Geometric Measure Theory
And

The Double Bubble Conjecture

by

Metin Alper Giir

A Thesis Submitted to the
Graduate School of Sciences and Engineering
in Partial Fulfillment of the Requirements for

the Degree of

Master of Science
in

Mathematics

Kocg¢ University

September 2009



Kog University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Metin Alper Giir

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Barig Cosgkuntizer, Ph. D. (Advisor)

A. Muhammed Uludag, Ph. D.

Sinan Unver, Ph. D.

Date: 10 September, 2009




ABSTRACT

In this thesis we will study the geometric measure theory and the double bubble
conjecture. Our treatment of the geometric measure theory will be introductory and
yet the theorems and proofs will be studied thoroughly. We will then, as an application
of the geometric measure theory, present the double bubble conjecture in R? and the
double bubble conjecture in R3.

The geometric measure theory is a branch of differential geometry which deals with
maps and surfaces that are not necessarily smooth. It extends the notions of differential
geometry with the use of measure theory. One of the most important problems of the
geometric measure theory, that has served as the starting point of this field, is to find
a spanning set of a given boundary in the Euclidean space with the least area and to
decide whether this set has any geometric significance and whether it is unique.

The double bubble conjecture in R? asserts that the standard double bubble in R?
is the unique perimeter minimizing enclosure of two given quantities of area in R2.
The double bubble conjecture in R? has been proven jointly by J. Foisy, M. Alfaro, J.
Brock, N. Hodges, and J. Zimba. We will give a complete proof of this conjecture and
before giving a sketch of the proof of the double bubble conjecture in R? we will study
the structure theorem which has been proven by M. Hutchings. The structure theorem
asserts that except for the standard double bubble there is only one hypersurface that
may be a candidate for an area minimizing set enclosing two quantities of volume in
R3. M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, by using an original stability
argument, have ruled out the possibility of any minimizer other than the standard
double bubble and hence they have showed that the standard double is the unique area
minimizing double bubble enclosing and separating two given quantities of volume in
R3.
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OZET

Bu tezde geometrik 6l¢ii teorisini ve ¢ift kabarcik zanini ¢alisacagiz. Geometrik 6lgii
teorisini isgleyigimiz baslangic diizeyinde olacak ancak teoriler ve kanitlar1 detayl bir
sekilde galigilacaktir. Daha sonra, geometrik 6l¢ii teorisinin bir uygulamasi olarak, iki
ve ¢ boyutlu Oklid uzaylarinda ki ¢ift kabarcik zanlarini tanitacagiz.

Geometrik 0Olcii teorisi diferansiyel geometrinin, diizgiin olmayabilen fonksiyon ve
yizeyler ile ugragan, bir koludur. Bu alan diferansiyel geometrinin fikirlerini, 6lgii
teorisini kullanarak, genigletmektedir. Geometrik 6l¢ii teorisinin baglangic noktasini
olugturan en énemli sorularindan biri, Oklid uzayinda verilen bir smira sahip en diisiik
alanli kiimeyi bulmak, bu kiimenin herhangi bir geometrik 6zelligi olup olmadigina ve
tek olup olmadigina karar vermektir.

Iki boyutlu Oklid uzayinda ki cift kabarcik zam standart cift kabaragin verilen
iki alam1 kaplayan ve ayiran en diisik ¢eper uzunluguna sahip tek kiime oldugunu
one siirmektedir. Iki boyutlu Oklid uzayinda ki ¢ift kabarcik zam J. Foisy, M. Al-
faro, J. Brock, N. Hodges ve J. Zimba tarafindan beraberce gosterilmistir. Bu zanin
tam kanitini verecegiz ve {i¢ boyutlu Oklid uzayinda ki cift kabarcik zanmin kamtimin
taslagini vermeden 6nce M. Hutchings tarafindan kanitlanan yap: teorisini caligacagiz.
Yap1 teorisi, standart ¢ift kabarcik haricinde ¢ boyutlu Oklid uzayinda iki hacmi
kaplayp, smir yilizeyinin alani en kiiciik olabilecek tek bir alternatifin oldugunu one
siirmektedir. M. Hutchings, F. Morgan, M. Ritoré ve A. Ros, orjinal bir stabilite savi
kullanarak, standart ¢ift kabarcik haricinde ki olasiligi yok saymiglar ve boylece stan-
dart cift kabarcigm ii¢ boyutlu Oklid uzayinda verilen iki hacmi kaplayan ve ayiran
minimum yiizey alanh tek kiime oldugunu gostermislerdir.
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1. INTRODUCTION

Geometric measure theory is a branch of differential geometry which deals with maps
and surfaces, that are not necessarily smooth, by using the techniques of measure
theory. The most notable mathematicians who have worked on the subject include
Herbert Federer, Wendell Fleming, Fred Almgren, and Ennio De Giorgi.

The problem that serves as an archetype for problems in geometric measure theory
is to find the surface of least area which spans a given boundary in R™. The greatest
challenge to surmount towards solving the problem is to find a workable space of
surfaces.

Towards solving the problem, originally, one considered the two dimensional sur-
faces, defined as mappings of the disk. In 1930’s J.Douglas in [§] and T.Rado in [24]
showed that every smooth Jordan curve bounds a disk of least area and then Brian
White showed in [2§] that in higher dimensional surfaces the geometric measure the-
ory solution also solves the mapping problem. Even though considering surfaces as
mappings had substantial success, one of its greatest drawbacks was that the natural
topology lacks compactness properties.

The brute force method for finding a surface of least area with a given boundary has
the following steps:

(1) take a sequence of surfaces with areas decreasing to the infimum,
(2) choose a convergent subsequence,
(3) show that the limit surface is the surface of least area.

Since the space of surfaces realized as mappings of the disk is not compact, by sending
out thin tentacles toward every point of rational coordinates, the sequence could include
all of R” in its closure.

A rectifiable current is an m-dimensional oriented surface of the geometric mea-
sure theory. The applicable functions f: R™ — R need not be smooth, but merely
Lipschitz,

|f(z) = f(y)| < Clz —y| for all z,y € R™,

for some constant C' > 0.

There is an m-dimensional measure on R", called Hausdorff measure, 'H™ which
agrees with the classical notion of a surface area of an embedded manifold, but it is
defined on all subsets of R™.

A Borel subset B of R" is called (H™, m)-rectifiable if B is a countable union of
Lipschitz images of bounded subsets of R™ with finite Hausdorff measure. A rectifiable
set is a good generalization of a surface of differential geometry because it has a tangent
plane at almost every point.

A rectifiable current is an oriented rectifiable set with integer multiplicites, finite
area, and compact support. We can integrate a smooth differential form ¢ over an
oriented rectifiable set S, and hence view S as a current : a linear functional on

differential forms,
S

This approach induces a topology on the space of surfaces that is dual to a topology
on differential forms. The compactness theorem shows that this new topology has
useful compactness properties.
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There is also a boundary operator d from m-dimensional rectifiable currents to
(m — 1)-dimensional rectifiable currents given by

(0S)(p) = S(dy)

where dy is the differential of ¢. By Stoke’s theorem, this definition of boundary,
05, coincides with the usual notion of boundary for smooth, compact manifold with
boundary.

The compactness theorem asserts that the set of all m-dimensional rectifiable cur-
rents 1" in a closed ball in R", such that the boundary 07T is also rectifiable and such
that the area of both T" and 0T are bounded by a positive constant ¢, is compact in a
weak topology.

The regularity theorem states that the area minimizing rectifiable currents are not
arbitrary objects and have geometric significance. Namely, a two dimensional area
minimizing rectifiable current in R? is a smooth embedded manifold and for m < 6,
an m-dimensional area minimizing rectifiable current in R™*! is a smooth embedded
manifold.

The Double Bubble Conjecture in R? [14] states that the set having the least perime-
ter such that it encloses and separates two given quantities of area is the standard
double bubble. The Double Bubble Conjecture in R? was jointly proved in 1990 by J.
Foisy, M. Alfaro, J. Brock, N. Hodges, and J. Zimba. In 1997 Michael Hutchings in
his paper [17] showed that minimal double bubbles in R™ have no empty chambers and
the enclosed regions are connected in certain cases. He concluded his paper with the
proof of the structure theorem which asserts that any minimal double bubble in R™ is
either the standard double bubble or a surface of revolution about some line consisting
of a topological sphere with a single tree of annular bands attached. In the year of
2000 Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros have jointly
proven in [I8] that the standard double bubble in R? is the unique area minimizing
double bubble enclosing two volumes in R3.

1.1. Synopsis.

Section 2: We will define the s-dimensional Hausdorff measure in R". We will
introduce the s-dimensional Hausdorff dimension of a set in R™ and point out
in section 4, after some preliminary work, that the Hausdorff dimension gener-
alizes the dimension of an embedded manifold. Hausdorff measure in R” is a
generalization of the Lebesque measure £" in R™. In particular, H"-measure of
a set in R™ coincides with its £"-measure. Hausdorff measure also agrees with
the classical mapping volume of an embedded manifold. Namely, H®-measure
of an s-dimensional embedded manifold in R"™ equals to its volume. The main
references for this section are the books by Evans & Gariepy [9], Krantz &
Parks [19], and Morgan [22].

Section 3: This section gives a quick overview of manifolds in the Euclidean
space and the integral of a scalar function over a manifold. First we will present
the k-dimensional volume of a parallelepiped in R™ and move on to describe
the k-dimensional manifold in R™ and its volume. Many of the definitions and
results obtained in this section will be used throughout this thesis. The main
reference for this section is the book by Munkres [23].
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Section 4: In this section we will study the Lipschitz functions. Lipschitz func-
tions in geometric measure theory serve a purpose similar to smooth functions
in manifold theory. In particular, by Rademacher’s theorem (4.2.1]) Lipschitz
function is differentiable a.e. and hence it can be used as a coordinate map of
an embedded (Lipschitz) manifold. We will then study the area formula which
connects the manifold theory with the geometric measure theory. In particular,
by using the area formula we can show that the Hausdorff measure of an embed-
ded manifold is equal to its volume and that its Hausdorff dimension coincides
with its classical dimension. We will introduce the coarea formula, which is a
penultimate (“curvilinear”) generalization of the Fubini’s theorem. The coarea
formula implies that the £"-measure of a measurable set A C R" is equal to the
integral of the Hausdorff measure of the restriction of A to various level sets.
Finally we will define the rectifiable sets, which are the generalized surfaces of
the geometric measure theory and present some of their properties. The main
references for this section are the books by Evans & Gariepy [9] and Federer [10].

Section 5: This section gives a quick overview of differential forms and the in-
tegral of forms over manifolds. The culmination of our effort in the section is
the generalized Stoke’s theorem, which will be further generalized in section
6. The generalized Stoke’s theorem relates the integral of a differential form
over the boundary of the manifold with the integral of its differential over the
manifold itself. The main reference for this section is the book by Munkres, [23].

Section 6: In this section we will study the currents. The space of currents is
the dual of space of differential forms with compact support. A current can be
seen as a generalized surface since every oriented submanifold of R of compact
support defines by integration a linear functional on forms. Being a generalized
surface, a current admits a new definition of boundary and by Stoke’s theo-
rem this new definition coincides with the classical notion of the boundary of a
manifold. We will define the slice of a current and present some theorems that
give an ultimate generalization of the coarea formula and hence of the Fubini’s
theorem. The slice of a current, when it is a submanifold of the Euclidean
space, is the restriction of the manifold to the image set of a Lipschitz map.
We will introduce the deformation theorem which implies, when restricted to
C'! manifolds with compact support, that these manifolds can be approximated
by simplices. We will prove the closure theorem which gives useful connections
between different types of currents and the compactness theorem which asserts
that a certain collection of “nice” currents is compact in the weak topology.
Then using the compactness theorem we will prove one of the most important
theorems in geometric measure theory asserting that an area minimizing “nice”
current with a given boundary exists. We will give a quick overview of Calcu-
lus of variations, just enough for our present purpose, and derive the minimal
surface equation. We will give survey of results asserting, in certain cases, that
the solution of the area minimization is a smooth embedded manifold, except
perhaps for a set of small Hausdorff dimension. We will generalize our defini-
tion of currents to admit surfaces that are not compact; these currents locally
coincide with the previously defined currents with compact support. In the last
subsection we will prove the most famous result in the calculus of variations:
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that a straight line is the shortest distance between two points. The main ref-
erences for this section are the books by Federer [10], Gelfand & Fomin [15],
and Morgan [22].

Section 7: In this section we will present the least perimeter function and the
proof of the double bubble conjecture in R2. One of the consequences of F.J.
Almgren’s work [2] is the existence of a set in R” enclosing and separating a
given m quantities of volume in R™ with the minimal surface area. Thus we
can define the least perimeter function of two variables giving the value of the
least perimeter of an enclosure of two quantities of area in R%. We will then
present our proof of a known fact that this function is continuous. J. Taylor
in [27] has showed that an area minimizing bubble cluster B in R?® consists of
real analytic constant mean curvature surfaces meeting smoothly in threes at
120° angles along smooth curves. Then F. Morgan has showed in [20] that a
perimeter minimizing bubble cluster in R? consists of arcs of circles (or line
segments) meeting in threes at angles of 120°. Using the existence of the least
perimeter function and the result of Morgan, J. Foisy, M. Alfaro, J. Brock, N.
Hodges, and J. Zimba have jointly showed in [14] that the standard double
bubble is the unique perimeter minimizing enclosure of two areas in R2.

Section 8: In this section we will study the structure of area minimizing double
bubbles in the Euclidean space. We will present a rough sketch of the proof of
the double bubble conjecture in R?, and give a survey of double bubble problems
in general ambient space. Almgren has showed in [2] that given m volumes in
R™, one can find an enclosure of least surface area. M. Hutchings has proved in
[T7] that for the case m = 2 the enclosure is either the standard double bubble
or a surface of revolution consisting of a topological sphere with a single tree of
annular bands attached. Hutchings has also presented several properties of the
least area function and introduced their implications, the most important of
which is that in a least area enclosure the exterior must be connected. We will
give a rough sketch of the proof of the double bubble conjecture in R? which has
been shown jointly by M. Hutchings, F. Morgan, M. Ritoré, and A. Ros in [I§].
In the proof of the double bubble conjecture in R? the major difficulty is ruling
out the surface of revolution consisting of a topological sphere with a single
tree of annular bands attached, which is the only alternative of the standard
double bubble according to [I7]. This has been accomplished by an original
stability argument (8.4.1]) and consequently the standard double bubble in R?
is the unique area minimizing set enclosing and separating two volumes in R3.
Finally we will give a survey of double bubble problems in general ambient
space.
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2. HAUSDORFF MEASURE, ISODIAMETRIC INEQUALITY, DENSITY

In this section we will introduce the s-dimensional Hausdorff measure of objects in
R™. The Hausdorff measure was invented by Felix Hausdorff out of necessity for mea-
suring lower dimensional objects in the Fuclidean space. We will define the Hausdorff
dimension, but postpone until the fourth section the observation of how it generalizes
our usual notion of dimension of a set in the Euclidean space. We will introduce the
Steiner symmetrization which is a procedure of taking a symmetrization of an object
with respect to a hyperplane in the Euclidean space. And as a result of our study
of Steiner symmetrization we will be able to prove the Isodiametric inequality which
states that among all objects of fixed diameter the sphere has the largest volume. The
ultimate result of this section is the proof that n-dimensional Hausdorff measure in
R™ coincides with the n-dimensional Lebesque measure in R™. In the last part of this
section we will generalize the notion of continuity and differentiability of functions with
the use of density of sets and show that every Lebesque measurable function is almost
continuous at almost every point in its domain. The main references for this section
are the books by Evans & Gariepy [9], Krantz & Parks [19], and Morgan [22].

2.1. Measures And Measurable Functions.

Definition 2.1.1. Let X denote a set, and 2% the collection of all subsets of X. A
mapping ji: 2% — [0, 00| is called a measure on X if

(1) u(0) =0, and

(2) pw(A) <>77 w(Ay) whenever A C Uy, Ag.
A real-valued set function satisfying the property ([2) is called countably subadditive.

Definition 2.1.2. A set A C X s called p-measurable if for each set B C X,
u(B) = u(B N A) + (B 1 A°)

Definition 2.1.3. A collection A C 2% is called a o-algebra if
(1) 0, X € A;

(2) Ae Aimplies X — A e A;

(3) Ay € A(k=1,2,...) implies | J,o, Ax € A.

Definition 2.1.4. The Borel o-algebra of R™ is the smallest o-algebra of R™ containing
the open subsets of R™. The elements of the Borel o-algebra are called Borel sets.

Definition 2.1.5.

(1) A measure p on X is regular if for each set A C X there exists a u-measurable
set B such that A C B and u(A) = u(B).

(2) A measure p on R™ is called Borel if every Borel set is j-measurable.
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(3) A measure pn on R™ is Borel reqular if p is Borel and for each A C R™ there
exists a Borel set B such that A C B and u(A) = u(B).

(4) A measure pn on R™ is a Radon measure if p is Borel reqular and p(K) < oo
for each compact set K C R™.

Definition 2.1.6. Let X be a set and Y a topological space. Assume p is a measure
on X. A function f: X — Y is called p-measurable if for each open subset U C Y,
f~HU) is p-measurable.

Theorem 2.1.7. Let f: R" — [0, 00| be L™ (Lebesque)-measurable, then
A={(r,y):zeR", 0<y < f(z)}

is L -measurable.

2.2. Hausdorff Measure.

Definition 2.2.1.
(1) Let ACR™, 0 < s<o00,0<d<c0. Define

- diam C;
{Za ( am > AQUC’]-, diam Cj§5}

Jj=1 J

where
7.‘-5/2 r > —x,,s—1 d
Oé(S) = m, (S) = /0 e I Z.

Since any subset A C R™ can be covered by countably many subsets of R™ with
diameter < 0, H3(A) exists for each § > 0.

(2) H*(A) = lims—o H3(A) = sups.o Hi(A) exists and it is called the s-dimensional
Hausdorff measure on R™.

Remark 2.2.2.
e 0 — 0 is required so that the coverings approximate the local geometry of the
set A.
e Note that
™ s
= = n 1

is the Lebesque measure of the unit ball in R”.

Theorem 2.2.3. H* is a Borel reqular measure (0 < s < 00).

Proof.
(1) Claim #1: H3 is a measure.
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Proof of Claim # 1. Choose {Ay}ren € R™, suppose that
A, C Uj C’]’?, diam C’JI»C < ¢ and

°° diam C*
H3(Ay) + >Za (mﬂ )

hold for eack k£ € N. WLOG we may assume that for each k € N, Hj(A;) < oo
Then

JArclJcf, diam ¢ <6

k )
(S;(U k) < Z (dlam C’“)
me (Ap) +@§ZH§(A,€)+6
k k

Since € > 0 is arbitrary H;j is countably subadditive.
Claim #2: H® is a measure.

Proof of Claim # 2. We need to show that H?® is countably subadditive. Let
{Ak}ren € R”, then for every § > 0

H3 (U Ak> <Y HH(AR) <) HA(A).

e (U, Ad) < 5, Ho(AL).
Claim # 3: H® is a Borel measure.

Proof of Claim # 3. We want to show that every Borel set is measurable and in
order to accomplish this we need to show that H* satisfies the Carathéodory’s
criterion. In particular, we need to show that given two sets A, B C R" such
that dist (A, B) > 0, H® satisfies

(AU B) = H*(A) + H*(B).

Choose A, B C R, dist(A, B) > 0 and let 0 < 0 < d/4 where d = dist (A, B).
Let {C} }ren be a sequence of subsets of R™ such that AUB C |, Cj, with diam
Ch < 9§ for each £ € N. Define

A={C;|AnC; £0} B={C;| BNC; +0}.

Then
Ac |G, BC ), AnB=0
CieA c;eB
Za(s) (dlam CJ>
, 2
7j=1
diam C;\° diam C
22@(3)( : J) +Za(s)( : )
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> H(AU B) > H3(A) + H}(B)
= H*(AU B) > H;(A) + H5(B) where 6 > 0 is arbitrary
= H*(AUB) > H*(A) + H*(B).

So H? is a metric outer measure and by the Caratéodory’s criterion every Borel
set is measurable.

(4) Claim # 4: H® is a Borel regular measure.

Proof of Claim # 4. Since diam C = diam C for every C' C R™ we can define
H; as follows:

H3(A) = inf {Za(s) (dlam Cj) Acl oy, diam ¢, <6, ¢ closed} .
J

, 2
J

Let A C R", H*(A) < oo then H3(A) < oo for every § > 0. For each k € N
choose closed sets {C}}jen so that diam C; < 1/k for every j € N,

ACUC’“ and Z (dlam Ck) < H(A) + 1k

Define Aj, = U , B = ﬂk Ay, then A C B is a Borel set containing A. Now
we need to show that their Hausdorfl measure coincide.

diam C’“
1k(B) < Z < ) <H;j(A) +1/k

holds for every k € N,
H*(B) = klim Hi)(B) < khm Hij(A) + 1/k =H(A). O

Theorem 2.2.4 (Elementary Properties Of Hausdorff Measure).
(1) H° is a counting measure.

(2) H' = L' on R.
(3) H* =0 on R™ when s > n.
(4) H*(AA) = X¥H*(A) A >0, ACR"

(5) H¥(T(A)) = H*(A) T:R"— R" isometry, A C R".

Proof.
(1) We need to show that H" assigns 1 to each singleton.

HO({a}) = (lsi_r)r(l)inf {Z a(0) (dun;l < ) {a} € UCJ> diam Cj < 5}

J

=1.
Then HY(A) =3

sea L, A C R™ is the counting measure.
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(2) We need to show that 1-dimensional Hausdorff measure and 1-dimensional
Lebesque measure coincide.

Let ACR, § > 0.
LYA) = inf{Zdiam C;|AC Uq}
J J

< inf {Zdiam C;lAc| ]y, diam C; < 5}
J

since a(1) =2
= H;(A) < H'(A).
Define I, = [kd, (k + 1)d] k € Z, then diam (C; N ;) < 6 and

Z diam (C; N I;) < diam C}

k=—o00

L'(A) = inf {Zdiam C;|AC UCj}
zinf{z i diam (C; N I,) | AQUC]}

j k=—o J

> Hi(A).
Since 6 > 0 is arbitrary £!'(A) > H'(A) and hence H' = L.

(3) We want to show that the s-dimensional Hausdorff measure on R" is the zero
function whenever s > n. Let m > 1, the unit cube @ in R" can be decomposed
into m™ cubes of side length 1/m and diameter \/n/m.

n

Vim(Q) < ia(s) (%ﬁ)s — a(s)m"n?/?

i=1
asm — oo M, (Q) — 0, then H*(Q) and hence H* = 0.
(4) We want to show that given A > 0, H*(AA) = A*H*(A) for every A C R™. Let

A CR" ¢ > 0 and choose {Cj}jen € R"™ such that A C J; Gy, diam Cj <
0 for each j € N. Then

M S JAC;  diam AC; < AS, and

J

ot (2259 - T ()

J J
> H3s(AA)
— NHI(A) > Ho(AA) and AHA(A) > Hi(AA).
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Since § > 0 is arbitrary N*H*(A) > H*(AA), and similarly we can show that
1/NH(AA) > H*(A).

(5) Since the Hausdorff measure is not affected by affine tranformations the last
property is trivial.
O

Lemma 2.2.5. Suppose A CR™ and H3(A) =0 for some 0 < § < 0o. Then H*(A) =
0.

Proof. The conclusion holds for s = 0. Assume that s > 0 and fix € > 0, then there
exists a sequence of sets {C;};en in R", A C [J; Cj such that

diam C;\*
Za(s) ( 1ar;1 C]) <€, diam C; < ¢ for each j € N.

J

Then for each j,

diam C; < 2 ( (6 )1/8 = 5(e)

a(s)
hence
Ase— 0d(e) — 0so H*(A) =0. O

Lemma 2.2.6. Let ACR", 0<s<t< .
(1) If H*(A) < oo then H'(A) = 0.
(2) If H'(A) > 0 then H*(A) = cc.

Proof.

(1) Let H*(A) < oo and 0 > 0, then there exists a sequence of sets {C};en in R™
such that diam C; < 4§, A C Uj C; and

Za(s) (dm; CJ’) <HI(A) + 1< HY(A) + 1.

On the other hand,

Z (dlam C; )

z((g XJ: as) (dm; Cj)s (diamC; )"~
)
)

< O./(t N 95— t(st S(HS(A) )

a(s

As 6 — 0, H'(A) =0.

(2) This assertion follows from ().
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Definition 2.2.7. The Hausdorff dimension of a set A C R"™ is defined to be
Haim(A) = inf{0 < s < oo | H*(A) =0}
= inf{0 < s < oo | H(A) < o0}
=sup{0 <s<oo|H(A) >0}
=sup{0 < s < oo | H*(A) = oo},
where the equivalent definitions follow from (2.2.0).

Remark 2.2.8. If A C R” then H*(A) = 0 for every s > n, which follows from
(Z24), and hence Haim(A) < n. If s = Haim(A), then for every t > s H*(A) = 0 and
for every t < s H'(A) = oco. If there exists m > 0 for which 0 < H™(A) < oo, then
m = Haim(A). By using the last observation we will see that the Hausdorff dimension
generalizes our usual notion of dimension.

Example 2.2.9 ([19]). In this example we will calculate the Hausdorff dimension of
a C(A)-set. Fix 0 < A < 1/2. Set Iy = [0,1] and let I ; = [0,A] and I1 5 = [1 — A, 1].
Now from the remaining intervals remove two intervals of length (1 — 2A)\ = \ — 2)\?
obtaining the four intervals

Ly =[0,\?] Ly =[A— A2 )
Liy=[1-X\1-X+ )] Ly =[1-)1].
Inductively, if the 2"~ intervals Iy_q1,..., I, 1 x-1, each having length A\*~! have

been constructed, then define Iy 1, ..., I; or by deleting an interval of length (1 — 2X) -
diam I;y_;; = (1 — 2A\)A*! from the middle of each I;_; ;. All of the 2* intervals
obtained in the kth stage have length \*, and hence

H! (U I,w) = (U IkJ) = (2)0)F.

Define the set C(\) to be

oo 2k

C(\) = ﬂ U I 5.

k=0 j=1

So for A = 1/3 the C'(\)-set is the usual Cantor middle-thirds set. C'(\) C Ujkzl It
for each k > 0, then

2k
B(C(N) < diam (I ;)™ = 28N
j=1
If we choose m € R so that 2\™ = 1 and hence m = —22_ then

Tog(1/A)"
M (CO) = Jim P (COV) < 1.

Hence Hgim(C(A)) < m. Now if we can show that H™(C()\)) > 0 then we can conclude,
by the help of (2.2.8)), that Haim(C(N)) = logﬁi\). So our aim is to find a lower bound
k > 0 such that H™(C'(X\)) > k > 0. Let {C}};en be a covering of C'(\) such that diam

C; < ¢ for each j. Choose, for every 7 € N, z;, y; € R with diam C; = y; — x; and
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[z;,y;] © C;. By slightly enlarging each interval [z, y;] we can choose an open interval
I; 2 Cj such that C(A) € J; C; € U, I; and

S (25 3 (25
< Z (M) +e
= O‘é:f) ZJ: (diam I,) Z (dlam % ) + eo‘é?.

If we can show that 1/16 < 3 (diam ;)™ whenever the I;’s are open intervals covering
C()), then

a(m)

m a(m) _ 5 m

5716 < Hj (C()x))—l—e om <H™C(N) +e€ o
and since € > 0 is arbitrary, k = 2m 16, k< H™(C(N) < 1. Thus Hagim(C(X)) = m.
Now we need to show that 1/16 <~ (diam ;)™ whenever the [;’s are open intervals
covering C'(\). Since C'()) is compact we may assume that Iy, ..., I,, cover C'()\). Since
C() has no interior, by slightly enlarging each I;, we can assume that the endpoints
of each I; lie outside C'(\). Then we may select 6 > 0 such that the Euclidean distance
from the set of all endpoints of the I;’s to C'()\) is at least 6. Choose k € N large
enough so that § > \* = diam Iy ;, then each interval I ; is contained in some I;.
Let’s assume that for any open interval I and any fixed index [ € N, we have the
equality

EZa1) > (diam I,;)™ < 16(diam )™

n;CI

then

n 2k
62 (diam I;)™ > Z Z diam [ ;)™ > Z(diam i)™ =1
j=1 i=1

j=1 I;, ;,CI;

Now it remains to show (Z291)). Suppose that there are some intervals [ ; that lie
inside I and let n be the smallest integer for which I contains I,,;. Let {I,,;,,--- , I, }
be the complete list of all nth generation intervals contained in I, then p < 4 and

16(diam I)™ > 24 diam I, ;,)™ > Zp: Z (diam ;)™

s=1 11 ;Clyn j,
> Z (diam I;;
L;CI
log 2
m(C(V) = —2=__

2.3. Isodiametric Inequality, H" = L".
Definition 2.3.1 (Steiner Symmetrization). Fiz a, b € R™, |a| = 1. Define
={b+ta |t € R} the line through b in the direction a.
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P, ={z € R" | x-a =0} the plane through the origin perpendicular to a.
Let A CR"™. The Steiner symmetrization of A with respect to the plane P, is the set

1 a
Sa(A) = | {b+ta: It < W}
bePa
ANLE#D

Remark 2.3.2. If A C R? and a € R? then the Steiner symmetrization of A with
respect to the line through the origin and perpendicular to a is the symmetric image
of A with respect to this line.

FIGURE 1. Steiner Symmetrization

Lemma 2.3.3 (Properties Of Steiner Symmetrization).
(1) diam S,(A) < diam A.

(2) If A is L"-measurable, then so is S,(A), and L™"(S,(A)) = L"(A).

Proof.

(1) WLOG we may assume that diam A < oo. By considering A we may also
assume that A is closed. Fix ¢ > 0 and choose z, y € S,(A) such that
diam S,(A) < |z —y|+ € Define b = 2z — (x-a)a and ¢ = y — (y - a)a,
then b, ¢ € P,. Set

r=1inf{t | b+ta € A},
u=inf{t | c+ta € A},
s=sup{t|b+ta e A},
v=sup{t|c+ta € A}.
WLOG we may assume that v —r > s —u. Then
v—r  Ss—u

2 2

v—r >
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S—T vV—Uu

T T
1 a 1 a
> H (AQD LE) n H (A2ﬂ LC).

