
SVM Classification for Imbalanced Datasets with Multi Objective

Optimization Framework

by

Ayşegül Öztürk

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koç University

July, 2009

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Ayşegül Öztürk

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Prof. Serpil Sayın(Advisor)

Asst. Prof. Özden Gür Ali

Asst. Evrim Didem Güneş

Date:

ABSTRACT

Classification of imbalanced datasets in which negative instances, also called majority class,

outnumber the positive instances, also called minority class, is a significant challenge. These

kind of datasets are commonly encountered in real-life problems. However, performance of well-

known classifiers are limited in case there exists imbalance in the dataset. Various solution

approaches are proposed in the literature, applied on either data-level or algorithm-level to ad-

dress the problems that arise in case of imbalance. Data-Level approaches mainly aim to balance

the distribution of the dataset either by eliminating some instances of majority class or by repli-

cating some instances of minority class. On the other hand, Algortihm-Level approaches either

bias the algorithm proposed or adjust some parameters in order to bias the underlying model.

Support Vector Machines (SVMs) that have a solid theoretical background also encounter a

dramatic decrease in performance when the distribution of the datasets is imbalanced.

The objective of this study is to improve the classification performance of SVMs for imbalanced

datasets. The method proposed is based on modifying L1 Norm SVM formulation to create a

three objective optimization problem so as to incorporate into the formulation the error sums

for the two classes independently. Motivated from the multi objective nature of the SVMs,

the solution approach uses the fundamentals of Multi Objective Optimization. The proposed

method suggests to reduce the problem formulation into two criteria variations and to investigate

the efficient frontier systematically. Investigating the efficient frontier by a systematic proce-

dure leads the method to evaluate the problem for a remarkable set of parameters rather than

adjusting a few parameters empirically as in the existing approaches. Therefore the proposed

method improves the performance of a SVM by decreasing the computational effort needed for

evaluating the problem for the same amount of parameters. The results are reported in terms

iii

of three widely used metrics and computational experiments are discussed in detail.

ÖZETÇE

Negatif sınıf (çog̃unluk sınıfı) örneklerinin pozitif sınıf (azınlık sınıfı) örneklerinden fazla

oldug̃u Dengesiz Veri Kümelerinde sınıflandırma önem taşımaktadır. Bu tip, dag̃ılımları den-

gesiz olan veri kümelerine gerçek hayat problemlerinde sıklıkla rastlanmaktadır. Ancak veri

kümesinin dengesiz olması durumunda sıklıkla bilinen sınıflandırma algoritmalarının performansı

düşmektedir. Literatürde, dag̃ılımın dengesiz olması durumunda ortaya çıkan problemleri çözmek

için veri seviyesinde veya algoritma seviyesinde çeşitli çözüm yaklaşımları sunulmuştur. Veri

seviyesindeki yaklaşımlar genellikle, çog̃unluk sınıfından bazı örnekler eleyerek veya azınlık

sınıfındaki bazı örnekleri yineleyerek veri kümesinin dag̃ılımını dengelemeyi amaçlarlar. Al-

goritma seviyesindeki yaklaşımlar ise önerilen algoritmaya veya altında yatan modele sapma

ekleyerek sınıflandırma performansını arttırmayı amaçlarlar. Güçlü bir teorik alt yapıya sahip

olan SVM’ lerde de veri kümesinde dengesizlik oldug̃u durumlarda performansta ciddi bir düşüş

gözlenmektedir.

Bu çalışma SVM’ lerin dengesiz veri kümelerindeki sınıflandırma performansını iyileştirmeyi

amaçlamaktadır. Sunulan yöntem L1 Norm SVM formulasyonuna her iki sınıf için hata toplamlarını

birbirinden ayrı şekilde dahil ederek üç ölçüt fonksiyonuna sahip bir optimizasyon problemi

yaratmaktadır. SVM’ lerin çok ölçütlü yapısından dolayı çözüm yaklaşımı Çok Ölçütlü Opti-

mizasyon temelleri üzerine kurulmuştur. Sunulan yöntem, problem formulasyonunu alternatif

iki ölçüt fonksiyonlu formulasyonlara indirgemeyi ve etkin kümeyi sistematik bir şekilde in-

celemeyi önermektedir. Etkin kümeyi sistematik bir şekilde incelemek, yalnızca empirik olarak

belirlenmiş kısıtlı sayıda parametreye deg̃er vererek problemi deg̃erlendiren yöntemlerin aksine,

önemli sayıda parametreyle sistematik olarak problemi deg̃erlendirmeyi sag̃lar. Böylece, önerilen

yöntem daha az hesaplama zamanı ile daha çok parametre deg̃eri kullanarak SVM’ in perfor-

mansında artış sag̃lamaktadır. Sonuçlar sıklıkla kullanılan üç metrik cinsinden rapor edilmiştir

ve tüm deneyler ayrıntılı şekilde tartışılmıştır.

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest gratitude to my advisor Serpil

Sayın for her insightful discussions and never ending support during this work. I have learned

and achieved more than I ever dreamed of in two-years by her precious guiding and help as well

as her inspiration and encouragement. I feel myself very lucky and very proud of being one of

her students.

I am grateful to Özden Gür Ali and Evrim Didem Güneş for taking part in my thesis

committee, for critical reading of this thesis and for their supportive suggestions and comments.

I also thank to TUBITAK (The Scientific and Technological Research Council of Turkey) for

their generous financial support.

I would like to thank to all my friends at Koç University, especially Derya Kunduzcu, Deniz

Kubalı and Nihan Çömden for their valuable friendship , for their encouragement when I needed

and for all the fun and good times we shared together as officemates. Also I would like to thank

Umut ınetaş not only for his valuable friendship for many years but also his encouragement and

support for any problem I have ever encountered. Special thanks go to Doğan Aşkan who has

stand by me the whole time as my life support unit. And the last but not least, I would like

thank to my parents and my brother for believing me and trusting me at every step I have taken

so far and for their endless and supporting love.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Chapter 1: Introduction and Background 1

1.1 Introduction . 1

1.2 Fundamental Concepts in Data Mining . 3

1.3 Support Vector Machine Classification . 6

1.3.1 L1 Norm SVM Formulation . 11

Chapter 2: Literature Review 13

2.1 The Imbalanced Datasets . 13

2.2 Handling the Imbalanced Datasets . 15

2.2.1 Data Level Solution Approaches . 15

2.2.2 Algorithm Level Solution Approaches . 17

Chapter 3: Alternative Method Handling the Imbalance 20

3.1 Obtaining Efficient Frontier in the Two Criteria Case 25

3.2 Grid Search Model Reducing Three Criteria to Two Criteria 28

3.3 Datasets . 34

3.3.1 Soybean Dataset . 34

3.3.2 Yeast Dataset . 34

3.3.3 Abalone Dataset . 35

3.3.4 Statlog Dataset . 35

vii

3.3.5 Letter Recognition Dataset . 36

3.4 Evaluation Metrics . 36

Chapter 4: Experiments 47

4.1 Experiment Settings . 47

4.2 Results . 48

Chapter 5: Reducing Computational Time 57

Chapter 6: Conclusion 61

Bibliography 64

Vita 70

viii

LIST OF TABLES

3.1 Properties of Soybean Dataset . 34

3.2 Properties of Yeast Dataset . 35

3.3 Properties of Abalone Dataset . 35

3.4 Properties of Statlog Dataset . 36

3.5 Properties of Letter Recognition Dataset . 36

4.1 Evaluation for soybean dataset . 48

4.2 Evaluation for yeast dataset . 49

4.3 Evaluation for abalone dataset . 49

4.4 Evaluation for statlog dataset . 50

4.5 Evaluation for letter recognition dataset . 51

5.1 Reduced Evaluation for Soybean Dataset . 58

5.2 Reduced Evaluation for Yeast Dataset . 58

5.3 Reduced Evaluation for Abalone Dataset . 59

5.4 Reduced Evaluation for Statlog Dataset . 59

5.5 Reduced Evaluation for Letter Recognition Dataset 59

ix

LIST OF FIGURES

1.1 Efficient frontier examples in 3-D. 8

2.1 Ideal Classification. 14

2.2 Classification when imbalance is not considered. 15

3.1 Efficient frontier examples in 3-D. 23

3.2 Efficient frontier for a bicriteria optimization problem. 24

3.3 Objective value vs. Total error. 27

3.4 grid1 Search in Majority Epsilon vs. Minority Epsilon Space 31

3.5 Sample ROC Curve . 39

3.6 The best five percent of g-means values for Soybean 41

3.7 The best five percent of AUC values for Soybean 42

3.8 The best g-means and the best AUC values for Soybean 43

3.9 The best five percent of g-means values for Yeast 44

3.10 The best five percent of AUC values for Yeast 45

3.11 The best g-means and the best AUC values for Yeast 46

4.1 Trade-off between the three objective . 53

4.2 How the norm changes due to the error on minority class 55

4.3 How the norm changes due to the error on majority class 56

x

Chapter 1: Introduction and Background 1

Chapter 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

In recent years, due to improvements on data storage costs, massive amount of business and

research data have been collected and stored [41]. Therefore extracting useful information from

this data has arisen as an interesting and popular research area. The phrase Knowledge Discov-

ery in Databases (KDD) is used to describe this process. Specifically, KDD is defined as “the

non-trivial process of identifying valid, novel, potentially useful and ultimately understandable

patterns in data” [26]. Similarly, data mining is defined as “a step in the KDD process consisting

of enumeration of patterns or models over the data” [26]. Data mining combines methods of

statistics, databases, machine learning and pattern recognition to extract-mine- concepts, con-

cept interrelations and interesting patterns from large datasets [56]. The key characteristic of

data mining is that it used a discover-based approach rather than verification-based approach.

In a verification-based approach, the user hypothesizes some presumptions and tries to prove

or disprove these presumptions. However, in the discovery-based approach existing data is ana-

lyzed in order to extract new or previously unknown or unrealized information [55]. Briefly, the

most important property of the data mining is that data directs the user’s method.

Optimization techniques are widely used for theoretical and applied problems, as Euler said

“Nothing happens in the universe that does not have a maximum or a minimum” [47]. By math-

ematical programming, that is optimization subject to constraints, various problems of various

fields can be formulated and effectively solved. Recently, mathematical programming techniques

have been widely used for data mining problems [40], since they perform well while they provide

Chapter 1: Introduction and Background 2

theoretical basis on the problems. Most of the mathematical models introduced are either Lin-

ear Programming or Convex Quadratic Programming [40] both of which are polynomial-time

solvable [48]. Also fast linear and quadratic programming codes like CPLEX that is capable of

solving very large problems help the mathematical models introduced to be applied for large

problems as well as small ones [40]. Finally, considering a general idea of ‘finding a rule that

minimizes the errors made in prediction’ some data mining problems like classification the use

of mathematical programming is prospected.

Support Vector Machines (SVMs), introduced by Vapnik et al. [49], is one of the data mining

tools that is based on mathematical programming and has a strong theoretical basis. We will be

giving detailed background information about classification problem of data mining and support

vector machines method proposed as a solution approach for this problem.

One of the most challenging problems of data mining is the concept classification on an imbal-

anced dataset since classifier performance dramatically falls in such a case [34], [13]. In this

study, we aim to improve classification performance of support vector machines in imbalanced

datasets. Our motivation leading to the choice of support vector machines lies on its theoretical

basis, optimization based structure as well as the results stating that SVMs are shown to be

least sensitive to class imbalance among decision trees and multi-layer Perceptrons(MLP) [34].

To summarize the contents of this thesis, Chapter 1 continues with relevant background infor-

mation about data mining and Support Vector Machines that will form a basis for the rest of

the study. Chapter 2 summarizes the literature of Classification on Imbalanced Datasets. In

this chapter application areas with imbalanced datasets are mentioned as well as the various

solution approaches proposed by the researchers. We group these solution approaches into two

as Data Level and Algorithm Level approaches. Chapter 3 focuses on the multi objective na-

ture of the Support Vector Machines and we propose and explain our solution approach. We

introduce three variations based on our main solution approach. We also introduce the datasets

and evaluation metrics used. Chapter 4 contains the information about the experiments con-

ducted. Also the detailed results of the experiments are given. Chapter 5 describes a heuristic

for reducing the computational time of the proposed methods in case of a extremely large and

Chapter 1: Introduction and Background 3

imbalanced dataset. Also some results of the heuristic method are listed. Finally, Chapter 6

concludes the study summarizing and discussing the main results. Also possible directions for

future research are discussed.

