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ABSTRACT 
 

This thesis computationally examines the flow characteristics of a non-reacting swirling 

bluff-body turbulent flow by the velocity-turbulent frequency PDF method to show the 

performance of the PDF method for such flows. This is the first step in performing full 

PDF computations of the swirling combustors and lays foundation for future work in 

which reacting case will be studied. In PDF method, the transport equation for mass-

weighted joint PDF is directly derived from the Navier-Stokes equations and the unclosed 

terms are modeled through construction of stochastic differential equations (SDEs). The 

closure is usually guided by existent Reynolds stress models such that the joint PDF 

model is equivalent to the corresponding Reynolds stress model at the second moment 

level. The modeled PDF evolution equation is solved using a finite-volume/particle-based 

Monte Carlo method. The statistical stationarity of simulations is demonstrated and the 

computational results are compared with the experimental data. It is found that there is a 

reasonably good agreement between the computational and experimental results 

especially for the axial mean velocity and Reynolds stresses. However the prediction of 

the tangential mean velocity component is found to be poor indicating that the current 

hybrid algorithm needs further improvements. 
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OZET 
 

Bu çalışmada, bir küt cismin gerisindeki reaksiyon içermeyen döngülü ve türbülanslı 

akımın olasılık yoğunluk fonksiyonu (OYF) yöntemiyle simülasyonu yapılmış ve OYF 

yönteminin bu tür karmaşık akışlar için performansı araştırılmıştır. Bu çalışma döngülü 

yanma odalarının OYF yöntemi ile simülasyonunun yapılması amacıyla araştırma 

programının ilk adımıdır ve ilerde yapılacak çalışmalara temel teşkil etmektedir. OYF 

yönteminde, bileşik OYF evolüsyon denklemi doğrudan Navier-Stokes denklemlerinden 

elde edilmekte ve açık kalan terimler stokastik diferansiyel denklemler vasıtası ile 

modellenmektedir. Bu işlemde mevcut Reynolds stres modelleri yol gösterici olmakta ve 

modellenmiş OYF yönteminin ikincil moment seviyesinde Reynolds stres modelleriyle 

eşdeğer olması hedeflenmektedir. Modellenmiş OYF evolüsyon denklemi tutarlı sonlu-

hacimler/partikül-tabanlı Monte Carlo yöntemiyle çözülmüştür. İlk olarak 

simülasyonların istatistiksel olarak kararlı duruma ulaştığı gösterilmiş ve simülasyon 

sonuçları deneysel sonuçlarla karşılaştırılmıştır.  Sayısal sonuçların özellikle eksenel ve 

radyal yöndeki ortalama hız bileşenleri ve Reynolds stresler için deneysel sonuçlarla 

uyumlu olduğu gözlenmiş ama döngü yönündeki sayısal sonuçların yeteri kadar iyi 

olmadığı sonucuna ulaşılmıştır.  
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Chapter 1 

 

INTRODUCTION 
 

 

Both non-reacting and reacting swirling turbulent flows are ubiquitous in a wide range of 

engineering applications and industries such as internal combustion engines, gas turbines, 

burners, chemical processing plants, rotary kilns and spray dryers [2]. Due to their 

enhanced mixing characteristics, improved flame stability and ease of combustion control 

characteristics and promising performance on ignition and flame stabilization, swirl 

combustors have been widely used in various industrial combustors [5]. One of the 

leading automotive companies, Ford Motor Company, has been using newly developed 

swirling fuel injectors that is capable of taking advantage of swirl motion of air/fuel 

mixture throughout the entire combustion chamber, thereby creating a more efficient 

charge burn [20]. Thus, the interaction between swirl flow and combustion has been an 

attractive theme of investigation among a number of combustion researchers [1, 33, 19] 

for a long time. However, the fluid dynamics underlying swirl combustion is not fully 

understood limiting the choice of means available to control flame behavior in swirl 

combustion. The reason is that such flows often exhibit hydrodynamic instabilities, 

vortex breakdowns and re-circulating zones, which are difficult to resolve both 

experimentally and computationally. In spite of these difficulties, the enhanced mixing 

and stabilization of the flame caused by the swirl are desirable features [33].  

