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A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering
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ABSTRACT

In this thesis, we analyze a single-period portfolio selection problem where the investor

maximizes the expected utility of the terminal wealth. The utility function is exponential,

but the Pratt-Arrow measure of absolute risk aversion or risk tolerance is random. This

is due to the random variations in individual’s decisions concerning stochastic choice. It is

well-known that the investor is memoryless in wealth for exponential utility functions with

a constant risk tolerance. In other words, the investment portfolio consisting of risky stocks

does not depend on the level of wealth. However, we show that this is no longer true if risk

tolerance is random. We obtain a number of interesting characterizations on the structure

of the optimal policy.

In the first part of the thesis, we analyzed the characteristics of the optimal policy when

the return of the risky asset has an arbitrary distribution. We considered the single asset

case and showed that the decision on buying or short selling the risky asset depends on the

sign of the mean excess return. We also showed that the optimal decision is bounded, and

it increases in wealth when mean excess return is positive and decreases otherwise.

In the second part of the thesis, we analyzed a specific case where the distributions of the

returns of the risky assets are normal. Normal and multivariate normal cases are discussed

separately. We proved that in this setting, the multivariate case can be reduced to the

single asset case. Moreover, the decision on buying or short selling the assets depends on

the “adjusted mean excess return”.

In the last part, we considered some of the other results that we have found during the

research. For the exponential distribution case, we used a direct approach to obtain the

similar results we found in the general distribution case. We finally extended the exponential

utility functions to arbitrary concave utility functions and obtained some characterizations

on the optimal policy.
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ÖZETÇE

Bu tezde tekli zamanda dönem sonu servetinin beklenen değerini fayda fonksiyonunun

en büyükleyen bir yatırımcının en iyi portföy seçimi problemi incelenmiştir. Fayda fonksiy-

onu üstel, fakat Prat-Arrow mutlak riskten kaçınma katsayısı yada risk toleransı rassaldır.

Bu stokastik seçim durumunda bireyin yaşadığı rassal varyasyonlardan kaynaklanmaktadır.

Yatırımcının fayda fonksiyonu üstel ve sabit risk toleranslı olduğunda yatırımcının serveti

açısından unutkan olduğu iyi bilinmektedir. Diğer bir değişle, riskli hisse senetleri içeren bir

portföy servet düzeyine dayanmaz. Fakat, bu tezde risk toleransı rassal olduğu zaman bunun

doğru olmadığı gösterilmiştir. Ayrıca en iyi politika hakkında bir kaç ilginç karakterizasyon

elde edilmiştir.

Tezin ilk kısmında riskli varlığın dağılımı rasgele kabul edilmiş ve en iyi politikanın

özelikleri incelenmiştir. Tek varlık durumu değerlendirilmiş ve riskli varlığın satın alınma

veya açığa satılması kararının riskli varlığın “fazla ortalama getirisine” bağlı olduğu bu-

lunmuştur. Ayrıca en iyi politikanın sınırlı, ve fazla ortalama getirisi pozitif olduğunda

varlık seviyesine bağlı olarak arttığı, negatif ise azaldığı ispat edilmiştir.

Tezin ikinci kısmında daha özel bir durumu, riskli varlığın getirisinin normal dağılım

olduğu durumu incelenmiştir. Normal ve çok değişkenli normal dağılım olduğu durum-

lar ayrı analiz edilmiştir. Bu düzenlemede çok değişkenli normal dağılım durumunun tek

değişkenli normal dağılıma indirgenebildiği ispatlanmıştır. Dahası, riskli varlığın satın

alınması veya açığa satılması kararının “ayarlanmış fazla ortalama getirisine” bağlı olduğu

gösterilmiştir.

Son kısımda ise, araştırmamız sırasında edindiğimiz diğer sonuçları incelenmiştir. Üstel

dağılım durumunda genel dağılımdaki sonuçların aynısını elde etmek için doğrudan bir

yaklaşım izlenmiştir. Son olarak da üstel fayda fonksiyonları rasgele içbükey fayda fonksiy-

onlarına genelleştirilmiş ve en iyi politikanın bazı karakteristik özellikleri bulunmuştur.
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NOMENCLATURE

U(i, x) : Utility function given wealth is x and the risk tolerance is i

m : Number of utilities

n : Number of risky assets

βi : Risk aversion parameter for utility i

rf : : Return of the riskless asset

R : The set of all real numbers

W : The wealth level after one period

R : The return vector of the risky assets

Re : The excess return vector

µ : The mean excess return vector

u : The investment policy vector

u∗ : The optimal investment policy vector

g(x, u) : Expected utility using policy u with the available money for investment x

σij : Covariance matrix for multivariate normal distribution

Mij : (i, j) minor of covariance matrix σij

Cij : (i, j) cofactor matrix of σij

Pj : Probability that the utility of the investor is j

E[.] : Expectation

σ2 : Variance of the risky asset

µ̄ : Adjusted mean excess return vector

λ : Rate parameter of the exponential distribution
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Chapter 1

INTRODUCTION

Decision making under uncertainty is an important problem in a variety of applications.

Modeling the behaviors of agents in an uncertain setting is difficult, so there are many

approaches to analyze this issue. Expected Utility Theory (EUT) is the standard choice for

explaining such decision making problems. But, EUT is subject to criticism as well. Allais

[22] claims that von Neumann-Morgenstern axiomatization of expected utility is flawed by

showing a counterexample to the independence axiom. Starmer [25] reviews non-expected

utility theories and explains that violation of the independence axiom empirically is not the

only reason for their development. To mention a few, Segal [24], Wakker [30] and Mohammed

Abdellaoui [1] propose axiomatizations of rank-dependent expected utility; Kahneman and

Tversky [15] uses prospect theory. Blavatskyy [4] suggests the concept of stochastic expected

utility introducing a stochastic component as a part of the decision making process.

Moreover, the idea that the agent behaves exactly the same when he is facing the same

decision problem under uncertainty had also been subject to criticism as well. Camerer [6]

describes an experiment where 31.6% of subjects reversed their preferences in a test of the

reliability of subjects’ responses by seeing how often they expressed the same preference for

the same gamble. Starmer and Sugden [26] show that individual’s preferences reverse on

the second repetition of the decision problem 26.5% of the time. Hey and Orme [14] find

that even when the subjects are allowed to declare indifference, 25% prefer the other choice.

Wu [31] reports that in the case of repeated decision problems, 5% to 45% of the subjects

reverse their choices.

Blavatskyy [5] briefly reviews decision theories under risk and he outlines three different

approaches to the problem. The first one is called “the tremble model” introduced by Harless

and Camerer [12]. In their setting, the individuals choose an alternative choice according

to a random tremble. They suppose that individuals have a unique preference on the set of
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risky lotteries, but a “tremble” occurs and they switch preferences with some probability p.

With probability 1 − p, the individuals act according to their first preference. The second

model is called “Fechner model” of random errors proposed by Fechner [10]. It suggests that

individuals have unique preferences like in the tremble model, but there is a random error

attached to each preference having zero mean and constant deviation. In mathematical

terms, the utility U is defined on the set of risky lotteries, and a relative advantage function

d is used. This relative advantage d = U(L1) − U(L2) stands for the advantage of lottery

L1 over another lottery L2. If there are no random errors, the individual will choose L1 over

L2 whenever d > 0. But since there is a random error involved, the individual will choose

L1 over L2 only if d + ε > 0 where ε is assumed to have a normal distribution with zero

mean and constant deviation in the classic Fechner model. Finally, in the third model called

“random preference model” proposed by Loomes and Sugden [17], the authors analyze the

role of randomness in decision theory. In their paper, they propose a new axiomatic setting

different from EUT and show this model’s consistency. In another paper by Loomes et

al. [16], they refer to the random preference model and apply it to a stochastic setting.

They claim that when facing a decision problem, the individuals go through three different

stages. In the first stage called “preference selection stage”, the individuals are assumed to

be uncertain about their preference (while they are certain about some general principles

required by EUT as core theory). Hence, they model this setting probabilistically using

random preferences in such a way that the utility function is stochastic. As a matter of

fact, it is this approach that we will follow to model stochastic choice of investors.

One of the application fields of decision theory under uncertainty is in the world of

finance. In today’s financial world, there are various methods to model the financial markets.

There are numerous approaches that try to describe this uncertainty; ranging from utility

based approach finding its roots in the book by Von Neumann and Morgenstern [29] to

portfolio optimization using dynamic programming approach as in Çanakoğlu and Özekici

[8]. Among all, stochastic modeling is now a well-accepted approach within the research

community where the aim is to find an optimal portfolio among risky and risk-free assets. In

a survey done by Steinbach [27], there are 208 papers analyzing the mean-variance models

in financial portfolio analysis. On the other hand, previous research by Mossin [20], Merton

[19] and Hakansson [11] concentrates on using expected utility maximization. Moussin [20]
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examined utility functions leading to myopic policies, and Merton [19] considered special

utility functions with logarithmic and power structures. Hakansson [11] analyzes portfolio

optimization using logarithmic and power utility in discrete time and random market setting.

More recently, Dokuchaev [9] considers an optimization problem in which the expected

utility of the terminal wealth is maximized in a discrete-time market with serial correlations.

In this thesis, motivated by the idea presented by Loomes and Sugden [17], we aim to

apply the idea of random preference decision making in the portfolio selection problem. We

will use exponential utility functions which are widely used both in practice and theory.

In our setting, we assume that at the beginning of a period, the investor needs to choose

among a risk-free and risky assets.

It can be empirically observed that the states of the market varies throughout time.

Following the market trends and identifying such trends accurately can be considered to

be of the investor’s best interest. It is intuitively true that the returns of the assets in

the market vary significantly depending on the current state of the market. Starting with

Pye [23], there has been a growing interest in modeling a stochastic financial market by

a Markov chain. In the continuous-time setting, Norberg [21] proposes a Markov process

interest model with applications to insurance. On the other hand, there is growing interest

in the literature to use a stochastic market process in order to modulate various parameters

of the financial model to make it more realistic. Hernández-Hernández and Marcus [13],

Bielecki et al. [2], Bielecki and Pliska [3], Di Massi and Stettner [18], and Stettner [28]

provide examples on risk-sensitive portfolio optimization with observed, unobserved and

partially observed states in Markovian markets. Hence, it can be deduced that the state of

the market is uncertain for the next period. Out of this uncertainty an important question

rises: Is it logical to assume that the investor’s risk preference is the same for all states of

the market? In this thesis, we will assume that the risk preferences of the investor is not

constant, but it is random like the state of the market. To clarify this by an example, if the

market is in a “bearish” trend, the risk preference of the investor will be different than the

one in a “bullish” market trend.

The organization of this thesis be as follows: In Chapter 2, we introduce the main

problem and describe our random risk preference model. We also give some general results.

In Chapter 3, we state our results on the structure of the optimal portfolio when the returns
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of the risky asset are assumed to have an arbitrary distribution. In Chapter 4, we consider a

specific case of Chapter 3 when the returns of the risky assets have the normal distribution.

In Chapter 5, we complete our analysis by considering some further extensions. We first

suppose that the returns of the risky assets are exponentially distributed, and then consider

a general model with an arbitrary concave utility function. Finally, Chapter 6 includes our

conclusions and suggestions for future research.
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Chapter 2

PORTFOLIO SELECTION WITH EXPONENTIAL UTILITY

FUNCTIONS

We consider an investor with an initial wealth x who chooses a portfolio among n risky

and one risk-free asset. Moreover, there are m random utilities or preferences and the

investor’s preference is the ith one with some probability Pi > 0 where
∑m

i=1 Pi = 1. We

assume that the investor’s utility is described by the exponential utility functions

U(i, x) = Ki − Ci exp(−x/βi) (2.1)

when the risk preference of the investor is i. Here, Ki and Ci > 0 denotes the parameters

of the exponential utility function for risk preference i and x represents the wealth level.

Also, note that Pratt-Arrow’s measure of absolute risk aversion is −U ′′(i, x)/U ′(i, x) = 1/βi

or βi is the risk tolerance. The previous discussion on random risk preference gets in the

picture here. The preference dependent measure of absolute risk aversion indicates that the

investor has a random risk preference. In fact, the risk tolerance is βi with probability Pi.

We suppose without loss of generality that the risk tolerances are ordered so that 0 ≤ β1 ≤

β2 ≤ · · · ≤ βm. Our aim is to determine the optimal portfolio of risky and risk-free assets

where the investor has a random risk preference given by exponential utility function (2.1)

with probability Pi.

In this thesis, unless stated otherwise, a vector z is a column vector so that its transpose,

denoted by z′, is always a row vector. We let R = (−∞,+∞) denote the set of all real

numbers. Moreover, because of the involvement of different β values for different states, the

value function can not be evaluated analytically while considering the next period. Hence,

only a single period will be analyzed. Let u = [u1, u2, · · · , un] denote the amount of wealth

that is invested in n risky assets. Since the returns of the risky assets are random let

R = [R1, R2, · · · , Rn] denote the return vector of the risky assets. Also, let rf denote the
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return of risk-free asset. Therefore, after one period, the wealth is

W = rf
(
x− 1′u

)
+R′u

= rfx+ (Re)′ u (2.2)

where 1 = (1, · · · , 1) and Re = R − rf is the excess return. Throughout this thesis, we

let r̄ = E[R] denote the mean return vector and µ = E[R − rf ] = r̄ − rf denote the mean

excess return vector. We suppose that Re 6= 0 trivially since this case implies that W = rfx

independent of u and any policy is optimal. In case n = 1, there is only a single risky asset,

and both r̄ and µ are scalars.