Since |z -a| <1/2HYANLY), |ly-al <1/2HY(ANLY), and consequently,
v—r>lz-al+ly-al >lx-a—y-al
Therefore,
(diam S,(A) —€)* < |z —y|?

=b—cP+|r-a—y-af
<|b—c+ (v—r)?
=|(b+7ra) — (c+wva)|?
< (diam A)? since A is closed.

Since € > 0 is arbitrary, diam S,(A) < diam A.

(2) Let A C R"and a € R". We want to show that S,(A) is L"-measurable and that
n-dimensional Lebesque measure is invariant under Steiner symmetrization.
Since L™ is rotation invariant we can assume that a = e, = (0,...,1). Then
P, = P, = R*!. By Fubini’s theorem the map f: R"™! — R defined by
f(b) = H' (AN Ly) is £ '-measurable and L"(A) =[5, f(b) dL"'b. Hence

sy = {ow: - <y < O g0y gna-ny
is L£"-measurable by theorem (Z.1.7]).
And L"(S4(4)) = [gn1 f(b)dL 10 = L™(A).

R

Rn

AR
&

R =P,

FIGURE 2. Steiner Symmetrization Preserves The Lebesque Measure

O
Theorem 2.3.4 (Isodiametric Inequality). Let A C R"™. Then
diam A\"
L(A) < a(n) < m;” ) .
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Remark 2.3.5. The isodiametric inequality states that among all sets of the same
diameter the sphere has the largest the volume.

Proof. WLOG we may assume that diam A < oco. Let {ej,...,e,} be the standard
basis for R", and A; = S, (A), Az = Se,(A1),..., An = Se, (A1) and let A* = A,,.

(1) Claim # 1: A* is symmetric with respect to the origin.

Proof Of Claim # 1. Ay is symmetric with respect to P,,. Let 1 < k < n
and suppose Aj is symmetric with respect to P.,,..., P,. We want to show
that Agy; is symmetric with respect to F,,..., P, . By definition A, =
Sepr (Ag) is symmetric with respect to P, . Foreach 1 < j < klet Sj: R" —
R™ be the reflection through P.,. So we need to show that for each 1 < j <

k Sj(Ags1) = Ags1. Let b€ P, . Since Sj(Ag) = Ay,
HH (A N L) = HY (AN L)

consequently
(Ml) {t | b+ tepy1 € Ak—i—l} = {t | Sjb—F tepy1 € Ak+1}.
Since
H' (AL,
St = | {Sbtten: i < %}
bEPk+1
LZkJrlﬂAk;é@
then

A1 € Sj(Aggr).

And (23407) implies Ap1 2 S;(Agy1). Thus A4y is symmetric with respect to
P,; and by induction A, = A" is symmetric with respect to each P, 1 <7 < n.
So A* is symmetric with respect to the origin.

(2) Claim # 2: L"(A*) < a(n)(1/2 diam A*)™.

Proof Of Claim # 2. Since A* is symmetric with respect to the origin A* C
B(0,diam A*/2) and hence

ey = o (5 (0.5 4)) g (T )’

(3) Claim # 3: L"(A) < a(n)(( diam A)/2)™.
Proof Of Claim # 3. Since A is measurable, (Z3.0)) implies that £"((A)*) =

L"(A) and diam (A)* < diam A. Thus

LM(A) < L(A) = ﬁ"((?)*)
< a(n) (cham—(A)*) by Claim # 2

< aln) (dia;n Z)"
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— an) <diar2n A>.

Theorem 2.3.6. H" = L™ on R".

Proof. Fix > 0. Choose sets {C;}jen such that A C |J; C; diam C; < § for every
J € N. Then by the isodiametric inequality

<Z£” Z <d1amC)7

and

L"(A) <HF(A) < H"(A) since the covering is arbitrary.

(1) Claim # 1: H" < L™,
Proof Of Claim # 1. Set C,, = a(n)(y/n/2)"™. Then for each cube  C R"

aln) (29~ .

2
Thus

H2(A) < inf {Z o(n) (diar; Qi>n : Qi cubes, AC [ Ql}

7

where each cube (); has diameter < ¢
= C,L"(A) by definition of L".
So if £L"(A) = 0 then by letting 6 — 0 we see that H"(A) = 0.
(2) Claim # 2: H"(A) < L"(A) for every A C R".

Proof. Fix § > 0, € > 0. We can choose a sequence of cubes {Q; };en such that
AC Uz Q;, diam Q; < ¢, and

ZL'"(QZ-) < LMA) +e

By the Vitali Covering Theorem for each ¢ there exists a disjoint sequence of
closed ball { B} }ren contained in QF such that

diam B} < 0, m(cgz UBk>_ ( UBk>—O

By Claim # 2, H"(Q; — U, Bi) = 0 for each i € N. Thus
< M@ = g (U B,z)
i i k
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=D D LMB) =) LUQ) S L(A) +e
ik i

Since 0 > 0 and € > 0 are arbitrary H"(A) < L"(A).

2.4. Density Of Sets And Measures.

Definition 2.4.1 (Densities).
(1) Let ACR" For1<m <n,acR" the m-dimensional density ©™(A,a) of
A at a is defined by

O™ (A, a) = lim H™(AN B"(a,r))

r—0 Ay, ™

when the limit exists

where B"(a,r) is the closed ball in R™ with center a and radius r > 0.

(2) If p is a measure on R", 1 < m < n, a € R" then m-dimensional density
O™ (u,a) of u at a is defined by

0" (11, a) = lim w(B"(a,r))

=0 Q™

when the limit exists.

Remark 2.4.2. Note that for any A C R", ©™(A,a) = ©™(H™LA, a) where H™LA
is the measure defined by

(H™LA)(E) = H™(ANE) ECR"

Hence the density of measures generalizes the notion of density of sets.

Theorem 2.4.3. If A CR" is L™-measurable, then O"(A,z) = xa(x)
L"-a.e v € R".

Proof. Since for every A C R"™ which is £"-measurable and =z € R", ©"(A% z) =
1 implies ©"(A,x) = 0, it suffices to show that when A C R™ is L"-measurable
O"(A,z) = xa(z) L™a.e. x € A. Assume not. By taking the restriction of £L" we can
also assume that 0 < L"(A) < co. We may further assume that for some 0 < 6 < 1

() 07(A.a) = limint ZA0 B (@.1)

<o foreveryae A
r—0 a,T™

by first choosing 0 < § < 1 such that
L'{a € A: ©,(A,a) <6}) > 0.

(otherwise ©7(A,a) = 1 L"-a.e. a € A implies ©"(A,a) = 1 L™a.e. a € A, which
contradicts the assumption) and then replacing A by {x € A: ©,(A4,a) < §}. We can
choose an open set U D A such that

LM(A) > 6L™(U).
Let F be the collection of closed balls B = B™(z,r) defined by
F={B(z,r):x €A r>0, BCU, and L"(ANB) <4L"(B)}.
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Then by (f) we can say that F is a fine covering of A. By the Besicovitch’s Covering
Theorem there exists a countable disjoint collection G C F covering almost all of A
and hence
LMA) =D LY(ANB) <Y LYB) <LU),
Beg Beg
which is a contradiction. 0J

Definition 2.4.4. A C R™, a function f: A — R"™ has approximate limit y € R™ at
a € R™ if for every e > 0, R™ —{x € A: |f(x) —y| < €} has m-dimensional density 0
at a, which 1s denoted by
y = ap lim f(z).
Remark 2.4.5.
e Note that if A C R™ and f: A — R" such that f has an approximate limit
y € R™at a € R™ then A must have m-dimensional density 1 at a. In particular,

H™(R™N B™(a,r)) < H™ (AN B™(a,r)) N H™(A°N B™(a,r))

Ay, T™ - Ay, ™ Ay, T™
< H™(AN B™(a,r)) n H™R™ —{z e A: |f(z) —y| <e}nB™(a,r))
- Q7™ Q™
then

1zlimH (RN B (a,r))ghmH (ANB (a,r))<1.

r—0 QT r—0 QT
e If a function f: A — R"™ has the limit y € R” at a € R"™ then it has the
approximate limit y € R™ at a € R™.

Theorem 2.4.6. A function f: A C R™ — R"™ has an approzximate limit y € R" at
a € R™ iff there is set B C A such that B¢ has m-dimensional density 0 at a and f|p
has the limit y at a.

Proof. (=) Assume that y = ap lim,_, f(z) = 0, then
lim H™"(R™ —{z € A: |f(x)] <1/i} N B™(a,r))
r—0 o7y il

holds for each i > 1. Let A; = R™ — {x € A: |f(x)| < 1/i}, hence each A; has density
0 at a. For ¢ = 1 choose r; > 0 such that for every 0 < r <1

H™(A; N B™(a,r))

Ay, T™

=0

<27t

for ©+ = 2 choose 0 < ry < 1y such that for every 0 < r < ry
H™(As N B™(a,r))

-2
Ay, ™ =2

Now assuming that r; > --- > r,_; have been chosen, we can choose 0 < r; < ri_3
such that for every 0 < r <y

(%) H™(Agr1 N B™(a,r))

Ay, ™

<27
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and
Ay =R" —{z € A: |f(z)| < 1/k} D Ap_1.

Thus by induction we can find a strictly decreasing sequence {ry }ren and an increasing
sequence { Ay }ren satisfying (x) for each k € N. Let B¢ = J,(A;NB™(a,r;)). We need
to show that f|p has the limit y at a. By construction x € B iff for each i € N, x € A§
or x € (B™(a,r))¢. Given € > 0 we can choose j € N and ¢ > 0 such that 1/j < ¢
and 0 <6 <r;. If v € Band [r —a|] <§ <r; then v € B™(a,r;) and v € AS. Thus
flp(x) = yasx —a, v € B.

Now we need to show that B¢ has density 0 at a. Choose s € R such that r;11 < s <1y,
then

H™(B°NB™(A,s)) <H"™(A;NB™(a,s)) + H" (A1 N B™(a,r41))
+H™ (A2 N B™(a,7i42)) + -+

< oy, 8™ Z oF = amst_(’_l)
k=i
H™(B¢N B™(a,s)) < 1

Oy, 8™ — 9i—1 :

So B¢ has density 0 at a.
(<) Assume that there exists a set B C A such that ™ (B¢, a) = 0 and lim,_, f|g(x) =
y. Given € > 0 there exists 0 > 0 such that for every 0 <r <9

(+) {zeB:|f(x) -yl =z e NB"(a,1) = 0.
B C A implies that ©™(A¢ a) < ©™(B¢a) = 0 and
R™ —{ze€A:|f(x)—y|<e} CBU{r e A-B:|f(z) —y| > €}

implies that

(xx) H™(R™ —{z € A: |f(z) —y| <e} N B™(a,r))
<H™B‘NB™(a,7))+H"({xr € A—B: |f(x) —y| > e} NB™(A,r))
< 2H™(B°N B™(a,r)).
If 0 < r < § then by using (%) and (**) we can conclude that

H™R™ —{z € A: |f(x) —y| < e} N B™(a,r))

Ay, ™

H™(B°N B™(a,r))
Ay, ™

as 0 — 0. O

<2

— 0

Definition 2.4.7.

(1) The function f: A C R™ — R" is approzimately continuous at a € A if for
every € > 0

. H™R™ —{z € A: |f(z) — f(a)|] < ¢} N B™(a,r))

r—0 Q7™

=0
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(2) The function f: A C R™ — R"™ is approzimately differentiable at a if there is
a linear transformation L: R™ — R™ such that

ot @) = F(@) = Lz~ a)

z—a |z — al

=0.

The approzimate derivative of f at a is denoted by L = ap D f(a).

Remark 2.4.8.

e If a function f: A — R" is continuous at a € A then it is approximately con-
tinuous a € A.

e Note that the theorem (2.4.0]) has an obvious extension to the approximately
continuous functions.

e If a function f: A — R" is differentiable at a € A then it is approximately
differentiable at a € A.

e When there is no confusion about the ambient space we will use B(zx, r) instead
of B"(z,r) to denote a closed ball in R™ of radius r > 0 and center at z € R".

Theorem 2.4.9. Let f: R® — R™ be L"-measurable. Then f is approrimately con-
tinuous L™-a.e.

Proof.

(1) Claim # 1: There exists a sequence of pairwise disjoint compact sets { K };eny C
R™ such that

L (R” - U KZ-> =0 and f|g, is continuous for each i € N.

Proof Of Claim # 1. For each m € N, set B,,, = B(0,m). By Lusin’s Theorem,
there exists a compact set K; C Bj such that £"(B; — K;) < 1 and f|g, is
continuous. Now applying the Lusin’s Theorem to By, — K; we can choose a
compact set Ko C By — K such that £"(By — Ule K;) < 1/2 and f|g, is
continuous. Now assuming that K, ... K,, 1 have been chosen accordingly, we
can choose a compact set
m—1 m 1
* K,, CB,,— | | K;such that £" | B,, — | |K; | < ——
" =y (-U) < 5
and f|g,, is continuous.

Thus by induction we can choose a sequence of compact sets { K, }men such
that K, satisfies (%) for each m € N and

i=1 =1 i=1
= lim £ (Bi - GIQ)
1=1
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< lim = 0.

imoo g+ 1

(2) Claim # 2: f is approximately continuous £L™-a.e.

()

Proof Of Claim # 2. For each i € N and L"-a.e. x € K;
r—0  L*(B(z,r))
Define A = {x € R" | for some i € N, = € K;,and (*) holds}, then £"(R" —
A) = 0. Now we want to show that f is approximately continuous at each
x € A. Fix x € A. Then z € K; for some i € N and given € > 0 there exists
s > 0 such that if y € K; and |x — y| < s then |f(x) — f(y)| <e. If0<r <s
then B(z,r)N{y: |f(z) — f(y)| > €} C B(z,r) — K; so ap lim,_,,, f(y) = f(z).

=0.

U
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3. MANIFOLDS IN R*" AND GENERALIZATION OF CONCEPTS IN
CALCULUS

In this section we will first introduce the k-dimensional parallelepiped in R™ and
its k-dimensional volume. We will state the generalized Phytagorean Theorem and
postpone its proof until the next section where the proof becomes easier in a more
general setting. We will introduce k-dimensional analogues of curves and surfaces;
they are called k-manifolds in R™. We will define the k-dimensional volume of such
objects and introduce the integral of a scalar function over k-manifold with respect to
k-volume, generalizing concepts defined in Calculus for curves and surfaces. The main
reference for this section is the book by Munkres [23].

3.1. The Volume Of A Parallelepiped.

Definition 3.1.1. Let {ai,...,ax}be a linearly independent collection of vectors in
R™ 1<k <n. The k-dimensional parallelepiped in R™ is defined as

Play,...,ap) ={x e R": x =z1a; + -+ xpag, 0 < 2; <1, 1 < i< k}.

Remark 3.1.2. We want to define the k-dimensional volume of

P(ai,...,ar) in R". When 1 < k < n, the n-dimensional volume (L™-measure) is zero
because the parallelepiped is contained in a k-dimensional subspace of R™ which has
measure zero in R"™.

We will state two lemmas from linear algebra, that will be used in the proof of the
existence and the uniqueness of the volume function. The proofs of these lemmas can
be found in Munkres [23].

Lemma 3.1.3. Let W be a linear subspace of R™ of dimension k. Then there is an
orthonormal basis for R™ whose first k elements form a basis for W.

Lemma 3.1.4. Let W be a k-dimensional linear subspace of R™. There is an orthogonal
transformation h: R™ — R" that carries W onto the subspace R* x 0 of R™.

Theorem 3.1.5 (The Volume Function). There is a unique function V' that assigns,
to each k-tuple (x1,...,xx) of elements of R™, a non-negative number such that

(1) If h: R* — R™ is an orthogonal transformation, then
V(h(x1)7 S h(wk)) = V(xlv s ,ZEk)-
(2) If y1,...,yx belong to the subspace R* x 0 of R™ so that

ol

V(y17 s ;yk) = |det[zl7 s 7Zk]|'

for z; € R¥, then



3. Manifods In R" 23

The function V' vanishes iff the vectors x1, ..., xy are dependent. It satisfies the equa-
tion

Ve, o) = [det(XX)[2,
where X s the n X k matriz with columns xq, ..., x}.

Proof. Let X = [z1,...,xx] be an n X k matrix and define F(X) = det(X'X).
(1) Step # 1: Let h: R™ — R™ be an orthogonal transformation defined by h(z) =
Az, where A is an orthonormal matrix. Then
(%) F(AX) = det((AX)"(AX)) = det(X'X) = F(X)
and hence the function F' is not affected by orthogonal transformations,
F(h(xq),...,h(z)) = F(xq, ..., x5).
If Z and Y are respectively k x k and n x k matrices defined by

VA
v=[3]
then

(5#) F(Y) = det ([Zt - m)
Z

=det(Z'Z) = (det 2)*.

So F(yi, ..., yx) = (det[zy, ..., z])%

(2) Step # 2: We can see that (%) and (xx), and lemma (B.I.4]) together im-
ply that F is a nonnegative function. Thus v/ F makes sense. In particular
let x1,...,2; € R™ be vectors in R” and W a k-dimensional subspace of R"”
containing them. By using lemma ([B.1.4) let h: R™ — R"™ be an orthogonal
transformation carrying W onto R* x 0 defined by h(z) = Ax. Then

0

where 7 is a k x k matrix. Then F(X) = F(AX) = (det Z)? > 0 and F/(X) =0
iff the columns of Z are linearly dependent iff the columns z, ...,z of X are
linearly dependent.

WX) =h([zy-2p)) = Alz1 - 24] = [Azy - Azy)] = [Z]

(3) Step # 3: Let V(X) = /F(X). The function satisfies the conditions of the
theorem and Step # 2 shows that there is a unique function satisfying these

properties.
O
Definition 3.1.6.
(1) If xq,. ..,z are linearly independent vectors in R™, the k-
dimensional volume of P(x1,...,xy) is defined by
V(P(xy,...,xr)) = \/det(X'X) where X = [y - xp].
(2) If 1, ...,x, are linearly independent vectors in R™, the volume of the paral-

lelepiped spanned by these vectors equals to
V(P(x1,...,x,)) = |det X| where X = [x1- - x,].
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Definition 3.1.7. Let x1,...,x be vectors in R™ and X the matrix whose columns
are these vectors. If I = (iy,...,ix) € {1,...,n}* and 1 < iy < --- < ip < n, then
define X1 as the k X k submatriz of X consisting of rows i1, ...,1 of X.

Theorem 3.1.8. Let 1 < k <n. Let X be the n X k matriz, then

1/2

V(X) =14 (det X;)?
()

where the summation extends over all ascending k-tuples from {1,... n}.

Remark 3.1.9.

e Theorem (BI.8)) states that the square of the k-dimensional volume of a k-
parallelepiped in R" is equal to the sum of the squares of the volumes of the
k-parallelepipeds obtained by projecting it onto the various k-planes of R™.
This is the generalized Phytagorean Theorem.

e For a proof see Munkres [23]. Binet-Cauchy formula (£3.8), whose proof is
simpler, is a generalization of (3.1.8]).

3.2. The Volume Of A Parameterized Manifold.

Definition 3.2.1. Let 1 <k <n. Let A € OP(R¥) (A is open in R*), and let a: A —
R™ be of class C". The set Y = a(A) together with the map « is called a parameterized
manifold of dimension k in R™. We denote this parameterized manifold by Y, and
define the k-dimensional volume by

V(Y) = / V([Da(x))).

whenever the integral exists.

Remark 3.2.2. Note that if Y = P(z1,...,x;) is a k-parallelepiped in R™ then Y is
a parameterized k-manifold and

VP, a)) = /QV([Da(a:)]),

where @ is the unit cube in R* and a: R¥ — R” is the linear map taking @ onto
P(x1,...,2x) and [Da(z)] = [a] for each z € Q.

Definition 3.2.3. Let A € OP(R*), let a: A — R™ be of class C", and let Y = a(A).
If 1Y — R s continuous, then we define the integral of f over Y, by

y de:/A(foa)V(Da).
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Theorem 3.2.4. Let g: A — B be a diffeomorphism of open sets in R*. Let 3: B —
R™ be of class C", let Y = 3(B) and o = Fog. If f: Y — R is continuous, then f is
integrable over Yy iff it is integrable over Y,, and in this case

/ade:/YdeV.

Remark 3.2.5. Note that theorem (B.2.4]) states that the integral of a continuous
function over a parameterized manifold and the volume of a parameterized manifold
are independent of the parametrization

In particular, V(Y,) = V(Yp).

Proof. We need to show that

[ reavwa = [ (renvDs)

where one integral exists iff the other exists. The change of variables theorem states
that (f o 3) V(Dp) is integrable over B iff [(f o) og] V(DB o g)|det Dg| is integrable

over A and in this case

[ tomViDs) = [ ((708) 00l V(DB og) det Dyl
So it suffices to show that V(DB o g) |det Dg| = V(Da). Let z € A, y = g(x), then
Da(x) = D(B 0 g)(x) = DB(g(x)) o Dg(x)
1V (Da(@)]? = det(|Dg(a) DA} (D3()][Da(x))

= (aetlDg(@))) (VDB
— V(Da) = V(DB o g)|det Dg|.
Then

V(Ya):/AN/(Da):/BloﬁV(Dﬁ):V(Yﬁ).
O

In the next two examples we will show how the volume of a parameterized k-manifold
generalizes the length of a curve and the area of a surface.

Example 3.2.6. Let A be an open interval in R, let a.: A — R" be a map of class C",
a(t) = (a1(t),...,an(t)), Y = a(A). Then

[Da(t)] = [ (t) - - - a, ()]
V(Da(t)) = {(a}(£))* + - - + (a),(£))*}'?

and hence

»m@:AvwmzAwmm%w«%wmwﬁ

is the 1-dimensional volume (length) of Y.
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Example 3.2.7. Let A € OP(R?) and a: A — R? be of class C", Y = a(A). Let
a(m,y) = (Oél(lf,y),OZQ(ZL',y),Oég(ZL‘,y)). Then

Jda O
V(Do) = |— x —
(D) ox % dy
and the two-dimensional volume of Y, is given by
Ja O
V(Y,) = — X —.
(Ya) /A oz dy

In particular if a has the form a(z,y) = (z,y, f(z,y)) where f: A — R is a C" map,
we get the familiar equality

V(Y,) = / V1T (@f/0n? 1 (0F/0y)

3.3. Manifolds In R".

Definition 3.3.1.
(1) Let H* denote the upper half space in R* defined by

HF = {(z1,...,21) € R*: 2 > 0}.
(2) Let H'j_ denote the open upper half space in R¥ defined by
HY = {(21,...,2;) € RF: 2, > 0}

Definition 3.3.2. Let k > 0. A k-manifold in R™ of class C" is a topological subspace
M of R™ having the property that for every p € M, there is an open set V. C M
containing p and an open set U in R¥ or H* such that there exists a map a: U — V.

(1) « is bijective and of class C",
(2) a7t V — U is continuous,

(3) Da(z) has rank k for every x € U.

The map « s called a coordinate map.
If k =0, any discrete collection of points in R™ s defined as a 0-manifold in R".

The next theorem, which we will state without proof, has many consequences one
of which is its use in the precise definition of the boundary of a k-manifold in R™. For
a proof see Munkres [23].

Theorem 3.3.3. Let M be a k-manifold in R™, of class C". Let ag: Uy — Vi and
ay: Uy — Vi be coordinate maps on M, with W = Vo Vi # 0. Let Wy = a; ' (W) i =
0,1. Then the map

041_1 oagy: Wy — W4

is of class C", and its derivative is nonsingular.

Remark 3.3.4. Note that the change of coordinates map defined in the theorem
B33) is actually a diffeomorphism, which can be shown with the help of the Inverse
Function Theorem.
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Definition 3.3.5. Let M be a k-manifold in R™, let p € M. If there is a coordinate
map a: U — V on M about p such that U € OP(R¥) then p is called an interior point
of M. Otherwise, p is called a boundary point of M. The set of all boundary points of
M is called the boundary of M and is denoted by OM. The interior of M is denoted
by M — OM.

The next lemma, which can be shown by the use of theorem (3.3.3)), gives a complete
classification of interior and boundary points of a k-manifold M in R™. For a proof see
Munkres [23].

Lemma 3.3.6. Let M be a k-manifold in R™, let a: U — V be a coordinate map about
pe M.

(1) If U € OP(R¥), then p is an interior point of M.
(2) If U € OP(H*), and a(xo) = p, xo € HY, then p is an interior points of M.

(3) If U € OP(H*), and a(xo) = p, wo € R¥ x {0}, then p is a boundary point
of M.

Theorem 3.3.7. Let M be a k-manifold in R™, of class C". If OM # (), then OM is
a (k — 1)-manifold without boundary in R™ of class C".

Proof. Let p € OM. Let a: U — V be a coordinate map about p. Then U €
OP(H"), a(zy) = p and zp € OH". By the lemma (3.3.6) each point of U N HY is
mapped by a to an interior point of M, and each point U N OH* is mapped to a point
of OM. Thus
04|U08Hk :UN 8Hk — VN (9M

is bijective and V) = V N OM is open in M. Let IT: R¥ — R*~! be the projection
onto the first (k — 1) coordinates and let Uy = II(U) be open in R¥~! then U NOH* =
UnN (R x {0}) = Uy x {0}. If 2 € Uy, then let ag: Uy € OP(R¥"1) — V4 be a map
defined by ap(z) = a(z,0). So ap is of class C" map because « is, Dag(z) has rank
(k—1),and ay* = oa™t: Vy — Uy is continuous. Consequently, ag is a coordinate

map and since p € OM is arbitrary OM is a (k — 1)-manifold without boundary in
R™. O

3.4. Integrating A Scalar Function Over A Manifold.

Definition 3.4.1. Let M be a compact k-manifold in R™, of class C", let f: M — R
be a continuous function, and C' = spt f. Assume that there exists a coordinate map
a: U —V such that C CV, then the integral of f over M s defined by

/ fav :/ (f 0 a)V(Da)
M o
where U° is the interior of U in RF,

Remark 3.4.2.

e If M is both a parameterized manifold and a manifold in R™ then in both cases
the definitions of the integral of a continuous real-valued function f over M
coincide.
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e Considering M to be a compact subset is not a restriction because the general
case follows from this case by using the techniques of integration.

Lemma 3.4.3. If the support of f can be covered by a single coordinate map, then
fM fdV is independent of the choice of coordinate map.

Proof. We need to show that the definition of the integral of a scalar funtion is indepen-
dent of the chosen coordinate map when the support of the function can be covered by
a single coordinate map. Let a: U — V be a coordinate map containing spt f. Then
we can choose W C U open and a(W) D spt f, and

() | eaviva) = [ (foa)viva)

Now assume that ag: Uy — Vy and «a1: Uy — Vj are coordinate maps on M and
Vo N Vi D spt f. We want to show that

/ (foag) V(Dag) = / (foay)V(Day).
Ug e
Let Wy = ag ' (W), Wy = oy {(W), where W = VyN'Vi. By (%) it suffices to show that

I (0 00) V(Do) = [ (foayviDa

Wh
and this equality follows by ([3.24) since a; ' o ag: Wy — W, is a diffeomorphism. [
The next lemma, whose proof can be found in Munkres [23], shows the existence of
a partition of unity on a k-manifold M in R™. A partition of unity on a manifold is

used to define the integral of a scalar function when the support of the function can
not be covered by a single coordinate map.

Lemma 3.4.4. Let M be a compact k-manifold in R™, of class C". Given a covering
of M by coordinate maps, there exists a finite collection of C'*° functions ¢1,..., ¢
mapping R™ into R such that

(1) ¢i(x) >0 for every x € M,
(2) giveni € {1,...,1} spt¢; is compact, and there is a coordinate map «;: U; — V;
belonging to the given covering such that spt o, " M C 'V,

(3) >, 0i(x) =1 for every x € M.

Definition 3.4.5. Let M be a compact k-manifold in R™, of class C". Fix a covering
aj: U; =V, 1 <35 <t of M by coordinate maps. Let f: M — R be a continuous
function. Choose a partition of unity ¢1,...,¢;, on M. The integral of f over M is
defined by

/Mde:Zz:l;/Mgbide,
where
| osav= [ ()00, V(Day),

where spt ¢; C V; for some 1 < 5 <t
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Remark 3.4.6. A procedure similar to the one used in the proof of lemma (3.4.3)
can be used to show that the definition of the integral does not depend on the chosen
partition of unity.
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4. RADEMACHER’S THEOREM, AREA-COAREA FORMULAS,
RECTIFIABLE SETS

In this section we will study the Lipschitz functions. In geometric measure theory
the Lipschitz functions serve the same purpose as the smooth functions in manifold
theory. We will show that Lipschitz functions are differentiable almost everywhere and
hence their Jacobians exist almost everywhere. Jacobians are the corrective factors
that relate the volume of the domain and the volume of the range of differentiable
functions. We will introduce the area formula which shows how the notions of the
manifold theory are generalized to geometric measure theory by the techniques of the
measure theory. We will show that the Hausdorff measure of a k-manifold is its volume
and that its Hausdorff dimension is k. We will introduce the coarea formula, which
is a generalization of the Fubini’s theorem. The coarea formula asserts, roughly, that
the measure of a Lebesque measurable subset A of R™ is the integral of the Hausdorff
measure of the restriction of A to various level sets. In the last part we will define
the rectifiable sets, which are the generalized surfaces of the geometric measure theory,
and present some of their basic properties. The main references for this section are the
books by Evans & Gariepy [9] and Federer [10].

4.1. Lipschitz Functions.
Definition 4.1.1.
(1) Let ACR"™ A function f: A — R™ is called Lipschitz if
[f(z) = f(y)] < Clz—y|

for some constant C' and all x, y € A. The smallest constant C' such that the
above inequality holds for all x and y is denoted

Lip (f) = inf{C = 0: [f(z) — f(y)| < Clz —y| =, y € A}
|z =y
(2) A function f: A — R™ is called locally Lipschitz if for each compact K C A,
there exists a constant Cg such that

f(@) = f(y)| < Cklz —y|
forallx, y e K.

Theorem 4.1.2. Let f: R® — R™ be Lipschitz, A CR"™, 0 < s < oo. Then
H*(f(A)) < (Lip f)*H*(A).