1.2 Fundamental Concepts in Data Mining

A definition of data mining is given as “finding interesting trends or patterns in large datasets, in

order to guide decisions about future activities” in [43]. A more technical definition can be found

in [44] as ‘the process of employing one or more computer learning techniques to automatically

analyze and extract knowledge from data contained within a database’. The knowledge extracted

from the data will be a model or generalization that represents the characteristics of the data.

All data mining methods involve a process forming general concept definitions by observing

specific examples of concepts to be learned, also called induction-based learning [44]. There are

various types of data mining algorithms that carry out different tasks. The main idea of these

algorithms is fitting a model to the data or finding a generalization of the data. The aim is

determining a model (or a generalization) which is closest to the characteristics of the data in

terms of some criteria preferred. There are particular types of data mining problems that can

be summarized in five groups:

*classification

*prediction

*estimation

*association mining

*clustering

The first three are all examples of supervised data mining, where the goal is to find the value

of a particular target variable. Association mining and clustering are unsupervised tasks where

the goal is to uncover structure in data without respect to a particular target variable. Now let us

briefly define these problems. Classification, is the process of assigning instances to categories

or classes that are predetermined. The aim is building models that are able to assign new

instances to one set of predetermined classes or categories. Further on we will be mentioning the

Chapter 1: Introduction and Background 4

classification problem in detail. Estimation, similar to classification, aims to determine a value

for an unknown output attribute. The unlikely part is that in estimation the output attribute(s)

are numerical rather than categorical [44]. Prediction uses data from the past to predict what is

likely to happen in the future. Difference of prediction is that building a predictive model requires

separation in time between the model inputs or predictors and the model output, the thing to be

predicted, unlike classification or estimation. If this separation is not maintained, the model will

not work [8]. Association mining/ Association rule mining finds interesting associations and/or

correlation relationships among large set of data items. Association rules show attribute value

conditions that occur frequently together in a given dataset. A typical and widely-used example

of association rule mining is Market Basket Analysis. These rules are computed from the data

and, unlike the if-then rules of logic, association rules are probabilistic in nature. Clustering is the

task of segmenting a heterogeneous population into a number of more homogeneous subgroups or

clusters [8]. In clustering, there does not exist any predefined classes. The model built with this

method groups the data instances together based on a similarity scheme, a measure of cluster

quality. The aims is discovering structures in the data and the meaning of the formed clusters

is up to the user. There are many methods introduced to solve these data mining problems

in the literature. We will be briefly explaining the most common data mining methods. The

Nearest Neighbor Algorithm is one of the first algorithms used to determine a solution for data

mining problems, particularly the classification problem. For a given point in space, the nearest

neighbor algorithm selects the value of the attribute of the nearest point and does not consider

the values of other points in the space. This is a simply implemented method which leads us to

the k-Nearest Neighbor Algorithm. In this method an instance is classified by a majority of its

neighbors, in other words it is assigned to the most common class amongst its k nearest neighbors

[18]. A method introduced for all supervised data mining problems is called Decision Trees. A

decision tree is a tree where the root and each internal node is labeled with a question. The

arcs emanating from each node represent each possible answer to the associated question. Each

leaf node represents a prediction of a solution to the problem under consideration [20]. Another

method, Regression, is a supervised learning technique that generalizes a set of numeric data

Chapter 1: Introduction and Background 5

by creating a mathematical equation relating one or more input attributes to a single numeric

output attribute [44]. Regression is generally used to predict future values based on past value.

Another statistics based method used for classification problem is called Naive Bayes. It assumes

that the contribution by all attributes are independent and that each contributes equally to the

problem. Classification is based on the conditional probability of each independent attribute

determined by Bayes rule of conditional probability. Another method introduced for data mining

problems is Artificial Neural Network. It is a set of interconnected nodes designed to imitate

the function of the human brain [44]. It is applicable for supervised data mining problems as

well as unsupervised ones. Briefly called Neural Network, it is an information processing system

that consists of a graph representing the processing system as well as various algorithms that

access that graph [20]. Association rules, introduced for the problem Association mining, are

used to discover interesting associations between attributes. They provide information in the

form of if-then statements. Genetic Algorithms, used for clustering, prediction and association

mining, are examples of evolutionary computing methods. In this approach a starting model is

assumed and through many iterations, models are combined to create new models. The best

of these, as defined by a fitness function, are then put into the next iteration [20]. The latest

introduced method for data mining problems is called Support Vector Machines method. It can

be applied to both classification and clustering problems and it is based on the theoretical frame

of optimization [49].

After brief definitions of data mining problems, let us focus on the classification problem.

Classification is the most popular data mining problem that has various applications in real

life problems, including image and pattern recognition, medical diagnosis, detection of frauds,

etc. As mentioned above, classification consists of two phases which are called training phase

and test phase, respectively. The dataset used in the first phase to create a learning model is

called training set. Training set consists of the input data as well as the class assignment data

(called class label) for each instance. In the second phase, test set which contains the new and

unseen instances, is used. Test set consists of only the input data and the aim is determining

class label for each instance in the test set. When the model is constructed in the first phase,

Chapter 1: Introduction and Background 6

two main issues are considered. The first one is called the generalization ability of the model

meaning the ability of a learning machine to classify new examples correctly that differ from those

used for training. In other words, how much we are mislead in choosing the optimal function

when generalizing from a given training example to a general prediction function determines the

generalization error, which is the measure of the generalization ability of the model. The second

issue is the empricial error, also called observed error, which is the frequency of errors made

during the testing phase for a model. The main problem in the construction of the model is how

to balance the trade-off between generalization error and the empirical error of the model since

they have conflicting objectives. When too much importance is given to the empirical error,

without considering the generalization error, overfitting occurs. Overfitting is the case where

the learned model fits almost exactly to the training data, however in this case the learned model

performs poorly on the test data since it just learned the training set instead of generalizing

a pattern from it. On the other hand when generalization error is too much emphasized that

may lead to underfitting. Underfitting is the case where the model is same whatever the input

data is and the model has no attempt to fit the data. If the empirical error is too high and

generalization error is too low in the training set this would lead a bad performance in the

test set. Hence, it is important to balance the trade-off between the generalization error and

the empirical error while constructing a learning model. All classification methods deal with

this balancing problem in various ways. Our study focus on a particular classification method

Support Vector Machines. Therefore, we will be giving relevant background information about

its application for classification problem in the next section.

1.3 Support Vector Machine Classification

In SVM Classification, the problem is defined as classifying the points into two sets, referred,

I+ and I−, which is also called binary classification. The training set consists of ` points in <n,

meaning n-dimensional real space, with a class assignment information. The training set can be

Chapter 1: Introduction and Background 7

represented as

(x1, y1), ..., (x`, y`) , xi ∈ <n , y ∈ {+1,−1} (1.1)

where xi is the ith instance in the training set and yi is the class assignment label of this instance.

Remark that the test set consists of k points in <n and goal of classification is to assign these

points to either I+ or I− by using the model learned on the training set. First suppose the

training data given as in (1.1) can be separated by a hyperplane of the form,

w.x + b = 0 , w ∈ <n , b ∈ < (1.2)

If this separation is completed without error and if the distance of closest point to the hyperplane

is maximal then this hyperplane, characterized by w and b, is called the Optimal Hyperplane

[49]. The optimal hyperplane, also called the maximal margin hyperplane, is described with the

inequalities:

w.xi + b ≥ 1 if yi = +1 (1.3)

w.xi + b ≤ 1 if yi = −1 (1.4)

and a brief notation is given as:

yi[w.xi + b] ≥ 1, i = 1, . . . , `, (1.5)

The geometric representation of these equations is in the Figure 1.1,

where margin is represented. The filled instances of each class represent the support vectors

which we would mention later. Margin is the width that the boundary could be increased before

hitting a data point. The optimal hyperplane maximizes the distance between the hyperplane

and ‘the difficult points’ which are points closest to the decision boundary. Since the distance

Chapter 1: Introduction and Background 8

margin

Figure 1.1: Efficient frontier examples in 3-D.

of an example from the hyperplane is given with the formula,

di = yi.
(w.xi + b)
‖w‖2

(1.6)

where ‖‖2 denotes the Euclidean norm. The geometric margin represented in Figure 1.1 is found

as

2
‖w‖2

(1.7)

where w is the weight vector defining the hyperplane. The objective of this classification is to

separate two classes as much as possible and in order to accomplish this the margin should be

maximized. If the objective is formulated it will be maximizing Equation 1.7 and this leads to

minimizing the inverse of geometric margin equation, in other words minimizing ‖w‖2. Now let

us summarize these findings.

Chapter 1: Introduction and Background 9

Proposition. Given a linearly separable training set

X = (x1, y1), . . . , (x`, y`) (1.8)

the hyperplane characterized by (w, b) that solves the optimization problem

(HSV M) min
1
2
w.w (1.9)

s.t. yi((w.xi) + b) ≥ 1, i = 1, . . . , `, (1.10)

(1.11)

constructs the optimal hyperplane with geometric margin given as (1.7).

(HSVM), abbreviated for hard-margin SVM formulation, is a quadratic optimization problem

in which separation is perfect. The solution to this optimization problem is given by Lagrangian

Dual method by transforming the problem into its corresponding dual. The Lagrangian of the

problem is constructed as,

L(w, b, α) =
1
2
w.w−

∑̀
i=1

αi[yi(w.xi + b)− 1] (1.12)

where αi ≥ 0 are the Lagrange multipliers. The dual problem is maximization of the Lagrangian

with respect to αi’s. As it is clear, minimization problem (HSVM) with respect to (w,b) is

equivalent to the maximization of Lagrangian with respect to αi’s by the Duality Theorem [6].

The dual solution is found by differentiating the Lagrangian with respect to w and b and then

substituting the findings into the primal Lagrangian we end up with the following proposition

[17]:

Proposition.Given a linearly separable training set

X = (x1, y1), . . . , (x`, y`) (1.13)

and supposing the parameters α∗ solve the following quadratic optimization problem

Chapter 1: Introduction and Background 10

(Dual −HSV M) min
∑̀
i=1

αi −
1
2

∑̀
i,j=1

yiyjαiαj(xi.xj) (1.14)

s.t.
∑̀
i=1

yiαi = 1, i = 1, . . . , `, (1.15)

αi ≥ 0, i = 1, . . . , ` (1.16)

Then the weight vector

w∗ =
∑̀
i=1

yiα
∗
i xi (1.17)

constructs the optimal hyperplane with geometric margin given in (1.7) .

Representation of w is sparse since many of the alpha values end up being zero. Thus the

decision boundary characterized by w will be determined by data points only with non-zero

alphas. These data points that are closest to the boundary are called Support Vectors.

Remark that b does not appear in the dual formulation, hence b∗ would be found by using

primal constraints.

Even though (HSVM) is a sophisticated model with a strong theoretical background, it

generally can not be used in real world datasets because of the noisy structures of these datasets.

HSVM produces a perfectly consistent hypothesis and does not consider training errors [17]. In

HSVM the bound on margin pursues the hyperplane to separate the data perfectly. However,

in a real world data with noise, the primal problem would become infeasible and the dual

problem would become unbounded. Therefore the problem can not be solved. For a more

robust formulation, slack variables are introduced in order to allow the margin constraints to be

violated within some bound

yi(w.xi + b) ≥ 1− ξi, , i = 1, . . . , ` (1.18)

ξi ≥ 0, i = 1, . . . , ` (1.19)

Chapter 1: Introduction and Background 11

This formulation allows some instances to fall within the margin, however it penalizes misclassi-

fications. The goal is still placing the hyperplane far from each class but also trying to minimize

the training set error at the same time. Since minimizing the number of misclassifications is

proven to be a NP-complete problem [39], the objective function chooses to minimize the sum

of distances from the margin. Hence the optimization problem, soft-margin SVM, becomes,

(SSV M) minw.w + C
∑

i

ξi (1.20)

s.t. yi(w.xi + b) ≥ 1− ξi, i = 1, . . . , `, (1.21)

ξi ≥ 0, i = 1, . . . , `, (1.22)

where C is the trade-off parameter between the non-compromising objectives maximizing

margin-generalization error- and minimizing sum of ξi’s-empirical error-.