Let g(x, u) denote the expected utility using the investment policy u when the amount

of money available for investment is x. Hence,

g(x, u) =
m∑
j=1

PjE
[
U
(
j, rfx+ (Re)′ u

)]
=

m∑
j=1

PjE
[
Kj − Cj exp(−

(
rfx+ (Re)′ u

)
/βj)

]
=

m∑
j=1

PjKj −
m∑
j=1

PjCj exp(−
rfx

βj
)E
[
exp

(
−(Re)′ u

βj

)]
. (2.3)

To find the optimum portfolio of risky assets and risk free asset, note that gradient of

g(x, u) is

∇kg(x, u) =
∂g(x, u)
∂uk

=
m∑
j=1

PjCj exp(−
rfx

βj
)E
[
Rek
βj

exp
(
−(Re)′ u

βj

)]
and the Hessian is

Hk,l =
∂2g(x, u)
∂uk∂ul

= −
m∑
j=1

PjCj exp(−
rfx

βj
)E

[
RekR

e
l

β2
j

exp
(
−(Re)′ u

βj

)]
.

For any vector z = [z1, z2, · · · , zn], note that

z′Hz = −
m∑
j=1

PjCj exp(−
rfx

βj
)E

 1
β2
j

(
n∑
k=1

zkR
e
k

)2

exp
(
−(Re)′ u

βj

) ≤ 0.

This implies that the Hessian is negative semi-definite and g(x, u) is concave in u. Hence,

setting ∇g(x, u) = [0, · · · , 0] would give the optimal policy.

As a summary, the optimal policy can be found by solving the first order condition

∇kg(x, u) =
m∑
j=1

PjCj
βj

exp(−
rfx

βj
)E
[
Rek exp

(
−(Re)′ u

βj

)]
= 0 (2.4)
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for all k = 1, 2, · · · , n. Before conducting further analysis, define

Akj (x, u) =
PjCj
βj

exp(−
rfx

βj
)E
[
Rek exp

(
−(Re)′ u

βj

)]
so that the optimality condition (2.4) can be rewritten as

Ak(x, u) =
m∑
j=1

Akj (x, u) = 0.

Note that Akj (x, u) and, therefore, Ak(x, u) are strictly decreasing in u since

∂Ak(x, u)
∂uk

= −PjCj
β2
j

exp(−
rfx

βj
)E
[
(Rek)

2 exp
(
−(Re)′ u

βj

)]
< 0

for all k.

Now, for a fixed point (x1, u1) ∈ R1+n with A(x1, u1) = 0 consider the gradient of Ak at

(x1, u1) so that

∂Ak

∂uk
(x1, u1) = −

m∑
j=1

PjCj

β2
j

exp(−
rfx

βj
)E
[
(Rek)

2 exp
(
−(Re)′ u1

βj

)]
< 0

for all k. Then, by the implicit function theorem, there exists an open set U ⊂ R containing

x1, an open set V ⊂ Rn containing u1, and a unique continuously differentiable function

g : U → V such that

{(x, g (x))} =
{

(x, u1, u2, · · · , un) : Ak (x, u1, u2, · · · , un) = 0
}
∩ U × V.

The above result is true for all points satisfying Ak(x, u) = 0, and we also know that the

optimal decision u(x) satisfying (2.4) is unique when it exists by the concavity analysis

of g, we conclude that the optimal policy u∗(x) = [u∗1(x), u∗2(x), · · · , u∗n(x)] is a unique

continuously differentiable function in x whenever it exists.



Chapter 3: General Distribution Model 8

Chapter 3

GENERAL DISTRIBUTION MODEL

In this setting, the distributions of the risky asset returns are assumed to be arbitrary.

Our analysis in this chapter is presented in two sections. In the first section, we assume

that the risk tolerance is constant and there are n risky assets. In the second section, the

risk tolerance is random, hence there are m utilities for the investor, but there is only n = 1

risky asset. The second section is further divided into two parts. In the first part of the

single asset model, the expected excess return E [Re] = µ will be greater than zero; and in

the second part, expected excess return will be less than zero.

3.1 Constant risk tolerance with n risky assets and m utilities

If we were to assume that the risk preference of the investor is constant rather than random

so that βj = β for all j, the expected utility becomes

g(x, u) =
m∑
j=1

PjKj −
m∑
j=1

PjCj exp(−
rfx

β
)E
[
exp

(
−(Re)′ u

β

)]

=
m∑
j=1

PjKj − exp(−
rfx

β
)E
[
exp

(
−(Re)′ u

β

)] m∑
j=1

PjCj .

A similar argument as in Chapter 2 implies that g(x, u) is still concave and equating the

gradient of g(x, u) to the zero vector will give the optimal decision. Therefore,

∇kg(x, u) =
∂g(x, u)
∂uk

= exp(−
rfx

β
)E
[
Rek
β

exp
(
−(Re)′ u

β

)] m∑
j=1

PjCj = 0.

But since all the terms in the summation are positive, ∇kg(x, u) is equal to zero if and only

if E
[
Rek exp

(
− (Re)′ u/β

)]
is zero. Therefore, in this setting the optimal decision u∗ is the

vector that satisfies

E
[
Rek exp

(
− (Re)′ u/β

)]
= 0 (3.1)

for all k. It can be noticed from this that u∗ is independent of the wealth level of the investor

as noted by Çanakoğlu and Özekici [7] for exponential utility function in a generalized
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multiperiod model in a stochastic market.

3.2 Random risk tolerance with n = 1 risky asset and m utilities

For this case, since the distribution of the risky asset is general, we need to consider the

generalized optimality condition (2.4). We know that A(x, u) is decreasing in u from Chapter

2. Note that

A(x, 0) =
m∑
j=1

Aj(x, 0) =
m∑
j=1

PjCj
βj

exp(
−rfx
βj

)E [Re] =

 m∑
j=1

PjCj
βj

exp(
−rfx
βj

)

µ (3.2)

where µ is the mean of the excess return. Therefore, the sign of A(x, 0) depends on the sign

of µ. If µ > 0, then A(x, 0) > 0 and since A(x, u) is strictly decreasing, the optimal decision

u∗(x) making A(x, u) = 0 is greater than zero for all x. Moreover, when µ < 0, the optimal

decision u∗(x) is less than zero for all x by a similar argument. Finally, it follows from (3.2)

that u∗(x) = 0 for all x when µ = 0.

3.2.1 Mean excess return greater than zero (µ > 0)

The assumption µ > 0 implies that r̄ > rf which indicates that the expected return of the

risky asset is greater than the return of the risk-free asset. We now show that in this setting

the optimal decision is increasing with respect to x.

Theorem 1 The optimal decision u∗(x) is bounded and positively increasing in x if µ > 0.

Proof. If µ > 0, it is clear that u∗(x) > 0 since A(x, u) is decreasing in u with A(x, 0) >

0. For any j, let ûj > 0 be the unique solution of Aj(x, u) = 0 for all x. Observe that

Aj(x, ûj) = 0 if and only if E
[
Re exp

(
−Reûj/βj

)]
= 0 and it is independent of x. Then,

note that

E

[
Re exp

(
−R

eûj
βj+1

)]
= E

Re exp
(
−R

eûj
βj

) βj
βj+1


for any j = 1, 2, · · ·m− 1. This can be rewritten as

f(α) = E

[
Re exp

(
−R

eûj
βj

)α]
where α = βj/βj+1 ≤ 1. Observe that f(1) = 0 by our assumption. Now consider the

derivative
df(α)
dα

= −E

[
(Re)2 ûj
βj

exp
(
−R

eûj
βj

)α]
≤ 0
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since βj is always positive and ûj is positive when µ > 0. Therefore, we can conclude that

f(α) ≥ f(1) = 0 for all 0 ≤ α ≤ 1. This further implies that E
[
Re exp

(
−Re′ûj/βj+1

)]
≥ 0

by taking α = βj/βj+1 ≤ 1. Since Aj+1(x, u) is decreasing in u one can conclude that

ûj ≤ ûj+1 because Aj+1(x, ûj+1) = 0.

Next fix x1 and let u∗1 be the optimum decision making A(x1, u
∗
1) = 0. Because A(x1, u)

is strictly decreasing in u and the feasible region is always positive, there exist 1 ≤ k ≤ m−1

such that

ûk ≤ u∗1 < ûk+1.

Moreover, Aj(x1, u
∗
1) ≤ 0 for all j ≤ k since u∗1 ≥ ûj for all j ≤ k and Aj(x, u) is strictly

decreasing in u. Similarly, Aj(x1, u
∗
1) > 0 for all j > k. Therefore, A (x1, u

∗) = 0 implies

that
k∑
j=1

Aj(x1, u
∗
1) = −

m∑
j=k+1

Aj(x1, u
∗
1) ≤ 0. (3.3)

Consider the point x1 + ∆x > x1 for some ∆x > 0. We now have

m∑
j=1

Aj(x1 + ∆x, u∗1) =
k∑
j=1

Aj(x1, u
∗
1) exp(−rf

∆x
βj

) +
m∑

j=k+1

Aj(x1, u
∗
1) exp(−rf

∆x
βj

)

≥ exp(−rf
∆x
βk

)
k∑
j=1

Aj(x1, u
∗
1) + exp(−rf

∆x
βk+1

)
m∑

j=k+1

Aj(x1, u
∗
1)

= − exp(−rf
∆x
βk

)
m∑

j=k+1

Aj(x1, u
∗
1) + exp(−rf

∆x
βk+1

)
m∑

j=k+1

Aj(x1, u
∗
1)

=
[
exp(−rf

∆x
βk+1

)− exp(−rf
∆x
βk

)
] m∑
j=k+1

Aj(x1, u
∗
1) ≥ 0

The first inequality follows from the fact that exp(−x) is a nonnegative decreasing function.

The second equality follows from (3.3) and the final term is positive since exp(−x) is a

decreasing function and
∑m

j=k+1Aj(x1, u
∗) is positive by (3.3).

Since
∑m

j=1Aj(x1 + ∆x, u∗1) ≥ 0, and
∑m

j=1Aj(x1 + ∆x, u1) decreases in u, it can be

concluded that the optimal decision u∗1(x1 + ∆x) is greater than u∗1(x) indicating that u∗(x)

is increasing in x.

Finally to show that u∗(x) is bounded, consider ûj > 0. Since û′js are ordered, we know

that û1 < ûj < ûm for all j. Now, if u∗(x) < û1 then, since Aj(x, u) is strictly decreasing in

u, Aj(x, u∗) > Aj(x, û1) = 0 for all j. But this is a contradiction since
∑m

j=1Aj(x, u
∗) = 0.
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Similarly, if ûm < u∗(x) then, by the same reason Aj(x, u∗) < Aj(x, ûm) = 0. This also

leads to a contradiction. Therefore we conclude that 0 < û1 < u∗(x) < ûm for all x.

3.2.2 Mean excess return less than zero (µ < 0)

The assumption µ < 0 implies that r̄ < rf which indicates that the expected return of the

risky asset is less than the return of the risk-free asset. Next, we show that in this setting

the optimal decision is decreasing with respect to x.

Theorem 2 The optimal decision u∗(x) is bounded and negatively decreasing in x if µ < 0.

Proof. If µ < 0, it is clear that u∗(x) > 0 since A(x, u) is decreasing in u with A(x, 0) <

0. For any j, let ûj < 0 be the unique solution of Aj(x, u) = 0 for all x. Observe that

Aj(x, ûj) = 0 if and only if E
[
Re exp

(
−Reûj/βj

)]
= 0 and it is independent of x. Using a

proof similar to that of Theorem 1, note that f(1) = 0 but df(α)/dα ≥ 0 since βj is always

positive and ûj is negative when µ < 0. Therefore, we can conclude that f(α) ≤ f(1) = 0

for all 0 ≤ α ≤ 1. This further implies that E
[
Re exp

(
−Reûj/βj+1

)]
≤ 0. Since Aj+1(x, u)

is decreasing in u one can conclude that ûj ≥ ûj+1 because Aj+1(x, ûj+1) = 0.

Fix the initial wealth x2 and let u∗2 be the optimal decision for x2. By a similar argument

from the positive mean excess return case, we can conclude that there exists k such that

ûk+1 ≤ u∗2 < ûk.

Next, Aj(x2, u
∗
2) ≥ 0 for all j ≤ k since u∗ ≥ ûj for all j ≤ k and Aj(x, u) is strictly

decreasing in u. Similarly Aj(x1, u
∗) ≤ 0 for all j > k. Therefore, A (x2, u

∗
2) = 0 implies

that
k∑
j=1

Aj(x1, u
∗) = −

m∑
j=k+1

Aj(x1, u
∗) ≥ 0. (3.4)
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Consider the point x2 + ∆x > x2 for some ∆x > 0. We now have

m∑
j=1

Aj(x2 + ∆x, u∗2) =
k∑
j=1

Aj(x2, u
∗
2) exp(−rf

∆x
βj

) +
m∑

j=k+1

Aj(x2, u
∗
2) exp(−rf

∆x
βj

)

≤ exp(−rf
∆x
βk

)
k∑
j=1

Aj(x2, u
∗
2) + exp(−rf

∆x
βk+1

)
m∑

j=k+1

Aj(x2, u
∗
2)

= − exp(−rf
∆x
βk

)
m∑

j=k+1

Aj(x2, u
∗
2) + exp(−rf

∆x
βk+1

)
m∑

j=k+1

Aj(x2, u
∗
2)

=
[
exp(−rf

∆x
βk+1

)− exp(−rf
∆x
βk

)
] m∑
j=k+1

Aj(x2, u
∗
2) ≤ 0

The first inequality follows from the fact that exp(−x) is a nonnegative decreasing function.

The second equality follows from (3.4) and similarly the final term is negative since exp(−x)

is a decreasing function and
∑m

j=k+1Aj(x2, u
∗
2) is negative by (3.4).

Since
∑m

j=1Aj(x2 + ∆x, u∗2) ≤ 0, and
∑m

j=1Aj(x1 + ∆x, u) decreases in u, it can be

concluded that the optimal decision u∗2(x2 + ∆x) is less than u∗(x2) indicating that u∗(x) is

decreasing in x.

