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Emre İskender

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:
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ABSTRACT

Keeping every node updated about the newly generated data in the dynamic and rapidly

changing environment of a network is achieved via various data dissemination algorithms.

Epidemics is one of the widely accepted algorithms because of its reliability and robustness.

Message loss recovery for maintaining the reliability of the content delivery in case of message

losses is achieved via several buffer management techniques. Efficient usage of limited

memory resources is the basic deal for buffer management.

In this thesis, we present our analysis of peer-to-peer (P2P) networking phenomena,

namely data dissemination and buffer management, focusing on topological perspectives.

For data dissemination, we examine spreading of epidemics for anti-entropy algorithms on

several overlay network topologies, considering peer proximity. We derive nodes’ exact

probability distributions of being infected in each epidemic cycle of data dissemination.

For buffer management, we examine buffering with an efficient algorithm, Stepwise Fair-

share Buffering, that uses memory resources effectively and distributes the buffering load

uniformly throughout the system. We analyze the effect of different topologies on buffer

management, using hierarchical and power-law topologies, two basic types of topology mod-

eling the Internet.

For data dissemination, the effect of topological properties is studied using numerical

evaluations. The rate of dissemination is found to be related to the adjacency matrix in a

nonlinear way. For buffering, performance evaluation of various models with hierarchical

and power-law topologies are conducted. Scalability, reliability, dissemination delays and

uniformity are considered as basic performance parameters. We have shown that Stepwise

Fair-share Buffering method facilitate better uniformity in distribution of buffering load, in

view of our simulations. We expect to have higher delays due to decision process performed

for bufferer selection. However, it is also shown that dissemination delay performance

drawback is eliminated when power-law topologies are considered.

iv



ÖZETÇE

Enerjik ve hızlı değişen ağ ortamlarında, yeni gelen her bir bilgi hakkında, ağdaki kul-

lanıcıları bilgilendirme işlemi, çeşitli bilgi yayılımı algoritmalarıyla sağlanır. Güvenilirliği ve

sağlamlığı ile, salgın yayılımı algoritmaları, bu algoritmalar arasında en yaygın olanlardan

biridir. İçerik dağıtımı sırasındaki güvenilirliğin sağlanması için, herhangi bir mesaj kaybı

durumunda, kaybolan mesajların yeniden temini, çesitli ara bellek yönetimi yöntemleri ile

sağlanır. Sınırlı bellek kaynaklarının etkili bir şekilde kullanımı, ara bellek yönetiminin en

temel amaçlarından biridir.

Bu tez çalışmasında, bilgi yayılımı ve ara bellek yönetimi olmak üzere, görevdeş ağlardaki

iki temel kavram, topolojik yönlerden analiz edilmektedir. Bilgi yayılımı için, görevdeş

ağlarda, verilen herhangi bir topoloji ile, komşuluk bilgisine bağlı, entropi-önler algorit-

malarıyla yayılım incelenmektedir. Ağdaki bütün düğümlerin, her bir salgın döngüsü es-

nasındaki enfekte olma olasılıkları bulunmaktadır. Ara bellek yönetimi için, sistemdeki

bellek kaynaklarını etkin bir biçimde kullanan ve bellek yükünü sistem üzerindeki kul-

lanıcılar üzerine dengeli bir biçimde dağıtan bir algoritma olan, Adımsal Eşit Dağılımlı Ara

Bellek algoritması ile bellek dağıtımı incelenmektedir. İnterneti örnekleyen sıra-düzensel ve

üs kanunu temel topolojilerinin, ara bellek yönetimine olan farklı etkileri incelenmektedir.

Topolojik özelliklerin bilgi yayılımına olan etkileri, sayısal hesaplamalarla incelenmiştir.

Yayılım hızının, komşuluk matrisine, doğrusal olmayan bir yolla bağlı olduğu bulunmuştur.

Ara bellek modelinin, sıra-düzensel ve üs kanunu topolojilerdeki başarım hesaplamaları

benzetim sonuçlarıyla bulunmuştur. Temel başarım parametreleri olarak, ölçeklenebilirlik,

güvenilirlik, yayılım gecikme zamanları ve dengeli dağılım dikkate alınmıştır. Adımsal Eşit

Dağılımlı Ara Bellek algoritmasının, bellek yükünü sistem üzerindeki kullanıcılara dengeli

bir biçimde dağıttığı benzetim sonuçlarıyla gösterilmiştir. Ara bellek seçimindeki karar

verme sürecinin gecikmeye sebep olmasını beklediğimiz halde, üs kanunu topolojileri ele

alındığında, bu gecikmenin büyük ölçüde giderildiği görülmüştür.
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Chapter 1

INTRODUCTION

1.1 Motivation

Growth of networks, especially the Internet, results in considerable interest on distributed

systems [1]. P2P networking is a popular paradigm of distributed systems in which there ex-

ists diverse connectivity among the participants, and cumulative usage of network resources,

especially the bandwidth, is the core value of P2P networks. P2P model has become a very

powerful paradigm for developing Internet-scale systems and sharing resources (i.e., CPU

cycles, memory, storage space, network bandwidth) over large scale geographical areas [2].

There are popular P2P applications on file sharing such as Bit Torrent, Gnutella, Freenet

and Morpheus.

In the last few years, a new class of distributed stream processing applications have

emerged in domains such as network traffic monitoring, financial, health-care, sensor data

acquisition and multimedia. In distributed stream processing applications, data produced

by heterogeneous, autonomous and large numbers of globally-distributed data sources are

composed dynamically to generate results of interest. These offer scalability and availability

advantages by harnessing distributed processing elements in a cost-effective way. More

advantages of distributed stream processing applications include their ability for customized

delivery, for adaptation to different loads, and for resiliency to node failures. Distributed

stream processing can also be applied to multimedia streams, to eliminate the need for a

dedicated server with a high bandwidth connection and offer media services that can be

composed on demand.

Real time data is also efficiently transmitted using P2P technology. For Internet based

video broadcasting applications such as IPTV, the P2P streaming scheme has been found

to be an effective solution [3]. P2P live streaming has become a viable solution for IPTV
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services with medium quality video for a large number of concurrent users. With the

popularity of video on demand applications over the Internet, the traditional client-server

and content server at edge solutions are not adequate in handling dynamic viewer behaviors

and do not scale well with a large audience. On the other hand, the P2P based solutions

utilizing application layer overlay are becoming popular, because it is easy to implement

and cheaper than duplicating content servers at edges. The core benefit of P2P based

solution is that it utilizes the buffering and uploading capacities of the participating peers,

and provides a more scalable and robust content delivery solution. PPLive[4], PPStream[5],

CoolStreaming[6] and Tribler[7] are the well known examples for the great success of P2P

streaming systems.

Tribler[7] is a software for watching TV online. It is an open source P2P client with

various features for watching videos online and it is based on the BitTorrent protocol. It

uses an overlay network for content searching and adds keyword search ability to the Bit-

Torrent file download protocol using a gossip protocol. The software includes the ability to

recommend content. After a dozen downloads the Tribler software can roughly estimate the

download taste of the user and recommends content. This feature is based on collaborative

filtering. Another feature of Tribler is a limited form of social networking and donation of

upload capacity. Tribler includes the ability to mark specific users as online friends. Such

friends can be used to increase the download speed of files by using their upload capacity.

There are two significant issues in P2P networking. The first issue of our interest is data

dissemination. P2P networks are dynamic networks and peers in the network may need to

be informed about newly generated messages throughout the system in order to keep the

network up to date [8]. There are two different methods for modeling data dissemination:

Simple epidemics and anti-entropy algorithms [9]. In simple epidemics, epidemics dissemi-

nate from an infectious peer to a subset of its neighbors, defined by the fan-out parameter,

in each epidemic round. There is no mutual exchange of state information and an infectious

peer may receive a particular data message multiple times. This causes redundant message

transmission in the network, but overhead is reduced. In anti-entropy algorithms, peers

in the network choose one or a group of its neighbors determined by fan-out and exchange

status information prior to actual data dissemination. This phase is called epidemics. There

are three approaches for data exchange, namely pull, push and hybrid, as particular models
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of anti-entropy. In anti-entropy algorithms, data carried on each peer is compared prior to

data exchange to avoid the pitfall of sending unnecessary data as in simple epidemics. The

algorithm causes no overhead.

Epidemics is the most popular algorithm because of its reliability concern [10, 11]. Ad-

ditionally, the effect of epidemics is that data can spread within a group just as it would

in real life [12]. A critical ratio for detecting if the epidemics will spread to entire network

or not is named as epidemic threshold. In earlier studies, the effect of network topology

on dissemination is examined and different epidemic thresholds are identified in relation

to various topological properties of the underlying network, such as average connectivity,

connectivity divergence of the topology and maximum eigenvalue of the adjacency matrix.