Several experimental attempts have been conducted to investigate the effects of 

swirl on the flow and flame dynamics in combustion systems. Tangirala et al. [35] 

studied the influence of swirl and heat release on the flow structures and flame properties 
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in a non-premixed swirl burner. Their results showed that mixing and flame stability can 

be improved by increasing the swirl number up to approximate unity beyond which 

further increase in swirl actually reduces the turbulence level and flame stability. Broda et 

al. [3] and Seo [30] performed an experimental study of combustion dynamics in a lean-

premixed swirl stabilized combustor. According to their findings, an increase in swirl 

number tends to decrease the instability amplitude. Presser et al. [32] studied the effects 

of swirl on droplet transport process in swirling spray flames. They revealed the complex 

spray flame structure and showed that swirl greatly modifies the flow field, droplet 

distribution and number density. They found that the larger droplets travel downstream 

relatively unperturbed but the smaller droplets are entrained by the circulating 

aerodynamic pattern. In addition, instabilities result in clustering of droplets in further 

downstream. Masri et al. [19] examined the compositional structure of the swirl-

stabilized turbulent non-premixed flames using Raman-Rayleigh-LIF technique. They 

found that increasing the swirl number enhances the stability of the flames but increases 

the unburnt fuel samples even when it is far from the global blow-off limit. They also 

confirmed that swirl enhances the mixing. Stein and Kempf [31] performed LES 

computations of the Sydney swirl flames and examined the flow and mixing 

characteristics of this class of flames. Kempf et al.[15] also performed LES simulations 

of the same flames and successfully resolved the recirculation zone and vortex 

breakdown. They found that the computational results are in good agreement with the 

experimental data for the non-reacting cases but results were less satisfactory for the 

reacting cases. Kulsheimer and Buchner [16] investigated the combustion dynamics of 

swirling flames experimentally.  

However, in the most of these studies, the flow is confined rendering the problem 

of the computing such flows extremely difficult. Confinement and sudden expansion are 

known to exacerbate jet processing and acoustic instabilities. The upstream flow field 
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close to a swirling inlet, including the vortex breakdown region can also become 

significantly influenced by downstream conditions at the exit plane for a confined 

swirling flow [31, 18, 19]. This then requires that more stringent specification of (down 

stream) boundary conditions be necessary. A simplification is, therefore, needed to make 

the problem tractable and to allow for real progress to be made in the numerical 

simulation of such flows. To this end, Masri et al. [1] investigated the flow structure of 

simple, well defined, both reacting and non-reactive swirling jets using Sydney Swirl 

Burner. In this work, they have focused on unconfined swirling flows of air surrounding a 

bluff body having a central jet of fuel. Only one co-flowing primary annular air stream is 

swirled.  In this study, velocity field measurements have been presented for a range of 

conditions and swirl numbers providing a comprehensive understanding of swirling jets 

and flames.  Since Sydney swirl burner has provided an improved understanding of swirl 

flows and relatively simple flow structure and well defined boundary conditions, a non-

reacting swirling test case labeled as N16S159 is selected here as test case. The goal is to 

test the performance of the PDF method for capturing the flow field of such a complex 

turbulent flow. This is the first step in developing a PDF method for simulation of 

complex swirl burners and lays foundations for future study. 

The Sydney swirl flame series have been investigated computationally mainly 

using Large Eddy Simulation (LES) [31, 15, 32, and 17]. Stein and Kempf [31] have 

studied some specific reacting and non-reacting cases using LES method to predict the 

velocity fields and observe the phenomena like vortex breakdown observed 

experimentally by Masri et al. [5]. Stein et al. [32] have also performed LES 

computations of the same flame series and primarily discussed the numerical issues 

related to the LES approach. Malalasekara et al. [17] have simulated the non-reacting 

swirling bluff-body flows using again an LES technique. They confirmed that the 

combination of lower swirl number and higher axial velocity of the primary annulus 
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results in the vortex breakdown as observed experimentally by Masri et al. [1]. However, 

the performance of the PDF approach has been not investigated for this class of burners. 

Unlike other computational studies on swirling flow in literature explained briefly 

above, this thesis examines the flow field of a selected non-premixed case of Sydney 

Swirl burner series by Probability Density Function (PDF) method. In comparison to the 

traditional turbulence models, PDF method has been shown to be a powerful tool for 

modeling of complex reactive turbulent flows owing to its distinct advantages of being 

able to treat the important processes of convection and non-linear chemical reactions 

without any assumptions or approximations. These unique features allow the joint PDF 

method coupled with a detailed chemistry mechanism to be able to model the challenging 

processes of local extinction and re-ignition, i.e., the key processes that critically 

influence the stability of turbulent flames, quality of combustion and air pollution [34, 

37]. In PDF methods, the closure is achieved through a modeled transport equation for a 

one-point, one-time PDF of selected flow properties. The effects of the mean pressure 

gradient and the body forces are presented in closed form and only fluctuating pressure 

gradient and molecular transport terms need to be modeled. The unclosed terms are 

closed through construction of stochastic differential equations that represent the same 