Finally to show that u∗(x) is bounded, consider ûj < 0. Since û′js are ordered, we know

that ûm ≤ ûj ≤ û1 for all j. Now, if u∗(x) > û1 then, since Aj(x, u) is strictly decreasing in

u, Aj(x, u∗) ≤ Aj(x, û1) = 0 for all j. But this is a contradiction since
∑m

j=1Aj(x, u
∗) = 0.

Similarly, if ûm > u∗(x) then, by the same reason Aj(x, u∗) > Aj(x, ûm) = 0. This also

leads to a contradiction. Therefore we conclude that ûm ≤ u∗(x) ≤ û1 < 0 for all x.

The characteristics obtained in this section on the structure of the optimal policy are

quite intuitive. If µ > 0 and the mean return of the risky asset exceeds that of the risk-free

asset, then u∗(x) > 0 indicating that some positive amount of current wealth is invested in

the risky asset. It should be noted that it is possible that u∗(x) > x which implies that the

extra amount u∗(x)− x is obtained by short selling the risk-free asset. A similar argument

can be made for the case when µ < 0. Now, since the return of the risk-free asset exceeds

that of the risky asset u∗(x) < 0 and the risky asset is sold short to invest x− u∗(x) > x in

the riskless asset.
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Chapter 4

NORMAL DISTRIBUTION MODEL

This chapter is primarily divided into three sections. In the first section, the investor’s

risk preference is assumed to be constant indicating that βj = β for all j; and in the

second section, the investor’s risk preference is random. The third section is dedicated to

illustrations of the results found in the first two sections.

In the normal distribution model, if there is only one risky asset (n = 1) to be considered,

then the excess return of the risky asset is assumed to be normal and denoted by Re =

(R− rf ) ∼ Norm (µ, σ2) where µ = r̄− rf . Here, σ2 denotes the variance of the risky asset.

If there are n risky assets to be considered, then the excess return of the risky assets are

assumed to be multivariate normal and denoted by Re = (R − rf ) ∼ Multi-Norm (µ, σ)

where µ = r̄ − rf = [µ1, µ2, · · · , µn] is the excess return vector of the risky assets and σ is

the covariance matrix. We also let ‖σ‖ = det(σ) which is positive since a covariance matrix

is always positive definite and nonsingular.

We start by observing following identities which will be useful throughout this section.

If there is only one risky asset having a normal distribution, then

E
[
e−αR

e]
= exp(−µα+

σ2α2

2
)

so that

E
[
Ree−αR

e]
= −

∂
(

exp(−µα+ σ2α2

2 )
)

∂α

= exp(
α2σ2

2
− αµ)

(
µ− ασ2

)
(4.1)

and if there are n risky assets having multivariate normal distribution, then

E
[
e−α

′Re
]

= exp(−µ′α+
1
2
α′σα)
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so that

E
[
Reke

−α′Re
]

=
∂
(
E
[
e−α

′Re
])

∂αk

= exp(−µ′α+
1
2
α′σα)

(
µk −

n∑
i=1

σkiαi

)
. (4.2)

4.1 Constant risk tolerance

4.1.1 Constant risk tolerance with n = 1 risky asset and m utilities

Suppose that the investor’s risk preference is constant so that βj = β for all j. Then, (2.4)

becomes
m∑
j=1

PjCj
β

exp
(
−
rfx

β

)
E

[
Re exp

(
−R

eu

β

)]
= 0

or

exp
(
−
rfx

β

)
E

[
Re exp

(
−R

eu

β

)] m∑
j=1

PjCj
β

= 0. (4.3)

Since all the terms in (4.3) are positive; by using (4.1) one would have

E

[
Re exp

(
−R

eu

β

)]
= 0

or

exp
(
u2σ2 − 2uµβ

2β2

)(
µ− u

β
σ2

)
= 0

and this implies that the optimal amount of money invested in the risky asset is

u∗ =
( µ
σ2

)
β. (4.4)

It can be observed from (4.4) that the optimal amount of money invested in the risky

asset depends only on the mean and variance of the excess return of the risky asset and the

risk tolerance of the investor. The decision on buying or short selling of the asset relies on

the sign of the excess return of the asset. If the mean excess return of the asset is positive,

then the investor is advised to buy the asset and short sell it otherwise. Similarly, if the

variance of the excess return of the risky asset increases, indicating that the risk level of

the risky asset increases, then the absolute value of the optimal decision decreases. This

also indicates that if the variance of the risky asset increases, then the investor is advised to
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take less risk by buying or short selling less of the risky asset. Moreover, it can be inferred

from (4.4) that the amount of money invested in the risky asset is independent of wealth

indicating that the investor is memoryless in wealth. Note that the result is consistent with

the result found in Çanakoğlu and Özekici [7].

4.1.2 Constant risk tolerance with n risky assets and m utilities

In this setting, we assume that investor’s risk preference is still constant so that βj = β

for all j. Moreover, there are n different risky assets. The excess returns of the risky

assets are assumed to be driven by a multivariate normal distribution with a return vector

µ′ = [µ1, µ2, · · · , µn] and a covariance matrix σ.

Then, (2.4) is
m∑
j=1

PjCj
β

exp
(
−
rfx

β

)
E

[
Rek exp

(
−(Re)′ u

β

)]
= 0 (4.5)

or

exp
(
−
rfx

β

)
E

[
Rek exp

(
−(Re)′ u

β

)] m∑
j=1

PjCj
β

= 0 (4.6)

for all k. Similarly, since all the terms in (4.6) are positive; by using (4.2) one would have

E

[
Re exp

(
−(Re)′ u

β

)]
= 0

or

exp(− 1
β
µ′u+

1
2β2u

′σu)

(
µk −

1
β

n∑
i=1

σkiui

)
= 0

for all k. This implies that the optimal amount of money invested in the risky assets is given

by the solution of the system of linear equation

σu = βµ. (4.7)

Since σ is a positive definite matrix, the system of linear equations in (4.7) has a unique

solution explicitly given by

u∗ = βσ−1µ.

Moreover, again by (4.7), it can be concluded that the optimal decision is independent of

the wealth level of the investor. This result is harmonious with results found in Çanakoğlu

and Özekici [7].
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4.2 Random risk tolerance

4.2.1 Random risk tolerance with n = 1 risky asset and m = 2 utilities

In this section, suppose that the risk preference is random with two risk tolerances β1 and

β2. The investor needs to form a portfolio using one risk-free and one risky asset. This

section will be divided into two subsections with the mean excess return of the risky asset

being less or greater than zero.

As a side remark, first consider the case when mean excess return µ = 0. Then, (2.4)

using (4.1) is
2∑
j=1

PjCj
βj

exp(−
rfx

βj
)

[
exp(

u2σ2

2β2
j

)
(
u

βj
σ2

)]
= 0

and the equality holds only if u∗ = 0. This indicates that when there is only one risky asset

having a mean excess return equal to zero, the investor buys only the risk-free asset which

is quite reasonable.

Mean excess return greater than zero (µ > 0).

Assume µ > 0 so that r̄ > rf which indicates that the expected return of the risky asset

is greater than the return of the risk-free asset. In this situation, it is reasonable to expect

that the optimal amount of money invested in the risky asset would be greater than zero.

To show this, further assume without loss of generality that β1 < β2, then the optimality

condition in (2.4) becomes

P1C1

β1

exp
(
u2σ2 − uµβ1

2β2
1

−
rfx

β1

)(
µ− u

β1

σ2

)
= −P2C2

β2

exp
(
u2σ2 − uµβ2

2β2
2

−
rfx

β2

)
·
(
µ− u

β2

σ2

)
so that

P1C1β2

P2C2β1

exp
(
rfx

β1 − β2

β1β2

)
= − exp

(
u2σ2β

2
1 − β2

2

2β2
1β

2
2

+ uµ
β2 − β1

β1β2

) (µ− u
β2
σ2
)

(
µ− u

β1
σ2
) . (4.8)

Then, this equation reduces to

g(x) = h(u) (4.9)

where

g(x) =
P1C1

P2C2

β2

β1

exp
(
rfx

β1 − β2

β1β2

)
(4.10)



Chapter 4: Normal Distribution Model 17

and

h(u) = − exp
(
u2σ2(

1
2β2

2

− 1
2β2

1

) +
(

1
β1

− 1
β2

)
µu

) (µ− u
β2
σ2
)

(
µ− u

β1
σ2
) .

g(0) =
P1C1β2

P2C2β1

≥ 0

and

lim
x→∞

g(x) = 0.

For h(u), divide it into two parts so that

h(u) = h1(u)h2(u)

where

h1(u) = − exp
(
u (β1 − β2)

uσ2 (β1 + β2)− 2µβ1β2

2β2
1β

2
2

)
and

h2(u) =

(
µ− u

β2
σ2
)

(
µ− u

β1
σ2
) .

Considering h1(u), it can be observed that h1(u) < 0 for all u. So, for (4.9) to hold, one

would need h2(u) < 0 or (
µ− u

β2
σ2
)

(
µ− u

β1
σ2
) < 0.

In order to have this inequality to hold, there are two possible cases:

1. µ− u

β2

σ2 < 0 and µ− u

β1

σ2 > 0. (4.11)

2. µ− u

β2

σ2 > 0 and µ− u

β1

σ2 < 0.

The first case implies µ <
(
σ2/β2

)
u and µ >

(
σ2/β1

)
u, or

(
µ/σ2

)
β2 < u <

(
µ/σ2

)
β1.

The assumption β1 < β2 therefore implies that the first case is not possible. For the second

case, µ >
(
σ2/β2

)
u and µ <

(
σ2/β1

)
u, or

(
µ/σ2

)
β1 < u <

(
µ/σ2

)
β2. Denote this region

by I =
(
µ/σ2

)
[β1, β2] ⊂ [0,+∞). Note that h(µβ1/σ

2) = +∞ and h(µβ2/σ
2) = 0. Then,

it can can be observed that g(x) = h(u) has a solution u ∈ I for any x.
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For the analysis of g(x) and h(u), g(x) = h(u) implies that the optimal decision is

u∗(x) = h−1(g(x)). For that, first consider

h′(u) =

d

(
− exp

(
u2σ2( 1

2β2
2
− 1

2β2
1
) +

(
1
β1
− 1

β2

)
µu
) (µ− u

β2
σ2
)

(
µ− u

β1
σ2
)
)

du

=
1

β1β
3
2

exp
(
u2σ2

2
(

1
β2

2

− 1
β2

1

) + uµ(
1
β1

+
1
β2

)
)

β2 − β1

(µβ1 − uσ2)2k(u) (4.12)

where

k(u) = (β1 + β2)σ6u3 − µσ4(β2
1 + 3β1β2 + β2

2)u2 + 2µ2σ2β1β2(β1 + β2)u− β2
1β

2
2µ(µ2 + σ2)

(4.13)

so that

k′(u) = 3 (β1 + β2)σ6u2 − 2µσ4(β2
1 + 3β1β2 + β2

2)u+ 2µ2σ2β1β2(β1 + β2).

Theorem 3 The optimal decision u∗(x) = h−1(g(x)) is bounded and positively increasing

in x if µ > 0.

Proof. First note that u∗(x) ∈
(
µ/σ2

)
[β1, β2] ⊂ [0,+∞) implies that u∗ is bounded and

positive. Since g(x) is convex decreasing, it suffices to show that h(u) decreases in I because

if h(u) decreases and g(x) decreases then h−1(g(x)) increases. For that, note that

1
β1β

3
2

exp
(
u2σ2

2
(

1
β2

2

− 1
β2

1

) + uµ(
1
β1

+
1
β2

)
)

β2 − β1

(µβ1 − uσ2)2 > 0

for all u in I. Then, to show that h(u) decreases in I, it suffices to prove that k(u) is negative

in I. It is clear that k(u) is a polynomial of third degree. With basic calculus, it can be

observed that a third degree polynomial can have at most two turning points. Here, turning

points indicate that the polynomial k(u) changes from increasing to decreasing or decreasing

to increasing. This follows from the fact that k′(u) is a polynomial of degree two and k′(u)

can have at most two roots. Observe the following facts:

1. k(
(
µ/σ2

)
β1) = k(

(
µ/σ2

)
β2) = −β2

1β
2
2µσ

2 < 0.

2. k′(
(
µ/σ2

)
β1) = β2

1µ
2σ2(β1 − β2) < 0, k′(

(
µ/σ2

)
β2) = β2

2µ
2σ2(β2 − β1) > 0 and

k′(0) = 2µ2σ2β1β2(β1 + β2) > 0.
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The intermediate value theorem indicates that if a function f is continuous on a interval

I = [a, b] and f(a) < 0 and f(b) > 0, then there exits c in I such that f(c) = 0. So,

considering this theorem and observation two, it can be concluded that there is a turning

point in [0,
(
µ/σ2

)
β1] and another one in I. Since k(u) is a third degree polynomial these

are the only possible turning points.

Finally the first observation shows that the value of k at the end points are negative. Also,

from the above argument, there is only one turning point ū in I at which k(ū) < k((µ/σ2)β1)

since k′((µ/σ2)β1) < 0. This indicates that for every u in I, k(u) can not be greater than

k(
(
µ/σ2

)
β1) = k(

(
µ/σ2

)
β2) < 0, hence k(u) is negative for all u in R.

By Theorem 3, k(u) is negative implies that h(u) is decreasing in the feasible region

I. Therefore, one can conclude that as x increases, u(x) must increase as well. This fact

together with the assumption µ = r̄ − rf > 0 basically shows that if the investor has

stochastic exponential utility then the money invested in the risky asset, which has a better

return than the risk-free asset, has a direct relationship with the wealth level of the investor.