Proof. Fix § > 0 and choose sets {C;}ien € R" such that diam C; < ¢§ for each i € N
and A C J, C;, then diam f(C;) < (Lip f)diam C; < (Lip f)0 and f(A) C U, f(Ci).
Then

diam f(C;)\’
)

< (Lipf)* Y (diar; C") .
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Since the sets {C; }ien are arbitrary, Hiy,, 5(f(A)) < (Lip f)*H5(A) < (Lip f)*H*(A).
Now by letting § — 0, we get H*(f(A)) < (Lip f)*H*(A). O

Corollary 4.1.3. Suppose n > k. Let P: R® — R¥ be the projection map, A C R",
0<s<oo. Then

H(P(A)) < H(A).

Theorem 4.1.4 (Extension Of Lipschitz Functions). Assume A CR", and let f: A —
R™ be Lipschitz. Then there exists a Lipschitz function f: R" — R™ such that

(1) f=f on A.

(2) Lip (f) < v/mLip (f).
Proof. Assume that f: A — R. Define
Fle) = inf {f(a) + Lip()lz — al}, = € R,

It b € A then f(b) = f(b). If 2, y € R", then

flx) < inf {f(a) + Lip (£)(ly — al + = — y])}
= f(y) + Lip (f)|z — y|

and similarly

fy) < f(z)+Lip (f)|z —yl.
|f(z) — f(y)| < Lip(f)lz —y| = Lipf <Lipf.

Now for the general case let f: A — R™, f = (fi,... fn) and define f = (f1,..., fin)-
Then

1f(z) = Fy)]? = Zlﬁ(w) — fily)P? < Z(Lip fi)* |z —y|> < m(Lip f)*|z — y/|*.

O

Definition 4.1.5. The function f: R™ — R™ is differentiable at x € R™ if there exists
a linear map L: R™ — R™ such that

i W) = f(2) = L{y — 2)|
y— ly — |

The linear map L = D f(x) is called the derivative of f at x.

=0.

Theorem 4.1.6. If a locally Lipschitz function f: R™ — R™ is approximately differ-
entiable at a € R™ then it is differentiable at a € R".

Proof. Suppose that the function f: R™ — R™ is approximately differentiable at a €
R™ but not differentiable at a. For notational convenience we may assume that a = 0,
f(a) =0, apDf(a) = 0. Since f is not differentiable at a = 0, for some 0 < € < 1 we
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can choose a sequence of point {a;},ey € R™ such that a; — 0 and |f(a;)| > €la;| for
each i € N. Let C'= max{Lip f,1}. If x € B(a, €|a;|/3C), then

€|la; €\xr
£ 2 (@) - (@) ~ 5@ 2 el — D2 > L,
And hence
OO elail\ . .. €|x|
re k= ’LL:JIB (ai, %) 1mphes ’f(l’)’ Z T

But E does not have density 0 at a = 0 because there exists a sequence {|a;| +
(€la;])/3C}ien converging to 0 and

L(EN B0, |a;| + (€|ail)/3C)) _ L£"(Blas, efas| /3C))

onlla + (e300 = an@lad)/3)
(elas/3C)" €"
Waly ~ wmon TV

independent of r

L"(ENB(0,7r)) - "

©™(E,0) = limsup

0 " = 4nCn’
so E/ does not have density 0 at a = 0 and hence

ap lim |f()] #0

x—0 |{L’|
because
L : 2N B(0 n
o S0 @] > eal2h N BOY) | e
r—0 OénT" 4”0’”’

which is a contradiction. O

4.2. Rademacher’s Theorem.

Theorem 4.2.1 (Rademacher’s Theorem). Let f: R™ — R™ be a locally Lipschitz
function. Then f is differentiable L™-a.e.

Proof. We may assume that m = 1 because f is differentiable iff each of its coordinate
functions is differentiable. Since differentiability is a local property we can assume (by
considering fi(z) = f Xq, (z) where @ is an open cube centered at the origin with side
length 2k, k € N) that f is Lipschitz.

Fix v € R with |v| = 1, and define

whenever this limit exists.

(1) Claim # 1: D, f(x) exists for L™-a.e. x € R".
Proof Of Claim # 1. Since f is continuous,

D, () = limsup L&) = F(@)

t—0 t
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[z +1tv) - f(=) fla+tv) - flx)

= inf sup = inf sup
e > 00<|t|<e t k>10<|t|<1/k 3
teQ

Hence D, f(z) is Borel measurable, and similarly

D, f(z) = liminf flz +tv) = f(z)

t—0 t

is measurable. Thus
A, ={z € R"| D,f(z) does not exist}
={z €R" | D,f(x) < D, f()}

is Borel measurable. Our aim is to show that £"(A,) = 0. Given z € R,
define ¢: R — R by

o(t) = f(x+tv).
Then ¢ is Lipschitz, and hence differentiable £!-a.e. Since

[z +tv) — f(x)

Dy f(z) = lim ;
i P — #(0)
t—0 t ’

D, f(x) exists a.e on L, = {z + tv: t € R} and consequently H'(A, N L,) =
LY(A, N L;) = 0 for every € R", namely f has a directional derivative at
almost all points on L, in the direction of v.

Rn—l
FIGURE 3. D, f(x) exists L'-a.e.

By Fubini’s theorem
LM(A,) = (L x LY (A,) = L(Ay)g)dL™

Rn—1
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- HY((A),) AL x

Rn—1

= HY (A, N L) dL" 'z = 0.

Rn—1

Now as a consequence of Claim # 1 the gradient function

of of
@) )]

o1 |

exists L"-a.e. x € R™.
(2) Claim # 2: D, f(x) =v-grad f(x) for L -a.e. z € R".

Proof Of Claim # 2. Let ¢ € C=*(R"). Then
[ [Pt =t yagne - [ g[St g,

t n

by the change of variables. Let ¢t = 1/k for k € N, then

flx+v/k) — f(z)
1/k

If we let gy (z) = LB C(2), then gi(x) — Do f()¢(x)
L"-a.e. Hence the Dominated Convergence Theorem (DCT) implies that

< (Lip f)[v] = Lip f.

. D, f(x)((x)dL"x = lillgn . 1k

_ ¢(x) = C(x —v/k) n
——hlgn - 1k f(z)dL"x

=— | [f(@)Dy((z)dL"x
R

:_ZU’ f( )aai( )dL x.

The absolute continuity of f on almost every line parallel to coordinate axis
implies that

_ Zvl / ] 8% z)dL"
_ / (v grad f())C(x) AL

Since the equality holds for each ¢ € C.(R"), D,f(z) = v - grad f(x) L -a.e.
x € R".

Let D = {vk}ren be a countable dense subset of 9B(0,1). Define for each
k € N the set A, as

Ay ={x €R": D,, f(x) = v - grad f(z)}
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and let

A= ﬁ Ag.
k=1

By claim # 1 and claim # 2 we have L"(R" — A) = 0.
(3) Claim # 3 f is differentiable at each point = € A.

Proof Of Claim # 3. Fix x € A. Choose v € 0B(0,1), t € R — {0} and define
Qv 1) = 1 t”t) @ grad p).
If v € 9B(0, 1), then

f(x+tv) _tf(x+tvl) +|<U—U/) grad f(l')l

(Lip f)lv — | + |grad f(z)[|v — /|
(vn+ 1)(Lip f)lv —2'|.

Fix € > 0, since 9B(0, 1) is compact we can choose N € N large enough so that
if v € 0B(0,1), then

|Q(l‘,?),t> - Q(%,U’,t” S

<
<

v —vg] <

€
~ 2(vn+1)(Lip f)
v € D for some k € {1,... N}. Since
llﬁi_r)r&@(m,w,t) =0 (k=1,...,N)

there exists 0 > 0 with

|Q(z, v, t)| <€/2 forO< |t|<dand k=1,...,N.
Consequently, for each v € 9B(0, 1), there exists k € {1,..., N} such that

Q(z, v, 1)| < |Q(z, vk, 1) + |Q(x, v, 1) — Q(x, vg, 1) < e

whenever 0 < |t| < §. Thus we can conclude that

t _
Mot =10 g
holds for every v € 9B(0,1) and that the partial derivative of f at z € A

— Y-z

in each direction exists. Choose y € R™ with y # x and let v el then

lim Q(z, v,t) = lim

y = x + tv where t = |z — y|. Then
fly) = f(x) —grad f(z) - (y — ) = f(z +tv) = f(x) = tv-grad f(z)
[f(y) = fz) —grad f(z) - (y — )] _|flz+tv) - f(x)

o — 2] = ; —v-grad f(z)

— 0

as y — x and t — 0. Thus f is differentiable at x € A, Df(z)(y — x) =
grad f(z) - (y — =) and [Df(2)] = grad f().
U

Now we will prove a corollary of Rademacher’s Theorem which shows the similarities
in behavior between Lipschitz functions and differentiable functions.
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Corollary 4.2.2.
(1) Let f: R™ — R™ be locally Lipschitz,and
Z ={x €eR"| f(x) =0}.
Then Df(x) =0 for L"-a.e. x € Z.
(2) Let f,g: R™ — R" be locally Lipschitz, and
V={zeR"[g(f((z)) =z}
Then Dg(f((z))Df(x) =1 for L"-a.e. x €Y.

Proof.
(1) We may assume that m = 1. WLOG we may assume that £"(Z) > 0 and that
we can choose x € Z such that D f(z) exists and

L"(Z N B(x,r))

lim =1

=0 LM(B(z,))
as a consequence of Lebesque-Besicovitch Differentiation Theorem. Then
fy) =Df(x)y — =) +o(ly —zf) as y — .
Assume that [Df(x)] = a # 0, and set
S={veoB(0,1)|a-v>|al/2}.

FIGURE 4. A constant Lipschitz function has the zero differential almost everywhere.

For each v € S and t > 0, set y = x + tv, then
f(x+tv) = a-tv+ o(|tv])
t
> g—i—o(t) as t — 0.
Dividing by ¢t we obtain

t
wzgﬂ—f—et, where ¢, — 0 ast — 0.
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So there exists top > 0 such that f(z +tv) > 0 for 0 < ¢ < ¢y and for all v € S.
Thus £"(Z N B(x,r)) < al™(B(z,r)) for all 0 < r < t; and for some a < 1.
But this implies

. L"(ZnNB(x,r))

| <1

0 L(Ble,r)
which is a contradiction.

Define
dom Df ={z | Df(x) exists},
dom Df = {z | Dg(x) exists}.
Let
X =Y Ndom Df N f~(dom Dg)
then

Y- X C(R"—dom Df)Ug(R" —dom Dg).
By Rademacher’s Theorem L£"(R™ — domDf) =0, L"(R™ — domDg) = 0 and
L"(g(R" — dom Dg)) = H"(g(R" — dom Dyg))
< (Lipg)"H"(R" — dom Dg)
= (Lip¢)"L"(R" — dom Dg)
=0,
so LY — X) =0. If 2 € X then Df(z), Dg(f(x)), and D(go f)(x) exist.

Since

(gof)(x)—ax=0 foreveryze X CY
then
D(go f)(x) —DI(z) =0 foreveryze X CY
and hence

D(gof)(x)=1 L"-ae z€Y

4.3. Linear Maps And Jacobians.
Definition 4.3.1.

(1)

(2)

(3)

A linear map O: R™ — R™ is called orthogonal if (Ox) - (Oy) = x -y for all ,
y € R", that is a linear map is orthogonal if it preserves the dot product.

A linear map S: R" — R" is called symmetric if x - (Sy) = (Sz) -y for all x,
y € R™, that is a linear map is called symmetric if its matriz representation
with respect to standard basis is a symmetric matriz.

Let A: R" — R™ be linear. The adjoint of A is the linear map A*: R™ — R"
defined by x - (A*y) = (Ax) -y for allz € R, y € R™.
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Now we will recall some useful properties of the linear maps.

Theorem 4.3.2. Let A, B be linear maps.
(1) A= = A.

(2) (Ao B)* = B* o A*.
(3) If O: R — R" is orthogonal then O* = O~
(4) If S: R™ — R" is symmetric then S* = S.

(5) If O: R™ — R™, then n < m and
O*cO=1 onR",
OoO*=1 onO(R").

Theorem 4.3.3 (Polar Decomposition). Let L: R™ — R™ be a linear map.

(1) If n < m, there exist a symmetric map S: R™ — R"™ and an orthogonal map
O: R" — R™ such that
L=0oS.
(2) If n > m, there exist a symmetric map S: R™ — R™ and an orthogonal map
O: R™ — R" such that
L=500".

Definition 4.3.4. Let L: R™ — R™ be linear.

(1) If n <m, let L =005 be a polar decomposition of L, then the Jacobian of L
s defined to be
[L] = |det S]|.

(2) If n > m then L = S o O* be a polar decomposition of L, then the Jacobian of
L 1s defined to be
[L] = |det S]|.

Remark 4.3.5.

e [t seems that the definition of the jacobian is dependent on the polar decom-
position of the linear map, but the next theorem will show that the jacobian is
actually well-defined.

e It is clear from the definition that

[ =[]

Theorem 4.3.6.

(1) If n <m,
[L]? = det(L* o L).

(2) If n > m,
[L]? = det(L o L*).
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Proof.
(1) Let L = O oS be a polar decomposition of L, then L* = S o O* and
L*oL=(S00% 0(008)=52% Thus det(L* o L) = (det S)* = [L]*.
(2) The proof of (2) is similar.
0

Definition 4.3.7.
(1) If n < m, then define
A(m,n) ={X: {1,....,n} = {1,...,m} | A is increasing}.
(2) For each A € A(m,n), define a linear map Py: R™ — R" by
Py(x1, ..., 2m) = (Xra), - - - Tam))-
There exists an n-dimensional subspace
S ={ex, - eamp) CR™
such that Py is the projection of R™ onto S).

Theorem 4.3.8 (Binet-Cauchy Formula). Assume n < m and L: R™ — R™ is linear.

Then
[L]? = > (det[Pyo L))"

AEA(m,n)

FIGURE 5. The square of the H™-measure of A equals the sum of the
squares of the H"™ measure of the projections of A onto the coordinate
planes.
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Remark 4.3.9.

e [L]? is equal to the sum of the squares of the determinants of each (n x n)-

submatrix of the (m x n)-matrix representing L with respect to the standard
bases of R" and R™.

e If L is an injective linear transformation then the columns of the matrix rep-
resentation [L] with respect to the standard bases span the n-dimensional par-
allelepiped in R” whose n-dimensional volume is defined to be [L]. Thus the
Binet-Cauchy formula is a generalization of the higher dimensional version of

the Pythagorean theorem (B.I.).

Proof. After we identify the linear maps with their matrix representation with respect
to the standard bases of R™ and R™ we can write

Lm><n = (lij)i,ja Anxn: L*o L = (aij)i,j

and
Z lk] Zlkzlkj 1,] € (1,71)
=1 k=1
Then
[L]* = det A = Z sgn ( H Qig (i)
oeY i=1
where X is the set of all permutations of {1,...,n}.
:ngn Hzlkllkaz
ceY i=1 k=1

after taking into account the cancellations due to sgn (o) we obtain
= sen (0) Y [ Loty Lotroto,
oEx ped i=1

where ® is the set of all injective mappings of {1,...,n} into {1,...,m}.

Claim # 1: For each ¢ € ® there exist unique § € ¥ and A € A(m,n) such that
p=Aol

Proof Of Claim # 1.

(1) Uniqueness: Let ¢ = A\; 0 ) = Ay 0 65 and assume that A\; # Xy and that ko
is the smallest number in {1,...,n} with A\;(ko) < Aa(ko). Then

(*) Ai(ko) & {Aa(ko), ..., Aa(n)}

and

A1) = Ao(1), o Mlko — 1) = Ao(ko — 1).
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)\1(]{70) = )\1(91(];30)) = QO(];Z(J) = )\2(92(];30)) = )\1(92(];70)), where ];50 € {1, c. ,Tl},
then () implies that 05(ky) < ko, which is a contradiction because \; is in-
creasing. So A\; = Ay and 6, = 6s.

(2) Existence: Let ¢: {1,...,n} — {1,...,m} be injective. Let iy,...,i, be an
ordering of 1,...,n such that p(i;) < -+ < p(i,) and {i1,...,i,} = {1,...,n}.
Define maps

AAL ..o onp—=A{L....m} Ak) = (i)

and
6:{1,...,n} —{1,...,n} 0(i;) =7,
then
A€ A(m,n), 0 € ¥ and p = Xob.
Consequently,
[L]? = ngn Z Z Hl,\oe i Dnot(i) 0
oEY )\GA m n) ey i=1
:ngn Z ZHZA (4),0—1(3) l)\ (7),000—1
oEY )\GA m n) ey i=1

Z Zngn )Hlx(i),e(i) IxGi),000(i)
=1

AEA(m,n) 0€X o€X

= Z Zngn )sgn (p>Hl/\(i),6(i) IxGi), (i)
i1

AEA(m,n) pEX 0€X

= > (Z sgn (0) H lA(z‘)ﬁ(z‘))

AEA(m,n) \0€X
= ) (det[Pyo L)) O
AEA(m,n)

Definition 4.3.10. Let f: R™ — R™ be Lipschitz. By Rademacher’s theorem (A.2.1]),
f is differentiable L"-a.e. and hence Df(x) is an L™-a.e. defined linear map of R"
into R™. The matriz representation of D f(x) is

@) o )
[Df(@)] =] :
(@) e G@)

The Jacobian of f is defined to be
Jf(z) =[Df(z)] L"-a.e.
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4.4. The Area Formula And Its Applications.

Lemma 4.4.1. Suppose L: R" — R™ is linear, n < m, then H"(L(A)) = [L]L"(A)
for every A C R™.

Remark 4.4.2. This property of the Hausdorff measure is the generalization of a prop-
erty of the Lebesque measure, namely for every A C R™ which is Lebesque measurable

and for every L: R" — R" linear, L"(L(A)) = (det L)L™(A).

Proof. Let L = O o S be a polar decomposisiton of L, where S: R" — R" is symmetric
and O: R" — R™ is orthogonal, and [L] = |det S]|.
(1) Assume that [L] = |det S| = 0.
Since S is singular dim S(R") < n — 1 and dim L(R") < n — 1, thus we can
think of L(R™) as a subset of R"~!. Consequently, H"(L(R™)) = 0 and we have
proved the lemma for this case.

H(L(A)) = £7(L(A)) = 0

FIGURE 6. Lower dimensional set in R™ have £"-measure zero and hence
its H™-measure is also zero.

(2) Now assume that [L] > 0.

H"(L(B(x,r))) _ H"(S(B(z,1)))
Lr(B(z,r)) L (B(z,r))
_ H™(O* o L(B(x,7)))
Lr(B(x,r))

since O* o L is a linear operator on R"

_ L"(O* o L(B(z,1)))
L(B(z,r))

since O is an isometry
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FIGURE 7. H™measure is invariant under orthogonal transformations

Define v(A) = H"(L(A)) for every A C R™. Then v is a Radon measure that
is absolutely continuous with respect to the L™ measure. Then

. v(B(z,r))
L V($) Tll}(l) En(B<$,T)) [[ ]]
L"-a.e. r € R". A generalization of the fundamental theorem of Calculus to
the Radon measures implies that for every B € Bg» (Borel o-algebra on R™)

v(B) =H"(L(B)) = /BDch(:U) dC"z = [L]L"(B).

Since v and L™ are Radon measures v(A) = H"(L(A)) = [L]L£"(A) holds for
every A C R™.
U

Lemma 4.4.3. Assume f: R" — R™ is Lipschitz, n < m, A C R" is L"-measurable.
Then

(1) f(A) is H™-measurable.

(2) The mapping y — H°(AN f~1({y})) is H"-measurable on R™. This mapping
is called the multiplicity function.

(3) Jem HO(AN T ({y})) dH™y < (Lip f)"L"(A).
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Proof.

(1) Proof of # 1: WLOG we may assume that A is bounded. Since £" is a Radon
measure there exists a sequence of compact subsets {K;}ieny of A such that
LA -, K;) = 0. Since f(|J, K;) is H"-measurable and

( (UK)> (Lip f)"L"(A — UK
then f(A) is H"-measurable.

(2) Proof of # 2: For each k € N let
Be={Q = (a1,b1] X -+ X (ay,by) | a; = &, by = <H

% ,C,;EZ}

then R" = UQeBk @ is a pairwise disjoint union. For each k € N define a

function
W) = xrane)(®)
QEBy,

which counts the number of cubes ) € By, such that f~'({y}) N (AN Q) # 0.
For each k € N, g; is H"-measurable and since gx(y) ,/ H° (AN f~1({y})) as
k — oo

klim ge(y) = H' (AN f'({y})) is H"-measurable.
(3) Proof of # 3: By the Monotone Convergence Theorem (MCT)

HYAN T ({y}) dH y = lim [ gu(y) dH"y

Rm k—oo RmM
= fim, 2 H(ANQ)
QEDBy,
< lim sup Z Lip f/)"H"(ANQ)
k—oo QeB,
= (Lip f)" lim sup Z LM(ANQ)
k—oo QeBy
= (Lip f)"L"(A).

U
The next lemma is used in the proof of the Area Formula (L45). See Evans &
Gariepy [9] for a proof.

Lemma 4.4.4. Lett > 1 and B = {z | Df(x) exists, Jf(z) > 0}, f: R" — R™
Lipschitz, n < m. Then there exists a countable collection {E}}ren of Borel subsets of
R"™ such that

(1) B= Uk Ey
(2) flg, is injective for each k € N

(3) For each k € N there exists a symmetric automorphism Ty : R™ — R™ such that

Lip (f|Ek © Tk_l) <t Llp (Tk © (f|Ek>_1> <t
tinldet Tk‘ S Jf'Ek S t”]detTk]
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Theorem 4.4.5 (The Area Formula). Let f: R"™ — R™ be Lipschitz, n < m. Then
for each L™-measurable subset A C R"

/A If@yacte = [ AN )y
Proof.

e By Rademacher’s Theorem (A2.])) and lemma (A4.3) we may assume that
Df(z), Jf(z) exist for every x € A and we may also assume that £"(A) < oc.

o Case # 1: AC{Jf > 0}.
Fix t > 1. We can choose a sequence of pairwise disjoint Borel sets { E; }jen as
in lemma (E44). For each k € N let

Bk‘: {Q:(alabl] X X (anybn] ‘ ai:%7 b’L: Ci2_17 C; GZ}

and
Fi=ENQNA Q €ByijeN.
Thus
the sets F; are pairwise disjoint and A = U F;
i,J
Claim # 1:

i S0 = [ AN (bt

k—o00 “—
i
Proof Of Claim # 1. For each k € N define a function g, by
9k = Z Xf(F-
1,J

Then each g, if £"-measurable by lemma (4.3). gx(y) is the number of sets
Fi such that F} 0 f~'({y}) # 0, then gr(y) / HO(AN 7 ({y})) as k — oo.
By the MCT we obtain

HUAN 7 ({y}))dH"y = lim [ gi(y) dH"y

Rm k—oo RmM
= lim S H(7(F))
i,

By lemma (4.4.4)
M (f(F}) = H"[(flg, o T; o Tj)(F})]
< (Lip (flg, o T; )" HM(T5(F))) < "L (T;(F))

J

and

LYT(F)) = LTy o (flg,) ™" o f(F})) = H"(T; 0 (fl,) " o f(F}))
< (Lip (Tj o (flg,) )" H" (f(F}))
= t"H"(f(F})).
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Hence again by (4£.4.4)
tHN(f(F) < LT (F])) = 7| det Th| L7 (F)

< /F] Jflg,(x)dL"r = /Fj Jf(x)dL"x

< t"|det Ty L"(F}) = " L™(Ty(F})
< EVH(f(F)).
If we sum on 4,5 € N, then
CRSHGE) < [ If@ s < S W GE))
i A ij
If we let £ — oo then by Claim # 1 we obtain
e [ eans ey < [ g5 dc
Rm™ A

<t [ H(AN T {y})) dHy,

Rm
and then send ¢t — 17

/A Jf@ydcre = [ HOAN f({)) dHry.

R
o Case # 2: AC{Jf=0}.
Fix 0 < € <1 and factor f = p o g where
g:R" - R" xR" g(x)=(f(x),ex) ze€R"
p:R"XR" = R™ g(y,2)=y yeR" zeR"
Claim # 2: There exists a constant C' such that 0 < Jg(z) < Ce? for all z € A.
Proof Of Claim # 2. Let g = (f1,.-., fm,€x1,...,€x,), then

Dy(a)] = |1

] where [Df ()} an [el]us

:| (m+n)xn

By @3.38) [Jg(2)]* = [Dg(z)]? equals the sum of the squares of the (n x n)-
subdeterminants of Dg(x), hence [Jg(x)]> > € > 0 holds for every z € A.
The differential of f is the map Df: R" — L(R",R™) defined by

Df:a— Df(a) for every a € R".

D@0 < 70+ 1)~ f(@) = D@ + |Fla+ 1)~ @)
< 1o+ ) = f@) = DF@) (W) + Lip 51
P | < a0~ f@) ~ Dfa)(h)
s ()| < i

—0 as h—0

+Lip f

(.

since h is arbitrary

(%) |Df(a)|| < Lip f holds for all a € R".
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We can employ theorem (£3.8]) and (*) to compute
[Jg(x)]? = [Jf(z)]> + [sum of squares of terms with at least one €]
< Cé? for some constant C' > 0.
Since p: R™ x R™ — R™ is a projection then by theorem (4.1.2)
H"(f(A)) = H"(p(9(A))) < (Lipp)"H"(g9(A)) = H"(9(A)).
Since the map g is injective H*(AN g~ '({y,2})) =1 on g(A),
H"(g(A)) = » HY(AN g ({y, 2})) dH (y, 2)

and hence

() H"(9(A)) < R (ANg({y,2})) dH"(y, 2).

Rn+m

Since A C {Jg > 0} then Claim # 1 implies that

HY(ANg *({y,2})) = /A Jg(z)dL"z < CELM(A)

so using (k%) we obtain
H™(f(A)) < CELM(A).
Let € — 0 so H"(f(A)) = 0. Since spt [H(AN f~1({y}))] C f(A),

HOAN F1({y}) dHmy = /f AN )y <o

And theorem follows for this case because

/A Jf@ydere=0= | H(AN I {y)) dHy.

Rm

Rm

e General Case: Let A= (AN{Jf=0})U(AN{Jf > 0}). Then using Claim
# 1 and Claim #2 we get

/ Jf(x)dL"z = / Jf(z)dL" "z + / Jf(z)dL"x
A AN{Jf=0} AN{Jf>0}

— [ HAN ) dHry.

Rm™m

O

Theorem 4.4.6 (Change Of Variables Formula). Let f: R™ — R™ be Lipschitz, n <
m. Then for each integrable function g: R" — R,

| s@ir@aca= [ 3 ko) ity

zef~ ({y}
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Remark 4.4.7.

F7*({y}) is at most countable for H"-a.e. y € R™. In particular, let Ay be a
cube in R™ centered at the origin with side length 2M. Since

I bl = Jim 1A 0 7 ()

it suffices to show that for each M € N, H°(Ay N f~1({y})) is at most
countable H™-a.e. y € R™. If Ay C {Jf > 0}, then using the sequence
of functions {gx}ren defined in the proof of the area formula ([ALZ4H) we get
HY(AyNf~t({y})) = limg g (y) where each gi(y) is countable for every y € R™.
If Ayy € {Jf = 0} then by again using the area formula we get H°(Ay N
1{y})) =0 H"a.e. y € R™.

o If A C R and L"(A) < oo let g(z) = xa(z), then the change of variables

theorem reduces to the area formula.

Proof.

e Case # 1: ¢ > 0. We can write g =), %XAZ' where each A; is £L"-measurable.
By MCT

/Rn g(x)Jf(x)dL"x = /n Z %XAi(l‘)Jf(x) ALy
DN RUCHELE

—Z HO(Ain 7 ({y}) dH"y

Rnl

=/ Zl Z Xa,(z) dH™y

— 1
i zef~1({y}h)

/ Z z) dH"™y.
zef~1({y})

e Case # 2: If g is an arbitrary integrable function then apply Case # 1 to the
positive and negative parts of g.

4

Now we will give several examples showing the various applications of the area
formula. The area formula serves as a bridge between measure theory and manifold
theory. It is used to show that the Hausdorff measure gives the expected value for
“nice” sets, namely for k-manifolds in the Euclidean space. In the examples below we
will see that the Hausdorff measure of a curve is its length and the Hausdorff measure
of a surface is its area. And in general the Hausdorff measure of a k-manifold is its
volume. These examples will also show, by using the observation in (2.2.8)), that the
Hausdorff dimension of a curve is one or more generally the Hausdorff dimension of
a k-manifold is k£, and hence it generalizes our notion of dimension coming from the
manifold theory.



4. Lipschitz Analysis 49

Applications:

Example 4.4.8 (Length Of A Curve). Let f: R — R™ be Lipschitz and injective.
Write

f@) = (filx),... fm(@))  [Df ()] = [fi(2) - fr(2)]

Then using the Binet-Cauchy formula

Let C' = f([a,b]) € R™, then by using the area formula

b b p A .
/ Jf(x) dx :/ | ()| da = / HO([a, 8] N fTH({y ) dH'y
a a C
= H*(C) is the length of the curve.
When 0 < H}(C) < 00, Haim(C) = 1.

f /AK/

FIGURE 8. Length of a curve is equal to its H!-measure.

Example 4.4.9 (Surface Area Of A Graph). Let g: R" — R be Lipschitz and define
f: R* — R**! by

fx) = (z, 9(x)).

Then
10 0 |
0 1 0
[Df(x)] = :
0 ... 1
_%(z) ...... 20 ()
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and by using the Binet-Cauchy formula we obtain [Jf(z)]?> = 1 + |Dg(z)]*. Let U €
OP(R") and G = {(z,g(x)): x € U} C R""!. Then by the area formula

[0+ 1Dg@ 2 acre = [ 10w 0 Gah) d (o)
U

= H"(G) is the area of the surface.
When 0 < H"(G) < 00, Haim(G) = n.

Rn-{-l

R’n

FIGURE 9. Area of a surface is equal to its H?-measure.

Example 4.4.10 (Volume Of A k-Manifold). Let M C R" be a Lipschitz, k-manifold
in R”. Suppose that U € OP(R¥) and f: U — M is a (Lipschitz) coordinate map for
M. Let f(U) 2 A be Borel and B = f~(A). Define

of o o
9= (9ij)i; gz’jza—a{-a—jlgz,jgk
i J

then
[Df(x)] - [Df(x))' = g and det([Df(ﬂf)]t : [Df(fr)]> = det g.
So the Jacobian of f is Jf(xz) = y/det g and applying the area formula we obtain
| Vg icia) = [ 1m0 Gp)anty
= H*(A) volume of A.
When 0 < H¥(A) < 00, Haim(A) = k.
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U

o o
\

Rm

FiGURE 10. Volume of an n-manifold in R™ is equal to its H"-measure.