PDF as the turbulent flows [25, 28, 12]. In order to model the evolution of fluid particles 

in velocity-sample-space, various Langevin models have been developed. These velocity 

models are usually constructed such that the resulting PDF model is equivalent to an 

existing Reynolds stress model at the level of second moment closure. Although there are 

more advanced and potentially much better velocity models, the simplest possible 

Langevin model, i.e., the Simplified Langevin model (SLM) has been widely used mainly 

due to the lack of a reliable and efficient numerical solution algorithm that can be used to 

evaluate and improve performance of the velocity models in predicting properties of 

complex reacting turbulent flows of practical importance. The SLM is equivalent to the 
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Rotta’s model at the second moment closure level and is also employed here as velocity 

model. In order to solve the numerical difficulties mentioned above and make the PDF 

methodology a feasible design tool in practical applications, the consistent hybrid finite-

volume (FV)/particle-based Monte Carlo method [13, 9, 22] have been recently 

developed. It has been demonstrated that the hybrid method is computationally more 

efficient then the best alternative approaches by as much as a factor of 50 or more in 

terms of CPU time. The main advantage of the hybrid method comes from the fact that it 

combines best features of the FV and particle methods and avoids their deficiencies when 

they are used alone. It has been shown that it virtually eliminates the bias error and 

significantly reduces the statistically noise in mean fields [2, 29, 10]. In addition, the 

hybrid method can be easily coupled with existing flow solvers including the commercial 

CFD packages. In the hybrid method, a finite-volume solver is used to solve the mean 

mass, momentum and energy conservation equations while a particle-based Monte-Carlo 

algorithm is employed to solve the transport equation of the joint PDF of the fluctuating 

velocity, turbulent frequency and compositions. The method is completely consistent at 

the level of governing equations and the full consistency at the numerical solution level is 

achieved through correction algorithms. A local time stepping algorithm has been used in 

order to further improve the performance of the hybrid method [23]. The hybrid 

algorithm has been recently improved in terms of robustness by replacing the density 

based finite volume solver used Muradoglu et al.[13, 22] with a pressure-based SIMPLE 

type FV solver [24]. 

In the present study, the new hybrid algorithm has been used to study non-

reacting swirling bluff-body flow in order to show the performance of the PDF approach 

to simulate the flow field of such as complicated and computationally challenging test 

case. As mentioned before, the main goal here is to lay the foundation for a future study 

in which the reacting versions of this flow will be studied using the PDF approach. Flow 
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is assumed to be statistically axisymmetric with non-zero tangential velocity component. 

In addition to the axisymmetric momentum equations in radial and axial directions, the 

tangential momentum equation has been also solved for this purpose. Flow is assumed to 

be incompressible and isothermal so that density remains constant. The method is applied 

to the swirling non-reacting bluff-body flow studied experimentally by Masri et al [1] and 

the results are compared with the experimental data. The flow is statistically stationary so 

that it is first demonstrated that the computational results reach as statistically stationary 

state. Then the grid convergence is examined and finally the computational results are 

compared with the experimental data.  

The thesis is organized into four main parts. In the next chapter, the PDF method 

is briefly reviewed and the model equations are described. The numerical solution 

algorithm is discussed in Chapter 3. In this chapter, the hybrid algorithm is briefly 

reviewed and the present version is described in details. In Chapter 4, the Sydney swirl 

burner experiment conducted by Masri is first explained in details. Then some details on 

computational domain used in this thesis and grid generation are described. Finally, the 

results obtained by the current hybrid algorithm are presented and compared with the 

experimental data. At the end of the chapter, limitations and some numerical difficulties 

of the hybrid algorithm are discussed in details in terms of the stability and accuracy of 

the algorithm and future work is explained briefly. Some conclusions are presented in 

Chapter 5. 
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Chapter 2 

 

JOINT PDF MODELING OF TURBULENT FLOW 
 

 

2.1. Introduction 
The joint PDF method is briefly reviewed and the model equations are described in this 

chapter. Although the flow studied in this thesis is non-reacting, the method is described 

for the reacting flows since the ultimate goal is to simulate the reacting turbulent flows 

and the PDF method really has advantages for the reacting cases. The joint probability 

density function (PDF) method has proven to be a successful approach for modeling 

reacting turbulent flows [25]. In PDF methods, turbulence closure is achieved through a 

modeled transport equation for the one-point, one-time PDF of selected flow properties. 