The second issue of our interest is buffer management. In order to provide reliable dis-

semination throughout the system, missing messages need to be retrieved successfully in

case of message losses. Retrieval of lost messages is achieved via several buffer manage-

ment techniques. However, limited memory resources in the system requires clever buffer

management techniques in order use memory resources efficiently. In earlier studies, both

topological and non-topological methods for efficient buffer management are proposed. For

non-topological methods; in Bimodal Multicast [13], receiving peer buffers the messages for

a fixed amount of time; in [14], NAK based retransmission control scheme is used in order to

overcome failures due to high message generation rate; in [15] the message is discarded from

the buffer after the nodes with the least reliable and slowest links are monitored based on

both ACK and NAK messages; in [16], safe messages are detected and discarded from the

buffers; in Search Party algorithm [17], messages are kept in the buffers for a fixed amount

of time and discarded at the end of this time period without any restriction; in LRU discard

method [18], least recently used (LRU) message is discarded from the buffer in case of buffer

overflow; in [19], history buffers are used during data dissemination, in order to overcome

multiple delivery of the messages; in hash-based buffering [20], each message is buffered

by a small set of peers determined by a hash function. For topological methods; in Step-

wise Probabilistic Buffering [21], sending peer randomly chooses the bufferer corresponding

to the message prior to message transmission; in Stepwise Fair-share Buffering [21], the

bufferers are selected during data dissemination through an adaptive scheme considering

locality information of the topology; in Randomized Reliable Multicast Protocol (RRMP)
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[22], the peers in the network are grouped in local regions to keep buffering load in each

local region balanced; in Reliable Multicast Transport Protocol (RMTP) [23], there is a

supervising peer responsible for collecting ACK messages from the peers in its local region

and retransmitting lost messages to corresponding receivers. Among these methods, Step-

wise Fair-share Buffering is proposed as a mechanism that uses memory resources effectively

[21]. Additionally, this algorithm distributes the buffering load uniformly throughout the

network elements, satisfying the fairness requirement of a P2P network. However, a general

framework for analyzing the effect of different network topologies on buffer management

has not been considered yet.

1.2 Contribution

In this thesis, we examine spreading of epidemics for anti-entropy algorithms on several

overlay network topologies, considering peer proximity. We derive nodes’ exact probability

distributions of being infected in each epidemic cycle of data dissemination. The effect of

topological properties on data dissemination is studied using numerical evaluations. The

rate of dissemination is found to be related to the adjacency matrix in a nonlinear way [9].

We also analyze and compare the effect of different topologies (using hierarchical and

power-law topologies, two basic types of topology modeling the Internet) on buffer manage-

ment, with various buffer management techniques. Simulation results show that, fair-share

approach performs balanced buffering load very close to perfect balancing, due to the clever-

ness in buffer selection process. Fair-share approach is better on buffering load performance

compared to other approaches, but selection process is time consuming and results in extra

delay during data dissemination. However, we have shown that power-law topologies, due to

the nature of topology, achieved faster dissemination performance compared to hierarchical

topologies and disadvantage of fair-share approach is eliminated by the faster dissemination

performance of power-law topology structure.

As the contribution to this thesis for data dissemination, we have derived an analytical

model of pull type anti-entropy approach for SI epidemic data dissemination. The rate

of dissemination is found to be related to the topological properties such as degree dis-

tribution and eigenvalues of the gradient matrix over Erdös-Rényi and power-law random

graphs. Rather than the maximum eigenvalue, the mean and the standard deviation of all
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eigenvalues are found to be effective in predicting the rate of diffusion.

As the contribution to this thesis for buffer management, performance evaluation of

various models with hierarchical and power-law topologies are conducted. Scalability, relia-

bility, dissemination delays and uniformity are considered as basic performance parameters.

We have shown that Stepwise Fair-share Buffering method facilitate better uniformity in

distribution of buffering load, in view of our simulations. We expect to have higher de-

lays due to decision process performed for bufferer selection, however, it is also shown that

dissemination delay performance drawback is eliminated when power-law topologies are

considered.

The rest of this thesis is organized as follows. The related work is summarized in

the next chapter. Chapter 3 gives the details of the proposed model and the results for

data dissemination concept. Chapter 4 describes the analysis of buffer management with

various buffering approaches. Simulation results of buffer management study are presented

in Chapter 5. Finally, concluding remarks are given in Chapter 6.
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Chapter 2

RELATED WORK

Data dissemination and buffer management are important issues in P2P network appli-

cations. Data dissemination is important because of the dynamic and rapidly changing

environment of a network requires keeping every node updated about the new data [8].

Maintaining the reliability of the content delivery is another subject of interest and to pre-

vent message loss throughout the network, efficient buffer management is required [21]. The

first part of this chapter covers related studies about data dissemination and the second part

covers related studies about buffer management.

2.1 Data Dissemination

Regularly informing peers in a dynamic network is achieved by data dissemination. Epi-

demic algorithms are first discovered to achieve reliable data dissemination in large-scale,

distributed networks. In addition to reliability; simplicity, robustness, high resilience to

failures and flexibility of these algorithms make them popular [1, 10, 12]. Moreover, in ad-

dition to data dissemination; it is discovered that these algorithms are also efficient for data

aggregation, overlay maintenance, and resource allocation, making them widely accepted.

Epidemics in distributed systems refers to the repeated probabilistic exchange of data

among members [10]. The effect of epidemics is that data can spread within a group just

as it would in real life. In a sense, this is strongly related to epidemics, by which a disease

is spread by infecting members of a group, which in turn can contact in others [12].

Peers in the network choose one or a group of network members determined by fan-out

and exchange status information prior to actual data dissemination. This phase is called

epidemics. In these algorithms, each peer compares their present data with the selected

peer prior to data exchange in order to overcome unnecessary data exchange. This way, the

algorithm faces some delay constraints but epidemics is a required phase, in order not to

cause any overhead [9]. There are three approaches for data exchange, namely pull, push
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and hybrid, as particular models of anti-entropy algorithms. [24].

We define an infectious peer as the peer that holds data to be shared and susceptible

peer as the peer that lacks the specific data in a network. Epidemic spreading in the network

takes place from infectious nodes to susceptible nodes, and it is modeled as a process in

an undirected graph with nodes where every infectious node exchanges data with one of

the previously chosen members. Modeling the spread of epidemics by taking into account

the topological and nodes’ neighborhood information provides benefits such as predicting

the future spreading behavior, developing methods to control epidemics or achieving faster

epidemic data dissemination [9].

Topologically, we can classify anti-entropy algorithms according to selected epidemic

member set, as epidemic anti-entropy with full membership knowledge, epidemic anti-

entropy with partial membership knowledge and hybrid approaches. Next, we will describe

these methods and give information about the related studies.

2.1.1 Epidemic anti-entropy with full membership knowledge

In this method, data dissemination is achieved through uniformly selected peers over the

entire topology. This method requires the full view of the topology for selecting the peers.

Let’s denote N to be the total number peers in the network: Previous analysis shows that,

all nodes receive a copy of the newly generated message with a delay that is logarithmic in

the full network size, in O(log(N)) steps of its initial appearance, which is the best possible

time interval for the complete dissemination of data throughout the network. However,

in many network applications, when some new data is generated at individual nodes, this

newly generated data is mostly interesting for the nodes nearby. For example when an alarm

is generated at an individual node, we want to alert nearby nodes earlier than nodes further

away. Since this method is not effective on data dissemination through nearby nodes, it is

not preferred in data dissemination methodology [8].

In a previous study [24], this method is considered assuming that each peer has global

knowledge of all peers. That is, any other peer in the network can be chosen as an epidemic

target. Although this assumption is not realistic, it is a crucial simplification for the exact

probability calculations performed in. The probability distribution of the number of newly

infected peers at each round is derived for push, pull and hybrid anti-entropy algorithms.
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2.1.2 Epidemic anti-entropy with partial membership knowledge

In this method, data is disseminated through the neighboring peers. Peers in the network

choose one or a group of its neighbors as epidemic targets and disseminate data through these

selected neighbors. This method requires only a partial view of the network topology for

anti-entropy peer selection. As a basic necessity, newly generated data is firstly disseminated

to the peers in the close proximity and additionally this approach doesn’t require the view

of the full network topology. However, this approach has some drawbacks. Let’s denote

N to be the total number peers in the network: The time it takes for all nodes to obtain

a given message under this scheme is θ(
√

n), which is very slow compared to epidemics

through entire topology. In addition to its delay incompetence, this method is also more

delicate to link failures around the source peers [8].

In an earlier work using this method [25], the effect of network topology on dissemination

is examined and different epidemic thresholds are identified in relation to various topological

properties of the underlying network, such as average connectivity, connectivity divergence

of the topology and maximum eigenvalue of the adjacency matrix. A critical ratio for detect-

ing ’if the epidemics will spread to entire network or not’ is named as epidemic threshold.

It has been shown that infection eventually dies out if φ
δ < epidemic threshold where φ is

the infection rate and δ is the cure rate. The average connectivity in the network is denoted

by 〈k〉, and the connectivity divergence is by 〈k2〉, the mean and the second moment of

the degree distribution, respectively. It has been suggested that an epidemic threshold is

τ = 1
〈k〉 for homogenous Erdös-Rényi networks and τ = 〈k〉

〈k2〉 for power-law topologies. A

general epidemic threshold of τ = 1
λ1,A

is also suggested for an arbitrary network where λ1,A

is the largest eigenvalue of the adjacency matrix.