4.5. The Coarea Formula And Its Applications.

Lemma 4.5.1. Suppose L: R" — R™ is linear, n > m and A C R" is L"-measurable,

then

(1) The mapping y — H"™(AN L~ ({y})) is L™-measurable.

(2)

Proof.

Jom H'TMAN LT ({y}) dL™y = [L]L"(A).

e Case # 1: dim L(R") < m.

ANL'({y}) =0 L™a.e. y € R™ because

{ye R™: ANL'({y}) # 0} C L(A) and L™(L(A)) = 0.
Consequently, H""™(AN L7 ({y})) =0 L™-a.e. y € R™, and

y— H"™(AN L '({y})) is L™-measurable.

The linear map L: R®™ — R™ has a polar decomposition L = S o O*, where
O*: R* — R™, O is orthogonal and S: R™ — R™, § is symmetric. Since
O* is surjective L(R") = S(R™), then dim S(R™) < m, S is singular, and
|det S| = [L] = 0. Consequently,

[L]£"(A)=0= [ H"™ANL({y})dL"y

R™
so the lemma is proved for the case dim L(R™) < m.

Case # 2: L = P = orthogonal projection of R™ onto R™.

For each y € R™, P~ '({y}) is an (n-m)-dimensional affine subspace of R"
and a translate of P~*({0}), in particular P~'({y}) = § + P~'({0}), where
g € R", P(g) =y and it has all other entries zero. Since A is £"-measurable
f(z,y) = xa(x,y) is L"-measurable where x € X =R"™™ y €Y = R™ and

Y — Xav () dL" ™z is L™-measurable.

Rn—m
Since AY = {z € R"™™: (z,y) € A} and L™ is translation invariant

/ XAU(.’IJ)danI:/ ) XAmp—l({y})<x>d£nim$
=L"M(AN P ({y})



4. Lipschitz Analysis 52

= H (AN P ().
So y — H"™(AN P~({y})) is L™-measurable and
£7(A) = (L™ x £7™)(A)

= [ L™MANPT({y})dL™my

_ / AN P () de™y.

Since L = P = is an orthogonal projection [L] = 1 and hence

[L]L"(A) = £7(4) = / Hm (AN P ({y)) ALy,

m

So the lemma holds in the case where L is an orthogonal projection.

e Case # 3:L: R" — R™, dim L(R") = m.
L has a polar decomposition L = .S o O*, where
S:R™ — R™ is a symmetric automorphism,
O: R™ — R" orthogonal,
[L] = |det S| > 0.
Claim: O* = P o () where P is the orthogonal projection of R™ onto R, and
@: R" — R" is orthogonal.

Proof Of Claim. Let O: R™ — R™ be an orthogonal map and {ej,...,e,} be
the standard basis of R™. For 1 < ¢ < m let ¢ be the standard basis element
of R™, and e¢; = ¢; x 0,,. Then

<Oéz, Oéj> = <é“é]> = <€i, €j> = 61']' 1 S Z,] S m.
Then {Oéy, ..., 0¢,} is an orthonormal set of vectors in R”. Let {41, .., @}

be an orthonormal set of vectors in R™ such that {Oéy, ..., 0, i1, ..., an}
is orthonormal. Let T": R® — R"™ be the linear map defined by

Tej=a; m+1<j<n,
then 7" is an orthogonal map such that T'(x1,..., 2, 0,...,0) = O(z1,...,2p).
Let 7' =T* = Q: R® — R" be the orthogonal map, and let P: R"” — R™ be

the orthogonal projection onto the first m coordinates. P*: R™ — R" is the
linear map defined by (y, Px) = (P*y,x) for every x € R", y € R™. Then

(e;, P*x) = (Pej,x)y =x; 1<i<m
(e;, P'x) =0 i>m.

So P*(z1,...,&m) = (1,...,Tm,0,...,0) € R™.
If 2 = (z1,...,2,) € R™ then

(Q o P*)(x) = Q" (x1,...,Tm,0,...,0) =O0(x1,...,2Tp)
= O® = Po (@, and hence we proved the claim.
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L~1({0}) = ker L is an (n—m)-dimensional subspace of R". Let X = ker L &
R*™ Y = R™, then L '({y}) = ker L + xy where Lzy = y, zo € R" and
L7'({y}) is an (n — m)-dimensional affine subspace of R™ which is a translate

of ker L. Let P: R™ — ker L be an orthogonal projection onto the kernel of L
defined by P((z,y)) = = € ker L.

R™ ker L + zo = L™ ({y})

(x,0) ==z
ker L = R"™™

FIGURE 11. ker L is an (n — m)-dimensional subspace of R” and P is a
projection onto ker L.

Since A C R"™ is L"-measurable

Y — Xav () dL" ™z is L™-measurable.
Rn—m

= /nm X{zex: (zayeay(@) ALz
=L ({w e Xt (x,y) € A})
=H""({r € X: (2,y) € A})
since H"™™ is not affected by affine transformations
=H""(AN L ({y}))-
Soy — H"™(AN L '({y})) is L™measurable. Since Q: R" — R" is an

isometry

£1(4) = £(Q(4))
= [ @y n P deny
= [ AN Qe P bl Ly
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ANL'({y}) |R™ L~'({y})

s
oe”
=

ker L = R»—™

FI1GURE 12. Since Hausdorff measure is not affected by affine transfor-
mations, H" ™(AN L' ({y})) = H* ™ ({x € ker L: (z,y) € A})

Since S: R™ — R™ is a symmetric automorphism it is a Lipschitz map
defined by

S:y— Sy) =z
WLOG we may assume that £"(A) < oo, and then y — H*"™(ANQ'o
P~1({y})) is L™-integrable. Since JS(y) = [DS(y)] = [S] = |det S| we can
apply the change variables formula (£Z4.0]) to compute

et SIC"(A) = [ det ST (AN (@ o PT({u))) dL™y

m

- / ST HTTAN Qo PY({y)) dH™

" yes—1({z})
= / H™™AN(Q o P o STH({2}))dL™z.

L has a polar decomposition L = S o O* = S o P o (), which follows from the
Claim, and then

[L]£(A) = | H"™(AN L ({y}))dL™y.

Rm

O

The next lemma, which we will state without proof, establishes the necessary pre-
requisites for the proof of the Coarea Formula. For a proof see Evans & Gariepy [9].
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Lemma 4.5.2. Let A C R" be L"-measurable, and f: R — R™ be a Lipschitz map
n >m. Then

(1) An f~'({y}) is H" ™-measurable L™-a.e. y € R™.
(2) y — H™AN f1{y})) is L™-measurable.

(3) Jor H"™™(AN f7({y})) dLmy < SR (Tip f)mLn(A).

The next lemma is used in the proof of the Coarea Formula just as the lemma (4.4.4])
is used in the proof of the Area Formula. But this time the sequence of Borel sets cover
B ={z | Dh(x) exists , Jh(z) > 0} L"-a.e. For a proof see Evans & Gariepy [9].
Lemma 4.5.3. Lett > 1, assume h: R™ — R™ is Lipschitz, and let

B = {z | Dh(z) exists, Jh(zx) > 0}.
Then there ezists a countable collection of Borel subsets { Dy }ren of R™ such that
(1) £(B = U Di) = 0

(2) h|p, is injective for each k € N

(3) For every k € N there exists a symmetric automorphism Si: R™ — R" such
that
Lip (S " o (hlp,)) <t Lip((hlp,) " o Sk) <t
t_"|det Sk| S Jh|Dk S t”|det Sk|

Theorem 4.5.4 (The Coarea Formula). Let f: R® — R™ be Lipschitz, n > m, then
for each L"-measurable subset A C R",

/A Jf@ydere = [ HemAN F({y)) demy.

Rm™

Remark 4.5.5. The coarea formula with the change of variables formula, coming
next, together generalize the Fubini’s theorem. In particular, let P: R™ — R™ be the

projection onto the first m coordinates, then P is a Lipschitz map with Lip P = 1, and
JP(z) = [DP(2)] = [P] = 1. Assume that £"(A) < oo, then

/ JP(z)dL"(z) = L™(A) = / H" (AN P {y}))dL™y
A m
_ / H M (AY) dL™y
_ / Lrm(AY) dLmy
Rm
— / Xav(z,y)dL" "z dL™y,
which is exactly the assertion of the Fubini’s theorem when the integrable function is

the characteristic function f(z,y) = xa(z,y) of A, and for the most general integrable
function we need to use the change of variables formula.
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Proof. From lemma (£5.2) we know that A N f~'({y}) is H" ™ measurable L£™-
ae. y € R" and y — H" ™A N f'({y})) is L™measurable. Since f is Lip-
schitz Df(z) and Jf(z) exist L™a.e. x € A and hence there exists A O B L"-
measurable, £"(B) = 0 such that f is not differentiable in B. From lemma (4.5.2)
Jom H™(B N f7H({y})) dL™y = 0 and hence

/A Jf(x)dL"x = / Jf(x)dL"x

A—B

= [ H"((A-B)nf({y})dLmy

RmM
= [ H"ANF({y}) dLmy.
Rm
So WLOG we may assume that D f(z) and Jf(z) exist for every x € A, and L™"(A) <

Q.

e Case # 1: AC{Jf > 0}.

For each A € A(n,n—m), XA: {1,...,n—m} — {1,...n} increasing, write

hy: R" = R™ x R*"™™ hy(z) = (f(z), Px(x)) (x € R")

¢:R"xR"™™ = R™ q(y,2) =y (ye R™ z € R"™™),
and P\(z) = Px(@1,...,%,) = (Txaq), - - - s Ta(n—m))- Ot Ay = {x € A: det Dhy #
0}, then

det[Dhy(x)] # 0 < Dhy(x): R® — R" is invertible
& (Dha(z))" ({0}) = {0}
& {y € R": Dhy(z)(y) = 0} = {0}
& {y eR": Py(y) =0} n{y e R": Df(z)(y) = 0} = {0}

Py|(py(z))-1({o}) 1s injective
& {y € R": Py|pzern: Df(a)(2)=0}(¥) = 0} = {0}
< {y eR": P(y) =0t n{y e R": Df(x)(y) = 0} = {0}.
Thus
Ay ={z € A: P\|(pf(2))-1({op) is injective}.

By definition it is clear that Uycamn—m)Ax € A, now we want to show that
A C Urea(nn—m)Ax. Let z € A, so Jf(x) > 0 and then

0<[Jf@) =[(Df@)T= Y (det[P5o (Df(x))])?

XeA(n,m)

= 0 < det[P5] - [Df(z)]! for some A € A(n,m)
of

0
= 0 < det e /
0 0
= f R / is linearly independent.

A {1,...,m} = {1,...,n} increasing, A induces a unique
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A A{l,...,n—m} — {1,...,n} increasing and

{1,...n} =2{1,...,mYHUX{L,...,n—m}).
Then
P)\’(Df(a:))—l({o}) 18 injective = P)\|(Df(x))—1({0})(y) =0= Yy = 0
& for every y € R" with Df(x)(y) =0
Yr1) = = Yatn-m) = 0=y = 0.

Since the set {af;;) g a;z{m) } is linearly independent then Py |(pf(z))-1(f0}) i8
injective, and z € A,. Since each A, is measurable we may assume for simplicity
that A = A, for some A € A(n,n —m). Fixt > 1, A= A, = {det Dh) # 0}
where A € A is fixed and h = h): R® — R" is a Lipschitz map. Then by
using lemma (£5.3) we may choose a pairwise disjoint collection of Borel sets
{Dk}keN such that

(1) LA =U Di) =0
(2) halp, is injective for each k > 1
(3) For each k > 1 there exists a symmetric automorphism Si: R" — R™ such
that
Lip (S o (halp,)) <t Lip ((hlp,) ™" o Sk) <t
t_”|det Sk| S JhA'Dk S tn| det Sk|
Set Gk =AnN Dk.
Claim # 1: t™"[qo Sk] < Jf|a, < t"[qo Sk].
Proof Of Claim # 1. Since f = q o h we have L"-a.e. equalities
=qoDh
=qoS,o0S,'oDh
=qoSyoD(S;'oh)=qoS,oC,
where C' = D(S, ' o h). From lemma (5.3 we obtain,
t~! < Lip (S, o h) = Lip (D(S;' o h)) < t.
The linear maps D f: R” — R™ and qoS;: R” — R™ have polar decompositions
Df=S00"
qoSy="1To P,

where S, T: R™ — R™ are symmetric automorphisms, and O, P: R™ — R”
are orthogonal. Then,

SoO*=ToPoC
= 500"0c0=ToPoCo0O
=S9S=ToP'oCo0O
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Since Gy, € A C {Jf > 0} and Jf(z) = |det S| then det S # 0 and hence
det T # 0. If v € R™,

(T 0 S)(v)] = |(P" o Co0)(v)
< [(CeO)(v)]
< t|Ov| = t|v|.

Therefore (77! o S)(B(0,1)) € B(0,t). Since T~ o S is a linear operator on
R™, then

V(T2 8)B(0,1)] |det( 1o S)|V(B(0,1)), and
(T o S)B ( 1) CtB(0,1) imply that
a(m)|det(T™" 0 §)| = L™((T™" 2 $)B(0,1)) < L™(tB(0,1))
=t"L"(B(0,1)) = a(m)t™.

And hence
|det T'|7|det S| < t™ < ",
= |det S| < t"|det T'| = t"[q o Sk], so
Jfla, < t"[q o Sil.

Since C' = S;' o Dh and Dh is invertible then by the inverse function theorem
C™' = D(h™'08}), and lemma (E5.3) implies that Lip C' = Lip (D(h™'0S)) =
Lip (b0 S}) < t. From (*) we obtain S™'oT = O*o(C~'o P. If v € R™, then
(S7 o T)(v)] =1(0" o C™F o P)(v)|
<€ o P)(v)|
< t|Pv| = t|v|.
Therefore (57! o T)(B(0,1)) C B(0,t) and similar calculations yield
|det S|t |det T| < t"
[qo Sk] = |det T| < t"|det S| =t"Jf.

Consequently, t™"[go Sk] < Jfla, < t"[go Sk] holds for each k € N, and hence
we proved the claim.

Now using all the information we have gathered so far we can calculate
t—3n+m Hn_m(Gk N f_l({y}) dﬁmy
Rm

() =t R (R (R(GY) N g ({w)) dL™My.

Since (h™' o Sy) oSy (h(Gr) Ng~ ({y})), then
N——

Lip (h—1oSk)<t
H™(h N (h(Gr) N g ({)})))
< (Lip (b7 0 i)™ ™H™ ™ (S 1 (h(G)) N g~ ({y}))
<t THET (S R(GR) Ng T ({w)).
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Now if we continue the calculation from (#x*) and using the above observation
<o / H* (S (h(GR) N g™ ({y)) dL™y
= [ (S (G 0 a0 507 (0)) de™

from lemma (5.1
=t"*"[q o SK]L™((S}," o h)(Gy))
<t *"[q o Si](Lip (S; ' o h))"L"(G)
<t "[qo SklL"(Gr)

< / Jf(x)dL"x
G
< t"[q o Sk]L"(Gr)
since L(Gy) < t"L7((S, ' o h)Gy)
< g0 SILM (ST 0 1))
again by lemma (Z£5.1))

= [ (S e WG N (g0 S (b)) ALy
since S (A(G) N g™ ({y) = (S5 0 WA~ ((G) N ()
and Lip (S;* o h) < ¢, then

< [ G g (b)) ac”y

= [ OHTGE N T ({w)) LMy,

Rm
If we sum on k£ € N we obtain

t‘3"+mz H" MGeN T {y))) dL™y
< Z/ x)dL

<t T”Z CHTT(GEN T ({yh) ALy

By the MCT

o [ e (o ) acny

< /LJka Jf(x)dL"x
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<o [ g (U Gen ().

From lemma (£5.3]) we have £L"(A — |, Gx) = 0, and then
[ reman i quhyacny

- [ (U Gen £ (o)) dc™.

Ast — 17, we get
/ Jf(z)dL" = / Hm AN F () dCmy
A m

and hence we proved the Coarea Formula for the case A C {Jf > 0}.
o Case # 2: AC{Jf=0}.
Fix 0 < e <1, and define

g: R" xR™ = R™, g(x,y) = f(v) + ey
p: R" X R™ - R™, p(z,y) =y (x e R", y € R™).
Then
[Dg(x,y)] = [Dg(x,y)(er) -+ Dg(x,y)(ensm)]
— [DF@@) - DI ]

where {ey,... e, m} is the standard basis of R"™™ and {éy,...,€é,} is the

standard basis of R", and as in the proof of the area formula
" < Jg < [Dg] < [(Dg)’] < Ce

for some constant C' > 0.

Define a function k(y) = H" ™(A N f~*({y})) which is nonnegative and £™-

measurable a.e., then

Hm (AN 7 ({y)) dLmy = / k(y) dC™y

m

RmM

since Lebesque integral is invariant under translation

:/ k(y — ew) dL™y

= [ Hman £y - ep)acny
Thus
= [ wran ) acny

Rm
) Jyo 7 A0S
H' (AN f y—ew}))dL™ydLw.
st o L man s - )
Claim # 2: Fix y € R™, w € R™. and set B = A x B(0,1) C R"™. Then

0 if w¢ B(0,1)
(AN f{y —ew})) x {w} if we B(0,1).

(s * )

Br?g‘w{yDFWP‘%{w})=={
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Proof Of Claim # 2.

(z,2) € Bng~ ({y}) np~ ({w})

sxeA zeB(0,1), f)+ez=y,w==z2
sreA z=we B0,1), flx) =y — ew

s we B(0,1) and (z,2) € AN f ' {y — ew}) x {w}

Now using Claim # 2 continue the calculation from (k x *)
1

— / / H™(AN 1 {y — ew})) dL™y dL™w

a(m) B(0,1) JR™

since H™™ ™ is invariant under affine transformations

1 e -1 — €W w m mw
~ a(m) /B(o,l) RmH (An/~(y }) x {w}) dL™y dL

1 o - — €W w My m
:W/m/g(oﬁl)ﬁ (AN f7 {y — ew}) x {w}) dL™wdL™y
::M;y/m/mH””Uﬂnf%wnmp*«wnymmwﬂwy
<20 [ g () ety

since Jg > 0 on R™™™ then by Case # 1

_—a(n—m) T,z "rdL™Mz
= o) /BJg( ,2)dL x dL

a(n —m)

IN

LA x B(0,1))sup Jg(x, 2)
B

a(n)
a(n —m)a(m)

o) L"(A) sup Jy(z, 2)

< C'L™(A)e, where C' > 0 is a constant.

As € — 0, we obtain

lLJﬂ@dﬁx=o= Hm (AN F () L™y

R'm

and hence we proved the Coarea Formula for the case A C {Jf = 0}.

e General Case: Let A = A;N Ay where A1 = AN{Jf >0} and Ay = AN{Jf =
0}, then A; and A, are pairwise disjoint measurable sets. Now apply Case #

1 and Case # 2.

O

Theorem 4.5.6. Let f: R" — R™ be Lipschitz, n > m. Then for each integrable

function g: R® — R,
gly-1(yy) 18 H" " -integrable L™-a.e.y € R™
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and

/n g(x,y)J f(z,y) dL" (z,y) :/m /f_l { })g(x,y) dH" " dL™y

Remark 4.5.7.
e The change of variables formula is a generalization of the coarea formula. In

Proof.
(1)

particular if g(z,y) = xa(z,y), A CR"is L"-measurable and £"(A) < oo then
the change of variables formula implies that x 4| s-1(g,)) is H"™™ integrable a.e.
and

/Jf(af y)dL" (z,y) = / xa(z,y)J f(x,y) dL" (z,y)

/ / alz,y)dH" e dL™y
m {y}

_ / CHTAN T () dL™y.

The coarea formula together with the change of variables formula generalize
the Fubini’s theorem. In particular if

P:R" — R™ is a projection map onto the last m coordinates and g: R — R
is an integrable function, then the map y +— g(z,y) is H"™ ™ integrable L™-a.e.
y € R™ and

/g(af,y)ﬁn(w,y)z/ / g(z,y)dH" "z dL™y
n m JP=1({y})
= / / g(z,y)dL" "z dL™y
m Y{y})
/ / y) AL dL™y

where the second equality holds for every measurable characteristic function
and hence for every integrable function. From (%) we see that the map y —
Jgnm 9(x,y) AL ™z is L*7™ integrable a.e. and the assertion of the Fubini’s
theorem holds.

Case # 1: ¢ > 0.
We can write g = ) . %X 4, Where each A; is L™"-measurable. Then by the MCT

[ tewisen e =325 [ s
=35 [ A s ey

- / ) Z SH A (b)) ALy

= / / g(z,y) dH" "z dL™y
mJ 1)
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(2) Case # 2: If g is an arbitrary integrable function then apply Case # 1 to the
positive and negative parts of g.

O

The coarea formula can be used to show that the integral of a real-valued integrable
function is equal to the integral with respect to the spherical coordinates. The coarea
formula also implies that the integral of the jacobian of a real-valued Lipschitz function
f is equal to the integral of the Hausdorff measure of each level set {f = t}.

Applications:
Proposition 4.5.8 (Polar Coordinates). Let g: R™ — R be L"-integrable. Then

/ g(x,r)dL"(x,r) = // g(x,r)dH" 'z d
n 0B(0,r)

Proof. Let x and r denote the general point of R*~! and R, respectively, and f: R* — R

be defined by f(x,r) = |(z,7)|, then Df(xz,r): R" — R exists for every (z,r) €
— {0} and

(z,7)

7))

Then by using the change of variables formula we obtain

/ g(x,r)dL"(x,r) = / / g(x,r)dH" "z dr
" =20/ 1-1((r))
:/ / g(x,r)dH" 'z dr.
o JoBor)

Df(xz,r)(h) = - h, then Jf(z,r) =1, for every (x,r) € R" — {0}.

Theorem 4.5.9. Assume f: R™ — R is Lipschitz, then
[ psolcin = [ wtds =) a
R™ o
Proof. Let f: R"™ — R be Lipschitz and ), be the cube in R" centered at the origin
with side length 2k € N, and let z and ¢ denote the general point in R*™! and R,

respectively, then xg,: R" — R is integrable and the change of variables formula
implies that

/ Xau (@, 1) f(2,8) dL" (2, 1) = / / XQi (2, 1) dH" 'z dt
' R JF1({1))

= / H Qun{f=1t})dt
And the MCT gives

[ ID#(w 0] e at) = /OO WL = 1) dt. -
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4.6. Rectifiable Sets.

Definition 4.6.1.

(1) The Tangent Cone of E C R™ at a € R™ consists of the tangent vectors of E at
a

Tan(E,a) = {r €e R: r > 0}

ﬂClos r—a. reE0<|r—al<e
|z — al
e>0
(2) The cone of approzimate tangent vectors of E at a is defined to be
Tan™(E,a) = ﬂ{Tan(S, a): O™(E —S,a) = 0}.

Remark 4.6.2. We can think of the approximate tangent cone as the subset of the
tangent cone but without the lower dimensional pieces of the tangent cone.

LYY

C

FIGURE 13. (A) is the set, (B) it its tangent cone at a, and (C) is its
approximate tangent cone at a.

Definition 4.6.3. A set E C R" is called (H™, m) rectifiable if H™(FE)
< o0 and H™-a.e. © € F is contained in the union of the images of countably many
Lipschitz functions from R™ to R™.

These sets are the generalized surfaces of geometric measure theory. E C R™ is
called an m-dimensional rectifiable set if it is (H™, m)-rectifiable and H™-measurable.

The next proposition, whose proof can be found in Federer [I0], shows that if an
H™-measurable set E C R™ is m-rectifiable then H™-a.e. = € FE is contained in a
countable union of C' embedded manifolds.

Proposition 4.6.4. If a set E C R" is m-rectifiable, then there exist a sequence
{K;}ien of compact subsets of R™ and a sequence {f;}ien of C' maps such that each
fi has domain K; and {f;(K;)}ien is a collection pairwise disjoint subsets of E, and

H™ <E - Liin(Ki)> = 0.

The following proposition, whose proof can be found in Federer [10], shows that a
rectifiable set has a tangent plane H™-a.e.
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Proposition 4.6.5. If E C R" is an m-dimensional rectifiable subset, then for H™-
ae.x € E, O™(E,x) =1 and Tan™(E, x) is an m-dimensional plane.

Definition 4.6.6. An orientation of an m-dimensional rectifiable set E C R™ is a
choice of orientation for each Tan™(E, x).
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5. DIFFERENTIAL FORMS, INTEGRATING FORMS OVER
MANIFOLDS, GENERALIZED STOKE’S THEOREM

In this section we will introduce the differential forms and list some of their proper-
ties. We will give the definition of the integral of a differential form over a parameterized
manifold in R™. The definition of the integral of a differential form over a manifold
is a generalization of the integral over a parameterized manifold. We can think of a
manifold as formed by patches of parameterized manifolds and hence the integral of
a differential form over a manifold is the sum of integrals over various parameterized
manifolds covering our initial manifold. The culmination of our labor in this section is
the Generalized Stokes” Theorem which relates the integral of a differential form over
the boundary of the manifold with the integral of its differential over the manifold.
The main reference for this section is the book by Munkres [23].

5.1. Tangent Vectors And Vector Fields.

Definition 5.1.1. Given x € R", a tangent vector to R" at x is a pair (z;v) where
v € R". The set of all tangent vectors to R™ at x forms a vector space under the
operations

(5 0) + (w3 w) = (250 4+ w)
c(x;v) = (x;cv)

It is called the tangent space to R™ at x and is denoted T,(R™). The tangent space can
be thought as the set of all arrows emanating from x.

Definition 5.1.2. Let a: (a,b) — R" be a map of class C", the velocity vector of a at
t is defined to be (a(t); o/ (t)).

Definition 5.1.3. Let A be open in R* or H*, let a: A — R™ be of class C". Let
x € A, and let p = a(z), and define a linear map a,: T,(R*) — T,(R") by . (z;v) =
(a(z); Da(zx)(v)). It is called the transformation induced by . Using the chain rule it
is easy to see that a.(x,v) is the velocity vector of B(t) = a(x + tv) at t = 0.

The next lemma, whose proof can be found in Munkres [23], states that the star
operation distributes over composition.

Lemma 5.1.4. Let A be open in R¥ or H* and let a: A — R™ be of class C". Let B
be an open set in R™ or H™ containing «(A), let 3: B — R™ be of class C", then

(B o), = fyoa.

Definition 5.1.5. Let A € OP(R™), a tangent vector field in A is a continuous function
F: A — R" x R" such that F(z) € T,(R") for every x € A. Thus F has the form
F(z) = (x; f(x)) where f: A— R™. If F is of class C" then we call it a tangent vector
field of class C™.
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Definition 5.1.6.

(1) Let M be a k-manifold of class C™ in R™. If p € M choose a coordinate map
a: U — V about p, where U is open in R*¥ or H*. Let v € U be such that
a(z) = p. The set of all vectors of the form a.(x;v), v € R¥, is called the
tangent space to M at p and is denoted T,(M).

T,(M) = a.(T,(RY))

is a subspace of T,(R™) that does not depend on the choice of the coordinate
map.

T,(M) = {(p; Da(2)(v)): v € R*}

{(p; S—Z(ﬂf)>>--~, <p; g—;(@)}

where {e; ..., ey} is the standard basis for R¥. Since Da(x) has rank k, these
vectors are linearly independent.

15 spanned by

(2) The union of the tangent spaces T,(M) for p € M s called the tangent bundle
of M.

(3) A tangent vector field to M is a continuous function F: M — T,(M) defined
by p — F(p).

5.2. Tensor Fields And Differential Forms.

Definition 5.2.1.
(1) Let A € OP(R™), a k-tensor field in A is a function w assigning, to each x € A,
a k-tensor defined on the vector space T,(R™).
w: A —=L*T(R")
v w(r) € TNT.(R™)
(2) The value of w(x) at ((z;v1),...,(x;vx)) is denoted by

w(@)(z;v1), ..., (z;0)) and we require w to be a continuous function with re-
spect (z,v1,...,vx). If it is of class C" then we call it a tensor field of class C".

(3) w is called differential k-form on A if for every x € A, w(z) € AF(T,(R")),

alternating k-tensor on A.

(4) If M is an m-manifold in R", then a k-tensor field on M is a function w: p €
M — w(p) € L¥(a.(T(R™))), where « is a coordinate map about p = o(x). If
w(p) € A¥(T,(M)) for every p € M then w is called a differential k-form on
M.
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Definition 5.2.2.
(1) Let {er,...,en} be the usual basis for R". Then {(x;e1),...(x;€,)} is a basis
for T,(R™). For each 1 <1i < n define the elementary 1-form ¢; on R™ by

¢i: R" — ANT(R")

0 ifi#]

(2) Let I = (i1,...,ix) € {1,...,n}* be ascending, then define the elementary

k-form ¥; on R™ by
dr: R" — AY(T(R")

x o () = by (X)) Ao A gy (2)

v e dile)(wie) = {1 A

where
dr() (o), (0) = Y (580(0)) B (@ o)) -+ Biy () (7 0ot
oESy
- Z (sgn(0))viy,001) " Viyo(k) = det Xp
oESy

and X = [vy -+ - v).

(3) If w is a k-form defined on an open set A of R", then the alternating k-tensor
w(x) can be written uniquely in the form

W) = bi()ii(x)
(1)
where the summation extends over all I € {1,...,n}* ascending.

Remark 5.2.3. From now on we will require that a k-form on A € OP(R") is an
alternating k-tensor field of class C'*°, that is the component functions b; are all of class

C*. And by convention we will define a O-form on A as a real-valued C*° function on
A.

5.3. Differential Operator.

Definition 5.3.1. Let A € OP(R"), let f: A — R be a function of class C>. The
1-form df on A is defined by

df : A —AY(T(R™))
v df (z) € AYT(R"))
where df (x)(xz;v) = D f(z)(v).

