1

XR{Xl :j|L > SZ}B{L > Si}
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for all £ > 0. This implies that
“+00
Ei [LIipsry] = Ei[Ei [ LIy Th)] = /0 Fy (ds) B; [LIt sy T € ds)

+oo +oo
_ / Fi (ds) / P {LIozy > tIT € ds)
0 0

_ /0 B @95 () /0 b+ /0 m / “laen (d5) ~ Y Fi (ds)

jerE
xPi{L <t—s}P{X1=j|L>sT1 €ds} P {L > s|T\ € ds})

+o0o +o0 +oo
= / sp; (s) F; (ds) / / F; (ds)
0

NP {L <t-s}Q(i,j,ds)

JjEE
+o0 +o00 +oo
= sz dS Fz (dS) - Q (7’7 j7 dS)
J A =
+) Pi{L>t—s}Q(i,j,ds)
JEE
+00 +oo
— /0 spZ dS + Z E / D; (5) Q (i7j7 dS)

JjEE

_ /O *mspi (s) Fi (ds) + 3 P (1,5) E; (1]

JEE

and this is the same result as in (4.3)).

4.1.2 Numerical Illustration

Suppose that we have a parallel system with two identical components, which will perform
a hypothetical space mission with 4 phases. The phases of the mission and the respective

distribution functions of the durations are

Phase 1 (Hibernation 1): Weibull distribution with «y = 2,3, = 1,

Phase 2 (Hibernation 2): Weibull distribution with ag = 5,85 =1

Phase 3 (Scientific Observation 1): Weibull distribution with a3 = 1,85 = 2,

Phase 4 (Scientific Observation 2): Weibull distribution with ay = 2,8, = 2
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where the probability density function of the duration of phase ¢ is
fi(t) = Oéiﬁit’@i_le_ait@i

for all t € Ry and ¢ = 1,2,3,4. Note that the distribution is exponential with rate a; = 2
and ay = 5 for phase 1 and phase 2 respectively since 8; = 85 = 1. Moreover, the mean

durations of the phases are given by
o; P+ 1/8))

+o0
where I'(z) = / t*~le~!dt is the Gamma function. Therefore, the mean durations are
0
0.5000, 0.2000, 0.8862, and 0.6267 for phases 1, 2, 3, and 4 respectively. The transition prob-

ability matrix of the mission process is

0o 0 03 0.7]
02 0 04 04
P . (4.18)
02 08 0 0

08 02 0 0

We assume that component lifetimes are exponentially distributed with rates Ay = 1072, Ay =
0,A\3 = 107!, and A4 = 0.8 in phases 1, 2, 3, and 4 respectively. In the foregoing part of
this section, these parameters will be used unless otherwise specified. Moreover, in all of
the tabular representations through this section, the rows and the columns represent the

phases. These further imply that the semi-Markov kernel of the mission process is

0 0 0.3(1—e2) 0.7(1—e %)
0.2(1—e™™) 0 04(1— ) 0.4(1-e )
Q(t) = 0.2 (1 — e*t2> 0.8 (1 _ €7t2> 0 0 (4.19)
_0'8 (1 - 6_4t2) 0.2 (1 — e_4t2> 0 0 |
and ] N
1— (1 _ 6—10_515)
1

p(t) = L (1 B 6710—3t)2 (4.20)
A2
1- (1 _ 10 t) |
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Figure 4.1: Eq[L] vs. a3 and oy for different values of 5 and 3.

for all t € R4. Using , , , and 1} P can be calculated as

0 0 0300 0.700 4.95x 1075]
0.200 0  0.400 0.400 0
P= 10198 0793 0 0 0.009
0.722 0.180 0 0 0.098
0 0 0 0 1 |
and then
E[L]=[15.3822 15.4866 16.2122 14.3132 (4.21)
using (4.11)).

The behaviors of Eq[L] vs. a3 and a4 for different values of §3 and (3, are shown in
Figure Since the failure rates of the components in phase 4 are the highest (A4 = 0.8),
MTTF increases as the mean duration a4_1/ b *T'(1+ 1/B,) of phase 4 decreases. On the
other hand, MTTF first increases and then decreases, especially for large values of 33, as

the mean duration a?jl/ A *T'(1 4+ 1/85) of phase 3 decreases. When the mean duration of
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Bl
Bl

Figure 4.2: Eq[L] vs. A3 and A4.

phase 3 decreases, the system starts to stay in the other phases for longer time intervals. If
the system stays longer in Hibernation (phase 1 and 2), this will increase the MTTF since
the failure rates are very low in these phases. However, if the system spends more time in
Scientific Observation 2, this will decrease the MTTF since the failure rates are the highest
in this state. As seen from Figure for lower values of a3 (or higher mean durations
of phase 3), the effect of Hibernation phases to increase MTTF dominates the effect of
Scientific Observation 2 to decrease MTTF. As a3 increases more (or average duration
of phase 3 decreases more), the effect of Scientific Observation 2 becomes more dominant
resulting in the decrease of the average system lifetime. Similar graphs for Fy[L], E3[L],
E4[L] have the same structure.

The behaviors of Ej[L] vs. A3 and A4 are shown in Figure As expected, average
system lifetime decreases as the failure rates of the components increase. Note that the
failure rate in phase 4 has a greater effect on MTTF although the expected duration of
phase 4 is shorter. This follows from the fact that the mission process visits phase 4 more

frequently and spends more time in this phase, as it is clear from (4.18]).
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4.1.3 Special Cases
4.1.3.1 Markovian Mission

Suppose that the sequence of the phases follows a Markov chain with transition matrix P

and duration of phase i is equal to a constant s;. From (4.9) and (3.5)), we trivially have

h(i) = /O "5, (s) ds (4.92)

and

4.1.3.2 Deterministic Sequence of Phases

Suppose that the mission has a deterministic sequence {1,2,--- ,n} of phases. To find the
MTTF, we can define an appropriate transition matrix and apply the result in Section
However, since taking the inverse of a matrix is computationally costly, we can find
a more explicit solution by utilizing the special structure of this case. We assume that if
the mission is completed successfully, then the system starts to perform the mission starting
from the first phase instantaneously. In other words, if nth phase is completed without a
failure, then the system starts to perform the first phase. Then, using , , ,
and fori=1,--- ,n—1, we get

B = /0 s () Fs (w) du+ Foa [L] P AL > Th} (4.24)

and

E,|L] = /0 +°°pn () Fpp (u) du+ By [L] Py {L > T1} . (4.25)

Now, (4.24]) and (4.25)) can be solved to find the explicit solution

n -1 n 1—1
Ey[L] = (1—HPZ-{L>T1}> R+ [[r @ PA{L > T} (4.26)
i=1 i=2 j=1

where
h (i) = /0 T (0 F (1) dt. (4.27)

If the phase durations {s1, s2,- - , S, } are also deterministic, (4.24)-(4.27) reduce to

E (L] = /O i () ds + By (s3) Eupa L) (4.28)
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and
B, |L] = /0 B () ds + By (50) By (L) (4.29)
n -1 n i—1
By (L] = (1 ~II». <si>) n)+ 3 1065, () (4.30)
i=1 i=2 j=1
and

h(i) = /O "5 (s) ds. (4.31)

Example 4.3 Suppose that we have a series system with 2 components that will perform
a mission with two phases so that n = m = 2. Suppose that s1 = 5 and sy = 10, and

that component k has an exponentially distributed lifetime in phase i with parameter \; (k).

Then,
p; (si) = e—siAi()+Xi(2)) — e_sixi
and, hence,
1 —8i\;
h(i) = ——s
Ai
Therefore,
B o e 1 —32X2> —511
By (L] = (1—e*31*1*32k2) Plme Ty ( =)
A1 A2

4.2 Models with No Repair

In this section, there is no repair so that all components age or deteriorate in time without
system or component replacement after the completion of each phase. We suppose that
the components age according to the intrinsic aging model of Cmlar and Ozekici [17]. For
details of the model and related notation, see Section

The main purpose of this section is to characterize the MTTF E;, [L] for every i € E

and a € F. We will use the equality

E; [L] = F;, [LI{L>T1}] + Eiq [LI{Lng}] (4.32)
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to compute the MTTF. By conditioning and using (3.82]), and (3.83)),

+oo
Ei, [LI{L>T1}] = Z// E;q LI{L>T1}‘X1 = ],ATl €db, 1T € ds]

jer
X Pig {X1 = j,Ap, € db, T} € ds} (4.33)
“+o00
= Y L] G Bl Qs g (b
JjEE
+oo
= Z// zaj,dbds —i—Z/PZ&],db Ej [L].(4.34)
JjEE JjeEE

Suppose that the duration of phase 7 is a constant s; > 0. Then,

P {LI{j<s;y <t} = Pu{LI{<sy <tL<s;}Pa{L <si}
+Pio {LI{1<5y <t L > si} Pig{L > s;} (4.35)

1 ift > s;

P {L<t}+ Po{L>s;} ift<s;

1 ift>s;

Vig (1) + Tig (5i) ift <'s;

1 ift>s;
_ (4.36)
Via (t) + 1 — v (Sz) ift <s;
and
0 ift>s;
Pig {LIj<sy >t} =
Via (Sz) — Via (t) if ¢ S Si
for all £ > 0. This implies that
E;, [LI{Lgsi}] = / (Vig (8i) — vig (1)) dt = / / Vig (ds) dt
= / / dtvi, (ds) / SViq (ds)
and, hence,
+oo s
Eio [LIp<ry] = Bia [Bia [LI{<y|Th]] = i F; (ds) /0 tviq (dt) . (4.37)
Then, combining (4.34]) with (4.37) and using (4.32)), we have
Ei, [L] = h(i,a) —i—Z/Pza],db E; [L] (4.38)

JEE
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where

h(i,a) = Z//+Oosé (i, a; j, db; ds) + /+OOFZ- (ds) /Ostvm (dt)

jeE

= Z//Jroo (4,7, ds) Diq (s, db) + / F; (ds) /Ostvm (dt)

jeE

400 +o0 s
= /0 sF; (ds) viq (8) + /0 F; (ds)/o tviq (dt)
+oo s
_ / <svm () + [ toia (dt)> Fi (ds) (4.39)
0 0
+o0 s
= /0 <s — SViq (8) + Sviq (8) — /0 Vig () dt> F; (ds) (4.40)
- / m@m (t)F; () dt (4.41)
0
for all (i,a) € E x F. By letting f (i,a) = Ej, [L], we obtain
f=h+Paf (4.42)

where Py is the transition kernel obtained by deleting the row and column corresponding
to the state A from P defined by |D so that
PAfza Z/Pzag,db (7,b Z/PAzaj,db f(,b).
JjeEE jeEE

It is known that P is a transition kernel of a Markov chain with a general state space and,
hence, defines a Poisson equation. We will solve under the assumption that
the function f is bounded to make the analysis tractable. It is clear that if f is infinite
at some point, then the expected lifetime of the system is infinite trivially. Moreover, the

following lemma shows that this is not a very restrictive assumption.
Lemma 4.4 If there exists A > 0 such that
hi (i,a,s) > a+ As

for every component k€ S, i€ E, a € Ry, and s > 0, then f is bounded.
Proof. It is clear that f > 0 since L > 0. To find an upper bound, choose arbitrary i, a,
s, and k. If the initial intrinsic age of the component k is a, then As (k) > a + As given

that the component and the system work until time s. Then,

Pa{L (k) > s} = Pu {L(6) > Ak ()} < P {L (k) > at A} = e



Chapter 4: Mean Time to Failure Analysis 69

where the last equality follows from the facts that Ay (k) = a € Ry implies that L (k) > a,

and L (k) is exponentially distributed with rate 1. Using this result, we get
+00 +oo 1

BulL ) = [ PulL(®) > spas </0 s =

It is clear that

f(i,a) = Ei, [L) < Eiq [m]?XL (k:)} <> EilL(k) <
k

m
A

The assumption of Lemma [4.4] simply requires that the aging rate of a component is
bounded below by a strictly positive constant A. In other words, every working component
deteriorates at a strictly positive rate during all phases. If each component works during
every phase, this is a very reasonable assumption. We also remark that if sup; , Eiq [L (k)] <
+00, then Ej, [L] is bounded trivially.

The boundedness of f for a semi-Markov mission with a coherent structure function can
also be verified by stochastic comparison. Assume that we try to find f (i,a) = Fi, [Ll]
where L' represents the lifetime of the system under the no repair policy. Let E; [LQ] be
the MTTF for the same system under the maximal repair policy. Consider Pjg {L2 (k) > t}
and Py, {L' (k) >t} for some k € S, t > 0 where L' (k) and L? (k) are the lifetimes of
component k under the no repair and the maximal repair policies respectively. Suppose
that r (4,a) is increasing in a for every k and . This implies that failure probability of
each component increases as the intrinsic age of the component increases. Therefore, it is
easy to see that P, {L1 (k) > t} < Py {Ll (k) > t} for all @ > 0. Since all components are
replaced with brand new ones in the maximal repair policy after completing a phase, and
the intrinsic age of a brand new component is 0; A} (k) > A? (k) for all t > 0 where A} (k)
and A? (k) are the intrinsic ages of component k at time ¢ under the no repair policy and

under the maximal repair policy respectively with A} (k) = A2 (k) = 0. Therefore,

P {L' (k) >t}

IN

Po {1} (k) > t} = Po {L.() > A} (h)}

IN

P {E(k) > A2 (k;)} = Po{L? (k) > t}.
In the maximal repair policy, the reliability of each component is higher and

P {L' >t} < Po{L*>t} = P, {L* >t} (4.43)
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since the structure of the system is coherent. Therefore,
fi,a) = B [L'] < B [L7].

Thus, we can conclude that if the MTTF under the maximal repair policy is bounded, then
MTTF under the no repair policy is also bounded provided that the system structure is
coherent and the component lifetimes have increasing intrinsic aging rates.

In the foregoing analysis, it is always assumed that f is bounded. Now, if we take

~ +oo _
f=Rah= 3 Pkh, then
k=0
f=h+Pa (EM) —h+ (ﬁAEA) h=h+(Ra—I)h=Rah

and f = Rah is a solution of 1D if Rah exists. If there is another solution of 1 , it

has the form

f=g+Rah (4.44)
where
— 1 pn
g= lm Pxf

provided that Rah exists by Riesz decomposition theorem in Revuz [61]. Therefore, if

lim ]sg f =0, then (4.42) has the unique solution f = Rah. The following result shows

n—-4oo

that this is indeed true under reasonable assumptions.

Theorem 4.5 If sup pk (i,a; E,F) < 1 for some k € N and h is bounded, then Rah
(i,a)eExXF

18 the unique solution of .

Proof. Let
Pf(ia; B, F)<1—¢ (4.45)

for some ¢ € (0,1). We now show by induction that
Py (i,a; B, F) < (1—¢)" (4.46)

for all n € N. For n = 1, it is true by the hypothesis. Now, assume that it holds for
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1,2,--- ,n. Then,

PUM i B, F) = Z/ﬁﬁ’“ (i, a: j, db) PX (4.b; B, F)
jee’ >
< -9 [P G
jee’ >
= (1-¢)Pf"(i,a;E, F)

IN

(1—¢)" . (4.47)

Then,

400 400 k—1

Ra(i,a; B, F) = > PR(i,a;E,F)=Y_ Y PF™™"(i,a; E,F)
n=0 m=0n=0
400 k—1

- Yy Z/fﬁg(i,a;j,db)ﬁgm(j,b;E,F)

m=0n=0 \jekE

+oo k—1
< YD (-o"PR(i,4 B, F)
m=0n=0
+oo k
< —o)m == : .
< n;)ku 0)" =~ < 400 (4.48)

This also implies that liI_P ISE (i,a; E,F) = 0. Moreover,
n—-roo

Rah(iya) = 3 /f Baliajd)h(ib) < sup (h(GD}Y /f Ra (i, a3, db)

JeE (4,b)eEXF jEE

=  sup {h(4,b)}Ra(i,a;E,F) < +oc. (4.49)
(J,b)EEXF

Therefore, éAh exists and, hence, it is a solution of () To prove the uniqueness, it
suffices to show that lim ZSX f =0. Note that
n—-+00
]%‘(z}a)( < Z/JSZ (i,a;5,db) | f (j,b)| < sup {!f(j,bﬂ}Z/?z (i, a; j, db)
fenlF (j,D)EEXF fenlF

= sup  {|f(j,b)} PR (i,a; E, F) (4.50)
(J,b)EEXF

lim Pif=0. ®
and JJim PR f=0
It is clear that the boundedness of h is significant for the existence of a unique solution

to (4.42). This is a quite reasonable assumption since it is true, for example, if

supm (1) < 400 (4.51)
i€l



Chapter 4: Mean Time to Failure Analysis 72

or

+oo
sup / Uiq (8) ds < 400 (4.52)
(i,a)EEXFJO0

by (4.41). This follows by noting that
“+o0o
h(i,a) = / Pio {L>u,T1 >u}ldu = E;s [min{L,T1}]. (4.53)
0

In Theorem we do not put any restriction on the age processes of the components
or on the structure of the system, but we require that
sup PF(i,a; E,F) < 1 (4.54)
(1,a)eExXF
for some k € N. If component lifetimes have increasing intrinsic aging rates and the structure
of the system is coherent, this condition will reduce to a simpler one. We prove that Rah
is the unique solution under a more easily verifiable condition which simply states that
the system may fail during each phase with a strictly positive probability and that these
probabilities do not go to 0.

Theorem 4.6 Suppose that the system is coherent, ry, (i,a) is increasing in a for all k € S

and i € E, and h is bounded. If

+oo
sup/ F; (ds)Uip (s) =supPy{L >T1} <1 (4.55)
1€kJ0 i€l
or
+oo
i . < — : . )
nf Po {1 < Ti} = inf /0 Fy (ds) vio (5) > 0 (4.56)

then Rah is the unique solution of .

Proof. The equivalence of (4.55)) and (4.56) is trivial. Then, clearly,

dhy, (iya,s) v (i, He (i, Hy ' (G,a) +5)) 7 (i Hy (i, Hy ' (is0) + 5))
da - Tk (i7a) o Tk (’i, Hk (i, H];l (’i, CL))) > 1 (457)

if component k£ and the system are in working condition since 7 is always positive and
increasing. Therefore, hy, (i,a, s) and hg (i,a, s) — a are both increasing in a.
We first show that T (s) < T, (s) for alla < b, s € Ry, and i € E. Choose any a,b € F

such that b (j) = a (j) for every j # k for some k. Define

By = {ce F;c(k) < 400} (4.58)



Chapter 4: Mean Time to Failure Analysis 73

so that its complement is

={ce F;c(k) = +oo}. (4.59)

Moreover, let

By, ={ce F;c(k)=0}. (4.60)
Clearly, B; C By, since component k is brand new in Bj. It is easy to see that if ¢ € By,
with 9; (¢) = 1, then for any ¢* € By, with ¢* (j) = c(j) for every j # k, ¥, (¢*) = 1 since

the system is coherent. This implies that
/ Vi (0) [] Plasy (5, deli / Vi (0) [] Plas (5 dei (4.61)

J#k J#k

It is clear that U (s) —0iq (s) = 0if a (k) = b (k). Consider first the case a (k) < b(k) <
+oo. Note that on By, P m(k)(s,dc(k:)) = exp (— (hg (i,a(k), s) — a(k))) if a(k) < 400 and
c(k) = hg (i,a(k), s) at time s; otherwise, it is zero. Then, using , , and ,

T () — Tia (5) = /B (Biy (5, dc) — P (5, d)) + /B (Biy (5. d) — Pig (5, dec))

b(k
= /% ) [T (1 deli)e O D Iy 600,03

J#k
k
/ V3 (0) [ Py (s, de()e O~ D I oy,
J#k
pr (s, de( ))< (m(aa(k),s)fa(k))_e—(hk(z’,b(k),srb(k)))
Bk ia(j)
_ / b (¢ HPJ (s, de(j ( —(hx(i,b(k),5) (k) _e—(hka,a(k),s)fa(k)))
J#k
/ b ( HP< s,de(j (f(hk@,a(k),s)fa(k))_e—<hk<z,b(k>,s)fb<k>>>
? ia(j)

J#k
_ (e—mk(i,b(k»s)—b( ) _ e—(hk(z‘,a(k),s)—a(k)))

(/ W, (c pr (s,dc(y / Y, (¢ Hpm(j s,dc(j )

J#k J#k

< 0 (4.62)

where the last inequality follows from the fact that hy (i,a,s) — a is increasing in a. Note
also that the third equality holds since ¥, (¢) = ¥, (¢*) whenever ¢ (j) = ¢* (j) for every
j#kand c(k), ¢* (k) < 4oc.
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Now, suppose that a (k) < b (k) = +oo. Then,
o () =T (5) = [ (o (5.de) =iy (5:d0) ~ [ P (s,
By By

= | i (@ TPy (s de(g)) (e utinr et

B ik
/ 6:(0) [] Pl (5 deli ( —(hk<i,a<k>7s>—a<k>>>
Jj#k
- ( —(hy(isa(k),s)— a(k) (/ 03 (&) [T Lo (- del)
J#k
() [T Pl (s, dc(j») (4.63)
By i#k
< 0. (4.64)

Therefore, T, (s) < Tjq () and this trivially implies that v;, (s) < Ui (s) for all a € F.

Finally,
~ +oo
P(i,q; E,F) = Z/ (i,a;j,db) = Z// Qzaj,db ds)
JEE jeE
+00
- Z// Q (1,4, d5) i (5, db) = Z/ Q (1,5, d5) Tia (5)
JjeE JjEE
+oo +o00
< Z Q (i,7,ds) v (s) = / F; (ds)Tio (s) (4.65)
JjEE
and
sup lg(i,a; E, F) <1 (4.66)
(i,a)EEXF

Therefore, }AéAh is the unique solution of |i by Theorem |
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Chapter 5

AVAILABILITY ANALYSIS

In this chapter, we will analyze the system availability of mission-based systems with
semi-Markov mission, which is defined as

A= , liin P {system is in working condition at rime ¢} .
— T 00

It will be characterized by defining a new Markov renewal process, which now includes
repair action on the mission process, and applying some limiting results for the solutions of
Markov renewal equations. We also propose some sufficient conditions for the existence of

the limit.

5.1 Models with Maximal Repair

In this section, there is maximal repair so that the whole system is overhauled at the
completion of each phase of the mission such that it becomes good as new before the next
phase starts. Therefore, there are two types of repairs. The first type of repair is preventive
and it is done at the successful completion of a phase without system failure and requires
the preventive replacement of all components with brand new ones. The second type of
repair follows system failure and the whole system is replaced by a brand new one. In
this study, we assume that the duration of the first type of repair is negligible and that
the duration of the second type of repair has a general distribution with some probability
distribution function Ga that has a finite mean m (A). Throughout the remainder of this
section, repair activity is referred to as the second type or failure repair. We also assume
that the first phase which will be performed initially and after each repair following system
failure is determined according to some initial distribution p on E.

In order to analyze the availability under the maximal repair policy, we define a new

Markov renewal process ()? , f), which includes the repair action on the mission process.
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We obtain ()? T ) through its minimal semi-Markov process Y defined through

~ Y, if the system is functioning at time ¢

A if the system is being repaired at time ¢
where A denotes that the system is under repair. This also implies that
~ 0 ifn=0

Tn: ~ ~ ~
mf{t>Tn,1;YHéYf _1} ifn>1

and )/fn = i}fn for n > 0. It is clear that Y follows the mission process until system failure.
Then, it jumps to A and stays there during repair for a random amount of time with
distribution Ga. After the repair, it again starts to follow the mission process with the

initial distribution p. Therefore, availability can be defined as
e {548} 1 (5 -0) o
The semi-Markov kernel of (X' , f) is

Q(z,],ds)ﬁl(s) le,jEE
Q(irj,ds) = Fi(s)pi(ds) ifie BE,j=A (5.2)
Ga (ds) 1 (5) ifi=Aj ekl

for all 4,5 € E. The transition matrix of the Markov chain X is

+oo
Qirj,ds)B; () ifijeE
0
=L +oo_
P(i,j) = / Fi(s)pi(ds) ificE,j=A (5.3)
0
() ifi=AjcE

and the Markov renewal function of (X,7T) is
Riigs) =Y " Q"(0.d.9)
1J n:[) 1J *

We let m (i) = E; [ﬁ] denote the mean sojourn time of phase 7 for the process ()A(,f)

It is clear that m (A) = m (A) and

+00 +oo
(i) = Ei[min{Tl,L}]—/O Pi{T1>s,L>s}ds—/0 T, (s)P; (s) ds

+oo +oo ) +oo
_ /0 Fi(s)ds — /0 Fi (s) pi (s) ds = m () — /0 Fi(s)pi (s)ds  (5.4)
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forall i € F.

It is known that X should be irreducible and recurrent with a positive invariant measure
for the existence of the limit in ([5.1f). Therefore, we need to put some additional assumptions
on the model to guarantee these conditions. Throughout the remainder of this section, we
let

+oo

F(i) =P, {)21 - A} = P(i,A) :/ Fi (s) p; (ds)

0

denote the probability that the system will fail during phase i € E. We also let ﬁA be the
matrix obtained by deleting the row and the column corresponding to state A from the

matrix P. The potential matrix corresponding to ]3A is defined as
N Tt
Assumption 5.1 X is irreducible.
Assumption 5.2 For everyi € E,
0< slelginf {s e Ry;G (i,],s) >0} <sup{s € Ry;p; (s) > 0}. (5.5)
J

Assumption 5.3 supf (i) = supP (i, A) > 0.
i€E i€E

Assumption 5.4 MTEAf =1.

Assumption simply states that the system is capable of completing every phase with
a positive probability, i.e., for any ¢ that satisfies 0 < sup;cpinf {s € R; G (4,45,5) > 0} <
t <sup{s € Ry;p; (s) > 0}, we have G (i,4,t)p; (t) > 0 for all j € E. This implies that
+0o0

PZ'{L > Tl‘Xl :j} = B{L > T1|T1 S dS,Xl :j}PZ {Tl S dS|X1 :j}
0

400 ¢

- [ Th©c6La > [ 5666
0 0

> p;, ()G (i,5,t) >0

where the last inequality follows from the fact that p; is nonincreasing. This implies that
P {L>T1} >0 for all i € E. Assumption states that P (i, A) = P{L < T\} > 0 for
some i € F and, hence, eliminates the unrealistic case where the system can not fail during

any phase. Clearly, these assumptions are very reasonable in real life applications. We will
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later show that Assumption [5.4] guarantees the recurrence of A. If it is not, it is transient
and, hence, the availability will be 1 trivially. Moreover, even though Assumption [5.4]looks
quite strict, it can be easily verified when FE is finite. For instance, suppose that I — J3A is

invertible so that the potential matrix is

~ ~ -1

Ra= (1 - PA> .
It is clear that f(i) = P (i, A) satisfies

f= (I _ ﬁA) 1.
These imply that
~ ~ -1
WRAf=p" (1= Pa) f=p"1=1.

However, if F is countably infinite, the computational issues related to the potential matrix

EA may be difficult to deal with.

Proposition 5.5 Suppose that Assumptions hold. Then, X is irreducible.
Proof. Choose arbitrary ig,j € E. Since X is irreducible, there is n € N such that
P" (i,7) > 0 and we can find a path ig, 11,12, - ,in—1,7 € E such that

P (ig,i1) P (i1,42) - - P (in-1,7) > 0. (5.6)
Then, using , we can find iy, tiy, tiy, - -+, ti,,, such that
G (i, ik+1, tiy,) Dy, (ti) >0
forallk=0,1,--- ,n—1 where i, = j. This result and (@ imply that
Q (iky k41, tif,) sy, (Liy) >0

forallk=0,1,--- ,n—1 where i, = j. Then,

N +o0 tiy,
P (ig,ipy1) = Q (ik; ikt1,ds) Dy, (8) = Q (ik, ixy1,ds) D;, (S)
0 0
tik
> / Q (ik, ipy1,ds) Dy, (tiy) = Q (i, ing1, tiy, ) Py, (L) >0 (5.7)
0
forallk=0,1,--- ,n—1 where i,, = j. The second inequality in the above derivation follows

from the fact that p; is nonincreasing. Then,

P" (ig,7) > P (io,i1) P (i1,i2) - - P (in_1,§) > 0
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using so that j is reachable from ig. Now, choose arbitrary i € E to show that A is
also reachable from i. By Assumption we have ﬁ(j, A) > 0 for some j € E. Then,
since i,j € E, there exists n € N such that pn (i,7) > 0 and, hence, pr+l (,A) > 0. Now
choose arbitrary j € E to show that j is reachable from A. It is known that p; > 0 for at

least one © € E. Therefore,

~ +oo
P(Ai) = ; Ga(ds) (i) = p (i) >0

where Ga (+00) = 1 by the initial assumption that m (A) < 4o00. Since i,j € E, there
exists n € N such that P" (7,7) > 0 and, hence, pr+l (A7) >0. &

If we combine Proposition and Assumption we obtain that X is irreducible and
recurrent. Thus, X has a strictly positive invariant measure ¥ under Assumption -
Assumption by Theorem 6.2.25 in Cinlar [59]. This proves the first part of the following

theorem which gives an explicit formula for the availability.