First, u > 0 for all x implies that there is always money invested in the risky asset when

the risky asset’s return is better than the risk-free one. Second, Theorem 1 implies that as

the wealth level of the investor increases the amount of money that is invested in risky asset

increases.

This result is important because in previous work by Çanakoğlu and Özekici [7], it is

known that when the investor has exponential utility, the optimal decision is independent

of the wealth level of the investor. But, if the investor has stochastic exponential utility,

then the money invested on the risky asset depends on the wealth level of the investor.

Another important thing to note is u(x) depends on the risk tolerances {β1, β2} of the

investor. Since the feasible region I depends on {β1, β2} , the investor having a greater risk

tolerance would invest more money in the risky asset.

Mean excess return less than zero (µ < 0).

Next assume µ < 0 so that r̄ < rf . Considering the optimality condition again one needs

(4.9) to hold. By a similar argument there are two possibilities like in (4.11).

Note that now only the first region is possible since µ < 0. Hence, the feasible region is

I =
(
µ/σ2

)
[β2, β1] ⊂ (−∞, 0]. Observe that u ∈ I is always negative indicating that when
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the mean of the asset is less than zero, the investor short sells the risky asset and invests

in the risk-free asset. According to intuition, one can conjecture that as x increases u must

decrease meaning that the investor would invest more money in the risk-free asset and short

sells more of the risky asset when the investors wealth level increases by a similar argument

above. Therefore, this time we will show that h(u) is increasing on I. Similarly, considering

(4.12), in order to show that h(u) is increasing on I, it suffices to show that k(u) in (4.13)

is positive on I.

Theorem 4 The optimal decision u∗(x) = h−1(g(x)) is bounded and negatively decreasing

in x if µ < 0.

Proof. The theorem will be proven using a similar argument. The negativeness and

boundedness of u∗ follows trivially since u∗(x) ∈ I =
(
µ/σ2

)
[β2, β1] ⊂ (−∞, 0]. Observe

now that

1. k(
(
µ/σ2

)
β2) = k(

(
µ/σ2

)
β1) = −β2

1β
2
2µσ

2 > 0.

2. k′(
(
µ/σ2

)
β2) = β2

2µ
2σ2(β2 − β1) > 0, k′(

(
µ/σ2

)
β1) = β2

1µ
2σ2(β1 − β2) < 0 and

k′(0) = 2µ2σ2β1β2(β1 + β2) > 0.

Again by intermediate value theorem and observation two it can be concluded that there

are two turning points; one in I and the other in [
(
µ/σ2

)
β1, 0]. By the first observation, k(u)

is positive at the end points of I; hence, k(u) is greater than k(
(
µ/σ2

)
β2) = k(

(
µ/σ2

)
β1) >

0 for all u in I. Therefore, k(u) is positive in I.

By Theorem 2, k(u) is positive implies that h(u) is increasing on the feasible region I.

Therefore one can conclude that as x increases, u must decrease. Similarly this fact together

with the assumption µ = r̄ − rf < 0 shows that when the risky asset’s expected return is

lower than the risk-free asset, the investor should short sell the risky asset and invest more

in the risk-free asset. Also, the fact that as x increases u(x) must decrease shows that as

the wealth level of the investor increases, he short sells more of the risky asset and invest

more in the risk-free asset.

Moreover, note also that like in the case of µ > 0, the amount of money invested in risky

asset depends on the risk tolerance of investor. This indicates that an investor who is more

tolerant to risk would short sell more of the risky asset and invest on the risk-free asset.
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4.2.2 Random risk tolerance with n risky assets and m = 2 utilities

In this subsection, there are n different risky assets with a multivariate normal distribution.

The optimality condition for a market consisting of two different states is

∂g(x, u)
∂uk

=
2∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)
E

[
Rek exp

(
−(Re)′ u

βj

)]
= 0 (4.14)

for all k.

Using (4.2), the expectation term in (4.14) is

E

[
Rek exp

(
−(Re)′ u

βj

)]
= exp(− 1

βj
µ′u+

1
2β2

j

u′σu)
(
µk −

1
βj

(σu)k

)
. (4.15)

Therefore, (4.14) becomes

2∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)[
exp(− 1

βj
µ′u+

1
2β2

j

u′σu)
(
µk −

1
βj

(σu)k

)]
= 0. (4.16)

First consider the case when µ = [0, 0, · · · , 0]. Then, (4.16) becomes

(σu)k

2∑
j=1

PjCj

β2
j

exp
(
−
rfx

βj

)
exp(

1
2β2

j

u′σu) = 0 (4.17)

for all k. Note that (4.17) is equal to zero only when (σu)k = 0. Going one step further if

µ = [0, 0, · · · , 0] then (σu)k = 0 for all k. Therefore, since σ is a positive definite matrix

the only solution of σu = 0 is u = 0. Summarizing, if µ = [0, 0, · · · , 0] then u = 0. Hence,

suppose that µ 6= [0, 0, · · · , 0] in the remainder of the section. This further implies that

u∗ 6= 0 because µ = 0 whenever u = 0 in (4.16).

Now, (4.14) implies

P1C1

β1

[
exp(−

rfx

β1

− 1
β1

µ′u+
1

2β2
1

u′σu)
(
µk −

(σu)k
β1

)]
+
P2C2

β2

[
exp(−

rfx

β2

− 1
β2

µ′u+
1

2β2
2

u′σu)
(
µk −

(σu)k
β2

)]
= 0.

By separating two equations, one would get

P1C1

P2C2

β2

β1

exp
(
rfx

β1 − β2

β1β2

)
= − exp

((
1
β1

− 1
β2

)
µ′u+

β2
1 − β2

2

2β2
2β

2
1

u′σu

) (µk − 1
β2

(σu)k
)

(
µk − 1

β1
(σu)k

) .
(4.18)

Note that (4.18) can be rewritten as

g(x) = h1(u)hk2(u) (4.19)
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where g(x) is given by (4.10) and

h1(u) = − exp
((

1
β1

− 1
β2

)
µ′u+

(
1

2β2
2

− 1
2β2

1

)
u′σu

)

hk2(u) =

(
µk − 1

β2
(σu)k

)
(
µk − 1

β1
(σu)k

)
for k = 1, 2, · · · , n.

Notice that in (4.18), left hand side of the equation does not depend on k. Hence, it can

be concluded that (
µj − 1

β2
(σu)j

)
(
µj − 1

β1
(σu)j

) =

(
µk − 1

β2
(σu)k

)
(
µk − 1

β1
(σu)k

) (4.20)

for all j, k and µ 6= [0, 0, · · · , 0].

Moreover, (4.20) implies that

µk (σu)j = µj (σu)k (4.21)

for all j, k. Now, define

µ̄j =

(
n∑
t=1

µt(−1)j+tMjt

)
(4.22)

where Mij denotes the (i, j) minor of the covariance matrix σ for all i, j. For technical

reasons, we assume that µ̄juj 6= 0 for all j. We will show that this assumption is reasonable

by validating it for n = 2. The difficulty comes from the fact that it is hard to find a

relationship between µ̄j and uj . For the case when n = 2, assume that µ̄juj = 0 for j = 1, 2.

Then, for j = 1,

µ̄1u1 =
2∑
t=1

µt(−1)1+tM1tu1

= (µ1σ22 − µ2σ12)u1 = 0 (4.23)

and similarly

µ̄2u2 = (µ1σ12 − µ2σ11)u2 = 0 (4.24)

for j = 2.

There are three possible cases to consider: either (u1 = 0, u2 6= 0), or (u1 6= 0, u2 = 0),

or (u1, u2 6= 0). If u1 = 0, then u2 6= 0 since the optimal decision is different than the zero

vector. This further implies that

µ1σ12 = µ2σ11 (4.25)



Chapter 4: Normal Distribution Model 23

from (4.24). Now, taking k = 1 and j = 2, (4.21) reduces to

µ1(σ21u1 + σ22u2) = µ2(σ11u1 + σ12u2)

or

µ1σ22u2 = µ2σ12u2

since µ1σ12 = µ1σ21 = µ2σ11. This finally leads to

µ1σ22 = µ2σ12. (4.26)

Note that (4.25) and (4.26) together imply that µ1, µ2 6= 0 since µ1 = 0 implies µ2 = 0

from (4.25), and µ2 = 0 implies µ1 = 0 from (4.26) since σ11, σ22 > 0. Now, (4.25) and

(4.26) lead to σ2
12 = σ11σ22 which contradicts the fact that σ is positive definite. A similar

argument leads to the same conclusion when u2 = 0. The final case with u1, u2 6= 0 leads

to (4.25) and (4.26) from (4.23) and (4.24) trivially and we reach the same contradiction.

Theorem 5 The relation between the optimal investments in any asset j and k is

µ̄kuj = µ̄juk (4.27)

for all j and k.

Proof. We suppose that µ̄juj 6= 0 for all j. Consider the following identity which will

be useful throughout the proof:

n∑
t=1

µt

n∑
j=1

σkj(−1)j+tMjt = µk ‖σ‖ (4.28)

for any k. In order to prove (4.28), first let σ̄(l,m) denote the matrix formed by first re-

moving lth column and then replacing it with mth column of the matrix σ. Also, it is known

from basic linear algebra that ‖σ‖ =
∑n

j=1 σjk(−1)j+kMjk for any k.

Consider any asset k for the which µ̄k 6= 0. It clearly exists by our assumption. Rewriting

the left-hand side of (4.28) we get

n∑
t=1

µt

n∑
j=1

σkj(−1)j+tMjt =
n∑
t=1
t6=k

µt

n∑
j=1

σkj(−1)j+tMjt + µk

n∑
j=1

σkj(−1)j+kMjk

=
n∑
t=1
t6=k

µt

n∑
j=1

σjk(−1)j+tMjt + µk

n∑
j=1

σjk(−1)j+kMjk(4.29)
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by the symmetry of σ. Next, consider
∑n

j=1 σjk(−1)j+tMjt in (4.29) when t 6= k. Note also

that

det σ̄(t, k) =
n∑
j=1

σ̄jl(t, k)(−1)j+lM̄jl(t, k) (4.30)

for any l where M̄jl(t, k) is the (j, l) minor of σ̄(t, k). For l = t 6= k, note that M̄jl(t, k) = Mjt

and σ̄jl(t, k) = σjk. Therefore, (4.30) is equal to
∑n

j=1 σjk(−1)j+tMjt in (4.29). Moreover,

det σ̄(t, k) = 0 since the kth column and tth column of σ̄(t, k) are the same.

Therefore the first sum on the right hand side of (4.29) vanishes and we obtain

n∑
t=1

µt

n∑
j=1

σkj(−1)j+tMjt = µk

n∑
j=1

σjk(−1)j+kMjk

= µk ‖σ‖ . (4.31)

Now, (4.21) can be written as

n∑
t=1

(
µkσjt − µjσkt

)
ut = 0 (4.32)

for all j. We can rewrite (4.32) as the system of linear equations C(k)u = 0, where we

define the matrix C(k) for a fixed k as

Cjt(k) = µkσjt − µjσkt.

To complete the proof, we need to show that (4.27) solves the system of linear equations

C(k)u = 0. Since µ̄k 6= 0 and uk 6= 0, plugging (4.27) into C(k)u, together with (4.31), gives

the jth entry

(C(k)u)j =
n∑
i=1

(
µkσji − µjσki

) µ̄i
µ̄k
uk

=
uk
µ̄k

n∑
i=1

(
µkσji − µjσki

)
µ̄i

=
uk
µ̄k

n∑
t=1

µt

n∑
i=1

Mit(−1)i+t
(
µkσji − µjσki

)
=

uk
µ̄k

(
µk

n∑
t=1

µt

n∑
i=1

σji(−1)i+tMit − µj
n∑
t=1

µt

n∑
i=1

σki(−1)i+tMit)

)
=

uk
µ̄k

(
µkµj ‖σ‖ − µjµk ‖σ‖

)
= 0

for all j. Hence, (4.27) is a solution to the system of linear equations C(k)u = 0.
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It was shown in Chapter 3 that the objective function g(x, u) is strictly concave in u

for any distribution. It is also known that for strictly concave function the maximizer is

unique if it exists. Since the solution obtained from (4.27) satisfies the first order condition

(2.4), then it can be concluded that it is the unique solution to the problem because of the

uniqueness of the maximizer.

On the other hand, left-hand side of (4.18) is always positive. Therefore, in order to

have the equality in (4.19) (
µk − 1

β2
(σu)k

)
(
µk − 1

β1
(σu)k

) < 0

must hold. To obtain this, either

(µk − (1/β2) (σu)k) < 0 and (µk − (1/β1) (σu)k) > 0 (4.33)

or

(µk − (1/β2) (σu)k) > 0 and (µk − (1/β1) (σu)k) < 0. (4.34)

Considering (4.33), one would get (σu)k > β2µk and (σu)k < β1µk implying

β2µk < (σu)k < β1µk. (4.35)

Similarly, (4.34) implies

β1µk < (σu)k < β2µk. (4.36)

Next, consider (4.27) to determine the feasible region for uk. Replacing uj with µ̄juk/µ̄k in

(σu)k, we obtain

(σu)k =
n∑
j=1

σkjuj

=
n∑
j=1

σkj
µ̄j
µ̄k
uk

=
uk
µ̄k

n∑
j=1

σkjµ̄j

=
uk
µ̄k

n∑
t=1

µt

n∑
j=1

σkj(−1)j+tMjt

=
µk ‖σ‖
µ̄k

uk (4.37)
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by (4.28). Substituting (σu)k given by (4.37) in (4.35) and (4.36), we obtain the feasible

region

β1 <
‖σ‖
µ̄k

uk < β2

which implies

l1 =
µ̄k
‖σ‖

β1 < uk <
µ̄k
‖σ‖

β2 = l2 (4.38)

when µ̄k > 0; or

β2 <
‖σ‖
µ̄k

uk < β1

which now implies

l2 =
µ̄k
‖σ‖

β2 < uk <
µ̄k
‖σ‖

β1 = l1 (4.39)

when µ̄k < 0.