Lemma 5.3.2. Let &1, cee én be the elementary 1-forms in R". Let m;: R" — R be
the projection onto the ith coordinate, then dm; = ¢; for each 1 <1i < n.
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Proof. Since m; is linear, dm; is a 1-form on R™ and dm;(z)(x;v) = Dmi(z)(v) = v;.
Then

5:(2)(x:0) = & (2) (x; > Ujej)
- ZUJ&%($)(ZE; ej) =V; = dﬂ'l(x)(x,'y)

Remark 5.3.3. If x is the general point of R™, we denote the ith projection mapping of
R™ onto R by x;. Then dz; equals the elementary 1-form &Z in R*. If [ = (iy,...,1) €
{1,...,n}* is ascending, then dz; = dx;, A --- A dx;,, which is the elementary k-form
Y7 in R™. And the general k-form will be written as

w = Z b[d(L’[.
(1)

Then the 1-form df where f is of class C™ can be written as df = (D, f)dzy + -+ +
(D, f)dzy,.

Definition 5.3.4. Let A € OP(R"), and Q2*(A) be the set of all k-forms on A of class
C*, then Q*(A) is a vector space.

The next theorem, whose proof can be found in Munkres [23], shows that there exists
a unique linear transformation with certain properties such that it sends each k-form
into a (k + 1)-form.

Theorem 5.3.5. Let A € OP(R"), then there exists a unique linear transformation
d: QF(A) — QF1(A)
defined for k > 0, such that:
(1) If f is a O-form, then df is the 1-form
df (z)(x;v) = Df(x)(v).
(2) If w and n are forms of order k and 1, respectively, then
d(w An) = (dw) A+ (—=1)Fw A dn.

(3) For every form w

ddw = 0.

We call d the differential operator and dw is called the differential of w, and from the
above properties the differential of w = 2(1) brdx; equals dw = Z([) db; N dzx;.
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5.4. The Action Of A Differentiable Map.

Definition 5.4.1. Let A € OP(RF), B € OP(R") and let a: A — R™ be a map of
class C* such that a(A) C B. The transformation o*: Q(B) — QI(A) is defined by

(@ f)(x) = fla(z))

whenever f is a 0-form on B,

(w)(x)((z;01), ..., (x;1)) = w(a(z))(a(z;01), . . ., (5 07))

whenever w is an | > 0 form on B. Hence o*f is a 0-form on A and o*w is an l-form

on A.

Remark 5.4.2. There is a relationship between o* and «,, namely assume that
a: A € OP(RF) — R" is a map of class C* and a(x) = y. Then « induces a lin-
ear transformation
T = a,: T(RY) — T,(R");

this transformation induces a dual transformation of alternating tensors
T*: AY(T,(R™)) — AYT,(RF)) defined by

(T*B)((w; 1), -, (@501)) = B(T[(w;01), -, (w5 00))),
where 8 € AYT,(R")) and vy,...,v € RF. Now if w is an [-form on B, w(y) €
AT, (RY)), then T*(w(y)) € AYT,(R¥)), and

T (w) (x5 01), .. (z30)) = w@)(T(z;301), ., T (25 00))
= w(y )(Oé*(%’,vl) - (@30))
= w(y)((a(z); D ( )(v1)), -, (a(z); Da(z)(v)))
= (@w)(x)((z;01), ..., (w;0)).

To compute the integral of a differential form over a manifold we will need a formula

for a*w. The next theorem gives the formula when w is an elementary 1-form or an

elementary k-form. This is all we need because the transfomation o is linear, preserves
wedge products, and o f equals f o o when f is a 0-form.

Theorem 5.4.3. Let A € OP(RF), let a: A — R™ be a map of class C*. Let x denote
the general point of R* and let y denote the general point of R™. Then

(1) o*(dy;) =da;, 1 <i<n
(2) I =(iy,...,ix) € {1,...,n}" is ascending
o (dyr) = o (dy;, A+ Adys,)
(d t %_x) dri N -+ ANdxy,
where

dar 0oy, ..., qq)
ox N 3(x1,...,:ck)'
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Proof.
(1) Let a: A € OP(R*) — R" be a map of class C*°, a(A) C B € OP(R")
ot QYB) — QY(A).
We want to show that o*(dy;) = do;. Let y = a(z),
a* (dy;) (z)(x; v) = dyi(e(z))(a(x); Do(z)(v))

= Dy;(y)(Da(z)(v))
= Day(x)(v)
— ZDjC)éi(fF)Uj = gjj (z)dz;(z)(2;v)

(2) Since dyr = dy;, A+ - -Ady;, is a k-form on B then o*(dyy) is a k-form on A C R*
and hence it has the form
o (dyr) = hdxy A -+ Ndxy,
for some scalar function A.

o (dyr) () ((w;v1), -, (25 00))
= h(x)dzy () A Adag(z) (x5 01), ... (25 08)).

Since h(z) = h(z)dzy(x) A - - - drg(z)((x;€1), ..., (z;ex)), then

h(x) = a*(dyr) (@) (2 €1), - -, (25 ex))

= dy;(y)(y) ((y; g—;(ﬂf)) b <y; a%k(a:)»

ooy
= D = _—
det[Da(z)|; = det e

dar

= a*(dyr) = (det 5

)dwl/\--~/\dxk.

O

Remark 5.4.4. If v = Z(I) brdyr is a k-form defined in an open subset of R"™ con-
taining «(A) where « is a map of class C*° then theorem (5.4.3)) gives o*(w) as

af(w) =a" (Z bldyl) = Z o (br A dyr)
() ()

= Z by Ao dyy
()
0
=Y (broa)det Stday A--- A day
ox
()
Another property of the transformation a* that we will use frequently is commuta-

tivity with the differential operator. The next theorem, whose proof can be found in
Munkres [23], shows that the o* transformation commutes with d.
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Theorem 5.4.5. Let A € OP(R*) and a: A — R" be of class C*. If w is an [-form
defined in an open set of R™ containing a(A), then

o (dw) = d(a*w).

5.5. Integrating Forms Over Parameterized Manifolds.

Definition 5.5.1. Let A € OP(R¥), let n be a k-form defined in A, then n can be
written uniquely in the form

n=fdry N\--- Ndxg,

and the integral of n over A is defined by

Jn=[r

whenever the latter integral exists.

Remark 5.5.2. The definition of the integral of a k-form over an open set A C R*
does not depend on the choice of basis as long as it has the same orientation.

Definition 5.5.3. Let A € OP(R¥) and a: A — R" be of class C*, then Y, = (Y, )
is a parameterized manifold. If w is a k-form defined in an open set of R™ containing
Y, then the integral of w over Y, is defined by

/w:/a*w
Y A

where o*w is a k-form defined on A.

The next theorem, which can be shown using the change Of variables theorem of
the manifold theory, asserts that the integral is invariant under reparametrization, up
to sign.

Theorem 5.5.4. Let g: A — B be a diffeomorphism of open sets in RF. Assume that
det Dg does not change sign on A. Let 3: B — R" be a map of class C*, Y = (3(B),
and let « = o g. If w is a k-form defined in an open set of R™ containing Y, then w
is integrable over Yy iff it is integrable over Y, and

/w:i/w
«@ Yﬁ

where the sign agrees with the sign on det Dg.

Theorem 5.5.5. Let A € OP(RF), a: A — R™ be a map of class C* and Y = a(A).
Let x denote the general point of R¥ and z denote the general point of R™. If w = f dz;
is a k-form defined in an open set of R" containing Y, then

[ o [iromanten
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Proof. Applying theorem (5.4.3))
o'w=a"(fdz) = (foa) [det%} dry A ---dxy,

implies that

/w—/aw—/foa det%

O

Remark 5.5.6. For a general k-form w defined on an open subset of R™ containing Y’
the integral of w over a parameterized manifold Y, can be computed as

fo= o [

_Z/ fIOO[ det%
ox

()

5.6. Orientable Manifolds.

Definition 5.6.1.

(1) Let g: A — B be a diffeomorphism of open sets in R*, then g is said to be ori-
entation preserving if det Dg > 0 on A or orientation reversing if det Dg < 0
on A.

(2) Let M be a k-manifold in R"™. Two coordinate maps o;: Uy — Vi, i = 0,1 are
said to overlap positively if Vo N\ Vi # 0 and ay' o ag is orientation preserving.
If M can be covered by such a collection of coordinate maps, then M is called

ortentable, and a mazximal collection of such coordinate maps is called an ori-
entation of M.

The next theorem, whose proof can be found in Munkres [23], and the definition
following it will be used in the proof of the Generalized Stoke’s Theorem.

Theorem 5.6.2. Let k > 1. If M is an orientable k-manifold with boundary, then
OM is an orientable (k — 1)-manifold.

Definition 5.6.3. Let M be an orientable k-manifold with boundary, then the induced
orientation on OM is defined by:

(1) If k is even the orientation is obtained by restricting the coordinate maps be-
longing to the orientation of M.

(2) If k is odd it is the opposite of the orientation defined in (1).
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5.7. Integrating Forms Over Orientable Manifolds.

Definition 5.7.1. Let M be a compact k-manifold in R™ and let w be a k-form defined
in an open set containing M. Let C' = M Nsptw. If there exists a coordinate map
a: U —V with C CV, then the integral of w over M is defined to be

w = ofw
M o

where U® denotes the interior of U in R¥.

Remark 5.7.2.

e The integral defined in (L.7.1)) always exists whenever the conditions are sat-
isfied. The definition of the integral does not depend on the choice of the
coordinate map.

e If —M denotes the k-manifold with the opposite orientation, then

[y

In fact, if a: U — «(U) belongs to the given orientation and §: V — (V)
belongs to the opposite orientation such that M Nsptw C a(U)NF(V) =
and Wy = o~ Y(W), Wy = B~Y(W), then

1=
/w—/ afw = — ﬁw——/ w,
Wo 7%} —-M

where the second equality follows from theorem (B.5.4)).

Definition 5.7.3. Let M be a compact oriented k-manifold in R™. Let w be a k-form
defined in an open set containing M. Fix an orientation for M. Choose a partition
of unity {¢;}ien on this orientation for which all but finitely many {¢1, ..., ¢} of C™
functions do not vanish on M. Then the integral of w over M is defined by

!
w= diw.
=2,
Remark 5.7.4.

e The definition of the integral does not depend on the choice of partition of unity.

e The integral changes sign when the orientation is reversed.

5.8. Generalized Stokes’ Theorem.

Lemma 5.8.1. Let k > 1. Let n be a (k — 1)-form defined in an open set U of R*
containing I* = [0,1]%. Assume that n vanishes at all points of OI* except possibly at
points of (Ix—1)° x {0}. Then

/ dn = (—1)'“/ b1
(Ik)o (kal)o

where b: I*=1 — I*¥ is defined by (u1,...,up_1) — (u1,...,up_1,0).
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Proof. Let x € R* be the general point of R* and u € R*~! be the general point of
R*1. For each 1 < j < k define I; = (1,...,7,...,k), then a typical elementary

(k —1)-form in R¥ has the form dz;, = dwy A--- Adx; A--- Adxy,. Since d, b*, and the
integral are linear we can assume that n = f dzr,.

(1) Calculate [ dn.
(I¥)e

k
dn = d(f ANdxy,) = df Advy, = (Z D; fdxi) A dzy,
=1

= (=1)7'D;fdxy A--- Aday,
then

/ dn = (1) Djf
(1+)° (1+)°

since D, f is continuous, bounded and vanishes a.e on 9I*

= (=17 | Dif

Ik

for every v € (z1,...,Z;,...,x)) the Fubini’s theorem implies that

= (—1>J1/ e IDjf(I‘l,...,JZk).
velrf— [AS

Using the FTC we can calculate the inner integral as
Djf(xy,...,z) = f(zr,..., 1, ... xp) — f(2r,...,0,...,2p)
.ZjEI

where 1 and 0 appear in the jth place.

If 7 <k, then
flzy, .. 0,0, o) = 0= f(ag, ..., 1,...,xp).
If j =k, then

f(l’l, ey Ll—1, 1) — f(l’l, ey Ll—1, 0) = —f(Il, ooy Ll—1, 0)
Consequently,

/ dn— 0 if j <k
([k)o (—]_)k f[’“*l (f (] b) lf] = k’

(2) Calculate [ b*n.
(kal)o
Since b: R¥! — R* is defined by (uy,...,up_1) — (uy, ..., up,0)

D] = | 5]
By theorem (5.4.3]) we can compute
b*(dwr,) = b (dzy A - Adxy A--- A day)

obr.
=det —Ldu; A -+ Adup_q
ox
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)0 if j <k
S ldug A ANdu_y ifj=k

/ - if j <k
e f(lkl fob) ifj=k

(1) and (2) imply that

/ dn = (—1)’“/ b .
(Ik)o (Ik—l)o

and

O

Theorem 5.8.2 (Stokes’” Theorem). Let k > 1. Let M be a compact oriented k-
manifold in R™, give OM the induced orientation if OM # 0. Let w be a (k — 1)-form
defined in an open set containing M, then

/ dw:/ w if OM # 0

M oM

/ dw =20 otherwise.
M

Proof. We will cover M by special coordinate maps so that we can apply the lemma
BRI). Let p € M — OM. Choose a coordinate map «: U — V belonging to the
orientation of M such that U € OP(R¥), I* C U, and « carries a point of (I¥)° to the
point p. Let W = (I*¥)°, Y = a(W), then a: W — Y is a coordinate map about p
belonging to the orientation of M.

Let p € OM. Choose a coordinate map «: U — V belonging to the orientation of M
such that U € OP(H*), I* C U, and « carries a point of (I¥71)° x {0} to the point
p. Let W = (I*)°U ((I¥1)° x {0}), Y = a(W), then a: W — Y is a coordinate map
about p belonging to the orientation of M.

Since the operator d and the integrals involved are linear and from the definition
(B73), it suffices to prove the theorem for the special case where w is a (k — 1)-form
such that C' = M Nsptw can be covered by a single one of the coordinate maps. Since
the support of dw is contained in the support of w, the set M N spt dw is contained in
C, so it is covered by a single coordinate map.

The form 1 = a*w can be extended, if necessary, to a (k — 1)-form on an open subset
of R¥ containing I*. Then 7 vanishes at all points of OI*, except possibly at points of
(I*=1)° x {0}, and the hypotheses of the lemma (5.8.1)) are satisfied.

Assume that p G M — OM. Then there exists a coordinate map a: W — Y where
W = (I*)° and a(W) =Y. Since a*dw = da*w = dn,

/ dw—/ *dw—/ dn = (—1)k/ b'n =0,
Ik)o ]k ([kfl)o

since 7 vanishes outside (7*)°. And since the support of w is disjoint from OM,

/ w=0.
oM
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Assume that p € OM. Then there exists a coordinate map a: W — Y, where W =
(I*)° U ((IF1)° x {0}), Y NOM # 0, and W° = (I*)°. Thus we have

/dw—/ ofdw = (=1)F / b .
Ik (Ik—l)o

Since M N sptw is covered by a: W — Y, OM N sptw is covered by the coordinate
map = aob: (I*1)° — Y NAIM obtained by restricting . 3 belongs to the induced
orientation of OM if k is even, or it belongs to the opposite orientation if k is odd. So
we must multiply the integral of w over M by (—1)* when we use the coordinate map

(. Thus we have
/ w= (—1)’“/ G*w.
oM (Ik=1)o

Since f*w = b*(a*w) = b*n. O
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6. CURRENTS, CLOSURE AND COMPACTNESS THEOREMS, AREA
MINIMIZING SURFACES, REGULARITY

In this section we will introduce the currents which are the duals of smooth m-forms
with compact support. Since every oriented k-manifold in R™ defines by integration
a linear functional on forms, currents can be seen as generalized surfaces. Being a
generalized surface, a current admits a definition of boundary and by Stoke’s theorem
the boundary of a current coincides with the boundary of a manifold. We will define
the slice of a current which generalizes the level sets and present some theorems from
the slicing theory. We will then move to the deformation theorem, which asserts, when
restricted to C! manifolds with compact support, that these manifolds can be approx-
imated by simplices. The closure and compactness theorems will be introduced next
and will be used to show that a “nice” boundary B in R" admits an area minimizing
surface with boundary B. We will list some theorems asserting, in certain cases, that
the solution of area minimization is a smooth embedded manifold except perhaps, for a
set of small Hausdorff dimension. We will generalize our definition of currents to admit
surfaces that are not compact; these currents locally ressemble the previously defined
currents with compact support. In the last subsection we will prove, as a subcase of
a regularity result of a hypersurface in R?, that the line segment is the shortest path
connecting two points in the plane. The main references for this section are the books
by Federer [10], Gelfand & Fomin [15], and Morgan [22].

6.1. Currents.

Definition 6.1.1.
(1) Let the ambient space be R™ and define
D™ = {C* differential m-forms with compact support}.

(2) The dual space (D™)* of D™ is denoted D,, and it is called the space of m-
dimensional currents.

(3) The weak topology on D,, is generated by the basis elements of the form
N(Ty, B,e) ={T € Dy,: |T(¢) —To(p)| <€, forall p € B}
where B C D,, is finite and € > 0.

(4) A sequence {T}}jen in Dy, is said to converge to T under the weak topology if
for every ¢ € D™, T;(¢) — T(¢p).

Remark 6.1.2. Any oriented m-dimensional rectifiable set S may be viewed as a
current. Namely, let S(x) denote the unit m-vector associated with the tangent plane
to S at x. For any differential m-form in D™, define

S(p) = / (S(@), o)) dH™.

If a Lipschitz map a: A C R™ — S covers S, H™-a.e. then

- / (o"0)(2)(S(x)) dL™z.
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We will also require S to carry a positive integer multiplicity function p(z), with
Jg 1(z) dH™x < 00, and define

S(p) = / (@), p(a))ulx) dH™ .

Finally, we require that S have compact support. Such currents are called rectifiable
currents.

Definition 6.1.3.

(1) The support of a current S is the smallest closed set C' such that for each
peD"
(spte)NC =0 = S(p)=0.
(2) The boundary of an m-dimensional current T' € D,, is the
(m — 1)-dimensional current 0T € D,,—1 defined by

0T (p) = T(dp)
where o € D™ L.

Remark 6.1.4.

e By Stokes’ theorem the definition of the boundary of a current generalizes the
notion of boundary in the manifold theory. Namely, let T" be a smooth com-
pact oriented Lipschitz manifold with boundary, then T" and OT are rectifiable
currents and from remark (612

3T(90):/8T90=/Td90:T(ds0),

and hence the boundary of the current 7" is the boundary of the manifold 7.

e Generally the boundary of a rectifiable current need not be a rectifiable current.
If it happens to be, then the original current is called an integral current.

Definition 6.1.5. Now we give the list of important spaces of currents used in geo-
metric measure theory.

D,,, = {m-dimensional currents in R"},
En ={T € D,,: sptT is compact},
R, = {rectifiable currents}
={T € &,,: T is associated with oriented rectifiable sets,
with integer multiplicities and with finite total measure},
P, = {integral polyhedral chains}
= additive subgroup of &€,, generated by classically oriented simplices,
I, = {integral currents}
={T eRp: 0T € Rp_1},
Fn = {integral flat chains}
={T+0S:TER,, SERnms1}
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Definition 6.1.6. The two important seminorms on the space of currents D,, are the
mass norm M and the flat norm F.

M(T) = sup {T<so>: supllo(o)]" < 1} ,

where ||p(z)||* = sup{ |p(x)(&)|: £ is a unit m-vector}
F(T) = inf{M(A) + M(B): T = A+ 9B, A€ Ry, B € Rui1}.

Theorem 6.1.7. Let S € R,,, then M(S) = [, p(zx) dH™x.

Remark 6.1.8. If the multiplicty function equals 1 H™-a.e. then the mass of S is
equal to the Hausdorff measure of the associated rectifiable set S.

Proof. S is an m-dimensional rectifiable current with an associated rectifiable set S
such that for every ¢ € D™

S(p) = / (@) (S(@) () dH™,

where § (x) denotes the unit m-vector associated with the tangent plane to S at =, and
w(x) e N, [op(z)dH™z < oo.

M(T) < /Su(x) dH™z
because
S(p) < / (@) (S(@))|u(z) dH™
<

< /,u(:c) dH™z for every ¢ € D™.
S

On the other hand, if for every z in its domain ¢(x)(§) = 1 for every unit m-vector,
then ||p(z)||* = 1 and hence

/S u(w) dH™z < M(T).

Remark 6.1.9.

e The flat norm gives a good indication of when two surfaces are geometrically
close together in the ambient space. In particular, let R be the ambient space
and let D; and Dy be two unit disks such that Dy lies on the zy-plane with
center at the origin and D; is at arbitrarily small distance form Dy in the
positive z-direction. Then 7' = D; — D, is a two-manifold in R?® with mass

M(T) = /TCW = H*(T) = 2r.

On the other hand T' = 95 where S is the right cylinder whose base is Dy and
whose apex is Dy and hence F(7') < M(S) = V(9).
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FIGURE 14. The unit discs Dy, D, are close together in the flat norm
F because T'= Dy — Do, together with a thin band A, is the boundary
of a cylinder B of small mass (volume).

e As a result of closure theorem (6.4.3]) we will see that
L,={T € R,: M(00T) < o0}
Ry =A{T € Fp: M(0T') < o0}.

Thus only by having infinite boundary mass can a rectifiable current fail to be
an integral current.

e To obtain a rectifiable current which is not an integral current, choose an un-
derlying rectifiable set with infinite boundary. For example,

E= @y 2): 2+ <k 2=k7"}
k=1

has finite total area but infinite boundary length. In this example E' is rectifi-
able, OF is not rectifiable but it is an integral flat chain.

A 4

Ficureg 15. This infinite collection of discs is a rectifiable current which
is not an integral current. The total area is finite, but the total perimeter
is infinite

Theorem 6.1.10. The flat norm topology on F,,(R™) is stronger than the weak topol-
ogy on F,(R™).

Proof. Note that the seminorms M and F, when restricted F,,(R"), become norms.
Our objective is to show that the weak topology on F,, is a subset of the flat norm
topology on F,,.

Let Ty € F,, and let N(Tp, B, €) be an arbitrary basis element of the weak topology,
where B = {¢1,...,¢} € D™ and € > 0. We want to show that N(Tp, B, €) is open in
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the flat norm topology. Let T € N(Ty, B, €), we need to show that there exists § > 0
such that Bg(T,0) C N(Ty, B, €). Define K and £ respectively as

K = max{||l@:[", [|[de]|"} and

1<i<1

§ = max|(T' = To) (i)

1<i<1

If we let 6 = (e — &)/K, then T € Bg(T,0) implies that there exist A € R,, and
B € R,,41 such that

T-T=A+0B and
M(A) + M(B) < (¢ — &) /K.
Now for each 1 <7 <
(T = To) ()| < (T = T) ()| + (T = To)(4)]
< |A(e:)| +10B(p:)| + €
< KIM(A) + M(B)] + ¢
< €.

Thus 7' € N(Ty, B, €) and Bp(T,8) C N(Ty, B, ). O

Definition 6.1.11. We want to define the image of a compactly supported current
under a C* map. Let a: R® — RY be a C* map. Let T be a compactly supported
current in D,,(R™), then we define o*T € D,,,(RY) by

(@*T)(p) =T(a"p) € D"(R"),
where for each © € R™ such that o(x) is in the domain of ¢

(@) (@)((z;w), .., (25 um))
= pla(x))((a(z); Da(z)(w)), - -, (a(x); Da(z)(um))).

Definition 6.1.12. A current T' € D,, is said to be representable by integration if there
are a Borel reqular measure ||T'|| on R™, finite on all compact subsets, and a function
T:R" — (T.(R™))™ with | T(x)|| =1 for |T||-a.e x such that

7() = [ (T(a).ola) dITo

The mass M(T) is equal to | T||(R™). We denote such current as T = | T|AT.

Remark 6.1.13. Every rectifiable current is representable by integration. If E is the
associated set with multiplicity function [, then d||S|| = [ d(H™LE) is a Radon measure

and S is the unit m-vectorfield orienting F.
S=I(H"LE)AS = H"LE An
where 7 = IS. The mass is equal to

M(S) = ||S||(R"):/nld(HmLE):xElde,

which coincides with our previous observation in theorem (G.1.7).
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The following theorem, whose proof can be found in Federer [10], gives two equivalent
definitions of a rectifiable current.

Theorem 6.1.14. The following are equivalent definitions for T' € Dy, to be a rectifi-
able current.

(1) Given e > 0, there are an integral polyhedral chain P € P,,(R") and a Lipschitz
function f: R” — R"™ such that M(T — f*P) < €

(2) There are a rectifiable set B and an H™LB-integrable m-vectorfield n such that,
In(x)| is an integer, Tan™ (B, z) is associated with n(x), and

T(p) = / (n(z), (x)) dH".

Remark 6.1.15. The one of the equivalent definitions (6.1.14.1) of a rectifiable current
asserts that P,, is M-dense in R,,.

Definition 6.1.16.

(1) Now we will present a more general flat norm that is defined for all currents
T eD,.

F(T') = sup{T'(): ¢ € D", ()" <1, and ||dp(z)|" <1 for all x}
=min{M(A)+M(B): T=A+0B, A€&,, Eni1}
(2) Now continuing the definitions of the spaces of currents from (G5, let
N,,, = {normal currents}
={T €é&,: M(T)+M(IT) < =}
F,, = (N,,)F F-closure of N,, in &,
R, ={T €F,,: M(T) < o},

P, = {real linear combination of elements of Py, }.

Example 6.1.17. Let A = {(z,y): 0 <2 <1, 0 <y < 1} be the unit square in the
plane, then S| = \/§(H2LA) A Z12, where x19 = 1 A 2o, is a two dimensional normal
current which is not an integral current.

(1) Sy is not an integral current because the multiplicity function is not integer-
valued.

(2) In order to show that S is a normal current we need to show that M(S;) +
M(0S51) < oo. By definition S; is representable by integration, namely

/ V212, o(x)) d(H?LA)z

(12, 0(2)) = @(@) (21 A 22) = b12(3),
where bi2(z) is the component function in the representation of ¢(z). Then
\/_fA bia(x) dH?x and hence M(S;) = V2.
851 is a 1- dlmensmnal current in R? with compact support. Let ¢ be a 1-form
in R? which can be written as ¢ = bidx; + badxs.

B B Oby  Oby
0S1(p) = Si(dp) = Sy ([3%1 ale dzy N\ d:1:2>
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V[ ) - ) )

_\/’// (z,y) dedy — f//ablwydydx
:ﬁ{/o bl(x,O)dI+/0 bz(l,y)dy}—ﬁ/o bi(z,1) dx

- \/5/01 b2(0,y) dy,

then M(9S,) = 4v/2, and hence S is a normal current.

bl(l‘, ].) =-1

b2(0,y) = —1 ba(l,y) =1

1
bl(I,O) =1

F1GURE 16. We choose the functions b; and by accordingly to show that
the mass of 0.5; is finite.

Example 6.1.18. S, = (H?LA) A x; is a 1-dimensional current in R? with compact
support A = [0,1]?, then S, is not an integral current because the vectorfield is 1-
dimensional but it is a normal current. The mass of S5 equals

M(S,) = / d(H?LA)z = H*(A) =
R2
0S5, is a 0-dimensional current in R?,
of aof )

0S5 (f (1, 22)) = Sa(df (1, 22)) = S (3_1dx1 WAy,

0 0
:/ <$1,afld9€1+8—f2 2> dH2<551,«’132)
, 1 1 af
/Aa_xl(xl,xQ)dH (1'1,33'2)/0 /0 8—:1:1($1,$2)d$1d$2
1 1
~ [ fade— [ 0.0 de
0 0

then M(0S3) = 2, and hence S5 is a normal current.

Remark 6.1.19. Assume that S; and Sy, A are defined as in (G.LI7) and (6118,

respectively.
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o If B={(2,0): 0<z <1}, T =H'LB Az, and let 7, denote translation by
(w,y), then

Sa(p) = Sa(brdxy + badwy) = / bi (1, x2) dH* (21, 22)
A

1 1
= / / bl(.ilfl,fﬂg) dﬂ?ld.]?Q.
0 JO

The inner integral equals

1
/ bi(w1, 22) dxy = (Tfko,y)T)(@‘
0
In particular,
(T D) = T(1{oy) = (H'LB) A 21(7{y,)%)

:\/B<x177—(>57y)90> dHl.’E

since (7(,,,¢)(2,0) = bi(21, 22)

1
:>/<x1,7'(”5’y)g0> dHlx:/ bi(x1, z2) dxy.
B 0

*

So S5 is an integral of integral currents o y)T.

e More generally, if 7" is an m-dimensional integral current in R™ and if f is a
function of compact support with [|f]dL™ < oo, then the weighted smoothing
of T

S = fl@)(m;T)dL" x
Rn
is a normal current, and

S = flz)(r0T)dL" x.

Rn

Proposition 6.1.20. The space R,, is the M-closure of N,, in &,,.

Proof. From the definitions of the spaces of currents we can see that N,, C F,,,

N,, C R,, and R,, = E}:. Let T € R,, and ¢ > 0. Choose S € N,, such that
F(T—-S) < €. Sothere are currents A € &, and B € &,,,; such that T—S = A+0B and
M(A)+M(B) < e. Since 0B =T—-S—Aand M(0B) = M(T—S—A) < 00, 0B € N,,.
Hence S+ 0B € N,,,, and M(T — (S +0B)) = M(A) < ¢, and since € > 0 is arbitrary,
T is in the M-closure of IN,,,. [

Theorem 6.1.21. IfT € F,,(R") and Z™(sptT) = 0, then T = 0.

Remark 6.1.22. 7™ (spt T') = 0 means that the m-dimensional Hausdorff measure of
the projection of sptT" onto m-dimensional planes is zero for almost every m-plane.
Then theorem (G.I.21]) asserts that if a current 7' € F,,,(R™), when projected onto
m-planes, has m-dimensional Hausdorff measure zero for almost every projection, then
this current must be the zero current.
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Outline Of Proof.

(1)

A smooth normal current in R™ is one of the form L£" A &, where ¢ is a smooth
m-vectorfield of compact support. Any normal current 7' can be approximated
in the flat norm by a smooth normal current T, = L™ A &, by letting f to be a
smooth approximation to the delta function at 0 and T; =[5, f(2)(7;T) dL"z.

If T € F,,(R"), then T can be written of the form £ A ¢ for some n-vectorfield
§

Since codimension is zero, the norms M and F coincide. Therefore, T" can be
M-approximated by a normal current, by definition, and hence by smoothing by
L"NEy, where & is a smooth n-vectorfield of compact support, M(T'—L"A&;) <
271, Given a differential form ¢ = bdxy A -+ Adz, € D", |lo|* < 1 and by
using the definitions (B.1.6) and (522)) we can calculate

@A) = [ (ala)pl)dea

< [ [b(@)]|det[&y ()] dL 2

R’Il

< | l&(@)[dL
]RTL
and if we let b = 1 be constant, then

[Eu()[dL" e < M(L" A &).