Theorem 5.6 Suppose that Assumptions hold. Then, X is irreducible and recurrent

with a positive invariant measure v. Moreover,

v (A)m(A)
A=1—- —L—~~. 5.8
vT'm (58)
Proof. We will first show that
P {Ta =k} =P f (i) (5.9)

for all & € N where 7 is the number of transitions until system failure (or first passage
time to state A by the Markov chain X ). It is clear that holds trivially for k = 1.
Suppose that

Pi{Ta =k} =PX"'f (i)

and consider P; {7a = k + 1}. Then,

P{Ta=k+1} = S P(ij)P{Ta=k =Y Pa(i,j) PA'f ()
jEE JjEE
— Pa(PA'F) () =PI ().

Therefore,

Pa{Ta =k} =Y P(A )P {Ta=k—1}=> u(j) Pi2f () = n" PE72f

jeE jerE
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for k > 2. This implies that

+oo +oo
Pa{Ta < 400} = Y Pa{Ta=k} =) Pa{Ta =k}

k=2
+o0 N N
= Y u"PKf=p"Raf=1. (5.10)
k=0

Therefore, A is recurrent by Assumption Moreover, X is irreducible by Proposition
and, hence, X is irreducible and recurrent. This implies that X has a strictly positive
invariant measure U that satisfies © = 9P by Theorem 6.2.25 in Cmnlar [59]. Now, it is
sufficient to show that availability satisfies . We will use the stated results from Cinlar
[59] in the remainder of the proof . Using Markov renewal theory and Proposition 10.5.4,

we can write

A=1- lim P{i}t:A} 1— lim Z/ (1,7,ds) g (j,t — s)

t——+o0 t——+o00
JjEE

where g (i,t) = If;—ay P; {T\l > t}. Since g (4, t) is monotone decreasing for each i,

B9(0) =>_0(j)g(4,0) =5(A) (1 = Ga(0)) < 400
jeE

and

/0 b dt = /+OOZ dt = 5(A)m (A) < +oo

JjeEE

g is directly Riemann integrable with respect to v by Proposition 10.4.15. Then, applying
Theorem 10.4.17, we get

A= [T G s =1 o [ o) ) ds

Jj€

(A )

v(A)m
T
|
It is well-known that, if the state space of an irreducible Markov chain is finite, then

it is also non-null recurrent and has a unique ‘nvariant distribution that is obtained by

normalizing the invariant measure. We therefore have the following result.

Corollary 5.7 Suppose that Assumption hold and E is finite. Then, X is irre-

ducible, non-null recurrent and has a unique invariant distribution v. Moreover, (@ holds.
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Proof. Using Proposition X is irreducible. T hen, since F is finite, X is irreducible,
non-null recurrent and has a unique invariant distribution trivially. The proof of
follows exactly the same steps of the proof of Theorem |

We have shown that X is irreducible, recurrent and has an invariant measure under
Assumption [5.1}5.4] However, this invariant measure may not be normalizable if F is not
finite. The following gives a sufficient condition for the existence of an invariant distribution

even if F is countably infinite.
Proposition 5.8 Suppose that Assumption[5.1H5.4] hold. If

+oo
sup/ F;(ds)p; (s) =supP{L >T1} <1
ickJo i€k

then X is non-null recurrent and has a unique tnvariant distribution.
Proof. By Theorem X s irreducible recurrent and it is sufficient to establish the

non-null property of any state. Suppose that

+oo
sup [ i (ds)pi(s) =1~ ¢
0

i€l

for some ¢ € (0,1). For any i € E, we can write

+oo +00 N +00
Zf{bfn}] =1+ P, {L > Tn} =1+ P{L>T,}
n=1 n=1 n=1

where the last inequality follows from the fact that all transitions before the system failure

occur at the end of the phases, and

too

Ei[Ta] =1+ ) PR(i, E)

n=1

by using (3.16). We will show that ]32 (,E)<(1—¢)". If n=1, then
+oo +oo
A (i, E) ZPA i,7) Z/ Q (i,7,ds) = / D; (s) Fi(ds) <1—c.
jek jer 0

Suppose that ]33 (i, E) < (1 —¢)" holds and consider ﬁg“ (i, E). Then,

PZJrle ZPA i,§) PR (4, (1—-2¢) ZPA i,j)=(1—¢)"Pa(i,E) < (1—¢)"".
JjEE JEE

Thus,

+o0
1
EZ-[TA]§1+Z(1—C)”:E<+OO.

n=1
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Note that the right-hand side is independent of i and it is clear that
1
EA[TA] =14 pu(i) Ei[Tal <1+~ < +oc.
i€ER
Therefore, A is non-null recurrent. Moreover, X s irreducible by Theorem m and X
18 mon-null recurrent trivially. The existence of the unique invariant distribution follows

immediately. W
Suppose that a more strict version of Assumption
inf P {L < Ty} >0 (5.11)
S
holds. This implies that

supP {L>T1}=1- 1an {L<Th} < 1.
i€l

Therefore, Assumptions E . Assumption [5.4] and (5.11)) imply the non-null recurrence
of X by Proposition ﬂ
As a special case, suppose that Assumptions hold and

~ too__
Pi,A) = /0 Fi () ps (ds) = g (5.12)

for all ¢ € F¥ and for some ¢ > 0. This implies that

+oo

PA{L<T}= / i (ds)pi (s) = ; Fi(s)pi(ds)=q>0

and Assumption holds. Therefore, X is irreducible by Proposition Moreover, ()

also implies that
P{Ta =k} =(1-9)" g

for all £ € N. Then,

+oo +oo
PATA <400} =Y P{Ta=k}=> (1-¢" 'q=1

k=1 k=1
and
PA{Ta < +o0} =) pu(i) Pi{Ta < +o0} =1
i€E
which implies that A is a recurrent state and Assumption holds by . Furthermore,
+00 +00 +oo
CRane =1 [ R@n@ 1= [ Fn@) 1<
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so that X is irreducible and non-null recurrent by Proposition

It is clear that Theorem defines the availability in terms of the invariant measure v
of X. Let v be the invariant distribution of the process X. Then, the following result is
helpful to compute availability in terms of v provided that both X and X have invariant

distributions v and v respectively.

Theorem 5.9 Let v and v be the invariant distributions of the processes X and X respec-

tively. Then, for alli € E
v (i) = v (i) — (i)
and

5(A) = a1

where the row vector « satisfies the system of linear equations
(1-P+B+1") a= BT (5.13)

with
—+o00

B (Za.]) = 0 Q (iaja dS) 2 (5) (514)

foralli, j€E.

Proof. We know that vT = vTP and 97 = T P. We can rewrite P as

~ P—-B B1

P=

pu’ 0
where p is the initial distribution, and the last column and the last row correspond to the
state A. This follows by noting that
“+oo +o0 +oo ~
P(Z,j)-B(LJ)Z Q(’L,j,dS)— Q(Z,j,dS)pz (S): Q(Zm%ds)ﬁz (S):P(Z,j)
0 0 0

and

+oo
BLO) = Y BGN=X [ Qid)n(

JEE jEE
= [TRane= [ R [

= [Tt [TR@) = [T Fwp@o = Pia)
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foralli,j € E. Let a(i) = v (i) — (i) for all i € E. Since o7 =57 P we have

ot ) P-B Bl SN
v —at U (A) T O—U—OZ v(A)|-

Then,
(v ="y (P - B)+v(A) pl =0T —aT

and using the fact o’ 1= (v —=9%) 1 =0vT1-071 =1-071 =5 (A) where va is the vector

obtained by removing the state A from the vector v,, we obtain
vIP—vI'B—-a’P+ao'B+ (aTl) pt =0T —al.
Since vI' = vT P, this simplifies to
ol —a'P+a'B+ar (1,uT) =u'B

and

o' (I-P+B+1u")=0"B

which can be rewritten as . [ |

Corollary 5.10 Let v and v be the invariant distributions of the processes X and X re-

spectively. If E is finite, then
~- ™1 1 .
v(z):(I—(I—P+B+1,u) B)v(z) (5.15)

foralli € E and
5(A)=v"B(I-P+B+14") " 1. (5.16)

Proof. It follows from that
a=(IT-P+B+14")"" By (5.17)

and

5(i) =v (i) —ai) = (1_(1_P+B+1MT)*TBT)U(2').

Moreover, we have v (A) = oT1 by Theorem and follows from . i
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5.1.1 Numerical Illustration

Consider the example of Section Suppose that the repair duration is uniformly dis-
tributed on [1,5] with m(A) =3, and uT =[ 04 0.6 0 0 ]. Using lb

0 0 0300 0.700 4.95x 1077]
0200 0  0.400 0.400 0
P=10198 0793 0 0 0.009
0.722 0.180 0 0 0.098
0.400 0.600 0 0 0o |
and this implies that
ol = [0.2982 0.2074 0.1724 0.2917 0.0301}. (5.18)

Then, using (/5.4)),
ml = [0.5000 0.2000 0.8823 0.4197 3] .

These further imply that A = 0.8374 by using Theorem [5.6] since Assumptions hold

for this case.

The same result can be obtained by applying Theorem [5.9] Note that

v’ =10.3185 0.2017 0.1762 0.3036]

using (4.18) and
[ 0 0 148x107% 3.45x 1075
0 0 0 0
B =
0.0018 0.0070 0 0
10.0784  0.0196 0 0 ]

using (5.14). These imply that
ol = {0.0202 —0.0058 0.0038 0.0119

using ((5.13). Then, it is easy to see that (5.18)) holds.
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Note that the time points at which the repairs are completed form a renewal process.

Then, the availability can also be obtained by using renewal arguments and (4.21]) such that
4

Z i Ei [L]

i=1

S B L]+ m(A)

= 0.8374.
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Figure 5.1: System availability vs. a3 and a4 for different values of 35 and 3,.

The behaviors of the availability vs. ag and oy for different values of 35 and 3, are
shown in Figure [5.1] Since the failure rates of the components in phase 4 are the highest,
availability increases as the mean duration aZl/ A ‘T'(1+1/8,) of phase 4 decreases. On the
other hand, availability first increases and then decreases, especially for large values of 35,
as the mean duration agl/ g 8I'(1+ 1/B3) of phase 3 decreases. When the mean duration of
phase 3 decreases, the system starts to stay in the other phases for longer time intervals.
If the system stays longer in Hibernation (phases 1 and 2), this will increase the system
availability since the failure rates are very low in these phases. However, if the system spends

more time in Scientific Observation 2, this will decrease the system availability since the
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failure rates are the highest in this phase. As seen from Figure for lower values of a3 (or
higher mean durations of phase 3), the effect of Hibernation phases to increase availability
dominates the effect of Scientific Observation 2 to decrease availability. As g increases
more (or average duration of phase 3 decreases more), the effect of Scientific Observation 2
becomes more dominant resulting in decrease of the system availability.

The behaviors of system availability vs. A3 and A4 are shown in Figure As expected,

system availability decreases as the failure rates of the components increase.

°

System availability

0.85F

0.651 4 0.8k

Figure 5.2: System availability vs. A3z and A4.

5.2 Models with No Repair

In this section, it is assumed that the system performs the mission under the no repair
policy so that all components age or deteriorate in time without system or component
replacement after the completion of each phase. Since the lifetimes of the components are
generally distributed, ages of the components should be stored in the state space using an
appropriate model. We use the intrinsic aging model introduced by Cimlar and Ozekici [17]
in which the intrinsic age of a component is defined as its cumulative hazard. For details of
the intrinsic aging model and related notation, see Section

We first need to introduce some new notation. It is clear that for a given initial intrinsic

age a € F with 1, (a) = 1, the system can not reach all intrinsic ages which are greater
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than or equal to a. Therefore, we define
N; (a) = {b € F;b is reachable from a in phase i},

Fi={be F;y;(b) =0},

and

Si={be F;y; (b) =1}.

Note that S; UF; = F for all i € E.

The Markov renewal process (X, A),T) with semi-Markov kernel perfectly rep-
resents the state of the system until the system failure denoted by the absorbing state A.
In Section the failure state A is assumed to be absorbing because this is very useful
for reliability analysis in which only the survival of the system until failure is considered.
On the other hand, in availability analysis, repairs must be plugged into the process and,
hence, the failure states are not absorbing any more. We will therefore define a new Markov
renewal process extending the definition of ((X, A),T). We assume that the duration of
repair has a general distribution with probability distribution function Ga (i, a; ) if the sys-
tem fails during phase ¢ with intrinsic age a and the system is as good as a brand new one
after each repair. We also assume that the system will start to perform phases according
to an initial distribution after a repair. We let p (i) denote the probability that the initial
phase after repair is ¢ with ), 4 (¢) = 1. Note that the process ((X, A),T) does not have
the information on what the intrinsic age of the system is when it fails. However, the repair
duration depends on the intrinsic age of the system. Therefore, the extended process should
also identify the intrinsic age of the system at the time of failure. For this purpose, we define
a new Markov renewal process ((X, A),T), by extending the definition of (X, A),T) with
semi-Markov kernel given in , through its minimal semi-Markov process Y such that

i. Y follows Y until system failure,

ii. If the system fails during phase i at age a, Ve will stay in state (i,a) during repair

time with probability distribution function Ga (i,a;-),

iii. After repair, ye again starts to follow Y® with initial state (j,0) where the initial

phase j is chosen according to the initial distribution .
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Then, the system availability can be defined as
A= lim Py {f’t“ c 3} (5.19)
t——+o0
where
s=1Js;
The semi-Markov kernel of (X, A),T) is

Q (i,7,ds) Piq (s,db) ifi,j € E,a €S,

~ F; (s)pk (ds,db ifie Flae S;,be F;NN;(a),j =1

Q (i, a;j,db; ds) = (5) i (ds, db) (a).] (5.20)
Ga (i,a;ds) p(4) ifi,je F,a€ F;,b=0

0 otherwise

\
for all i,j € E and a,b € F where p& (s,db) = P{L < s, AL € db]Y =i, Ag = a} is the
probability that the system will fail before time s with intrinsic age in db given that the
initial intrinsic age of the system is a and the initial phase is .

It is clear that p{jl (s,db) heavily depends on the structure of the system. Here, we will
give an explicit form of this probability measure for CS. Consider a coherent system with
structure function ¢; during phase i. Suppose that the system will immediately start to
perform phase ¢ with the initial intrinsic age a € F, and we want to find the probability
that our system will fail in ds with the final intrinsic age b € F; N N; (a). Define the binary

vector
0 ((L) = [I{a(1)<+oo}7 T 7I{a(m)<+oo}]

for every a € F,
Co (z) = {k;zx = 0}

for every x € B™ and (1;,z) = y where y; = 1 and y; = x; for every j # k. Since
b € F; N N; (a), the system can fail with intrinsic age vector b, and to make this possible,
some of the components from the set Cp (6 (b)) \Co (0 (a)) must fail at time s. However, if
¢; (1,0 (b)) = 0, then component k can not be the last one whose failure causes a system

failure. Therefore,
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where
FS = {kik € Co (0(0)\Co (0(a)), ¢; (1,0 (b)) = 1}

and
Uiak) (8) = Py {L (k) < s|Ty > s} = Py {E (k) < hg (i,a (k) 5)} _ o (hi(i.a(k).s)~a(k))
Moreover, we trivially have

Usary (ds) = hy, (i,a (k) , ds) o~ (hw(isa(k),5)—a(k))

and
/piLa (ds,db) = vi, (ds) .
f

We can find the transition kernel of the underlying Markov chain (X, A) as

T°Q (4,4, ds) Pig (s,db) ifi,jEE, a€S;

400 1= L p - . .
~ F;(s)py;, (ds,db ifiel a8, be F;NN;(a), j=1
Bliva iy = | T (6) ks s (@, ]
1(j) ifi, jEE, a€Fi, b=0

0 otherwise.
(5.21)

In this section, the availability of semi-Markov missions under the no repair policy will

be analyzed under the following two assumptions.

Assumption 5.11 There exists A\, > 0 for every component k such that
i, (i a,t) > a+ Ayt

for everyi € E, and a, t € R,.

Assumption 5.12

+o00
sup / F;(ds)Tiq (s) = sup Pio{L>Ti} <1 (5.22)
(i,a)eEXFJ0 (i,a)eExF

Assumption states that the intrinsic aging rate of each component is bounded below
by a strictly positive constant. If each component works during every phase, this is a very

reasonable assumption. Assumption [5.12] guarantees that the system may fail during any
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phase with a positive probability and these probabilities do not go to zero. Note that if the

system structure is coherent and 7y (i, a) is increasing in a for every k € S and ¢ € E, then

+00 +oo
sup / F; (ds)Uiq (s) < sup F; (ds) i (s)
(i,a)eExFJo icEJo
since T, (s) < Tip (s) by the proof of Theorem
Lemma 5.13 Assumption[5.11) implies that
P {L (k) = +00} =0 (5.23)
forallke S, i€ F and a € Ry.
Proof. This follows trivially from
Pu{L(k) = +o0} = lim Pu{L(k)>1t}= lim Pq {E (k) > A (k)}

IN

lim Pm{E(k) > a+>\kt} — lim e M —

t——+o00 t——+o00

since Ay (k) > a + At by Assumption if Ag (k) =a. B
Lemma 5.14 Assumption[5.19 implies that

sup  Eiq [Tp-] < +o0
(i,a)eExF

where
Ty = inf{k > 1; ()?k,ﬁk) e B}
and

F*={(i,b);ie€ E,be F;}.

Proof. Choose an arbitrary i € E and suppose that a € S;. Then,

Zl{fn@}] = 1+ZPm{L>Tn} =14+ Pa{L>T,}
n=1 n=1 n—1

where the last equality follows from the fact that all transitions before a failure occur at the

Eio [Tp+] = 14 Ejq

end of the phases. Then, using the mission reliability formula in[3.89, we have

+oo
Ei[Tp+] =1+ ) P"(i,a;E,F).

n=1
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Let

+oo
sup / F;(ds)Uiq (s) =1—c¢
(i,a)eEXFJO

for some c € (0,1). Then,

P(i,a;E,F) = Z/P i,a;7,db) = Z/< Q (i, 4, ds) Py (s, db)>

jGE]_- jEE
—+00
_ / F(ds)Tia (5) < 1—c. (5.24)
0

Now, we will show that P" (i,a; E,F) < (1 —¢)" for every i, a, and n by induction on n. It
is clear from[5.2] that it holds for n = 1. Now, assume that it holds for n =k and consider
it formn=k+ 1. Then,

PHY (6,05 B, F) = Z/ﬁ (i, a; §,db) P* (4,b; B, F) < (1 = ¢)* P (i,a; B, F) < (1 — o).
JEE F
This implies that

+oo
1
m[TF*—l—I—ZPnzaE}" <1+Z (1—¢)" 7<+oo.

n=1 n=1

Now, we will consider the case where a € F; to complete the proof. Using ,

. 1
Eig [Tp+] = 1+ ;;M () Ejo [Tr+] <1+ p
J

Therefore,
c+1

sup  Ej, [Tp-] <
(i,a)eExF

< +00

which completes the proof. M

We will now apply a limit theorem in Alsmeyer [62] to find the availability. The main
assumption of this theorem is that ()? , E) is positive Harris recurrent. It is well-known that

a Markov chain {X,;n > 0} is Harris recurrent with respect to a measure ¢ if
P{X, € Aforsomen >0/Xyg=z}=1

for all  whenever ¢ (A) > 0. We refer the interested reader to Meyn and Tweedie [63] for
different definitions and characterizations of Harris recurrence. In this chapter, we will use
the relationship between petite sets and Harris recurrence. The existence of a small set is

actually sufficient for our purpose since each small set is also a petite set.



Chapter 5: Availability Analysis 93

Definition 5.15 (Meyn and Tweedie [63])A set C is called a small set if there exists m > 0,
and a non-trivial measure v such that for all x € C and all measurable subsets A of the

state space,

P"™(xz,A) > v(A)

where P is the transition kernel of the related Markov chain.

Define
A" ={(i,a);(i,a) € A}

forany A C E x F,
S*={(i,0);i € E}
and
1 ifANS*#£2
X (A) =

0 otherwise

forany AC E x F,and i € F.

Lemma 5.16 Let Ag, Ay, -+ be a disjoint sequence in & x F. Then,

Xi (A) = x; (U An) = Z Xi (An)
n n
for every i € E.
Proof. It is clear that
AT =] A
n

and A}, AL, --- is a disjoint sequence for every i. If A'NS* = &, then AL, N S* = & for
every n and, hence, x; (An) = x; (A) = 0. Suppose that A*' N S* # @. Then, there exists
k such that A}; NS* # @. Since Ay, A%, --- is a disjoint sequence, AL, N S* = & for every
n # k. This implies that

Xi(4)=1= ZXi (An) = x; (Ap) =1
and this completes the proof. B

Proposition 5.17 The set F'* is a petite set with respect to the probability measure v defined

as

Y(A) =D () x, (A)

JEE
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forany AC E x F.

Proof. We will first show that v is a probability measure. It is trivial that x; (&) = 0
and x; (E x F) =1 for every j. These imply that v(&) =0 and y(E x F) =1 since j is a
distribution function on E. Choose an arbitrary disjoint sequence Ag, A1,--+ in E X F and

consider

A:UAn.

Then, using Lemma [5.16,
YA =D ()G (A =D mG)D o x (A) =D ) () x; (An) =D v (An).
JjeE jerE n n jeE n
and this implies that v is a probability measure on E x F. We will now show that F* is a

small set with respect to «v. Choose an arbitrary subset A of E X F and an arbitrary element

(1,a) of F*. We need to show that

Pl,a;A)= Y @) =vA)=> nl)y ). (5.25)

Ji(5,0)eA jeE
If x; (A) = 0 for every j € E, then there is nothing to prove. Suppose that x;(A) = 1.
Then, AV N S* # & and, hence, (4,0) € A. This implies that holds. Thus, F* is a
small set with respect to ;v and, hence, F* is a petite set since every small set is also a petite

set by Meyn and Tweedie [63]. W
We will utilize the following theorem to show the positive Harris recurrence of (X' ) E)

Theorem 5.18 (Meyn and Tweedie [6]|])A Markov chain X is positive Harris recurrent if
and only if a petite set A exists with P, {Ty < +oo} = 1 for all x and supE, [T4] < 400

z€A
where

Ty=inf{k > 1; X, € A}.

Theorem 5.19 Suppose that Assumptions — hold. Then, the Markov chain ()?, E)
with the transition kernel 1s positive Harris recurrent.

Proof. We know that F* is a petite set and — sup  Fiq [Tp+] < +00 by Lemma |5.14) and
(i,a)EEXF

Proposition[5.17. We need to show that

P {TF* < +OO} =1.
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Choose (i,a) such that a € S;. We know by Lemma that
Py {L (k) = +oo} = 0. (5.26)
This implies that

P {L =40} < Py {m]?xL (k) = +oo} = Pjo {L (k) = 400 for some k=1,2,--- ,m}

IN

zm: P {L (k) = +00} = 0 (5.27)
k=1

where the first equality follows from the finiteness of the number of components and the
second inequality follows from the sub-additivity of the probability measure. It is clear that

if the system is initially in working condition, then
Tp+ =sup{n+1;T,, < L}.
Therefore,

P {Tp» < +o0} = Piu{sup{n+1;T, <L} < 400}
= 1—Py{sup{n+1;T, <L} =+o0}

> 1—Pm{L:—|-OO}:1

where the inequality follows from the assumption that T,, — 400 as n — +oo and the last

equality follows from . If a € F;, then next state is (i,b) for some b € F such that
b € S; with probability 1. Then, trivially Py, {Tp~ < 400} =1 for this case too. W

Theorem 5.20 Suppose that Assumptions — hold. Then, the Markov chain ()A(, A\)

has a unique invariant probability measure U and system availability is
A=~ > [ @, b) T (4, db
= — m
= J,0) v (j, db)
jGESj
where
T/T\L (i, a) = Eia |:j:'1]

and

mzz/m(i,am(i,da).

(SIS
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Proof. It is well-known that if a Markov chain is positive Harris recurrent, then it has
a finite invariant measure which is unique up to a multiplicative constant. Then, since the
mwvariant measure is finite we can define a unique probability measure which is invariant
by normalization. Suppose that U is the invariant probability measure of the Markov chain
()?,21\) The underlying Markov chain ()A(,A\) of Y is Harris recurrent by Theorem .
We also know that ©(S) < +oco. Then, applying Corollary 1 in [62] and using (5.19), we
get

A= =3 [aGnoG.w).

€Bg,
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Chapter 6

MTTF AND AVAILABILITY ANALYSIS OF RELIABILITY
SYSTEMS WITH EXPONENTIAL LIFETIMES

6.1 Introduction

In this chapter, the primary objective is to analyze reliability, MTTF, and availability
of CS and RS which work under a fixed phase, i.e., the systems under consideration are
not mission-based. The lifetimes of all components and the repair times are exponentially
distributed independent of each other. The maintenance policy is such that all failed compo-
nents are replaced by brand new ones only when the whole system fails. Since the lifetimes
are exponentially distributed, the system is as good as a brand new one after replacement.
Moreover, we presume that the repair times depend on the state of the system (number and
type of working and failed components) at the time of failure.

We want to point out that this chapter came out as a by-product of a research project on
the component testing problem of mission-based systems. Component testing is done when
it is very costly or often impossible to test the whole system. Aircrafts used in space missions
or nuclear devices are typical examples where various performance measures associated with
the devices can be predicted using data on component lifetimes. The component testing
problem determines the optimal testing durations of the components at minimum cost while
attaining desired levels of the performance measures. Among them, the primary focus has
been the reliability of the system. In almost all of the literature, the components have
exponential lifetimes and one has to find explicit expressions for the performance measure
as a function of the unknown component failure rates. Using this explicit structure, one can
make a semi-infinite linear programming formulation and solve it by an efficient algorithm to
find the optimal solution. We refer the reader to Altinel et al. [65] and Altinel et al. [66] for
details and examples regarding the component testing problem. The algorithms used in the
solution stage use some structural properties like convexity of the performance measure as a

function of the failure rates. Our effort in the present setting covers MTTF and availability
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in addition to a reliability based measure used in all of the literature. The objective is
to find explicit functions for these measures and identify their structural properties that
may be used in an optimization context. Another line of research in which the results in
this chapter may be useful concerns Bayesian analysis of reliability systems. In Bayesian
applications, the component failure rates are not assumed to be known; rather, they are
random variables with some prior distributions. The explicit structure of the reliability and
other functions as a function of the failure rates may be helpful in conducting posterior
analysis.

The analysis first focuses on the reliability and MTTF of CS where we obtain DC
representations of these measures. Then, we show that MTTF is a ratio of posynomials
(RP) for RS. Furthermore, we give explicit formulas for series connection of k-out-of-n
subsystems and RS assuming that all components in a subsystem are identical. Then, we
discuss system availability for CS and RS to derive a system of linear equations to compute
them. As special cases, we consider RS and series connection of k-out-of-n subsystems with
identical components in a subsystem. Finally, we show that availability of CS and RS are
both RP.

There is a huge amount of literature on CS. Most of these papers assume that when-
ever a component fails, it is repaired and all components are maintained separately. The
distribution of time to failure is analyzed by Barlow and Proschan [67] and Brown [68],
and formulas for interval availability, the expected number of failures and replacements in a
fixed interval are given by Baxter [69]. In our setting, we analyze a different system where
failed components wait for the failure of the system to be replaced.

Systems with k-out-of-n structure attract special attention in reliability literature be-
cause they have a very broad application area. MTTF for k-out-of-n systems is analyzed by
Angus [70], and mean operating and repair times between two successive breakdowns, sys-
tem availability and some mean first-passage times are studied by Iyer [71]. Moreover, Li et
al. [72] give formulas for mean time between failures, mean working time in a failure-repair
cycle and mean down time in a failure-repair cycle. In these studies, it is assumed that all
lifetimes and repair times are exponentially distributed, there are enough repairmen for all
components and replacement of a component starts immediately after failure.