It can be inferred from (4.38) and (4.39) that since ‖σ‖ is always positive, the feasible

region is determined by the value of µ̄k =
∑n

t=1 µt(−1)k+tMkt. If µ̄k is positive, then the

feasible region for the kth asset is given by (4.38); otherwise, it is given by (4.39). Denote

these regions as I1 = (l1, l2) ⊂ (0,+∞) and I2 = (l2, l1) ⊂ (−∞, 0) respectively.

Moreover, (σu)k can be replaced with (µk ‖σ‖ /µ̄k)uk in (4.18) to get

P1C1

P2C2

β2

β1

exp
(
rfx

β1 − β2

β1β2

)
= −hk(uk)

where

hk(uk) = exp
(

1
µ̄k

(
1
β1

− 1
β2

)
µ′µ̄uk +

1
µ̄2
k

(
1

2β2
2

− 1
2β2

1

)
µ̄′σµ̄u2

k

) (µk − 1
β2

(µk ‖σ‖ /µ̄k)uk
)

(
µk − 1

β1
(µk ‖σ‖ /µ̄k)uk

)
by using (4.27) and (4.37). Like in the case of one risky asset, consider the derivative

h′k(uk) =
dhk(uk)
duk

=

(
1
β1
− 1

β2

)
exp

(
uk
µ̄k

(
1
β1
− 1

β2

)
µ′µ̄+ u2

k

µ̄2
k

(
1

2β2
2
− 1

2β2
1

)
µ̄′σµ̄

)
(
µk − 1

β1
(µk ‖σ‖ /µ̄k)uk

)2 k(uk)

where

k(uk) =
(
µk ‖σ‖
µ̄kβ2

uk − µk
)(

uk
µ̄2
k

(
1
β2

+
1
β1

)
µ̄′σµ̄+

1
µ̄k
µ′µ̄

)(
µk ‖σ‖
µ̄kβ1

uk − µk
)
−
(
µ2
k ‖σ‖ /µ̄k

)
.
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Note that the sign of h′k(uk) depends on the sign of k(uk). If k(uk) is positive, then h′k(uk)

is negative and it is positive otherwise. Moreover, note also that

k(l1) = k(l2) = −
µ2
k ‖σ‖
µ̄k

k(0) =
µ2
k

µ̄k
(µ′µ̄− ‖σ‖) =

µ2
k

µ̄k
µ′µ̄+ k(l1).

The derivative of k is

k′(uk) =
µk ‖σ‖
µ̄kβ2

(
1
µ̄2
k

(
1
β2

+
1
β1

)
µ̄′σµ̄uk +

1
µ̄k
µ′µ̄

)(
µk ‖σ‖
µ̄kβ1

uk − µk
)

+
1
µ̄2
k

(
1
β2

+
1
β1

)
µ̄′σµ̄

(
µk ‖σ‖
µ̄kβ2

uk − µk
)(

µk ‖σ‖
µ̄kβ1

uk − µk
)

+
µk ‖σ‖
µ̄kβ1

(
µk ‖σ‖
µ̄kβ2

uk − µk
)(

1
µ̄2
k

(
1
β2

+
1
β1

)
µ̄′σµ̄uk +

1
µ̄k
µ′µ̄

)
and

k′(l1) = −
µ2
k ‖σ‖
µ̄2
kβ1

(
1− β1

β2

)((
1
β2

+
1
β1

)
µ̄′σµ̄

β1

‖σ‖
+
(
µ′µ̄
))

k′(l2) =
µ2
k ‖σ‖
µ̄2
kβ2

(
β2

β1

− 1
)((

1
β2

+
1
β1

)
µ̄′σµ̄

β2

‖σ‖
+
(
µ′µ̄
))

.

Note that µ′µ̄ can be rewritten as

µ′µ̄ =
n∑
j=1

µjµ̄j

=
n∑
j=1

n∑
t=1

µjµtCjt

where Cjt = (−1)j+tMjt is the cofactor of the matrix σ. For any positive definite matrix σ,

it is known that σCT = ‖σ‖ I where I is the identity matrix and CT is the transpose of the

cofactor matrix of σ. It is also known that if σ is positive definite, then σ−1 is also positive

definite. Therefore, it can be concluded C = ‖σ‖σ−1 is also positive definite concluding that

µ′µ̄ is always positive. Moreover, since σ is positive definite, µ̄′σµ̄ is also always positive.

Therefore, it can be concluded that k′(l1) < 0 and k′(l2) > 0. Finally, since µ′µ̄ > 0,

k(0) > k(l1) = k(l2) when µ̄k > 0, and k(0) < k(l1) = k(l2) when µ̄k < 0.

Adjusted mean excess return is greater than zero (µ̄k > 0).

In this case assume that adjusted mean excess return µ̄k is greater than zero. It should

be noted that when µ̄k is greater than zero, µk is not necessarily greater than zero. From
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Section 4.2, we know that if µ̄k is greater than zero, then the feasible region for optimal

decision for kth asset is positive. So the decision of whether buying or short selling the kth

asset relies on the sign of µ̄k rather than the sign of µk. In the illustrations, we will provide

examples of the cases where the mean excess return of the kth asset is positive, but in the

optimal decision, kth asset is advised to short sell because of the sign of µ̄k.

Theorem 6 The optimal decision u∗k(x) = h−1
k (g(x)) is bounded and positively increasing

in x if µ̄k > 0.

Proof. It is already shown by (4.38) that when µ̄k > 0, the feasible region is I1 =

[l1, l2] = [(µ̄k/ ‖σ‖)β1, (µ̄k/ ‖σ‖)β2] ⊂ (0,+∞) , therefore u∗k(x) is bounded and positive. As

in the case of single asset with m = 2 utilities, it suffices to show that hk(uk) is decreasing

in uk. First observe that the sign of the derivative of hk(uk) depends on the sign of k(uk).

Therefore, we need to show that k(uk) is negative in the feasible region.

Since k(uk) is a third degree polynomial in uk, it can have at most two turning points.

Moreover, note that k(l1) = k(l2) < 0. As in the case of single asset, k′(l1) < 0, k′(l2) > 0

indicates that there is a turning point in I1. Moreover, k′(l1) < 0 indicates that there is

another turning point in (−∞, l1] since limuk→−∞ k(uk) = −∞, k(uk) is continuous for all

uk and k(0) is a finite number. Since these are the only two possibilities for turning points,

k(uk) is less than k(l1) = k(l2) < 0 for every uk in I1 concluding that k(uk) is less than

zero in I1. Therefore, h′k(uk) is negative on I1, and u∗k(x) is increasing in x.

Adjusted mean excess return is less than zero (µ̄k < 0).

In this setting, since µ̄k is less than zero, we know that the optimal decision for the kth

asset is negative. Like in the previous case, even if the the mean excess return µk is positive,

there might be cases where the optimal decision for the kth asset is negative because of the

adjusted mean excess return µ̄k being less than zero. The examples of such cases will be

illustrated in the illustration section.

Theorem 7 The optimal decision u∗k(x) = h−1
k (g(x)) is bounded and negatively decreasing

in x if µ̄k < 0.

Proof. It is already shown by (4.39) that when µ̄k < 0, the feasible region is I2 =

[l2, l1] = [(µ̄k/ ‖σ‖)β2, (µ̄k/ ‖σ‖)β1] ⊂ (−∞, 0) , therefore u∗k(x) is bounded and negative.
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As in the case of single asset with m = 2 utilities, it suffices to show that h(uk) is increasing

in uk. First observe that the sign of the derivative of hk(uk) depends on the sign of k(uk).

Therefore, we need to show that k(uk) is positive in the feasible region.

Since k(uk) is a third degree polynomial in uk, it can have at most two turning points.

Moreover, note that k(l1) = k(l2) > 0. As in the case of single asset, k′(l2) > 0, k′(l1) < 0

indicates that there is a turning point in I2. Also k′(l1) < 0 and limuk→+∞ k(uk) = +∞

together implies that there must be another turning point in [l1,+∞). Since these are the

only two possibilities for turning points, k (uk) is greater then k(l1) = k(l2) > 0 for every

uk in I2, concluding that k(uk) is greater than zero in I2. Therefore h′k(uk) is positive on

I2, and u∗k(x) is decreasing in x.

4.2.3 Random risk tolerance with n = 1 risky asset and m utilities

In this setting assume that the number of the market states are m > 2 instead of two.

Consider the optimality condition
m∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)
E

[
Re exp

(
−R

eu

βj

)]
= 0

or
m∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)
exp

(
u2σ2 − 2uµβj

2β2
j

)(
µ− u

βj
σ2

)
= 0 (4.40)

where Re has normal distribution with mean µ and variance σ2. First, suppose µ = 0, then

(4.40) becomes
m∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)
exp

(
u2σ2

2β2
j

)(
− u

βj
σ2

)
= 0

or

u

m∑
j=1

PjCj
βj

σ2

βj
exp

(
−
rfx

βj

)
exp

(
u2σ2

2β2
j

)
= 0.

Note that since all the terms in the summation are positive, the equality holds only if u∗ = 0.

Next, consider

Aj(x, u) =
PjCj
βj

exp
(
−
rfx

βj

)
exp

(
u2σ2 − 2uµβj

2β2
j

)(
µ− u

βj
σ2

)
.

The partial derivative of Aj with respect to u is

∂Aj(x, u)
∂u

= −PjCj
β2
j

exp
(
−
rfx

βj

)
exp

(
u2σ2 − 2uµβj

2β2
j

)((
µ− σ2

βj
u

)2

+ σ2

)
< 0.
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Therefore, Aj(x, u) is strictly decreasing in u for all j and Aj(x, u) = 0 when u =
(
µ/σ2

)
βj .

Next, without loss of generality, assume that
{
βj
}

is ordered as 0 < β1 ≤ β2 ≤ · · · ≤ βm.

Since Aj(x, u) is strictly decreasing in u for all j,
∑m

j=1Aj(x, u) also strictly decreases in u.

Denoting

A(x, u) =
m∑
j=1

Aj(x, u)

the optimality condition can be written as A (x, u) = 0. Moreover, there is a unique u∗(x)

that satisfies A(x, u∗(x)) = 0 for any x since A(x, u) strictly decreases in u and A(x,+∞) =

+∞ and A(x,−∞) = −∞.

Also note that for any initial wealth x, the optimal decision u∗(x) is always in the

region
(
µ/σ2

)
(β1, βm) when µ > 0 and in

(
µ/σ2

)
(βm, β1) when µ < 0. To show this,

assume that
(
µ/σ2

)
β1 > u∗(x) or

(
µ/σ2

)
βm < u∗(x) when µ > 0 for some x. But, under

these assumptions, (4.40) will not hold due to the fact that
(
µ−

(
σ2/βj

)
u∗(x)

)
< 0 or(

µ−
(
σ2/βj

)
u∗(x)

)
> 0 for all j. The case when µ < 0 can be shown similarly. Therefore,

the feasible region is

0 <
( µ
σ2

)
β1 < u <

( µ
σ2

)
βm (4.41)

if µ > 0, and ( µ
σ2

)
βm < u <

( µ
σ2

)
β1 < 0 (4.42)

if µ < 0. To simplify the notation, we define ûi = (µ/σ2)βi.

Mean excess return greater than zero (µ > 0).

Assume µ > 0 so that r̄ > rf which indicates that the expected return of the risky asset

is greater than the return of the risk-free asset. We have already shown that the optimal

amount of money invested in the risky asset is greater than zero.

Theorem 8 The optimal decision u∗(x) is bounded and positively increasing in x if µ > 0.

Proof. In this setting the feasible region is given by (4.41) and this clearly indicates

that u∗(x) > 0 is bounded. Fix the initial wealth level x1. Let u∗1 be the optimal decision for

x1 so that A(x1, u
∗
1) = 0. Since the feasible region is given by (4.41), one can deduce that

there exist 1 ≤ k ≤ m− 1 such that

ûk ≤ u∗1 < ûk+1.



Chapter 4: Normal Distribution Model 31

Moreover, Aj(x1, u
∗
1) ≤ 0 for all j ≤ k since u∗1 ≥ ûj for all j ≤ k. Similarly, Aj(x1, u

∗
1) > 0

for all j > k. Therefore, A (x1, u
∗
1) = 0 implies that

k∑
j=1

Aj(x1, u
∗) = −

m∑
j=k+1

Aj(x1, u
∗) ≤ 0. (4.43)

Consider the point x1 + ∆x > x1 for some ∆x > 0. We now have

m∑
j=1

Aj(x1 + ∆x, u∗1) =
k∑
j=1

Aj(x1, u
∗
1) exp(−rf

∆x
βj

) +
m∑

j=k+1

Aj(x1, u
∗
1) exp(−rf

∆x
βj

)

≥ exp(−rf
∆x
βk

)
k∑
j=1

Aj(x1, u
∗
1) + exp(−rf

∆x
βk+1

)
m∑

j=k+1

Aj(x1, u
∗
1)

= − exp(−rf
∆x
βk

)
m∑

j=k+1

Aj(x1, u
∗
1) + exp(−rf

∆x
βk+1

)
m∑

j=k+1

Aj(x1, u
∗
1)

=
[
exp(−rf

∆x
βk+1

)− exp(−rf
∆x
βk

)
] m∑
j=k+1

Aj(x1, u
∗
1) ≥ 0.

The first inequality follows from the fact that exp(−x) is a nonnegative decreasing function.

The second equality follows from (4.43). Similarly, the final term is positive since exp(−x)

is a decreasing function and
∑m

j=k+1Aj(x1, u
∗
1) is positive by (4.43).