2.1.3 Hybrid approaches

Dissemination through full membership knowledge and dissemination through partial topol-

ogy view are the two fundamental approaches in anti-entropy methodologies. However,

deficiencies of the pure applications of these approaches motivate people about finding a

combination of the two. Distance-based epidemics (or in other words spatial epidemics)

and hierarchical-adaptive epidemics are the famous topology related studies combining epi-

demic anti-entropy with full membership knowledge and epidemic anti-entropy with partial
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membership knowledge in order to achieve better performance.

Distance-based (spatial) epidemics [8] exhibits the best qualitative features of the two

epidemic approaches, by guaranteeing that a message can be propagated to any node at

distance d from its originator, with high probability, in time bounded by a polynomial in

log(d). In distance-based epidemics, fast spreading of data is achieved as in epidemic anti-

entropy with full membership knowledge O(log(N)) and initial information of nearby nodes

about the newly generated messages is achieved as in epidemic anti-entropy with partial

membership knowledge. This study is a good example showing how beneficial an approach

can be by combining two different basic approaches in a single algorithm.

Epidemics has emerged as a famous technique since it achieves a reliable dissemination

in large, distributed networks. However, ordinary epidemics has two major drawbacks:

Large number of packets generated causes network overhead and imposing the same load

on peers in case of failure without applying any adaptive scheme decreases performance

of dissemination. The method named as hierarchical-adaptive epidemics [11], overcomes

the network overhead phenomena by organizing members into a hierarchical structure that

reflects their proximity according to some network-related metric and forcing peer groups to

disseminate data through this hierarchical structure. Also, the algorithm adaptively adjusts

the dissemination load imposed on peers in order to overcome performance decrease in case

of failures.

2.2 Buffer Management

In order to achieve reliable dissemination in a network, messages should be kept in temporary

storage areas, namely buffers, such that any peer could request any missing message when a

failure occurs during regular dissemination [21]. This mechanism is called buffering. Limited

memory resources phenomena is the basic subject to deal with in buffering. Fairness, in

other words uniformly balancing the load among peers is also another subject of matter in

P2P networks. But, fairness is not only specific for buffer management purposes and we will

briefly explain fairness as a general issue in subsection 2.2.3. Storage and retrieval of the

messages causes a great cost to the system and this extra cost should be minimized. Limited

memory resources should be used effectively and any redundant data should be discarded

from the system. Clever buffer management techniques are developed to minimize the extra
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cost of buffering while preserving a reliable dissemination.

There are many solutions of efficient memory usage for buffer management concepts in

the literature. Likewise in data dissemination, approaches involving network topology also

have important place in buffer management phenomena. Considering our focus on topo-

logical properties, we can classify previously recommended solutions as; buffer management

without topology consideration and buffer management focusing on topology information.

2.2.1 Buffer Management without topology consideration

Previous solutions for buffer management focus on decreasing memory usage simply by dis-

carding messages from the buffers without considering effect of topology. In these solutions,

messages are discarded from the buffers using the information of time passed during buffer-

ing, ACK-NAK messages generated throughout the system, random discard, LRU discard

policies, discarding safe messages, etc. For instance, in Bimodal Multicast [13], a receiving

peer buffers the messages for a fixed amount of time after their initial reception and then

discards the message from its buffer, resulting in the reduction of memory resources.

The system may encounter failures due to limited buffer capacity, bandwidth or CPU

speed in network elements when message generation rate is above a threshold. Flow con-

trol mechanisms are used in order to overcome failures due to high message generation

rate. In NAK based retransmission control scheme, the sender reduces its transmission rate

adaptively whenever it receives too many NAKs from the receivers. In [14], buffer capac-

ity information of each peer is disseminated to the network and source peers adjust their

particular message transmission rate according to this feedback. In these approaches, the

buffer overflow at the receivers is minimized with the expense of higher transmission delay.

There is another buffer management algorithm [15] based on both ACK and NAK mes-

sages. The peers in the network are ranked according to their error rates using generated

ACK and NAK messages. The nodes with the least reliable and slowest links are monitored.

It is assumed that if a message is correctly received by these nodes, it has been probably

received by all other nodes and the message can safely be discarded from the buffer.

In hash-based buffering [20], selection of bufferers is achieved using a hash-based method

prior to the beginning of dissemination. Before the source peer starts generating messages, a

bufferer is assigned for each message using a hash table with uniform hashing. The topology
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information used in this approach is only the number of peers in the system. Upon receiving

the message, peer decides to be the bufferer for that message, using a cleverly designed hash

function that distributes the buffering load uniformly among the network. However, this

approach is not immune in dynamic systems, since the hash table only considers initial

network elements.

In [16], there is a mechanism for discarding safe messages from the buffers. The members

periodically exchange messages to inform each other about the messages they have received.

When a particular message reaches all of the members, it can safely be discarded from the

buffer. System wide buffer space is reduced but high traffic is caused due to frequent

exchange of history messages.

In Search Party algorithm [17], messages are kept in the buffers for a fixed amount of

time and discarded at the end of this time period without any restriction. It is possible for

the system to face with buffer overflow due to high message generation or limited memory

resources. In buffer overflow conditions, the peers are forced to discard messages from the

buffers. There are different selection techniques for discarding messages in case of a buffer

overflow. The oldest of the messages can be discarded, the message to be discarded from

the buffer can be chosen randomly or least recently used (LRU) message can be discarded

from the buffer. LRU discard method [18]is proven to have better buffer hit rate compared

to other methods.

History buffers are used during data dissemination, in order to overcome multiple deliv-

ery of the messages [19]. The list of the messages that the peer has already received are kept

in the history buffer. Although history buffers perform well on preventing multiple delivery

of messages, it suffers from high memory consumption. Keeping a history buffer for every

peer in the network, prevents the efficient usage of memory resources. Moreover, the history

information of formerly disseminated messages lose the necessity, since it becomes less prob-

able for the multiple delivery of formerly generated messages. FIFO scheme is applicable

for history buffer scheme. Therefore, size of history buffer can be chosen large enough to

guarantee safe delivery and not to give rise to multiple deliveries of the same message to

the application. Choosing an appropriate history buffer size saves memory resources while

reducing multiple deliveries.
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2.2.2 Buffer Management focusing on topology information

It is shown that topology has an important effect on data dissemination and buffering in

P2P networks [9, 21]. Better buffer management performance is achieved when topology

knowledge is considered together with messages generated throughout the topology.

Stepwise Probabilistic Buffering [21] is proposed to distribute the load of buffering evenly

to the entire system where all peers have only partial knowledge of the participants. For

determining the bufferers of a data message, the source sends buffering request messages

to randomly selected b peers in its partial view. Parameter b is the number of bufferers

per message. For a data message, if b > 1 then its bufferers are determined in parallel.

Buffer fullness ratio of a peer (BF) is the ratio of the number of messages that are stored

in the peers buffer to its long-term buffer capacity. Time-to-Live (TTL) value attached to

a buffering request message indicates the maximum number of times that request message

can be forwarded among peers. When a peer receives a buffering request message for a

particular data, it accepts the request with probability 1−BF . Otherwise, it forwards the

message to a randomly selected peer from its partial view with a probability equal to BF.

For example, if 90% of the long-term buffer is full, then the peer becomes the bufferer of

the message with probability of 0.1 and sends the buffering request to one of its neighbors

with probability of 0.9. Initially, assuming that all buffers are empty, peers that are in

the partial view of the source will accept the buffering requests with higher probabilities.

Then, as the buffer level of these neighboring peers will approach their capacity, they will

begin to forward the buffering requests with higher probabilities to their neighboring nodes.

Likewise, as the data dissemination continues, the peers with one or more hops away from

the source will begin to reach their buffer capacities and forward the buffering requests to

their neighbors. Thus, a stepwise probabilistic buffering takes place.

In Stepwise Fair-share Buffering [21], the bufferers are selected during data dissemination

through an adaptive scheme considering locality information of the topology that distributes

the buffering load uniformly. In the method, every peer stores the number of messages that

its neighbors have ever buffered. This is called the neighbor history information (NH). This

information is used for determination of the bufferers. At specific time intervals, the peers

update their neighbor history information. The bufferer determination phase is initiated

by the source to one of its neighbors through a selection mechanism. Time-to-live (TTL)
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value attached to a buffering request message indicates the maximum number of times that

request message can be forwarded among peers. When a peer receives a buffering request it

decreases the TTL value attached to a buffering request message. If the TTL value becomes

zero, then the peer accepts the buffering request. If TTL value is greater than zero, the peer

multicasts neighbor history request messages to its neighbors. As soon as the peer receives

all the responses from the neighbors, it updates its neighbor history information. Then, it

detects the peers with the minimum number of messages buffered. If the corresponding peer

is the peer itself it accepts the buffering request, otherwise if it is one of the neighboring

peers it sends the buffering request to that neighbor. If there is more than one peer with the

minimum number of buffered messages, the peer chooses randomly one of them. Similarly,

if the peer is one of these candidate peers and it chooses itself then it accepts the request.

Another advantage of this approach is its immunity in dynamic systems since newly joining

peers are considered in this adaptive scheme.