1.3.1 L1 Norm SVM Formulation

Throughout various formulations of SVMs (SSVM) is the most popular one [17],[49]. In SSVM

L2 norm is used in order to measure the generalization ability through the margin as also seen

from the formulations we explained above. Meanwhile, let us remind some basic properties of

the norm of a vector. Briefly norm is a function that assigns a strictly positive length to all

vectors in a vector space. The most common norm used is L2 Norm, also called Euclidean Norm,

is given with the formula,x ∈ Rn

‖x‖2 =
√

x2
1 + x2

2 + . . . + x2
n =

√
x.x (1.23)

L1 Norm, also called Manhattan Norm, is given as:

‖x‖1 =
n∑

i=1

|xi| (1.24)

Chapter 1: Introduction and Background 12

and finally the generalized form, Lp Norm, is given as,

‖x‖p = (
n∑

i=1

|xi|p)
1

p (1.25)

where p ≥ 1 is a real number. Even though L2 Norm is the most generally used among the norm

functions, alternative formulations for SVMs also exists using L1 Norm instead of L2 Norm. As

discussed in [10], there are two principal reasons leading to this choice,

1. The problem is reduced to a linear program with important theoretical properties bene-

fiting usage as a computational tool

2. L1 Norm formulation is less sensitive to outliers and performs feature selection better than

the L2 Norm [2].

Bradley and Mangasarian [10] proposed the L1 Norm SVM formulation as,

(L1SV M) min

n∑
i=1

|wi|+ C

n∑
i=1

ξi (1.26)

s.t. (1.21), (1.22)

Our choice of L1 Norm depends mainly on the reduction of the mathematical programs to linear

programs and also the findings in [2] that could be summarized as the classifier performance of

L1 Norm formulation is no worse than the classifier performance of L2 Norm formulation.

Chapter 2: Literature Review 13

Chapter 2

LITERATURE REVIEW

2.1 The Imbalanced Datasets

The class imbalance problem, also known as Imbalanced Dataset Problem is a remarkable chal-

lenge that is studied in the knowledge discovery and data mining framework as mentioned in [34]

and [13]. The majority of the classification algorithms assume training sets are well balanced

and misclassification costs are equal. The aim of these algorithms are usually maximizing the

accuracy. However this balance in datasets usually does not exist in real-life datasets. Instead,

one of the classes can be represented by only a few examples where the other class is represented

by a large number of examples and problem in classification arises when class of interest is rare

in the sample set. In imbalanced datasets, the class having more examples is called the majority

class and the one having fewer examples is called the minority class. Without loss of generality,

we assume the majority class consists of negative examples of binary classification problem and

the minority class consists of positive examples of binary classification. Also, in this study clas-

sification problem is considered as binary classification since multi class problems are typically

solved by converting into binary class problems.

Some of the application domains in which imbalance in data exists are, detection of fraud in

telephone calls [25], detection of credit card fraud [11], response rate in direct marketing [38],

rare medical diagnoses [53], detection of oil spills in satellite radar images [36] and spotting

unreliable telecommunication customers [23]. The ratio of imbalance in these datasets may vary

from 1:10 to more dramatic situations like 1:100000 [42].

For an application domain like credit card fraud detection, search is focused only on the mi-

nority class. In other words the aim of the classification is distinguishing the minority class.

Furthermore, considering diagnosis of a cancer, classifying a cancer case as non-cancer is much

Chapter 2: Literature Review 14

more serious than a false positive alert meaning diagnosis of a non-cancer case as cancer. How-

ever, when there is an imbalanced distribution in the dataset and misclassification of minority is

more serious than misclassification of majority, the problem arises. Since the aim of a standard

classifier is maximizing the overall accuracy, the classifier would be biased toward one class and

the outcome of this training would be, ‘low error rate for majority class’ but ‘unacceptable error

rate for the minority class’. In other words the classifier would tend to classify all examples as

majority leading to a high accuracy but in the meantime it would miss minority examples. Let

us demonstrate the problem in a figure via a classifier line. Now assume we have the dataset

in Figure 2.1, where black dots represents the majority class and white rectangle represents the

minority class. The line represents the boundary that ideally separates the two classes with

allowing a misclassification. However a non-biased classification algorithm would learn a bound-

ary as shown in Figure 2.2 which misses the minority instance since it is cheaper to classify it

as majority.

ideal
boundary

Figure 2.1: Ideal Classification.

Chapter 2: Literature Review 15

learned
boundary

Figure 2.2: Classification when imbalance is not considered.

2.2 Handling the Imbalanced Datasets

While the Imbalanced Dataset Problem becomes popular, many strategies are proposed in order

to handle this problem. Surveys [34], [51], [13], [35], [52], [28] are suggested for detailed infor-

mation. Mainly, these proposed methods and approaches are covered in two parts, on data level

and on algorithm level, and most important ones are discussed below.

2.2.1 Data Level Solution Approaches

The first idea that comes into mind in order to handle an imbalanced dataset, is to adjust the

class distributions by resampling the data. Data level approaches are based on this idea and

their objective is balancing the distribution of the data by resampling. These methods are in

various forms like random undersampling, random oversampling and some improved sampling

techniques.

Random undersampling aims to rebalance the dataset by eliminating instances of the majority

Chapter 2: Literature Review 16

class until the class distributions are equal. The major drawback is undersampling may throw

useful data which hurts the data mining process. Also, the randomness of the sample space

is hurt in case of undersampling. Random oversampling replicates the instances of minority

class until equivalent class distributions are achieved. Since most of the random oversampling

methods copy the instances of minority class until balance is achieved, likelihood of overfitting

occurrence increases [28]. Additionally, random oversampling may be computationally very ex-

pensive in case of a large dataset with a highly imbalanced distribution. There are also two other

non-improved sampling techniques called focused undersampling and focused oversampling. In

focused undersampling the majority class instances that are lying further away from the deci-

sion boundary are eliminated. In focused oversampling minority instances that occurred on the

boundary between the majority and minority classes are eliminated. In [31] Japkowicz showed

that sampling techniques are effective however the focused sampling techniques did no better

than the random sampling techniques in the considered domain.

There are some other sampling methods that follow a heuristic in rebalancing the distributions,

which we call generally improved sampling techniques. Kubat and Matvin [37] proposed One-

Sided Selection method that undersamples the majority class by removing noisy, borderline and

redundant instances and only safe instances are kept. Noisy instances are defined as mislabeled

ones, redundant instances are the ones that are already represented by other instances in the

training set and finally borderline instances are the ones that are too close to the decision bound-

ary. In order to detect noisy and borderline instances Kubat and Matvin suggested to use Tomek

Links [46]. Given two instances x and y from different classes and distance d(x,y), (x,y) is called

a Tomek link if there is no instance z such that d(x, z) < d(x, y) or d(y, z) < d(y, x). If two

instances form a Tomek link, then either one instance is noise or both instances are borderlines.

Afterwards, they suggest to remove the redundant instances by CNN (Closest Nearest Neighbor)

method. Later based on the method mentioned above Batista [5] proposed a more sophisticated

sampling technique. However, the loss of information continues in case of One-Sided Selection

and also this method is costly because of the calculation of Tomek links. Another approach to be

examined in this part is the method proposed by Ling and Li [38] which combines oversampling

Chapter 2: Literature Review 17

of minority class with undersampling of majority class. However this method shows no signifi-

cant improvement on the other methods. Chawla et al. [12] proposed an over-sampling method

SMOTE that oversamples the minority class by generating synthetic minority class instances

instead of replicating the existing instances. For each instance from the minority class, its k

nearest neighbors from the same class are determined and then due to some over-sampling rate

some of these instances are randomly selected. Then, new synthetic instances are generated

along the line between the minority instances and their selected nearest neighbors. This process

avoids the over-fitting problem and is shown to result in better classification performance than

other sampling techniques [12],[1].

2.2.2 Algorithm Level Solution Approaches

In this part, first we will discuss approaches that are based on cost-sensitivity and then some

other approaches proposing algorithms or heuristics for the Imbalanced Dataset Problem. We

will be focusing on the methods improving SVMs, however some methods regarding the other

classifiers like k Nearest Neighborhood, Naive Bayes, Neural Networks and decision trees can

be found in [4],[52], [32], [15], [57], [33] and in their references. Another method apart from

changing the class distributions is defining fixed and unequal misclassification costs in the process

of decision making. The aim of cost sensitive classification is minimizing the misclassification

cost while seeking to minimize error rate. In the model, misclassification costs are defined by a

cost matrix C, with entry C(i, j) expressing the cost of predicting that an instance is in class

i when it belongs to the class j. Also in the matrix diagonal elements are zero, meaning true

classification has no cost. Assuming P (j|x), the probability of each class j for a given instance

x is known, the Bayesian optimal prediction class i for instance x minimizing the conditional

risk is given with the formula below,

R(i|x) =
∑

j

C(i, j)P (j|x) (2.1)

Chapter 2: Literature Review 18

In other words it is the expected cost of predicting that instance x belongs to the class i.

Domingos [19] presented a general method, MetaCost, to make classifiers cost sensitive. The

idea depends on finding a way to estimate class probabilities P (j|x). Another work on cost

sensitive classification can be found in [22].

The algorithm based approaches regarding SVMs are generally proposed for binary classification

problems with the idea of biasing the algorithm so that the learned hyperplane discriminates

the minority class better. When SVMs are applied to an imbalanced dataset the algorithm tries

to classify all instances in minority class as majority class since it would be less costly because it

finds the largest margin possible. For a detailed explanation and a comprehensive analysis the

reader is referred to the work of Wu and Chang in [54]. In [1], a method that is a combination

of SMOTE by Chawla et.al. [12] with Different Costs (DC) Algorithm by Veropoulos [50] is

presented. They first start with mentioning the fact that undersampling results in information

loss. However simple oversampling does not also perform well enough because it resamples the

minority instances on top of each other and this does not improve the boundary definition. With

SMOTE, positive instances are more dense resulting in a well defined boundary. Also by using

DC in the SVM formulation, the boundary is pushed away from positive instances by penaliz-

ing errors of different classes differently. They evaluated their method and also SMOTE, DC,

Regular SVM and Regular Undersampling on 10 UCI Datasets. They show that their method

outperforms all others in terms of sensitivity, specificity and g-means metrics. In [14], they

proposed a method based on SVM classification and backward pruning technique. The idea is

to improve classification rate of minority class while sacrificing the rate for the other class at

minimum. Training a SVM on the set of all SVs should produce the same decision boundary

as by using all training examples. Also SVs are the representatives for classification of the class

they belong to, so removing SVs from a particular class result in more misclassified samples

in that class and more correctly classified samples in the other class. With these ideas, the

method proposed in this paper first trains SVM on the whole dataset. After finding SVs, a new

SVM training is done on the set that consists of SVs of majority class and whole minority class

samples. Then the procedure continues with removing a SV each time until an optimal set is

Chapter 2: Literature Review 19

achieved. While choosing the SV which will be removed, a criterion function J=(minority class

accuracy)/(majority class error) is used to order SVs from worst to best. Finally the decision

boundary will be distorted as minority classification rate is improved and majority error rate

does not increase dramatically. The method is evaluated on two real-world datasets and it is

shown that their method outperforms the cost weighting based methods. Another work on im-

proving SVM performance in imbalanced datasets is proposed in [54]. The method proposed,

The Class-Boundary-Alignment Algorithm, adjusts the boundary with an alignment in kernel

in other words updates the kernel to develop bias. Other work on improving SVM performance

can be found in [16], [21], [45]

Chapter 3: Alternative Method Handling the Imbalance 20

Chapter 3

ALTERNATIVE METHOD HANDLING THE IMBALANCE

The theory of SVM is based on the idea of balancing the generalization ability of the classifier

and the empirical error observed on the data. Generalization ability is characterized by margin

whereas empirical error is characterized by the sum of slack variables in a soft margin SVM.

Briefly, SVM has two objectives: maximizing the margin and minimizing the sum of slack

variables. In the standard formulation these objectives are combined with weighted sum method

via a trade-off parameter. Our formulation approach is based on splitting the empirical error

into two parts, analyse as the empirical error of the majority class and the empirical error of

the minority class. With this approach we will be able to emphasize the empirical error of the

minority class as much as needed.

In this case, the formulation for the SVM problem will be a multicriteria (in fact tricriteria)

optimization problem. The solution to a multicriteria optimization problem consists of the set

of efficient solutions. Let us remind the definitions of efficiency.