In this approach the convection and non-linear chemical reaction are represented exactly 

without modeling assumptions—a capability not possible by any other approaches. In 

addition, body forces and the mean pressure gradient also appear in closed form but the 

fluctuating pressure gradient and molecular transport terms need to be modeled. In 

particular, the exact treatment of the non-linear chemical reactions makes the PDF 

method very attractive for computations of turbulent reacting flows. It has been shown 

that the PDF approach is very successful to correctly resolve the important processes of 

local extinction and re-ignition [34, 37], which are primarily responsible for poor 

combustion efficiency and air pollution. 
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2.2 Joint PDF Formulation  
The one-point, one-time mass-weighted joint PDF of velocity and compositions 

 at location  and time t is defined as 

   (2.1) 

where  is the density,  and ψ   are the sample space 

variables for velocity  and the compositions φ , respectively. The transport equation for 

 can be derived from the Navier-Stokes equations and species mass 

conservation equations using the standard techniques [25] and is given by 

       

 (2.2) 

where brackets with vertical bar  stands for the conditional expectation. Summation 

is implied by repeating indices. As can be seen in Eq. (2.2),  evolves in  

dimensional space for a three-dimensional unsteady flow, where  is the number of 

species. All terms on the left-hand side of Eq. (2.2) are in closed form and are treated 

exactly but the terms on the right hand side are not closed and need to be modeled. The 

unclosed terms represent the transport in the velocity space due to fluctuating pressure 

gradient , the transport by the molecular viscous stresses  and transport in the 

composition space by the molecular diffusion  (of the scalar  in direction ). The 
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unclosed terms are modeled through construction of stochastic differential equations as 

discussed below. 

2.2.1 Velocity Model 
Viscous dissipation and fluctuating pressure gradient are modeled through a velocity 

model and the Langevin models have been widely used in the PDF methods for this 

purpose [25, 27]. The most general form of the Langevin model can be written as [8] 

   (2.3) 

where  is the pressure, 

      (2.4) 

is the conditional Favre averaged turbulence frequency and 

     (2.5) 

is the turbulent kinetic energy. Note that the Favre averaging is equivalent to the 

Reynolds averaging for inert flows. The conditioning in Eq. 2.4 excludes the particles 

with turbulent frequency* less than mean turbulent frequency, that is, , in 

evaluating the conditional mean turbulent frequency  to approximate the assumption 

that the rate of turbulent processes in the intermittent regions is represented by the 

turbulent particles better than the average of turbulent and non-turbulent particles [36]. 

The fluctuating velocity is defined as  where  is the Favre averaged mean 

velocity. Diffusion in velocity space is represented as a three-dimensional Wiener process 
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W(t), where 1  is normally distributed with  and 

 In Eq. 2.3, the second order tensor  is usually specified such 

that the corresponding PDF model becomes equivalent to a Reynolds stress model at the 

second moment closure level [26, 27] and it can be written in the most general form as 

      (2.6) 

where the fourth-order tensor H is 

 

    (2.7) 

In Eq. 2.6, the normalized anisotropy tensor is defined as  

         (2.8) 

The terms in  are the most general possible involving the Reynolds stress anisotropy 

 alone, while the term H is linear both in the mean velocity gradients and in the 

anisotropy [27]. The model coefficients are selected based on the corresponding 

Reynolds stress model at the second moment closure level as discussed by Pope [26, 27]. 

The simplified Langevin model (SLM) is widely used as a velocity model in PDF 

                                                        

1 See Eq. 2.10 for the details of turbulent frequency. 

 



Chapter 2: Joint PDF Modeling of Turbulent Non‐Reacting Flow  11 

  11 

simulations and it is also used in the present study. In this model the coefficient  is 

specified as 

          (2.9) 

The other coefficients for the SLM velocity model are summarized in Table 2.1 and 2.2. 

Note that the SLM model is equivalent to the Rotta’s model [29] at the second moment 

closure level. The generalized Langevin models are potentially better than the SLM 

model as they involve more physics but this is not usually realizes for the same reason as 

the corresponding Reynolds stress modes: The model coefficients are not optimized. This 

is a task that is deferred to be done in future studies.  

2.2.2 Turbulent Frequency Model 

Turbulent frequency model provides a turbulence time scale needed to close the 

equations for the velocity and mixing models. The stochastic model for turbulent 

frequency is given by [36] 

 (2.10) 

where W is an independent Wiener process, and the source term  is defined as  

           (2.11) 

where  are the model constants specified in Table 2.1 and  

 is the turbulent production rate. Note that the Reynolds averaging  

denoted by  must be replaced with the Favre averaging in the definition of the 

turbulent production rate when a reacting flow case is considered.  
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Constant Value Used in 

 2.1 SLM 

 0.6893 Definition of  

 0.65 Turbulence frequency model 

 0.9 Turbulence frequency model 

 1.0 Turbulence frequency model 

 1.0 Turbulence frequency model 

 2.0 IEM mixing model 

 

Table 2.1: Model constants. 