Rn
Consequently,
M(L"AN&) = [ [&(x)|dL"
Rn
<M(T)+27"

Since T — (L™ A &) € F,(R™), it can be M-approximated by £ A &, with
M(T — (L"N& + LM AE)) <272, and

M(L"ANE) = | |&ldLr <27t + 272
Rn

So by induction, for every m > 2 we can choose a smooth normal current
LM A&, with &, being a smooth n-vectorfield with compact support such that

[ e (2
ML A Ey) = [ |em]dLr < (_)
R = \2
and hence
) k
/ Z|€j| dc" < M(T) + (%) =M(T) + 2 < 0.
LA k=0

By DCT, Zj &; converges under the L'-metric, we can let £ = Zj &, LNNE =
> LM A& and hence T' = L™ A €.
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(3) If m =n then T'= L" A& and L"(spt T') = 0 implies that "= 0. Let m < n.
Since Z™(spt T') = 0, spt T projects to sets of measure 0 in the m-dimensional
coordinate axis planes. For notational convenience let’s assume that m = 1,

then T' € F1(R™) and let ¢ be a 1-form defined by

¢ = fidzy 4 -+ - fudzy.
We want to show that T'(p) = > 7, T(f;dz;) = 0, so it suffices to show that
T(f;jdx;) =0 for each j € {1,...,n}. Let x; denote the projection onto the jth

coordinate axis, and let TLf denote the current defined by (T'Lf)(¢) = T(fp).
Then

T(fidy) = (TLf)(day) = (TLE) @ T) = (25(TLE)(D),
where [ is the identity one-form on R defined by
I: R —ANT(R)) = (T(R))"
v —=I(z) € (T.(R))*
I(x): (z;v) —o.
Since z}(TLf;) € F1(R') is of the form £' A& by part (2), and its support has

measure zero, then it must be the zero current, and hence T'(f;dx;) = 0.
O

The Constancy Theorem, whose proof can be found in Federer [10], will be used to
show that the straight line is the shortest path connecting two points (6.8T]).

Theorem 6.1.23 (Constancy Theorem). Suppose B is an m-dimensional connected,
C' manifold with boundary in R™, oriented by &. If a real flat chain T € F,, is
supported in B and its boundary is supported in the boundary of B, then, for some
reR, T'=r(H™LB) AE.

6.2. Slicing Theory. The coarea formula relates the Lebesque measure of a measur-
able subset A C R" to lower dimensional Haudorff measure of its slices, namely its
projections onto the various level sets,

£r(4) = / H AN P ({y))) dy,

where P: R” — R is a projection map. Now we will define (m — 1)-dimensional slices
of m-dimensional normal currents by hyperplanes or by hypersurfaces {u(z) = r},
where u is a Lipschitz function. Throughout this subsection we will assume that 7" is
a normal current and ||7'|| is a Radon measure.

Definition 6.2.1.
(1) If T € D, and n is a k-form , a current TLn € D,,_y, is defined by

(TLn)(p) =T(n A ).
(2) If f is a O-form and T is representable by integration, then TLf is also repre-
sentable by integration whenever [y, |f|d||T|| < oo, and TLf = f||T|| AT.

(3) If A C R™, then we define the current TLA as TLA = TLy 4.



6. Theory Of Currents And Area Minimizing Surfaces 88

Definition 6.2.2.
(1) Let T € N,,(R"), u: R" — R Lipschitz, r € R, we define the slice
(T u,r+) = (OT)L{z: u(z) > r} — o(TL{x: u(z) > r}).
(2) An equivalent definition of (T,u,r+) is given by
(OT)H{u > r}(p) = (TWu > r})(p) = 0T (Xfusry#) = T(X{usryde)
= OT([1 = Xqusnlp) = T([1 = Xqusryldp)
= 0T () = 0T (Xqusryp) — T(dp) + T (X (usrydip)
= (Txqusry)(dp) = (OT)Lxqusry (#)
= 0(THu <r})(p) = (OT){u < r}(p),
then
(Tyu,r+) = 0(TL{u < r}) — (OT)L{u < r},
and it follows that O(T,u,r+) = — (0T, u,r+).

Proposition 6.2.3.
|1T|{r <u<r+h}
h
If f(r) =|TI(B(0,r)) then for almost all r,
M(T, u,r+) < (Lipu) f'(r).

Proof. Let x be the characteristic function of {x: u(z) > r}, then (T, u,r+) = (0T )Lx—
J(TLy). For small, positive h, approximate x by a C'* satisfying

)0, ifu(r)<r
f(x)_{L if u(z) > 7+ h

M(T < (Lipw) lim inf
(T, u,r+) < (Lipw)limin

and Lip f < Lipu/h. Then
M(T, u,r+) ~ M((OTLf) — O(TLf))
= M(T'Ldf)
(%) < (Lip HIIT|{z: r < u(z) <1+ h}.

The last inequality follows because T' is representable by integration. In particular
whenever p € D™ ! and ||¢||* < 1, then

(TLAf) (I < | 1df A @)@)(T (@) d||T |

IR”‘

< [ [ws@ldiria
< (i) | Tz

{r<u(z)<r+h}
= (Lip H|T|{z: r < u(z) <7+ h},

and the inequality follows because ¢ is arbitrary.
Continuing from (%) we have

IT|{z: r <u(z) < 7“—|—h}‘

(Lip HIIT|{z: r < u(x) <r+h} < (Lipu) -
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Consequently,

|\ T|{z: r <wu(z) <r+h}

M(T,u,r+) < (Lipu) A ,

since h > ( is arbitrary

T|{z: b
M(T,u,r+) < (Lipu) hhm(iﬁlf |T|{z: r < Z(x) <r+ }.

If f(r) = ||T||B(0,1) then f is monotonically increasing and its derivative exists a.e.
r > 0. If we let u(z) = |x| we get ||T||[{z: r < |z| <r+h}=f(r+h)— f(r) and

. T < u(x) < r+h}
Fi=hnk h

implies that M(T,u,r+) < (Lipu) f'(r) a.e. r > 0. O

Proposition 6.2.4.
b
/ M(T, u, r+) dr < (Lipu)|[T|[{z: a < uz) < b}.

Proof. Consider the function f(r) = ||T||{w < r}. Since f is monotonically increasing
its derivative exists a.e.

(Lipw)|7l{a < u(z) < b} = Lipu) () — lim /(@)
b
~(Lipw) [ fr)ar
X a
> / M(T, u,r+) dr,
where the last inequality follows from (6.2.3]). O

Corollary 6.2.5. If T € N,,(R") then (T,u,r+) € N,,_1(R") for almost all r.

Proof. Need to show that M(T,u,r+) + Mo(T,u,r+) < co. M(T,u,r+) < oo for
almost all r, otherwise we can choose a < b such that

b
/ M(T', u,r+) dr = oo,

contradicting the proposition ([G.24). Since (T, u,r+) = —(9T,u,r+) and 0T €
N1 (R™), then MO(T,u,r+) = M(IT, u, r+) and hence M(9T, u, r+) < oc. O

Proposition 6.2.6. If T' is a normal current, then
b
/ F(TL{u(z) < 1Y) dr < (b— a + Lipu)F(T),

where u: R™ — R is a Lipschitz function.
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Proof. Since T is a normal current, we can find currents A € &, and B € &,,;1 such
that oo > M(T) > F(T) = M(A) + M(B), and T = A+ 0B. 0T = 0(A+ 0B) =
0A, M(0A) = M(9T) so A is a normal current, and 0B = T — A implies that B is
also a normal current. Let u: R®™ — R be the given Lipschitz map, then

TL{u(z) <r} = (A+0B)L{u(z) <r}
= Al{u(z) <r} + (0B)L{u(x)
= AlL{u(z) <r}+ J(BL{u(x)
= F(TL{u(z) < r}) < F(AL{u(z) < r}) + F(O(BL{u(
+ F(B,u,r+)
<M(A) + M(B) + M(B,u,r+).

<r}
<r})—(B,u,r+)
z) <r}))

Then,

b
/ F(TL{u(z) < r})dr < (b— a)(M(A) + M(B)) + (Lip u)F(T)

= (b—a+ Lipu)F(T).
OJ

The following lemma, whose proof can be found in Federer [10], considers slices of
T by the function u(x) = |x — a|. If T has no boundary, then

(T u,r+) = 0(TL{u(x) <r})=0(TLB(a,r)).

The lemma asserts that if almost all such slices by spheres are rectifiable, then T is
also rectifiable.

Lemma 6.2.7. It T is a normal current without boundary and if for each a € R",
J(TLB(a,r)) is rectifiable for almost all v € R, then T is rectifiable.

The next lemma, whose proof can be found in Federer [10], implies that the measure
theoretic slice of a current corresponds to our usual geometric notion of a slice of an
object in the Euclidean space.

Proposition 6.2.8. Let W be an m-dimensional rectifiable set in R and u: W — RF
be a Lipschitz map. Then for almost all z € R*, W Nu={z} is rectifiable and the
associated current is the slice (T',u,r+) of the current T associated with W'.

6.3. The Deformation Theorem.

Theorem 6.3.1 (Deformation Theorem). Given T' € I,,(R™) and ¢ > 0, there exist
P eP,R"), Q€ L,(R"), and S € L,+1(R") such that the following conditions hold
for v = 2n2m+2 .
(1) T=P+Q+095.
(2) M(P) < 7[M(T) + eM(0T)],

M(9P) < A[M(2T),
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Consequently, F(T'— P) < M(Q) + M(5) < ey[M(T) + M(9T)].

(3) spt P C m — dimensional 2¢ grid.
(4) spt OP C (m — 1) — dimensional 2¢ grid.
(5) spt PUspt Q Uspt S C {x: d(x,sptT) < 2ne}.

Remark 6.3.2. According to Deformation Theorem an m-dimensional integral current
in R™ can be approximated by an integral polyhedral chain with an error term @ 4 05
where ) and S have arbitrarily small mass. The resulting polyhedral chain has support
which is arbitrarily close to the support of T and it is contained in the m-dimensional
2¢ grid, that is given = € spt P at least n —m of the coordinates of x are even multiples
of e.

Sketch Of Proof. We will give a sketch of the proof for the case m = 1, n = 3. Let W}
denote the k-dimensional € grid, k£ =0, 1,2

Wi = {(x1, x3, 23) : at least 3 — k of the z; are even multiples of €}.

We can think of the support of 7" as a compact 1-manifold of R3. In order to gain
some geometric insight we can further assume that the support of T is a C*-curve with
finite length. Hence our aim is to approximate this curve by simplices in R3.

Project the curve T radially outward from the center of the cubes onto Wj. Let S; be
the surface swept out by 7" during this projection, let ()1 be the curve swept out by 9T,
and let T7 be the image of T"in W5. Then T can be decomposed as T' = T7 + ()1 + 0.51,
and M(T7) ~ M(T), M(9T1) =~ M(9T), M(Q1) ~ eM(0T), M(S;) ~ eM(T).

Now project the curve 77 radially outward from the centers of the squares onto Wj.
Let S, be the surface swept out by 717, Q2 be the curve swept out by 977, and let
T, be the image of 77 in W5. Then T can be decomposed as T} = Ty + Q2 + 055,
and M(Ty) =~ M(T;) =~ M(T), M(0T3) ~ M(9T), M(Q2) =~ eM(9T), and M(S;) ~
eM(T).

Let (03 consists of line segments in W7 from each point of 975 to the nearest point of
Wy, and let P = T; — (3, then P is an integral polyhedral chain supported in W7, and
OP lies in Wy. The masses satisfy

M(Q3) =~ eM(0T)
M(P) = M(Tz) + M(Q3) =~ M(T) + eM(0T)
M(OT) =~ M(0T,) ~ M(0T).

Let Q= Q1+ Q2+ Q3, S=51+ S5, then T = P+ @ + 0S and the masses satisfy
M(Q) < M(Q1) + M(Qs) + M(Qs) = eM(DT), and M(S) ~ M(T). 0

Corollary 6.3.3. The set
A={T €1, (R"):sptT C B(0,c1), M(T) < ¢o, M(9T) < ¢3}
15 totally bounded under F.

Proof. Given ¢ > 0, we need to show that A can be covered by finitely many e-
balls. Given T' € A, there exists a polyhedral chain in the é-grid with M(P) <
Y[IM(T) 4+ eM(0T)] where

€
0<é< ———— and sptT C B(0,c; + 2ne).
v][e2 + ¢s) P (0.cx )
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Consequently, F(T — P) < e. Since there are only finitely many polyhedral chains P
with uniformly bounded mass and supported in the 2é-grid, A is totally bounded. [

Theorem 6.3.4 (Isoperimetric Inequality). If T € I,,(R™) with 0T = 0, then there
exists S € I, 11(R™) with 0S =T and

(M(S))™/ (1) < AM(T'), where v = 2n*™+2,

Remark 6.3.5.

e The Isoperimetric inequality relates the k-volume of the compact oriented k-
manifold in R"™ with the (k — 1)-volume of its boundary.

e A rectifiable current bounded by 7' can be found by taking the cone over T

Sketch Of Proof. Since T' € L,,(R™), then M(T") < oo and hence we can choose ¢ > 0
such that YM(T') = €™. Now we can apply the Deformation Theorem to 7" to obtain
T =P+ Q-+ 0S where P € P,(R"), Q € L,(R"), and S € I,,41(R") so that the
masses satisfy

M(Q) < eYM(IT) =0
so Q =0 and
M(P) <~yM(T) = €™,

Since P lies in the m-dimensional 2e-grid, the mass M(P) must be an integral multiple
of (2¢)™ which exceeds YM(T') by the choice of . Then P =0, T = 95, and M(S) <
AM(T) = e+ = [yM(T)] =

6.4. Closure And Compactness Theorems.
Lemma 6.4.1. 1,, is M-dense in 'R,, and F-dense in F,,.

Proof. Since (P,,)™ = R,, and P,, C I,, € R,,, then (I,,)™ = R,,, and hence
I, is M-dense in R,,. Now we want to show that (I,)¥ = F,,. Since I,, C F,
and F,, is F-closed, it is enough to show that F,, C (I,)¥. Let T' € F,,, then
there exist A € R,, and B € R,,41 such that T = A + 0B. Choose 171 € 1,
Ty € 1,41 such that M(A —T3) < €/2, and M(B —Ts) < €/2, then T} + 015 € 1,, and
T— (T +0T3) = (A—T1) + 9(B —Ty).
F(T—(T1 4+ 0T)) =F(A—T1)+ 0(B —Ty))
<M(A-Ty) +M(B - Ty)
< €,

which implies that T € (I,,,)¥. O

Lemma 6.4.2. A={T € F,,:sptT C B(0,r)} is F-complete.
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Proof. Let {R;};en be a Cauchy sequence in A. By taking a subsequence, if necessary,
we can assume that F(R;1— R;) < 277 for each j > 1. Then by definition R, — R; =
T; + 0S; where T; € R, and S; € R,,41 and hence M(T}) + M(S;) < 277. Since A
is M-complete ; T converges to a rectifiable current T and > ;5j converges to a
rectifiable current S under M. Then for each n € N

Rn+1—R1:Z( i1 — R ZT +825]7
=1

taking the limit as n — oo

lim (R,41 — Ry) = lim ZT + 0 lim ZSJ’
where the last equality holds because M-convergence implies F-Convergence and 0 is
F-continuous. Thus

lim R, = Ry + (T + 0S) € A, where R, — Ry + (T + 05)

Theorem 6.4.3 (Closure Theorem).
(1) 1, is F-closed in N,,.

(2) Lns1 ={T € Rins1: M(0T) < o0}.
(3) Ry ={T € Fr,: M(T') < o0}

(4) A={T €1,:sptT C B(0,R), M(T) < ¢, M(IT) < ¢} is F-complete.

Proof. Step # 1: Show that for every m € N, (1) = (2) = (3) = (4).

Let m € N, assuming that I, is F-closed in N,, we want to show that I,,.; = {T €
Romi1: M(OT) < oo}. It is clear from the definition of an integral current that I, 1 C
{T € Rypy1: M(OT) < oo}. From lemma (64T Ryi1 = (Lny1)M and then T € R, 41

implies that there exists a sequence {7}};en C L, 41 such that T M T. So we want

to show that if 7" € R,,41 and M(9T) < oo then T € L, 1. T M T implies that
M(T; —T) — 0 as j — oo. The definition of F implies that F(01; — 9T) = F(O(1; —
T)) < M(T; —T) — 0 as j — oo. Then 8T; 5 8T, and 9T € (I,,)F =1,, C N,, holds
by hypothesis. So M(9T) < oo, 0T € 1, and T' € R,,41 imply that T € I,,.; so we
have shown that (1) implies (2).

Now we want to show that R,, = {T € F,,: M(T) < oo} assuming that I,,,.; = {7 €
Rm+1: M(OT) < oo}. It is clear from the definition of a rectifiable current and an
integral flat chain that R,, C {T' € F,,: M(T') < oo}. If U € F,, with M(U) < oo,
then M(U) = M(T + 0S) where T € R,, and S € Rpy1. M(0S) = M(U —T) <
M(U)+ M(T) < oo, then S € 1,41 by hypothesis and U =T + 9S € R,,, so we have
shown that (2) implies (3).

We want to prove that A = {T € 1,,: sptT C B(0,R), M(T) < ¢, M(9T) < ¢} is
F-complete assuming that (3) holds. Let {T}},;en be a Cauchy sequence in A, then

by lemma (6.4.2)) T; 5 T and o7 L 0T, where T € F,, and sptT C B(0, R). Since
M(T) < liminf; ..o M(7};) and M(9T) < liminf; .., M(9T;), then M(T) < ¢ and
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M(9T) < ¢. And by hypothesis T € R,, and 9T € R,,_1, so T € I,,, thus we have
shown that (3) implies (4).

Step # 2: By induction on m € N we want to show that (1) holds for every m € N.
Since the assertion trivially holds for m = 0, let’s assume that (1) holds for m — 1 and
show that it also holds for m. Suppose that a sequence {Q;}ien of integral currents
converges in the F-norm to a normal current 7" € N,,,. We want to show that 7" € 1,,,.

Since Q; 5 implies 0Q); £ 9T where {0Q;}ien € I,,-1 and OT € N,,_4, then
by the induction assumption we can assume that 0T € 1, ;. Since 0T € I,,_; and
0(0T) = 0, by the Isoperimetric Inequality (6.3.4]) there exists 7 € I, with 0T = 011,

then Q; —1T} 5 —T, € N,,,. In order to show that 7" is an integral current it is enough
to show that 7" — T} is an integral current and hence by replacing 7" with T — T} we
can assume that 0T = 0. So given a sequence {Q;};en of integral currents converging
in F-norm to a normal current 7" € N,, with 97 = 0 we want to show that T € 1,,.
Since we have assumed that 07 = 0, by lemma (6.27) it is enough to show that for
every p € R™, O(TLB(p,r)) is rectifiable a.e. » > 0. Now by taking a subsequence, if
necessary, we can assume that

[e.9]

>_F@Qi-
i=1
Let 0 < a <band u(z) = |z —p|, since Q; — T € N, for each i € N
b
/ FI(Qi — T)L{u(z) < r}ldr < [(b—a) + LipulF(Q; — T)

follows from proposition (6.2.6]) and summing on i € N we obtain

Z/ T)L{u(z) <r}ldr < [(b—a)+ Lipu] ZF

The Monotone Convergence Theorem implies that

/ T)LB(p, r)] dr < oo.

Since the integrand is nonnegative

ZF T)LB(p,r)] < oo a.e. >0

i=1

and
Q:LB(p,r) LA TLB(p,r) ae.r>0

and from the definition of F-convergence

(Q:LB(p, 1)) = O(TLB(p, 7)) a.e. r> 0.

Since Q;LB(p,r) and TLB(p,r) are normal currents 0(Q;LB(p,r)) and O(TLB(p,r))
are also normal currents. By induction assumption for m — 1 applied to (2) Q;LB(p, )
and 0(Q;LB(p,r)) are integral currents. By induction assumption for m — 1 applied to
(1) we know that I,,,_; if F-closed in N,,_; and hence O(TLB(p,r)) is an integral current
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a.e. 7> 0. Since T is a normal current without boundary and 9(TLB(p,7)) € Ry-1
for every p € R™ and a.e. > 0, T is a rectifiable current as follows from (6.2.7)). Since
0T = 0, then T is an integral current and hence we have proved (1). O

Theorem 6.4.4 (Compactness Theorem). Let K be a closed ball in R", 0 < ¢ < o0,
then

A={TeI,(R"):sptT C K, M(T) < c and M(9T) < ¢}
15 F-compact.

Proof. The set A is totally bounded under the F-norm by corollary (633]) and it is
complete under the F-norm by the closure theorem (6.4.3]). Thus it is F-compact. [

Remark 6.4.5.

e As a consequence of theorem (6.I1.10) the flat norm topology on F,, O I, is
stronger than the weak topology and hence the F-compactness of A implies the
weak compactness. Thus under a suitable topology we attain compactness.

e We will use this compactness property in theorem (6.4.6) to show that given a
“nice” boundary there exists an area minimizing surface spanning this bound-
ary.

Theorem 6.4.6 (Existence Of Area Minimizing Surfaces). Let B be an (m — 1)-
dimensional rectifiable current in R™ with 0B = 0. Then there is an m-dimensional
area minimizing rectifiable current S with 0S = B.

Remark 6.4.7. A rectifiable current S is called area minimizing if for every rectifiable

current 7" with 0T = 95, M(S) < M(T).

Proof. By taking the cone over B we can show that B bounds some rectifiable current.
Let B(0,7) be a large ball containing spt B. Let {S;} ey be a sequence of rectifiable
currents such that 05; = B for each j € N and masses decreasing to inf{M(S): 95 =
B}. Even though each spt S; is bounded, the set {spt .S;: j € N} may not be bounded.
Let II be the projection map which keeps B(0, r) fixed and projects each point outside
of B(0,7) onto dB(0,r). Since II is distance non-increasing it is mass non-increasing
and hence by replacing each S; with II*S;, we may assume that for each 7 € N,
spt S; C B(0,r). Note that each S; is an integral current, so by using the compactness

theorem (6.4.4]) we can extract a subsequence {5}, }ren such that S, £, S, where S

is a rectifiable current. Since 0 is F-continuous 9.5}, L as , so 0S = B and by the
lower semicontinuity of the mass M(S) < liminf;_,. M(S;) = inf{M(T'): 0T = B}.
Therefore S is the area minimizing surface. O
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B(0,r)

FIGURE 17. The map II keeps the closed ball B(0,r) intact and project
everything else onto its surface in a manner such that it does not increase
mass.

6.5. Calculus Of Variations And The Minimal Surface Equation. The next
lemma, whose proof can be found in Gelfand & Fomin [15], will be used in the derivation
of the Euler’s Equation.

Lemma 6.5.1. If a(z,y) is a fized real-valued function which is continuous in a closed
region R and if the integral

/L&(x7y)h(x,y) drdy = 0

for every real-valued function h of class C? in R and vanishes on I’ = OR, then o = 0
on R.

Remark 6.5.2.
e Let J be a functional defined on the space of all C? class maps on R defined by

:// F(x,y, 2, 2, 2y) dzdy
R

e We want to find a function z such that
(1) z is of class C* in R,

where z = z(z,y).

(2) z takes the given values on the boundary,
(3) The functional has an extremum for z.

e The necessary condition for J to have an extremum for z is that its variation
vanishes. Let h be a map of class C? in R which vanishes on I, then

AJ[z) = J[z + h] — J[Z]

// (T, y, 2+ h, 2o + hy, 2y + hy) — F(2,y, 2, 22, 2y) dzdy
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= //R(th + F. hy + F hy) drdy + Ry,

where R), goes to zero as ||h|| = 37, sup,cz|h® (z)| goes to zero.
The variation of J[z] is equal to

_ / /R (F.h + Fohy + F,hy) dady.

[ #un Fzth
//a (F,,h)+ Fzyh dxdy — //( F,, —l— F )hdxdy
/F hdy — F, hdm—//( F,, —|— F )hdxdy,

where the last equality follow from the Green’s Theorem. Since h vanishes on

L,
0 0
= F,— —F, ——F, |hdzdy.

So the condition 0./ = 0 implies that dJ[h] = 0 for all admissible h = h(z,y),
and hence from the lemma (6.5.0]), the Euler’s Equation is of the form

0 0
F,——F, ——F, =0.
() Jdx ™ Oy
Thus the necessary condition for the functional J to have an extremum is that
(%) holds.

Now using the observation in (6.5.2)) we will classify a certain type of functions whose
graph is area minimizing.

Theorem 6.5.3 (Minimal Surface Equation). Let f: A € OP(R?) — R, be a C? class
map, such that the graph of f, G(f) = {(z, f(z)): © € A} is area minimizing. Then f
satisfies the minimal surface equation:

Conversely, if [ satisfies the minimal surface equation and A is convez, then its graph
1S area Minimizing.

Proof. Let f: A € OP(R?) — R be of class C?, then G, = (G(f), @) is a parameterized
2-manifold in R?, where a(x,y) = (z,v, f(, y)) Then the area of G, is given by

/ dv = / V(Da),

and then
1 0
D =10 1
[Da(z,y)] o of

dor Oy
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implies that

vivo = {1+ (3)'+ (g_gy}”?

Let J[f] be the area functional on the space of all C? class maps defined on A and

given by
J[f]—//A@/1+f§+fy2da:dy.

If f is area minimizing then f is an extremum for J and hence it is necessary that the
Euler’s Equation must satisfy
0 0

= fzx(l + sz) - 2fa:fyfxy - fyy(l + fx2>

To show the converse, assume that A is convex and f satisfies the minimal surface
equation. Given f: A — R, define a 2-form ¢ on A x R by

p: Ax R —A2(T(R%))
p—e(p) € A*(T,(R?))

@@:—h@@@AW@—h@W@AM@+M@A@@
(f2(p) + f7(p) + 1)1/

By Cauchy-Schwartz inequality we can conclude that |p(p)(£(p))| < 1 for every unit
2-vectorfield ¢ and if {(p) is tangent to the graph of f at p, then |p(p)(&(p))| = 1.
Since [ satisfies the minimal surface equation it can be checked that dy = 0. Let
Gy denote the graph of f and let T be any other rectifiable current with the same
boundary. Since A is convex, we may assume sptT C A x R = dom ¢, by projecting
T into A x R if necessary without increasing the areaT and hence we may assume
that sptT C dom . From the definition of the volume of a parameterized manifold

we have
areaG’f—/ %
Gy

because |p(p)(£(p))] = 1 whenever £(p) is tangent to G at p. Since Gy — T bounds
and ¢ is closed, then the generalized Stokes’ theorem implies that

L e=fe

Since ¢(p)(&(p)) < 1 for all 2-planes £(p), then

/gp < areal
T

and hence

areaGf:/ goz/gogareaT.
Gy T

Therefore Gy is area minimizing. O
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Definition 6.5.4. A calibration is a differential form ¢ which is closed and
sup, @(x)(&(x)) = 1 for all unit k-planes &(x). A surface is said to be calibrated by ¢
if each oriented tangent plane & satisfies p(§) = 1.

Corollary 6.5.5. A calibrated surface is area minimizing.

Proof. The 2-form defined in the second part of the theorem (6.5.3) is a calibration
and the surface G is calibrated by ¢. The second part also shows that a calibrated
surface is area minimizing among all rectifiable surfaces with the same boundary. [

6.6. Survey Of Regularity Results. In this subsection we will list several results
concerning the regularity of the area minimizing rectifiable currents. In subsection
(6.4) we showed the existence of area minimizing rectifiable currents. We will now
present several important theorems asserting that under certain circumstances the
area minimizing surface has geometric significance.

W. Fleming proved in [12] that a two dimensional, area minimizing rectifiable current
is a smooth manifold in R3.

Theorem 6.6.1 (Fleming, [12]). A two dimensional area minimizing rectifiable current
T in R3 is a smooth, embedded manifold on the interior.

The regularity theorem (E.6.1) was generalized to three dimensional surfaces in R*
by F.J. Almgren in [I] and up through six dimensional surfaces in R” by J. Simons in
[26].

H. Federer proved in [11] that an area minimizing hypersurface is a smooth manifold
in R™ on the interior except for a set of Hausdorff dimension at most n — 8.

Theorem 6.6.2 (Federer, [11]). An (n — 1)-dimensional area minimizing rectifiable
current T in R™ s a smooth, embedded manifold on the interior except for a singular
set of Hausdorff dimension at most n — 8.

Regularity in higher codimension, for an m-dimensional area minimizing rectifiable
current 7" in R™, with m < n — 1 is proved by Fred Almgren in [3].

Theorem 6.6.3 (Almgren, [3]). An m-dimensional area minimizing rectifiable cur-
rent in R™ is a smooth embedded manifold on the interior except for a singular set of
Hausdorff dimension at most m — 2.

Boundary Regularity : In 1979 Hardt and Simon proved the boundary regularity
theorem for area minimizing hypersurfaces.

Theorem 6.6.4 (Hardt, Simon, [16]). Let T be an (n—1)-dimensional area minimizing
rectifiable current in R™, bounded by a C?, oriented submanifold with multiplicity one.
Then at every point, spt T is a C', embedded manifold with boundary.

6.7. Monotonicity And Oriented Tangent Cones.

Definition 6.7.1. We will generalize our definitions to include noncompact surfaces
such as oriented planes.
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(1) The space Fi°¢ is the space of locally integral flat chains that do not necessarily
have compact support and locally coincide with integral flat chains.

Floe =T € D,,: for all v € R"™ there exists S € Fy,, x & spt (T — S)}.

(2) The space R is the space of locally rectifiable currents that do not necessarily
have compat support and locally coincide with rectifiable currents.

R = {T € D,,: for all x € R"™ there exists S € Ry, x ¢ spt (T — S)}.
(3) Alternative definitions of RI°¢ are given by
Rl = {T € D,,: TLB(0,7) € R,,, for all r > 0}
={T € D,,: TLB(a,r) € R,, for each a € R", for all r > 0}.

(4) The space 1°¢ is the space of locally integral currents that do not necessarily
have compact support and locally coincide with integral currents.

1°¢ = {T € D,,: for all x € R™ there exists S € I,,,, v & spt (T — S)}.

T

FiGure 18. T is an integral current, but its restriction to the inside of
the circle has infinite mass and hence it is not an integral current.

e T 1 1
These spaces satisfy 126 C Ro¢ C Fo°.