Consider the multicriteria optimization problem of

(MCOP) min(f1(x), . . . , fQ(x)),

s.t. x ∈ X

For i = 1, . . . , Q, let y∗i = minx∈Xfi(x) denote the optimal value for each individual objective

function. Then the point y∗ = (y∗1, y
∗
2, . . . , y

∗
Q) is called the ideal point for this problem. If y∗ =

f(x∗) for some x∗ ∈ X then x∗ is a solution to this problem. However these objective functions

generally conflict with each other. For instance, in the SVM case, objectives of minimizing the

Chapter 3: Alternative Method Handling the Imbalance 21

norm and minimizing the sum of slack variables conflict with each other and a trade-off is needed

for a solution.

Definition: x0 ∈ Rn is an efficient solution for the multicriteria optimization problem if

x0 ∈ X and there exists no x ∈ X such that f(x) ≤ f(x0) with fj(x) ≤ fj(x0) for at least one

j ∈ 1, . . . , Q.

In real life problems conflicting objectives are common and there generally exist a continuum

of efficient solutions. The collection of all efficient solutions is called the efficient set.

One of the solution approaches proposed in the Operations Research literature to the mul-

ticriteria optimization problem is creating a non-negative weighted combination of all of the

objective functions, which is indeed what the standard SVM formulation implements. The

weighting factor acts as a trade-off parameter between the objectives. In other words, for a

particular value of this parameter the solution to the problem is an efficient solution. However

the efficient set may consist of a continuum of points, it is not an easy task to determine the

appropriate value of the trade-off parameter leading to a preferred solution. In practice, when

the standard SVM formulation is used, the trade-off parameter is chosen after a series of exper-

imentations. Another well known alternative approach, handling the multicriteria optimization

problem is the ε-constraint method. In this method, one of the original objectives is chosen to

be minimized while others are converted into constraints. Considering the problem (MCOP),

the converted ε-constraint problem becomes,

min fk(x)

s.t.x ∈ X

fj(x) ≤ εjforj = 1, . . . , Q, j 6= k

where ε = (ε1, ε2, . . . , εQ) ∈ RQ.

All the approaches that handle the imbalanced datasets in the literature, which we mentioned

before, choose a type of evaluation metric and conduct their experiments with a limited -chosen-

Chapter 3: Alternative Method Handling the Imbalance 22

set of parameters. However, we aim to compute a more systematic sample of the efficient

frontier by using results in multicriteria optimization summarized above and report the results

with more than one metric in order to allow the decision maker to choose the result that is the

most convenient for him.

The fundamental idea of SVM classification is separating two classes as much as we can while

limiting the misclassifications, in other words maximizing the margin while minimizing the sum

of distances of misclassified instances to the margin. As mentioned our approach examines the

sum of distances of misclassifications for each class separately in order to control them accurately.

Therefore considering the three objectives the multi criteria formulation becomes,

(SV M − 3C) min eT (w+ + w−),
∑

i

ξ−i ,
∑

i

ξ+
i

s.t. yi((w+ − w−)T xi + b) ≥ 1− ξ−i , i = 1, . . . , `−, (3.1)

yi((w+ − w−)T xi + b) ≥ 1− ξ+
i , i = `− + 1, . . . , `, (3.2)

ξ−i ≥ 0, i = 1, . . . , `−, (3.3)

ξ+
i ≥ 0, i = `− + 1, . . . , `, (3.4)

w+, w− ≥ 0 (3.5)

where e is the vector of 1’s, `− is the number of instances that belong to the majority class, `+

is the number of instances that belong to the minority class and ` = `−+ `+ is the number of all

instances in the dataset. First notice that we used L1 Norm formulation to have LP formulation.

Here objective is formulated by considering the fact that L1 Norm formulation is no worse than

L2 Norm in certain conditions, as mentioned before, and computationally remarkable benefits

of using L1 Norm. The idea motivating this work is briefly to control the trade-off among all

three objectives, eT (w++w−),
∑
i

ξ−i ,
∑
i

ξ+
i without assigning some cost parameters beforehand.

Also another purpose is to let the decision maker prefer any solution from the efficient frontier.

Applying these definitions to the formulation (SV M − 3C), a solution (w̄+, w̄−, b̄, ξ̄−, ξ̄+) is

Chapter 3: Alternative Method Handling the Imbalance 23

efficient if for any feasible solution (w+, w−, b, ξ−, ξ+), eT (w+ + w−) < eT (w̄+ + w̄−) implies∑
i ξ

−
i >

∑
i ξ̄

−
i or

∑
i ξ

+
i >

∑
i ξ̄

+
i . The set of all efficient outcomes (eT (w̄+ +w̄−),

∑
i ξ̄

−
i ,

∑
i ξ̄

+
i

generate the efficient frontier. However, for the three criteria case the efficient frontier would

be a subset of the boundary of a three-dimensional convex polyhedron, briefly a piecewise

surface such as the one demonstrated in Figure 3.1 In that case computing the whole efficient

Figure 3.1: Efficient frontier examples in 3-D.

frontier would be an involved task and computationally expensive [27]. However for two criteria

optimization case it is shown in [7] that a full characterization of the efficient frontier may be

obtained. A representation of the two criteria case is shown in Figure 3.2.

Therefore we will propose some alternative two criteria reductions of (SV M − 3C) in order

to solve the problem.

Chapter 3: Alternative Method Handling the Imbalance 24

Figure 3.2: Efficient frontier for a bicriteria optimization problem.

On the other hand remark that the standard cost-sensitive SVM formulation is given as (CS-

SVM) formulation in the literature([50]).

(CS − SV M) min w.w + C− ∑
i

ξ−i + C+
∑
i

ξ+
i

s.t. yi((w+ − w−)T xi + b) ≥ 1− ξ−i , i = 1, . . . , `−, (3.1)

yi((w+ − w−)T xi + b) ≥ 1− ξ+
i , i = `− + 1, . . . , `, (3.2)

ξ−i ≥ 0, i = 1, . . . , `−, (3.3)

ξ+
i ≥ 0, i = `− + 1, . . . , `, (3.4)

w+, w− ≥ 0 (3.5)

Converting this problem into LP by using L1 Norm and the transformation w = w+ − w− we

Chapter 3: Alternative Method Handling the Imbalance 25

end up with the cost-sensitive SVM formulation with L1 Norm;

(CSSV M − L1) min eT (w+ + w−) + C− ∑
i

ξ−i + C+
∑
i

ξ+
i

s.t. (3.1), (3.2), (3.3), (3.4), (3.5)

The above formulation (CSSV M − L1) is actually the (SV M − 3C) problem in which the

weighted combination method of multi criteria solution approach is applied. We will state that

after solving (SV M − 3C), obtaining the corresponding values of C−, C+ from the (CSSV M −

L1) formulation is possible based on Theorem 1 after explaining our approach in detail in Section

3.2.

3.1 Obtaining Efficient Frontier in the Two Criteria Case

Recently, in [3] a systematic procedure to obtain the entire efficient frontier by adjusting ε

is proposed for the L1 Norm SVM. Considering the objective of maximizing the margin as

minimizing the norm the multi objective SVM is formulated as

(2C1N − SV M) min eT (w+ + w−),
∑

i

ξi

s.t. yi((w+ − w−)T xi + b) ≥ 1− ξi, i = 1, . . . , `, (3.6)

ξi ≥ 0, i = 1, . . . , `, (3.7)

w+, w− ≥ 0 (3.8)

If the ε-constraint method is applied to (2C1N − SV M), the resulting problem is

P (ε) z(ε) = min eT (w+ + w−)

s.t.(3.6), (3.7), (3.8)∑
i

ξi ≤ ε (3.9)

Chapter 3: Alternative Method Handling the Imbalance 26

In [3] they suggest to start with solving the linear program P (ε) for a large and proper value

of ε that is chosen in a certain way. The solution characterizes a hyperplane that minimizes the

norm with an upper bound of ε on the empirical error. The corresponding basis will remain

optimal for a certain interval as ε decreases. Therefore, using the theory of sensitivity analysis

in linear programming, the lower end of this interval can be determined. At this point the basis

would change and the same procedure would be followed until ε becomes zero or the problem

P (ε) becomes infeasible. In practice, the proposed algorithm first chooses a sufficiently large and

proper value of ε, let us name ε0, and solves the problem P (ε0) and collects this optimal solution

to a set in the initialization step. Then in the main step, in each iteration k, the minimum

value of the right-hand-side of the constraint (3.9) for which the optimal basis remains optimal

is computed and named εk and the new optimal solution (εk, z(εk)) is collected into the set.

Iteration procedure continues until the stopping criteria mentioned above is met.

While we control the change in the total error, the norm also changes due to the trade-off we

mentioned. The two objectives, maximizing the norm and minimizing the empirical error are

conflicting and we can see this nature clearly in the Figure 3.3. Figure 3.3 displays the total

empirical error computed in the formulation with respect to the norm of the SVM classifier, which

is the objective function value of the respective subproblem P (ε). This figure is obtained from

the results of an experiment conducted with this method, introduced in [3], on the dataset Yeast.

The description of this data set is given in 3.3.2. The selection of ε0 is based on a theorem in [7].

It says when ε0 is chosen so as to guarantee that ε0 = min|w|=0

∑
i ξi, the entire efficient frontier

is obtained as the piecewise linear curve of the elements by accumulating each optimal solution

pair in each iteration. When |w| = 0, ξi = max{0, 1− b} for +1 instances and ξi = max{0, 1+ b}

for −1 instances, thus
∑

i ξi =
∑

i∈I+ max{0, 1 − b} +
∑

i∈I− max{0, 1 + b}, where I+ denotes

the set of +1 instances and I− denotes the set of −1 instances. The optimal choice for b is −1 if

`+ < `−, +1 if `+ > `− and −1 ≤ b ≤ 1 if `+ = `− ,leading to
∑

i ξi = 2×min{`+, `−} where `−

is the number of instances of majority class and `+ is the number of instances of minority class.

From now on, we will refer this method 2C throughout the thesis. Motivating from this idea, we

will be introducing some two criteria reductions and solution methods in the following section.

Chapter 3: Alternative Method Handling the Imbalance 27

0

0
,0

2

0
,0

4

0
,0

6

0
,0

8

0
,1

0
,1

2

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Total error

N
o

rm

Figure 3.3: Objective value vs. Total error.

Chapter 3: Alternative Method Handling the Imbalance 28

3.2 Grid Search Model Reducing Three Criteria to Two Criteria

One of the alternative reductions we propose is to convert the majority class empirical error

objective to a constraint and set to a fixed value as a first step so the problem will be reduced

to a bicriteria optimization problem. Next step is to convert the minority class empirical error

objective to an ε-constraint with a sufficiently large and appropriate chosen ε. Then the algo-

rithm proposed for the two criteria case can be adapted for this case [3]. Briefly, for a fixed

value of majority class empirical error an exhaustive search would take place for the minority

class empirical error value. The main idea completing this procedure is dividing the right-hand

side value corresponding to the majority class, ε1 into grids starting from a sufficiently large and

proper value. Each grid line means fixing ε1 to the number corresponding to this grid. After

fixing the epsilon of majority, the procedure searches the entire efficient frontier by means of the

right-hand-side value corresponding to the minority class, ε2. First the linear program is solved

for a sufficiently large and proper value of ε2 (ε1 is given with grid information). The solution

would be a hyperplane minimizing the L1 Norm with an upper bound of ε2 on the empirical

error for the given ε1. The basis that corresponds to this solution will remain optimal for a

certain interval as ε2 decreases. At this point, a change of basis would take place, and the same

argument may be repeated until ε2 becomes zero or the problem becomes infeasible. When the

procedure terminates for the fixed value of ε1, one grid would be searched. Search of the grids

would continue until ε1 becomes zero or the problem becomes infeasible. We would be calling

Chapter 3: Alternative Method Handling the Imbalance 29

this search method grid1. The Linear Program formulation can be represented as,

(P − 3C) min eT (w+ + w−)

s.t. yi((w+ − w−)T xi + b) ≥ 1− ξ−i , i = 1, . . . , `−, (3.10)

yi((w+ − w−)T xi + b) ≥ 1− ξ+
i , i = `− + 1, . . . , `, (3.11)

ξ−i ≥ 0, i = 1, . . . , `−, (3.12)

ξ+
i ≥ 0, i = `− + 1, . . . , `, (3.13)

w+, w− ≥ 0 (3.14)∑
i

ξ−i ≤ ε1 (3.15)∑
i

ξ+
i ≤ ε2 (3.16)

Before continuing with the algorithm procedure, let us state a result which points out that the

ε-constraint method and the cost-parameter approach are closely related, and obtaining the

corresponding values of C−, C+ by applying our approach is possible.