In Randomized Reliable Multicast Protocol (RRMP) [22], the peers in the network

are grouped in local regions. The peers have two separate buffer spaces: short-term and

long-term. Upon initially receiving the message, receiving peer keeps the message in its

short-term buffer and waits for a while until the message completely disseminates to the

local region. Then the peer makes a random choice and decides whether to be the long-

term bufferer for the message or discard the message. Buffering load in each local region is

kept balanced after this decision process. The message is buffered in the long-term buffer

for a fixed amount of time and during this period newly incoming messages are discarded.

Discovery of the repair node takes a long time in this approach.

A tree based reliable multicast protocol in this category is the reliable multicast transport

protocol (RMTP) [23]. The protocol is designed for reliable delivery of data from one sender

to a group of receivers. In RMTP a hierarchical tree-based approach is used. Receivers are

grouped into local regions or domains and in each region there is a special receiver called

designated receiver. Each designated receiver has the knowledge of the members in its local

region and the sender. A designated receiver in each local region is responsible for sending

acknowledgments periodically to the sender, for processing acknowledgment from receivers

in its domain, and for retransmitting lost packets to the corresponding receivers. The sender

multicasts data to all receivers but only designated receivers inform the sender about their
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status. Each receiver periodically sends an ACK to its designated receiver instead of sending

an ACK for every received packet. This ACK contains the maximum packet number that

each receiver has successfully received. However, error recovery is delayed by this periodic

feedback policy. Hence, RMTP is not suitable for applications that transmit time sensitive

data. In addition, in RMTP the whole multicast session data is in the secondary storage

of the repair node for retransmission. Therefore, it is not applicable to large groups or

long-lived sessions.

2.2.3 Importance of Fairness in P2P networks

Fair distribution of content and load balancing is one of the primitive requirements of P2P

networks. Every peer in a P2P network participates as both server and client and every

peer is the basic building block for the system. Highly loaded peers become more vulnerable

and therefore equal distribution of the system load over the peers is necessary in order to

keep the stability of the system.

Distribution of the content in a fair and fully decentralized manner among the peers is

important because it can improve resource usage, minimize network latencies and reduce

the volume of unnecessary traffic incurred in large-scale P2P systems. Load balancing can

be achieved by replication [26]. Firstly, popular documents are determined and replicated

and then the replications are sent to the less loaded peers in the system. By replication,

the system become more fair and stable with a little the expense of increase in memory

usage. As another way of fair content distribution, we can specify the less loaded peers in

the system and we can route the newly upcoming messages to these less loaded peers. This

method fairly distributes the load over the system with the expense of specifying less loaded

peers in the network.

Similar to fair distribution of content, buffering load should also be fairly distributed

over the peers in the network. Any algorithm designed for performance increase in a P2P

network should consider fair distribution of content as well as fair distribution buffering load.

Since all peers participate in a P2P system with equal functionality, highly loaded peers

become more vulnerable and fairness of the buffering load becomes a critical issue for the

stability of the system. Stepwise Probabilistic Buffering and Stepwise Fair-share Buffering

[21] are good examples for buffering approaches having a fair distribution of bufferers in the
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network.

In order to measure the degree of fairness, a powerful fairness metric is proposed: Fairness

index proposed by Ray Jain [27], given below, is a very useful fairness indicator. If a system

allocates resources to n contending users, such that the i th user receives an allocation xi,

the following index called fairness index for the system is proposed:

F (x) = (
P

xi)
2

n
P

x2
i

This index is independent of scale, continuous, applies to any number of users. The result

ranges from 1/n (worst case) to 1 (best case) and it has a intuitive relationship with user

perception. This fairness index is recommended to use in any kind of fairness measure.
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Chapter 3

ANALYTICAL MODEL FOR TOPOLOGY DEPENDENCE IN

PEER-TO-PEER ANTI-ENTROPY SPREADING

We examine spreading of epidemics for an anti-entropy algorithm in networks with vari-

ous P2P overlay topologies. Neighborhood knowledge among peers and data exchange based

on proximity are considered. Our analytical model for SI (Susceptible-Infected) epidemics

involves equations for calculating the infection probability of each peer in consecutive epi-

demic rounds as a function of the topology. Using numerical evaluations, we study the effect

of graph properties on dissemination as an aspect of real world P2P overlays.

3.1 Problem Overview

In this chapter, we investigate the impact of topology using SI epidemic model, which is a

suitable model for data dissemination applications. Dissemination of a single message is our

subject of interest. Epidemic spreading in a network takes place from infectious nodes to

susceptible nodes. It is modeled as a process in an undirected graph where every infectious

node exchanges data with one of its neighbors. Modeling the spread of epidemics by taking

into account the topology and neighborhood information provides benefits such as predicting

the future spreading behavior, developing methods to control epidemics or achieving faster

data dissemination. Topological properties considered for SIS model previously and graph

invariants such as degree distribution and eigenvalues are studied as an aspect of real world

P2P networks. In P2P content dissemination systems such as BitTorrent [28] and SeCond

[29], each peer exchanges data with a group of its neighbors on the overlay. We introduce a

model for calculating the infection probabilities of the nodes as a function of the topology

through a general adjacency matrix and show numerical results on various power-law and

Erdös-Rényi random topologies.
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3.2 Principles of Epidemic Spreading

In this section, we give information about the types of epidemic models and define epidemic

dissemination approaches.

3.2.1 Epidemic Models

In SI (Susceptible-Infected) model, infectious peers are never cured and continue to infect

the remaining susceptible peers until the infection is spread among the network. SI model

is mostly applicable for data dissemination purposes over a network.

In SIS (Susceptible-Infected-Susceptible) model an infectious peer turns to be a suscep-

tible peer after the cure. But the nodes may become infected again without any restriction.

SIS model is applicable in security services in particular to spread of Internet worms and

e-mail viruses.

SIR (Susceptible-Infected-Removed) model is used to represent virus/worm propagation

in distributed systems [30]. There are two different proposed models for SIR model: In

the first model, each infectious peer is detected and removed from the system. In this

model, there exist only infectious and susceptible peers and the population size decreases

dynamically due to removals. In the second model, each infectious peer is cured and gains

immunity such that it does not receive infection again. In this model, there exist only

infectious, susceptible and immune peers.

3.2.2 Dissemination Algorithms

In Simple epidemics algorithm, epidemics disseminate from an infectious peer to a subset

of its neighbors, defined by the fan-out parameter, in each epidemic round. Since there is

no mutual exchange of state information, an infectious peer may receive a particular data

message multiple times. Hence, this causes redundant message transmission in the network.

However, simple epidemics has reduced overhead in comparison to broadcasting/flooding.

In Anti-entropy algorithms, peers in the network choose one or a group of its neighbors

determined by fan-out and exchange status information prior to actual data dissemination.

This phase is called epidemics. There exist three approaches for data exchange, namely

pull, push and hybrid, as particular models of anti-entropy [24]. In anti-entropy algorithms,

data carried on each peer is compared prior to data exchange to avoid the pitfall of sending
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unnecessary data as in simple epidemics. The algorithm causes no overhead but epidemics

is a required phase.

Epidemic spreading is examined by calculating the infection probabilities of all nodes in

the network for every epidemic round with the pull based anti-entropy algorithm [24]. In

the pull approach, when an infectious peer (holding data to be shared) picks a susceptible

peer (lacking the specific data) randomly, this triggers data dissemination from infectious

peer to the susceptible. Spreading updates are triggered by susceptible peers when they are

picked as targets by infectious peers.

3.3 Proposed Model

Our model examines epidemic dissemination with pull based anti-entropy algorithm and SI

epidemic spreading. The pull algorithm is given in Algorithm 1 below. In SI model, the

infectious peers are never cured and continue to infect the remaining susceptible peers until

the infection is spread over the network as in data diffusion. The analytical model we develop

in this section is an extension of earlier work developed for SIS simple epidemic which is used

for spreading of viruses in particular and a peer becomes susceptible after a cure [25, 31]. In

prior work for SIS (Susceptible - Infected - Susceptible) model, various epidemic thresholds

are identified in relation to various topological properties of the underlying network [25, 32].

Such properties include average connectivity, connectivity divergence of the topology and

maximum eigenvalue of the adjacency matrix. The epidemic threshold is important for

detecting whether the epidemics will spread to the entire network or not.

Algorithm 1 Pull Algorithm: Epidemic anti-entropy data dissemination
Node I is infectious and node S is susceptible. When I picks a neighbor S as the epidemic

target, infection is triggered:

1. After state exchange via epidemics, S requests missing data from I to initiate the pull

action.

2. S receives (pulls) the data from I.

3. Upon receiving the data, S becomes infectious.

We derive equations to calculate the infection probability of each peer (node) in consec-

utive epidemic rounds. We assume that an infected node equally likely chooses one of its
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neighbors and infects the neighbor if it is healthy. The following notation is used:

pi,t :probability that node i is infected at time t

ζi,t :the probability that a node i will not receive infections from its neighbors at time t

nj :total number of neighbors of a node j, that is,

nj =
N∑

k=1

A(j, k) (3.1)

where A is the adjacency matrix and N is the total number of nodes.