Since
∑m

j=1Aj(x1 + ∆x, u∗1) ≥ 0, and
∑m

j=1Aj(x1 + ∆x, u) decreases in u, it can be

concluded that the optimal decision for x1 + ∆x is greater than u∗1 indicating that u∗(x) is

increasing in x.

Mean excess return less than zero (µ < 0).

Assume µ < 0 so that r̄ < rf which indicates that the expected return of the risky asset is

less than the return of the risk-free asset. In this situation, we have already shown that the

optimal amount of money invested in the risky asset would be less than zero.

Theorem 9 The optimal decision u∗(x) is bounded and positively decreasing in x if µ < 0.

Proof. In this setting the feasible region is given by (4.42) and this clearly indicates

that u∗(x) < 0 is bounded. Fix the initial wealth level x1. Let u∗1 be the optimal decision for

x1 so that A (x1, u
∗
1) = 0. Since the feasible region is given by (4.42), one can deduce that

there exist 1 ≤ k ≤ m− 1 such that

ûk+1 < u∗1 ≤ ûk.
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Moreover, Aj(x1, u
∗
1) ≥ 0 for all j ≤ k since u∗1 ≥ ûj for all j ≤ k. Similarly Aj(x1, u

∗
1) < 0

for all j > k. Therefore, A (x1, u
∗
1) = 0 implies that

k∑
j=1

Aj(x1, u
∗
1) = −

m∑
j=k+1

Aj(x1, u
∗
1) ≥ 0. (4.44)

Consider the point x1 + ∆x > x1 for some ∆x > 0. We now have
m∑
j=1

Aj(x1 + ∆x, u∗1) =
k∑
j=1

Aj(x1, u
∗
1) exp(−rf

∆x
βj

) +
m∑

j=k+1

Aj(x1, u
∗
1) exp(−rf

∆x
βj

)

≤ exp(−rf
∆x
βk

)
k∑
j=1

Aj(x1, u
∗
1) + exp(−rf

∆x
βk+1

)
m∑

j=k+1

Aj(x1, u
∗
1)

= − exp(−rf
∆x
βk

)
m∑

j=k+1

Aj(x1, u
∗
1) + exp(−rf

∆x
βk+1

)
m∑

j=k+1

Aj(x1, u
∗
1)

=
[
exp(−rf

∆x
βk+1

)− exp(−rf
∆x
βk

)
] m∑
j=k+1

Aj(x1, u
∗
1) ≤ 0.

The first inequality follows from the fact that exp(−x) is a nonnegative decreasing function.

The second equality follows from (4.44). Similarly, the final term is negative since exp(−x)

is a decreasing function and
∑m

j=k+1Aj(x1, u
∗
1) is negative by (4.44).

Since
∑m

j=1Aj(x1 + ∆x, u∗1) ≤ 0, and
∑m

j=1Aj(x1 + ∆x, u) decreases in u, it can be

concluded that the optimal decision for x1 + ∆x is less than u∗1 indicating that u∗(x) is

decreasing in x.

4.2.4 Random risk tolerance with n risky assets and m different utilities

Suppose that there are m utilities and there are n risky asset. In this setting the optimality

condition (2.4) turns out to be
m∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)[
exp(− 1

βj
µ′u+

1
2β2

j

u′σu)
(
µk −

1
βj

(σu)k

)]
= 0 (4.45)

for all k = 1, 2, · · · , n. Next denote

Ākj (x, u) =
PjCj
βj

exp
(
−
rfx

βj

)[
exp(− 1

βj
µ′u+

1
2β2

j

u′σu)
(
µk −

1
βj

(σu)k

)]
.

Therefore, the optimality condition is
∑m

j=1 Ā
k
j (x, u) = 0. Taking derivative with respect

to uk we get

∂Ākj (x, u)
∂uk

= −PjCj
β2
j

exp
(
−
rfx

βj

)
exp(− 1

βj
µ′u+

1
2β2

j

u′σu)

[(
µk −

1
βj

(σu)k

)2

+ σkk

]
< 0
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Hence, Ākj (x, u) is strictly decreasing in uk for all j. Moreover, sum of strictly decreasing

functions is strictly decreasing, therefore
∑m

j=1 Ā
k
j (x, u) is also a strictly decreasing function

in uk. Rewrite (4.45) to get

µk

m∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)
exp(−µ

′u

βj
+
u′σu

2β2
j

) = (σu)k

m∑
j=1

PjCj

β2
j

exp
(
−
rfx

βj

)
(4.46)

· exp(−µ
′u

βj
+
u′σu

2β2
j

)

or

µk
(σu)k

=

∑m
j=1

PjCj
β2
j

exp
(
− rfx

βj

)
exp(− 1

βj
µ′u+ 1

2β2
j
u′σu)∑m

j=1
PjCj
βj

exp
(
− rfx

βj

)
exp(− 1

βj
µ′u+ 1

2β2
j
u′σu)

. (4.47)

When µk 6= 0, (σu)k cannot be equal to zero; otherwise, (4.45) will not hold. If µk = 0,

then (σu)k = 0 from (4.45). If µk = 0 for all k, then (4.45) holds only if (σu)k = 0 for all

k. This would induce to the system of linear equations σu = 0. Since σ is positive definite,

the only solution is u∗(x) = [0, 0, · · · , 0]. Therefore, without loss of generality, assume that

µk 6= 0 for some k making (σu)k 6= 0. Moreover, right-hand side of (4.47) is independent of

k; hence, it can be stated that (4.21) holds for this setting too. Therefore, there is a linear

relationship between risky assets given by equation (4.27). Therefore, in this setting, the

optimal decision satisfies

u∗(x) = [u∗1(x), u∗2(x), · · · , u∗n(x)]

=
uk(x)
µ̄k

[µ̄1, µ̄2, · · · , µ̄n]

for any k with µ̄k 6= 0.

Moreover, in Section 4.2.2 it was shown that monotonicity of u∗k is also determined by

the sign of µ̄k. It was also further shown that (σu)k can be written in terms of uk. It is useful

to do the same substitution here in this setting because it would reduce the n risky asset

setting to a single risky asset setting. Therefore, substituting µk ‖σ‖ /µ̄kuk with (σu)k , and

also using (4.27) in (4.45), we get
m∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)[
exp(−(µ′µ̄)uk

βjµ̄k
+

(µ̄′σµ̄)u2
k

2β2
j µ̄

2
k

)
(
µk −

µk ‖σ‖
µ̄k

uk

)]
= 0

µk

m∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)[
exp(−(µ′µ̄)uk

βjµ̄k
+

(µ̄′σµ̄)u2
k

2β2
j µ̄

2
k

)
(

1− ‖σ‖
βjµ̄k

uk

)]
= 0

m∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)[
exp(−(µ′µ̄)uk

βjµ̄k
+

(µ̄′σµ̄)u2
k

2β2
j µ̄

2
k

)
(

1− ‖σ‖
βjµ̄k

uk

)]
= 0
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since µk 6= 0. By using the same argument in Section 4.2.3, one can conclude that

0 ≤ µ̄k
‖σ‖

β1 < uk <
µ̄k
‖σ‖

βm (4.48)

if µ̄k > 0 and
µ̄k
‖σ‖

βm < uk <
µ̄k
‖σ‖

β1 ≤ 0 (4.49)

if µ̄k < 0. Note that (4.48) and (4.49) implies that the optimal decision uk is bounded. Here,

note that
∑m

j=1 Ā
k
j (x, u) decreasing in uk is essential for (4.48) and (4.49) to hold. Again,

for simplification let

ûj = µ̄k/ ‖σ‖βj

for a fixed k and

Āk(x, u) =
m∑
j=1

Ākj (x, u).

Adjusted mean excess return is greater than zero (µ̄k > 0).

In this setting since we have reduced the n risky asset case to a single asset case, we will

perform an analysis similar to the previous ones. In the previous case, the monotonicity

of the optimal decision for kth asset (u∗k(x)) depended on the sign of mean excess return

whereas in this case the monotonicity of the optimal decision for kth asset depends on the

sign of the adjusted mean excess return µ̄k.

Theorem 10 The optimal decision u∗k(x) is bounded and positively increasing in x if µ̄k >

0.

In this setting the feasible region is given by (4.48) and this clearly indicates that u∗k(x) >

0 is bounded. The proof will be similar to the single asset case. Fix the initial wealth level

x1. Let u∗k be the optimal decision for x1 so that Āk(x1, u
∗
k) = 0. Since the feasible region is

given by (4.48), one can deduce that there exist a 1 ≤ l ≤ m− 1 such that

β̂l ≤ u∗k < β̂l+1.

Moreover, Āj(x1, u
∗
k) ≤ 0 for all j ≤ l since u∗k ≥ ûj for all j ≤ l. Similarly Ākj (x1, u

∗
k) > 0

for all j > l. Therefore, A (x1, u
∗
1) = 0 implies that

l∑
j=1

Ākj (x1, u
∗
k) = −

m∑
j=l+1

Ākj (x1, u
∗
k) < 0. (4.50)
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Consider the point x1 + ∆x > x1 for some ∆x > 0. We now have

m∑
j=1

Ākj (x1 + ∆x, u∗k) =
l∑

j=1

Ākj (x1, u
∗
k) exp(−rf

∆x
βj

) +
m∑

j=l+1

Ākj (x1, u
∗
k) exp(−rf

∆x
βj

)

≥ exp(−rf
∆x
βl

)
l∑

j=1

Ākj (x1, u
∗
k) + exp(−rf

∆x
βl+1

)
m∑

j=l+1

Ākj (x1, u
∗
k)

= − exp(−rf
∆x
βl

)
m∑

j=l+1

Ākj (x1, u
∗
k) + exp(−rf

∆x
βl+1

)
m∑

j=l+1

Ākj (x1, u
∗
k)

=
[
exp(−rf

∆x
βl+1

)− exp(−rf
∆x
βl

)
] m∑
j=l+1

Ākj (x1, u
∗
k) ≥ 0.

The first inequality follows from the fact that exp(−x) is a nonnegative decreasing function.

The second equality follows from (4.50). Similarly, the final term is positive since exp(−x)

is a decreasing function and
∑m

j=k+1Aj(x1, u
∗
1) is positive by (4.50).

Since
∑m

j=1 Ā
k
j (x1 + ∆x, u∗1) ≥ 0, and

∑m
j=1 Ā

k
j (x1 + ∆x, uk) decreases in uk, it can be

concluded that the optimal decision for x1 + ∆x is greater than u∗k indicating that u∗k(x) is

increasing in x.

Adjusted mean excess return is less than zero (µ̄k < 0).

In this setting assume that the adjusted mean excess return µ̄k is less than zero. In the pre-

vious section we showed that under this assumption the feasible region is negative therefore

the investor is advised to short sell the kth asset.

Theorem 11 The optimal decision u∗k(x) is bounded and negatively decreasing in x if µ̄k <

0.

In this setting the feasible region is given by (4.49) and this clearly indicates that u∗k(x) <

0 is bounded. The proof will be similar to the single asset case. Fix the initial wealth level

x1. Let u∗k be the optimal decision for x1 so that Ā(x1, u
∗
k) = 0. Since the feasible region is

given by (4.49), one can deduce that there exist a 1 ≤ l ≤ m− 1 such that

β̂l+1 < u∗k ≤ β̂l.
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Moreover, Ākj (x1, u
∗
k) > 0 for all j ≤ l since u∗k ≥ ûj for all j ≤ l. Similarly Ākj (x1, u

∗
k) ≤ 0

for all j > l. Therefore, Ā (x1, u
∗
1) = 0 implies that

l∑
j=1

Ākj (x1, u
∗
k) = −

m∑
j=l+1

Ākj (x1, u
∗
k) > 0. (4.51)

Consider the point x1 + ∆x > x1 for some ∆x > 0. We now have

m∑
j=1

Ākj (x1 + ∆x, u∗k) =
l∑

j=1

Ākj (x1, u
∗
k) exp(−rf

∆x
βj

) +
m∑

j=l+1

Ākj (x1, u
∗
k) exp(−rf

∆x
βj

)

≤ exp(−rf
∆x
βl

)
l∑

j=1

Ākj (x1, u
∗
k) + exp(−rf

∆x
βl+1

)
m∑

j=l+1

Ākj (x1, u
∗
k)

= − exp(−rf
∆x
βl

)
m∑

j=l+1

Ākj (x1, u
∗
k) + exp(−rf

∆x
βl+1

)
m∑

j=l+1

Ākj (x1, u
∗
k)

=
[
exp(−rf

∆x
βl+1

)− exp(−rf
∆x
βl

)
] m∑
j=l+1

Ākj (x1, u
∗
k) < 0.

The first inequality follows from the fact that exp(−x) is a nonnegative decreasing

function. The second equality follows from (4.51) and similarly the final term is negative

since exp(−x) is a decreasing function and
∑m

j=k1+1 Ā
k
j (x1, u

∗
k) is negative by (4.51).

Since
∑m

j=1 Ā
k
j (x1 + ∆x, u∗k) < 0, and

∑m
j=1 Ā

k
j (x1 + ∆x, uk) decreases in uk, it can be

concluded that the optimal decision for x1 + ∆x is less than u∗k indicating that u∗k(x) is

decreasing in x.