Coefficients        

SLM  0 0 0 0 0 0 

 

Table 2.2: The model constants for the SLM model. 

2.2.3 Chemistry and Mixing Models 
Although the case studied here is non-reacting so that there is no need for the chemistry 

and mixing model, they are described here briefly for completeness. A simple flamelet 

model is usually used in order to facilitate extensive computational simulations. In this 

model, the thermochemical state is characterized solely by the mixture fraction defined as  
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       (2.12) 

where the subscripts 1 and 2 denote the fuel and oxidizers, respectively, and  is the 

mass fraction of the element . Mixing models are needed to close the molecular 

diffusion terms in Eq. (2.2). There are several mixing models available but the simplest 

one is probably the interaction by exchange with the mean (IEM) model [6]. In the IEM 

model, the compositions evolve by 

    (2.13) 

where  is the model constant specified in Table 2.1. Note that  when a simple 

flamelet model is used. Note that there must be a source term on the right hand side of 

Eq. 2.13 when a detailed chemistry model is used to account for the species formation or 

destruction due to chemical reactions. The chemical source term is usually highly 

nonlinear and causes major difficulty in conventional Reynolds averaged models while it 

appears to be in closed form in the PDF method. Note that LES method faces with the 

same difficulty about the nonlinear chemical reaction terms as the RANS models since 

chemical reactions occur at small scales which need to be modeled in LES. Therefore 

arbitrarily nonlinear chemical reactions are handled by the PDF method naturally without 

requiring any modeling assumptions. In fact, this unique feature enables the PDF method 

to correctly model the turbulence chemistry interactions. In particular, Xu and Pope [37] 

showed the local extinction and reignition processes are resolved correctly by the PDF 

method. 

2.2.4 Modeled Joint PDF Evolution Equation 
The modeled mass-weighted JPDF of velocity, turbulent frequency, and composition is 

defined as 
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         (2.14) 

The transport equation for  is derived from Eq. 2.3, 2.10 and 2.13 and the 

advection equation  using standard techniques as discussed Pope [25] and is 

given by 

 

 

   (2.15) 

As can be seen in Eq. (2.15),  evolves in a high dimensional space, e.g., for a 3D flow it 

evolves in  dimensional space, where  is the number of compositions. 

Therefore it is not feasible to solve this equation using conventional numerical methods 

such as finite-difference or finite-volume techniques since the computational cost 

increases exponentially with the dimension of the equation in these methods. The only 

remaining alternative is the Monte Carlo method in which the computational cost 

increases only linearly with the dimensions except for the special dimensions and time. 

Although there exist Eulerian implementations of the Monte Carlo method for the PDF 

equations, the preferred solution methods is the Lagrangian particle method [27]. 

2.3 Equations Solved by the Hybrid Method 
The modeled PDF evolution equation is solved using the consistent hybrid FV/particle-

based Monte Carlo method [22, 32]. All the equations solved by the hybrid method are 
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derived directly from modeled JPDF equation i.e., Eq. 2.15, and are thus fully consistent 

at the level of equations. The equations solved by the FV method and particle methods 

are briefly described here. 

2.3.1 Mean Flow Equations Solved by the FV Method 
In hybrid method FV solver is used to solve continuity and momentum equations. The 

mean mass conservation equation is obtained by integrating Eq. (2.15) over the entire 

sample space and is given by 

    (2.16) 

Similarly the mean momentum equations are obtained from Eq. (2.15) as the first 

moments of the velocity components and are given by 

                 (2.17) 

Note that the Reynolds stress terms appearing in Eq. (2.17) are provided by the particle 

method. Although the density is constant in the present non-reacting case, the mean 

density field is also extracted from the particles for the reacting cases and passed to the 

FV code as will be discussed in the next Chapter.  

2.3.2 Equations Solved by the Particle Algorithm 

A particle based Monte Carlo method is used to solve the joint PDF transport equation of 

fluctuating velocity, turbulent frequency and compositions. The equations solved by the 

particle method are again derived directly from the modeled joint PDF evolution equation 

in the same way as described by Muradoglu et al. [22] and summarized here. A fluid 

particle moves with the local flow velocity, i.e., 
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     (2.18) 

The fluctuating velocity evolves by 

 (2.19) 

Finally the turbulent frequency and the compositions evolve by Eq. 2.10 and 2.13, 

respectively.   