Figure 3.1: Node Selection

The selection process for a node i by node j in the pull approach is illustrated in Fig. 3.1

where node j has 5 neighbors and hence i becomes infectious with probability 1/5. Clearly,

if there are multiple neighbors of i which are infectious, then the probability of i being

selected increases in a given round.

A node i remains susceptible at time t when either one of the following occurs

• neighbor node j is susceptible at time t− 1, which has probability 1− pj,t−1

• neighbor node j is infected at time t − 1 but chooses a neighbor other than i, which

happens with probability (nj − 1)/nj

Since the neighbors act independently in anti-entropy model, we can write the probability

that a node i remains susceptible at time t as

ζi,t =
∏

j: neighbor of i

[
(1− pj,t−1) +

(
pj,t−1

(
nj − 1

nj

))]

=
∏

j: neighbor of i

(
1− pj,t−1

nj

)
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Then, the probability that a node i is susceptible at time t is the product of the probability

that it is susceptible at time t−1 and the probability that it does not receive infection from

its neighbors. That is,

1− pi,t = (1− pi,t−1)
∏

j: neighbor of i

[
1−

(
pj,t−1

nj

)]
(3.2)

We can illustrate the idea of our epidemic spreading model on a sample network. Our

sample network consists of 7 nodes as shown in Fig. 3.2. The adjacency matrix correspond-

ing to this network is represented with matrix A which is given below.

Figure 3.2: Sample network

A =




0 1 1 1 1 0 0

1 0 0 0 1 0 0

1 0 0 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 1 1

0 0 0 1 1 0 0

0 0 0 0 1 0 0
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In our sample network with the given adjacency matrix A, dissemination is almost complete

at the end of the 6th round and we calculate the infection probabilities of the nodes using

Equation (3.2). Infection probabilities, namely pi,t, from 0th to 6th epidemic rounds of

dissemination are given in Table 3.1. Here, i=A, B, ..., G and t= 0, 1, ..., 6.

0 1 2 3 4 5 6

A 1 1 1 1 1 1 1

B 0 0.25 0.47 0.64 0.78 0.87 0.92

C 0 0.25 0.47 0.64 0.78 0.87 0.92

D 0 0.25 0.44 0.61 0.77 0.89 0.95

E 0 0.25 0.57 0.83 0.96 1 1

F 0 0 0.17 0.42 0.67 0.84 0.93

G 0 0 0.05 0.16 0.30 0.43 0.55

Table 3.1: Probabilities of being infected

We show that epidemic will spread to entire network, in other words the system is stable

at ~P = ~1, irrespective of the size of the initial number of infected nodes, where ~P is the

vector of entries pi, i = 1, ..., n. It is convenient to work with the probability of being

susceptible rather than being infected. Let qi,t = 1− pi,t. From (3.2), it is given by

qi,t = qi,t−1

∏

j: neighbor of i

[(
1− 1

nj

)
+

(
qj,t−1

nj

)]
.

The probability that node i is still susceptible at time t can be represented with the following

discrete non-linear dynamical system: ~Qt = ~f( ~Qt−1) with f = (f1, . . . fn) where

fi( ~Q) = qi

∏

j: neighbor of i

[(
1− 1

nj

)
+

(
qj

nj

)]

and ~Q is the vector of entries qi, i = 1, ..., n after suppressing the time for simplicity. The

system’s being stable at ~Q = ~0 means that the data will certainly diffuse, that is, Pt will

converge to ~1, starting with any initial number of infectious nodes. Due to [33], pg. 280, the

system is stable at ~Q = ~0 if the eigenvalues of ∇f(~0) are less than 1 in absolute value. The
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gradient matrix is given by the entries [∇f( ~Q)]ik = ∂fi( ~Q)/∂qk, i, k = 1, . . . , N . Taking the

partial derivatives, we get

∂fi( ~Q)
∂qi

=
∏

j: neighbor of i

[(
1− 1

nj

)
+

(
qj

nj

)]

since j 6= i when j neighbor of i. On the other hand, ∂fi( ~Q)/∂qk = 0 if k 6= i and k is not

a neighbor of i since fi( ~Q) does not depend on qk. Finally,

∂fi( ~Q)
∂qk

= qi
∂

∂qk

[(
1− 1

nk

)
+

(
qk

nk

)]

·
∏

j: neighbor of i,j 6=k

[(
1− 1

nj

)
+

(
qj

nj

)]

=
qi

nk

∏

j: neighbor of i,j 6=k

[(
1− 1

nj

)
+

(
qj

nj

)]

as k 6= i when k is a neighbor of i. Therefore,

∂fi(~0)
∂qk

=





∏

j: neighbor of i

(
1− 1

nj

)
if k = i

0 if k 6= i

In matrix notation, we find

∇f(~0) = diag(λ1, . . . , λN )

with

λi =
∏

j: neighbor of i

(1− 1/nj) i = 1, . . . , N.

Clearly, λi are simply eigenvalues of ∇f(~0) and 0 ≤ λi < 1. Therefore, the data will

certainly diffuse as expected.

The analysis above does not only confirm the applicability of the discrete model (3.2)

for epidemic diffusion, but also provides the tools for evaluating the rate of dissemination in

connection with the adjacency matrix. Scrutinizing the stability proof of [33] which states

that there exists a constant µ < 1 such that

‖ ~Qt‖ ≤ µt ‖ ~Q0‖ (3.3)

we see that µ can be chosen as a perturbation |λ| + ε of the maximum eigenvalue λ (in

absolute value) of ∇f(~0) where ε > 0 can be chosen arbitrarily small. The largest eigen-

value would be binding in the worst case, especially for large t. Therefore, Equation (3.3)
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reflects that the dissemination occurs exponentially with a rate depending in general on

all the eigenvalues λ1, . . . , λN which are found above in terms of the row sums (3.1) of the

adjacency matrix. Since (3.1) corresponds to the number of degrees of each node j, we

explore the effect of the degree distribution as well as the eigenvalues on the diffusion rate

for different random topologies next.

3.4 Numerical Results

We consider power-law and Erdös-Rényi graphs as overlay topologies. Power law graphs

have attracted great interest since the Internet topology exhibits a power law degree dis-

tribution [32]. A power law graph is one where the number of nodes with degree k is

proportional to k−β for some β > 1. For the mean degree to be finite, we need β > 2. On

the other hand, Erdös-Rényi graph is of interest as a bench-mark random graph. Erdös-

Rényi is characterized by parameters n and p where n is the number of nodes, and there

exists an edge between each pair of nodes with probability p independently from the other

edges. It follows that the average degree is (n− 1)p, as stated in [32].

We evaluate epidemic spreading in various power-law graphs using Barabási power-law

graph generator [34]. The nodes have an average degree which is twice of a free parameter in

the generator. The algorithm creates networks with a distribution following k−2.9±0.1. For

Erdös-Rényi graphs, we vary the parameter p to obtain different mean degrees. The network

size is 1024 and we evaluate 10 graphs of each topology by varying the mean degrees. The

expected number of infected nodes is found by adding the entries of the vector Pt and we

report the percentage of infected nodes in our numerical evaluations. We know that mean

degree is one of the basic parameters providing information about the network topology.

Also, in the previous sub-section, in our probability calculations of being infected, we have

come up with the concept of eigenvalues of gradient matrix, as a candidate parameter

providing information about the network topology. In order to come up with a topological

relation on dissemination rate, both mean degree and eigenvalues of the gradient matrix are

investigated with respect to the rate of diffusion. We examine the percentage of infected

nodes at 15th and 20th rounds of dissemination. At the 15th round, infection disseminates

significantly on the graph and at the 20th round the dissemination is almost complete.
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As observed in Fig. 3.3, the diffusion rate increases quickly with the mean degree up

to a certain threshold, in this case 10, then only slightly for larger degrees. Erdös-Rényi

graphs show faster dissemination when compared with power-law graphs with the same

mean values. In order to say that mean degree is a discriminating graph invariant, we would

expect to see the correlation between rate of dissemination and mean degree of topology.

Since we observe different rate of dissemination for the same mean values, we conclude that

mean degree is not a discriminating graph invariant across different topologies.
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Figure 3.3: Impact of mean degree on diffusion

We observe that the mean of eigenvalues of the gradient matrix classifies the groups of

different topologies at both 15th and 20th rounds of dissemination. Erdös-Rényi graphs all

have a mean about 0.37 while power-law graphs have mean eigenvalue of 0.43 and larger as

shown in Fig. 3.4.