Definition 6.7.2.
(1) For the local flat topology, a typical neighborhood Us at 0 € R™ has the form
Us={T € F2°: spt (T — (A+9dB))NU(0,r) =0 for some
r>0, A€ Ry, B€E Ry, M(A)+M(B) <4}

where U(0,r) is the open ball in R™ with radius r and center at the origin.

(2) Similar definition can be made for the local topology of RI°¢ and 1.

Remark 6.7.3. The collection {Us}s~o of neighborhoods together with their translates
UP ={T € F°: for each v € B, spt (T — (A+0B))NU(x,r) =0
for some r >0, A€ R,,, B € Rpi1, M(A) +M(B) < d},

where B C R" is a finite set, form a basis for the local flat topology. In particular we
need to check the two axioms for basis:
(1) Given By, Bs finite subsets of R" and 61, do > 0let B= By UBy and 0 < 6 <
min{d;, 05}, then UZ C U N U,
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(2) Given Ty € F°¢ and 7y € R™ we need to show that there exists UP such
that Ty € UP. Since Ty € F°°, then for xy € R™ there exist Ay € R,, and
By € Ryy1 such that Sy = Ag + 0By € F,, and z9 ¢ spt (Tp — Sp). Let
§ > M(Ag) + M(By) and B = {x¢}, then T, € UP.

Definition 6.7.4. A locally rectifiable current T is area minimizing if for all a €
R™, r >0, TLB(a,r) is area minimizing.

Definition 6.7.5. Let T € R°® and a € R", the mass ratio is defined by

O" (T, a.r) = M(TLB(a,r))‘

A, T

The density of T at a is defined by
O™(T,a) = lim ©™(T,a,r),

r—00

whenever the limit exists.

Theorem 6.7.6. Let T be an area minimizing locally rectifiable current in RI¢. Let
a € sptT. Then for 0 < r < dist(a,sptdT), the mass ratio is a monotonically
increasing function of r.

Proof. For 0 < r < dist (a,spt 9T') let f(r) = M(TLB(a,r)). Then f is monotonically
increasing and hence it is differentiable a.e. in its domain. Let u(z) = |z — al, then

(Tu,r+) = 0(TL{u(z) <r}) — (0T )L{u(z) < r}
=J(TLB(a,r)) — (0T)LB(a,r)
= J(TLB(a,r)).
= M(T,u,r+) = M(O(TLB(a,r))) < f'(r),

where the last inequality follows from proposition (6:2.3)) and the observation
M(TLB(a,r)) = ||T||(B(a,r)). Since T is area minimizing M (T'LB(a,r)) is less than
or equal to the area of the cone C over 9(TLB(a,r)) to a. Then

J(r) < M(C) = =M(I(TLB(a,r)) < —'(r)

and
" (T, a,r) = S () = ) = )
7 Om ya,7) = (1 r))=r r) —mr r
morr
- s e -] 20
Thus ©™(T, a,r) is an increasing function of 7 in its domain. U

Corollary 6.7.7. Suppose T € R is area minimizing. Then ©™(T,a) exists for
every a € sptT — spt 0T

Proof. From theorem (6.7.6]) the mass ratio ©™ (7, a,r) is monotonically increasing in
its domain 0 < r < dist (a, spt 9T') whenever a € sptT" — spt 9T and hence

O™(T,a) = hII(l] O™(T,a,r) = igg e™(T,a,r)

exists. [l
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Corollary 6.7.8. Suppose T € R is area minimizing and a € sptT —spt OT. Then
for 0 < r < dist (a,spt 0T,

M(TLB(a,r)) > 0™(T,a)a,r™.

Corollary 6.7.9. Let T' be an area minimizing rectifiable current in R, (R™). Then
for alla € sptT —spt 0T, O™ (T,a) > 1.

Proof. Since T is a rectifiable current there exists an associated rectifiable set £ D spt T
such that the m-dimensional density of £ at H™-a.e. a € F

O™ (B, a) = lim H™(EN Bla,r))

r—0 QT

=1

Since T is area minimizing the multiplicity function equals 1 H™-a.e. and hence

M(TLB(a,r)) = H™(E N B(a,r)) which implies that
O™(E,a) = lim M(TLB(a,r))

r—0 Q™

=0"(T,a) =1

H™-a.e. a € E. Let a € sptT — spt 9T, then we can choose a sequence {a;}jen C E
such that a; — a and ©™(T,a;) = O™(E,a;) > 1 for each j € N. Let 0 < r <
dist (a,spt 9T'), r; = dist (a, a;), we can assume that r; < r for each j € N, then

M(TLB(a,r)) > M(TLB(aj,r —rj)).
By monotonicity of the mass ratio we have
M(TLB(a;,r —rj)) > O™(T, a;)om,(r —r;)™
> g (r —15)"™,
hence

M(TLB(a,r)) > ouy(r — ;)™ holds for each j € N and
M(TLB(a,r)) > apr™.

Since 0 < r < dist (a,spt 1) is arbitrary

O™(T,a) > 1.
U

Definition 6.7.10. A locally integral flat chain C is called a cone if for every r > 0,
wrC = C, where u, is defined by

fr: R" — R"
T T

If T € F¢, such a cone C is called an oriented tangent cone to T at 0 if there is a

m

decreasing sequence {r;};en tending to zero such that p—iIT" converges to C' in the local
i

flat topology.

Lemma 6.7.11. IfU is a rectifiable current in R,,(R"), then M(p'_,U) = r="M(U).
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Proof. Let U be a rectifiable current with the associated rectifiable set £. By definition
M(pz;1U) = sup{ (5, U) () sup,|lio()[* < 1} and

(540)() = Ul 9) = [ (€la). (519 (@)a) dH"s,

E

If we expand the integrand we obtain

(), (pr-10) () = (pr-10) () ((2; a1 (), . .. (25 am(2))),
where £: x — ((z;a1(x)), ... (z;a,(7))) is a unit m-plane orienting £
=0 ') ((r e rtay), .., (r e ay,))
= (2): br(rx)daer(r ) (r e tay), ., (e a,)
= r"o(r ) (E(x)),
where £ is a unit m-plane. Then

(12U () = 1 / (E(2), ol 0))i(z) ™

E
< r "M(U).

Since ¢ is arbitrary
M(p;U) < 7" M(U).
And by symmetry we have
M(U) < "Mz D).
OJ

Theorem 6.7.12. Let T be an area minimizing rectifiable current in R,,,(R™). Suppose
0 €sptT —sptdT. Then T has an oriented tangent cone C at 0 € R™.

Partial Proof. We will show that there exist a rectifiable current C' supported in

B(0,1) and a decreasing sequence {r;};en tending to zero such that the sequence

{1+ (TLB(0,7;)) }jen converges to C in the local flat topology. First note that dop; =
J

JT 0 0. In particular , if T € D,,, o € D™ and pu,: x — rw, then
[(00 ) T(¢) = (1, T)(dgp) = T(pydp)

= T((py 0 d)p) = T((d o p7)p)

= (0T)(prp) = [(py © O)T](0).
Fix 0 < rg < dist (0, spt 97'), then for 0 < r < ry monotonicity of the mass ratio and
lemma (6.711]) imply

M (g1 (TLB(0,7))) = M(TLB(0,7))r ™

M(TLB(0,r))ry™ = c.

IA

Let u(z) = |z|, then
(TLB(0,7r),u,s+) = 0(TL[B(0,r) N{u(z) < s}]) —d(TLB(0,r))L{u(x) < s}.
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If 0 < s <7y then s < dist (0,spt 9T") and hence
(TLB(0,7),u, s+) = O(TL[B(0,7) N{|z| < s}]).
If we apply the proposition (6.2.4) for 0 < s < 19, then

C M(A(TLB(0, 1)) dr < M(TLB(0, 5)) < cs™

s/2

Consequently, for some s/2 < r < s,

M(O(TLB(0,7))) < < 2Mep™t

s
s/2
and

M(p:-10(TLB(0,7))) < 2™¢,

where the last inequality follows from the closure theorem (6.4.3)) and lemma (6.7.1T]).
So whenever 0 < r < ry, ¢ > max{c,2"c}

M(p:—+(TLB(0,7))) <c<¢é
() M(i*, (A(TLB(0,7)))) < 27c < ¢

and hence we can choose a sequence {r;};en converging to zero such that (x) holds for

each j € N. In order to use the Compactness Theorem (6.4.4]) we need to show that

each Ty = ' (TLB(0,7%)) is an integral current. First of all each T} is a rectifiable
k

current whose support is in some closed ball K because each TLB(0, ) is a rectifiable
current whose support is a subset of B(0,r;) with r, — 0. For each k € N, 9T} is a
rectifiable current because

Ty, = 8(u:k,1(TLB(O,7"k))) = ,u:fk,.l@(TLB(O, %))
= ,LLTk—1 <T|_B<O, Tk), u, Tk—|—>

is rectifiable and hence each T}, is an integral current. Now by using the Compactness
Theorem (6.4.4]) we can extract a subsequence {s;};en of {r;};en such that

:u:fl (TLB(Oa Sj)) E) C

where C'is a rectifiable current supported in K. Since for each k € N, u* ., (TLB(0, s;))

J
and C are rectifiable F-convergence implies convergence in the local flat topology. [

Theorem 6.7.13. Let T' be an area minimizing rectifiable current in R,,(R™) and 0 €
spt T—spt OT. Let C be an oriented tangent cone to T at 0, then ©™(C,0) = ©™(T,0).

Proof. After replacing the sequence {r;};en such that p* (7" — C) — 0 with a sub-
j

sequence, if necessary, for each j € N we can choose currents A; € R,,(R") and
B; € Rin+1(R") such that

spt (u; (T = C) = (4; + 0B;)) N U(0,2) = 0
M(4;) + M(B)) < 1/
Let u(x) = |z|, then proposition (6.2.4]) implies

1+1/j
/ M(B;, u, r+) dr < M(B,).
1
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For each j € N we can choose 1 < s; < 14 1/5 < 2 with M(B;,u, s;+) < jM(B;) <
1/5.
(= (T = O))LB(0, 35) = (A; + 9B;)LB(0, 55)
(11 T)LB(0,s;) = CLB(0, 5;) + A,LB(0, 5;) + (9B;)LB(0, s;)
] = CLB(0,s,) + A;LB(0,s;) + 0(B;LB(0, s5))
— (Bj,u, sj+)
Since
F((4;+T)LB(0,s;) — CLB(0,1))
< F(CL[B(0,s;) — B(0,1)]) + F(A,LB(0, s;)) + F(9(B,;LB(0, s,)))
+ F(Bj, u,s;+),

where the RHS goes to 0 as j — oo, then (u'T)LB(0,s;) — CLB(0,1) in the flat

J
norm.

By the lower semicontinuity of M, M(CLB(0,1)) < liminf; . M(u' . (TLB(0,s;)))
and ©(C,0) < ©™(T, 0). '
Since (u7T)LB(0, s;) is area minimizing and it has the same boundary as
CLB(0,s;) + A;LB(0,s5) — (Bj, u, sj+),
then M((w 1 T)LB(0, s;)) < M(CLB(0, s;))+2/j and hence ©™(7',0) < ©™(C,0). O
J

6.8. The Regularity Of Area Minimizing Hypersurfaces.

Theorem 6.8.1. Let T' be an area minimizing rectifiable current in Ri(R?). Then
spt T — spt 0T consists of disjoint line segments.

Partial Proof. In each case we will show that each a € sptT — spt 9T has a neighbor-
hood U(a, ) such that spt T'NU(a,r) is a straight line segment.

(1) Case # 1: If OT consists of two oppositely oriented points, then T is the oriented
line segment between them.

Proof Of Case # 1. So case #1 implies that the shortest path between two
points is the line segment. Let’s assume that 01" = d(; 9y — d(0,0). Let T be the
oriented line segment between (0,0) and (1,0), then Tj is represented by

To = [(0,0),(1,0)] = H'"L{0 < = < 1,y = 0} A 4.

Let ¢ € D! be a 1-form in R? of compact support given by ¢(p) = b1(p)dzi(p)+
ba(p)dz2(p), then

Tu(e) = [ ([0).plo) dHL{(2,0): 0 < 2 < 1y

- / 2 (p)(i(p)) dH'p
{(,0): 0<z<1}

= / bi(p) dH'p.
{(x,0): 0<z<1}
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In order to show that the line segment Tj is the shortest path connecting (0, 0)
and (1,0) it is enough to show that T uniquely minimizes mass (length) among
all normal currents N € N;(R?) with the same boundary as T.

Let N € N;(R?), then N can be represented by integration as

N = [ (Ve dNTp

where N: R? — T(R2) is a l-vectorfield, |N(p)] = 1 |N|-a.e. and |N]| is
Radon measure on R

M) = INIE) = [ N> [ M)l

then 7y minimizes length.
If M(N) =1, then

/ (¥ ). darp) dINp = [ (o). deao) d|VIp = 1
= [ )= ). deae) dINp = [ (Vi) = 1) IV =0

and hence Ny (p) = 1, N(p) = i(p) || N||-a.e. Now we will show that if M(N) =
1, then spt N C {y = 0}. If not, for some € > 0 thereisa C*° map 0 < f(p) <1
such that f(p) =1 for |p| < e and M(NLf) < 1.

O(NLf)(p) = (NLf)(de) = N(fdp)
= N(d(fy)) — N(edf)
= (ON)Lf(» )—(NLdf)( ) = ON (),

where the last equality follows because N = i ||N|l-a.e. and df(p)(i(p)) =
Since J(NLf) = ON = 0T; and Ty is mass minimizing, then M(NLf) > 1. But
this contradicts the assumption and hence spt N C {y = 0}. Since O(N —Tp) =

0, by Constancy Theorem ([B.1.23) N —Ty, is a constant multiple of H' A7. Since
N — T has a compact support this constant must be zero and N = Tj,.

Case # 2: If the density ©(T, a) equals 1, then spt T is a straight line segment
in some neighborhood U (a,r) of a.

Proof Of Case # 2. By lemma (6.2.5]) for almost all s, 0 < s < dist (0, spt 97),
the slice 9(TLB(a,s)) = (T, u, s+) is a 0-dimensional rectifiable current and a
boundary containing an even number of points. M(9(TLB(a,s))) > 2, other-
wise 7' = 0 would have the same boundary as TLB(a, s) and less mass because

M(TLB
OYT,a) = lim ( (a,5)) =1
r—0 2r
implies M(TLB(a,s)) > 0 for all sufficiently small s > 0. If we let E be the

associated rectifiable set, then by using proposition (6.2.4]) we get

/0 M(A(TLB(a,r))) dr < |T||{u < s} < (H'LE){u < s}

=H'(EN B(a,s)) = M(TLB(a, s)).
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Then by dividing each side by s we get
! / M(O(TLB(a, 1)) dr < s~ 'M(TLB(a, s))
0

and

M(TLSB<Q7 8)) \ Ozl@l(T, a) — 9.
We already know that M(J(TLB(a,r))) > 2 for 0 < r < dist (a,sptdT).
Therefore for some small » > 0 M(9(TLB(a,r)))
= 2 and hence O(TLB(a,r)) consists of two points. From case # 1, spt TLB(a, r)
is a straight line segment between the boundary points and hence T is a line
segment in a neighborhood U(a,r) of a.

(3) For the general case see Federer [10].
UJ

The next theorem, whose proof can be found in Federer [10], proves the regularity
of the area minimizing rectifiable currents in R,,_1(R"™) for 2 <n <7,

Theorem 6.8.2 (Regularity For Area Minimizing Hypersurfaces). Let T' be an area
minimizing rectifiable current in R, 1(R™) for 2 < n < 7. Then sptT — spt 9T is a
smooth, embedded manifold.

Remark 6.8.3. E. Bombieri, E. De Giorgi, and E. Giusti, in [5], gave an exam-
ple of a seven dimensional, area minimizing rectifiable current 7' in R® with an iso-

lated singularity at 0 € RS, This current 7' is the oriented truncated cone over
B =8%0,1/v2) x §%(0,1/+/2) € S7(0,1) C R® and 0T = B.
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7. THE LEAST PERIMETER FUNCTION AND THE DOUBLE BUBBLE
CONJECTURE IN R?

In this section we will present the least perimeter function and the proof of the double
bubble conjecture in R?. The double bubble conjecture, which is proved jointly by J.
Foisy, M. Alfaro, J. Brock, N. Hodges, J. Zimba in [14], states that the standard double
bubble uniquely minimizes perimeter of an enclosure of any two given areas in R?. The
double bubble conjecture has its roots from the works of F.J. Almgren [2], J. Taylor
[27], and F. Morgan [20] who established the existence and the structure of an area
minimizing bubble cluster in general dimensions. Their results admit the possibility
of disconnected bubbles and exterior. One of the consequences of Almgren’s paper [2]
is the existence of a set S in R™ with the least surface area and separating the given
m volumes in R"™. Taylor’s article [27] gives a rigorous proof of one of the observations
made by physicist Plateau more than 100 years ago. Namely, an area minimizing
soap bubble cluster B in R3 consists of real analytic constant mean curvature surfaces
meeting smoothly in threes at 120° angles along smooth curves. Later Morgan showed
in [20] that a perimeter minimizing bubble cluster in R? consists of arcs of circles (or
line segments) meeting in threes at angles of 120°. As a consequence of the works
by Almgren, Taylor, and Morgan we can define the least perimeter function, namely a
real-valued non-negative function giving the value of the least perimeter of an enclosure
of two given quantities of area. We will present our proof of a known fact that the
least perimeter function is continuous.

7.1. The Least Perimeter Function.

Definition 7.1.1.

(1) A cluster of bubbles (or bubble cluster) in R? is a collection of finitely many
pairwise disjoint open sets By, ..., By.

(2) A cluster of exactly two bubbles is called a double bubble. A double bubble B
will be denoted as B = (By, By), where By and By are the two bubbles.

(3) In R?, a standard double bubble is a double bubble consisting of three circular
arcs (a line segment is understood to be a circular arc) meeting at two vertices
at angles of 120°.

(4) The perimeter of a cluster is given by the one-dimensional Hausdorff measure
of the topological boundaries of the bubble:

(o)

(5) A cluster is said to be perimeter minimizing if no other cluster enclosing the
same area has less perimeter.



7. Double Bubble Conjecture In R? 109

@' .
A B

FIGURE 19. The standard double bubbles. (A) Bubbles have the same
area. (B) Bubbles have different areas.

‘@

ro

FIGURE 20. The non standard double bubbles. (A) has connected bub-
bles but the exterior is disconnected. (B) has a connected exterior, but
the bubble Bj is disconnected. (C) has both disconnected bubbles and
a disconnected exterior.

Definition 7.1.2 (The Least Perimeter Function). For two prescribed quantities of
area, Ay and Ay, let P(Ay, Ay) be the perimeter of the least perimeter double bubble
enclosing the areas A; and As. Let P(A;,0) = P(A;) be the perimeter of the least
perimeter enclosure of a region of area Ay, so P(A;) is the perimeter of the disk of
area Ay. Let Py(Aq, Ag) be the perimeter of the standard double bubble enclosing areas
of size A1 and A,.

Remark 7.1.3.

e We will show in (TZ3)) that there exists a unique standard double bubble en-
closing any two given areas in R2.

e Let A > 0, then for any Ay, Ay >0, P(AAy, AAy) = VAP(Ay, Ay), where A > 0
is the scaling factor.
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In order to show that the least perimeter function is continuous as a function of two
variables we will first show that it is continuous with respect to each variable separately
when the other variable is held fixed. Then we will use the conclusions obtained in
this preliminary stage to prove the most general case of continuity.

Lemma 7.1.4. For any fized Ay, Ay > 0, the function f: [A;,00) — R defined by
f(A) = P(A, Ay) is continuous.

Proof. Let A; > Ay, we want to show that f is continuous at A, or equivalently we
need to show that for a given € > 0 there exists 0 < §p < A; — Ay such that

—e < f(A) - f(A—06)<e
—e < f(A) = f(AL 4 6) <, for every 0 < § < d.

From the definitions we get the inequality f(A;) = f((A; —9) +4) < F(A =)+ P(6),
and f(A;,) — f(A, — 0) < P(6). Using the scaling factor \ = A;?;‘S we obtain

pm;—&&a=P((A}?UA“(%éﬁ)&(Af;J>

Hence

Since P(A,0) = P(A) N\, 0 as A\, 0 we can find 0 < d; < Ay — Ay satisfying the
con~dition —e < f( 1) — f(A; —0) < efor every 0 < 0 < 4.
f(AL+6) < f(A1) + P(0) = —P(d) < f(A1) — f(A1 + 6) holds for every 6 > 0. If we

replace A; with (A; + 0) — § then, from the calculations above, we get

f(A) = f((A +0) —6) < P(A; 4 6,A5) + P (Aifb)

:fan—ﬂA+®§P(£AQ
S —P(6) < f(A) — f(Ai +8) < P (AiA) |

Sin}ilarly as_above we can finda 0 < 6y < A, — Ay satisfying the condition —e <
f(A) — f(A1+6) < eforevery 0 < 0 < d9. Hence for 0 < §y < min{dy,d»} the
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continuity condition will be satisfied. The the continuity at A; = A; can be shown
similarly. O

Corollary 7.1.5. The function h: [0,00) x [0,00) — [0,00) defined by
h(AhAQ) == P(Al, Ag)
1S continuous.

Proof. Let (A, Ay) € (0,00)%. We want to show that given € > 0 there exists § > 0
such that for every (B, By) € [0,00)% |B; — Aj] < ¢ and |By — Ay| < § imply
‘h(Al,AQ) — h(Bl, Bg)| < €. Let 51,(52 > 0.

A =6 Ay — 90
P<A1—51,A2—62>=P( 1A1 LA, 2A2 2A2)

(A — 6;)(As — 85) Ay A,
— P A A
\/ AL A, Ay — 6y A — 0,

AQ 51
< P A A P A
- ([A2—52] a 2) " <A1—51 2)

gP(Al,Ag)JrP( 0 A1)+P( ‘1 A2>.

A2—52 A1_51

) 0.
= P(A1, Ag) = P(Ay = 01, A3 = 02) =2 = P (Ali(SlAZ) -F (A2i52A1>

and
P(Ay, Ay) — P(Ay — 01, Ay — 03) < P(61) + P(d2)
imply that

5 5
_PpP L A4, )-P 2 Ay ) < P(Ay, A))—P(A1—6,, Ay—05) < P(6,)+P(3,)
Al — (51 A2 - 52

Then we can find 61 > 0 such that P(6;) + P(d,) < € and
51 s
P <A1—51 A2> t+ P <A2—6
(in R? there are four of them) we can find §) > 0 such that the absolute value of the
difference will be less than e. Now let 0 < § < minj<;<4 6@ then for every 8y, 9y € [0,6)

—e < P(Al,AQ) —P(Al :I:(Sl,AQidg) <€,

and hence —e < h(By, By) —h(A1, Ay) < ¢ for every (By, By) € [0,00)% with |B; — A;| <
0 and |By — As| < 6. The continuity in the case A3 = 0 or Ay = 0 can be shown
similarly. 0

2A1> < € whenever 0 < §y, d, < 6V, Similarly for each sector

7.2. The Double Bubble Conjecture In R2.

Proposition 7.2.1. [14, Proposition 2.1.] Let S be an edge of a perimeter minimizing
bubble cluster in R%. Define C to be the distance between the endpoints of S, with 0
the angle between S and the line segment connecting its endpoints. Then the radius of
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curvature R of S, the area A of the region between S and the line segment connecting
its endpoints, and the length L of S are given by

C C?(6 — sin(0) cos())
R0, €)= 2sin 6’ A6, €)= 4 sin*(6)
co
L, €)= sinf
S
0
C

FIGURE 21. The circular arc S has radius of curvature R, area A and
length L.

Proposition 7.2.2. [14, Proposition 2.2.] If a perimeter minimizing double bubble in
R? has connected bubbles and a connected exterior, then it is a standard double bubble.

Proof. A perimeter minimizing double bubble in R? corresponds to a planar graph.
The Euler’s formula concerning the vertices, edges, and faces of a planar graph gives
V — E+ F = 1. From the article of Morgan [20] we can conclude that each vertex has
three edges connecting to it, then 2E = 3V, and F' = 2 comes from the assumption
of connected bubbles. Solving these equations yields V' = 2 and F = 3. The cluster
consists of three circular arcs all meeting in two points at angles of 120°, and hence it

is a standard double bubble. O

Theorem 7.2.3. [14, Theorem 2.3.] For any two prescribed quantities of area, there
exists a unique standard double bubble.

Proof. Our aim is to show for every 0 < A < 1 there exists a unique standard double
bubble B = (By, By), up to an affine transformation in R?, such that the ratio gﬁgggg;;
of the two areas it encloses is .

Consider a standard double bubble with the distance between its two vertices fixed
to be 1. Since the edges are circular arcs that meet at these two points, the area
underneath an arc of our double bubble is given by
0 — sin(6) cos(0)

4sin?(0)

A() = A(6,1) =

A simple calculation yields that
sinf — 0 cos 6
Al) = —————
(6) 2sin®()
~ 20(2 + cos(26)) — 3(sin(20))
B 4sin* 0

A//(Q)




7. Double Bubble Conjecture In R? 113

21/3 — 6

6

FiGURE 22. For any 6, one can construct a standard double bubble.

It can be shown that A’(¢) > 0 and A”(#) > 0 on (0,7), so A() and A’'(#) are strictly
increasing on (0, ).

For any 6 € [0, 7), an angle formed by a circular arc and the line segment of length
1 that joins its endpoint, one can construct a standard double bubble. The enclosed
areas must satisfy

area B1(0) = A((3F —0)) + A(9)

area By(0) = A((3F +0)) — A(0).

Claim: For ¢ € [0, 3), any ratio of A; to Ay, where A; and Ay are two quantities of
area, will be uniquely represented.

Let F(0) = Seapgl- Since A”(8) > 0 for 6 € (0,7), in (0,3), area By(f) =
A(3 —0)+ A(0) is strictly decreasing (the magnitude of decrease of the LHS is strictly
greater than the magnitude of increase of the RHS), and area B3 (0) = A(3 +0)— A(0)
is strictly increasing (the magnitude of increase of the LHS is stricly greater than the
magnitude of decrease of the RHS). So increasing the angle 6 will decrease the area
enclosed by the smaller region and increase the area enclosed by the larger region. Thus
F(0) is stricly decreasing on the interval [0, 7). In addition, F(0) = 1 and F(¢) — 0
as  — Z. So F': [0, 3) — (0,1] is bijective.

Since F is bijective, for any ratio A € (0, 1] of areas enclosed by the two regions there
exists a unique ¢ € [0, 7), an angle between the line segment joining the vertices and the
middle circular arc, and a unique pair of circular arcs which all together constitute the
unique standard double bubble. The actual combination of quantities of area (A;, As)

can be obtained by scaling the line segment joining the two vertices. (l

Lemma 7.2.4. [14, Lemma 2.4.] A perimeter minimizing double bubble whose exterior
is connected must be standard.
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Proof. Let U be a perimeter minimizing double bubble with connected exterior. If U
is not standard, by Proposition (Z.22]), U has a disconnected bubble. Our aim is to
show that U can not be perimeter minimizing.

Consider a graph formed by placing a vertex inside each bubble component of U,
with an edge between vertices of adjacent components. For any U with connected
exterior, the corresponding graph has no cycles. If not, then there is a loop in the
graph with a vertex vy being its basepoint. This loop is an n-gon and homeomorphic
to a circle and hence divides the plane into two disconnected regions, by the Jordan-
Brouwer Separation Theorem. Since the bubble cluster is a double bubble there is a
point in the inner region of the loop which belongs to the exterior of the cluster, hence
the exterior is disconnected, but this contradicts the hypothesis. Thus there will be
a component of U that lies at an endpoint of the corresponding graph. It must have
exactly two edges and two vertices.

FIGURE 23. Since the exterior is assumed to be connected as in (A), the
associated graph has an endpoint in a component with the edges and two
vertices. If the exterior were disconnected, then a cycle as in (B) could
result.

Let F' be a component of U that has exactly two edges and exactly two vertices, r
and ¢. Let t be a vertex of U that is adjacent to r but is not a vertex of F. Let S be
the edge connecting r and t. Let p be a point on the edge S and define a new bubble
cluster U, by replacing the component [’ by its reflection across the perpendicular
bisector of the line segment ¢p. As p moves continuously along S towards the vertex
t the bubble cluster U, with an extreme component Fj, preserves the initial perimeter
and the area.

As p varies from 7 to ¢, two things could happen: either there will be a point py for
which the reflection will result in the touching of another bubble component and the
creation of a new vertex with four edges leading to it, or p will eventually coincide with
t, and four edges meet at a vertex. Both of these cases will lead to a contradiction to
the regularity theorem [20] since reflection preserves the perimeter minimizing bubble
cluster.

O
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FiGURE 24. The reflection of F' with respect to [ may touch another
component, contradicting regularity.

Lemma 7.2.5. [I4, Lemma 2.5.] Increasing the larger of the two prescribed areas
enclosed by a standard double bubble will increase the total perimeter.

Proof. From Proposition (Z21]), the length function for a circular arc with endpoints
distance 1 apart and with @, the angle between the segment connecting the endpoints
and the arc, is

0
L(0) = ———.
(6) sin(0)
The perimeter of the standard double bubble with angle § between the line segment
connecting its vertices (distance 1 apart) is given by
perim (0) = L(0) + L(% +0) + L(% — 0).
It can be shown that
sinf — 6 cos 6

) —
L'(0) = Zd and
" 0 sin” 6 + 26 cos? ) — sin 20
L"(0) = — :
sin” ¢

A simple calculation shows that L'(#) > 0 on (0,7), and thus L(#) is increasing on
[O,g). In addition, L”(6) > 0 on (0,7); thus on [O, %), L(%’r + 9) + L(%7r — ) is
increasing (the magnitude of increase of the LHS is strictly greater than the magnitude
of decrease of the RHS).