 The mean velocity needed in the particle evolution equations are computed by the 

FV algorithm and passed to the particle code. The mean velocity field is then interpolated 

onto particle using the interpolation scheme developed by Jenny et al. [13]. The particle 

fields used in the equations solved by particle and FV algorithms are extracted from the 

particles using cloud-in-cell method [7]. It is emphasized here that the bias error is mainly 

caused by the statistical fluctuations in the mean fields used in particle evolution 

equations [7]. However, it has been demonstrated that the bias error is virtually 

eliminated by the hybrid algorithms [13, 22] due to the fact that the mean velocity field is 

computed by the FV method and it is therefore smooth. 
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Chapter 3 

 

NUMERICAL METHOD 
 

 

The PDF model equations have been described in the previous chapter. In this chapter, 

the hybrid FV/particle method is presented. Firstly the FV and particle algorithms are 

described separately and then the coupled FV/particle method is discussed. Since the 

present hybrid method is essentially the same as that of Muradoglu et al. [22], the general 

methodology is briefly discussed for completeness and emphasis is placed on the FV 

solver and on the associated coupling issues. Finally the new hybrid algorithm is applied 

to the non-reacting and reacting swirling bluff-body flows in order to demonstrate its 

numerical accuracy and robustness.  

3.1 Finite Volume Scheme 
The FV algorithm is essentially based on the cell-centered finite-volume scheme 

implemented in caffa code [24]. The code has been downloaded from the Internet and 

adopted to solve the mean flow equations, i.e., Eqs. (2.16) and (2.17). The method is 

based on the SIMPLE algorithm [4] and is second order accurate in space. Although the 

FV solver has both the steady and unsteady versions, only the steady version is used in 

the present study. Note that the method is also second order accurate in time when it is 
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used in the time-accurate mode. The axisymmetric equations and the FV algorithm is 

described below. 

3.1.1 Axi-Symmetric Equations  
Axi-symmetric flows are three-dimensional with respect to Cartesian coordinates, i.e., the 

velocity components are functions of all three coordinates, but they are only two-

dimensional in a cylindrical coordinate system (all derivatives with respect to the 

circumferential direction are zero and all three velocity components are functions of only 

the axial and radial coordinates).  

Assuming a statistically axisymmetric flows, the Favre averaged conservation 

equations for mass and momentum are given in a cylindrical coordinate system as 

 

         



Chapter 3: Numerical Method    19 

  19 

where r and z are the coordinates in the radial and axial directions, respectively. The 

quantities with subscripts r and z denote the obvious quantities.  

3.1.2 Finite Volume Method  
The Favre-averaged flow equations are solved using a FV method. The Reynolds stress 

terms that appear in the mean momentum equations are supplied by the particle method. 

The present FV scheme is essentially based on the SIMPLE algorithm and the code is 

downloaded from the internet and adopted to the hybrid algorithm as discussed by Eren 

[10]. The basic idea is explained here and details can be found in Peric [24]. The mean 

mass conservation and the Favre-averaged Navier-Stokes equations can be integrated 

over the control volume  as sketched in Fig. 3.1 and using the Stokes' theorem, the 

mean flow equations can be expressed in the integral form. The surface integrals are 

splitted into four CV face integrals. Approximation of the convective and diffusive fluxes 

and the source terms are considered on CV face ’e’ in the sketch in Fig. 3.1. The other 

faces are treated in the same way, and the results can be obtained by index substitution. 

This FV method is equivalent to the second order central differences on a regular 

Cartesian grid. Fluxes are approximated such that the quantities at a CV face center 

represent the mean 
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Figure 3.1: A collocated FV grid. Mean fields are stored in the center of the cells. E, 
W, S, N denotes the centers of the Eastern, Western, Southern, and Northern cells, 
respectively. Cell faces are denoted by e, w, s, n for Eastern, Western, Southern and 
Northern cell faces, respectively. Length of the eastern cell face is denoted as   

values over the face. On the  outer iteration, all nonlinear terms are approximated by a 

product of an ‘old’ (from the preceding outer iteration) and a ‘new’ value. Thus, in 

discretizing the momentum equations, the mass flux through each CV face is evaluated 

using the existing velocity field and is assumed to be known, i.e., 
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€ 

˙ m e
m = ρ ˜ U inidS

abcd
∫ ≈ ρ ˜ U i( )e

m−1
Se               (3.5) 

where  is the area of eastern face and  is the velocity component in the direction of 

normal vector. Note that, unless specified otherwise, all the quantities are written for the 

 outer iteration and the superscript m is dropped in the remainder of this section. Mass 

fluxes at the faces of the CVs are obtained by interpolation. For instance, the mass flux 

on the east CV face is calculated as: 

€ 

˙ m e =
1
2

˙ m P + ˙ m E( ).           (3.6) 

Mass fluxes from other faces can be calculated by substituting indices. The convective 

flux through ‘e’ face is: 

     (3.7) 