We report the standard deviation of the eigenvalues in Fig. 3.5 which distinguishes

clearly both between groups and within a specific group. Erdös-Rényi graphs all have

smaller deviation of eigenvalues compared to power-law. In general, dissemination rate is

inversely proportional to mean and standard deviation of the eigenvalues. We have also

investigated the effect of standard deviation of the degree distribution. Similar to mean

degree, standard deviation of the degree distribution alone is not a discriminating graph

invariant across different topologies. However, Fig. 3.6 shows that dissemination rate is
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Figure 3.4: Impact of mean of eigenvalues of gradient matrix

inversely proportional to standard deviation of the degree distribution. We conclude that

Erdös-Rényi graphs show faster dissemination when compared with power-law graphs since

they have smaller standard deviation for both eigenvalue and degree distributions.
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Figure 3.5: Impact of standard deviation of eigenvalues of gradient matrix

The maximum eigenvalue of the gradient matrix depicted in Fig. 3.7 shows a similar

behavior to mean degree given in Fig. 3.3. Therefore, maximum eigenvalue alone is not a

discriminating factor for different random graphs. Indeed, Erdös-Rényi graphs show faster
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Figure 3.6: Impact of standard deviation of degree distribution

dissemination when compared with power-law graphs with the same maximum eigenvalues.
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Figure 3.7: Impact of maximum of eigenvalues of gradient matrix
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Chapter 4

BUFFER SELECTION ALGORITHMS FOR PEER-TO-PEER

EPIDEMIC DATA DISSEMINATION

Distributed systems have the advantage of using system resources cooperatively and

several applications on the Internet are based on distributed principles, especially on P2P

networking. Dynamic nature of P2P systems requires the participating elements to be up-

to-date and peers should regularly be informed about the current situation of the system.

Newly generated data should be disseminated throughout the network in order to maintain

stability of the system. However, reliable dissemination of data is not easy and in many cases

buffering is required in order to maintain reliability in case of network failures. Fairness and

keeping the delay in acceptable levels are also important for the performance of the system

[21].

Our contribution is to combine different approaches for data dissemination and buffer

management and comparatively analyze these approaches focusing on topological properties.

Dissemination of multiple data messages is our subject of interest. We consider two basic

Internet modeling topologies, hierarchical [21] and most recently compromised power-law

[32] Reliable data dissemination, buffer space reduction and fair distribution of bufferers are

considered.

In our comparisons, we use epidemic anti-entropy with full membership knowledge and

with partial membership knowledge for data dissemination; and stepwise, hash based and

random schemes for buffer selection. The ideas for buffer selection and epidemics are similar

but they mainly differ on topology view perspective. On data dissemination, epidemic anti-

entropy with partial membership knowledge requires partial topology view while epidemic

anti-entropy with full membership knowledge requires view of entire topology. On buffer

selection, we have stepwise fair-share approach requiring partial view of the topology, hash

based buffer selection requiring full topology view and random buffer selection algorithm

requiring both partial and full topology views.
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Throughout this chapter, details of each method are given with the algorithms and in

order to get a general understanding, the models are described in detail, using some numeri-

cal examples. The following sections cover detailed algorithms and descriptive examples for

each model and the final part covers basic events, variables, data structures and message

formats being used in the models.

4.1 Stepwise Fair-share Buffering with Partial Membership Knowledge

In Stepwise Fair-share Buffering [21], the bufferers are selected during data dissemination

through an adaptive scheme considering locality information of the topology that distributes

the buffering load uniformly. The advantage of the method is that dissemination takes place

with only partial neighborhood knowledge which is the motivation of this algorithm. This

approach provides a scalable and reliable data dissemination with fair buffering load imposed

to the system.

In the method, every peer stores the number of messages that its neighbors have ever

buffered. This is called the neighbor history information (NH). This information is used for

determination of the bufferers. At specific time intervals, the peers update their neighbor

history information. The bufferer determination phase is initiated by the source to one

of its neighbors through a selection mechanism. Time-to-live (TTL) value attached to a

buffering request message indicates the maximum number of times that request message

can be forwarded among peers. When a peer receives a buffering request it decreases the

TTL value attached to a buffering request message. If the TTL value becomes zero, then the

peer accepts the buffering request. If TTL value is greater than zero, the peer multicasts

neighbor history request messages to its neighbors. As soon as the peer receives all the

responses from the neighbors, it updates its neighbor history information. Then, it detects

the peers with the minimum number of messages buffered. If the corresponding peer is the

peer itself it accepts the buffering request, otherwise if it is one of the neighboring peers

it sends the buffering request to that neighbor. If there is more than one peer with the

minimum number of buffered messages, the peer chooses randomly one of them. Similarly,

if the peer is one of these candidate peers and it chooses itself then it accepts the request.

After sending the generated messages to the bufferers, data dissemination by epidemic

anti-entropy starts. Messages are disseminated to the network using anti-entropy with
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partial membership knowledge.

Illustration of bufferer selection for Stepwise Fair-share Buffering on a simple network is

given in Fig. 4.1. The figure describes the bufferer selection process. In this example, the

partial view of the source node is composed of nodes 1, 2 and 3. Node 1 has neighborhood

with node 6; and node 3 has neighborhood with nodes 4 and 5. Neighbor history (NH)

information of the peers are also indicated on the figure. Following message generation, the

source node searches for the neighbor with the minimum NH value to forward the buffering

request. Source peer discovers that, node 2 has previously buffered 3 messages and node

2 has the minimum NH value compared to other neighbors (nodes 1 and 3). Source peer

sends the buffering request to node 2 and node 2 starts searching for the best possible

alternative among its neighbors. Node 2 discovers that node 4 has the minimum NH value

and node 4 is simply chosen to be the bufferer for the generated message.

Figure 4.1: Selection of Bufferers
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4.2 Hash-based Buffer Selection with Full Membership Knowledge

In hash-based approach [20], there is a hash function used for the bufferer selection process,

following the generation of each message. If a member does not have the message buffered

locally, it calculates the set of bufferers for the message using the hash function and picks

one at random. The member then sends a retransmission request directly to the bufferer,

specifying the message identifier and the destination address. A bufferer, on receipt of

such a request, determines if it has the message buffered. If so, it satisfies the request. If

not, it ignores the request. In our simulation environment, calculation of bufferers after

the generation of each message is a time and memory consuming method, so we modified

the algorithm such that bufferer selection process is completed prior to the beginning of

dissemination. In our approach, a bufferer is assigned for each message using the hash

function, before the source peer starts generating messages.

The hash function H given in Alg.2 uses a table of 256 randomly chosen integers, called

the shuffle table. The input to H is a string of bytes, b and the output is a number between 0

and 1. Byte b is messageID + peerID. C is the expected number of bufferers for a message.

The output 0 means that peer with peerID isn’t selected as the bufferer for the message

with messageID and the output 1 means that peer with peerID is selected as the bufferer

for the message with messageID.

Algorithm 2 Hash Function
unsigned integer hash = 0;

for each byte b do

hash = hash XOR shuffle[b XOR LSB(hash)]);

end for

double a = (double) hash/MAX INTEGER;

return a * numberOfPeers < C ;

However, for single buffer assignment case, when buffers are calculated using the hash

function, some peers are assigned to buffer multiple messages, while some peers buffer none,

because of randomness in buffer selection. This is an undesired situation, since we want

the buffering load to be distributed uniformly among the peers. In order to overcome

this deficiency, we calculate bufferers, assuming multiple bufferers for each message, i.e. 3
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bufferers for each message. This way, we have observed that each peer has at least one

message to buffer, but most of the messages have many bufferers, actually more than 3.

Since we want single bufferer for each message, we randomly select a single peer from the

multiple bufferer list.

Table 4.1 shows sample entries for messages and corresponding bufferers calculated using

the hash function prior to data dissemination. As observed in the table, each message at

least has a single bufferer, while some messages have multiple bufferers. As explained above,

a single bufferer is randomly selected from multiple bufferer list, since we want the buffering

load to be distributed fairly among the peers.

Message

1 5

2 100 1503

3 187 1798 1820 1900

... ..

... .. .. ..

20, 000 1 8 398 1500

20, 001 89 120

... .. .. ..

... .. ..

100, 000 34 876

Table 4.1: Table of Bufferers

After the completion of overall buffer selection, source starts generating messages and

upon message generation, each message is sent to appropriate peers for buffering purposes.

In this approach, entire topology knowledge is used to send each message to the appropriate

buffer.

After sending the generated messages to the bufferers, data dissemination throughout

the network starts. Messages are disseminated to the network using epidemic anti-entropy

with full membership knowledge. Each peer randomly selects fan-out peers from the entire

topology and exchanges data with the selected peer. Similar to buffer selection, dissemina-
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tion of messages also requires the full topology knowledge of the network.

4.3 Random Buffer Selection

In this approach, buffers are selected randomly throughout the entire topology and messages

are sent to bufferers first. After sending the generated messages to the bufferers, data

dissemination throughout the network starts. Messages are disseminated to the network

using two different methods: Epidemic anti-entropy with full membership knowledge and

epidemic anti-entropy with partial membership knowledge. We call the former as random-

full and the latter as random-partial.

4.4 Simulation Models

4.4.1 Events, Parameters and Message Formats

In this section we give descriptions for the events, variables and data structures used in the

models. Basic data structures are described in Table 4.2, parameters are described in Table

4.3 and events are described in Table 4.4.