A common approach to increase reliability is adding warm or cold spare components.
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Availability and mean time between failures for k-out-of-n systems with M cold standby
units that are identical to actives and different from actives are investigated by Wang and
Loman [73]. Availability, the expected up-time and the expected down-time for a k-out-
of-n system with general lifetimes and exponential repair times or vice versa are discussed
by Frostig and Levikson [74] using Markov renewal processes. The references listed above
assume that the repair of a malfunctioning component starts immediately after its failure.
A k-out-of-n system in which failed components are not repaired until system failure is
analyzed by Koucky [75], and closed form reliability formula is derived for a quite general
system. Moreover, de Smidt-Destombes et al. [76] analyze the availability of a k-out-of-
n system with identical components whose maintenance starts when the number of failed
components exceeds a critical level. In this chapter, we present MTTF and availability
results for a model which extends the previous studies to series connection of k-out-of-n
subsystems. However, for the sake of a computational tractability, we assume that the
lifetimes and the repair times are exponentially distributed and independent of each other,
and maintenance is done only when the system fails.

There is also an extensive body of literature on systems with standby redundancy.
Natarajan [77] analyzes the time to failure and some limiting probabilities of a single unit
system with IV — 1 spares and c repair facilities assuming that all repair times and life-
times are exponentially distributed. Reliability and availability of a single unit system with
cold standby components and general lifetimes is analyzed by Sarkar and Li [78]. Sridha-
ran and Mohanavadivu [79] obtain time dependent and steady-state availability, reliability
and MTTF numerically for a two-unit cold standby redundant system with two types of re-
pairmen. Papageorgiou and Kokolakis [80] consider a two-unit parallel system supported by
(n — 1) standbys with general and non-identical lifetimes and evaluate the system reliability
by recursive relations. A series system with standby components is analyzed by Robinson
and Neuts [81], and Prasad et al. [82] consider such a system in the spare allocation prob-
lem to maximize the system reliability using phase-type and general lifetimes respectively.
Wang et al. [32] give explicit expressions for a series system with warm standby compo-
nents assuming that all lifetimes and repair times are exponentially distributed, and that
the repair of a failed component starts immediately after its failure. A similar system with

general repair times is analyzed by Wang et al. [83], and explicit expressions for steady-state
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availability are developed for some special cases. Most of the papers on standby redundancy
assume that the failed components are repaired immediately after the failure and they con-
sider only a single standby module. Papers which investigate RS give explicit formulas for
some special cases or they only analyze the reliability of the system. In this chapter, we give
closed form expressions for the reliability and the MTTF of a series connection of a finite
number cold standby redundant subsystems assuming that malfunctioning components wait
for the system failure to be repaired, and all lifetimes and repair times are exponentially
distributed. We also give a formula for the steady-state availability of these systems.

In Section [6.2] we present reliability and MTTF results, while availability of CS and RS

is analyzed in Section [6.3

6.2 Reliability and MTTF Analysis

Throughout this chapter, the lifetime of component k is exponentially distributed with
parameter A\, and all component lifetimes are independent of each other. The states of the

components are given by the binary processes

1 if component k is working at time ¢
Zy (k) =
0 otherwise

for k€ Sand Z;, = (Z; (1), -+, Z; (m)) denotes the state of the system at time ¢. Clearly,
Zi (k) € B and Z; € B™.

The analyses on reliability and MTTF are done for CS and RS separately and the results
are presented in the following two sections. For any state y € B™, we let C1(y) = {k;yx = 1}
denote the set of functioning components and Cy(y) = {k;yr = 0} denote the set of failed
components. It is clear that Cy(y) N Ci(y) = @ with Cy(y) U Ci(y) = S. For any finite set
A, we let n(A) be the cardinality of A.

6.2.1 Coherent Systems

Suppose that we have a coherent system with independent components and some structure

function ¢ and reliability function h. Then, system reliability is

P{L >t} =P{¢(Z) =1} = E[p(Z)] = hle Mt e 22t ... e7Amb), (6.1)



Chapter 6: MTTF and Availability Analysis of Reliability Systems with Exponential Lifetimes 101

Moreover, MTTF is

E[L] = /(J+OOE[¢ (Zy)] dt = /0+ooh(e_A1t,e_)‘2t,~-- e mb)dt, (6.2)

Let W = {y € B™¢(y) =1} C B™ and W = {y € B™;¢(y) = 0} C B™ denote the
set of all path and cut vectors respectively. We now analyze (6.1)) and (6.2) in more detail

using the following well-known representation of the structure function that states

Z ¢y H (1 —a)) ™% = Z H T H (1—xj). (6.3)

yEBm j=1 yeW \ieCi(y) J7€Co(y)

Note that we can write

n(Co(y))
I a-=) = > 0 > e,
j€Co(y) k=0 J1.J2.+ Kk E€CO(Y)
n(Co(y)) k
= (—1)F > 11 . (6.4)
k=0 J1.925 5k €C0 (y) n=1
where j1, 72, -+, jr € Co(y) denotes any combination of k distinct elements in Cy(y). Here,

we use the convention that (6.4)) is equal to 1 when k& = 0. Putting (6.3) and (6.4) together,

we obtain
n(Co(y)) k
o) = 3. > (- 2 II =) 1=
yeW k=0 J1:j2""’jk€CO(y) i€C1(y) n=1
n(Co(y
yeW k=0 91,j27~~-7j1«600(y) if(lfl(y)]C
where i # j,, for all i € C’l( ) and j, € Co(y).
Now, by combining (6.1)) and ., we have
n(Co(y))
PiL>ty = Y Y (- > I EZG)20n)
yeW k=0 ]17j2""7jk600(y) ,Lifl(y)k
n(Co(y))
— Z Z Z H e~ (NitXj, )t
yeWw k=0 ]17j27"‘7jk600(y) ii?l(y)k
n(Co(y)) - (Z i1 () (Ai+Ajn))t
n=1,---,k

=2 2 (- 2.

yeW k=0 Jlaj27"‘7jk600(y)
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which is an explicit expression involving sums of exponential functions. Moreover,

-1

n(Co(y))
-y 3 - > > it (6.7)
yeW k=0 ]17j2,"'ajk€CO(y) i€C1(y)

=1,k
using and . Note that both reliability and MTTF are explicit functions of the
component failure rates A\ = (A1, A2, -+, A\yy). The structures of these functions play a
critical role in Bayesian analysis of reliability systems and optimization studies involving
these performance measures. Altinel et al. [65] and Altinel et al. [66] provide an example in

the context of the component testing problem. The following result clarifies their structure.

Lemma 6.1 The functions f,g: R — R defined as

f ()\) _ e—(a1>\1+“-+amz\m)

and
1

A A1+ amAp,

g\ =

are nonnegative, nonincreasing and convexr functions for all a € R'!.

Proof. Non-negativity is obvious. The gradients of f and g are

af (V) 9g (A)
/\i )\z‘

— _aif (\) <0, = —a;if (A

and f and g are both nonincreasing. The second order partial derivatives of f and g are

given by the Hessian matrices

[Hy (V] = aia; f (A), [Hg (V] = 2aia;f (V).

Take any z € R™, then

zTHfz =

m m 2
Z Z’Lz]a]f (Z a;z ) >0,
m _m ) m 2
zTng = Z Z a;izizja; f (N)° = <Z ) 3>0.

1

||M3

Therefore, Hy and H, are both positive semidefinite and, hence, f and g are convex. W
We can now conclude that both system reliability and MTTF (6.7) can be repre-

sented as a difference of two nonnegative, nonincreasing and convex functions. Moreover,
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R

Figure 6.1: The structure of the system analyzed in Example

and (/6.7]) provide explicit DC representations of the reliability and MTTF of CS. Note
that the two nonnegative, nonincreasing and convex functions of the DC representation are

obtained trivially by grouping the terms for even and odd values of k separately.

Example 6.2 Consider the system given in Figure[6.1 The lifetime of each component is

exponentially distributed with the given parameters. The structure function of this system is
d(x)=1—(1—x3) (1 —z122) = X122 + T3 — T1T2X3.
Then, using ,

P {L > t} — 67()\14’)\2)7& + e*)\gt o 67(,\1+)\2+/\3)t

and this implies that
1 1 1

L= + -
[] A+ A3 A+ A+ A3

6.2.1.1 Series Connection of k-out-of-n Subsystems

Suppose that we have a series system of m subsystems such that at least k; out of n;
identical components must be in working condition in subsystem j to make the subsystem
function. The identical components in subsystem j fail with exponential rates A;. This
system is clearly a CS and the results presented in Section hold. Moreover, due to
the special structure of this type of systems, we can derive a more explicit formulation for

reliability and MTTF. To make the system function every subsystem must work and we can
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write
s el T4 n;—r;
Pi{L = J ( 7)‘jt> ( */\Jt>
oo = I (7)) (-
J=lrj=k;
ni Nam, n n
_ 3 < 1)( m)S(rl, rims t) (6.8)
ri=k1 Tm=Km " 'm
where
S(ry, -, rmit) = o~ (Mt Am )t (1 B €—A1t)n171”1 o (1 B 6—/\mt)nm*1”m
m My—Ty
— (rl)\1+ +’I”m)\m t H Z (nz - Z) _1)5z 6—52)\21
z=1 s,=0

i (e

z=18=r,

S1=T1 Sm=Tm
X (nm - Tm) (-1 e~ (811 FsmAm)t (6.9)
Sm — Tm

and s=s1+ -+ Sm, ¥ =71+ -+ + rpy. Thus, combining and and rearranging

the combinations, we have

P{L>t} = Z Z Z Z < >< >

r1=k1 rm=Kkm $1="1 Sm=Tm
n S —_ —_ e
) [T (T ) (1) e (srdatedsmAn )t (6.10)
Sm Tm

Then,

=S e (M)

r1=k rm=km S1=T1 Sm=Tm

X@:) (iZ> =07 <51A1+..1.+5Mm>- (6.11)

Example 6.3 Suppose that m = 2,ky = n1 = 1, ko = 2,n0 = 3 with failure rates \y and

A2. Then, using (6.11)),
s = %5 3 ()G ) e i

ri=1rg=2s1=r1 Sg=r2
3 2
A1+ 2)9 A+ 2\
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Figure 6.2: Minimal cut representation of the system analyzed in Example [6.3]

The same result can be obtained by using and . Let Zy (t) denote the state of
the component in the first subsystem and Zs (t),Zs (t), and Z4 (t) denote the state of the
components in the second subsystem respectively. The minimal cut sets for this reliability

structure are

K = {1} Ky={1,2) Ks—{1,3} Ki={1,4)
K5 = {273} K6:{274} K7:{3’4}

and minimal cut representation of this system is given in the Figure [6.2 The structure

function of this system is

3 4
@) = J[ I] (0= —2)(1—ay)
i=1 j=i+1
= X1X9%3 + T1T2T4 + T1T3T4 — 21 X2T3T4.

This implies that

P{L >t} =E[p(Z)] = e MH2)t 4 =(ut2)t | o=(t+20)t _ 9o=(M+322)t

using , and
3 2

T+ 20 A+ 3

E[L]
usIng .

A series connection of parallel subsystems is a special case of series connection of k-

out-of-n subsystems. To find the reliability and MTTF of a series connection of parallel

subsystems with identical components in each subsystem, (6.10) and (6.11)) can be used

taking k; = 1 for every j.
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Figure 6.3: The structure of the system analyzed in Example [6.4]

Example 6.4 Suppose that we have a series connection of 2 parallel subsystems, as given
in Figure [6.3. There is only one component in the first subsystem with failure rate A\

and there are 2 components in the second subsystem with common failure rate Ao so that

m=2,n1 =1 and ny = 2. Then, using ,

fr = 223 2 ()OE e

M4 A2 A +22

We can obtain the same result by using and . The structure function of this
system 1S

10} (a;) = 2129 + X123 — T1T2T3.
This implies that

P {L > t} =F [¢ (Zt)] = ei()‘1+>‘2) + 67(/\1+)\2) _ e*()\1+2)\2)

and
2 1

Tt M F2n

E[L]

6.2.2 Series Connection of Standby Redundant Subsystems

It is well-known that the structure of this kind of systems is not coherent. Therefore,
the results in the previous sections are not applicable. However, if we assume that all
components have exponential lifetimes and the components in a subsystem are identical,

then system reliability can be expressed explicitly. Suppose that there are m subsystems and
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o
G

Figure 6.4: The structure of the system analyzed in Example [6.5)

subsystem k consists of nj identical components with exponential failure rates Ax. Then,

mong—l 5 %
e (Axt)
PiL>t = 1 > —7—
k=1 1,=0 ke
ni—1 nm—1 \r
AL \Tm
— Z e Z 1' m' e_(>\1+"'+>\7n)ttr1+"'+7'7n (612)
=0 Br T1: " Tm-
and
ni—1 N —1

E[L]:Z )\T--‘)\Tﬂfb"(rl—k‘--—i—rm)! |
Pm=0 Tl!-."r’m!()\l —|—..,+>\m)r1+...+rm+1

r1=0

(6.13)

It is known that every function with continuous second order partial derivatives is DC. The
reader is referred to Horst and Thoai [84] for an overview on the structure and properties
of DC functions. Thus, reliability and MTTF of RS are DC, but finding their DC represen-
tations is quite difficult. However, we have more information on the structure of MTTF of
RS. It is clear that is a finite sum of a monomial over a posynomial with variables
A1, -+, Am. Since the product of a monomial and a posynomial is a posynomial and posyn-
omials are closed under summation and multiplication, MTTF of RS is RP. Furthermore,
in (6.13)) each power is a positive integer. Since the integers are closed under summation,

we can conclude that MTTF of RS is RP with positive integer powers.

Example 6.5 Suppose that m = 2,n1 = 1, and ny = 2 with failure rates \y and Ao and
The structure of the system is as given in Figure . Then, using ,

D! 1 A9 A1+ 2A9
E[L]:Z - r+1:)\ by + 2= 2"
rl ()\1 + )\2) 1+ A2 ()\1 + )\2) ()\1 + )\2)

r1=0
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6.3 Availability Analysis

We now suppose that the system is maintained by replacing all failed components when
the whole system fails. Availability can be determined using Markovian analysis since all
lifetimes and repair times are exponentially distributed. The states of the corresponding
Markov process will depend on the system structure and we need to find the limiting distri-
bution. We will demonstrate how this is done for CS and RS models. We introduce a new

notation such that
Fyw = {z € W;(1;,z) € W for some i =1,--- ,m}

for any z € B™.

6.3.1 Coherent Systems

As stated earlier, there is no repair action unless the system fails. Repair starts when the
system fails by entering some state x € Fyy, and we assume that it takes an exponentially
distributed amount of time with some rate ¢, > 0. After repair all components are in
working condition. It is clear that the states of the system follow a Markov process with
state space = W U Fyy since all lifetimes and repairs are exponentially distributed. To

find the limiting distribution, we need to solve the system of linear equations

Ty M = D TauSa
k=1 zeFy
Tg Z /\j = Z W(lj,x))‘ja S W\ {1} (6.14)
j€C1(z) j€Co(z)
MeSz = Z 77(1]-,;1;)>\j7 z € Fyy

j€Co(x),(1;,z)eW

Zﬁm—i- Zﬂm = 1.

zeW zeFw
Then, the availability of the system is
A=) (6.15)
zeW
Note that since ¢, > 0 for all z € Fyy and A\, > 0 for all £ € S, the embedded Markov

chain is irreducible with non-null recurrent states. Hence, the system of linear equations

(6.14) has a unique solution.
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System availability can also be analyzed using renewal theory since the times at which
a repaired system starts working form a renewal process. In each renewal cycle, the system
works properly for some amount of time until failure and then repair follows. Therefore, it
is clear that
EL]

A= B+ B (6.16)

where R is the repair time. The MTTF E [L] for CS and some important special cases is
analyzed in the previous section. Thus, we need to find F [R] to find availability. We know
that if the system fails at the state x € Fyy, then expected repair time is 1/g,. Therefore,
we need to find the distribution of the state where the system fails. For this purpose, it
suffices to consider a modification of the Markov process such that each state in Fyy is an
absorbing state. We then need to compute the probabilities that the process will eventually
be absorbed in the absorbing states in Fy given that the initial state is 1. Let P be the
transition probability matrix of the embedded Markov chain associated with our Markov
process and the absorbing states in Fy are represented in the last rows and columns of P.

Then, P has the form of

po |9 M (6.17)
0 I

Then, it is well-known that the ijth entry of the matrix (I — Q)~" M is the probability that
the chain will be eventually absorbed in the absorbing state j given that the initially state

is 4. Then,

BlRl= Y (1-Q)7 M(L2)(1/s) (618)

z€Fy

since expected repair duration is 1/¢, in state z € Fyy.
Example 6.6 Consider Example[6.34 We have
w={@1,1,1),(1,1,0),(1,0,1),(0,1,1),(0,0,1)}

and

Fw ={(0,1,0),(1,0,0),(0,0,0), } .

Moreover, since the first and the second components are identical, we assume that 100 =



Chapter 6: MTTF and Availability Analysis of Reliability Systems with Exponential Lifetimes 110

So10- We need to solve the following system of linear equations:

mi1 (A1 + A2 +A3) = 70105100 + 71005100 + T000S000

w10 (M1 +A2) = T3

)
)

mo01 (M1 +A3) = T
)

o1t (A2 +A3) = min\
Too1A3 = T101A1 + To11A2
70105100 = T110A1 + To11A3
71005100 = 7T110A2 + T101A3
T000S000 = T001A3
7111 + 7110 + 7101 + To11 + Too1 + To10 + 7100 + Tooo = 1.

The solution is

111 —

T110 =

7101 —

To11 =

To01 =

010 =

T100 =

T000 =

where

000510023 (A1 + A2) (A1 4+ A3) (A2 + A3)

X
500051003 (A1 + A3) (A2 + A3)

X
S0005100A2A3 (A1 + A2) (A2 + A3)

X
§0005100A1A3 (A1 + A2) (A1 + A3)

X
50005100A1 A2 (A1 + A2) (A1 + A + 2)A3)

X
§000>\1)\§ ()\1 + )\3) ()\1 + 2Xg + )\3)

X
COOO)\Z)\:%) ()\2 + /\3) (2/\1 + Aoy + )\3)

X
§100A1A2A3 (A1 + A2) (A1 + A2 + 2)3)

X

X = <ooo P\% (A + N2) ()\% + Ao+ A3)2 + A1 (o + 2>\3)) + 6100 (A1 + A3) (A2 + A3)

(()\1 +A2)2 4+ A3 (A1 + Ao) + A%)] + A1 A2A36100 (A1 4 A2) (A1 + A2 +2)3)

and the availability becomes

§1005000 (A1 + A3) (A2 + A3) (()\1 +22)% 4+ X3 (A1 + Xo) + A%)

= (6.19)
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For this case, we also have

I A A A 1
0 >\1+>\3+>\3 >\1+>\§+>\3 >\1+>\é+>\3 0 0 0 0
A A
o0 0 R
A A
0o 0 0 0 sdn 0 ¥y 0
A A

O I 0 0 dm om0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

and
1 1 1
F|L| = + - 6.20
IZ] A+ A3 A+ A+ A3 (6.20)
Moreover, using ,
1 A A1A2 >
FE|R] = -
[ ] $100 ()\1—1—)\2 ()\24-)\3) ()\1+)\2+)\3)
1 A2 A1 A2 >

+ — 6.21
$100 <>\1 + A2 (A4 A3) (M1 + A2+ A3) (6:21)

n A1 (A1 4 A2 + 2A3)
$000 (/\1 + )\3) (/\2 + )\3) (/\1 + Aoy + )\3).

Using and , we can also obtain the result in (6.19).

We now analyze some important special cases using a different and computationally

efficient modelling approach.

6.3.1.1 Series Connection of k-out-of-n Subsystems

Suppose that we now have a series system of m subsystems such that at least k; out of
n; identical components with exponential failure rates A\; must be in working condition in
subsystem j to make the subsystem function. Let the state space represent the number of

available components in each subsystem such that
N={(1, ,im)sij=Fkj —1,--- ,nj,j =1,--- ,m where i; = k; — 1 for only one j}.

The system will start in the initial state 7 = (n1,--- ,n,,) and it will be repaired whenever

it enters a state with i; = k; — 1 for some failed subsystem j. It is clear that the process
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can not enter a state with ¢; = k; — 1 for more that one j. Therefore, we let
Fj={z e N;z; =k; —1 and x; > k; for every i # j }

be the set of all failure states involving the failure of subsystem j. The system fails whenever
it enters a state v € Fyy = Uj=1,... [} and it takes an exponentially distributed amount
of time with some rate ¢, > 0. Now, W = N\ Fy is the set of all functioning states. It is
clear that states of the system follow a Markov process with state space N = W U Fyy since
all lifetimes and repair durations are exponentially distributed and the limiting distribution
can be found by solving the system of linear equations

m
Wﬁzni)\z‘ = Z T2Sa
=1

z€Fy

T Zlibl)\z = Z Tr(lj,x) (1 + ilfj) )\j, S W\{ﬁ} (6.22)

JEO(x)
TxSe — W(lj-’m)kj)\j, xEF}',j:L'” ,m

DL SR

zeW .’L’EFW
where

O(z) ={j;z; <n;}
and
(1;_7*1‘) = (:I:la oy, Tj—-1,T4 + 1,$j+1,' T 7xm)

for x € N. System availability is given by . Note that the embedded Markov chain is
irreducible with non-null recurrent states, and the system of linear equations has a
unique solution.

A series connection of redundant subsystems is a special case of series connection of k-
out-of-n subsystems. To find the availability of a series connection of redundant subsystem

with identical components in each subsystem, it suffices to take k; = 1 for every j.

Example 6.7 Consider Example[6.3. We will first analyze this example by using the results

for CS. For this case, we have

w={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1)}
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and
FW = {(07 17 1’ 1) Y (07 17 1’ 0) ) (17 17 07 0) Y (17 O’ 1’0) ? (07 ]‘? 0? 1) 9 (17 07 07 1) Y <O7 07 17 1)} .

Moreover, since all components in the second subsystem are identical, we can assume that
o110 = So101 = Soo11 and S1100 = S1010 = S1001- We need to solve the following system of

linear equations:

w1111 (A1 +3X2) = Sorn1mor11 + Sor1o (To110 + To101 + Too11) + S1100 (T1100 + 71010 + T1001)

( )
m110 (M +2X\2) = Aomii1a

( )

( )

m1100 (M1 +2X2) = Aomiinn
o011 (A1 +2X2) = Aemin
TO11150111 =  A171111
011050110 = A171110
7110061100 = A271101 + A271110
7101061100 = A271110 + A271011
7010150110 = A171101
100161100 = A271101 + A271011
7001150110 = A171011
1 = Z Ty
reWUFw

The solution is

S01115011051100 (A1 + 2A2)

T = 5 5
6A5c011150110 + 51100 (BA1A260111 + S0110 (AT + 5A260111 + A1 (2X2 + S0111)))
Ti110 = $011150110S1100A2
6A35011150110 + S1100 (3)\1)\2g0111 + So110 ()\% + 5Xaco111 + M (2ha + §0111)))
Ti01 = S01115011051100A2
6A%§0111§0110 + <1100 (3)\1)\2§0111 + <o110 ()\% + 50111 + A1 (20 + €0111)))
= §011150110S1100A2
Ti011 = 5 J
6A3c011150110 + 51100 (BA1A260111 + S0110 (AT + 5A250111 + A1 (2X2 + S0111)))
Tol11 = A15011051100 (M1 + 2X2)
6A3so11150110 + S1100 (BN A250111 + S0110 (Af + BAasornn + A (242 + Go111)))
— A1A26011151100
o110 =

6A35011150110 + S1100 (3BA1A250111 + So110 (AT + BA2so111 + A1 (2A2 + <o111)))
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B 2M5011150110
mT1100 = P} 2
655011150110 + S1100 (3A1A260111 + So110 (AT + BA2s0111 + A1 (2A2 + <o111)))
B 2)\5011150110
mTi010 = 5 D)
655011150110 + S1100 (BA1A250111 + So110 (AT 4 BA2so111 + A1 (2A2 + s0111)))
S A1A25011151100
6A35011150110 + S1100 (3BA1A250111 + So110 (AT + BA2so111 + A1 (2A2 + <o111)))
2)\35011150110
1001 = 3 5
655011150110 + S1100 (3A1A260111 + So110 (AT + BA2c0111 + A1 (2A2 + <o111)))
B A1A26011161100
ool = 5 D)
655011150110 + S1100 (3A1A260111 + So110 (AT + BA2s0111 + A1 (2A2 + <o111)))
and
A 5A
4 $01115011051100 (A1 + 5A2) (6.23)
X
where
X = Mco11051100 + A1501105110050111 + A1 A2 (26011051100 + 35110050111)
+5X2601105110050111 + 6A35011050111-
Using , we can obtain the same result. For this case, we have
[ A A A A
0 )\1+23)\2 >\1+?3>\2 )\1+?3)\2 )\1+%’>)\2 0 0 0 0 0 0
A A A
0 0 0 0 0 >\1+12>\2 )\1+22)\2 /\1+22/\2 0 0 0
A A A
0 0 0 0 0 0 )\1+22>\2 0 >\1+12>\2 >\1+22>\2 0
A A A
0 0 0 0 0 0 0 /\1+22/\2 0 )\1+22)\2 /\1+12>\2
0 0 0 0 1 0 0 0 0 0 0
P=10 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
3 2
E[L] = -
A +2X s A1+ 3N
and
A Y A
E[R ! 2 +3\ 2

= +6
] o111 (A1 + 3A2)

1100 (A] + 51X + 6)3)

1 .
s0110 (A] + 5A1h2 + 6)3)
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These imply that

A — S01115011091100 (A1 +5X2)
N Y

which coincides with . The same result can be obtained by solving the system of linear

(6.24)

equations in , In the first analysis at the beginning of this example, it is assumed that
the repair of the component in the first subsystem is exponentially distributed with rate Sp111,
the repair of two components one in the first subsystem and one in the second subsystem
18 exponentially distributed with parameter spi19, and the repair of two components in the
second subsystem is exponentially distributed with parameter s1100. Therefore, to use ,
we can assume that , o3 = So111,502 = Sot10 and S11 = S1100- Lhen, the following system of

linear equations needs to be solved:

m13 (A1 +3X2) = <037m03 + So27o2 + S11711
12 (A1 +2X2) = 3domis
S03Mo3 = A17T13
S02Mo2 = A1T12
S11T11 = 2A2mi2
T3 + T2 + mo3 + mo2 + 711 = L

The solution is

03502511 (A1 + 2A2)

T3 = 5 5

65503502 + 511 (3A1A2503 + 502 (AT + BA2s0s + A1 (2A2 + <03)) )
S 32503502511

6A3503502 + s11 (3A1A2603 + S0z (AT + BA2c03 + A1 (2A2 + <o03)))
S i A1 (A1 4 2X2) So2611

6A3503502 + S11 (3A1X2603 + S0z (AT + 5A2c03 + A1 (2X2 + <o03)))
— 3A1A2603511

6A3503502 + s11 (3A1A2603 + S0z (AT + BA2c03 + A1 (2A2 + <o03)))

63503502

T =

6A3503502 + S11 (3A1X2603 + So2 (AT + BAasos + A1 (2X2 + <o03)))

and

4 — S01115011051100 (A1 +5)2)
- X

which coincides with and .
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6.3.2 Series Connection of Standby Redundant Subsystems

Let the state space represent the number of available components in each subsystem so that
N={(i1, - ,im);4;=0,1,--- ,nj,5=1,--- ,m where i; = 0 for only one j}.

The system will start processing in the initial state n and it will be repaired whenever it
fails by entering a state with i; = 0 when subsystem j fails. It is clear that the process can

not enter a state with i; = 0 for more that one j. Therefore, we now let
Fj={zx e N;z; =0and z; > 1 for every i # j }

be the set of all failure states involving the failure of subsystem j. Repair starts whenever
the system enters a state x € Fyy = Uj—1... ,,F; and it takes an exponentially distributed
amount of time with some rate ¢, > 0. Once again, W = N\ Fyy is the set of all functioning
states. It is clear that states of the system follow a Markov process with state space N =
WU Fy since all lifetimes and repair durations are exponentially distributed and the limiting
distribution can be found by solving the system of linear equations

m
%ZM = Z TSz
=1

zeFy

Ty Z N = Z 7T(1j+7x))\j, T € W\ {ﬁ} (6.25)
=1

je0(x)
MTxSe = TF(I;-@)/\]', reFj,j=1,---,m
SETE SR
zeW $€FW

Once again, system availability is given by . In this case, the imbedded Markov chain
is also irreducible with non-null recurrent states and the system of linear equations
has a unique solution.

For CS, and define an alternative formula for the system availability using
renewal theory. The same formulation can be used to compute the availability of RS since

we use Markovian analysis. It is sufficient to replace 1 by 7 in (6.18]).

Example 6.8 Consider Example [6.5. To find the limiting probabilities, the following sys-
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tem of linear equations needs to be solved:

12 (A1 +A2) = So2mo2 + So17o1 + S10710
T (A +A2) = Aomio
S02To2 = A1T12
So1TMo1 = A1711
S10M10 = A2m11
T2 + 11 + o2 + o1 + 710 = 1.