The CV face value of  used in the above expression can be found using simple linear 

interpolation central difference scheme (CDS), but some iterative solvers fail to converge 

when applied to algebraic equation systems derived from central difference 

approximations of convective fluxes because the matrices may not be diagonally 

dominant [24]. Thus, these equations are solved using deferred correction [24] approach 

in which the flux is expressed as: 

€ 

Fi,e
c = ˙ m e ˜ U i,e

UDS + ˙ m e ˜ U i,e
CDS − ˜ U i,e

UDS( )
m−1

,         (3.8) 

where superscript CDS and UDS denote approximation by central and upwind 

differences, respectively. The outward unit normal vector at CV face ‘e’ is I, and thus the 

turbulent fluxes are calculated as: 
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     (3.9) 

The pressure terms are approximated by: 

€ 

Qu
p = − pi .ndS

S
∫ ≈ − pESE − pPSP( )m−1           (3.10) 

The approximation to the complete momentum equation is: 

€ 

Fi
c =Qi

T +Qi
p +Qi

r,           (3.11) 

Then the total fluxes for the CV is given by 

            (3.12) 

When the approximation for the convective fluxes are substituted into Eq. (3.11), the 

following form of algebraic equation is obtained: 

             (3.13) 

The coefficients depend on the approximation used; for the UDS approximations applied 

for convective fluxes, the coefficient for the convective flux on face ‘e’ the equation is: 

€ 

AE
u = min( ˙ m e

u,0).                 (3.14) 

The corresponding coefficients for other faces can be obtained by changing the indices. 

Similarly 

       (3.15)  
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The source term  contains the pressure and Reynolds stress terms but also the portion 

of convective fluxes resulting from deferred correction: 

         (3.16) 

where 

           (3.17) 

The convective source is calculated using the velocities from the previous outer iteration 

m-1. Note that solution for the above momentum equation does not give the right velocity 

field and needs to be corrected. Therefore, the SIMPLE algorithm of Caretto et al. [4] is 

employed. 

3.1.3 SIMPLE Method 
For convenience, in this subsection axial and radial components of  will be denoted as 

u and v, respectively. The linearized momentum equations, i.e., Eq. 3.13 are solved with 

sequential solution method [24] using ‘old’ mass fluxes and the pressure from the 

previous outer iteration. This produces new velocities  and  which do not necessarily 

satisfy the continuity equation so: 

€ 

˙ m e
* + ˙ m w

* + ˙ m n
* + ˙ m s

* = Δ ˙ m P
* ,    (3.18) 

where 

€ 

Δ ˙ m P
*  is the residual. The velocity components and calculated from the 

momentum equations can be expressed as follows: 

    (3.19) 

where  is shorthanded notation for 
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              (3.20) 

Analogously, 

€ 

vn
* is expressed as: 

€ 

vn
* = ˜ v n

* −
Sn

AP
v pN − pP( )m−1,    (3.21) 

The velocities 

€ 

u* and 

€ 

v*  are corrected to enforce mass conservation through pressure 

correction. The corrected velocities 

€ 

um = u* + u' and 

€ 

vm = v* + v '  are enforced to satisfy 

linearized momentum equations by correcting the pressure, thus: 

€ 

ue
m = ˜ u e

m −
Se

AP
u pE − pP( )m,              (3.22) 

and  

€ 

vn
m = ˜ v n

m −
Sn

AP
v pN − pP( )m              (3.23) 

where 

€ 

pm = pm−1 + p' is the new pressure. The relation between the velocity and pressure 

correction is obtained by substracting Eq. (3.19) from Eq. (3.22): 

€ 

ue
' = ˜ u e

' −
Se

AP
u pE

' − pP
'( ),             (3.24) 

where 

€ 

˜ u e
' = ˜ u e

m − ˜ u e
* =

Al
uu'l

l
∑

AP

.              (3.25) 

Analogously, 
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€ 

vn
' = ˜ v n

' −
Sn

AP
v pN

' − pP
'( ).             (3.26) 

The velocities 

€ 

um  and 

€ 

vm  are substituted into the expressions for mass fluxes to enforce 

continuity equation, i.e., 

€ 

ρSu'( )e
− ρSu'( )w

+ ρSu'( ) − ρSu'( ) + Δ ˙ m P
* = 0.       (3.27) 

Finally, the above expressions for 

€ 

u' and 

€ 

v '  are substituted into the continuity equation 

leading to the pressure correction equation: 

€ 

AP
p pP

' + Al
p pl

' = −Δ ˙ m P
* −Δ ˙ m P

' ,
l
∑       (3.28) 

where the coefficients are: 

   

              (3.29) 

The term 

€ 

Δ ˙ m P
'  is analogous to 

€ 

Δ ˙ m P
* , with  and  replacing  and . Since the 

velocity corrections are not known prior to the solution of the pressure-correction 

equation, this term is neglected having the SIMPLE algorithm [24]. Other alternatives are 

the SIMPLER and the PISO [24]. After the pressure-correction equation is solved, the 

velocities and pressure are corrected. The corrected velocities satisfy the continuity 

equation to the accuracy with which the pressure-correction equation is solved. However, 

they do not satisfy the non-linear momentum equation, so another outer iteration is 
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needed. When both the continuity and momentum equations are satisfied to the desired 

accuracy, convergence is achieved. 