If the area enclosed by the larger bubble, B, increases then &L&& 51

area B
an accompanying increase in ¢, where 0 € [0, ;—r) Since L(0) increases as 6 € [O, %)
increases we can conclude that increasing the area enclosed by the larger region will
increase the perimeter of the standard double bubble. U

decreases with

Lemma 7.2.6. [14, Lemma 2.7.] For any fized Ay, Ay > 0, the function P(A, As) has
a minimum for A € [Ay, 00).
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Proof. Given Ay, Ay > 0 let the function f(A): [A1,00) — R be defined by f(A) =
P(A, As). By the isoperimetric inequality, f(A) > perim (D,), where D4 is a disk
of area A. Hence f(A) — oo as A — oco. There exists Ay > A; such that for
every A > A;, perim(Dy,,) + perim(Dy,) < f(A). Since f is continuous, f has a
minimum for A € [A;, A;]. Let f(Ap) be the minimum value of f in [A;, A,], and since
f(Ag) < f(A1) < perim(Dy4,) + perim(Dy,), f(Ap) is the absolute minimum value of
fin [A;, 00). O

As lemma (ZI.4)) has an extension (ZI5]) so does lemma (Z.2.6]) has an extension
([T2.7) whose proof will become trivial once we show that the least perimeter function
is an increasing function of both variables.

Corollary 7.2.7. For any fived Ay, Ay > 0, the function h: [A;, 00)x[As, 00) — [0, 00)
defined by h(A, B) = P(A, B) has a minimum for (Ay, Ag) € [Ay,00) X [Ag, 00).

Proposition 7.2.8. [14, Proposition 2.8.] The exterior of a perimeter minimizing
double bubble must be connected.

Proof. Given two quantities of area, A; and A,, without loss of generality we may
assume that A; > As. Suppose that the exterior of a perimeter minimizing double
bubble B = (Bj, Bs) enclosing A; and A, is disconnected. By Lemma (T2.0]), we
can choose some A} € [A],00) that minimizes P(A, Ay), A € [A;,00). In particular,
P(A7, As) < P(A1, Ag).

We want to show that if B’ = (B}, B)) is a perimeter minimizing enclosure of
the quantities of area A} and As, respectively, then the exterior must be connected.
Suppose, to obtain a contradiction, that the exterior is disconnected. One of the
components of the bubble B] must share a boundary with a bounded component of
the exterior. Remove this boundary and incorporate the exterior into the bubble Bj.
Thus a new bubble is formed which has a strictly less perimeter than B] and encloses
a region of area A} + ¢ where € > 0. A perimeter minimizing double bubble enclosing
regions of area A} + ¢ > A} > A; and A, will have a total perimeter (= f(A] + ¢€))
strictly less P(A}, Ay) = f(A)), which is a contradiction.

Thus By # B}, otherwise A; = A} implies that the initial double bubble (B, Bs)
has connected exterior. Thus A; < A}. By lemma ([.2.0), Py(A1, Ay) < Py(A}, As).
By lemma (Z2Z4]) a perimeter minimizing double bubble with connected exterior is
standard, Py(A}, As) = P(A}, Ay) and by definition, P(A;, Ay) < Py(A1, Az). In

summary:
P(Al,AQ) < PQ(Al,AQ) < PO(A/17A2) = P(A,I,AQ) < P(Al,AQ).

This is a contradiction. Therefore, we conclude that the exterior must be connected.
O

Main Theorem. [14, Main Theorem 2.9.] For any two prescribed quantities of area,
the standard double bubble is the unique perimeter minimizing enclosure of the pre-
scribed quantities of area.

Proof. F.J. Almgren and F. Morgan have shown that a perimeter minimizing double
bubble exists. By Proposition (.2.8]), the exterior of this double bubble must be
connected. Then, by Lemma (Z.24]), the bubble cluster must be standard. Therefore,
only a standard double bubble is perimeter minimizing. Given any two quantities of
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area A; and A, with A; < A, there exists a unique 6 € [0, %), angle between the
line segment, of length 1, connecting the two vertices of the standard double bubble
and the middle circular arc, leading to a unique standard double bubble such that
the ratio of the areas enclosed equals the ratio of A; to As. This bubble will have
two components with area A} and A} such that ’3—; = 3—2 and the actual combination
(A1, A2) can be obtained by scaling the line segment connecting the two vertices.
Therefore, there exists a unique standard double bubble enclosing the two prescribed

quantities of area. O

Corollary 7.2.9. [14, Corollary 2.10.] Increasing either given area Ay, Ay increases
the perimeter of the perimeter minimizing double bubble.

Proof. If the conclusion is false, then for some perimeter minimizing standard double
bubble (Bj, By) enclosing regions with respective quantities of area A; and A,, an
increase in, say A; < A,, decreases the least perimeter of the minimizing double
bubble. By decreasing the angle 6 € [%, 2?“), between the circular arc of B] and the
line segment connecting the two vertices we can decrease the area continuously back
to its original value A;. The decrease in 6 also decreases the total perimeter of the
double bubble and contradicts the minimizing property of the original standard double

bubble.

FiGURE 25. After we decrease the angle  between the bubble B; and
the separating arc we get a double bubble with less perimeter and B,
has less area.
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8. THE STRUCTURE OF AREA MINIMIZING DOUBLE BUBBLES
AND THE DOUBLE BUBBLE CONJECTURE IN R?

In this section we will study the structure of area minimizing double bubbles in the
Euclidean Space and the double bubble conjecture in R3. Fred Almgren has shown in
[2] that given any m volumes in R" one can find an enclosure of least surface area. M.
Hutchings has proved in [I7] that for the case m = 2 the enclosure is either the standard
double bubble or a surface or revolution consisting of a topological sphere with a single
tree of annular bands attached. Hutchings has also presented the properties of the
least area function and introduced their implications, the most important of which
is that in a least area enclosure the exterior must be connected. He has shown the
Decomposition Theorem which implies that a least area enclosure of two volumes must
separate the space into finitely many components and in the case n = 3, a least area
enclosure of two volumes must be connected.

M. Hutchings, F. Morgan, M. Ritoré, and A. Ros have jointly proved in [18] that
the set in R3 with the least surface area enclosing the two given volumes in R? is
the standard double bubble. We will give a rough sketch of this proof and conclude
the section with a survey of articles related to the double bubble problem in general
dimension. For the sketch of the proof of the double bubble conjecture in R? the main
reference is the Morgan’s book [22].

8.1. The Least Area Function.

Remark 8.1.1. Given prescribed volumes vy, ...,v,,, Fred Almgren has shown that
there exists a set B C R" of smallest H"~! measure (area) such that B encloses and
separates the m disjoint sets Ry,..., R,, with H"(R;) = vol (R;) = v;.

Definition 8.1.2.
(1) The least area function is a map

A, R x ... x RZ0 — RO

giving the least area required to enclose and separate m objects in R™ with pre-
scribed volumes. The least area function is denoted by Ap(vi, ..., Um).

(2) The exterior region Ry of the cluster consisting of a separating surface B and
m pairwise disjoint sets R; is defined as

Ry =R" — <BUOR2'>-
i=1

A cluster is said to contain an empty chamber if the exterior region is discon-
nected. An empty chamber can be thought as an enclosure containing a vacuum
and contributing nothing to the total amount of volume enclosed.

(3) A standard double bubble in R"™, n > 3, consists of two exterior spherical pieces
and a separating surface (which is either spherical or planar) meeting at 120°.
An argument similar to the one in theorem ([[23) can be used to show that
there exists a unique standard double bubble in R™ (n > 3) enclosing any two
prescribed volumes.
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The next lemma is a trivial extension of the corollary (ZI.5) to m-volumes. For
completeness we will give an outline of its proof.

Lemma 8.1.3. [I7, Lemma 3.1] For any m, n € N, the least area function A, (vy,...,vn)
18 continuous.

Partial Proof. We will show the continuity along a line with wvs, ..., v, constant; the
general proof is similar to the proof of corollary (Z.I.5)). Let v; > 0, given an enclosure
of volumes vy,...,v, we can increase v; by ¢ with a controlled increase in area by
creating a sphere disjoint from the cluster with volume ¢ and incorporating this volume
into Ry. The controlled increase means that the area fluctuation does not exceed a
predetermined € > 0, and hence we have proved the continuity when the volume is
increased. Now we need to show that the area change can be controlled when we
decrease the volume of R;. To decrease the volume of R; we can scale the entire
cluster by A = (v; — §)/v; so that R; has volume v; — § and then we add spheres to
other bubbles to restore their volumes. The resulting area increase will be controlled
uniformly on some interval containing vy, for small enough ¢ > 0. Thus continuity for
the case v; > 0 is proved. Let v; = 0, then

A (0,09, .. u) < Ap(0,v2, . Um) < Ap(0,v9, ..., 0) + An(0)

holds for all § > 0. Since A,(d) \, 0 as § \, 0, the continuity in the case v; = 0 is
proved. O

The next three lemmas, which will be stated without proof, will be used in the proof
of the strict concavity of the least area function. The proof of these lemmas can be
found in Hutchings [17].

Lemma 8.1.4. [I7, Lemma 2.5.] Let B be an area minimizing enclosure of m volumes
in R". Let H CR" be a hyperplane and let By, By be two symmetrizations of B about
H. Suppose By and By minimize area for the volume they enclose. Let Ay, Ay C H be
nonempty affine subspaces of dimension at most n — 2. Suppose B; is symmetric about
A;i=1,2. Then AN Ay # 0 and B 1is symmetric about Ay N As.

Lemma 8.1.5. [I7, Lemma 2.9.] If n > 3, any minimal double bubble in R™ is
symmetric about some line.

Lemma 8.1.6. [I7, Lemma 2.10] Let B be a minimal double bubble in R"™, n > 3,
and let H C R™ be a hyperplane. Suppose each symmetrization of B across H is area
minimizing for the volume it encloses, then B is symmetric about a line in H.

Theorem 8.1.7 (Strict Concavity). [I7, Theorem 3.2.] If n > 3, v,w € [0,00)? are
two pairs of nonnegative volumes, and if 0 <t < 1, then

Ayt + (1 —t)w) > tA,(v) + (1 —t) A, (w).
Proof. Suppose not, then there exists 0 < ¢ < 1 such that
Ap(tv+ (1 — w) — tA,(v) — (1 —t) A, (w) < 0.
Let the function f: [0,1] — R be defined by
f)y=A,tv+ (1 —t)w) —tA,(v) — (1 —t)A,(w).
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From lemma (81.3]) we can conclude that the function f is continuous and hence takes
its minimum on [0, 1] at some ¢, € (0,1). Let B = (R;, Re) be a minimal cluster
enclosing volumes tov + (1 — to)w = (tovy + (1 — to)wy, tove + (1 — to)wsy), then by
lemma (81.5) B is symmetric about a line L. By discarding unnecessary points we
may assume that B is compact.
We can parameterize the set of oriented hyperplanes in R® by S*~! x R. In particular,
each oriented hyperplane is determined by a normal direction and an oriented distance
from the origin in that direction. Let the volume map ¢g: S"~! x R — R? be defined
by

g: P+ (vol (R NU),vol (R, NU)),
where U is the upper half space determined by P. Since B is compact, g is continuous
because small variation in the hyperplane (small changes in the parameterization) leads
to small variations in vol (R; N U) and vol (R, NU).
We can assume that the origin lies on L. Choose # € 8"~ ! orthogonal to L, so that
the hyperplane described by (z,r) contains L if » = 0 and is parallel to L otherwise.
Since B is symmetric with respect to L we have

g(x,r) + gz, —r) = tev + (1 — to)w for every r € R.

| ! I ) L

- Sn—l

FiGureE 26. Bubble cluster B is symmetric about a line L passing
through the origin

Consider the line segment in the volume plane

t 1—1¢
P { v+ (1 —tw
2
then g(z,0) € K and K contains a line segment in the volume plane passing through
w/2 in the direction of (v — w)/2. Either g(x,r) € K for some r # 0, or else by
continuity of g and the symmetry observation

v —w w
—t —cK
g(z,0) 0< 5 >+2E ,

g(y x R) must contain an element of K for every y € S"™! close to z. In both cases
we can find a hyperplane H, not containing L, with
v+ (1 —tw
B 2

t, 2t —t € (0,1)} C R?,

g(H) € K.
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Let U and V be, respectively, the upper and lower half-spaces determined by H; let
ap = area (BN H), a; = area (BNU), ay = area (BNV). If we replace BNV with the
reflection of BN U across H we obtain

ap + 2a; > Ap(tv + (1 — t)w)
= f(t) +tA,(v) + (1 —t)Ap(w)
> [(to) +1An(v) + (1 = 1) Ay (w)
= Ap(tov + (1 — to)w) + (t — to) An(v) + (to — t) Apn(w).

If we symmetrize in the other direction, namely if we replace BN U with the reflection
of BNV across H we obtain

ap + 2ay > A, ((2tg — t)v + (1 — (2tp — t))w)

= f(2to —t) + (2to — ) Ap(v) + (1 — 2to + t) Ap(w)

> f(to) + (2to — ) An(v) + (1 = 2t + t) Ap(w)

> A (tov + (1 —to)w) + ((2tg — t) — to) An(v) + (to — (2tg — t)) Ap(w).
Adding the two inequalities obtained by each symmetrization, we get

2(ag + a1 + ag) > 2A,(tov + (1 — to)w) = (ag + a1 + az) > A, (tev + (1 — to)w),
but we know that this inequality is an equality, hence
ap+2a; = A, (tv + (1 — t)w)

and

ag + 2(12 = An((Qto — t)U + (1 — (Qto — t))w)

FIGURE 27. There exist a hyperplane H not containing L with g(H) € K.

Thus each symmetrization of B across H is area minimizing for the volume it en-
closes. By lemma (8.1.6]), B is symmetric about a line L C H. Since B is compact and
hence bounded, L and L must intersect. But L #* i, so by applying lemma (814 to
a hyperplane containing L and L we can conclude that B must be symmetric about
LN L= {p}, and hence it must be a union of concentric spheres. Since the number
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of spheres is finite, we can move one of the spheres without affecting the minimization
property and violate the symmetry. So B must contain only one sphere and hence
one volume, meaning that tyv 4+ (1 — ¢p)w must lie on one of the coordinate axes.
Then v and w must both lie on the same coordinate axis. WLOG let’s assume that
v = (v1,0), w= (wy,0) and 0 < v; < wy, then for every t € [0, 1]

An(tv + (1 — Dw) = Ap(M\s(v1,0))
= (n71>/ﬁAn(Ul,0),

where A(f) equals

A(t):t(f—ll—l)Jrl.

Let K = A, (v1,0) = A,(v1) be the surface area of the sphere with volume v, then
Ay (tv + (1 — t)w) = K "R/ ), for each t € [0, 1] is a strictly concave function, thus
we get a contradiction. O

Theorem 8.1.8 (Balancing). [I7, Theorem 3.5.] If v1 > 2vsy, then in any least area
enclosure of volumes vy and vy in R™, Ry is connected.

Proof. If n > 3, then A,, is strictly concave along the line x + y = ¢ where v; + vy = ¢
and A, (v, v2) = A, (ve,v1). Since for every 0 < a,b and a +b = ¢, A,(a,b) = A,(b,a)
then A,(c/2,¢/2) > An(a,b). We want to show that A, increases strictly as (vy, v2)
gets closer to (¢/2,¢/2) along the line v +y = ¢. Fix 0 < a,b and a + b = ¢ and let
a+b =c (a,V) be closer to (¢/2,¢/2), then by using the strict concavity of the least

are function (81T we get
A (d' b)) > tAn(a,b) + (1 —t)An(c/2,¢/2)
>tA,(a,b)+ (1 —t)A,(a,b)
= A, (d, V) > A,(a,b).

Now suppose that R; is disconnected in a minimal double bubble enclosing volumes
vy and v9. We can find a nonempty union () of connected components of R; whose
volume is at most v; /2 < vy —wy. If we declare @) to be a part of Ry, we obtain a cluster
with the same area whose volumes (more balanced) are closer to (¢/2,¢/2) along the
line = 4+ y = ¢, a contradiction to the above observation.

When n = 2, Frank Morgan has shown in [20] that a minimal cluster is a union of
finitely many arcs of circles and line segments meeting at 120° angles. If () does not
have an edge in common with Ry then it has no vertices and it is floating in Ry. We
can then move ) without affecting the minimization property until it first touches the
cluster, creating an illegal singularity which contradicts Morgan’s theorem. So (Q must
have an edge in common with Ry. If we remove this edge and declare () to be a part of
Ry, the length decreases while the enclosed area remains the same, contradicting the
assumption that the initial bubble cluster is length minimizing. O
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R2 Rl

FicurEe 28. Moving the innermost circle will result in an illegal singularity.

Corollary 8.1.9 (Strictly Increasing). [I7, Corollary 3.3.] For a fired n € N, the
function A, (v, vs) is strictly increasing in each v;, i =1,2.

Proof. Suppose that 9, < vy and A,,(vy,v9) < A, (v1,02), then by concavity A, (v, vy) >
A (v, w) for every w > vy, In particular, if we let u = (v1,02), v = (vy,w), and
tu+ (1 —1t)v = (v1,vq) for some ¢t € (0, 1), then by the strict concavity of the least area
function (8.I1.7) we get
( A, (tu+ (1 —t)v) = Ay(v1,09) > tA,(v1,02) + (1 — ) Ap(vr, w)
*

) > tA,(v1,09) + (1 —t) Ay (v1, w).
Consequently, A, (v1,ve) > A, (v, w) > A, (w) holds for every w > vy and A,,(w) — oo
as w — oo which implies that A, (vy,v9) = 00, a contradiction. O

Theorem 8.1.10 (No Empty Chamber). [I7, Theorem 3.4.] Minimal double bubbles
in R™ do not have empty chambers.

Proof. Assume that a minimal double bubble contains an empty chamber. If we “fill
up” the empty chamber with volume and declare it to be a part of Ry, then the volume
vy is increased but the total area is the same, contradicting the corollary (81.9). O

Empty Chamber

9
<

FIGURE 29. A minimal double bubble in R" does not have an empty chamber.
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8.2. The Decomposition Lemma.

Lemma 8.2.1 (Decomposition). [I7, Lemma 4.1.] Suppose that in a minimal enclosure
of volumes vy, vy in R™, Ry has a connected component with volume x. Then,

24, (v, v9) > Ap(z) + Ap(vr, v — ) + Ap(v1 + 2,09 — ).

Proof. We can think of this enclosure of regions R, Ry, and R3 with volumes vy, x, and
vy — x, respectively. Let S;; = OR; NOR;, and a;; = area (S;;), then we can decompose
the enclosing surface and add up the surface area of parts in this decomposition to
obtain

2A,(v1, v2)

= (ao2 + ai2) + (ao1 + a1z + a1z + ags) + (ao1 + a2 + ao3 + a3)
= area (ORy) + area (OR; U ORy) + area (O(R, U Ry) U OR3)

> An(z) + Ap(vg, v — ) + Ap(v1 + 2,00 — ).

2 | e ) + ‘

FIGURE 30. Schematic for the proof of (82.1]).

O

Theorem 8.2.2 (Basic Estimate). [I7, Theorem 4.2.] Suppose that in a minimal
enclosure of volumes vi and vy in R™, Ry has a connected component with volume
x> 0. Then

2ATL Y n— n —
—AS?DUQ)‘ R R CE T Rl

Proof. By decomposition lemma (821])

(*) 2An(vla U?) Z An(l‘) + An(vla Vg — [E) + An(vl + T,V — :L‘)

Vo — T

An(v1,v3 — ) :An( (vl,v2)+£(v1,0)>

V2 V2

by concavity it follows

Ay(v1 + 09 —x) = A, ( (v1,v9) + £(1}1 + Vg, 0))

V2 V2
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by concavity it follows

Vg — T

> A (v, v9) + ;An(vl + vy).
2

(%)
Going back to (%) and using the two inequalities obtained above, we get

V2

A, (z) = A, (”%%) _ (%)Hm M) = (An(UQ) (%)”") |

Then using the new equality for A, (x), we obtain

2 T T
24, (v1,v9) > 2A,(v1,v2) — U_An(vlaUQ) + U_An(vl> + U_An(vl + vy)
2 2 2

+ <An<v2) (%)”n) |

%)

(An(vl) + Ao+ ) + An(ea) (2) ”")

2 A, (v1, v9) > 2 <1 - 3) Ap (01, v9) + %An(vl) + vﬁAn(v1 o) + An(z)
2 2

Equivalently we get
[2An (’Ul, Ug)]

V2

1/n
& 24,(01,2) = An(01) + Aulv1 + ) + An(e2) ()

)
24, (v, v9)

—1/n n—1)/n n— n
ay 2ue T )t

Vv
S

O

Corollary 8.2.3. [I7, Corollary 4.3.] A minimal enclosure of two volumes in R™
separates R™ into finitely many components.

Proof. Let B = (Ry, Ry) be a minimal enclosure of volumes v; = vol (Ry) and vy =
vol (Rz) in R™. If x > 0 is the volume of the connected component of Rs, then by the
Basic Estimate (8.2.2)

% < 2An<Ul, UQ) — An(vl) — An(vl + Ug) "
x = An(1)
Hence there is an upper bound on the number of components of Ry and similarly there

is an upper bound on the number of components of R;. Thus the cluster separates R"
into finitely many components. 0

Corollary 8.2.4. Let A%(vy,v;) be the area of the standard double bubble in R™ en-
closing volumes vy and vy. Consider a minimizing double bubble of volumes vo and
1 —wy, 0 <wy < 1. Then the second region has at most k components where

Ap(v2) k™ =240 (vy,1 — v3) — An(1) — An(1 —0).

Proof. Let x > 0 be the volume of the smallest component of the second region and
Let K(vy) be defined by

K(UQ) _ (2An(U2, 1 — Ug);nzéj;()l) — An(l — UQ)) ,
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then A, (v9) K (v2)V/" = 2A%(vy,1 — v3) — Ap(1) — An(1 — v) and the Basic Estimate

(BZ2) implies that
2An(1)2,1 —Ug) —An(l) —An(l —’UQ) " Vo
> >
e = ( ) s

is an upper bound on the number of the components of Rs. O

T

The table showing the bounds on the number of components in a minimizing double
bubble in various dimensions will be used in the sketch of the proof of the double
bubble conjecture in R3.

R? R3 R* R® R"
Bounds on the number of components 1 1 1 2 3
in larger or equal region
Bound on the number of components 1 2 4 6 27
in smaller region
TABLE 1. [22, Bounds On The Number Of Components]

Corollary 8.2.5. [17, Corollary 4.4.] In any least area enclosure of two equal or almost
equal volumes in R3, each R;, i =0,1,2 is connected.

Proof. Let B = (Ry, Ry) be a least area enclosure of two unit volumes in R®. By
theorem (BI.I0) we know that the exterior, Ry, of B is connected. Assume that Ry is
not connected, then we can find a connected component of Ry with volume 0 < z < 1/2.
The Basic Estimate (82.2) then gives

2A3(1,1)

As(1)

By calculating the surface area of the standard double bubble enclosing two unit vol-
umes in R?® we can conclude that

245(1,1) 3
EICEE

> a7V 41+ V4.

and then

a3 <3V —1— V4,

which is false for x = 1/2 and for any x smaller that 1/2. So in the case of equal
volumes each bubble must be connected.

Since the least area function and all the calculations performed are continuous we can
claim that each bubble is connected in the case when the volumes are very close to
each other. 0

Now we we give two examples of a possible area minimizing double bubble in R3
implied by the Structure theorem. Figure (3I) is a surface of revolution consisting
of three components and figure ([B2)) is a surface of revolution consisting of five com-
ponents. The trunk of the tree is a topological sphere which is attached to annular

bands.
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L

FiGUuRE 31. B is a surface of revolution about line L consisting of a
topological sphere with a single tree of annular bands attached.

L

FIGURE 32. B is a surface of revolution about line L.

8.3. The Structure Theorem.

Theorem 8.3.1 (Structure Theorem). [17, Theorem 5.1.] Any minimal double bubble
in R™ that is not the standard double bubble is a surface of revolution about some line,
and consists of a topological sphere with a tree of annular bands attached. The two
caps are pieces of spheres, and the root of the tree has just one branch. The surfaces
are all constant mean curvature surfaces of revolution, meeting in threes at 120°.

Sketch Of Proof. Any minimal double bubble in R™, n > 2 is a hypersurface of revo-
lution about some line. The case n = 2 follows from [14], where the unique minimizer
is the standard double bubble.

One can adapt the planar regularity theory of Frank Morgan in [20] to show that the
generating curves must meet in threes at 120° and they must intersect the symmetry
line perpendicularly. The bubble must be connected, otherwise moving components
could create an asymmetric minimizer. By comparison with spheres centered on the
axis and vertical hyperplanes, pieces of surface meeting the axis must be such spheres
or hyperplanes so that minimization property is satisfied.

The number of surfaces intersecting the axis must be either two or three. If it were
zero then an argument given by Foisy in [I3] shows that the surface area of the bubble
can be decreased in a volume preserving manner. If it were one, then the cluster can
not separate any region. If the number is three then the bubble must be standard.
Now assume that B is not standard and intersects the axis more than twice. Since
B is connected and has no empty chamber, some surface Sy of B must meet the axis
with Ry and Ry on either side. The surfaces S; and S, must be spherical because of
the minimization property of the sphere. Since B is nonstandard we may assume that
S1 meets some hypersurface other than Sy, Sy, or S;. We can then roll B — Sy, as in
figure ([B3]) around the sphere containing S; until they first touch in fours. Since the
rolling process does not affect the minimization property we get an illegal singularity
contradicting [27]. Therefore, every nonstandard minimal double bubble must meet
the axis exactly twice and the standard double bubble is the only minimal bubble
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cluster meeting the axis three times. The same rolling argument can be applied to
show that the root of the tree has one branch. ([l

Si

L

F1GURE 33. Since B is nonstandard S; or S, must meet some hypers-
uface other than Sy, Sp, and S;. We can then roll B — S; around the
sphere containing it until they first touch, creating an illegal singularity.

8.4. The Double Bubble Conjecture In R3. Hutchings, Morgan, Ritoré, and Ros
have jointly showed in [I8] that the standard double bubble is the unique double bubble
enclosing and separating two volumes in R?® with the least surface area. Before the
proof of the conjecture, Hutchings has shown in [I7] that any minimal double bubble
in R3 is either a standard double bubble or a surface of revolution about some line
consisting of a topological sphere with a single tree of annular bands attached.

Our objective is to show that a non standard double bubble in R? can not be area
minimizing and hence by the structure theorem the standard double bubble is the
unique minimizing double bubble enclosing and separating two quantities of volume.
In order to accomplish our objective we will list several theorems appearing in [18] and
show how these theorems are used to prove the conjecture.

Now we give the two forms of the standard double bubble in R3. Both bubbles
are a hypersurface of revolution about some line as shown in [I7]. Figure (34) is a
standard double bubble such that both bubbles have the same volume and figure (35))
is a standard double bubble such that the bubbles have different volumes.

B

By By

~
)
FIGURE 34. B is a surface or revolution about L, both bubbles have the
same volume and the separating surface is planar.
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<

FI1GURE 35. B is a surface of revolution about L, bubbles have differ-
ent volumes and the mean curvature of the separating surface is the
difference of the mean curvatures of outer caps.

L

Consider a minimizing double bubble of revolution about the z-axis L in R" (n > 3),
with cross-section I' consisting of circular arcs 'y meeting the axis, and other arcs I';
meeting in threes, wit interiors I';. Define a map

f:T'—L—-LU{oc0}
p  —L(p)NLif L(p) meets L

oo otherwise.

Proposition 8.4.1. [I8, Proposition 5.2.] Consider a minimizing double bubble of
revolution about the x-axis L in R™ (n > 3). Suppose that there is a minimal set of
points {p1,...,pr} inJI; withax = f(p1) = --- = f(pr) which separates T'. Then every
component of the reqular set which contains some p;, i € {1,...,k} is part of a sphere
centered at x (if x € L or part of a hyperplane othogonal to L (in the case © = oc.

Corollary 8.4.2. [I8, Corollary 5.3.] There is no nonstandard minimizing double
bubble in R™ in which both regions and the exterior are connected.

I

Lo Lo

FIGURE 36. As corollary (84.2) shows, there is no nonstandard min-
imizing double bubble of revolution with connected bubbles and con-
nected exterior.

Proposition 8.4.3. [I8, Proposition 5.8.] There is no minimizing double bubble in R™
in which the region of smaller or equal pressure is connected, the other region has two
components, and the exterior is connected.

Lemma 8.4.4. [I8 Lemma 6.4.] In a minimizing double bubble in R™ enclosing two
unequal volumes, the smaller region has larger pressure.
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Theorem 8.4.5. [18, Theorem 7.1.] The standard double bubble in R3 is the unique
area minimizing double bubble for prescribed volumes.

Proof. Consider a minimizing double bubble of volumes v and 1 — v, then the first
region has at most & components where the value of k is given by (8.2.4))

. {2Ag(u, 1—v) — As(1) — As(v) }3 |
As(v)
For n = 3 the table ([Il) gives the bounds as
e bound on the number of components in larger or equal region 1

e bound on the number of components in smaller region 2.

So either both regions are connected or one of larger volume and smaller pressure is
connected and the other of smaller volume and larger pressure has two components.
If both regions are connected then by (8.4.2) the area minimizing double bubble
should be standard. On the other hand, using the lemma (84.4) and the table () we
can conclude that the larger region with smaller pressure is connected and the smaller
region with larger pressure has two components, but in this case the proposition (8.4.3])
asserts that the double bubble can not be a minimizing double bubble. Thus any
minimizing double bubble should be standard. U

FIGURE 37. As aresult of theorem (8.4.5]) we can conclude that a double
bubble with three components can not be minimizing.
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8.5. Survey Of Double Bubble Problems.

e F'. Morgan and W. Wichiramala have shown jointly in [21] that the standard
double bubble is the unique double bubble satisfying the critical and stable
points of the perimeter functional.

e Ben W. Reichardt has proven in [25] the conclusive double bubble conjecture
which asserts that the standard double bubble is the unique area minimizing
double bubble in R™ enclosing and separating any two volumes in R".

e J. Cornelli, N. Hoffman, P. Holt, G. Lee, N. Leger, S. Moseley, and E. Schoenfeld
have proven jointly in [6] the double bubble conjecture in S* and H? in the
following cases:

(1) in S, when each enclosed volume and the complement occupy at least 10%
of the volume of S?;
(2) in H3, when the smaller volume is at least 85% that of the larger.

e J. Cornelli, P. Holt, G. Lee, N. Leger, E. Schoenfeld, and B. Steinhurst have
shown in [7] that the standard double bubble is the unique perimeter minimiz-
ing double bubble on the two-torus.

e M.C. Alvarez, J. Cornelli, G. Walsh, and S. Beheshti have shown jointly in [4]
that the only area minimizing double bubble enclosing two small volumes in 3-
or 4-manifold is the standard double bubble.
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