The solution is

02501510 (A1 + A2)

Ty =
Ms02501 + 1501510 (A1 + S02) + A2s10 (2502601 + A1 (o2 + S01))
S S02501510A2
Mcoac01 + Miso1s10 (A1 4 S02) + A2s10 (2502501 + A1 (So2 + S01))
S S01510A1 (A1 + A2)
602501 + Miso1s10 (A1 4 S02) + A2s10 (2502501 + A1 (So2 + So01))
S §02510A1 A2
Mcoac01 + Miso1s10 (A1 4 S02) + A2s10 (2502501 + A1 (So2 + S01))
2
B $02501A3
0 =

Mcoac01 + Miso1s10 (A1 4 S02) + A2s10 (2502501 + A1 (So2 + S01))

and the availability of the system is

02501510 (A1 + 2A2)
M602501 + Miso1s10 (A1 4 S02) + A2s10 (2502501 + A1 (S02 + So1))
02501510 (A1 + 2A2)

A =

2 2
ATS01510 + A1501510S02 + A1 A2610 (So1 + S02) + 2A2501510502 + A3501502

For this example,

A A
0 >\1+2)\2 /\1+1>\2 0 0
A A
0 0 0 )\1+1)\2 /\14-2)\2
P=10 0 1 0 0 )
0 0 0 1 0
_0 0 0 0 1 |
A 2\
E[L] = sz
(A1 4+ A2)
and
)\1 )\% )\2

E[R]

= + + A1 :
so2 (A1 +A2) g0 (M + Ao)? so1 (A1 4 A2)?

. (6.26)
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These imply that

_ §02501510 (A1 + 2A2)
A2601510 + A1501510502 + A1 Aas10 (So1 + So2) + 2A2601510502 + A3501502

which coincides with .

A

6.3.3 Structure of the Availability Function

In this section, we focus on the structure of the availability function for CS and RS. In

Section and we obtained two systems of linear equations ((6.14]) and (6.25)) to

find availability where one of the equations can be represented as a linear combination of
the others. Therefore, we eliminate the first equation in both systems and the remaining

equations can be represented in the matrix form
Amr=b

where A is the coefficient matrix, 7 is a vector representing the limiting distribution, and
b=10,0,---,0, 1]T is the right-hand side vector. It is clear that each entry of A is linear in
A= (A1,A2, -, Ap). Then, the limiting distribution satisfies

T=A""1

where the existence of A~! follows form the fact that and have unique solutions
under our assumptions. It is well-known that the ijth entry of A~! is equal to the cofactor
of the jith entry of A divided by det A, and the cofactor of the jith entry of A is (—1)i+j
times the determinant of the submatrix obtained from A by deleting the jth row and the ith
column. To find the structure of the availability function, the structures of the determinant
of A and the determinant of a submatrix obtained from A is crucial. At this point, recall
the Leibniz formula for determinants
n
det B = Z sgn (o) H B; o) (6.27)
0ESH =1
where B is an n X n square matrix, .5, is the set of all permutations of the columns, and
sgn(o) denotes the sign of the permutation . Then, since each entry of A is linear in \, we
can conclude using that the determinant of A and the determinant of a submatrix

obtained from A is a polynomial in A. Thus, each entry of A~! is a ratio of two polynomials
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in A and, hence, the limiting probability for each state is a ratio of two polynomials in A due
to the special structure of b. Since availability is a finite sum of some limiting probabilities
and polynomials are closed under multiplication and summation, availability is always a
ratio of two polynomials in A.

A polynomial’s coefficients need not be positive in general. However, in the previous
numerical examples, we observe that availability is a ratio of two polynomials with positive
coefficients. In other words, it is a ratio of two posynomials with positive integer powers.
This is a more special structure and we will show that this structure holds for the availability
of CS and RS.

For CS, it is clear that the number of states in the linear equation system (6.14))-(6.15)
is finite. If the initial state is 1, then we can reach all states in W U Fy,. Consider the
transition rate diagram of the Markovian state process where each state in Fy is made
absorbing. Then, we have an acyclic graph since the system always deteriorates to reach a
state in Fyy. Therefore, we can partition all states into subsets by defining R(z) to be the
set of all states that are reachable from z € W in only one transition, and R(z) = ) for
x € Fyy. Now, let D; = {1} and define sets Dy, = {x € R(y);y € Dy_1} recursively. Using
this approach, we define a finite sequence of sets D1, --- , Dy for some finite integer N until
we reach the empty set Dy = (. The sets {D;,---, Dy} form a disjoint partition of all
states since we will always reach a state in Fy after a finite number of steps. Now, we will
show by induction that the limiting probability of every state can be written in terms of
71 multiplied by a coefficient in the form of RP. It is clear that the only state in D; = {1}
has that form. Suppose that every state in Dp_1 has the desired property and consider the
states in Dy. The states in Dy may be in W or Fy. If x € Dy N W, then it follows from

(6.14) that
> TN
- :jGCo(m)

J€EC ()

(6.28)

where (1;,2) € Dy_; for j € Cp(x), and 7, can be written in terms of m; multiplied
by a coefficient in the form of RP since posynomials are closed under summation and

multiplication. If x € Dy N Fyy, then (6.14]) implies

Ty = VIS O(m)v( ]',LU)E (629)
Sx
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Table 6.1: Structure of reliability, MTTF, and availability functions for systems with expo-

nential component lifetimes.

Measure\Structure | CS | RS
Reliability DC | DC
MTTF DC | RP
Availability RP | RP

where (1;,2) € Dy for j € Cp(x). Similarly, 7, satisfies the desired property since
every state in Dj_1 has the RP form and posynomials are closed under summation and
multiplication.

Since the sets D1, -, Dy form a disjoint partition of all states, we can conclude that
the limiting probability of each state is equal to 71 times an RP coefficient. Then, the

normalizing condition )y 7x + Y m, = 1 can be written as h(\)m1 = 1 where h

zEFy
is some RP function. Therefore, 71 = 1/h()) is RP and hence, 7, is RP for every x since
posynomials are closed under summation and multiplication. Therefore, the availability
function (6.15) is RP. Furthermore, we also know that availability of CS can be expressed
as a ratio of polynomials. Thus, it can be concluded that availability of CS is RP with
positive integer powers.

Using the same approach, we can also conclude that the system availability of a series
connection of standby redundant subsystem is RP with positive integer powers. It suffices
to replace 1 and by n and respectively in the analysis. The structure of
reliability, MTTF, and availability functions for CS and RS systems are summarized in

Table Furthermore, and (6.7) provide explicit DC representations of reliability
and MTTF of CS.

6.4 Illustration

Suppose that we have a series connection of m = 2 k-out-of-n subsystems with k1 = n; =
1,ke = 2,n9 = 3, and failure rates A\; and Ay for the components in subsystems 1 and 2
respectively. The components are label as 1 (for subsystem 1), and 2, 3, 4 (for the 3 identical

components in subsystem 2). It is clear that W = {(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1)},
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a‘nd FW = {(07 17 17 1) ) (0? 17 170) ) (0’ 1’ 07 1) Y (07 07 17 1) ) (17 1707 0) ) (]" 07 17 0) Y (17 07 07 1)} N The
representation (6.5)) gives

¢ (x) = z12223 + T1T2T4 + T1X3T4 — 2T1T2T3T4
and the reliability function is

P{L > t} — B [¢ (Zt)] — 67()\1+2)\2)t + 67()\1+2)\2)t + e*()\1+2)\2)t _ 26—()\1+3)\2)t

using , and MTTF is
3 2

T A 20 A £ 3A
using (6.7). Both reliability and MTTF are explicit DC functions of A.

E[L)]

To compute the availability function, suppose that we arbitrarily set the repair rate at
any state x € Fy equal to the inverse of number of components replaced without loss of

generality. Then, using the renewal theoretic approach (6.16])-(6.18]),

'0 A2 A2 A2
A1+3X2 Ai+3d2 A1 +3Xg
0 0 0 0
Q pu—
0 0 0 0
_0 0 0 0 |
[ u 0 0 0 0 0 |
XT3z
A A A
M = 0 )\1+12)\2 /\1+22>\2 >\1+22/\2 0 0 0
A A A
0 0 /\1+22/\2 0 )\1+12)\2 /\1+22/\2 0
A A A
L 0 0 0 >\1+22>\2 0 /\1+22)\2 >\1+12>\2_
A .
m 1= (0, 1, 1, 1)
1 . .
(T-Q) " M14i) = e 0= (0.1,1,0),(0,1,0,1),(0,0,1,1)
2X2 .
m ’l/:(1,1,0,0),(1,0,1,0),(1,0,0,1)
and
So111 = 1, So110 = S0101 = S0011 = S$1100 = S1010 = S1001 = 0.5.
Therefore,

. A1+ 5o
M A 4 8A g + BAg + 1202

which is clearly RP with positive integer powers.
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We can obtain the same result by applying the formulation in Section [6.3.1.1, In this

case,

N ={(1,3),(0,3),(1,2),(0,2), (1, 1)}
with W ={(1,3),(1,2)}, F1 ={(0,3),(0,2)} and F» = {(1,1)}. Applying the formulation
in Section we have

13 ()\1 —|—3)\2) = o3 + 0.5mg2 + 0.5711
T2 (A1 +2X2) = 3Xomi3
T3 = A1T13
0.5mg2 = 1712
0.5m11 = 2)\9mi9
m3 + me +mo3 + o2 + 11 = 1.
The solution is
m3 = (A +2x) /(AT + A1+ 8Midg 45X + 12X3)

T2 = 3Xa/ (AT + A1+ 8\ da + 5Ag + 12)3)
mo3s = A (A1 +2X)/ (AT 4 A+ 8A1he + 5o + 12)3)
Tz = 6A1de/ (AT 4 A1+ 8A1Az + Bz 4 12A3)

i1 = 12X3/ (AT + A+ 8A A2 + 5Ag + 12A3)

and
A1+ 5Ag

M A+ 8A A + BAg + 1202

A=miz+m2 =

which coincides with the renewal solution.
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Chapter 7

OPTIMAL MAINTENANCE OF SEMI-MARKOV MISSIONS

In this chapter, we consider the optimal maintenance of mission-based systems with
multiple components under the usual assumptions requiring IFR life distributions and rea-
sonable cost structures. Our results are valid for any lifetime distribution which can be
chosen arbitrarily for each component. We use the intrinsic aging model introduced by Cin-
lar and Ozekici [17] in which the intrinsic age of a component is defined as its cumulative
hazard. For details of the intrinsic aging model and related notation, see Section Oze-
kici [85] analyzed optimal replacement and repair problems for a single unit working under
a randomly changing environment. In that study, intrinsic aging concepts are used to show
that optimal replacement policy is a control-limit policy. Moreover, some characterizations
for the optimal repair policy under different cost structures are proposed. In this chapter,
we actually extend the study of Ozekici [85] to multi-component case since we define the
mission process as an environmental process which is not affected by the deterioration levels
of the components.

In this chapter, for any vectors x,y € F with x = (z(1),--- ,z(m)) and y = (y(1),-- -,
y(m)), the arithmetic operations zy, = + y,  — y, and x/y define the vectors whose ith
entries are given by x (i)y (i), = (i) + y (i), = (i) — y (i), and z (i) /y (i) respectively. We
also assume that ry (i,a) is increasing in a and it is strictly positive. Finally, all costs are
discounted at some rate o > 0. For a technical reason which will be clear shortly, we further

assume that K = sup;ep E [e7*71| X =i < 1.

7.1 Optimal Replacement Problem

In this section, we will analyze a quite complex maintenance problem for a mission-based
system with some structure function ; during phase i € E. We assume that the system
is observed only at the beginning of each phase. After an observation, a decision is made

for each component to replace or not to replace it by considering the intrinsic age vector
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of the system and then the system starts to perform a new phase. We also assume that
the duration of the replacement activity is negligible (or included in the phase durations)
and ¥;(a) = 9;(a1,a9,- -+ ,an) is nonincreasing in ay, for every k. Note that if the system
structure is coherent in all phases, the former condition is satisfied trivially.

We let B™ be the set of all replacement policies so that for any r € B™, if r (k) = 1(0),
component k will (not) be replaced. If the next phase is i and the intrinsic age vector
of the system is a, then the cost of applying the replacement policy r is ¢, (4,a;7). The
cost of performing phase i with an initial intrinsic age a is ¢ (i,a) which is increasing in
a and if the system fails during phase i, the failure cost f; is incurred. We assume that

SUP;e g qer € (1,a) = C < +o00 and sup,cp fi = f < +oc.

Assumption 7.1 The maintenance cost function ¢, : E x F x B™ — R, satisfies
i. ¢m (i,a;0) =0,
it. T,s € B™ with r > s implies ¢y, (i,a;7) > ¢ (1,05 8) ,
iti. r,s € B™ with rs = 0 implies that ¢, (i,a;7 + 8) < ¢ (4, a;7) + ¢ (4,05 8),
. ¢ (1,a;1) is independent of ay, if r, = 0 for all k,
V. SUDjep aer Cm (1,0;1) = Cpy < 400,
vi. ¢ (4,a;7) is increasing in ay, for all k.

The conditions imposed on ¢, by Assumption [7.1] are quite important and interesting.
Conditions (i) and (i) simply state that no cost is incurred if there is no replacement and
the replacement cost increases as more components are replaced. By condition (i), if we
consider two replacement policies which do not replace the same components, the cost of
applying both policies at the same time is less than the sum of the individual costs. This is
very reasonable if there is a fixed cost associated with each replacement activity. Condition
(7v) asserts that the cost of a replacement policy is not affected by the age of a component
that is not replaced. The cost of replacing older components is higher by condition (vi).

This is also reasonable since the salvage value of older components is lower.
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We let p(i,a,s,db) = P{As; € db]Y =i, Ay = a} denote the probability that the age of
the system will be in db after s units of time during phase ¢ given that the initial age of the
system is a. Using intrinsic aging concepts and the independence of the component lifetimes

during a given phase, p(i, a, s, db) can be written explicitly as

p(i,a,s,db) = HP{A )€ db(k)|Y =i, Aq (k) = }—Hpm(ksdb(k:))

where ﬁfa(k) is given by 1'

Our purpose is to find a replacement policy which minimizes the expected total dis-
counted cost. Let v (i,a) denote the minimum expected total discounted cost if the initial
phase is 4, and the device is at age a. Then, v satisfies the dynamic programming equation
(DPE)

v(i,a) = Trélé% {em (iya;7) +c(i,a(l—7)) +Tv(i,a(l —1))} (7.1)

where the operator I' : B — B is defined by
+oo
=% [ TQuid)e ] [FlasmbGn+a-vo ) @)
JEE F
for any function g in the set 8 of all bounded nonnegative real-valued functions defined on
E x F. Note that we implicitly assume in ((7.2)) that if the system fails during a phase, the
failure cost is incurred at the end of the phase. Otherwise, the analysis becomes much more
complicated.

For any g € 8, we define the operator T : B — ‘B so that

Yg(i,a) = rIélllglrln {em (i,a;7) +c(i,a(l —7r))+Tg(i,a(l —7r))} (7.3)

forallie EF,a € F.

Theorem 7.2 There is a unique function v* in B which satisfies the DPE .

Proof. We will use Banach’s contraction mapping theorem. Choose two functions f,g € B

and suppose ||-|| is the usual supremum norm on B such that ||g|| = sup;cp acr |9 (3,a)l.
Note that
Yg (i)~ Tf(iva) = min {en (iair) +c(ioa(l - )+ TgGa(l - 1))
re

—TIé%ITln {em (i,a;7) +c(i,a(l—7r)+Tf(i,a(l —1))} (7.4)
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Let 7 be the replacement policy which minimizes the second term on the right hand side of

. Then,

Yg(i,a) —Yf (i,a) = Trgérrln{cm(z a;r)+c(i,a(l—r))+Tg(i,a(l—1))}

—cm (1,a;7) —c(i,a (1 =7)) =T f (i,a (1 = 7))

< e (t,a;7)+c(i,a(1—7))+ g (i,a(1 —7F))
—Cm (iva;F) - C(iva(l _?)) - Ff (iva(l _?))
= Dg(i,a(1—=7)—Tf(i,a(1-7))
+oo
= Y [ i [l -n).sa)loG.b) - f 6]
jeErE
+oo
< ¥ [ etiage [5at s~
jerE
< I(Hg——fH-

Similarly, it can be shown that Tf (i,a) — Yg (i,a) < K ||g — f|| for anyi € E and a € F.
Thus, we have || Yg—Yf|| < K|lg— f|. Since K <1, T is a contraction mapping on B
and it has a unique fized point v* = Yv* which is the unique solution of DPE . |

Lemma 7.3 If g (i,a) is increasing in a for every i € E, then

[ Mopsacins o= [ TIog s 0
Br j#k By J#k
c(k)=hy (i,a(k),s)

for alli € E;k € S;a € F, and s € Ry where By, and By, are given by and
respectively, and

fG,d,¢)=g(jc)+ (1= (o) fi
Proof. Choose arbitrary ¢ € By, such that ¢ (k) = hy (i,a (k),s). Then, there exists c¢* €
By such that c* (k) = +o00 and c* (j) = c(j) for every j # k. If1; (c) =0, then ¢, (¢*) =0
since ; is nonincreasing in c,. Then, f(i,7,¢) = fi+g(j,¢), f(i,7,¢") = fi+g(J,c*) and,
hence, f (i,7,¢*) > f(i,j,¢). Now, suppose that v, (c¢) = 1. Then,

f (iaja C) =g (]7 C) < g (]a C*) + (1 - % (C*)) fl = f (ivja C*) :
Thus, for every ¢ € By with c(k) = hy(i,a(k),s), we can find ¢* € By such that
fG,j,¢*) > f(i,j,c) and c*(j) = c¢(j) for every j # k. This completes the proof triv-
tally. W
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Theorem 7.4 Let v* be the optimal return function of Theorem[7.2, then
i. 0<v*<(Cp, +C+Kf)/(1-K),
i1. v* (i,a) is increasing in a.

Proof. It suffices to show that Yg is increasing in a and 0 < Yg < (Cp, +C+ K f)/(1-K)
if0<g<(Cn+C+Kf)/(1—-K) and g is increasing in a. It is clear that 0 < T'g <
K(Cp+C+ f)/(1 = K). Then, using we have 0 < Yg < (C,, + C+ Kf)/(1 — K).
It is clear that

dhy, (i,a,s) _ dHy (i, H; ' (i, ax) + 5) _ dH, (z’,t)| 1 d(H;"' (i,ax) + s)
day, day, dt  t=Hg (hag)ts day,
. . 1. dHil 1, Q)
= 7 (’L,Hk (Z,Hk Y (i, ar) + s)) kda(k)
. 1. 1
= 7 (1,Hk (2,Hk 1 (1,ar) + s)) T

di ’t:Hk_l(i,ak)
e (6 Hy (4, Hy (i a) + 5)) -
Tk (7’7 CLk) o

if component k and the system are in working condition since ri is always positive and
increasing. Therefore, h(i,a,s) and h(i,a,s) — a are increasing in a. Choose a,b € F such
that a (k) < b(k) and b(j) = a(j) for every j # k for some k. We need to show that
Yg(i,b) > Yg(i,a). Define
" (i,a,5,dc) = [ B, ;) (s, de(3)).
ik
Then, since ¢y, (i,a;7) and c(i,a (1 — 1)) are increasing in a for every r, it is sufficient to
show that
[ ptibsde) i) = [ 5asdo) f 0.

:F
for a given s where f (i,5,¢) =g (j,c) + (L =, (¢)) fi. Let

q—/F(ﬁ(i,b,s,dc)—ﬁ(i,a,s,dc))f(i,j,c).
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Then, we need to show that ¢ > 0. Suppose that b(k) < +o00. Then,
0 = [ @540 = 50.s.d0) (o)
k

+/ (p(i,b,s,dc) —p(i,a,s,dc)) f (i,7,¢)

By,

= / P (i, a5, dc) " (AT £ (7, )

By;
c(k)=hy(i,b(k),s)

B / 5 (i, a, 5, de) e~ (e (Gatk)9)=all) £ (; 5 )

By;
c(k)=hg(i,a(k),s)

+/ 1346 (i,a, s, dc) (6—(hk(i7a(k),8)—a(k)) _ 6—(hk(i,b(k),s)—b(k))) f (i, j,¢)
By

> / 7 (4, a, 5, de) (e—(hk(i,b(kxs)—b(k)) _ e—(hk(i7a<k),s>—a(k))) F(i,j,0)
By;
c(k)=h (i,a(k),s)
i / 7 (4, a, 5, dc) <€f<hk<i,a<k),s)fa<k>> _ e—(hm,b(k),s)fb(k))) (i j.c)
By,
_ <67<hk<i,b(k),s)7b(k» _ e—(hk(z’,a(m,s)fa(k)))
X / ]B/k(i?avsadc)f(ivjvc)_/ ﬁk(i,a,s,dc)f(i,j,c)
By; B
c(k)=hy, (iza(k),s)
> 0

where the last inequality follows from Lemma[7.3
Now, suppose that b (k) = +oo. Then,

¢ = / (5 (i.b, 5, de) — P (ira, s,de)) f (ir],c) — / B (i,a,s,dc) f (i, )

Bk Bk
= / ﬁk (7’7 a, s, dC) (ei(hk(iﬂ(k)”g)ia(k))) f (ivjv C)
By

- / p/Vk (1'7 a” S? dc) 6_(hk(z7a(k)78)_a(k))f (/L? j? C)

Byg;
C(k):hk (i>a(k) 75)
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o O (i.a(k) 5)—a(k))

X / 134“ (i,a,s,dc) f(i,7,¢) — / f)k (i,a,s,dc) f (i,],c)

By,
By;
C(k):hk(iza(k)vs)
> 0
where the last inequality follows from Lemma[7.5. M
We introduce some new notation for simplicity. If 7* is the optimal policy, we let

C(i,a) = {k;ry (i,0) = 1}

R(i,A) = {a;C (i,a) = A}

for every i € E,a € F, and A C S. Here, C (i,a) denotes the set of components which are
optimally replaced if the age of the system is a during phase i, and R (i, A) denotes the set

of ages at which the optimal decision is to replace the components in A during phase .

Theorem 7.5 There is an optimal replacement policy satisfying DPE such that
i. 3 (4,a) =0 if ar, = 0,
ii. a (1 —r*(i,a)) € R(i,9).

Proof. The proof of the first statement trivially follows from (7.1) since ¢, (4, a;7)
is increasing in r and kth entry of a (1 —r) is 0 independent of r. To prove the second

statement, first note that 7} (i,a) = 1 implies that
ry (G a(l—r"(i,a))) =0

for any k € C (7, a) by the first statement. By taking the contrapositive, r} (i,a (1 — 7 (i,a))) =
1 implies that 7 (i,a) = 0. Therefore,

r* (1‘7@) r* (i,a(l o (i,a))) ~0
and

em (G,a;7" (iya (1 — 1" (i,a)))) = em (t,a (1 —r* (i,a)) ;7" (i,a (1 — 7 (i,a))))
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by Assumption By defining
r(i,a) =r*(i,a) +r* (i,a (1 — 7% (i,a)))
we have

v* (i,a)

IN

em (i,a;7 (1,a)) + ¢ (i,a (1 =7 (4,a))) + Tv* (i,a (1 — 7 (i,a)))

IN

em (iya;r* (iya)) + ¢ (i,a (1 =7 (4,a))) + Tv* (4,a (1 =7 (4,a)))
+em (a1 —r*(i,a)) ;7" (i,a (1 — 17 (i,a))))

em (1,577 (i,0) + e (1,0 (1 — 7" (i,a)) ;7" (4,a (1 — 77 (i,a))))
+c(i,a(l—7"(i,a)) (1 —7*(i,a (1 — 1} (i,a)))))

+Iv* (i,a (1 —r* (i,a)) (1 —r* (i,a (1 — 1% (3,a)))))

= Cm (iva; r* (Zua)) + 07 <Z7a(1 - (Zaa’)))
< Cm (27 a; r* (Za a)) tc (Zv a (1 —r (17 a’))) + I'v* (Z7 a (1 - (Za CL)))
= v*(i,a).
In this chain of implications, the first inequality directly follows from (|7.1)) since 7 € B™.

The second inequality follows from (ii¢) in Assumption The first equality follows from
the facts that

1-7(t,a) = 1—7r"(i,a)—r*(i,a(l —=7r*(i,a))) + 7" (i,a)r* (i,a (1 — 7" (i,a)))
= 1—7"(i,a) = (1 —=7*(4,a)) r* (i,a (1 —r* (i,a)))

= (1—-7"(,a) (1 —=7"(i,a (1 — 1" (i,a))))

since

r* (i,a)r* (i,a (1 —r* (i,a))) = 0.
The second equality follows from the fact that
v*(i,a(1—=71*(i,a))) = cm(t,a(l=71"(i,a));7" (i,a (1 =77 (i,a))))
+c(i,a(l—7*(i,a) (1 —7* (4,a (1 — 7} (4,a)))))

+Iv* (4,0 (1= 7" (4,a)) 1 =" (i,a (1 =} (i,0))))
and the third inequality follows from the fact that ¢, (¢,a,2;0) = 0 and

v (t,a (1 =71 (i,a)) <c(i,a(l—7r"(i,a))) + Tv* (i,a (1 —r* (i,a))). (7.5)
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Finally, the last equality is trivial since 7* (i, @) minimizes the right side of ([7.1)). Therefore,

all of these inequalities must be equalities which means that
Cm (6, a;7 (i, a)) = cm (1, 0577 (i, a)) + ¢ (4,0 (1 =77 (4,0)) 577 (i, a (1 = 77 (i, 0))))

and ([7.5)) is also an equality. But this implies that we can define r* at a (1 — 7* (,a)) such
that r* (i,a (1 — r* (i,a))) = 0 and 7 (¢,a) = r* (i,a) with a (1 —r* (i,a)) € R(i,2). R

Theorem 7.6 Suppose that c,, (i,a;r) is independent of a. Then, there is an optimal

replacement policy satisfying DPE such that
i. If by > ay forke AC C(i,a) and by = ay, for k ¢ A, then r* (i,b) = r* (i,a)

it. If by, < ay for k € A C S\C (i,a) and by, = ay, for k ¢ A, then there exists k € A such
that r} (i,b) = 0.

Proof. Using Theorem we have v* (4,b) > v* (i,a) and, hence,
e (i, b7 (5,0)) + € (3, b (1 — 1° (3, ) + T* (3,5 (1 — 1* (i, b, 2)))
> e (i, 37" (i, ) + ¢ (5,0 (1= * (5,0))) + Tv* (i, a (1 — 1* (i, )))

= cm (4,057 (1,a)) + ¢ (i,b (1 — r* (1,a))) + Tv* (3,6 (1 — 7% (4,a))) .

The last equality follows from the main hypothesis. This result implies that at age b, if
we apply the optimal policy at age a, we have the same optimal cost. Therefore, in the
optimal policy at age b, we can apply the optimal replacement policy at age a and this
proves (). To prove (i7) by contradiction, suppose that r} (¢,b) = 1 for every k € A. Then,
a(k) > b(k) for ke A cC C(i,b) and a (k) = b(k) for k ¢ A. Applying Theorem (1),
we have r* (i,a) = r*(i,b). This implies that 7 (i,a) = 1 for every k € A C S\C (i,a).

Clearly, this is a contradiction. H

Corollary 7.7 Let r* be the optimal policy of Theorem[7.6, Then,
i. vy (4,a) is increasing in ay, for all k € S,

it. Ifa € R(3,S), thenb € R(i,5) for all b > a,
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iii. If b(k) <a(k) and b(j) = a(j) for every j # k with v} (i,a) = 0, then r} (i,b) =0,
iv. Ifa € R(i,2), b(k) <a(k) and b(j) = a(j) for every j # k, then r} (i,b) = 0.

Proof. To prove (i), it suffices to show that if r} (i,a) = 1 for some a € F, then r} (i,b) = 1
for b € F with b(k) > a (k) and b(j) = a(j) for every j # k. This follows from Theorem
trivially. To prove the second statement suppose that a € R (¢, 5) and choose b € F
such that b > a. Then, since 7}, (¢,a) = 1 for every k € S, r* (i,b) = r* (4, a) using Theorem
This trivially implies that b € R (4,.5). The proofs of (iii) and (iv) follow trivially from
(73) in Theorem by taking A ={k}. W

7.2 Optimal Repair Problem

In the previous section, there are only two decision alternatives at each decision epoch:
to replace a component by a brand new one or to let it operate during the next phase.
In many applications, however, it is also possible to repair a component so that its age is
decreased to a lower level by some technical maintenance operations or by simply replacing
the old component by one that is younger, if not brand new. We will use the settings and
probabilities constructed in the previous section once more.