Data Structure Description

History Information List of messages that current peer has already received

Data Message Data message received

Buffer Buffer of the current node

Neighbor List List of neighboring nodes in the partial view of current node

Table 4.2: Table of Data structures

4.4.2 Algorithms

In this section we give descriptions for the algorithms for our previously described simulation

models. Alg.3 describes fair-share approach, Alg. 4 describes hash approach and Alg. 5

describes random approach.
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Variable Description

Message ID Unique id of each data message

Bufferer ID The id of one of the bufferers corresponding to the message

Fan out Number of nodes chosen in each epidemic round

Number of Bufferers Number of bufferer nodes for the data messages

Generation Interval Time interval of data generation determined by the source node

Digest size Number of entries in the digest message

Buffer Capacity Number of messages that can be stored in the buffer

Source ID Unique id of the source of the message

Size of Message The size of the payload

Time to Live Max number of hops a buffering request can travel

TTL counter Remaining lifetime of buffering request as number of hops

Neighbor History Number of Messages that current neighbor has already buffered

Table 4.3: Table of Parameters

Event Description

Data Generation Generation of data by the source node

Bufferer Selection Selection of bufferer peers of a data message

Epidemics Exchange of data through networking peers

Table 4.4: Table of Events
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Algorithm 3 Stepwise Fair-share Buffering with Partial Membership Knowledge
for i = 0 to NumberofMessages do

Source generates message i

Buffer Selection

The neighbor having minimum NH is selected, TTL value is decreased and bufferer

discovery process is passed to the selected neighbor with the newly decreased TTL

TTL check

if TTL value is zero then

The peer is selected as the bufferer of the message

else if TTL value is greater than zero then

The peer continues bufferer selection process. The peer searches for the neighbor

history information (NH) of its neighbors

if the neighbor with minimum NH value is the neighbor itself then

the peer is selected as the bufferer of the message

else if the neighbor with minimum NH value is a different neighbor then

then the TTL value is decreased. Go to ’TTL check’ stage

end if

end if

Piggyback the bufferer id to the message i

Source sends message i to the bufferer through the shortest path between the source

and buffering peer (multi-hopping)

end for
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Algorithm 4 Hash-based Buffer Selection with Full Membership Knowledge
Bufferer Selection

for i = 0 to NumberofMessages do

Map message i over 3 bufferer peers from the network peers, using the hash function,

h1(i), h2(i), h3(i)

if Message i has multiple bufferers then

Equally likely choose one of them

end if

end for

Data Dissemination

for i = 0 to NumberofMessages do

Source generates message i

Piggyback the bufferer id to the message i

Source sends message i to the bufferer through the shortest path between the source

and buffering peer (multi-hopping)

end for

Algorithm 5 Random Buffer Selection
Data Dissemination

for i = 0 to NumberofMessages do

Source generates message i

Randomly choose a single bufferer from the entire topology

Piggyback the bufferer id to the message i

Source sends message i to the bufferer through the shortest path between the source

and buffering peer (multi-hopping)

end for
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Chapter 5

PERFORMANCE RESULTS

In this chapter, the performance of stepwise fair-share model in different topologies

is examined together with reliability and scalability through simulations. Scalability and

reliability are necessary issues to be achieved in a network, while uniformity in buffering load

and tolerable dissemination delays are also expected. We first define simulation settings and

basic simulation parameters. The second and third parts of the chapter cover performance

and scalability results for bufferer selection and data dissemination, respectively.

5.1 Simulation Settings

Our models are implemented using JAVA programming language. We develop further the

simulation tools generated by [21]. The models consist of a single source peer and the source

continuously generates data messages at 20 msg/sec rate and a total of 100, 000 messages

are generated. During data dissemination, each peer exchanges its digest with 5 randomly

selected peers as fan-out. Size of each message is set to 1000 K-bytes. Each peer has a digest

capacity of 500 K-bytes in each dissemination cycle, i.e. it takes two cycles to exchange a

single 1000 K-bytes size message between peers. A single bufferer is assigned for each data

message unless stated otherwise. Each peer has a buffer capacity of 10, 000 K-bytes, it can

store at most 10 messages in its buffer and when new messages arrive to be buffered, the

oldest messages are discarded using FIFO scheme.

We perform simulations with hierarchical and power-law topologies, from 1000 peers

to 10, 000 peers, using four previously described bufferer selection models; namely, fair-

share, hash, random full and random partial approaches. In all our simulations, data is

disseminated to the entire network with 100% reliability, meaning that all 100, 000 messages

completely reach to every peer in the network.
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5.2 Topology Properties

Hierarchical model is considered as a good approximation of the Internet topology. The

Internet can be viewed as a set of interconnected routing domains where each domain

can be classified as either a stub or a transit domain[21]. Stub domains correspond to

interconnected local area networks and the transit domains model wide or metropolitan

area networks. A transit domain is composed of backbone nodes which are well connected

to each other with high bandwidth links. Every transit node is connected to one or more

stub domains.

Power law graphs have attracted great interest since the Internet topology exhibits a

power law degree distribution [32]. A power law graph is one where the number of nodes with

degree k is proportional to k−β for some β > 1. For the mean degree to be finite, we need

β > 2. The main charactheristic in power-law topology is the power-law degree distribution

of peers. There are limited number of peers in the network with very high connectivity,

while big percentage of the peers in the network have few number of neighbors.

Hierarchical and power-law topologies with various sizes (1000, 2000, 4000, 6000, 8000,

10,000 nodes) are considered with each buffer management approach. Hierarchical topolo-

gies are generated using GT − ITM [35] topology generator and power-law topologies are

generated using BRITE [36] topology generator, with default link delay values created by

the topology generators. The average degree for both hierarchical and power-law topologies

is set to 10 manually, in order to make them comparable. The histograms of degrees for size

2000 hierarchical topology and size 2000 power-law topology are given in Fig. 5.1 and Fig.

5.2. Each topology has 2.5 msec. link delay on the average, as illustrated in Fig. 5.3 for

hierarchical topology and and in Fig. 5.4 for power-law topology. Dijkstra’s shortest path

algorithm is used to find the optimum path for routing a message through multiple peers.

5.3 Bufferer Selection

In this section, we investigate the stepwise fair-share algorithm [21] with power-law topol-

ogy. Previously, the algorithm was only investigated with hierarchical topology. In this

algorithm, the bufferers are selected through an adaptive scheme considering locality in-

formation of the topology, providing a scalable and reliable data dissemination with a fair
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Figure 5.1: Degree distribution for hierarchical topology

Figure 5.2: Degree distribution for power-law topology
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Figure 5.3: Link delay (in msec.) histogram for hierarchical topology
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Figure 5.4: Link delay (in msec.) histogram for power-law topology
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buffering load over the system. The advantage of the method is that dissemination takes

place with only partial neighborhood knowledge which is the motivation behind this algo-

rithm. Our main contribution is analyzing the performance of the algorithm with power-law

topology. In this section, we study the quality of uniform buffering in detail. The simulations

are performed over a network of 2000 peers with hierarchical and power-law topologies.

We plot the number of messages buffered for each peer, in the network of 2000 peers,

with hierarchical and power-law topologies, using four previously described bufferer selection

models; fair-share, hash, random full and random partial approaches. Average buffering load

per peer is defined by

BLav = Total Number of Messages
Total Number of Peers

Since total number messages generated is 100, 000 messages and total number of peers

in the network is 2000 peers, the optimal buffering load is 50 messages per peer. Simulation

results for buffering load performance are given in Fig. 5.5 for hierarchical topology and

in Fig. 5.6 for power-law topology. The results for hash and random approaches are very

close to each other due to the similarity in buffer selection process and for the ease of

visuality, only fair-share and hash approaches are included in the graphs. The results show

that fair-share approach performs better in uniformity of buffering load compared with

the other approaches. In hierarchical topology, the standard deviation with hash approach

is 8.59, while fair-share approach performs a standard deviation of only 0.63. In power-

law topology, the standard deviation with hash approach is 8.04, while fair-share approach

performs a standard deviation of only 0.17. The reason is that fair-share approach selects

bufferers after searching for the best choice, in contrast to the randomness of the selection

processes in the other approaches. These results confirm that buffering load performance is

similar when hierarchical and power-law topologies are considered.

We scrutinize the performance of stepwise fair-share buffering with different topologies

in terms of distributing the buffering load. For this, 1000-node power-law and hierarchical

topologies are used. Buffer capacity of the nodes is 10 messages, and 50, 000 messages are

disseminated from a single source with rate of 20 msgs/s. The TTL value is set to 20. In Fig.

5.7, the buffering load of the nodes is given for various dissemination percentages (20 - 100%)

in power-law and hierarchical topologies. It is observed that stepwise fair-share buffering
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Figure 5.5: Number of messages buffered for hierarchical topology
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Figure 5.6: Number of messages buffered for power-law topology
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provides uniformity over time which would be helpful for reliable data dissemination. In

particular, it achieves a more uniform distribution with power-law topology in comparison

to hierarchical, for all dissemination percentages. Likewise, the comparison for reliable data

dissemination to the entire system for both topologies is given in Fig. 5.8.
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Figure 5.7: Uniformity of the fair-share scheme in time for power-law (black dots) and
hierarchical (gray dots) topologies.
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Figure 5.8: Comparison of buffering load distribution: hierarchical and power-law topolo-
gies.

For observing scalability, we plot buffering load for each peer, with fair-share approach,
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for different total number of peers in the network, up to 10, 000 peers. The results are given

in Fig. 5.9 for hierarchical topologies and in Fig. 5.10 for power-law topologies. When

the network size grows while keeping total number of messages at constant, buffering load

per peer decreases inversely proportional with the network size and we observe uniform

buffering load in all cases, so the system is scalable.