Theorem 1 Let u∗1 and u∗2 denote the optimal value of the dual variable associated with

constraints 3.15 and 3.16 respectively in (P − 3C). Then an optimal solution to (P − 3C) solves

(CSSV M − L1) with C− = u∗1 and C+ = u∗2.

Proof. Consider the Lagrange relaxation function of (P − 3C)

L(ε1, ε2, u1, u2) = min
s.t.(3.10),(3.11),(3.12),(3.13),(3.14)

eT (w+ + w−) + u1(
∑

i

ξ−i − ε1) + u2(
∑

i

ξ+
i − ε2)

Let (u∗1, u
∗
2) denote an optimal solution for Lagrangian dual problem of maxu≥0 L(ε1, ε2, u∗1, u

∗
2).

Since (P − 3C) is a LP then the duality theorem implies that,

z(ε1, ε2) = L(ε1, ε2, u∗1, u
∗
2)

Chapter 3: Alternative Method Handling the Imbalance 30

and for an optimal solution (w−∗ , w+∗ , b∗, ξ−
∗

i , ξ+∗

i) to problem (P − 3C)

eT (w−∗ + w+∗) + u∗1(
∑

i

ξ−
∗

i − ε1) + u∗2(
∑

i

ξ+∗

i − ε2) = z(ε1, ε2)

Since

L(ε1, ε2, u∗1, u
∗
2) = min

s.t.(3.10),(3.11),(3.12),(3.13),(3.14)
eT (w+ + w−) + u∗1(

∑
i

ξ−i − ε1) + u∗2(
∑

i

ξ+
i − ε2)

becomes

L(ε1, ε2, u∗1, u
∗
2) = min

s.t.(3.10),(3.11),(3.12),(3.13),(3.14)
eT (w+ + w−) + u∗1(

∑
i

ξ−i) + u∗2(
∑

i

ξ+
i)− u∗1ε1 − u∗2ε2

and u∗1ε1, u∗2ε2 are constant for given values of u∗1, u
∗
2, ε1 and ε2 evaluating L(ε1, ε2, u∗1, u

∗
2) is

equivalent to solving (CSSV M −L1) with C1 = u∗1, C2 = u∗2 that means (w−∗ , w+∗ , b∗, ξ−
∗

i , ξ+∗

i)

is an optimal solution for (CSSV M − L1).

From an algorithmic point of view, initialized from the starting values of ε1 and ε2, at each

iteration for a fixed value of ε1 an LP is solved in order to obtain the value of ε2 for the next

iteration. When termination occurs for this fixed value of ε1, iteration continues with the next

grid value of ε1 and starting value of ε2. The search procedure of the method grid1 is represented

in the majority epsilon vs. minority epsilon space in Figure 3.4. It is seen from the Figure 3.4, for

a grid leg of ε1 value ε2 values are scanned the change of basis. The algorithm of the procedure

is given below.

The Algorithm - grid1

Initialize. Set ε0 = (ε01, ε
0
2) = (`−, `+), where `− is the number of instances of class −1 and `+ is the

number of instances of class +1. Solve P-3C with ε0. Set L = {ε0, z(ε0)}, set k = 1 and

go to Step k.

Step k. Set εk
1 = εk−1

1 − ε01
gridsize ∗ (k − 1)

Chapter 3: Alternative Method Handling the Imbalance 31

Figure 3.4: grid1 Search in Majority Epsilon vs. Minority Epsilon Space

k.1 [Initialize.] Set (εk
2)

0 = ε02, l = 1, go to Step l

k.2 [Step l.]

l.1. Solve P − 3C with (εk
1, (ε

k
2)

l) and find ukl, the minimum value of the right-hand-

side of constraint (3.16) for which the optimal basis to P-3C remains optimal and

set L = L ∪{(εk)l, z((εk)l)}.

l.2. If ukl = 0, set k = k + 1.

If k ≤ gridsize go to Step k. Otherwise stop.

l.3. If P (εk) is infeasible, set k = k + 1.

If k ≤ gridsize go to Step k. Otherwise stop. Otherwise set l = l + 1 and go to

l.1

l.4. If ukl ≥ 0, set (εk
2)

(l+1) = ukl − δ, l = l + 1 and go to l.1

For implementation reasons, we introduce a tolerance parameter δ that controls the sensitiv-

ity of the basis change. After a P-3C problem is solved, new (εk
2)

l is set to minimum value of the

right-hand-side of the related constraint in theory. However in practice, in order to get a new

Chapter 3: Alternative Method Handling the Imbalance 32

basis we should set new (εk
2)

l to a value less than the lower bound found from the sensitivity

analysis. Therefore, a tolerance parameter is used that assigns the new (εk
2)

l to the lower bound

of the related constraint obtained minus the tolerance parameter value.

The choice of sufficiently large and proper starting values of ε1 and ε2 can be computed as,

considering the constraints (3.10) and (3.11) when |w| = 0

ξ−i ≥ 1 + b

ξ+
i ≥ 1− b

and since all ξi ≥ 0

ξ−i = max{0, 1 + b}

ξ+
i = max{0, 1− b}

are obtained. Thus,

∑
i

ξ−i =
∑
i∈I−

max{0, 1 + b}

∑
i

ξ+
i =

∑
i∈I+

max{0, 1− b}

where I− denotes the set of −1 instances and I+ denotes the set of +1 instances. The optimal

choice of b = 0 leads to sufficiently large and proper values for ε1 and ε2

∑
i

ξ−i =
∣∣I−∣∣ = ε1i

∑
i

ξ+
i =

∣∣I+
∣∣ = ε2i

Chapter 3: Alternative Method Handling the Imbalance 33

Also the same procedure is adapted for the case that the minority class empirical error is

fixed to be searched in a grid and the majority class empirical error is searched exhaustively

with the algorithm proposed. We would be calling this second method grid2.

In addition to the methods proposed above, another way to scan the majority epsilon vs. mi-

nority epsilon space is dividing both axes of the space into grids. In other words, instead of

applying an exhaustive search on the minority epsilon axis we would also divide it into grids as

majority epsilon axis. The algorithm of this method, called gridS, is given below:

The Algorithm - gridS

Initialize. Set ε0 = (ε01, ε
0
2) = (`−, `+), where n is the number of instances of class −1 and p is the

number of instances of class +1. Solve P-3C with ε0. Set L = {ε0, z(ε0)}, set k = 1 and

go to Step k.

Step k. Set εk
1 = εk−1

1 − ε01
gridsize ∗ k

k.1 [Initialize.] Set (εk
2)

0 = ε02, l = 1, go to Step l

k.2 [Step l.]

l.1. Solve P − 3C with (εk
1, (ε

k
2)

l) and set L = L ∪{(εk)l, z((εk)l)}.

l.2. If (εk
2)

l = 0, set k = k + 1.

If k ≤ gridsize go to Step k. Otherwise stop.

l.3. If P (εk) is infeasible, set k = k + 1.

If k ≤ gridsize go to Step k. Otherwise stop.

Otherwise set l = l + 1 and go to l.1

l.4. If (εk
2)

l ≥ 0, set (εk
2)

(l + 1)=(εk
2)

l
1 −

(ε02)1

gridsize ∗ (l − 1), l = l + 1 and go to l.1

Chapter 3: Alternative Method Handling the Imbalance 34

3.3 Datasets

3.3.1 Soybean Dataset

Soybean is a UCI Dataset with 19 classes and 35 attributes. Training set consists of 307 examples

while test set consists of 376 examples. For all datasets used in this study, the suffix after each

dataset indicates the class chosen as the positive class, clearly all the other classes are chosen as

the negative class. In Soybean12 dataset, there are some missing values. In order to handle this

problem in the training set,we remove the examples with missing values and accept some loss

of information. However for the test set, missing values are replaced with the average of each

corresponding attribute. The properties of Soybean12 after these processes is listed below:

Positive Examples Negative Examples Total
Soybean12 44 598 642

Soybean12 Training 20 246 266
Soybean12 Test 24 352 376

Table 3.1: Properties of Soybean Dataset

Soybean12 has an imbalance of 10:123(=0.0813) in the training set and 3:44(=0.0681) in the

test set.

3.3.2 Yeast Dataset

Yeast is a UCI Dataset with 10 classes and 8 attributes. The original datasets consists of 1484

samples. In this experiment we choose two classes, as suggested in [14], ME3 for minority class

with 163 examples and CYT for majority class with 463 examples. Then the data is divided into

two sets, training and test. The properties of the data used is summarized in the table below:

Yeast has an imbalance of 3:10(=0.3) in the training set and 88:213(=0.4131) in the test set.

Yeast is clearly a more balanced dataset compared to Soybean12.

Chapter 3: Alternative Method Handling the Imbalance 35

Positive Examples Negative Examples Total
Yeast 163 463 626

Yeast Training 75 250 325
Yeast Test 88 213 301

Table 3.2: Properties of Yeast Dataset

3.3.3 Abalone Dataset

Abalone is a UCI Dataset with 29 classes and 8 attributes. The original datasets consists of 4177

samples and since there is no missing value in the data, all samples are used. In this experiment

we choose class 19 as the positive class and all other classes as negative class, as suggested in [1].

Data is divided into two sets, training and test. Numerical properties of the dataset Abalone19

is summarized below:

Positive Examples Negative Examples Total
Abalone19 32 4145 4177

Abalone19 Training 26 3454 3480
Abalone19 Test 6 691 697

Table 3.3: Properties of Abalone Dataset

Abalone19 has an imbalance of 13:1727(=0.007527) in the training set and 6:691(=0.00868)

in the test set. Remark that Abalone19 is 100 times more imbalanced than Soybean12 and 1000

times more imbalanced than Yeast.

3.3.4 Statlog Dataset

Statlog (Landsat Satellite) is a UCI Dataset with 7 classes and 36 attributes. The original

datasets consists of 6435 samples and since there is no missing value in the data, all samples are

used. In this experiment we choose class 4 as the positive class and all other classes as negative

class in order to create the most imbalanced setting from the dataset. Data is given as training

Chapter 3: Alternative Method Handling the Imbalance 36

set, 4435 samples and test set 2000 samples. Numerical properties of the dataset Statlog4 is

summarized below:

Positive Examples Negative Examples Total
Statlog4 626 5809 6435

Statlog4 Training 415 4020 4435
Statlog4 Test 211 1789 2000

Table 3.4: Properties of Statlog Dataset

Statlog4 has an imbalance of 0.10323 in the training set and 0.11794 in the test set.

3.3.5 Letter Recognition Dataset

Letter Recognition (Landsat Satellite) is a UCI Dataset with 26 classes and 16 attributes. The

original datasets consists of 20000 samples and since there is no missing value in the data, all

samples are used. In this experiment we choose class H as the positive class and all other

classes as negative class in order to create the most imbalanced setting from the dataset. Data

is divided as training set, 14000 samples and test set, 6000 samples. Numerical properties of the

dataset Letter RecognitionH is summarized below:

Positive Examples Negative Examples Total
LetterRecogH 734 19266 20000

LetterRecogH Training 514 13486 14000
LetterRecogH Test 220 5780 6000

Table 3.5: Properties of Letter Recognition Dataset

LetterRecogH has an imbalance of 0.03811 in the training set and 0.03806 in the test set.