The decision maker observes the system at the beginning of each phase and makes a
repair decision. If the next phase is ¢ and the intrinsic age of the system is a at the end of
a phase, then the decision maker chooses an action y (i,a) from the set {b € F;b < a}. The

cost of repairing the system from age a to b during phase i is C; (a;b) where b < a.
Assumption 7.8 The repair cost function C; : {(a, b) € F4b < a} — R satisfies
i. C;(a;b) is increasing in a and decreasing in by for every k € S,
it. Cj(a;a) =0,
i1, SUp;cp qcx Ci (a;0) = Cp < +00.

Condition (i) simply states that the cost of repair increases as the amount of improve-
ment increases. Condition (i) asserts that if the system does not experience any mainte-

nance, then no cost will be incurred. It is clear that these are very reasonable assumptions.
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We also suppose that if there are more than one optimal repair action, then the alter-
native with lower final age will be chosen. Our purpose is to find a repair policy which
minimizes the expected total discounted cost. Let v (i,a) denote the minimum expected
total discounted cost if the initial phase is i, and the device is at age a. Then, v satisfies

the DPE
v(i,a) = inf {C:(a;b) +e(i,B) +Tu(i,b)} (7.6)
where the operator I' : B — 9B is defined by
. +m . . ~ . .
roa =3 [ Qtidse | [plasain+a-vnmmnb @
jeE 0 F
for any function g in 8.

For any g € B, we define the operator T : B — B so that

Yg(i,a) = b;il?gfa {Ci(a;b) +c(i,b) +T'g (3,b)} (7.8)

forallie F,a e F.

Theorem 7.9 There is a unique function v* in B which satisfies the DPE (@
Proof. We will use Banach’s contraction mapping theorem. Choose two functions f,g € B
and suppose that ||-|| is the usual supremum norm on B such that ||g|| = sup;cp qex 9 (3, a)|.

It suffices to show that YT is a contraction mapping and note that
Tg(i,a)=X] (i;a) = inf {Cs(@b)+c(i,) + Tg (i,0)) — inf {C:(a:B) +c(i,b) +Tf (i,b))

Let b be the intrinsic age which minimizes the second term on the right hand side in the

equation above. Then,

Yg(i,a) —Yf(i,a) = b;il?gfa {Ci(a;b) + c(i,b) + Tg (i,b)} — C; (a;b) — ¢ (i,b) — T'f (i,b)
< C;(a;b) +c(i,b) +Tg (i,0) — Ci (a;b) — ¢ (i,b) — T'f (4,b)
= Tg(i,0) —Tf (i,b)

+o00
= X [ eGiage [Fibsdd oG- f o)

jeE
+oo _
< Y[ ddye [Fibsde) g ]
jeEe”0 F
< Klg-fl.
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Similarly, it can be shown that Tf (i,a) — Yg (i,a) < K ||g — f|| for anyi € E and a € F.
Thus, we have || Yg—Yf|| < K|lg— f|. Since K <1, T is a contraction mapping on B
and it has a unique fized point v* = Yv* which is the unique solution of DPE @ |

To simplify the notation, we let (ag,b) = ¢ where c¢(k) = a (k) and ¢(j) = b(j) for every
j# k-
Theorem 7.10 Let v* be the optimal value function of Theorem[7.9. Then,

i 0<v* < (Cr+C+Kf)/(1-K),

it. If C; (a;b) > C; (6; 5) whenever by, = aj, > @y = by for some k and a; = aj, Ej = bj

for every j # k, then v* (i,a) is increasing in ay for every k.

Proof. We need to show that Yg is increasing in a and 0 < Yg < (C,+C+ Kf)/(1-K)
if0<g<(C,+C+Kf)/(1—-K) and g is increasing in a. Following the same steps as
in the proof of Theorem (7.4}, it can be shown that 0 < v* < (C, +C + K f)/(1 — K) and
Lg(i,a) is increasing in a. Now choose a,c € F such that c (k) > a (k) and c(j) = a(j) for
every j # k. We need to show that Yg (i,¢) > Yg(i,a). Choose b < a. Then, trivially b < c

and, hence,
C; (e;b) +¢(i,b) + g (i,b) > C; (a;b) + ¢ (i,b) + g (i,b) > Yg (i,a)
since C; (a;b) is increasing in a. Now, choose b < ¢ with b(k) > a (k). Then,
Ci(e;b) +c¢(i,b) + g (i,b) > Ci((bg,c);b)+c(i,b) +Tg(i,b)
Ci ((ag, (br, ¢)) ; (ar, b)) + ¢ (i, (ar, b)) + Tg (i, (ar, b))

Oi (a; (ak7 b)) +c (iv (ak:a b)) + Fg (ia (ak7 b))

Yg (i,a)

Y

v

where the first inequality follows from the fact that ¢ > (bg,c) and the second inequality
follows from the main hypothesis and b > (ag,b). Then,

Yg(i,c) = min{b.i&f {C; (¢;b) + ¢ (i,b) + Tg(i,b)},

it i@ b) +Tg (i,
rceind oy G (60) +e(1,0) + Tg b)}}

min{Yg (:,a), g (i,a)} = Yg (i,a).

v
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We will let y* (i,a) denote the optimal decision at state (i,a) which provides the min-
imum to the right hand side of ([7.6). The structure of the repair cost function C' is too
general to obtain useful characterizations of the optimal policy. We will therefore impose

additional restrictions on C' which lead to some simplifications.

Theorem 7.11 If C;(a;b) < C;(a;¢)+C;(c;b) for alla>c>b> 0 andi € E, then there
is an optimal policy such that y* (i,y* (i,a)) = y* (i,a).
Proof. Choose arbitrary i € E, and a € F. Suppose that y* (i,a) = «, and choose some

b < a. Using the main hypothesis, we have
C; (a;b) < Cj (a;a) + C; (a; b)

and

Ci(a;b) — Ci (a; ) < Cj (e ). (7.9)
Since y* (i,a) = a,
Ci(a;a) + c(i,a) + Tv* (i,a) < Cj(a;b) + ¢ (i,b) + Tv* (4, )

and

c(i,a) + T (i,a) < Ci(a;b) — C; (a; ) + ¢ (i,b) + Tv* (i,b) .
This implies that
¢(i,a) + Tw* (i) < Cy (a;b) + ¢ (4,b) + Tv* (4,b) (7.10)
by using (@/ Since b is an arbitrary value satisfying b < «, using , we have
c(iya) + T (i,a) < b;il?gfa {Ci (a;b) + ¢ (i,b) + T'v* (i,b)}.

Since C; (a; ) = 0, we can conclude that we can choose y* (i,) = « in the optimal repair

policy and, hence, y* (i,y* (i,a)) = y* (i,a). A

Theorem 7.12 Choose some a € F and i € E. Suppose that C; (b;d) = C; (b;¢) + C; (¢; d)
foralla+u>b>c>d>0 for someu > 0. Then, y* (i,a + u) < a implies that there is

an optimal policy such that y* (i,a + z) = y* (i,a) for all 0 < z < w.
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Proof. Choose arbitrary z # 0. By the main hypothesis, it is clear that there is a repair

decision at (i,a 4+ u) and, hence,

vi(hatu) = nf {Ci(a+ud)+e(ib) + v (4,0)}

= inf {C;(a+u;b)+c(i,b) +Tv* (i,b)}

b;b<a+z
= b-il?<f {Ci(a+u;b) + ¢ (i,b) + Tv* (,b)}.

This implies that

inf {C;(a+u;b)+c(i,b) +Tv*(i,0)} = Cila+u;a+z)

b;b<a+z
inf i ; '7 r * .7
+b;b1§na+z {Ci(a+ z;b) +c(i,b) + T'v* (3,b)}
= Ci(a+u;a+z)
+inf {C(a+5b) +c(i,b) + T" (5,0)}
and

v (l,a+2) = b.bi<nf+ {Ci(a+ z;b) +c(i,b) + 'v* (3,b)} (7.11)
= b-il?<f {Ci(a+ z;b) + c(i,b) + T'v* (i,b)} . (7.12)

Therefore, there is an optimal policy with y* (i,a + z) < a. Now, choose b < a. Then,
Ci(a+ z;y" (i,a)) + ¢ (i,y" (i,a)) + Tv* (i,y" (i,a))
=Ci(a+za)+Ci(a;y* (i,a)) +c(i,y" (4,a)) + T0" (4,y" (i,a))
< Ci(a+z;a)+ C;i(a;b) + c(i,b) + Tw* (,b)
=C;(a+ z;b) +c(i,0) + Tv* (i,b) .
This and imply that

Ci(a+ zy" (i,a)) + c(i,y" (i,a)) + Tv* (i,y" (i,a))

< inf {Ci(a+236) +c(5,b) + Tv" (3,)}

=, 0f {Cilat2b)+e(i,) +Tv" (5,5)}

and there is an optimal policy such that y* (i,a + z) = y* (i,a). W
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Corollary 7.13 Suppose that C; (a;b) = C;(a;c¢) + C;i (¢;b) for everya > ¢ > b > 0 and

i € E. Then, there is an optimal policy such that y; (i,a) is increasing in ay.

Proof. Suppose that y* (i,a) = c and y* (4,a + u) = b where u;, > 0 and u; = 0 for every
j # k. If by > ay, then by > ¢ since ¢ < ay trivially. Now, suppose that by < ai. Then,
we have b < a and y* (4,a) = y* (¢, a + u) using Theorem and this completes the proof.
|

Proposition 7.14 Suppose that
Ci(a;b) + ¢ (i,b) > C; (a;¢) + ¢ (i,c) (7.13)

whenever b > ¢ and b # a. Then, v* (i,a) is increasing in a and there is an optimal policy
such that y* (i,a) € {0,a}. If also holds for b = a, then there is an optimal policy
such that y* (i,a) = 0.

Proof. Following the same steps as in the proof of Theorem [7.4] it can be shown that
I'g (i, a) is increasing in a. Choose a,c € F such that ¢ (k) > a (k) and ¢ (j) = a (j) for every
j # k. We need to show that Yg(i,c¢) > Tg (i,a). Choose b < a. Then, trivially b < ¢ and,
hence,

Ci(¢;b) +c(i,0) +Tg(i,b) > C; (a;b) + ¢ (i,b) + Tg (i,b) > Tg (i,a)

since C; (a;b) is increasing in a. Now, choose b < ¢ with c¢(k) > b (k) > a (k). Define b such
that b (k) = a (k) and b(j) = b(j) for every j # k. Then, b < b and b < a. This implies

that
Ci(c;b) +c(i,b) + g (i,b) > C;(c;b) +c(i,b) +Tg (4,b)
> C;(a;b) +c(i,b) +Tg (i,b)
> Yg(i,a
Ifb=c,

Ci(¢;b) + ¢ (i,b) + Tg(i,b) = ¢c(i,¢) +Tg(i,c)
> c(i,a)+Tg(i,a)

> Yg(i,a).
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Then,
Yg(i,c) = min {b.igl<f {Ci(¢;b) + ¢ (i,b) +Tg(3,b)},

b;bSc,i&f)m(k) {Ci(c;b) + ¢ (i, b) + Tg (4, b)}}

> min{Yg(i,a),Yg(i,a)} =Yg (i,a).
Using the main hypothesis,
Ci(a;0) +¢(i,0) +T'v (4,0) < C; (a;b) + ¢ (4,b) + Tv (i,b)

for every b 5 a. Therefore,

v* (i,a) = b;il?gfa {C; (a;b) + ¢ (i,b) + T'v* (i,b)}
= min {égg {Ci (a;b) + ¢ (i,b) + Tv* (i,b)}, c(i,a) + T'v* (3, a)}

= min{C;(a;0) + ¢ (¢,0) + I'v* (4,0) ,c(i,a) + Tv* (i,a)} .

This trivially implies that there is an optimal policy such that y* (i,a) € {0,a}. Suppose
that (7.13]) also holds for b = a. It is sufficient to show that C; (a;0) + ¢ (i,0) + T'v* (i,0) <
¢ (iya) + T'v* (i,a). This follows from I'v* (i,a) > T'v* (,0) and

c(iya) = Cj(a;a) + ¢ (iya) > C; (a;0) + ¢ (7,0) .

|

This result is very intuitive since repairing the device to a smaller age is always cheaper
under this cost structure.

An interesting special case is when the repair action corresponds to selling the old device
at hand and replacing it with a younger one purchased from the market. Let ¢; (a) and s; (a)
be the purchase cost and salvage value, respectively, of a device with intrinsic age a. Then,
C; (a;b) = ¢; (b) — s;(a) whenever b < a with a # b and, as usual, C;(a;a) = 0. We
assume that ¢; and s; are both decreasing in aj for every k with ¢; > s;. It is easy to
show that the hypothesis of Theorem [7.11]is satisfied under this cost structure and hence
y* (i,y* (i,a)) = y* (i,a) for every a.

Under this cost structure, simplifies to

v (i,a) = min {c (i,a) + Tw (i,a) + s; (a) ,li)I<1£ {ci (b) + ¢ (i,b) + T'v (¢, b)}} —si(a) (7.14)

forall7e F and a € F.
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Theorem 7.15 Let y* (i,a) be the optimal repair policy of DPE . Then, if y* (i,a) #
a, y* (i,a+u) < a for some uw >0 and y* (i,a + 2) # a+ z for some 0 < z < u, then there
is an optimal policy such that y* (i,a + z) = y* (i, a).
Proof. Since y* (i,a) # a,
v* (iya) = ir<1f {c; (b) +Tv* (3,b)} — s; (a) .
bsa
If u = 0, then there is nothing to prove. Suppose that u # 0. By the main hypothesis, it is

clear that there is a repair decision at (i,a + u) and, hence,

v (l,a+u) = b<il;1£u{ci (b) + c(i,b) + Tv* (4,b)} — s; (a +u)
= ;r<1(fl {ci (b) + c(i,b) + T'v* (4,b)} — s;i (a + u) (7.15)

where the last equality follows from y* (i,a + u) § a. Now, choose arbitrary z # 0 such that
y* (i,a+ z) # a+ z. Then, we have
v* (i,a+2z) = inf {¢ (b)+c(i,b) +Tv* (4,0)} — s; (a+ 2)
bsa+z

and

{bibSa}C{bbSatz)C{bbsatu}.

This implies that

inf {¢; (b) + ¢ (i,b) + Tv* (i,b)} > inf {c;(b) +c(i,b) + Tv* (,b)}

bsa bsa+z

inf {c; (b) + ¢ (i,b) + Tv* (i,b)}

bsa+tu

v

and using ,

inf {¢; (b) +c(i,b) +'v* (3,b)} = zr<1£ {ci (b) + c(i,b) + T'v* (,b)}

bsa+z

which implies that we can choose y* (i,a+ z) = y* (i,a). N

Corollary 7.16 Let y* (i,a) be the optimal repair policy of DPE . Then, there is an
optimal policy such that yj (i,@) > yj (i,a) provided that ay > ay, for some k, a; = a; for
every j # k and y* (i,a) # a.

Proof. Note that if y; (i,a) = a, then there is nothing to prove. Choose a, @ and k such
that @y, > ay, a; = a; for every j # k, y* (i,a) = ¢ # a, and y* (i,a) = b # a. If by > ay,
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then by > ¢ since ¢ < ag. Now, assume that by < ayp. This implies that b < a and
b # a. By taking uw = @ — a, Theorem implies that y* (i,a) # a, y* (i,a +u) £ a and
y* (i,a+ u) # a+u. This implies that y* (i,a + u) = y* (i,a) and, hence, y* (i,a) = y* (i, a)
which completes the proof. M

In some cases, the purchase cost and the salvage value of a system may be equal. Then,

Ci(a;b) = ¢; (b) — ¢i (a) and simplifies to
v (i,a) = b;glgfa {ci(b) +c(i,b) +Tw (i,b)} —ci(a). (7.16)

Theorem 7.17 Let y* (i,a) be the optimal repair policy of DPE . Then, there is an

optimal policy such that
i. Ify*(i,a+u) < a, for some u >0, then y* (i,a + z) = y* (i,a) for all0 < z < u,
ii. yi (i,a) is increasing in aj.

Proof. Choose arbitrary a > ¢ > b > 0. Then,

Ci(a;¢) + Ci(e;0) = ¢ (c) —¢i(a) + ¢ (b) —ci(e)
= ¢ (b)—ci(a) =Cj(a;b).

Then, the results trivially follow from Theorem [7.13 and Corollary[7.15 M
In addition, if there is no salvage value, i.e., s; = 0, the DPE ((7.6) can be rewritten as
v (i,a) = min {c (i,a) + T'v (i,a) ,;gf {ci (b) + c(i,b) + T'v (4, b)}} . (7.17)
sa

Theorem 7.18 Let y* (i,a) be the optimal repair policy of DPE . Then, there is an
optimal policy such that

i. If y* (i,a) # a, y* (i,a +u) = b with b $ a for some u > 0 and y* (i,a+z2) #a+ 2

for some 0 < z < w, then y* (i,a + z) = y* (i,a),

ii. yi (i,a) > yj (i,a) provided that @y > ay, for some k, a; = a; for every j # k and

y* (i,a) # a.

Proof. The results follow trivially from Theorem[7.15 and Corollary[7.16 since ¢; > s; = 0.
|
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Chapter 8

RELIABILITY AND OPTIMAL MAINTENANCE UNDER
MARKOVIAN MISSION AND DETERIORATION

In this section, we consider a mission-based system with a mission process governed by
a finite state Markov process. In other words, the system under consideration performs a
mission whose successive phases follow a Markov chain and all phase durations are exponen-
tially distributed. We also assume that the system is subject to Markovian deterioration.
In other words, successive deterioration levels of the system follow a Markov chain and
holding times in each deterioration level are exponentially distributed during any phase.
The most important point is that the generator of the deterioration process of the system
(the transition probability matrix and rates of the holding times) depends on the mission
process. This implies that the deterioration process is a Markov process modulated by
another Markov process, i.e., the mission process. Our setting is much more simple than
the ones used in the previous sections. The main incentive behind this simplification is
the desire to find more computationally tractable results. We analyze reliability, MTTF,
availability, and optimal maintenance and provide numerical illustrations. We also show
how our reliability, MTTF, and availability results can be applied to any coherent system

with independent and exponentially distributed component lifetimes.

8.1 Mission and Deterioration Processes

Let Y; be the phase of the mission which is performed at time t. We assume that the
mission process Y = {Y;;¢ > 0} is a Markov process with a finite state space E, infinitesimal
generator H, transition probability matrix ), and transition rate vector §. We suppose that
the deterioration level or age of the system takes values in some finite set F' = {0,1,--- , M}
where 0 stands for a brand new system and M represents system failure. The deterioration
process of the system is A = {A;;t > 0} with state space F'. Since the survival properties

of the system change depending on the phases of the mission process, we assume that A is
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modulated by Y. The deterioration process follows a Markov process with state space F,
generator G, transition probability matrix F;, and transition rate vector \; during phase
i. We also assume that M is an absorbing state for every ¢ unless otherwise specified, i.e.,
P, (M,M) =1 and A; (M) = 0. In this chapter, unless otherwise specified, we do not put
any assumption which says that the deterioration process is increasing although A shows
the deterioration of the system. Therefore, P; does not have to be upper triangular. We
just distinguish between the best state 0 and the worst state M. It should also be clear
that A does not really measure "real age" in time with respect to some continuous clock, it
indicates the deterioration level the system.

Considering the dependence between the age process and the mission process, we will
use the bivariate process (Y,.4) = {(¥:,.A;);t > 0} which is more suitable for our purpose
in the foregoing analysis. It is clear that (Y,.A) is also a Markov process with state space

FE x F and infinitesimal generator

G;(a,b) ifa#M,j=1ib#a

o H(i,j ifa#M,j#i,b=a
G (i,a;5,b) = 07 7 . (8.1)
Gi(a,a)+ H (i,i) ifa#M,j=1ib=a

\ 0 otherwise

for all i,7 € E and a,b € F. Note that (i, M) is absorbing for all i« € E. Using G, the
transition probability matrix of the imbedded Markov chain and the transition rates of

(Y, A) can be obtained, respectively, as

(A?a()%) Pi(a,b) ifa#M,j=1ib#a
5; o o
9% 1, if a # M, i,b=a
P(i,a;j,b) = (Ai(a)+5i>Q( ]) % j#
1 ith—a=M,j—i
0 otherwise

and

0 ifa=M.
To simplify the notation, for any event C' and any random variable Z, we will let P;,(C) =

P(C‘(}/EJvAO) = (i7a)) and Eia[Z] = E[Z‘(}/O;AO) = (iva)]'
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8.2 Reliability

The lifetime of the system is
LZinf{tZ O;At :M}

which is clearly a first passage time of the Markov process (Y, .A). For mission-based systems,

one may be interested in the 3 different reliability measures discussed next in this section.

8.2.1 System Reliability

System reliability function is given by P;, {L > t} which is the survival probability until
time t € Ry given that the initial phase and deterioration level are ¢ and a respectively.

Since L is the first passage time of A to the absorbing state M, it is clear that
M—1
P {L >t} =P {A # M} => > Pu{(Yi, A) = (4,0)}.
JEE b=0
It is well-known that

P {(Ye, At) = (4, b)} = €'9 (i, a:4,b)

for any j € F and b € F where €'Y is the matrix exponential

G 400 ,p g n

tg __ 2 .on — : i

e _Z:)n!g nEIfoo<I+n> . (8.2)
n=

Using this fact, we have the explicit representation for the system reliability

M-1
P {L>t}= Z Z et (i,a;4,b). (8.3)

jeEE b=0
The computation of the matrix exponential can be done in many ways and we refer
the interested reader to Moler and Loan [60] for various methods. As a matter of fact, most
of our results can be stated using the matrix exponential and there are many efficient
methods to compute it. The computations on the illustrations in Section are made using

MATLAB which uses the scaling and squaring method employing Padé approximants.

8.2.2 Mission Reliability

Let Ty, 11,15, -+ be the transition times of the mission process so that 7;, denotes the time

at which the nth phase ends. In a given application, it may be important to determine the
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probability that the system will complete the first n phases successfully, or P, {L > T,}
where a # M. We now focus on this issue and show that this probability can be calculated

using a recursive formula that yields an explicit solution. Note that

+o0
Pia{L>T1} = Z/ -Pia{L>Tl7T1€dS7YT1:j}
jeEe”0

+oo
- Z/ P {L > s|T1 € ds, Y1, = j} Q (i, §) ™" ds
jee’0
oo M—1

= S [T e wn Qg st

where D; is the duration of phase i which is exponentially distributed with rate ;. Let
P*(i,a;5,b) = E [eP% (a,b)] Q (i, j) for all 4,j € E and a,b € F\{M}. This further

implies that
+o0
P (i,a;4,b) = / e (a,b) Q (i, j) 6:¢ 0% ds
0

100 ~p oo
- > GG ([ Taresas)

n=0

+0 o (4 -1
- Y065 = (1-56) @heid. 69

6A
n=0 ¢

This is a computationally tractable solution which can be calculated by taking a matrix
inverse for every phase.

Then, letting fi((?) = P {L>T,}, we have

M-—1
[ = Po{L > T} =3 N P*(i,a;4,b) = P*1(i,a)
jeE b=0

for n = 1. Conditioning on the state after the first transition, we have

M-1
P, {L > Tn_:,_l‘L > T1} = Z Z Piq {L > Tnta, (YT17AT1) = (.77 b) ‘L > Tl}
JEE b=0
M-1
= > > Pu{L>Toia| (Yo, Ary) = (4,0) L > Th}
JEE b=0
X Pia {(Yry, Ary) = (5,0) |[L > Th}
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M-1 .
Pia{(YTpATl) = (]76)7-[/ > Tl}
= DD Pa{l>Ty}
JEE b=0 Pia{L>T1}
M-1 .
Pia Y17A v) — 7b
JEE b=0 a

This implies that
PO = P {L > Tar1} = Pa{L > Tana|L > T1} Po{L > T1}
M-1
> Pu{L> T} P (i,a;4,b)
JEE b=0

and, hence,

f(n+1) _ p*f(n)

with the boundary condition fl-(f )= 1. Then, using induction, it can be concluded that the

mission reliability for the first n phases is simply
f™ =P {L>T,} = (P)"1(i,a) (8.6)

which is actually the row sum of the nth power of the matrix P* on E x (F\{M}).

8.2.3 Phase Reliability

Depending on the overall objective of the mission, a given critical phase may be more
important than the others for a complex system. Therefore, an important measure to
represent the reliability of the system may be the probability that this critical phase will be
completed in a fixed time period. For instance, consider NASA’s Mars Exploration Rover
Mission example discussed in Chapter 2] Since one of the main aims of the whole mission is
determining past water activity on the surface, scientific investigations and transmission of
data towards this goal are most critical for the success of the mission. Therefore, reliability
of such a critical phase is of extreme importance.

Suppose that one is interested in the successful completion of a given critical phase
j € E of the mission. We will determine the phase reliability P;,{U; < t,L > U;} which
is the probability that phase j is successfully completed before time ¢. In this analysis,
we define a new Markov process Z = {Z;;t > 0} by stopping the Markov process (Y, .A) =
{(Yz, A¢) ;t > 0} such that if the critical phase is completed without any failure while the
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age of the unit is a, then the process Z will jump to an absorbing success state (S}, a) where
S; denotes successful completion of phase j. It is clear that Z is also a Markov process on

the extended state space (E U {S;}) x F' with infinitesimal generator

5 ifi=j,a#Mk=S.b=a
G; (a,b) ifk=idi,a# M,b#a
Gi (i,aik,b) = H (i, k) ifi+4ja%MkE#ib=a (8.7)

Gi(a,a)+ H (i,i) ifa#M,k=ib=a

0 otherwise.

Then, it is clear that the phase reliability of phase j is

M—-1 M-1
P{Uj <t,L>Uj} = Y Puf{Zi=(S;,b)} = > ¢! (i,a; S;,b) (8.8)
b=0 b=0

which is also a matrix exponential solution.

8.3 Mean Time to Failure

In this section, we are interested in computing the MTTF or F [L]. It is known that
+o0o

Eia [L] = P {L >t} dt.
0
Using (88.3),
oo A M—1 oo £ 4n (o= b
Ei, [L] = €9 (a3, b)dt =Y > (G°)" (¢, 435,0) o,
nl
0 jeE bv=0 ey s ] !
M-1r 100 (ox\n k
_ (G")" (i,a;5,b) [*
= kgl—il-looz - o dt
JEE b=0 L n=0
B ]Wzl B o +oo kn—f—l (g*)n (’L, a;j, b)
ek o P70 50 (n+1)!

where G* is the remaining matrix after removing all absorbing states from G. Let a be the
initial distribution of (Y,.A) so that «(i,a) = P{Yy = i, 49 = a}. Then, using Theorem
2.3.1 in Neuts [86],
+00 “+o00 1
kn+1 *\1 kn+1 *\ N+
E[L] = aT< lim Z(g)> 1:aT< lim ZL(Q*)‘1 1

k—+o00 e (77, + 1)' k—-+o0 — (n + 1)'

= ol (kgrfoo (ekg* - I) (g*>_1> 1
= of ( Tim (e‘”kM Yo (e_”k)) - 1> G 1= —al (¢ 1 (8.9)

k—+4o00
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where —n is the eigenvalue of G* with largest real part. M is a matrix given by M;; = v;u;
where v is the positive right eigenvector of G* associated with —n and u is a left eigenvector
of G*. This results is consistent with (2.2.7) in Neuts [86] since the distribution of the time

until absorption is a PH-type (phase type) distribution with representation («, G*).

8.4 Availability

In this section, we will analyze the availability of mission-based systems and provide com-
putationally tractable formulas. In the previous analysis, it was assumed that the state
(i, M) was absorbing for all ¢ € E. However, in this section, we assume that the state (i, M)
is not absorbing since the failed system is repaired. The repair duration is exponentially
distributed with rate ¢; during phase ¢ and after the repair the system is as good as a
brand new one. We also assume that when the system fails during a phase, it will start to
reperform the same phase after the repair. This is common in applications since a failure
of the system will stop the mission.

Let (Y, A) = {(Y;, A)):t € R,} denote this new modified Markov process which also

includes the repair activity. Its infinitesimal generator now becomes
Si ifa=M,b=0,j=1
G (i,a;5,0) = —q ifb=a=M,j=i (8.10)
G (i,a;4,b) otherwise.

The transition probability matrix P of the Markov chain imbedded in the Markov process
(f/, .Z) can be easily obtained as

Ai(a . . .
(%5 ) Pi(ab) ifa#M,j=ib#a

5 .. . . —_
P (i,0:5,b) = S QUisd) fa# M j#ib=a
1 ifa=Mb=07=1i

(8.11)

0 otherwise.