So far we have shown that for the fixed kth asset, the optimal decision u∗k(x) is nonnega-

tively increasing when adjusted mean excess return µ̄k > 0 and it is nonpositively decreasing

otherwise. For any other asset j 6= k, we have shown that there is a linear relationship be-

tween any two assets by (4.27). Therefore, the optimal decision for asset j 6= k can be

obtained from (4.27). For example, assume that µ̄k is positive for an asset k. Then, for any

asset j 6= k, the optimal amount to be invested in jth asset is equal to µ̄juk/µ̄k. If µ̄j is

also positive, then uj is also increasing with respect to x and it is decreasing otherwise. To

summarize,

1. If µ̄k > 0 so that u∗k(x) > 0 and it is increasing in x, then

(a) µ̄j > 0 implies u∗j (x) = µ̄ju
∗
k(x)/µ̄k > 0 and it is increasing in x,

(b) µ̄j < 0 implies u∗j (x) = µ̄ju
∗
k(x)/µ̄k < 0 and it is decreasing in x.
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j Pj Kj Cj βj

1 0.25 3 2 3

2 0.30 2 1 8

3 0.35 4 2 9

4 0.10 4 2 17

Table 4.1: Parameters when m = 4

j Pj Kj Cj βj

1 0.60 3 2 3

2 0.40 2 1 8

Table 4.2: Parameters when m = 2

2. If µ̄k < 0 so that u∗k(x) < 0 and it is decreasing in x, then

(a) µ̄j > 0 implies u∗j (x) = µ̄ju
∗
k(x)/µ̄k < 0 and it is decreasing in x,

(b) µ̄j < 0 implies u∗j (x) = µ̄ju
∗
k(x)/µ̄k > 0 and it is increasing in x.

The consistency of the results can be observed from (4.27) and (4.47).

4.3 Illustrations

In this section, numerical illustrations of the previous results will be presented. We will first

start with the illustrations on the case with constant risk tolerance discussed in Section 3.1.

We will discuss both single and multiple risky assets cases. Then, the next subsection will

be divided into two main parts. The first part will be on one risky asset model and the

other one will be on multiple risky assets model.

The numerical examples in this section uses generated data. Throughout the section,

suppose that rf = 1.10 and the initial wealth level x of the investor varies between −100 and

100 with five increments. Moreover, if there are more than two utilities, then we arbitrarily

take m = 4. Assume also that utilities have the following probabilities and parameters: If

the number of the utilities is two, then we use the following parameters:



Chapter 4: Normal Distribution Model 38

Moreover, if there is only one risky asset to be considered, then it has a normal distri-

bution with variance σ2 = 0.004. If the mean excess return of the asset is positive, then we

take µ = 0.08; otherwise, it is µ = −0.04. Finally, if there are n risky assets to be considered,

then we consider n = 3 and asset returns have a multivariate normal distribution with

µ = [ 0.08 −0.04 0.01 ], σ =


4.000 0.664 3.492

0.664 4.000 1.258

3.492 1.258 25.136

 (4.52)

so that the correlation matrix becomes

ρ =


1.000 0.166 0.348

0.166 1.000 0.126

0.348 0.126 1.000

 .
Note that in the covariance matrix the values are obtained by multiplying the actual values

by 1,000 to simplify the values.

4.3.1 Constant risk tolerance

Throughout this section βj = β = 0.03 for all j.

Example 12 One risky asset and four utilities (n = 1, m = 4). Using the results

from Section 3.1, the optimal solution is

u∗(x) =
( µ
σ2

)
β =

(
0.08
0.004

)
0.03 = 0.6

when µ = 0.08 > 0, and

u∗(x) =
( µ
σ2

)
β =

(
−0.04
0.004

)
0.03 = −0.3

when µ = −0.04 < 0.

When µ = 0.08, u∗(x) = 0.6 implies that the investor is advised to invest 0.60 in the

risky asset and his remaining wealth x − 0.40 in the risk-free asset. Note that in case if

x < 0.6, then the investor borrows (or short sells the risk-free asset) 0.60−x at the risk-free

rate. Similarly, when µ = −0.04, the investor is advised to short sell the risky asset by an

amount of 0.30, and invest the proceeds as well as the initial wealth in the risk-free asset.

Moreover, observe that u∗ is independent of the values of x.
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Example 13 Three risky assets and four utilities (n = 3, m = 4). Using parameters

from Table 1 and (4.52), the optimal amount of money invested in the three assets are found

by solving the system of linear equations in (4.7). Hence, the optimal decision is

u∗(x) = βσ−1µ =
[

0.73 −0.40 −0.07
]

for all x. In this scenario, the investor is advised to short sell the second and third risky

assets by amounts of 0.40 and 0.07 respectively. On the other hand, the investor is advised

to buy the first asset for an amount of 0.73. The remaining sum x + 0.40 + 0.07 − 0.73 =

x − 0.26 is compensated by borrowing money at the risk-free rate. To summarize, in this

setting the investor is advised to

Buy 1st asset 0.73

Shortsell 2nd asset 0.40

Shortsell 3rd asset 0.07

Borrow/Lend money x− 0.26

Moreover, observe similarly that u∗ is independent of the values of x. It can also be noted that

although the mean excess return of the third asset is positive (0.01), the investor is advised to

short sell it. This is due to the reason that the variance of the third asset
(
25.136× 10−3

)
is

high and the third asset is positively correlated with the other two assets. Therefore, instead

of taking risk with the third asset, which also has low mean excess return, the investor is

advised to invest his money in the first asset. The second asset is also sold short because of

high negative mean excess return and positive correlation with the other assets.

4.3.2 Random risk tolerance

In this section, we will use the parameters from Table 2. Similarly, this section will be

divided into parts depending on the number of assets to be considered. We used MATLAB

to find the optimal policy u∗ for the single asset cases and we used GAMS for multiple asset

cases.

Example 14 One risky asset with positive mean excess return and two utilities

(n = 1, m = 2, µ > 0). If µ = 0.08 > 0, then the optimal policy is found by using (4.8) and

it is given in Figure 4.1.
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Example 15 One risky asset with negative mean excess return and two utilities

(n = 1, m = 2, µ < 0). If µ = −0.04 < 0, then the optimal policy is found by using (4.8)

and it is given in Figure 4.2.

Comparing Examples 14 and 15, it can be deduced that the optimal decisions are both

bounded from above and below. Especially a closer look shows that in both cases the optimal

decision is bounded below by (µ/σ2)β1 = 60 and above by (µ/σ2)β2 = 160 when µ = 0.08 >

0, and similarly bounded below by (µ/σ2)β2 = −80 and above by (µ/σ2)β1 = −30 when

µ = −0.04 < 0.

We can interpret the optimal policies as follows. For µ > 0, if the initial wealth of the

investor is say x = 20, then the investor should invest u∗(x) = 125.05 in the risky asset.

The remaining 125.05− 20 = 105. 05 is acquired by borrowing money at the risk-free rate.

For µ < 0, if the investor has an initial wealth of x = 20, then the investor is advised to

short sell the risky asset by an amount of |u∗(x)| = 68.42 and invest the money acquired

together with the initial amount in the risk-free asset. The total money invested in the

risk-free asset will be 68.42 + 20 = 88. 42.

Example 16 One risky asset with positive mean excess return and four utilities

(n = 1, m = 4, µ > 0). In this example we want to extend the results that we found in

Example 14. The optimal policy is found by using (4.40) and it is given in Figure 4.3.

Example 17 One risky asset with negative mean excess return and four utilities

(n = 1, m = 2, µ < 0). If µ = −0.04 < 0, then the optimal policy is again found by using

(4.40) and it is given in Figure 4.4.

Comparing Examples 16 and 17, one can observe that the optimal policy is similar to

the previous examples. They are both bounded below and above by (µ/σ2)β1 = 60 and

(µ/σ2)β2 = 160 respectively, but as we change the number of utilities the range of the

optimal decision varies significantly. Contrary to two the utilities case, the region −100 to

100 for the wealth level x is not sufficient to show proper boundaries of the optimal policy

in both Examples 16 and 17. To generalize these results we foresee that as the number of

different utilities increases, the region for which the optimal decision vary will extend as

well. For the analysis of the investor’s policy, the same line of reasoning can used as in

Examples 14 and 15.
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Figure 4.1: Optimal Policy for Example 14

Figure 4.2: Optimal Policy for Example 15
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Figure 4.3: Optimal Policy for Example 16

Example 18 Three risky assets and two utilities (n = 3, m = 2). In this example,

we will use the parameters from (4.52) together with Table 2. The optimal policy is found

by using (4.16) and given in Figures 4.5, 4.6 and 4.7 for assets 1,2 and 3 respectively.

Example 19 Three risky assets and four utilities (n = 3, m = 4). We will use the

parameters from (4.52) together with Table 2. This time, the optimal policy can be found by

using (4.45) and it is given in Figure 4.8, 4.9, and 4.10 for assets 1,2 and 3 respectively.

For both Examples 18 and 19, we can calculate the adjusted mean excess returns as

µ̄ = [ 0.8277 −0.4545 −0.0786 ] × 10−5 using (4.22). This indicates that, as expected,

the first asset is advised to buy while the other two are advised to short sell irrespective of

the wealth level.

Comparing Examples 18 and 19, it can be observed that same kind of characteristics

occur. In the single asset case of Examples 16 and 17, we observed from Figures 4.3 and

4.4 that as the number of preferences increase, the region [−100, 100] for the initial wealth

x is not sufficient to show the proper boundaries of the optimal decision for the asset. The

same observation is true here.

To illustrate how this policy is advised, consider Figues 4.5, 4.6 and 4.7. Suppose that

the initial wealth of the investor is x = 20. Then, the investor is advised to buy the first
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Figure 4.4: Optimal Policy for Example 17

asset for an amount of 144.88, and short sell the second and the third assets for an amount

of 79.55 and 13.76 respectively. The remaining sum 144.88− (79.55 + 13.76)− 20 = 31. 57

is compensated by borrowing money at the risk-free rate.
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Figure 4.5: Optimal Policy for the First Asset in Example 18

Figure 4.6: Optimal Policy for the Second Asset in Example 18
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Figure 4.7: Optimal Policy for the Third Asset in Example 18

Figure 4.8: Optimal Policy for the First Asset in Example 19
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Figure 4.9: Optimal Policy for the Second Asset in Example 19

Figure 4.10: Optimal Policy for the Third Asset in Example 19
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Chapter 5

EXTENSIONS

In this chapter, we will present some of the other results that we have found during this

research. The exponential distribution model is a special case of general distribution model

where there is only a single asset with exponentially distributed return. Although all of the

results found in Chapter 3 are valid, here we will use a different, more direct approach. With

this approach we will be able to identify the feasible region of the optimal policy explicitly.

In the second section, we will generalize the utility function. Instead of using exponential

utility functions, we will consider any concave utility functions and obtain some preliminary

results.

5.1 Exponential Distribution Model

In this setting, all the assumptions in the normal model at Chapter 4 are the same except for

the distribution of the risky asset. It is now exponential instead of normal so thatRe = R−rf
where R ∼ Exp(λ) with λ > 0. Similarly, this model will also have two subsections. In the

first subsection, the risk preference of the investor is constant. In the second subsection,

the investor has m = 2 risk preferences. This subsection is further divided into two parts.

In the first part, the expected excess return E [Re] = µ = (1/λ) − rf > 0 indicating that

λrf < 1, and, in the second part, expected excess return will be less than zero so that

λrf > 1. Throughout this section, we denote

E
[
e−αR

]
=

λ

α+ λ
(5.1)

E
[
Re−αR

]
=

λ

(α+ λ)2

for α ≥ 0.
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5.1.1 Constant risk tolerance

The optimality condition is

∑
j∈E

PjCj
β

exp
(
−
rfx

β

)
E

[
Re exp

(
−R

eu

β

)]
= 0.

If βj = β for all j, then it is sufficient and necessary that

E

[
(R− rf ) exp

(
−

(R− rf )u
β

)]
= 0

since all the coefficients are positive. This can be rewritten as

exp
(
rfu

β

)
E

[
(R− rf ) exp

(
−
(
u

β

)
R

)]
= 0

so that

E

[
(R− rf ) exp

(
−
(
u

β

)
R

)]
= 0

which implies

E

[
R exp

(
−
(
u

β

)
R

)]
= rfE

[
exp

(
−
(
u

β

)
R

)]
or

+∞∫
0

λx exp(−x
(
λ+

u

β

)
)dx = rf

+∞∫
0

λ exp(−x
(
λ+

u

β

)
)dx. (5.2)

The integrals in (5.2) exists only if (λ + (u/β)) > 0. Hence, for u > −λβ, it can be

concluded that the above integral would reduce to

λ((
u
β

)
+ λ
)2 =

λrf(
u
β

)
+ λ

or
1(

u
β

)
+ λ

= rf

which is the same as (
u

β

)
+ λ =

1
rf

and the optimal solution is

u∗ =
(

1
rf
− λ

)
β = (1− λrf )

(
β

rf

)
.
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We can also observe that

u∗ = −λβ +
β

rf
> −λβ

and the integrals in (5.2) exist. Here note that if λrf ≤ 1 or µ ≥ 0 then u∗ is positive. For

λrf > 1, since β/rf is always greater than zero, optimal decision exists and it is negative.

5.1.2 Random risk tolerance with n = 1 risky asset and m = 2 utilities

Next, assume that the risk preference is not constant and the investor has two different risk

preferences. Hence, the new optimality condition is

2∑
j=1

PjCj
βj

exp
(
−
rfx

βj

)
E

[
Re exp

(
−R

eu

βj

)]
= 0 (5.3)

which equals

2∑
j=1

PjCj
βj

exp
(
rf
βj

(u− x)
)[

E

[
R exp(− u

βj
R)
]
− rfE

[
exp(− u

βj
R)
]]

= 0 (5.4)

or

2∑
j=1

PjCj
βj

exp
(

(u− x)rf
βj

) +∞∫
0

λx exp
(
−x

λβj + u

βj

)
dx

∣∣∣∣∣∣∣∣∣∣∣∣−rf
+∞∫
0

λ exp
(
−x

λβj + u

βj

)
dx

 = 0.