3.4 Evaluation Metrics

When evaluating classifiers on imbalanced datasets, instead of accuracy which is the proportion

of correctly classified examples over whole dataset, a pair of statistical measures called sensitivity

Chapter 3: Alternative Method Handling the Imbalance 37

and specificity may be preferred. This preference is based on the fact that accuracy alone will

mislead the evaluation since a classifier that classifies the whole positive class incorrectly may

still have a high accuracy. Hence considering the accuracy of positive examples-sensitivity- and

the accuracy of the negative examples-specificity- separately will benefit the evaluation of the

classifier. The sensitivity measures the proportion of correctly classified positives over whole

positive examples and the specificity measures the proportion of correctly classified negatives

over whole negative examples. Given the confusion matrix,

True Value
Positive Negative

Computed Value Positive True Positive False Positive
Negative False Negative True Negative

sensitivity and specificity of a classifier are determined with the formulas,

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

In practice, there is usually a trade-off between these measures. Hence there is a need for some

other metric that combines them for a more understandable and comparable representation. In

order to meet this need, a metric called g-means is introduced([37]). The idea that is introduced

in [37] suggests to maximize the accuracy on each of the classes while keeping these accuracies

balanced. G-means is the geometric mean of the sensitivity and specificity given with the below

formula

G−means =
√

Sensitivitiy ∗ Specificity

Chapter 3: Alternative Method Handling the Imbalance 38

Here sensitivity is also called True Positive Rate or Hit Rate in the literature. Another

metric defined is False Positive Rate or also called False Alarm Rate is

FPRate =
FP

FP + TN
= 1− Specificity

TP Rate and FP Rate are used when plotting ROC (Receiver Operating Characteristics) graphs

which indicates the trade-off between hit rates and false alarm rates, in other words benefits and

costs, respectively. Normally a binary classifier yields one confusion matrix and hence one point

on the ROC curve plot. To plot a complete curve, in addition to binary classification informa-

tion, probabilities that quantify the likelihood of belonging to a class are needed. Establishing a

cut-off value for the probability of belonging to the positive class, a new confusion matrix can be

derived for each such threshold value. The ROC curve would then depict the results for all pos-

sible threshold values [24]. In addition to being a generally functional method for performance

evaluation of a classifier it is claimed in [37] that with some characteristics they are especially

functional for imbalanced domains. An example ROC curve is demonstrated in Figure 3.5, In

our study, we interpret the probability that quantify the likelihood of belonging to a class, as

the distance value of each instance to the constructed hyperplane. The algorithm proposed by

Fawcett in [24] is used to calculate a ROC Curve. However, in order to compare performance of

different classifiers a reduced metric would be more effective than a two-dimensional represen-

tation. Likewise g-means, a single valued metric is commonly used for this purpose [9] which is

the area under the ROC curve, abbreviated AUC. Since it is the portion of the area of a unit

square it is between 0 and 1.

Remark that the functionality of g-means and AUC are discussed above, but considering the

fact that the attention of classification is on the minority class, in case of imbalanced dataset

sensitivity is also a functional metric. Since g-means and AUC focus on a trade-off between

representational metrics of majority class and minority class, a user may choose sole sensitivity

Chapter 3: Alternative Method Handling the Imbalance 39

Figure 3.5: Sample ROC Curve

metric for analysis since it benefits and focuses on the classification of minority class correctly.

In our approach, we solve many subproblems for different set of parameters. Hence we have

different values of these metrics for each subproblem and the choice of the metric is left for the

user. We do not have the opportunity to analyze all metrics for each dataset in the experiments

we will be conducting. However, we would list a detailed analysis of these metrics for three

datasets with the method grid1 which may lead the choice of the user.

For Soybean12 dataset the best five percent of g-means values in terms of sensitivity and speci-

ficity can be examined in Figure 3.6. As it is seen from Figure 3.6, choice of best 5 percentage

of g-means covers the best values of sensitivity and specificity. On the other hand, when we plot

the best five percent of of AUC value in terms of sensitivity and specificity, it mainly covers the

whole sensitivity and specificity values as seen in Figure 3.7. If we represent the overall best

g-means value and best AUC value in Figure 3.8 we clearly see that best value of g-means and

AUC compromise for the same point. To sum up, for Soybean12 dataset it is seen that AUC

Chapter 3: Alternative Method Handling the Imbalance 40

covers g-means values whereas g-means represents the best five percent of better. Therefore, for

Soybean dataset, choosing g-means as the evaluation metric is meaningful.

For Yeast dataset, the best five percent of g-means values in terms of sensitivity and specificity

is represented in Figure(3.9).The best five percent of AUC values in terms of sensitivity and

specificity can be seen in Figure(3.10) and finally the best values of g-means and AUC are

represented in Figure(3.11) in terms of sensitivity and specificity. As in the Soybean case best

five percent of g-means values covers the best values of sensitivity and specificity whereas the

best five percent of AUC values covers the whole sensitivity and specificity values. When we

plot the overall best g-means value and the overall best AUC value in Figure(3.11) we see that

values do not compromise however the difference is omittable. Therefore, for Yeast dataset, it

is seen that choosing either g-means or AUC as the evaluation metric is possible.

As mentioned before, we see that none of the metrics is superior or eligible among the others

hence we will report the three metrics g-means, AUC and sensitivity and leave the choice for

the decision maker.

Note that the origin in all graphs are (0, 0), but for the sake of representation we limited the

axes between 0.4 and 1.01.

Chapter 3: Alternative Method Handling the Imbalance 41

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1

specificity

s
e

n
s

it
iv

it
y

w
h

o
le

 d
a

ta

b
e
s
t

g
m

e
a
n

s

Figure 3.6: The best five percent of g-means values for Soybean

Chapter 3: Alternative Method Handling the Imbalance 42

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1

specificity

s
e

n
s

it
iv

it
iy

w
h

o
le

 d
a

ta

b
e
s
t
A

U
C

b
e
s
t

g
m

e
a
n

s

Figure 3.7: The best five percent of AUC values for Soybean

Chapter 3: Alternative Method Handling the Imbalance 43

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1

specificity

s
e

n
s

it
iv

it
y

w
h

o
le

 d
a

ta

b
e
s
t
g

m
e

a
n

s

b
e
s
t
A

U
C

Figure 3.8: The best g-means and the best AUC values for Soybean

Chapter 3: Alternative Method Handling the Imbalance 44

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1

specificity

s
e

n
s

it
iv

it
y

w
h

o
le

 d
a

ta

b
e
s
tg

m
e

a
n

s

Figure 3.9: The best five percent of g-means values for Yeast

Chapter 3: Alternative Method Handling the Imbalance 45

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1

specificity

s
e

n
s

it
iv

it
y

w
h

o
le

 d
a

ta

b
e
s
t
A

U
C

b
e
s
t
g

m
e

a
n

s

Figure 3.10: The best five percent of AUC values for Yeast

Chapter 3: Alternative Method Handling the Imbalance 46

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1

specificity

s
e

n
s

it
iv

it
y

w
h

o
le

 d
a

ta

b
e
s
t
g

m
e

a
n

s

b
e
s
t
A

U
C

Figure 3.11: The best g-means and the best AUC values for Yeast

Chapter 4: Experiments 47

Chapter 4

EXPERIMENTS

4.1 Experiment Settings

The experiments are conducted on the five datasets introduced before with the comprehensive

methods grid1, grid2, gridS, 2C and four variants of cost-sensitive SVM classification. The

variants differ in the choice of the trade-off parameter C in the cost-sensitive SVM formulation

and referred as C=1, C=10, C=100, C=1/ImbRatio for C values 1,10,100, the ratio of number

of positive instances over number of negative instances, respectively. The tolerance parameter

is chosen as 0.01, a value obtained empirically. This value is large enough to keep the search

reasonable and small enough to keep the search comprehensive.

We use ILOG Cplex [30] Linear Programming Solver through ILOG Concert Technology [29]

which is an interface representing object-oriented models. ILOG Concert Technology is used

with C++ language implementations in Microsoft Visual Studio 2005.

The experiments are conducted on two different machines; some are conducted on Intel Core2

CPU, 1.83Ghz, 1GB RAM, Microsoft XP Professional whereas some are conducted on Intel

Pentium Dual Core 3.20 GHz, 2 GB RAM, Windows NT Server 2003 OS. Hence comparing

CPU times of the experiments is not reasonable in this case. However we will be listing the

number of iterations and the number of subproblems solved for each experiment, since these

values are independent from the machine we will be able to compare the methods.

Chapter 4: Experiments 48

4.2 Results

The results of 8 methods are presented with metrics discussed in Section 3.4 in columns g-means,

AUC and sensitivity. Also the number of total LP iterations and the number of subproblems

solved are given in columns LP iteration and breakpoint. Remark that we report LP iterations

since it is a good indicator of CPU time when the size of the formulation is known.

Soybean12 gmeans AUC sensitivity LP iteration breakpoint
grid1 0.998579 0.99858 1 4317 104
grid2 0.998579 0.99858 1 6825 387
grids 0.998579 0.99858 1 1033 100
2C 0.998579 0.99858 1 61 15

C=1 0.994302 0.99728 1 17 1
C=10 0.994302 0.99728 1 17 1
C=100 0.994302 0.99728 1 17 1

C=1/ImbRatio 0.994302 0.99728 1 17 1

Table 4.1: Evaluation for soybean dataset

The experiments conducted on Soybean12 dataset revealed that the comprehensive methods,

named grid1, grid2, grids, 2C are clearly better than the cost-sensitive SVM methods, named

C=1, C=10, C=100, C=1/ImbRatio (Number of negative instances over number of positive in-

stances in the dataset), in terms of g-means and AUC. Sensitivity is equal for all methods. It is

also seen that 2C has the best result since for equal g-means, AUC and sensitivity values it has

the least number of iterations, meaning it is the fastest method. Additionally, for Soybean12

dataset maximum g-means determined by SDC method and SMOTE algorithm in [1] are equal

and 1. Their corresponding sensitivity values are also 1.

The experiments conducted on Yeast dataset revealed that the cost-sensitive comprehensive

methods, named grid1, grid2, grids are clearly better than the cost-sensitive SVM methods and

2C method in terms of g-means and sensitivity. AUC metric does not have a pattern compati-

ble with other two metrics, the best AUC value is determined for grid2 method and the second

Chapter 4: Experiments 49

yeast gmeans AUC sensitivity LP iteration breakpoint
grid1 0.959709 0.99344 1 4912 865
grid2 0.958485 0.9944 1 6840 1174
grids 0.955084 0.99312 1 2725 100
2C 0.933102 0.99402 0.909091 225 94

C=1 0.917011 0.99386 0.840909 92 1
C=10 0.941979 0.98271 0.954545 95 1
C=100 0.938574 0.9905 0.977273 121 1

C=1/ImbRatio 0.950436 0.9921 0.943182 103 1

Table 4.2: Evaluation for yeast dataset

best is determined for 2C method. Among cost-sensitive SVM methods C=1/ImbRatio has the

highest g-means metric value. We see that grid1 has the best g-means value, however has a

high number of iterations. Decision maker may choose grids method for a small loss in g-means

value if time is considered to be important. For Yeast dataset, maximum g-means determined

by SV-Pruning method in [14] is 0.9304 with sensitivity of 0.87, the benchmark they used, cost

modifying with (C1/C2) = (3/1), result in g-means value of 0.9408 with sensitivity 0.9195.

Abalone19 gmeans AUC sensitivity LP iteration breakpoint
grid1 0.913795 0.93994 1 43193 5517
grid2 0.918534 0.94501 1 56499 25390
grids 0.890536 0.93367 1 34890 54
2C 0 0 0 75 1

C=1 0 0 0 57 1
C=10 0 0 0 310 1
C=100 0.909032 0.88857 1 2070 1

C=1/ImbRatio 0.881552 0.88326 1 2207 1

Table 4.3: Evaluation for abalone dataset

The experiments conducted on Abalone19 dataset revealed that the methods grid1 and grid2

perform better than all other methods in terms of g-means, AUC and sensitivity. We see that

grid2 has the best g-means value and AUC value among all other metrics, however sensitivity

Chapter 4: Experiments 50

value is same with grid1, grids, C=100 and C=1/ImbRatio. Since the number of iterations

value of grid2 does not differ dramatically from grid1 ’s a decision maker may choose grid2

method in such a case. Additionally, for Abalone19 dataset, maximum g-means determined by

SDC method and SMOTE algotihm in [1] are 0.7449 and 0.0, respectively. Their corresponding

sensitivity values are 0.808 and 1, respectively.

Also, recall that the comprehensive method grids searches each 10 grid value of majority epsilon

for 10 grid value of minority epsilon, in other words 10x10=100 combination is searched. Hence,

in a grids search, the maximum number of breakpoints is 100, however if any of the stopping

criteria is met, infeasibility or zero epsilon, algorithm ends before searching 100 breakpoints.

Here, it is important to point out that the number of LP iterations of grids is close to the

number of LP iterations of grid1 for many of the datasets we have used. This depends on the

fact that, grids resolves the problem for each majority epsilon-minority epsilon combination

(10x10=100 times), however grid1 rebuilts the problem and continues with sensitivity analysis

for each combination. Although we were not able to locate any benchmark results reported in

the literature for the following two datasets, we include them for the purpose of enriching our

computational experiments.

Statlog4 gmeans AUC sensitivity LP iteration breakpoint
grid1 0.766798 0.78048 1 62135 10864
grid2 0.763787 0.78055 1 101567 22144
grids 0.761393 0.77904 1 50706 37
2C 0 0 0 730 1

C=1 0 0 0 1253 1
C=10 0.707106 0.82009 0.952607 3785 1
C=100 0.631306 0.81025 1 3675 1

C=1/ImbRatio 0.705823 0.7617 0.943128 3771 1

Table 4.4: Evaluation for statlog dataset

The experiments conducted on Statlog4 dataset revealed that grid1, grid2 and grids perform

better than 2C, C=1, C=10, C=100 and C=1/ImbRatio in terms of g-means and sensitivity.