It is possible to compute the availability using a conventional renewal theoretic approach.
It is clear that time points at which (Y, A) enters the state (i*,0) from (i*, M) form a renewal
process where, without loss of generality, ¢* € E is any phase of the mission . The expected
cycle length is the sum of mean time until absorption to state (i*, M) given that the initial

state is (i*,0), and expected repair duration in state (:*, M). Therefore, we further modify
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(Y, A) with generator G such that the state (i*, M) is now an absorbing state. The mean
time until absorption to state (¢*, M) given that the initial state is (i*,0) is TG 11 using
(2.2.7) in Neuts [86], where « is a vector with all zero entries except the entry for state (i*, 0)
being equal to 1, and G;« is the matrix obtained by removing the absorbing state (i*, M)
from the matrix G. Let ffa be the expected number of visits to the failure state (j, M) until
absorption for each j # ¢* given that the initial state is (¢, a) for (i,a) € (E x F)\{(¢*, M)}.

Using Markovian analysis for a fixed j # ¢*, it is easy to see that ffa satisfies

=Y P(i*,ai%,0) fly,+ > P(i*,ask,a) fi, (8.12)

b£M ki
for every a # M,
=Y Pli,asib) ff+ > Pliaik,a) f], (8.13)
bEF ki

for every i # i* and i # j, and

) =P G, M)+ > P (j.aib) fh+ > P(iaik.a) fl, (8.14)
beF k£j
for i = 7. Using (8.11]) and ( - , we obtain
Pifl =g

so that fJ = fi*lgj

where P« is the matrix obtained by removing the state (i*, M) from

the matrix —P and setting the diagonal entries to 1 so that P;« (i,a;4,a) = 1, and

; P(i,a;i, M) ifj=ia#M
Jia = .
0 otherwise

for all (i,a) € (E x F)\{(*, M)} and j # *. Then, using renewal arguments, system
availability becomes
~aTG: 1= Y (Pl (7.0) /55
A
—aTG 1+ (1/si0)
Note that the availability formula is true for any state i* € E.

A= (8.15)

8.4.1 A Special Case

Note that there are only 2 states in F' = {0,1} when M = 1, and the system is either

functioning (state 0) or failed (state 1). This simplifications allows us to obtain an explicit
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formula for availability. Suppose that the mission process Y has a limiting distribution g
that satisfies SH = 0 and let

Si
i (0) +¢;

for every i. For any fixed phase 7, it is clear that vé is indeed the availability of a system

(8.16)

vp=1—v] =

that fails after an exponential lifetime with rate \; (0) which is then replaced by a new one
after an exponential repair time with rate ¢;. The limiting distribution of (?,.%T) can be
computed explicitly in terms of the limiting distribution 8 of the mission process Y and

system availability vector vg.

Theorem 8.1 If the mission process Y has a limiting distribution (B, then the limiting

distribution ™ of (?,.K) 1s given explicitly by

/BWZHUI(;;

. 5 L~ ki
o= lim P{Yi=i, Ah=ap = ———. 8.17
o= i AT =i A= op = 55 (547

i€eE  k#i

Proof. Since E x F 1is finite, the limiting distribution ™ can be determined by solving

7G =0 and Z(i,a)GEXFﬂ—ia = 1. For a = 0, we have the balance equation

— (N (0) +6;) mio + Z 6, Q (k,4) Tro + ¢imin = 0 (8.18)
ki
for alli € E. We need to show that satisfies . Let
1

V=—c—F——.
Zﬁz’HU(}f

i€E ki
Then,

— (i (0) +6i) mio+ Y 0kQ (k) Tro + simin
ki

= V |=X(0)Bwg H v — 0iBp H vg +<ifivi H v
kti ki kti

+ Z 01 Q (K, 1) Bk H vé
ki Ak

= V|8 (=X (0) vg + givi) H ve
ki

+ | 0B+ > 0kQ (ki) By | [T vd| =0

ki jEE
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since

— X (0)vh + vt =0 (8.19)

by , and
—6iBi + Y 0kQ (k1) By = 0
ki
since SH = 0.

Now, for a =1, we have the balance equation
—¢imi1 + A (0) mip = 0 (8.20)

for alli e E. We need to show that satisfies . Then,

—iTil + N (0) o = V _gi/@ivi H Ug + A (0) Bzv(z) H Ug
ki k#i

=V B( g1v1+)\ vo HUO
k#i

since

—civ} + N (0)vh =0

by . It is also clear that the solution satisfies Z(i,a)eExF Tia = 1 and this
completes the proof. N

Theorem trivially implies that system availability is

=1- i1 = .
Zﬂl ()\k(o +<k>

ik 2. B H

i€l

8.5 Coherent Systems with Multiple Components

In the previous sections, the condition of the system was classified into M + 1 states. The
system was considered as a whole and no consideration was given to its specific structure
or components. Therefore, it is implicitly assumed that it consists of a single component.
The system states represent the deterioration levels, but they do not necessarily get worse

by increasing from 0 to M. The only restriction is that state M is the one representing the
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failure of the system and state O represents a brand new system. By making use of this fact,
we can actually use the results obtained in the previous sections for any coherent system
with independent and exponentially distributed component lifetimes. We now show how
this can be done and give a simple example.

Suppose that we have a coherent system with structure function ¢, during any phase

1 € E. We assume that the lifetime of component k is exponentially distributed with rate a};

during phase i. The states of the components is represented by = = (z1, 22, -+ ,2,)’ € B™
where
1 if component k is in working condition
e 0 otherwise.
Suppose that there are M states in W and label them as yo,y1, - ,ym—1 with yg = 1

(brand new system). Note that yo = 1 € W since ¢; (1) = 1. To make our analysis
consistent with the previous results, we relabel the states so that 0 ~ yo, 1 =~ y1,- -+ ,yp—1 ~
M — 1. Moreover, we let state M € F represent all failure states in W. This completes
the definition of F' in this generalization with states 0,1,--- , M — 1 corresponding to states
Y0, Y1, - ,Ym—1 € W and state M corresponding to all states y € W.
Let
N (z)={ ze W;z = (1}, 2) for some k}

denote the set of all states to which the system may jump from state x due to a component

failure. Then, the age process A of this system during phase i is a Markov process with the

generator

- Y ifk=j+M

reC1(y;)
> o if yr. € N (y;)
Gi(j, k) = { reCi(y;)NColur) (8.21)

Yo oai- ) > o ifk=M,j#M

reCi(y;) z€N (y;) reC1(y;)NCo(x)

0 otherwise

and all of the results in the previous sections can be applied trivially using the generators

G; in (8.21]) and the generator G of the mission process.

Example 8.2 Consider the coherent system given in Figure[8.1] for some phasei. Then, the

structure function is ¢; (x) = x129 + 123 — T1X2x3. It is clear that W = {(1,1,1),(1,1,0),
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Figure 8.1: The structure of the system analyzed in Example

(1,0,1)} and W = B3\W. We first define states 0,1,2,3 € F by relabeling 0 ~ (1,1,1),
1~ (1,1,0),2 ~ (1,0,1), and state M = 3 represent all the other failure states in W.

Then, the age process of this system during phase © is a Markov process with the generator

(ol tobtal)  df ol af ]
G = 0 — (ot + ab) 0 ol + o
0 0 —(cd +0b) of +af

i 0 0 0 0

8.6 Numerical Illustration for Reliability, MTTF, and Availability

Consider a hypothetical mission with 3 phases performed by a system with 3 deterioration
levels so that E = {1,2,3} and F = {0,1,2} where M = 2 denotes failure. Suppose
arbitrarily that 6 = (1,2,1.5), Ay = (0.5,1), A2 = (1.5,2), A3 = (1,1.5) and

0 05 05 0 0.7 03 0 0.8 0.2 0 0.6 04
Q=104 0 06|,PA=]0 0 1 |, =0 0 1 |,PB=]0 0 1
0.7 03 0 0 0 1 0 0 1 0 0 1

These imply that

-1 050 0.50 —0.50 0.35 0.15
H=1]08 -2 120 |, Gi= 0 -1 1 ;
1.05 0.45 —1.50 0 0 0

—-1.5 1.2 0.3 -1 06 04
Go = 0 -2 2 |,Gs3=| 0 -15 15

0 0 0 0 0 0
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and using ,
(1,0) | —1.50 0.35 0.15 0.50 0 0 0.50 0 0 ]
(1,1) 0 -2 1 0 050 0 0 050 0
(1,2) 0 0 0 0 0 0 0 0 0
(2,0) 0.80 0 0 -350 1.20 0.30 1.20 0 0

g= (2,1) 0 080 0 0 -4 2 0 1.20 0

(2,2) 0 0 0 0 0 0 0 0 0
(3,0) 1.05 0 0 0.45 0 0 —2.50 0.60 0.40
(3,1) 0 1.05 0 0 045 0 0 -3 1.50
(3,2) 0 0 0 0 0 0 0 0 0

Then, for t = 2 _ _

0.1352 0.0740 0.2783 0.0352 0.0283 0.1560 0.0625 0.0424 0.1881
0 0.0498 0.5709 0 0.0129 0.1633 0 0.0230 0.1802

0 0 1 0 0 0 0 0 0

0.0843 0.0580 0.1585 0.0231 0.0222 0.3493 0.0426 0.0351 0.2268

e = 0 0.0310 0.1702 0 0.0085 0.5691 0 0.0157 0.2055
0 0 0 0 0 1 0 0 0

0.1031 0.0623 0.1654 0.0277 0.0239 0.1386 0.0521 0.0383 0.3888
0 0.0379 0.2127 0 0.0102 0.1357 0 0.0192 0.5843
0 0 0 0 0 0 0 0 1

and, using_; (8-3), we can casily determine the system reliability Py {L > 2} = 0.13’5;2 +
0.0740 + 0.0352 4 0.0283 + 0.0625 4 0.0424 = 0.3776. The matrix exponential is calculated
by MATLAB 7.6.0 (R2008a) which uses the scaling and squaring method employing Padé
approximants.

To obtain the mission reliability, we first calculate

1 [ 0.6667 0.1167 0.2167 |

N

<I—51G1> = o 05000 05000 |,
0 0 1

) [ 05714 0.1714 0.2571 |
) _

<I—G2> = 0 0.5000 0.5000 |,
0 0 1
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0.6000 0.1200 0.2800

<I—513G3> =| 0 05000 0.5000
0 0 1
Then, using ,

o) [ o 0 0.3333 0.0583 0.3333 0.0583 |
(1,1) 0 0 0 02500 0  0.2500

e (200 | 02286 0.068 0 0 0.3428 0.1028
(2,1) 0 02000 0 0 0 0.3000
(3,0) | 0.4200 0.0840 0.1800 0.0360 0 0
31 | 0 03500 0 01500 0 0 |

and using , we can calculate the mission reliabilities Pjg {L > 77} = 0.3333 + 0.0583 +
0.3333 + 0.0583 = 0.7832, and Pip{L > To} = 0.5459, and Pyy{L > T3} = 0.3468 after
taking the second and the third powers of P*.

Now, we will find the probability that the critical phase j = 2 will be completed until
time 1.5. Using , we have

(,o) | —150 035 015 05 0 0 050 0 0 0 0]
(1,1) 0o -2 1 0 050 0 0 050 0 0 0
(1,2) 0 0 0 0 0 0 0 0 0 00
(2,0) 0 0 0 -350 120 030 O 0 0 20
(2,1) 0 0 0 0 -4 2 0 0 0 0 2
G= (2,2) 0 0 0 0 0 0 0 0 0 00
(3,00 | .05 0 0 045 0 0 —250 0.60 040 0 0
(3,1) 0 105 0 0 045 0 0 -3 150 0 0
(3,2) 0 0 0 0 0 0 0 0 0 00
(S2,0) 0 0 0 0 0 0 0 0 0 00
(S2,1) | 0 0 0 0 0 0 0 0 0 00|
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so that the matrix exponential is

[ 0.149 0.058 0.196 0.039 0.026
0 0070 0505 0 0.019

0 0 1 0 0

0 0 0  0.005 0.007

0 0 0 0  0.003
e — | g 0 0 0 0
0.103 0.047 0.096 0.031 0.023
0 0049 0161 0 0.015

0 0 0 0 0

0 0 0 0 0
|0 0 0 0 0

0,104 0.049 0.024
0.134 0 0.023
0 0 0

0.253 0 0
0.499 0 0
1 0 0
0.094 0.051 0.029
0.112 0 0.024
0 0 0
0 0 0
0 0 0

0.089
0.115

0.299
0.528
1
0
0

0.075
0.134

0.167
0.499

0.070
0.112
0
0
1

This implies that critical phase reliabilities are Pjo{Us < 1.5, L > U} = 0.190 + 0.075 =
0.265 and Pa;{Us < 1.5, L > Us} = 0.499 by using (5.9).

Suppose that o’ = (0.2, 0, 0.3, 0, 0.5, 0).
(1,0) [ —1.50 0.35
(1,1) 0 -2
2,0 080 0

g 20

(2,1) 0 0.80
(3,0) 1.05 0
3,1 [ 0 1.05

and using , the MTTF is

Then,

0.50
0
—3.50
0
0.45
0

0
0.50
1.20

—4

0

0.45

0.50
0
1.20
0
—2.50
0

E[L) = —aT (¢*)'1 = 1.6586.

In order to calculate availability by (8.15]), we further suppose that ¢ = [0.50,0.75,0.85]7".

0
0.50
0
1.20
0.60
-3
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Then, choosing i* = 1 and using (8.10)),

(1,0) | =150 035 015 050 o 0o 05 o0 0 |
(1,1) 0o -2 1 0 050 0 0 050 0
1,2) | 050 0 -—050 0 0 0 o 0 0
2,00 | 080 0 0 —350 1.20 030 120 0 0
G= (2,1) 0 08 0 0 -4 2 0 120 0 (8.22)
(2,2) o 0 0 075 0 -075 0 0 0
3,00 | 105 0 0 045 0 0 —250 0.60 0.40
(3,1) 0 105 0 0 045 0 0 -3 150
(3,2) o 0 0 O 0 0 08 0 —085
which implies that —aTgl_ll = 7.8878 in (8.15). Moreover, we have
o) | 1 —0233 033 o0 0 -0333 0 0
(1,1) 0 1 0 -0250 0 0 -0250 0
(2,0) | —0.223 0 1 —0.343 —0.086 —0.343 0 0
5 _ (2,1) 0  —0200 0 1 —0500 0 —0300 O
(2,2) 0 0 ~1 0 1 0 0 0
(3,00 | —0420 0  —0.180 0 0 1 —0.240 —0.160
(3,1) 0 —0350 0 —0.150 0 0 1 —0.500
(3,2) 0 0 0 0 0 ~1 0 1
g2=[0 0 03/35 05 0 0 0 O]T
and

T
gg:[o 000 0 04/25 15/3 o} .
These imply that P; g2 (1,0) = 0.8967, P; ¢® (1,0) = 1.2137, and using (8.15), we finally

obtain

7.8878 — (5757) — (%57ss")
A= 7.8878 + 2 = 00524,

8.7 Optimal Replacement Problem

Optimal replacement problem for systems whose condition can be classified into a finite set
has been extensively studied in the literature under the title of "Condition-Based Mainte-

nance (CBM)". The following section gives a detailed review of the literature on CBM.
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8.7.1 Literature Review
8.7.1.1 Introduction

Maintenance actions are vital for companies to increase reliability and availability of the
production system and to decrease production costs. At the same time, Bevilacquaa and
Bragliab [37] states that maintenance may require extensive expenditures which may vary
from 15% to 70% of the total production cost depending on the industry. For instance, the
total amount of money spent for maintenance is more than 200 billion dollars in the United
States every year as observed by Chu et al. [38]. Moreover, a significant portion of total work
force in a company is employed in maintenance departments; Waeyenbergh and Pintelon [39]
estimates that this is up to 30% or more in chemical process industries. These observations
indicate that optimizing the obvious trade-off between maintenance costs and productivity
will have a very significant impact on the total cost. This is why it is not surprising that an
extensive body of literature on optimal maintenance has accumulated in the last 50 years.
The review papers [40, 41], [42], 43, [44], [45, [46], 47, 48, 49, 50, (I, 52, B3, B4, (5] survey
hundreds of papers in chronological order on optimal maintenance problems.

In general, there are two types of maintenance considered in the literature: corrective
maintenance (CM) and preventive maintenance (PM). CM involves actions performed af-
ter a failure to restore the system to a better condition. Sim and Endrenyi [87] define
PM as the actions performed regularly at preselected times (not necessarily identical) to
reduce or eliminate the accumulated deterioration. PM can be further classified into two
main classes: time-based preventive maintenance (TBPM) and condition-based maintenance
(CBM). System lifetime is considered as a random variable in TBPM and its distribution
is determined by statistical analysis. Then, optimal preventive maintenance actions are
planned according to a mathematical model developed using the failure distribution of the
system and related maintenance costs. On the other hand, Wang et al. [88] states that
maintenance decisions are given according to the actual state or condition of the system
under CBM policies. The state of the system may take either discrete values such as real
or intrinsic age (e.g., number of flights for planes) or predefined deterioration levels, or
continuous values such as temperature, vibration, cumulative wear, etc. In the former one,

multi-state Markov decision processes are generally used to determine the states at which
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a preventive replacement decision is optimal to minimize a cost criteria. In the latter one,
the system is generally subject to continuous wear or deterioration. The general purpose
of the models developed to investigate such systems is to find an optimal treshold above
which a preventive replacement decision is optimal. In this review, we focus on condition-
based maintenance models under Markovian deterioration where the state of the system
can be classified into one of a finite number of states. For more information on condition-
based maintenance models with continuous deterioration, we refer the interested reader to
[89, 90), 91, ©2] [38], 93, 94, 95, [96], 07, 98, B8] and the references cited in these papers .

CBM models are further classified by the time points at which the state of the system
is observed by the decision maker. There are three types of inspection policies applied in
CBM literature: continuous inspection policy (CIP), periodic inspection policy (PIP), and
sequential inspection policy (SIP). Systems are always monitored or the state of the system
is always known by the decision maker under CIP. On the other hand, the condition of the
system under PIP or SIP is known only at some discrete time points. The main difference
between PIP and SIP is that in PIP, the system is inspected and its state is observed at
equal time intervals, but these intervals do not have to be equal in SIP. If we apply PIP or
SIP, the time points at which the system will be inspected must be determined carefully,
since more frequent inspections will increase the related inspection cost and less frequent
inspections will decrease our ability to maintain the survival of the system. We will also
review some important optimal inspection and replacement models for which a control-limit
policy is optimal.

Although they may not be optimal even under very intuitive conditions (as we will il-
lustrate by examples later), control-limit policies are studied extensively in the literature.
The significance of control-limit policies is that they are very easy to understand and im-
plement. Similarly, there are many CBM policies defined using several thresholds in the
literature. These models are important because they are also easy to apply and they can
reasonably describe the deterioration-maintenance process of some systems in real-world
applications. We will also review some of the important papers which analyze maintenance
policies defined via several thresholds.

In Section [B.7.1.2] the general assumptions and notation used in CBM models with
Markovian deterioration are given. Section [8.7.1.3] and Section are on optimal re-
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placement, and optimal inspection/replacement models respectively where optimality of

control-limit policies are established. We conclude the review with Section [8.7.1.5] by sum-

marizing some other important maintenance models where policies are described by a few

tresholds.

8.7.1.2 General Assumptions

We shall concentrate specifically on optimal policies for CBM models with Markovian dete-

rioration. In the most generic sense, these models satisfy the following main assumptions:

ii.

iii.

iv.

vi.

The system can be observed to be in one of the M + 1 states from the set F' =
{0,1,---, M —1, M} where state 0 represents a brand new system, states 1,2,--- , M —
1 represent intermediate deterioration levels in ascending order, and M denotes system

failure.

Transitions among the deterioration levels at successive decision times follow an in-
creasing Markov chain with an upper-triangular transition probability matrix P =
[P.p] where P,y is the probability that the next deterioration level of the system will

be b given that current level is a for every a,b € F.

Holding time in each level is a random variable with parameters which may or may
not depend on the deterioration level. Let ¢, be the holding time in state a € F
with mean ¢,. We suppose that t, is exponentially distributed for every a so that the

deterioration process is a Markov process. Otherwise, it is a semi-Markov process.

Replacement durations may be negligible or random. Let r, denote the replacement
duration with mean 7, if the replacement decision is given when the system is in
state a € F. There is always a replacement cost ¢, if the system is replaced when its

deterioration level is a € F'.

The system may be inspected continuously, periodically, or sequentially.

A state occupancy cost h, may be incurred when the system is occupying level a € F'.

When the system fails, a failure cost K is incurred.
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vii. At each decision epoch, there are two alternative decisions: the system will be replaced
(sq = 1) or not replaced ( s, = 0) respectively if the system is in state a € F' at that
decision epoch. The replacement action is assumed to be perfect so that the system

state is restored to 0 after the replacement.

viii. The objective of the problem is to minimize the expected total discounted cost or the

average cost per time.

These type of maintenance problems have been studied in the literature since 1960’s. In
general, there are two types of research papers where the first type defines a mathematical
model of the maintenance problem and obtains a policy (usually a control-limit policy)
which solves the problem optimally. The second type investigates the problems using a
given simplified policy that is not necessarily optimal and finds the optimum parameters
of this class of policies that minimize a cost function. In the following two sections, we
will review papers of the first type for replacement and inspection/replacement models

respectively. The final section focuses on papers of the second type.

8.7.1.3 Optimal Replacement Models

One of the earliest and basic cases where the deterioration process is described by a Markov
chain is analyzed by Derman [99]. It is assumed that the system is inspected at equally
spaced points in time and the system is classified into one of the deterioration levels after
each inspection. The holding times are not considered and the decision model is formulated
based on the deterioration levels of the system observed at each inspection time. It is as-
sumed that the successive levels follow a Markov chain whose transition matrix is monotone

so that the cumulative matrix

M
Py = Pur (8.23)
k=b

is nondecreasing in a for every b € F. The other assumptions of this model are that the
replacement duration is equal to one inspection interval, replacement costs do not depend

on the deterioration level (¢, = ¢ for every a and some c¢), and there is no state occupancy
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cost (hq = 0). The DPE is

M
c—i—K—l—aZPObv(b) ifa=M
v(a) = = u (5.24)
min{az abv(b),c+aZP0bv(b)} ifa# M
b=0 b=0

where 0 < a < 1 is the periodic discount factor and v (a) is the total expected discounted
cost. In our discussions, we will present details primarily on v (a) with the understanding
that the average cost can be obtained in a similar fashion. It is proven that the optimal

policy has a control-limit structure. In particular, there exists a* € F' such that

1 ifa>a*
sy = (8.25)
0 ifa<a*

Q ¥

for every a € F' where s* denotes the optimal policy. The same model with sate occupancy
costs incurred each time that the system is inspected is analyzed by Kolesar [I00]. The

DPE now becomes

M
c—i—hM—i-aZPgbv(b) ifa=M
v(a) = b:z(\]/[ o (8.26)
min{ha—f—aZPabv(b),c—l—ha—l—aZPObv(b)} ifa % M
b=0 b=0

and the optimal policies minimizing both total expected discounted cost and average cost
are control-limit type if h, and P, are nondecreasing in a.

Kawai et al. [I0I] consider another model where state occupancy costs are not paid
during replacement, and all costs are state dependent. The DPE is

v (a) = min {ha +a Z Pyv (), cq + av (0)} (8.27)

b=0

and it is shown that the optimal policy still has a control-limit structure even when c, is
increasing in a provided that hy, hg — cq, and P, are increasing in a.

A generalization of the model in [I00] is analyzed by Wood [102] by considering the case
where the replacement action may fail with a probability 1 — p and the occupancy costs are

not paid during replacement. The standard recursion for this model can be formulated as
c+ K+ apuy (0) + o (1 — p) v, (M) ifa=M

v(a) = M 8.28
(@) min{ha—l—aZPabva(b),c—i—ozpva(O)+a(1—p)va(a)} if a # M. (8.28)
b=0
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For this model, the optimality of a control-limit policy minimizing the total expected dis-
counted cost and the average cost is proven under the same assumptions used by Kolesar

[100]. The model where the occupancy costs are paid during replacement has the DPE
c+ K+ hy +apv(0) +a (1l —p)v (M) ifa=M

_ M
v(a) = min{ha +aZPabv (b),c+ hg + apv (0) + a (1 —p)v(a)} if a # M.

i (8.29)
It is shown that the control-limit rule may not be optimal for this case by a counterexample.
In the same paper, a constantly monitored system is also investigated with the assumptions
that the replacement duration and holding times are exponentially distributed, and replace-
ment decisions are allowed only when a transition occurs in the deterioration process of the
system. It is assumed that the holding times depend on the deterioration level with rate
Aq for level a, but the replacement duration does not with a constant rate A\. The analysis
is done by applying uniformization techniques by which a continuous-time Markov decision
process can be converted into an equivalent discrete-time Markov decision process. Wood
[102] concludes that the optimal policy is control-limit type for both total expected dis-
counted cost and average cost criteria provided that h, and Z;\ib P, )\, are nondecreasing
in a, and occupancy costs are not paid during replacement. It is also proven that the same
result holds for the case where the occupancy costs are also paid during replacement if the
replacement duration is stochastically smaller than the holding time in each state (A > A,).
Ozekici and Giinliik [103] propose some sufficient conditions which make the lifetime of a
system with Markovian deterioration increasing failure rate on average (IFRA), and also
show that these conditions imply the optimality of a control-limit policy if the replacement
cost does not depend on the deterioration level of the system.

In all of the papers discussed so far, the holding times are either negligible or exponen-
tially distributed. However, the optimality of a control-limit policy may be obtained for
the models with different (even more general) holding time distributions satisfying some
monotonicity properties. A model where replacement and holding times are discrete ran-
dom variables and the system is monitored continuously is analyzed by Kao [104]. It is
assumed that a replacement decision can only be given after a transition of the deteriora-
tion level of the system. The author proves that the optimal policy which minimizes the

total discounted expected cost has control-limit structure provided that h, is nondecreasing
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in a, t, is nonincreasing in a, P is monotone, and the cost and time for replacement are
independent of the deterioration level. In this model, the deterioration process is actually
a semi-Markov process where sojourn times are discrete random variables. Following this
line of research, So [105] used semi-Markov decision processes to analyze the model where
replacement duration has a general distribution which is independent of the deterioration
level (7, = 7), holding times are independent and identically distributed random variables
where %, is nonincreasing in a, h, and ¢, are nondecreasing in a, and Zé\i o PavCy — ¢4 18
nondecreasing in a for 1 < a < M. The last assumption might be strict, but it is shown that
this condition can be easily verified in some important special cases. It is also assumed that
a fixed charge (8 is incurred when the system is occupying level 0 to do parametric analysis
on . The optimality of a control-limit policy minimizing average cost is proven under some
monotonicity assumptions for every [; in particular, for 5 = 0. The author also extends
this result to the case where replacement durations are dependent on the deterioration level
under the assumptions that Z(])Via P,ycp — ¢q 18 nondecreasing in a for 1 < a < M, 7, is
nondecreasing in a, hyt, is nondecreasing in a, and Zé\ia P,y — Tq + L4 is nonincreasing in
a.

Another study using a semi-Markov process with continuous sojourn times to model the
deterioration process of a system is presented by Lam and Yeh [I06]. In this model, the
holding time in level a has a general distribution Fj with hazard rate function f,; state
occupancy costs, replacement costs and times are state dependent, and from level a, the
deterioration process will make a direct transition either to level a + 1 with probability p,
or level M with probability 1 —p,. It is assumed that the system is monitored continuously
and a decision is given when the system enters a new deterioration level. When the system
enters level a, the decision maker takes a decision to replace the system ¢, units of time
later if it remains in level a. If t, = 0, then the system is replaced as soon as it enters level
a and if t, = 400, then the system will not be replaced as long as it stays in level a. The

model has the following monotonicity assumptions:

i. The state occupancy cost rate, the replacement cost rate, the expected replacement
time, the marginal replacement cost, and the marginal replacement time increase as

the system deteriorates,
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ii. F, is an increasing failure rate distribution for every a and f, (¢) increases in a for

every t,

iii. pg is nondecreasing in a.

Under these conditions, there exist A* and k* with 0 < h* < k* < M, such that

+oo ifa < h*
th=1q sa ifh*<a<k*
0 iftk*<a< M
where ¢! is the optimal decision in level a, and 0 < spx < Spry1 < -0 < S < +00.
In other words, the system is replaced immediately as soon as it enters one of the states
{ k* k*+1,--- M}, and it is never replaced in states {0,1,--- ,h* — 1}. However, in any

state a € {h*,h* + 1,--- ,k*}, it is replaced after s, units of time in that state.