Figure 5.9: Buffering load for hierarchical topology

Due to large quantity of data for all approaches, we present the results statistically, sim-

ply using the mean and the standard deviation. We plot the number of messages buffered per

peer vs. total number of peers in the network with hierarchical and power-law topologies, up

to 10, 000 peers with fair-share and hash approaches, in Fig. 5.11 for hierarchical topologies

and in Fig. 5.12 for power-law topologies. The error-bars denote two standard deviations,

hence approximately a 95% confidence interval around the mean. The results show that

fair-share approach provides a better buffering load compared to the other approaches, since

the error-bars are narrower. Moreover, in all approaches, buffering with power-law topology

performs better in uniformity of buffering load compared with hierarchical topology. Also,

uniformity of buffering load increases when the network size grows.
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Figure 5.10: Buffering load for power-law topology
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Figure 5.11: Mean number of messages buffered versus group size in hierarchical topology.
The pair of numbers denote the width of the error bars for fair-share and hash approaches,
respectively.
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Figure 5.12: Mean number of messages buffered versus group size in power-law topology.
The pair of numbers denote the width of the error bars for fair-share and hash approaches,
respectively.

5.4 Data Dissemination

In this section, for the performance analysis of the system, we analyze delays for data dis-

semination with different topologies in detail. Dissemination time for each peer is plotted in

the network of 2000 peers, with hierarchical and power-law topologies, using our four differ-

ent methods; fair-share, hash, random full and random partial approaches. Dissemination

time is simply the time it takes for the delivery of all the generated messages to each peer.

We define average dissemination time per peer as

DTav = Total Number of Messages
Message Generation Rate

Total number messages generated is 100, 000 messages and message generation is 20

messages per second, resulting in a dissemination time of 5000 seconds on the average as

observed in Fig. 5.13 for hierarchical topologies and in Fig. 5.14 for power-law topologies.

There is also delay introduced from buffer selection process for fair-share algorithm. How-

ever, this is negligible since it is relatively small compared to data dissemination. It results

in about 0.02% more delay on the average, compared to other approaches, as observed in

Fig. 5.13 for hierarchical topologies. The results for hash and random approaches are very

close to each other due to the similarity in buffer selection process.
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Figure 5.13: Dissemination times (in sec.) for hierarchical topologies

On the other hand, when we consider dissemination times for power-law topology, dis-

semination performance of fair-share approach is better compared with hierarchical topol-

ogy. For power-law topologies, both fair-share and hash methods perform similar dissemi-

nation times. Moreover, as observed in Fig. 5.14, two different sets of data are overlapping

and they are not distinguishable from each other. The reason for better performance in

power-law topology is its structure. In power-law topology, there are very few number of

highly connected peers, despite most of the peers having only a few number of connections.

Better dissemination follows due to these highly connected members. Once the message

reaches to highly connected peers, there are sufficiently many routes for the message to

spread over the network.

Scalability results for dissemination time performance are given in Fig. 5.15 for hierar-

chical topology. For power-law topology, dissemination time, for all network sizes is close

to each other and almost equal to 5000.8, so there is no need to plot the data. Due to large

quantity of data, we present the results statistically, simply using the mean. Scalability is

observed as the network size grows. In general, we observe quite equal dissemination times

in all cases, with a small standard deviation. Power-law topologies have faster dissemina-

tion times compared with hierarchical topologies, due to their structures as explained above.

However, the results are very close to each other and differ only about 0.02%.

We also analyze the average message delays in the network for each peer, in the network
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Figure 5.14: Dissemination times (in sec.) for power-law topology

0 2000 4000 6000 8000 10000
5000

5000.5

5001

5001.5

5002

5002.2

Number of Nodes

D
is

se
m

in
at

io
n 

T
im

e

Dissemination Time

fair

hash

rfull

hash and rfull
are on same line

Figure 5.15: Dissemination times (in sec.) for hierarchical topology
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of 2000 peers, with hierarchical and power-law topologies, using our four different methods;

fair-share, hash, random full and random partial approaches. Message delay is defined as

the time it takes from the generation of the message at the source to the delivery of the

message at the receiving peer. Average message delay per peer is defined as

MDav = Total time for delivery of all messages
Total Number of Messages

Simulation results for average message delay performance are given in Fig.s 5.16 and 5.17

for hierarchical topologies and for power-law topologies, respectively. The results for hash

and random approaches are very close to each other, and again, only fair-share and hash

approaches are included in the graphs. In fair-share approach, the decision process for

selection of bufferers results in higher average message delay compared to other approaches.

This is more prominent for hierarchical topology as given in Fig. 5.16. However, when

considering average message delays for power-law topology structure, message delay of fair-

share approach is slightly higher than the other approaches. This is due to the structures

of topologies as explained above.
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Figure 5.16: Average message delays (in msec.) for hierarchical topology

Scalability results for average message delay performance are given in Fig.s 5.18 and 5.19

for hierarchical topologies and for power-law topologies, respectively. The results for hash

and random approaches are very close to each other due to the similarity in buffer selection

process. We observe that average message delay increases when the size of the network
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Figure 5.17: Average message delays (in msec.) for power-law topology

increases. This is only a logarithmic increase as expected from epidemic dissemination.

The peak in 6000 for the hierarchical topology is only due to randomness in the topology

generation process. Finally, for average message delay performance, we observe scalabil-

ity and faster dissemination in power-law topology compared with hierarchical topology,

consistently with previous results.
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Figure 5.18: Average message delays (in msec.) for hierarchical topology
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Chapter 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we have investigated the effect of topology on data dissemination and buffer

management, which are two major topics in P2P networking. Hierarchical and power-law

topology models are accepted as good approximations of the Internet. Power-law topology

is known to model the Internet better compared to hierarchical topology. For data dissemi-

nation, we find that topological properties are effective in predicting the rate of diffusion in

a P2P network, using our numerical evaluations. For buffer management, we have shown

that power-law topologies facilitate better buffer management performance compared to

hierarchical topologies, in view of our simulations.

For data dissemination, we have derived an analytical model for pull type anti-entropy

approach for SI epidemic data dissemination. We have assumed neighborhood knowledge

among peers and data exchange based on proximity. Our model explicitly involves overlay

topology through the inclusion of its adjacency matrix. The rate of dissemination is found to

be related to the adjacency matrix in a nonlinear way. However, we can explicitly compute

the gradient matrix of the function that governs the dynamics of diffusion. In our numerical

evaluations, we have investigated the topological properties such as degree distribution and

eigenvalues of the gradient matrix over Erdös-Rényi and power-law random graphs. Rather

than the maximum eigenvalue, the mean and the standard deviation of all eigenvalues are

found to be effective in predicting the rate of diffusion. In practical use, the operator of

a P2P network may use our methodology and decide on modifiying network topology by

encouring networking peers on a way that will increase the dissemination rate.

For buffer management, the performance of different buffering approaches have been

evaluated through simulations for hierarchical and power-law topologies. Reliability and

scalability are achieved in all methods. Uniformity in buffering load, dissemination times

and average message delays are the basic performance metrics. Stepwise Fair-share Buffer-

ing method facilitate better uniformity in distribution of buffering load, in view of our
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simulations. We expect to have higher delays due to decision process performed for bufferer

selection, however, it is also shown that dissemination delay performance drawback is elim-

inated when power-law topologies are considered. The advantage of the method is that

dissemination takes place with only partial neighborhood knowledge which is the motiva-

tion of this algorithm. We conclude that Stepwise Fair-share method improves the efficiency

of content dissemination, especially in power-law topology structure. In practical use, our

methodology can be used for fair and reliable data dissemination in a P2P network.

As the contribution to this thesis for buffer management, performance evaluation of

various models with hierarchical and power-law topologies are conducted. Scalability, relia-

bility, dissemination delays and uniformity are considered as basic performance parameters.

We have shown that Stepwise Fair-share Buffering method facilitate better uniformity in

distribution of buffering load, in view of our simulations. We expect to have higher de-

lays due to decision process performed for bufferer selection, however, it is also shown that

dissemination delay performance drawback is eliminated when power-law topologies are

considered.

As future work, we aim to include dissemination and bufferer selection for variable size

messages and for content with different popularity. Since popular data are shared among

many peers and hence they are less likely to be lost in the network, we can propose an

algorithm to decrease the buffering of popular messages so that we can reduce the usage of

memory resources. Another future direction would be to work on real-time video streaming

by dividing real-time data into chunks. Each chunk would be marked with a unique number

and tried to be disseminated in FIFO order, so that disseminated data will be ready for real-

time streaming. In order to measure the accuracy of our results and our Internet topology

models, an application can be developed and deployed on a set of testbed nodes. Then, the

simulation results for the buffering algorithms can be compared with those obtained from

the testbed.
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[9] E. İskender, M. Çağlar and Ö. Özkasap “Analytical Model for Topology Dependence

in Peer-to-Peer Anti-Entropy Spreading,” International Symposium on Computer Net-
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sponsored by TÜBİTAK, since January 2008. He has published two papers about Topology

Dependence in Peer-to-Peer Anti-Entropy Spreading for the following conferences: SİU2008
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