C=10 method has the highest AUC value for Statlog4 dataset. It is seen that the highest

Chapter 4: Experiments 51

g-means value is achived by grid1 method.

LetterRecogH gmeans AUC sensitivity LP iteration breakpoint
grid1 0.791614 0.83361 1 49819 6248
grids 0.781872 0.83888 1 177120 43
2C 0 0 0 1027 1

C=1 0 0 0 1361 1
C=10 0.637274 0.82009 0.431818 7979 1
C=100 0.683426 0.81025 0.995455 12488 1

C=1/ImbRatio 0.782344 0.84201 0.831818 10626 1

Table 4.5: Evaluation for letter recognition dataset

The experiments conducted on LetterRecogH dataset revealed that grid1, grids and C=1/ImbRatio

methods perform better than other methods in terms of g-means. The best g-means value is

attained for grid1 method, whereas the best AUC value is attained for C=1/ImbRatio method.

Due to computational limitations and the remarkably large size of the dataset LetterRecogH

grid2 is not ran for this dataset.

To sum up, grid1 method has the best performance in two cases, also grid2 method has the

best performance in two cases and in one case all comprehensive search methods result in the

same performance in terms of g-means. Generally, the loss in performance is small enough to

be tolerated where grid2 beats grid1 and since grid2 requires more computational effort/time

choosing grid1 is reasonable. Also since conducting a more comprehensive and detailed search

on the minority epsilon, since it belongs to the class we are interested, choosing grid1 instead of

grid2 is reasonable. The performance value results in terms of sensitivity are consistent with the

results in terms of g-means for all methods. However AUC achives the best performance with

all comprehensive methods in one case, with grid2 method in two cases and with C adjusting

cost-sensitive SVM methods in two cases. In the Statlog4 dataset case AUC value achived by

C=10 method is remarkably higher than all others that we can not generalize a best method

considering AUC metric.

Chapter 4: Experiments 52

Considering the C adjusting cost-sensitive methods, even though they can not reach the

performance values that comprehensive methods reach, they perform good according to the

dataset and the distribution of the dataset. Therefore, for a better analysis a large set of

parameters should be tried. However, since the parameters are adjusted by trial and error,

when a large set of parameters are tried the expense of this will approximate to the expense

of any comprehensive methods. We look at g-means and sensitivity as a combination most of

the time while assessing the proposed methods. Due to the results of the experiments we see

that AUC metric does not differentiate between the methods. It is a strong measure but as

in LetterRecogH case, very different sensitivity levels may have similar AUC values. This is a

drawback for imbalanced datasets and in this case we may suggest using g-means and sensitivity

for evaluating the methods.

Overall, comprehensive methods, except 2C, perform better than methods such as SMOTE and

SDC which are the most well-known benchmarks in the literature. The difference is difficult to

generalize and changes from dataset to dataset. However, one needs to note that comprehensive

methods come at significant computational cost. For instance the run for grid2 on dataset

Statlog4 with 101567 LP iterations and 22144 breakpoints takes 40695.4 CPU seconds. But

the general CPU behavior is an average and tolerable CPU time when datasets are not too

large, for example, the run for grid1 on Abalone19 dataset with 4177 instances takes 4509.86

seconds. Finally, it is important to highlight and demonstrate the multi objective nature of

the problem (P-3C) that forms the method grid1. As mentioned the problem consists of three

objective functions, maximizing the norm, minimizing the empirical error on majority class and

minimizing the error on minority class. Let us demonstrate the trade-off between these objectives

with the results of the experiment conducted on Yeast dataset with the method grid1 :

In Figure 4.1 the multi objective nature of the problem can be clearly seen. Figure 4.1 displays

the results of an experiment in the three dimensional objective space. The three objectives of

the formulation (CS-SVM), norm, total positive error and total negative error appear as the

coordinates. Each point in the figure symbolizes a classifier that possesses the corresponding

norm, positive error and negative error. Since the multiobjective formulation seeks to minimize

Chapter 4: Experiments 53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.02

0.04

0.06

0.08

0.1
0

50

100

150

Total Negative Error
Total Positive Error

N
or

m

Figure 4.1: Trade-off between the three objective

Chapter 4: Experiments 54

all of these quantities, points closer to the origin are the most desirable ones. In Figure 4.1, it is

also possible to observe that we are only sampling in the three dimensional objective space and

we are not able to generate the entire efficient frontier in the three dimensional space.

In Figures 4.2 and 4.3, the projections of the three dimensional graph onto two dimensional

ones can be observed. For instance in Figure 4.2, one can observe how total positive error

materializes as a function of norm. Note that not all points on this two-dimensional graph

are efficient in a two objective sense. That is because the points are computed by taking three

objectives into consideration, and for all points in Figure 4.2, there is an associated total negative

error value that is not being displayed. In general, these figures help demonstrate the fact that

several alternative SVM classifiers can be obtained by varying the tolerated error values (ε1 and

ε2) in the proposed formulation. We note that some of these classifiers display a more desirable

performance in terms of the trade-off among the norm, the positive error and the negative error.

Chapter 4: Experiments 55

N
o

rm

Total Error Positive

Figure 4.2: How the norm changes due to the error on minority class

Chapter 4: Experiments 56

N
o

rm

Total Error Negative

Figure 4.3: How the norm changes due to the error on majority class

Chapter 5: Reducing Computational Time 57

Chapter 5

REDUCING COMPUTATIONAL TIME

With the proposed method grid1 a big portion of the majority epsilon versus minority epsilon

space is scanned as seen in the demonstration in Figure 3.4 It is seen from the figure, with this

method, for a grid leg value of majority epsilon nearly all of the minority values are scanned.

Remark that at each iteration the methods solves an Linear Programming problem for a specific

majority epsilon value and minority epsilon value. For a small problem (in terms of number

of instances and attributes) this comprehensive search is eligible since the computational effort

is tolerable and it is likely to reach the best possible values for different metrics. However,

for a very large problem, the computational effort may be to much to handle in a reasonable

time therefore a heuristic should be proposed. These are also true in case of grid2 method.

We analyse the results for each 5 datasets mentioned above to come up with a solution for

this problem. The search of the majority epsilon values do not reveal any common pattern

among 5 datasets. The maximum values for g-means metric attained at the various grids of

majority epsilon for each dataset hence we can not eliminate any portion of this axis. When

the pattern search is conducted on the minority epsilon values, for Soybean12 dataset we see

that reducing the starting value of minority epsilon from 20 to 8 does not hurt the best g-means

value. The starting value of minority epsilon can be reduced from 75 to 58 for Yeast dataset

, from 26 to 14 for Abalone19 dataset, from 415 to 255 for Statlog4 dataset, from 314 to 123

for LetterRecogH dataset without hurting the best g-means values for each of them. As it is

seen from this analysis there is not a common pattern revealing a behavior for reducing the

portion of minority epsilon scanned. Nevertheless we can conclude that reducing the starting

value of the minority epsilon around some limits, that are determined with the properties of

dataset, does not hurt the best g-means values. Therefore we introduce a parameter α that lies

Chapter 5: Reducing Computational Time 58

in the interval [0, 1] and used to reduce the starting value of the minority epsilon. α value is

determined according to the importance given to the minority class by the decision maker. Also

remark that in SVM formulation we can not control the number of misclassified instances, which

is a NP-Hard problem, but we can control the sum of distances to the hyperplane. Greater α

means we let more instances from the minority class to be misclassified whereas a smaller α

means we let less instances from the minority class to be misclassified. In other words α value

gets smaller as the decision maker pays more attention to the minority class. We conducted

experiments on the 5 datasets mentioned, with α = 0.5 and comparison in terms of g-means

and number of iteration is listed below. In the tables HalfMingrid1 row stands for the method

proposed above in order to reduce computational time and grid1 row stands for the results of

the original method that are also listed in Section 4.2.

Soybean12 gmeans AUC sensitivity LP iteration breakpoint
HalfMingrid1 0.998579 0.99858 1 3310 97

grid1 0.998579 0.99858 1 4317 104

Table 5.1: Reduced Evaluation for Soybean Dataset

For Soybean12 dataset HalfMingrid1 performed same as grid1 in terms of all metrics that are

reported. Also since the number of iterations decreased by 23 percent, choosing HalfMingrid1

method is reasonable in such a case.

Yeast gmeans AUC sensitivity LP iteration breakpoint
HalfMingrid1 0.959709 0.99344 1 4113 780

grid1 0.959709 0.99344 1 4912 865

Table 5.2: Reduced Evaluation for Yeast Dataset

For Yeast dataset, like in the Soybean dataset case, two methods performed same in terms

of all metrics that are reported. As in the previous case choosing HalfMingrid1 method is

reasonable since the number of iterations decreased by 16 percent.

Chapter 5: Reducing Computational Time 59

Abalone19 gmeans AUC sensitivity LP iteration breakpoint
HalfMingrid1 0.89297 0.90135 1 21955 2018

grid1 0.913795 0.93994 1 43193 5517

Table 5.3: Reduced Evaluation for Abalone Dataset

For Abalone19 dataset, HalfMingrid1 method performed worse than grid1 method in terms

of g-means and AUC, as expected. However sensitivity values are same for both methods. The

number of iterations decreased by 49 percent but the loss in g-means and AUC values are high,

around 0.02. If the computation time is too important and that much loss is tolerable by the

decision maker HalfMingrid1 may be preferred.

Statlog4 gmeans AUC sensitivity LP iteration breakpoint
HalfMingrid1 0.745707 0.77507 0.985782 25051 4845

grid1 0.766798 0.78048 1 62135 10864

Table 5.4: Reduced Evaluation for Statlog Dataset

For Statlog4 dataset, HalfMingrid1 again performed worse than grid1 method in terms of

g-means, AUC and sensitivity. The number of iterations needed decreased by 59 percent and

the loss in g-means and AUC values are around 0.02. As in the previous case if the loss is

tolerable and computational time is a constraint, decision maker may prefer HalfMingrid1.

LetterRecogH gmeans AUC sensitivity LP iteration breakpoint
HalfMingrid1 0.791614 0.99858 0.968182 91350 12318

grid1 0.791614 0.83361 1 49819 6248

Table 5.5: Reduced Evaluation for Letter Recognition Dataset

For LetterRecogH dataset, the results did not meet the expectations. HalfMingrid1 per-

formed worse than grid1 in terms of gmeans and sensitivity. Even though HalfMingrid1 per-

formed slightly better in terms of AUC remarkable increase in the number of iterations for

HalfMingrid1 makes this heuristic not prefable.

Chapter 5: Reducing Computational Time 60

To conclude, we can say if the dataset is slightly imbalanced (Yeast) or linearly separable

(Soybean12) HalfMingrid1 would cover the best values for three metrics. However, when the

dataset is extremely imbalanced or not separable halving the starting value of minority epsilon

results in some loss in the three metrics. In this case, the decision considering the trade-off

between the loss in the best performance for metrics and the computation time is left to decision

maker. For very big problems in terms of both number of instances and number of attributes it

is possible to choose HalfMingrid1 in order to complete the computations in a reasonable time.

Chapter 6: Conclusion 61

Chapter 6

CONCLUSION

In this study, we mainly aim to improve the classification performance of SVMs on imbal-

anced datasets. The Imbalanced Dataset problem is a remarkable challenge studied in knowledge

discovery and data mining framework. This type of datasets can be found in many fields such

as banking data (fraud detection), health (diagnosis of a disease), scientific research results,

etc. Therefore there are many studies concerning different aspects of this problem. We mainly

divide these studies into two parts, Data-Level Solution Approaches and Algorithm-Level Solu-

tion Approaches. The studies belonging to the first part focuses on rebalancing the number of

instances in both classes, either eliminating some instances of the majority class or replicating

some instances of the minority class until the balance condition is met. Also, some rules may

be applied to the process of eliminating or replicating as we mentioned. On the other hand, the

studies belonging to the second part, focuses on two methods. They either adjust misclassifi-

cation costs or bias the algorithm in order to force the classifier for a desired separation. Our

approach can be included in the Algorithm-Level Approach since the main model is constructed

on using distinct misclassification allowances for majority and minority classes.