8.7.1.4 Optimal Inspection/Replacement Models

Another interesting research problem involves optimal inspection and replacement where
the state of the system can only be observed via inspections performed at selected times.
A fixed cost is incurred whenever the system is inspected and then, either a replacement
occurs or the time until the next inspection is determined. Such a problem with negligible
replacement and inspection times is analyzed by Ohnishi et al. [I07] who consider a sys-
tem with Markovian deterioration. It is assumed that holding times are state dependent
exponential random variables, state occupancy and replacement costs are dependent on the
deterioration level, and from state a, a direct transition can occur only to state a + 1 or
state M. Under some monotonicity assumptions on costs and transition rates, it is shown
that the optimal policy minimizing the average cost has a control-limit structure and the
optimal time interval between successive inspections becomes shorter as the deterioration
level of the system increases. Similar results are obtained by Lam and Yeh [108] for an
identical model where replacement and inspection times are not negligible. It is clear that
in real-world applications, numerical procedures are necessary to find optimal policies even
if it has a control-limit structure. Iterative algorithms are derived for the optimal inspec-

tion and replacement problem under different maintenance strategies by Lam and Yeh [108].
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These maintenance strategies include failure replacement, age replacement, sequential in-
spection, periodic inspection, and continuous inspection. These algorithms are valid for a
model where the deterioration process is a continuous time Markov process and from state
a, a direct transition can occur only to state a + 1 or state M. Numerical procedures for a
more general model are proposed by Yeh [109]. In this model, the deterioration process is a
semi-Markov process where the holding time in each level follows a general distribution that
depends on the level and from level a, direct transitions to levels a+1,a4+2,--- ,M —1, M
are allowed. Iterative algorithms minimizing the average cost rate are provided to derive
the optimal state dependent and state-age dependent inspection/replacement policies. In
a state-age dependent policy, once the state of the system is identified, the maintenance
decision is made according to the deterioration level of the system and the time spent in the
current state. However, if we apply the state dependent policy, each maintenance action is
determined only according to the deterioration level of the system no matter how long the

system has been in that state.

8.7.1.5 Optimal Maintenance Using Thresholds

Besides the papers which investigate the optimality of control-limit policies, there is also
abundant literature that focus on a given special class of policies where maintenance deci-
sion is made within that class. This type of models can be useful especially when a special
policy reasonably describes the deterioration-maintenance process of the system. For in-
stance, an optimal preventive maintenance model suitable for (not limited to) especially
coal pulverizers, circuit breakers and transformers is proposed by Sim and Endrenyi [87]. In
this model, the system is subject to two types of failure: Poisson failures and deterioration
failures. The deterioration process is an increasing Markov process where the holding times
are exponentially distributed with a constant rate and P;; = 1 where j =4 + 1. The times
to Poisson failures are exponentially distributed with a constant rate independent of the
deterioration level of the system. The system is removed from operation periodically for
preventive minimal maintenance which restores the deterioration level to the previous level
(i.e., from level i to level i — 1 if the deterioration level is ¢ when the preventive maintenance
starts). The duration between two successive minimal preventive maintenance actions has

an Erlang-r distribution with mean 1/\,,. If a failure occurs, the system is restored to level
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0 and the time to repair depends on the type of the failure. The steady-state equations for
this model and a simple algorithm to find the steady-state probabilities when » = 1 are pro-
posed. The authors also analyze the optimal preventive maintenance problem to minimize
unavailability with respect to A\;,. An extension of this model where r = 1 is investigated
by Sim and Endrenyi [I10]. This paper considers the systems which can be restored to "as
good as new" status preventively. It is assumed that the first s — 1 preventive maintenance
actions are minimal (i.e., the system is restored to the previous deterioration level), then
the following preventive maintenance is major maintenance where the system is restored
to level 0. This system is also subject to Poisson failures; but after a Poisson failure, the
system experiences a minimal repair which is exponentially distributed (i.e., the system is
restored to the operable state it was in just before the failure). After a deterioration fail-
ure, the system is again overhauled to state 0. A recursive algorithm is proposed to find
steady-state probabilities, and closed-form expressions for steady-state probabilities in the
case where s — +o00 are given. The optimal values of \;,, which minimize unavailability and
average cost respectively are also discussed.

This line of research is also followed by Chen and Trivedi [111] who consider a model
where the holding times are dependent on the deterioration level and each inspection takes
an exponentially distributed amount of time. It is assumed that the system is inspected after
a random period which is exponentially distributed with rate A;,. The applied preventive
maintenance policy can be summarized by the two tresholds (g, b) as follows: if the observed
deterioration level is ¢ with ¢ < g after an inspection, then no maintenance occurs. If the
system deterioration level is ¢ with g < ¢ < b, then the system is restored to level ¢ — 1 by
minimal maintenance. The system experiences major maintenance when the deterioration
level is found to be in ¢ with b < ¢ < M — 1, by which the system is restored to level 0.
If a deterioration failure occurs, the system is overhauled to level 0. Moreover, the system
is subject to Poisson failures after which a minimal repair is performed which restores the
system to the level it was in just before the failure. For this model, the authors give closed-
form expressions for steady-state probabilities, steady-state availability, and MTTF. They
also numerically analyze the optimal inspection intervals (\;,) minimizing unavailability
and average cost respectively, and maximizing MTTF under a target availability constraint.

The optimality of such a threshold policy is shown by Chen and Trivedi [112] who analyze
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numerical examples for the case where the deterioration rate at each level is the same.
A similar model where g = 0 is analyzed by Amari and McLaughlin [I13]. Closed form
expressions for steady-state probabilities and availability are presented and algorithms to
solve three optimization problems maximizing the system availability are given. These
problems are formulated to find optimal \;, for a given value of b, to find optimal b for a
given value of \;,, and to find optimal values of b and Aj,.

Minimal repair action may also be applied at any deterioration level of the system.
Moustafa et al. [I14] analyze a model where each holding time follows a general distribu-
tion and, at each state transition, one of three possible actions can be chosen: do-nothing,
minimal maintenance, and replacement. To derive the optimal policy minimizing the ex-
pected long-run cost rate, two different approaches are followed. In the first approach, a
control-limit policy with two thresholds is determined. The second approach uses the con-
ventional policy iteration algorithm. By numerical examples, it is shown that the optimal
policy may not be control-limit and minimal maintenance may not be optimal in any state
when the cost and the time of minimal maintenance increase relative to the cost and the
time of replacement respectively.

Minimal maintenance restores the system to the previous deterioration level in all pre-
viously cited papers. An extension of this idea can be repair by which the system can be
restored to any better deterioration level. For example, a rather general policy R;;(T, N, «)
for a continuous time Markovian deteriorating system is proposed and analyzed by Chiang
and Yuan [I15]. Under this policy, the system is inspected at times T, 2T, 3T, - - - to identify
the current deterioration level a of the system. Let m be the number of repairs already un-
dertaken until the inspection time. The maintenance decision will be do-nothing if a <i—1,
ori<a<j—1and m= N. The system is repaired to a better state if i < a < j — 1 and
m < N. The next deterioration level of the system after the repair will be determined by
the probability matrix « (i.e., the system will be restored to state r with probability g ).
The maintenance decision will be replacement if j < a < M. An algorithm is also proposed

to derive the optimal values of i, j, and T for given N and «.
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8.7.2 Optimal Policy Characterization

In this section, the optimal replacement problem of a mission-based system with Markovian
mission and deterioration is analyzed. The mission process and the age or deterioration
process of the system have the same structure as given at the beginning of Chapter |8} The
mission process is a Markov process and the deterioration process is a Markov process mod-
ulated by the mission process. We analyze the optimal replacement policy under some IFR
assumptions on the deterioration process. It is assumed that P; is a stochastically monotone
upper triangular matrix and failure rate of the system increases as the deterioration level

of the system increases. In other words,

M M
b=k b=Fk
and
forany a=1,--- ,M and k € F. We also assume that all replacements are instantaneous.

We will characterize the optimal replacement policy which minimizes the expected total
discounted cost under the assumption that the decision maker is allowed to make a decision
only when a change occurs in the mission process or the deterioration process. There are
three costs associated with our problem. The preventive replacement and the failure costs
during phase ¢ are p; and f; respectively with f; > p; and sup,cp fi = f < +oo. A state
occupancy cost c(i,a) with sup; ,c(i,a) = C < 400 is incurred if the system starts to
perform phase ¢ with the initial deterioration level a. It is assumed that ¢(7, a) is increasing
in a for all i € E and a > 0 is the continuous discount rate. Although we assume that c(i, a)
is a fixed lump-sum cost incurred at the beginning of each decision epoch, it is possible to
obtain it explicitly when the state occupancy costs are incurred continuously. If the state
occupancy cost rate is ¢, (i, a) for the system performing phase i with deterioration level a,

then

+o0 ) t ;
c(i,a) = / A(i,a) e_)‘(““)t/ cr(i,a)e” ¥ dsdt = )\(c;(;;cﬁa.
0 0 )

We need to solve the DPE

v (i,a) = 52}42 {rs(i,a) +T'sv (i,a)} (8.32)



Chapter 8: Reliability and Optimal Maintenance under Markovian Mission and Deterioration 169

where s = 1 implies replacement, s = 0 implies do nothing, Ag = {0}, Ay = {1}, A, =
{0,1}, ro (4,a) = c (i, a), 71 (i, a) = ¢(4,0) + pi, 71 (4, M) = ¢ (4,0) + fi,

5 + i [ N Y ]
Fog i) = £ 23 70 5H 5 L s PP
fora=0,---,M —1 and

Si+n(0) | A (0) & ]
Flg(Z a) 5+)\() o 5+>\ ZQZ] M;R(Ovb)g(lvb)

fora=1,---, M.
Now, we can use uniformization technique by applying the procedure in Puterman [116].

The original model has

P (iya;5,b) ifs=0

Py (i,a;5,b) =
P (i,0;5,b) ifs=1
and
Ai,a) ifs=0
As (1,a) =
A(2,0) ifs=1.

In the above formulation, the subscripts after P and A mean that the related formula is
valid if the replacement decision denoted by the subscript is applied.

To apply uniformization, we need to assume that there exists a positive constant such
that

As (i¢a) <c

forallt € F, a € F and s € B. Then, define

7o (i.0) =74 (i, ) (aﬂw)

o+ c

and

~ 1 —_ (17?5 (i’a;jzb))xs (i,a)
P, (i,a: 5,b) = - e
(4,a;7,b) Pa(i,aijb)Xs (1,0) it (j.b) £ (i.a).

(&
Then, by Proposition 11.5.1. in Puterman [116], we have v (i,a) = v (i, a) for every station-
ary policy where v satisfies the DPE

¥ (i,a) = min {?S (i,a) + T3 (i, a)} (8.34)

SEACL
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for all € E and a € F where

Folia) = clia) <Oz+(5z‘+)\z‘ (a)>

a—+c

a+c
Oz—{—)\i(O)—}—(Si)

Fia) = (c(.0)+p) <+A<O>+6>

r (i, M) = (c(i,O)—Ffi)( o

for all a € F\{M},

~ ¢ s A .
F(]g (Zaa) = XZQ(%])Q(]’G) + sz (CL, b)g(l7b) (835)
JjEE

b=0
< _%f CA <“)> g(z,a)} (8.36)
and
- ¢ o a0 .
Tig(ia) = —— 12> QGNgGO+= = > Pi(0,b)g(i,b)
jEE b=0,b#a
. (1 - (1 - #%Pi (Ova’)) (0i + A (0))) ol a)]
o ¢ |6 o (0) & .
Tgia) = —— 12> QG1NgG0)+= =3 P0.b)gEb)  (837)
JEE b=0
+ (1 — 62—'—0)%(0)> g (z’,a)] . (8.38)

Let B denote the set of all real-valued bounded functions defined on E x F'. For any f € B,

we define the operator YT so that

Y (4,a) = min {?5 (i,a) + Ty f (i,a)} (8.39)

s€Aq

forallt € F, and a € F.

Lemma 8.3 Ifg(i,a) = f (i,a)+h for some constant h, then Yg (i,a) = Y f (i, a)+ (5)h-
Proof. Using and ,

Cc

~ i NI O~ .
I‘Og(z,a) = ZZQ(%J)Q(%G)"’_ Zpi(a7b)g(zvb)
JjEE

CT«Q Cc
T b=0

+ (1 St hifa) +ji (“)> g(i,a)}

= Fof(i,a)+< ¢ >h

c+a
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and
~ . Cc 52 .o . )\1(0) M .
Tig(ia) = —— 17> QU1)g(0)+ == Pi(0,b)g(i.b)
JEE b=0
<1 . 51 +;\z (0)> g(Z,CL):|
- rlf(z,a)+<c+ca)

This implies that

Tg(i,a):min{?s(i,a)+fsf(i,a)+( c )h}:Tf(z’,a)+< ¢ >h

SEA(L

Theorem 8.4 There exists a unique v* in B which satisfies the DPE .

Proof. We will use Banach’s contraction mapping theorem. Choose two functions f,qg € B

and suppose that ||-|| is the usual supremum norm. Let
h=If gl
Then,

foralli e E and a € F. It is easy to see that

Then, using Lemma 8.5,

c
c+ «

Tg(i»@—h( >§Tf(i,a)§Tg(i,a)+h( ¢ )

ctao
and this further implies that

07 )~ ool < ()

c+a

and
C
Tf—Tgqgl| < | —— — gl .
s =gl < (5o ) 1 -l

Then, since
c

c+ o

T is a contraction mapping and it has a unique fized point using Banach’s contraction

<1

mapping theorem. W
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By Theorem we know that there is a stationary policy which solves the DPE (8.34).
Since, v = v for every stationary policy, they are equal for the optimal replacement policy.
Therefore, if we have a characterization for the transformed process, the same characteriza-
tion will be valid for the original process. From now on, v and v will represent the expected
total discounted cost under the optimal replacement policy for the original process and the
transformed process respectively. Our aim is to characterize the optimal policy. First, we

need some preliminary results.

Lemma 8.5 If v (i,a) is increasing in a, then

Ai a) Y P(a.b)(ib)+ <1 _ditAila) (“>> ¥ (i, a)

c c
b>a+1
18 also increasing in a for alli € E

Proof. Define two vectors as

wy = {c—)\i(ca)—éi )\i(a)Pic(a,a+1) )\i(a)PiC(a,a+2) )\i(a)PCi(a,M)}
and
Uy = [O c=Ailat1)=8;  Ai(a+1)P(a+l,a+2)  Ai(a+1)Pi(atla+3) )\i(a+1)Pi(a+1,M)}'
We first show that
M—a+1 M—a+1
Y oup(i)= > wr (i)
i=k i=k

forallk=1,--- M —a+1. If k=1, then

M—a+1 c_5: M—a+1 c— 6
> (i) = — = > up (i) = —.
=1 =1

If k=2, then
M—a+1 M—a+1
. )\i a . 0—52'
S w@ =20 S =
1=2 1=2

since \; (0) +9; < c.

If k=7 for some j=3,--- ,M —a+ 1, then using (8.30) and (8.51]),

M—a+1 M M—a+1 M

3 ul(i):Ai(E@ S P@h< Y ug(i):)\i(a;_l) S Pa+1,b).
i=j b—atj—1 i=j b=atj—1
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Thus, we have
M—a+1 M—a+1
>, w@z Y, w()
i=k i=k
forallk=1,--- .M —a+ 1. Moreover, since v is increasing in a, using Lemma 1 on page

123 in Derman [99], we have

Zug j—a+1)v ZUI j—a+1)v(i,j)

and this completes the proof. B

Theorem 8.6 v is increasing in a and bounded by (c + o)(C + f)/a.
Proof. It is sufficient to show that 75 (i,a) + L0 (i,a) is increasing in a and bounded by
(c+a)(C+ f)/a from above for each value of s assuming that v (i, a) is increasing in a and

bounded by (¢ + «)(C + f)/a from above. It is trivial that
7s(i,a) <CH f

and

[sv (i,a) <

= < c )(C+a)(0+f)
for each value of s. These imply that
7s (i,a) + T3 (i,a) < (¢ + ) (C + f)/a.

Choose arbitrary a € F\{M} and first assume that s = 0. Since, 7o (i,a+ 1) > 7o (i,a),
it is sufficient to show that To¥ (i,a+ 1) > L0 (i,a). We have ¥ (j,a+1) > ¥ (j,a) for
every a by the main hypothesis and using Lemma we have the desired result. Now
assume that s = 1. It is trivial that T'10 (i,a+1) > 1] (i,a) by the main hypothesis and
71 (i,a+1) > 71 (i,a). This implies that 71 (i,a) + I'10 (i,a) is increasing in a and this

completes the proof. B
An immediate corollary of this theorem is the following.

Corollary 8.7 v (i,a) is increasing in a and bounded by (¢ + a)(C + f)/c.
Proof. This follows simply from Proposition 11.5.1. in Puterman [116]. W



Chapter 8: Reliability and Optimal Maintenance under Markovian Mission and Deterioration 174

Corollary 8.8 Suppose that s* is the optimal replacement policy. Then, there is a; for all

1€ E such that

5 (i.a) = 1 ifa>a;

0 ifa<aj.

Proof. Choose arbitrary i € E. It suffices to show that if s* (i,a) = 1, then s* (i,b) =1

for all b > a since s* (i, M) = 1. Assume that s* (i,a) = 1 for some a < M and, for a

contradiction, suppose that there exists b > a such that s* (i,b) = 0. Note that if we can not

find such an a, there is nothing to prove. Since, s* (i,a) =1, 1 (i,a)+T1v (i,a) <79 (i,a)+

Tov (i,a) and v (i,a) =1 (i,a)+T1v (i,a). Since s* (i,b) =0, v (i,b) = ¢ (i,b)+Tov (3,b) <

r1(3,0) + T'v (i,0) = 71 (4,a) + T1v (4,a) = v (i,a). But, this result is a contradiction by
Corollary[8.7 and the proof is completed. M

Thus, we have proved that the optimal replacement policy is a phase dependent control-
limit policy on the deterioration level of the system. The critical replacement levels depend
on the phases of the mission. The optimal replacement policy must be as depicted in Figure

for a system performing a mission with two phases.

s"(La) s*(2,a)
A A
1_ ................. ' .... . . 1_ ......... .... ’ . ...' .
leo—o—0o—0—0—009 I* —t—t—+—+— > leo—eo—0o—=o 11 >
a, M 4 a, M 4

Figure 8.2: A typical optimal replacement policy for a system performing a mission with

two phases.

8.7.2.1 Numerical Examples

We will show by some counterexamples that the main assumptions on our model are really
necessary to guarantee the optimality of a policy with a control-limit structure. As men-

tioned earlier, we assume that p; < f; for all ¢ € E, p; does not depend on the deterioration
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level of the system and the deterioration process satisfies some monotonicity conditions.
In the following examples, we show that if these assumptions do not hold, then we can
find a case such that the optimal replacement policy is not control-limit. In this thesis, all
dynamic programming equations are solved by transforming them into appropriate linear
programming models.

In the following examples, it is assumed that M = 6 and the system performs a mission
with three phases so that £ = {1,2,3} and F = {0,1,--- ,6}. The transition probability

matrix and the transition rates of the mission process are

0 0.3 0.7
Q=102 0 038 (8.41)
0.5 05 0
and
5:[8 1 4], (8.42)

The transition probability matrices of the deterioration process for each phase are

0 01 02 02 03 01 0.1]
0 0 01 015 02 025 0.3
0 0 0 02 023 022 035
Pob=l0 0 0 0 03 03 04], (8.43)
00 0 0 0 05 05
o0 0 0 0 0 1
o0 0 0 0 0 0]
0 01 02 02 02 01 02]
0.05 0.13 0.22 0.25 0.35
0 017 022 023 0.38
P = 0 024 032 0.44], (8.44)

0 04 0.6

o o o o o o o

0
0
0
0
0
0

o o o o

0
0 0 0 1
0 0 0 0
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and _ -
0 01 0.1 01 015 0.2 0.35
0 0 0.05 008 022 025 04
0 0 0 0.05 024 0.26 0.45
Ps=10 0 0 0 018 032 0.5 (8.45)
0 0 0 0 0 045 0.55
0 0 O 0 0 0 1
0o 0 0 0 0 0 0 |

and the related transition rates are

/\12[4 5 5.5 9 80,000 90,000}

)\22[2 3 5 6 620,000 650,000}

)\32[4 5 6 7 80,000 10,0000]-

The maintenance and failure costs are p; = 200, ps = 10, ps = 30, f1 = 300, fo = 50 and
f3 = 80. The discount rate is a = 0.8 and all state occupancy costs are 0. Unless otherwise
specified, these parameters will be used in the following examples. This is our base case
and we will produce the counterexamples by changing some parameters in the base case. In
all of the tabular representations through this and the following sections, if it is not clear
from the context, we suppose that the rows correspond to the phases of the mission while
the columns represent deterioration levels. Then, the optimal replacement policy and the

optimal costs are
0000111
*

ss=10111111
0001111

211.790 251.023 265.112 311.449 411.790 411.790 511.790
vt = 1122.279 132.279 132.279 132.279 132.279 132.279 172.279
177.180 193.980 201.191 207.180 207.180 207.180 257.180
in the base case. It is clear that this is a control-limit policy and the critical thresholds are

* o o
a; =4,a5=1,a3=23.

Example 8.9 In this example, we show that if f; < p; for some i € E, then the optimal

replacement policy does not have to be control-limit and the value function does not have
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to be increasing in the deterioration level of the system. Suppose that py = 200, py = 10,
ps = 1, f1 = 210, fo = 11 and f3 = 0.8. The discount rate is a = 0.99. Using these
parameters, the optimal replacement policy and optimal costs are
0000111
=10 000 1 11
01 1 1001

104.522 129.644 139.025 180.017 304.522 304.522 314.522
v* = | 42.876  46.638 48.754 50.627 52.876 52.876  53.876
99.768  60.768 60.768 60.768 60.575 60.572  60.658

It is obvious that the optimal cost function is not increasing and the optimal policy is not
control-limit for phase 3.

Example 8.10 In this ezample, we show that if p; depends on the deterioration level of the
system, then the optimal policy does not have to be control-limit. Suppose that

0 04 06
Q=103 0 0.7,
05 05 0

5=[5 8 4]7
A1=[1 2 3 3.1 32 3.3},
A2=[2 3 5 80 1000 1200],
A3=[1 1.5 25 4 4.5 5},

15 20 25 30 35 40
p= (15 20 25 30 35 40|,
15 20 25 30 35 40

and
[= [76 45 41},

and o = 0.75. Then, the optimal replacement policy and optimal costs are

0011011
=10 001 1 1 1
00 00O0O01
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and
51.709 67.839 76.709 81.709 86.487 91.709 127.709
v* = |54.330 68.141 76.872 84.330 89.330 94.330  99.330
51.340 64.182 72.452 78.269 81.443 85.516 92.340
It is clear that even if the cost function is increasing, the optimal policy is not control-limit

for phase 1.

Example 8.11 In this example, it is shown that if deterioration process of the system for
a given phase does not satisfy and , then the optimal policy does not have to
be control-limit. Suppose that p1 = 20, po = 10, p3 = 30, f1 = 300, fo = 150, f3 = 180,

A1=14 5 150 180 3 5|,

Ad2=12 3 200 220 3 5|,

A3=14 5 300 350 3 5,

and i i
0 01 0.1 0.1 015 0.2 0.35
0 0 04 008 01 0.1 032
0 0 0 055 013 012 0.2
P=P=P=|0 0 0 0 07 02 0.1
0 0 0 0 0 08 02
0 0 0 0 0 0 1
0o 0 0 0 0 0 0 |

Then, the optimal policy and optimal costs are

0010011

=101 1 1 0 1 1
0010011
and
270.753 283.442 290.753 281.886 241.782 290.753 570.753
v* = 1208.036 218.036 218.036 218.036 203.278 218.036 358.036
258.427 270.443 288.427 266.345 236.590 288.427 438.427

It is clear that the optimal policy is not control-limit and the optimal costs are not increasing

in the deterioration level of the system for each phase.
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8.8 Optimal Repair Problem

In the previous section, we analyze the optimal replacement problem in which a decision
maker observes the system at the beginning of each decision epoch and then makes a decision
of replacing the system or not. However, repairing the system to a better state is also possible
in real life applications in addition to replacement option. In this section, we assume that
after any change in the deterioration process or in the mission process, a decision maker
observes the system and then decides to repair the system to a better state immediately or
to do nothing. The mission and deterioration processes have the same structure as used in
Section and all repair activities are instantaneous.

Let C; (a, b) be the cost of repairing the system from deterioration level a to deterioration
level b during phase 7. It is assumed that C; (a, b) is increasing in a for a fixed b, decreasing
in b for a given a, and C; (a,a) = 0. It is also assumed that for any initial deterioration level
a < M, we can repair the system to any deterioration level in the set {0,1,--- ,a} with the
option of doing nothing. However, a failed system will be replaced. In other words, a failed
system (with deterioration level M) can only be repaired to the deterioration level 0. We
let v (i,a) denote the expected total discounted cost given that the initial phase is i € F
and the initial deterioration level of the system is a € F.

We need to solve the DPE

v(i,) = min {0 (ab) +(i,b) +To (i, b)} (8.46)
where
. 5; + i (a) 5; o Ai(a) & ,
Pl = 5o @ +a | 6 h (@) ;Q(”J)”(J’a) A r PR
(8.47)
and

{0,1,---,a} ifa<M
{0} if a = M.

Ala) =

It is assumed that in the existence of a tie, the decision maker chooses the smaller deterio-

ration level to which the system will be repaired. We also assume that

sup {0; +Xi(a)} = ¢ < +o0 (8.48)
i€E,aeF
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and

sup{C; (M,0)} = C, < +o0.
el

Theorem 8.12 There is a unique function in B that satisfies the DPE .
Proof. Define the operator Y so that

Yf(i,a) —bénAm {Ci(a,b) + ¢ (i,b) + T'f (i,b)}

for any f € B. We will use Banach’s contraction mapping theorem. Choose two functions

g and h from B and assume that ||-|| is the usual supremum norm. Consider

Yg(i,a)—"h(i,a) = bnilm {Ci (a,b) + ¢ (i,b) + Tg (i,b) }— mm {C’ (a,b) +c(i,b) +Th (i,b)} .
€
(8.49)
Suppose that b € A (a) minimizes the second term in the right hand side of . Then,

Yg(i,a) — YTh(i,a) < C"( 7) (i,i +T ('7)—C~(a,5)—c(i,5)—Fh(i,5)

< ‘5“ ) 3 Q) (0GB -1 G.7)

]GE
) M
P; (b k(i b
5“ ; i,b) — h(i >>]
6i+/\i(6)
= 7 h
B 5i+)\i(b)+a[51+ ];;Q i, 7) llg = hll
N0 &
di + A (a) }
< s T2 A lg—hll.
< s {0 Ay

Similarly, it can be shown that
. . d; + Ai (a) }
Th(i,a) —Yg(i,a) < - —hl.
G- ToGa < mp {F5T G e-n

Thus, we have

Tg—Th| < _— —hll.
g=Thl < s {22 g
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Then, using ,

su {5i+)\i(a) } = su {1_(1 }
ieE,feF Sit+N(a)+af z‘eE,feF di + Ai(a) + «

«

- sup {0; +Ni(a)} +«
i€E,aeF

S P
c+« c+ «

and this implies that T s a contraction mapping. Using Banach’s contraction mapping

theorem, T has a unique fized point and this completes the proof. B

Now, we can use uniformization technique by applying the procedure in Puterman [116].
The DPE ({8.46|) can be rewritten using the notation in Puterman [I16] as
v (i,a) = min {rs(i,a) + Tsv (i,a)} (8.50)
s€A(a)
where 75 (i,a) = C; (a, ) + ¢(i, s),
0 + N (8) &; Ai (5)

Bv ) =5 ) a6 (s)éQ(i’j)”(j’SchAi(s)b_zsilp"(s’b)v(i’b)

The original model has A (i,a) = d; + A; (s) and

@) ifb=sj#i

Py (i,a;5,b) =

In the above formulation, the subscripts after P and A mean that the related formula is

valid if the repair decision denoted by the subscript is applied. Moreover, we have
As (Za a’) <c

forall i € E, a € F, and s € A(a) by (8.48)), which is a necessary condition for the

uniformization technique.

Then, define
o _ A a+ >\S (,Lv CL)
s (i,a) =715 (i,a) (oz—i—c)
and
B 1 — (A=PGasgb)As(a) ¢ ,b) = (i,a
Py (i,a;5,b) = S T

Altenaiel if (4,b) # (i,a).