Here note that both of the integrals exists only if
(
λ+ u/βj

)
> 0 for j = 1, 2. Therefore,

u > −λβj for j = 1 and 2. By the assumption β1 < β2, it can be concluded that the

integrals exist for

u > −λβ1. (5.5)

For any u > −λβ1, (5.4) together with (5.1) would reduce to

2∑
j=1

PjCj
βj

exp
(
rf
βj

(u− x)
)
 λ((

u
βj

)
+ λ
)2

−
 λrf(

u
βj

)
+ λ




which equals

P1C1

P2C2

β2

β1

exp
(
−rfx

β2 − β1

β1β2

)
= − exp

(
−rfu

β2 − β1

β1β2

)
[(

λ((
u
β2

)
+λ
)2

)
−

(
λrf(
u
β2

)
+λ

)]
[(

λ((
u
β1

)
+λ
)2

)
−

(
λrf(
u
β1

)
+λ

)]
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so that

P1C1

P2C2

β2

β1

exp
(
−rfx

β2 − β1

β1β2

)
= − exp

(
−rfu

β2 − β1

β1β2

) ( β2
u+λβ2

)2
−
(

rfβ2

u+λβ2

)
(

β1
u+λβ1

)2
−
(

rfβ1

u+λβ1

)
and the optimality condition is

P1C1

P2C2

β2

β1

exp
(
−rfx

β2 − β1

β1β2

)
= − exp

(
−rfu

β2 − β1

β1β2

)(
u+ λβ1

u+ λβ2

)2((1− λrf )β2 − rfu
(1− λrf )β1 − rfu

)
.

Like in the normal model, divide the above equation into two parts so that

g(x) = h(u) (5.6)

where

g(x) =
P1C1

P2C2

β2

β1

exp
(
−rfx

β2 − β1

β1β2

)
h(u) = − exp

(
−rfu

β2 − β1

β1β2

)(
u+ λβ1

u+ λβ2

)2((1− λrf )β2 − rfu
(1− λrf )β1 − rfu

)
First note that g(x) is always positive and, in order for (5.6) to hold,(

(1− λrf )β2 − rfu
(1− λrf )β1 − rfu

)
< 0

and for that to happen, there are two cases:

1. (1− λrf )β2 − rfu > 0 and (1− λrf )β1 − rfu < 0, (5.7)

2. (1− λrf )β2 − rfu < 0 and (1− λrf )β1 − rfu > 0.

Each case has different outcomes depending on (1− λrf ) being negative or positive. Also,

note that (1 − λrf ) determines whether the expected excess return is greater than or less

than zero. Both cases will be considered separately.

Excess return greater than zero (λrf < 1).

Returning to (5.6), in order for this equality to hold, (5.7) must be negative and this can

be achieved only if (1 − λrf )β2 − rfu > 0 and (1 − λrf )β1 − rfu < 0 or (1 − λrf )β1/rf <

u < (1−λrf )β2/rf . Denote this region by I = ((1− λrf )/rf ) [β1, β2]. Therefore, (5.6) holds

only on I. Note also that u is always positive hence (5.5) is also satisfied.
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For the analysis of g(x) and h(u), g(x) = h(u) implies that the optimal decision is

u∗(x) = h−1(g(x)). For that, first consider

∂h(u)
∂u

= exp(rfu(
1
β2

− 1
β1

))(u+ λβ1)(β2 − β1)
Au4 +Bu3 − Cu2 +Du− E

β1β2(u+ λβ2)3(rfu− (1− λrf )β1)2
(5.8)

where

A = r3
f

B = r2
f (β2 + β1)(2rfλ− 1)

C = r2
fλ((1− λrf )(β2

1 + 4β1β2 + β2
2) + β1β2)

D = 2λrfβ1β2(β1 + β2)(1− λrf )2

E = β2
1β

2
2λ(1− λrf )((1− λrf )2 + 1).

Theorem 20 The optimal decision u∗(x) = h−1(g(x)) is bounded and positively increasing

in x.

Proof. Since the feasible region is I = ((1− λrf ) /rf ) [β1, β2] ⊂ [0,+∞), u∗(x) > 0

is bounded. For proving u∗(x) is increasing in x, it is sufficient to show that (5.8) is less

than zero. First observe that every term in (5.8) is always positive except P (u) = Au4 +

Bu3 − Cu2 + Du − E. So, in order to show that h(u) is decreasing on I, one needs to

show that P (u) is negative on I. Denote the end points of I as I1 = ((1− λrf )/rf )β1and

I2 = ((1− λrf )/rf )β2. Then

P (I1) = −
β2

1β2(1− λrf )((1− λrf )β1 + λrfβ2)
rf

< 0

P (I2) = −
β1β

2
2(1− λrf )((1− λrf )β2 + λrfβ1)

rf
< 0

In this proof a method similar to the one in the normal case will be used. A polynomial

of fourth degree can have at most three turning points since

P ′(u) = 4Au3 + 3Bu2 − 2Cu+D

is a polynomial of order three.

Next, observe the following:
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1. limu→−∞ P
′(u) = −∞ and P ′(0) = D > 0 implies that there exists at least one turning

point in (−∞, 0].

2. P ′(I1) = −β2
1(1− λrf )((1− λrf )(β2− β1) + 2β2) < 0 and P ′(0) = D > 0 implies that

there exists at least one turning point in [0, I1].

3. Observe that P ′(I2) = β2
2(1− λrf ) ((1− λrf ) (β2 − β1)− 2β1) . Moreover, P ′(I2) < 0

when (1− λrf )(β2 − β1)− 2β1 < 0 and P ′(I2) ≥ 0 otherwise.

• If ((1− λrf ) (β2 − β1)− 2β1) < 0 then, P ′(u) < 0 and limu→+∞ P
′(u) = +∞

implies that there exists at least one turning point in [I2,+∞)

• If ((1− λrf ) (β2 − β1)− 2β1) ≥ 0 then, P ′(u) ≥ 0. This fact together with

P ′(I1) < 0 implies that there exists at least one turning point in [I1, I2].

Since P ′(u) is a third degree polynomial by the above observations, it can be concluded

that P (u) has three turning points either in (−∞, 0], [0, I1] and [I2,+∞) or (−∞, 0], [0, I1]

and [I1, I2]. In the first case since P (I1) < 0 and there is no turning point in I, it can be

concluded that for every u in I, P (u) is negative. In the second case, there is a turning

point in I but P ′(u) is decreasing at I1 and it starts increasing at some point in I but it

increases up to P (I2) which is negative. This means for all u in I, P (u) is negative also

in this case. Hence, in any case, it is shown that P (u) is negative. Therefore the optimal

decision u∗(x) = h−1(g(x)) is increasing in x.

As a result it can be concluded that h(u) is decreasing on the feasible region. This

result also indicates that as x increases, u(x) also increases. This follows from the fact that

x = g−1(h(u)). Notice that this result is exactly the same as the one obtained in the normal

model. Therefore, all of the results in the normal distribution model of Chapter 4 are also

true for the exponential distribution as well.

Excess return less than zero (λrf > 1).

Motivated by the normal model, we tried to prove that the optimal decision u∗(x) is de-

creasing when λrf > 1. It can be easily shown that u∗(x) is negative when λrf > 1

but when we tried to prove that it is decreasing, we were supposed to show that P (u)
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= Au4 + Bu3 + Cu2 + Du + E with the same parameters from the previous section, is

positive on the feasible region. Since P (u) is a polynomial of fourth degree we tried to find

its roots and tried to order them. We used various methods from abstract algebra, but we

couldn’t prove the desired result using this line of analysis. However, since the optimal de-

cision is negatively decreasing when the mean excess return is negative for any distribution,

the following theorem follows trivially from Theorem 3.2.2.

Theorem 21 The optimal decision u∗(x) = h−1(g(x)) is bounded and negatively decreasing

in x.

5.2 General Distribution with Concave Utility Functions

In this section we want to generalize the concepts we introduced so far. Instead of using

exponential utility functions, we will generalize the model to any concave utility function.

Concave utility functions are widely used in the literature and they are mostly used to

explain the behaviors of risk averse investors. We assume that the investor will have m

different utilities each of which will stand for a different risk preference. In mathematical

terms, the jth utility of the investor with the given wealth level x will be represented as

U(j, x). The expected utility for m different risk preferences is

g(x, u) =
m∑
j=1

PjE
[
U
(
j, rfx+ (Re)′ u

)]
.

But, U(j, x) is now any concave function, twice differentiable in x for utility j. For technical

reasons, assume that U(j, x) is positive for all j. If the chosen class of utility functions are

exponential utility functions, then

U(j, x) = Kj − Cj exp(−x/βj)

where −U ′′(j, x)/U ′(j, x) = 1/βj denotes the risk preference for the market state j.

For concavity analysis, consider the gradient

∇kg(x, u) =
∂g(x, u)
∂uk

=
m∑
j=1

PjE
[
RekU

′(j, rfx+ (Re)′ u)
]

so that the Hessian is

Hk,l =
∂2g(x, u)
∂uk∂ul

=
m∑
j=1

PjE
[
RekR

e
lU
′′(j, rfx+ (Re)′ u)

]
.



Chapter 5: Extensions 54

For any vector z = [z1, z2, · · · , zn], note that

z′Hz =
m∑
j=1

PjE

( n∑
k=1

zkR
e
k

)2

U ′′(j, rfx+ (Re)′ u)

 ≤ 0

since we assumed that U(j, x) is a concave function in x for all j. Therefore, the optimality

condition is given by
∂g(x, u)
∂uk

=
m∑
j=1

Akj (x, u) = Ak(x, u) = 0

for all k where

Akj (x, u) = PjE
[
RekU

′(j, rfx+ (Re)′ u)
]
.

By a similar argument in Chapter 3, one can show that he optimal decision u∗(x) =

[u∗1(x), u∗2(x), · · · , u∗n(x)] is a unique continuously differentiable function in x whenever it

exists.

For the single asset case (n = 1), observe that

A(x, 0) =
m∑
j=1

Aj(x, 0) =
m∑
j=1

PjE
[
ReU ′(j, rfx)

]
= E [Re]

m∑
j=1

U ′(j, rfx)Pj

since the utility is deterministic as a function of x. The sign of A(x, 0) depends on the sign

of E [Re] = µ due to the fact that U(j, x) is decreasing in x. Consider the derivative of

A(x, u) with respect to u. It satisfies

∂A(x, u)
∂u

=
m∑
j=1

PjE
[
(Re)2 U ′′(j, rfx+Reu)

]
≤ 0

since U(j, x) is concave. Therefore, A(x, u) is decreasing in u. Hence, if µ > 0, then the

optimal decision u∗(x) is positive for all x since A(x, u) is decreasing and A(x, 0) is positive.

With a similar reasoning we can deduce that if µ < 0, then the optimal decision u∗(x) is

negative for all x since A(x, u) is decreasing and A(x, 0) is negative.

For the monotonicity structure of the optimal decision u∗(x), we tried to obtain similar

results with the exponential utility functions case. But since we lacked the characteristic

attributes of exponential utility functions, we could not obtain a similar characterization.
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Chapter 6

CONCLUSIONS

Decision making under uncertainty has always been important line of research. Although

Expected Utility Theory (EUT) is widely used in the research community, there is growing

interest in non-Expected Utility Theories due to shortcomings of certain assumptions of

EUT. The idea that the investors behave exactly the same under uncertainty was criticized

with empirical evidence. Therefore, for modeling the behaviors of the investors in such

setting, it is reasonable to add a random component to the structure of the model.

There have been a number of suggestions to model stochastic choice and in this thesis

we use the so called “random preference approach”. Loomes and Sugden [17] claim that

when facing a decision problem, individuals are often uncertain about their preference. It

basically means that the decision makers do not have a unique preference for their utilities,

but there is a randomness involved about their preferences. Motivated with this idea, we

used the random preference approach in portfolio optimization. Utility based portfolio

selection is a popular approach used in the research community and we followed this line

of research in this thesis. We basically combined the random preference approach with

expected utility maximization. We mainly used exponential utility functions to represent

the behavior of investors facing investment decisions. It is widely used both in theory and

practice. Although the utility of the investor is always exponential, the risk preference

parameter or the risk tolerance is random. If this parameter is not random, Çanakoğlu and

Özekici [7] showed that the optimal decision of the investor is independent of the initial

wealth. But, we proved that this is no longer true if the risk preference of the investor is

random.

We obtained cthe haracterization of the optimal policy and the expected utility. We

showed that the expected utility function is a concave function of the decision variables

and, therefore, the optimal decision is acquired by setting the gradient equal to zero. We

also showed that the optimal policy is unique and continuous. In Chapter 3, we assumed
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that the return of the risky assets have an arbitrary distribution, and we showed that the

optimal decision is positively increasing in the wealth level if the mean excess return is

positive, and it is negatively decreasing otherwise. In Chapter 4, we analyzed the case

where the returns of the risky assets are described by a multivariate normal distribution.

The results we found in Chapter 3 are still valid and the structure of the optimal policy

depends on the “adjusted mean excess return”. We showed that if the adjusted mean excess

return is positive, then the optimal decision is positively increasing in the wealth level, and

it is negatively decreasing otherwise. We also illustrated our results by some examples.

In Chapter 5, we analyzed some extensions including a risky asset with exponential

return distribution and showed its consistency with the results found in Chapter 3. We

also analyzed a generalization where the utility of the investor is described by any concave

utility function rather than the exponential utility function. For the single asset setting, we

showed that the optimal decision is positive if the mean excess return is positive, and it is

negative otherwise.

Finally, for future research, one can extend the idea we presented in this thesis in several

directions. Here, we assumed that the behavior of the investor is random but the returns

of the risky assets are independent of states of the market. This idea can be extended by

assuming that the returns of the risky assets are dependent on the market state as well as the

risk preferences. Another idea might be extending this problem to the multiperiod setting.

Although we already showed that the value function can not be evaluated analytically while

considering the next period, a numerical analysis of multiperiod case can be performed.

Most of our research concentrated on the normal distribution model, considering cases with

other important distributions may also end up with useful characterizations on the structure

of the optimal policy.
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