As mentioned, our approach is based on the model in which distinct misclassification costs for

majority and minority classes introduced via constraints on misclassification errors. These al-

lowance values are generally determined empirically, by trial and error in other words, in the

studies we encountered. However due to computational efforts and absence of a systematic pro-

cedure that can scan all/most of the values that are suitable, some general values (C=1, C=10)

or the imbalance ratio (which is the ratio of number of minority class instances over number

of majority class instances) is used. Therefore the most valuable set of these misclassification

cost parameters that leads to desired classification performance may be lost due to this limited

Chapter 6: Conclusion 62

scanning abilities.

Our contribution pertains this absence of a systematic procedure that can scan all/most of the

values that are suitable for misclassification allowances. In the model we mentioned, there exists

distinct misclassification allowances for both classes. Therefore, there are three objectives in

our model one of them controls the generalization error -maximizing the margin- and the two

others control the empirical error -minimizing cost of misclassification of majority class and mi-

nority class. It is clear from this explanation that SVMs can be considered as Multi Objective

Optimization problems. With this fundamental idea, we apply ε-constraint method, one of the

solution approaches of Multi Objective Optimization problems to the SVM formulation. Since

defining a piecewise surface that results from the ε-constraint parametrization is inefficient in

this case, we propose two alternative reductions that transforms both objectives regarding the

empirical error to ε-constraints. After reconstructing the formulation in this way, we use an iter-

ative algorithm that allows us to scan different values of these ε-constraints. In this algorithm we

based the iterative procedure on sensitivity analysis since the formulation using L1-Norm results

in a Linear Programming Formulation. We try various reductions into simpler subproblems. We

finally propose a heuristic in order to reduce computational effort in case of large problem sizes.

Our results on five datasets implied that using the comprehensive search methods, the methods

proposed in this study grid1, grid2, grid, are considered to have better performances in terms

of three metrics gmeans, AUC, sensitivity. However in some cases the performance values of

cost-sensitive methods in terms of three metrics are slightly different from the comprehensive

search methods but have remarkably less computational effort again compared to the proposed

methods. In other words, adjusting parameters for a cost-sensitive SVM model by trial and

error may result in good performance values but it can not attain the best values that the com-

prehensive methods generally find. Also considering trying a set of parameters C in order to

reach reasonable performance values, the expense of trial and error approximates the expense

of the comprehensive searches as the dataset gets more imbalanced.

Although the heuristic method we proposed did not perform consistently well, its overall per-

formance is acceptable. Therefore, if there exists some limitations on the computational efforts,

Chapter 6: Conclusion 63

the decision maker may choose this heuristic, with considering the trade-off between computa-

tional cost and better performance values. Another important result is that the comprehensive

search method with three criteria formulation grid1 performs better than the one with two cri-

teria formulation 2C in most of the experiments. This proves the statement that in addition

to the systematic search procedure proposed, assigning distinct misclassification allowances for

majority and minority classes improves the performance of SVMs significantly. Restating the

findings, we recommend using grid1 for better results in an imbalanced dataset. If the imbal-

anced dataset is large in terms of number of instances or number of attributes, it is reasonable

to use the heuristic proposed for a more economic use of CPU time.

Due to the metrics analysis in Section 3.4 and the results summarized in Section 4.2, metrics

do not consistently point out the best method and they may not discriminate among alterna-

tive methods. Even though it is not covered within the scope of this thesis, finding alternative

metrics may still be an interesting topic as a future research area. Hence, we can conclude if

the decision maker has no certain or crucial choice for metric, using any of them will not make

a significant difference for reporting.

Even though we observed an improvement on the classification performance of SVMs on im-

balanced datasets, our results are limited since we did not use Kernels in the formulation. Using

the formulation with Kernels, proposed in [10], may improve the classification performance. Also

the results will be analyzed better in that case since now the dependence on the separability of

the dataset may also effect the performance of the classifier.

Bibliography 64

BIBLIOGRAPHY

[1] R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines to imbalanced

datasets. In ECML, pages 39–50, 2004.

[2] H. Aytug, L. He, and G. J. Koehler. Risk minimization and minimum description for linear

discriminant functions by genetic algorithms. INFORMS Journal on Computing, 2008.

[3] H. Aytug and S. Sayin. Choosing the trade-off parameter for one-norm support vector

machines. working paper.

[4] R. Barandela, J. S. Snchez, V. Garca, and E. Rangel. Strategies for learning in class

imbalance problems. Pattern Recognition, 36(3):849 – 851, 2003.

[5] G. Batista, A. Carvalho, and M. C. Monard. Applying one-sided selection to unbalanced

datasets. pages 315–325. Springer-Verlag, 2000.

[6] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: theory and

algorithms. Wiley-Interscience, 2006.

[7] H. Benson. Vector optimization with two objective functions. Journal of Optimization

Theory and Applications, 28(2):253–257, June 1979.

[8] M.J.A. Berry and G.S Linoff. Data mining techniques: for marketing, sales, and customer

relationship management. * Wiley Computer Publishing, 2004.

[9] A. P. Bradley. The use of the area under the roc curve in the evaluation of machine learning

algorithms. Pattern Recognition, 30:1145–1159, 1997.

[10] P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and

support vector machines. In Machine Learning Proceedings of the Fifteenth International

Conference(ICML 98, pages 82–90. Morgan Kaufmann, 1998.

Bibliography 65

[11] P. K. Chan and S. J. Stolfo. Toward scalable learning with non-uniform class and cost

distributions: A case study in credit card fraud detection. In Proceedings of the Fourth

International Conference on Knowledge Discovery and Data Mining, pages 164–168. AAAI

Press, 1998.

[12] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority

over-sampling technique. Journal of Artificial Intelligence Research, (16):321–357, 2002.

[13] N. V. Chawla and N. Japkowicz. Editorial: Special issue on learning from imbalanced data

sets. SIGKDD Explorations, 6:2004, 2004.

[14] X. Chen, B. Gerlach, and D. Casasent. Pruning support vectors for imbalanced data clas-

sification. In Proceedings of International Joint Conference on Neural Networks, Montreal,

Canada, 2005.

[15] W. W. Cohen. Fast effective rule induction. In In Proceedings of the Twelfth International

Conference on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

[16] N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor. On kernel-target alignment.

In Advances in Neural Information Processing Systems 14, pages 367–373. MIT Press, 2002.

[17] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other

kernel-based learning methods. Cambridge University Press, United Kingdom, 2000.

[18] B.V. Dasarathy. Nearest neighbor (NN) norms: NN pattern classification techniques. Los

Alamitos, CA: IEEE Computer Society Press, 1991.

[19] P. Domingos. Metacost: A general method for making classifiers cost-sensitive. In In Pro-

ceedings of the Fifth International Conference on Knowledge Discovery and Data Mining,

pages 155–164. ACM Press, 1999.

[20] M.H. Dunham. Data mining introductory and advanced topics. Prentice Hall/Pearson

Education, 2003.

Bibliography 66

[21] T. Eitrich and B. Lang. Parallel tuning of support vector machine learning parameters for

large and unbalanced data sets. CompLife 2005, pages 253–264, 2005.

[22] C. Elkan. The foundations of cost-sensitive learning. In In Proceedings of the Seventeenth

International Joint Conference on Artificial Intelligence, pages 973–978, 2001.

[23] K. J. Ezawa, M. Singh, and S. W. Norton. Learning goal oriented bayesian networks for

telecommunications risk management. In Proceedings of the 13th International Conference

on Machine Learning, pages 139–147. Morgan Kaufmann, 1996.

[24] T. Fawcett. ROC graphs: Notes and practical considerations for researchers. Machine

Learning, 31, 2004.

[25] T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and Knowledge Dis-

covery, 1:291–316, 1997.

[26] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for extracting useful

knowledge from volumes of data. 1996.

[27] B. Fruhwirth and K. Mekelburg. On the efficient point set of tricriteria linear programs.

European Journal of Operations Research, (72):192–199, 1994.

[28] Q. Gu, Z. Cai, L. Zhu, and B. Huang. Data mining on imbalanced data sets. pages

1020–1024, Dec. 2008.

[29] SA ILOG. CPLEX: ILOG CONCERT TECHNOLOGY 25 User’s Manual and Reference

Manual, 2007.

[30] SA ILOG. CPLEX: ILOG CPLEX 11.0 User’s Manual and Reference Manual, 2007.

[31] N. Japkowicz. The class imbalance problem: Significance and strategies. In In Proceedings

of the 2000 International Conference on Artificial Intelligence (ICAI, pages 111–117, 2000.

[32] N. Japkowicz. Concept-learning in the presence of between-class and within-class imbal-

ances. volume Volume 2056/2001, pages 67–77. Springer Berlin / Heidelberg, 2001.

Bibliography 67

[33] N. Japkowicz. Supervised versus unsupervised binary-learning by feedforward neural net-

works, 2004.

[34] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent

Data Analysis, IOS Press, 6:429–449, 2002.

[35] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas. Handling imbalanced datasets: A review,

2006.

[36] M. Kubat, R. C. Holte, and S. Matwin. Machine learning for the detection of oil spills in

satellite radar images. In Machine Learning, pages 195–215, 1998.

[37] M. Kubat and S. Matwin. Addressing the curse of imbalanced training sets: One-sided

selection. Proceedings of the 14th International Conference on Machine Learning, 1997.

[38] C. Ling and C. Li. Data mining for direct marketing problems and solutions. In Proc. 4th

International Conf. on Knowledge Discovery and Data Mining (KDD-98) New York, pages

73–79. AAAI Press, 1998.

[39] O. L. Mangasarian. Misclassification minimization. Journal of Global Optimization,

5(4):309–323, 1994.

[40] O. L. Mangasarian. Mathematical programming in data mining. Data mining and knowledge

discovery, 1(2):183–201, 1997.

[41] B. Maxon. Defining Data Mining. DBMS Data Warehouse Supplement, Available at

http://www.dbmsmag.com/9608d53.html, August 1996.

[42] F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine

Learning, 42/3:203–231, 2001.

[43] R. Ramakrishnan and J. Gehrke. Database management systems. McGraw-Hill Sci-

ence/Engineering/Math, 2003.

Bibliography 68

[44] R. J. Roiger and M. W. Geatz. Data mining: a tutorial-based primer. Addison Wesley

Boston, 2003.

[45] Y. Tang, Y. Q. Zhang, N. V. Chawla, and S. Krasser. Svms modeling for highly imbalanced

classification. IEEE Transactions on systems, man and cybernetics, 39(1):281–288, 2009.

[46] I. Tomek. Two modifications of cnn. IEEE Transactions on Systems, Man and Cybernetics,

6(11):769–772, 1976.

[47] Y. Z. Tsypkin. Foundations of the theory of learning systems. Translated by ZJ Nikolic.

1973.

[48] R. J. Vanderbei. Linear Programming: Foundations and Extensions, volume 37 of Interna-

tional Series in Operations Research and Management Science, 2001.

[49] V. N. Vapnik. The Nature of Statistical Learning Theory, Second Edition. Springer, New

York, 2000.

[50] K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the sensitivity of support

vector machines. Proceedings of the International Joint Conference on AI, pages 55–60,

1999.

[51] S. Visa. Issues in mining imbalanced data sets - a review paper. In in Proceedings of

the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference, 2005, pages

67–73, 2005.

[52] G. M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explorations, 6(1):7–19,

June.2004.

[53] I. Witten and E. Frank. Data Mining:practical machine learning tools and techniques with

Java implementations. Morgan Kaufmann, San Mateo, CA, 2000.

[54] G. Wu and E. Y. Chang. Class-boundary alignment for imbalanced dataset learning. In In

ICML 2003 Workshop on Learning from Imbalanced Data Sets, pages 49–56, 2003.

Bibliography 69

[55] G. W. Wynn and J. C. Crawford. Data Mining: A Concept of Customer Relationship

Marketing.

[56] Y. Yoon. Discovering knowledge in corporate databases. Information Systems Management,

16(2):64–71, 1999.

[57] B. Zadrozy and C. Elkan. Learning and making decisions when costs and probabilities

are both unknown. In KDD ’01: Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 204–213, New York, NY, USA,

2001. ACM.

Vita 70

VITA

AYŞEGÜL ÖZTÜRK was born in Bursa, Turkey, on May 25, 1984. She graduated from

Balıkesir Science High School in 2002. She received her B.S. degree in Mathematics Engineer-

ing from Istanbul Technical University, Istanbul, in 2007. In September 2007, she joined the

Industrial Engineering Department of Koç University as a teaching and research assistant.