[
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Then, by Proposition 11.5.1 in Puterman [116], we have v (i, a) = v (i, a) for every stationary

policy where v satisfies the DPE

B(5,a) = min {?s (i,a) + T's0 (4, a)}

for all i € F and a € F, and

_ A (s) &
Lsv (i,a) = P g Q,5)v(j,s)+ . bE 1Pi(s,b)5(i,b) (8.51)
:5+

+(1_6i+;i<s>>5<i,a>].

By Theorem we know that there is a stationary policy which solve the DPE (8.46|).
Since v = v for every stationary policy, they are equal for the optimal repair policy. There-
fore, if we have a characterization for the transformed process, the same characterization
will be valid for the original process. From now on, v and v will represent the expected total
discounted cost under the optimal repair policy for the original process and the transformed
process respectively. Our aim is to characterize the optimal policy. First we need some

preliminary results.

Lemma 8.13 If ¥ (i,a) is increasing in a for all i € E, then T4 (i,a) is also increasing in
a foralli e E.
Proof. Choose arbitrary a € {0,1,--- M — 2}. Then, we have

~ i (a+1) .
FaJrlU(Zaa_'—l) = c+ o ZQ Z] jaa+1)+f Z Pi(a+17b)v(27b)
]EE b>a+2
i 1
_|_<1_5+>\C(a+)> (’L (I—|—1):|
and

T3 (i,a) = ZQ i )7 Ga) + 3" Pia,b)7(i,b)

C (6% C
- b>a+1

e

Since v (j,a+ 1) > v (j,a) for every j and \; (a+ 1) > \; (a) we have

Aic(a) Zpi(a,b)’ﬁ(i,b)Jr( e )

b>a+1
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< dilatl) <ac+ D > Pi(a+1b)T(i,b) + <1 _ditAifatl) Aic(a+ 1)> v(i,a+1)
b>a+2

using Lemma[8.9 and this completes the proof. W

Theorem 8.14 v is increasing in a and bounded by (c + ) (C, + C) /a.
Proof. Define the operator T so that

Tf(i,a) = min {a (i,a) + T (4, a)}

for any f € B. 1t suffices to show that if v (i,a) is increasing in a and bounded by
(c+ ) (Cr +C) Ja, then YT (i,a) is increasing in a and bounded by (c+ a) (Cy + C) /a.
It is clear that 75 (i,a) < C, + C and

(e RGO _ G0
AT S et o o o '

These trivially imply that

(c+a)(Cr+0C)

7s (i,a) + T'sv (i,a) <
Q@

and this proves that Yo is bounded by (¢ + &) (Cp + C) /. Since 7 (i,a) and U (i,a) are
increasing in a, using , we have

Fs(i,a+ 1)+ 50 (i,a+ 1) > 74 (i,a) + I's0 (4, a) (8.52)
for any s € {0,1,--- ,a} ifa€{0,1,--- ;M — 2} and for s =0 ifa =M — 1. Then, if
Yo (i,a+1) =7  (,a+1)+Te T(,a+1)
for some s, €{0,1,--- ,a}, using ,

Yo (i,a+1) =7 (,a+1)+Te T@,a+1)>7Fe  (G,0) + s, 0(i,a) > Y0 (i,a).

If
Yo (iya+1) = Far1 (iya+ 1) + Ta10 (6,0 + 1)

where a € {0,1,--- , M — 2} necessarily, then using Lemma 8.1,

Yo (i,a+1) = Far1 (i,a+ 1) + Ta10 (i,a + 1) > 7 (i, a) + Lod (4,a) > T (i,a)
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where the first inequality follows from

c(t,a+1)(a+6; + A (a+1)) > c(iya) (a4 d; + X (a))

:I:/a_t,_]_(’i,a"‘].): o+ c ot C

=74 (i,0a)

since ¢ (i,a) and \; (a) are increasing in a. Since Y0 (i,a+1) > Y0 (i,a) for any a €

F\{M} in all possible cases, the proof is completed. W
An immediate corollary of this theorem is the following.
Corollary 8.15 v(i,a) is increasing in a for alli € E and bounded by (c + a) (Cr + C) /.

From now on, we analyze the structure of the optimal repair policy. Let 7; (a) be the
optimal repair decision during phase 7 if the deterioration level of the system is a. We define

the marginal repair cost 5/C; (a,b), for b < a, as
vCl (CL, b) = CZ (a, b— 1) — Cl (a, b) .

Then, we have

Ci(a,b) = > vCila,k) (8.53)
k=b+1

for all b < a.
We will characterize the optimal repair policy by making some additional assumptions

on the repair costs.

Assumption 8.16 For a given i € E, C;(a,b) < Cj(a,k) + C; (k,b), for all b, k, a € F

such that b < k < a.

Assumption 8.17 For a given i € E, 7C; (a,b) is increasing in a on {k € F;k > b}, for
all fized b € F\{M}.

Assumption 8.18 For a given i € E, \yC; (a,b) is increasing in a on {k € F;k > b}, for
all fivzed b € F\{M}.

Assumption [8.16] states that the cost of repairing the system from deterioration level a
to deterioration level b is less than or equal to the cost of applying two successive repair
actions which take the deterioration level of the system first from a to an intermediate

deterioration level k and then from k to b. If there exists a fixed cost associated with each



Chapter 8: Reliability and Optimal Maintenance under Markovian Mission and Deterioration 185

repair action, then this assumption is quite reasonable. Assumption [8.17] and Assumption
[8.18] state that the marginal cost of repairing the system to a fixed state is increasing in
the deterioration level of the system. This assumption is also quite reasonable, since in real
life the cost of making the same amount of improvement in the state of a system generally
increases as the deterioration level of the system increases. It is clear that Assumption
[B.17]is stronger than Assumption [8.18] since its requires that the condition must hold when
k = b. Thus, besides what Assumption [8.18] states, Assumption additionally states
that \7C; (a,a) < 7C; (a + 1,a) and hence

Ci(a+1l,a)+C;(a,a—1)<Ci(a+1,a—1).
This result clearly contradicts Assumption [8.16

Proposition 8.19 Assumption and Assumption [8.17 cannot hold simultaneously un-
less s7Cj (a,b) is constant in a € F for all fired b € F.
Proof. Suppose that Assumption [8.16 holds. Then, we have

fora >k >b. Using ,

a a k

j=b+1 j=k+1 j=b+1

This implies that

k !
Y VCila,j) < Y vCilk,j)

j=b+1 Jj=b+1
and
k
j=b+1
The last result clearly contradicts Assumption unless 7C; (a,b) is constant in a € F.
|

Assumption [8.16] simply states that for the same amount of improvement, a direct repair
is better than successive repairs. An immediate consequence of this assumption is the

following theorem.
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Theorem 8.20 If Assumption holds, then r; (r; (a)) =1; (a) for alla € F and i € E.
Proof. Ifr;(a) = a, then the result is trivial. Suppose thatr; (a) =b < a andr;(b) =c <b

for a contradiction. We have
v (i,a) = C; (a,b) + ¢ (i,b) + T'v (3,b) < C; (a,¢) + c(i,¢) + T (3, ¢) (8.54)

and

v (i,0) = C; (b,¢) + ¢ (i,¢) +Tv (i,¢) <c(i,b) +Tv (i,b). (8.55)
Then, using ,
C;(a,b) — Cji(a,c) < c(i,c) +T'v(i,¢) —c(i,0) —T'v (3,b)
and using ,
T'v(i,¢) —Tw(i,b) < c(i,b) — c(i,c) — C; (b,c) .

These imply that
Ci(a,b) + C;i(b,c) < Cj(a,c).

This result clearly contradicts Assumption[8.16, W

Theorem 8.21 If Assumption[8.17 holds, then the optimal repair policy r; is increasing on
F\{M} foralli€ E .
Proof. For a contradiction, suppose that i (a1) = b and 7; (a2) = ¢ < b where az > a;.

Then, we have
v (i,a1) = C; (a1,b) + ¢ (i,b) + Tw (i,b) < C; (a1,¢) + ¢ (i,¢) + Tv (i,¢)

v (i,a2) = C; (az,¢) + ¢ (i,¢) + Tw (i,¢) < C; (ag,b) + ¢ (i,b) + T'v (i,b)

and these imply that
C; (az, C) - C; (ag, b) < C; (al, C) - (al, b) .
Using ,

a a al al
Y VCilaz, )= Y vCilaz,j) < Y vCila1,5) = Y vCi(a,j)

j=c+1 j=b+1 j=c+1 j=b+1
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and

b b
> VCilas, i) < Y vCi(a1,))

j=c+1 J=c+1
and, hence,
b
Y [VCilaz.j) = vCi(a1, )] < 0. (8.56)
j=c+1

This is a contradiction since every term in is nonnegative by Assumption|8.17. N
Theorem 8.22 If Assumption[8.18 holds, then the optimal repair policy r; is increasing on
{be F\{M};r; (b) <b}

foralli€ E, i.e., ifri(a) = b < a, then r;(c) > b for all ¢ > a.
Proof.  For a contradiction, suppose that r;(a1) = b < a1 and r; (a2) = ¢ < b where

as > a1. Then, we have
v (i,a1) = Cj (a1,b) + T'v (i,b) < C; (a1,¢) +Tv (4, ¢)

v (i,a2) = Cj (az,c) + T'v (i,c) < Cj(az,b) + T'v (i,b)

and these imply that
C; (CLQ, C) - C; ((LQ, b) < C; (al, C) - C; (al, b) .
Using ,

az ag al al
Y VCilaz,j) = Y vCilaz,j) < Y vCila,j) = Y vCi(a,j)

j=c+1 j=b+1 j=c+1 Jj=b+1
and
b b
> vCilas,j) < Y vCi(ar,))
j=c+1 Jj=c+1
and, hence,
b
Jj=c+1

This is a contradiction since every term in is nonnegative by Assumption|8.18 MW
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The main difference between Theorem [8.21| and Theorem [8.22]is the following. Theorem
holds when r; (a1) = a;, but Theorem may not hold in this case. If r; (a1) = ay,

following the same steps as in the proof of Theorem [8.22] we can achieve the result

b

Y [VCilaz, j) = vCi(ar, )] < 0. (8.58)
Jj=c+1

Since a1 = b, vC; (az,b) — vC; (a1,b) may be negative according to Assumption
and (8.58) may hold. The following example shows that if neither Assumption nor
Assumption holds, then 7; does not have to be increasing in the deterioration level of

the system.

Example 8.23 Consider the base problem in Section [8.7.2.1 Suppose that the transition

rates of the deterioration process are
AL = [4 5 55 9 9200 9500} )

Ay = [2 3 5 6 7000 80()0},

A3 = [4 5 6 7 8000 9000},

and the cost matrix is

0 — — — — -
70 0 - - - - -
800 30 0 - - - -

Ci=1900 330 100 O — - -
1000 500 120 100 O - -
2000 1140 1130 1100 1100 0 —
12500 1900 1800 1600 1400 1200 0

for alli e E and o = 0.80. For these parameters, the optimal repair policy is

0122210

r=10 1 0 0 0 1 0

0121210
In this example, VC; (1,1) = 700, VC; (2,1) = 500, VC; (3,1) = 570, VC; (4,1) = 500 and,
hence, both Assumption [8.17 and Assumption do not hold. Moreover, it is clear that

Ti 18 not increasing.
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Theorem 8.24 If Assumption and Assumption hold, r;(a) < a implies that
ri(a) =ri(a—1) for alla € F\{M}.

Proof. Ifri(a—1)=a—1, thenr;(a) =a—1=r;(a— 1) trivially using Theorem [8.21]
Now, suppose that r; (a — 1) = k < a — 1. Choose arbitrary b such that k+1<b <a— 1.
If ri (a) = b, then r; (b) = b > k using Theorem[8.20, However, this contradicts Theorem
8.21) since b < a—1 and r; (b) > r; (a — 1). Thus, we haver; (a) ¢ {k+ 1,k +2,--- ,a — 1}.
Since k =r; (a — 1) < 7;(a) < a by Theorem[8.21, r; (a) = k = r; (a — 1) and this completes
the proof. A

An immediate corollary of this theorem is the following.

Corollary 8.25 If Assumption[8.16 and Assumption[8.17 hold, thenr; (a + 1) € {r; (a),a + 1}
fora=0,1,--- M —2.

Proof. Suppose that r; (a+1) < a+ 1. If r;(a) = a, then r; (a + 1) = r; (a) = a since
ri(a+ 1) > r; (a) by Theorem If r; (a) < a, then r; (a + 1) = 7; (a) by Theorem

[ |
r(a)
A .
4 .
4 ..'
zt+ o
+ IO
Nas )
X KJ X
4 ...
4 ..'
le——F————F+—+—F+——+—+—+—+—+—+—o—> u
X y z M

Figure 8.3: A typical optimal repair policy under a cost structure for which Assumption

and Assumption hold.

Theorem [8.24 and Corollary [8.25] imply that the optimal repair policy for a given phase
¢ must be as depicted by Figure under a cost structure for which Assumption and
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Assumption hold. Observe that the optimal policy has the form of an increasing step
function. For levels x,x + 1, and x 4 2, the optimal policy is to repair to level z, for levels
¥,y + 1,y + 2, and y + 3, the optimal policy is to repair to level y. Also, note that the
optimal policy is do nothing in z,z + 1, and z + 2.

At first glance, intuition may say that if C; (a, b) is increasing in a and decreasing in b, and
if Assumption [8.16and Assumption hold, then 7; (a) < a implies that r; (a + 1) < a+1.

However, the following example shows that this is not always true.

Example 8.26 Consider Example[8.-23 Suppose that the transition rates of the deteriora-

tion process are

A1=[4 5 55 9 9.2 9.5},
Azz[z 3567 8},
A3={4 56 7 8 9},

and the cost matrixz s

0 — — — — -
v 0 - - - - -
30 20 0 - - - -

Ci=1]50 40 20 0 - - =
1000 990 970 950 0 @ — —
2000 1990 1970 1950 1000 0 —
12500 2490 2470 2450 1500 500 0

foralli € E and o = 0.80. For these parameters, the optimal repair policy is

00 0O0O0S5DO0
r=1(0 0 0 0 0 0O
000O0O0S5O0

In this example, it is clear that C; (a,b) is increasing in a and decreasing in b, and Assump-

tion and Assumption hold. However,we have r1 (4) =0 < 4 and r1 (5) = 5.

8.8.1 Some Interesting Repair Cost Models

In this section, some different repair cost matrices will be analyzed and optimal repair policy

will be characterized for each cost model.
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8.8.1.1 Linear Repair Cost Model 1

Suppose that

K; (b) +s; (b —-b) ifb<
Ci (a,b) = ®) +si(b)(a=b) ifb<a (8.59)
0 otherwise

where s; (b) > 0 is the marginal cost and K; (b) > 0 is the fixed cost of repairing the system

to deterioration level b during phase 1.

Lemma 8.27 If s; is increasing on F\{M} for all i € E, then Assumption holds.

Proof. Choose arbitrary b < ¢ < a. Then,
Ci(a,c) + Ci(c,b) = Ci(a,b) = Ki(c)+si(c)(a—c)+ Ki(b)
+5i (b) (¢ = b) = Ki (b) — s (b) (a — b)
= Ki(c)+si(c)(a—c)+si(b)(c—b—a+D)
= Ki(c)+(a—0¢)(si(c) —si (b))
> 0.
|
Lemma 8.28 If s; is decreasing on F\{M} for all i € E, then Assumption holds.
Proof. It suffices to show that 7C; (a,b) < \7C; (a+ 1,b) for arbitrary a > b. Then,
vCi(cH— 1,b) - v (a,b) = Ci(a+1,b— 1) —C; (a—l— 1,b) —C; (a,b— 1) + C; (a,b)
= s;(b—1)(a+1-b+1—-a+b—1)+s;(b)(a—b—a—140D)
= Si(b—l)—si(b) 20

since s; is decreasing. W

Assumption [8.17] may not hold for this cost structure since

vCila+1a)—vCi(a,a) = Ki(a—1)+2s;(a—1)—K;(a)
—si(a) — K;j(a—1)—s;(a—1)

= si(a—1)—s;(a) — K (a) (8.60)

and we do not have any information about the sign of the last term.
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Lemma 8.29 If
Ki(a) <sj(a—1)—s;(a)

for all a € F\{M}, then Assumption holds.

Proof. Since K; (a) > 0, Assumption holds. It suffices to show that \7C; (a + 1,a) —
vCi(a,a) > 0. Using (8.60) and the main hypothesis,

vCi(a+1,a) —yCi(a,a) =s;(a—1)—s;(a) — K;(a) > 0.
|

Corollary 8.30 If s; is constant and K; = 0, then both Assumption and Assumption

817 hold.

The previous results characterize the optimal repair policy through Theorem [8.20] The-

orem [8.21], Theorem Theorem [8.24] and Corollary

Note that all of the results in this section hold if
K;(a)+si(b)(a—0b) ifb<a

Ci(a,b) = (8.61)
0 otherwise.

8.8.1.2 Linear Repair Cost Model 2

Suppose that

K; + s —b) ifb<
C; (a,b) = (@) +3i(a) (@ ) i “ (8.62)
0 otherwise

where s; (a) > 0 is the marginal cost and K; (a) > 0 is the fixed cost of repairing the system

with deterioration level b during phase 1.

Lemma 8.31 If s; is decreasing on F for all i € E, then Assumption [8.16 holds.

Proof. Choose arbitrary b < ¢ < a. Then,
Ci(a,c)+ Ci(c,b) —Ci(a,b) = K;(a)+si(a)(a—c)+ K;(c)
+si(c) (c—=b) — K; (a) — s; (a) (a — b)
= Ki(c)+si(c)(c=b)+s;(a)(a—c—a+Db)
= Ki(e)+(c=b)(si(c) —si(a))

> 0.
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|
Lemma 8.32 If s; is increasing on F' for all i € E, then Assumption holds.
Proof. It suffices to show that 7C; (a,b) < \7C; (a + 1,b) for arbitrary a > b. Then,
vCi(a+1,b) —C;(a,b) = Ci(a+1,b—1)—-Ci(a+1,b) —C;(a,b—1)+ C;(a,b)
= s(a+l)(a+1-b+1—-a+b—-1)
+si(a)(a—b—a—1+10)
= si(a+1)—s;(a) >0
since s; is increasing. W
Assumption [8.17| may not hold for this cost structure since
vCi(a+1,a)—vC;i(a,a) = Ki(a+1)+2s;(a+1)—K;(a+1)
—si(a+1)— K;(a) — si(a)
= si(a+1)—s;(a) — K;(a) (8.63)
and we do not have any information about the sign of the last term.
Lemma 8.33 If
Ki(a)<sj(a+1)—s;(a)
for all a € F\{M}, then Assumption holds.
Proof. Since K; (a) > 0, Assumption holds. It suffices to show that \7C; (a + 1,a) —
vCi(a,a) > 0. Using and the main hypothesis,
vCi(a+1,a) — vCi(a,a) =si(a+1)—s;(a) — K; (a) > 0.
|

Corollary 8.34 If s; is constant and K; = 0, then both Assumption and Assumption
hold.

The previous results characterize the optimal repair policy through Theorem [8.20] The-

orem Theorem Theorem and Corollary
Note that all of the results in this section hold if

K;(b)+s;(a)(a—0b) ifb<a
Ci(a,b) = (®) (@) ( ) (8.64)
0 otherwise.
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8.8.1.3 Sell-Purchase Model 1

In this model, if the decision maker gives a decision to repair, then the old device is sold
and a better devise is purchased. Let s; (a) and ¢; (a) be the salvage value and the purchase
cost of a system with deterioration level a during phase ¢ respectively. It is assumed that

s; and ¢; are decreasing functions such that ¢; > s; for all ¢ € E. Then,

cl-(b)—si(a) ifb<a
C; (a,b) = (8.65)
0 if b = a.

Proposition 8.35 If s; and ¢; are decreasing functions such that ¢; > s;, then Assumption

and Assumption hold.
Proof. Choose arbitrary a,b, k such that b < k < a. Then,
Ci(a,k) + Ci (k,b) = Ci(a,b) = ci(k) = si(a)+ci(b) — s (k) — ci (b) + si (a)
= ¢ (k) —si(k)

> 0
and this implies Assumption[8.16. Choose arbitrary a,b such that a > b. Then,

vCi(a+1,0) —vvCi(a,b) = Ci(a+1,b—1)—C;(a+1,b) —C;(a,b—1)+ C;i(a,b)
= ¢b-—1)—s;(a+1)—c¢(b)+s;(a+1)

—c; (b—1) 4+ s;(a) + ¢; (b) — si(a)

and this implies Assumption[8.18 M
It is easy to see that Assumption does not have to hold for this cost structure since
ch(a‘f' 170’) - vci(a7a) = Ci(a+17a_ 1) _Cl(a+ 170’) -G (CL,CL— 1)
= c¢la—1)—s;(a+1)—ci(a)+si(a+1)—c(a—1)+s;(a)

= s;(a) —¢i(a)

0.

IA

Theorem 8.36 Ifr;(a) < a and ri(a+1) < a+ 1, then ri(a+1) = r;(a) for all a €
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Proof. Since ;i (a) < a, we have
v(i,a) = min {br<nin1 {c; (b) + ¢ (i,b) + Tw (i,b)} — si (a),c(i,a) + Tv (4, a)}
= br<nin1 {c; (b) + c(i,b) + Tw (i,b)} — s; (a).
Suppose that r; (a) = k < a and, hence,

bggill {c; (b) + c(i,b) + Tv (i,b)} = ¢; (k) + ¢ (i, k) + Tv (i, k) .

Since ri(a+1) <a+1,

v(i,a+1) min{lglgi(rll{ci (b)+c(i,b)+I‘U(i,b)}—si(a—i-l),c(i,a—kl)+Fv(i,a+1)}

= IbnSiCILl{Ci ) +c(i,b) +Tv(3,0)} —si(a+1).
Ifri(a+1) # a, then

mim1 {ci (b) +c(i,b) + Tv (i,b)} < ¢ (a)+c(i,a) +Tv(i,a)

b<a—
and hence i (a + 1) = k. Therefore, if i (a + 1) # k, then r; (a +1) = a. However, this
leads to a contradiction since Assumption[8.16 holds for this cost structure using Proposition
and, hence, i (a) = a by Theorem|8.2(, W

Theorem [8.36| implies that the optimal repair policy for a given phase i must be as
depicted by Figure under this special cost structure. Observe that the optimal policy
does not have to be increasing. For levels x,x + 1, and x + 2, the optimal policy is to repair
to level z. For levels y,y+ 2,y + 3, and y + 4, the optimal policy is to repair to level y while
the optimal decision is do nothing in y + 1. Also, note that the optimal policy is do nothing
in z,z4+1, and z + 2.

Example 8.37 Consider Example with the following cost functions

10000 8000 6000 2000 760 750 500
¢= (10000 4100 4000 1600 1500 1250 1000] ,
10000 3000 2500 2000 1000 750 500

9000 3500 3000 2000 755 740 490
5= (8000 4000 3900 1010 1000 750 600
7000 2500 2250 1500 750 650 400
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oe——————+—+—+—+—+—+—+—+—+eo—«u

Figure 8.4: A typical optimal repair policy for the sell-purchase model 1.

Then, the optimal repair policy is

01233320
r=1(0 113 3 3 0
0111110

This example shows that for a given phase, if the optimal decision is to repair in two dif-
ferent deterioration levels, then the system can be repaired to different deterioration levels
optimally. It also shows that if r; (a) < a, then r;(a + 1) does not have to be strictly less
than a + 1.

Example 8.38 Consider Example with the following cost functions

10000 4000 3500 2500 1000 750 500
¢= (10000 5000 4000 3000 1500 1250 1000] ,
10000 3000 2500 2000 1000 750 500

9000 3500 3000 2000 755 500 250
s = (8000 4000 3000 2000 1000 750 600
7000 2500 2000 1000 750 500 250
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Then, the optimal repair policy is

0121110
r=1(012 3 110
0113110

This example shows that if r; (a) < a, then r; (a) does not have to be equal to r; (a — 1).

8.8.1.4 Sell-Purchase Model 2

This model is a special case of the previous model. The only difference between them is
that in this model, selling price and purchase price of the system are equal for the same
deterioration levels. Then,

Ci(a,b) =¢; (b) — ¢ (a)

where ¢; is a decreasing nonnegative function on F' which is selling and purchase price of
the system. Ozekici and Giinliik [I03] shows that Assumption Assumption and
Assumption [8.18 all hold for this cost structure.

Theorem 8.39 Ifr; (a) < a, then r;(a) =r;(a —1) for alla € F\{M}.

Proof.  Although this is an immediate corollary of Theorem [8.24 we provide another
proof. Suppose that r; (a —1) = k and r; (a) < a. We need to show that r; (a) = k. Since
C; (a,b) = ¢; (b) — ¢; (a), we have

v(i,a—1) = bgﬂ {ci (b) —ci(a) +c(i,b) +Tv (i,b)}

= brgrgill {¢; (b) + ¢ (,b) + Tv (i,b)} — ¢i (a).
Then, since r; (a —1) =k
bgzi{ll {c;(b) +c(i,b) +Tv (i,b)} = ¢; (k) +c(i,k) + Tv (i, k). (8.66)

We know that i (a) < a and, hence,
v (i,a) = br<nin1 {c; (b) + c(i,b) + Tv (i,b)} — ¢; (a) .
Using (8.66), ri (a) = k trivially. W

Since Assumption [8.16 and Assumption hold for this cost structure, the optimal

repair policy under this cost structure has the form described in Figure [8.3
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Example 8.40 Consider Example with the following cost function

10000 8000 6000 2000 760 750 500
¢= {10000 4100 4000 1600 1500 1250 1000
10000 3000 2500 2000 1000 750 500

Then, the optimal repair policy is

01233320
r=1(0 113 3 3 0
0111110

This example shows that if r; (a) < a, then r;(a + 1) does not have to be strictly less than
a+1.

8.8.1.5 A Purchase Model

This cost model is similar to the previous one, but now the salvage value of the old system
is zero. Therefore, the cost of a repair is equal to the purchase cost of the better system,
i.e., Cj(a,b) = ¢; (b) if b < a and C; (a,a) = 0 for every phase i € E. Ozekici and Giinlitk
[103] shows that Assumption and Assumption hold, but Assumption does

not hold for this cost structure.

Theorem 8.41 If ¢ is a nonnegative decreasing function on F\{M}, then there exists
ki € F and l; € F\{M} such that r; (a) = a for all a < k; and r; (a) = l; for all a €
{ki,ki +1,--- M — 1} for alli € E.

Proof. Choose arbitrary phase i € E. Let k; be the first deterioration level at which the
decision maker decides to repair the system, i.e., k; = inf {a;r; (a) < a}. Then, trivially if
a < ki, then r; (a) = a. Suppose that r; (k;) = 1;. Then, we need to show that r; (a) =; for

all a > k;. Choose arbitrary a > k;. We have
v (i, k;) = min {bg}vinl {¢; (b) + ¢ (,0) + Tv (i,b)}, ¢ (i, ki) + Tv (4, k:l)}
= ¢ (lz) +C(i,li) +Tv (i,li)

and

min1 {c; (b) + c(2,b) + Tw (i,b)} = ¢ (l;) + c(i,0;) + Tv (4, 1;) . (8.67)

b<k;—
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Figure 8.5: A typical optimal replacement policy for a system performing a mission with

two phases.

Since, v (i,a) is increasing in a
ci (li)+c(i,l;) +Tv (i, l;) =v (i, ki) <wv(i,a) <c(iya)+Tv(i,a). (8.68)
Moreover,
v(i,a) = min {bmm {ci (b) +¢c(i,b) + v (i,b)},c(i,a) + v (4, a)}

(
= min {Cz ( ) (Z,li) +Tv (Z,ll) s

min  {¢; (b) +¢(i,b) + Tw (3,b)},c(i,a) + Tv (4, a)} (8.69)

ki<b<a—1
= min{¢ (L) +c (i) +Tv (3, L), (8.70)
klgn%lg . {ci (b) + c(2,b) + T'v (4, b)}} (8.71)

where the last equality follows from . Now, choose arbitrary b such that k; < b < a—1.
Then, since v (i,a) is increasing in a,
ci (L) +e(i,l;)+To(i,l;) =v (i, k) <v(i,b) <c(i,b) +Tv(i,0) < ¢ (b)+c(i,b) +Tv (i,b).
Thus, we have

v(i,a) = ¢ () +c(i,l;) +Tv (i)
and, hence, v (a) =1;. N

Theorem implies that the optimal repair policy for a system performing a mission
with two phases must be as depicted by Figure[8.5 under this special cost structure. Observe
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that the optimal policy has a phase dependent control-limit structure specified by the pairs

(k1,11) and (ka,(l2). The optimal policy is do nothing for levels a < k;, and to repair to level

l; for levels a > k;, for both i =1, 2.
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