3.2. Particle Method 
The particle method is described in the context of the hybrid method and is essentially 

based on that of Muradoglu et al. [22]. In this approach, the fluid particles are represented 

by an ensemble of notional particles distributed in the physical space. Each particle has 

the intrinsic properties of mass , position , fluctuating velocity  and compositions 

. The particle properties are denoted by superscript * throughout the thesis unless 

specified otherwise. A non-uniform Cartesian grid is cast on the computational domain in 

order to estimate the particle fields needed in the particle evolution equations and the 

equations solved by the FV algorithm. The grid is also used to interpolate the particle and 

FV mean fields onto the particles. Note that the same grid is used in this study both for 

the particle and FV algorithms. The particle fields such as  and  are extracted 

from the particle properties using a cloud-in-cell (CIC) method [7]. The mean quantities 

needed in the particle evolution equations are interpolated from the nodal values of the 

corresponding FV or particle fields using bilinear splines. The spatial derivatives of the 

mean quantities that appear in the particle evolution equations are first evaluated at the 

nodes using second order central differences and then interpolated onto the particle 

locations.  

The particle positions evolve according to 

    (3.30) 

where  is the mean velocity interpolated from the FV field onto the particle 

location. The fluctuating velocity evolves by 
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 (3.31) 

and turbulence frequency and compositions by 

        (3.32) 

and 

     (3.33) 

respectively. The particle equations 3.30, 3.31, 3.32 and 3.33 are integrated forward in 

time using the explicit second order scheme as described by Muradoglu et al. [9]. 

3.3 Coupled FV/Particle Algorithm 
The FV and particle methods are periodically used to solve their respective equations. 

Each period is called an “outer” iteration that consists of FV and particle “inner” 

iterations. The FV and particle algorithms are coupled in a semi loosely coupled fashion 

[13], i.e., the FV code is run until it reaches a pseudo steady state while the particle code 

is run for a single time step to complete an outer iteration. The mean density and the 

Favre averaged Reynolds stresses are supplied to the FV code by the particle algorithm 

which, in turn, gets the mean velocity and pressure fields from the FV solver. Although it 

can be easily adopted to perform time accurate computations, the present implementation 

is designed to treat only the statistically stationary flows. Therefore time-averaging is 

performed to reduce statistical error both in the particle and FV fields. Following 

Muradoglu et al. [9], for a mean field , the time-averaged mean  is evaluated as 

follows 
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     (3.34) 

where  denotes the  particle time step and  is the time-averaging factor to be 

specified. The time-averaging factors for the FV fields used in the FV algorithm, for the 

particle fields used in the FV algorithm and for the particle fields used in the particle 

algorithm are denoted by respectively. Throughout this thesis, unless 

specified otherwise, the time-averaging factors are fixed at 5, 10 for  and 20 

for  in the initial phase of calculations and is increased to 500 when statistically 

steady state is approached. 

As mentioned before, although the present hybrid method is completely consistent at the 

level of governing equations, a full consistency at the numerical solution level may not be 

achieved due to accumulation of numerical error. Therefore correction algorithms are 

needed to enforce the full consistency at the numerical level. Since the density field is 

supplied to the FV algorithm by the particle code, there are only two independent 

consistency conditions in the present hybrid method given by 

            (3.35) 

and 

             (3.36) 

where  is the particle mass density [22]. The velocity and position correction algorithms 

are used to enforce the consistency conditions given by Eqs. 3.35 and 3.36, respectively. 

The correction algorithms are the same as those described by Muradoglu et al. [22].
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Chapter 4 

 

RESULTS AND DISCUSSIONS 
 

 

4.1 Introduction 
The velocity-turbulence frequency joint PDF method is applied to study the non-reacting 

swirling bluff body flow studied experimentally by Masri et al. [1]. The bluff body 

stabilized swirl combustors are widely used in industrial applications due to their 

enhanced mixing characteristics, improved flame stability and ease of combustion control 

[10]. Besides their practical significance, Sydney Swirl burner studied here provides an 

excellent but challenging test case for the numerical solution algorithms and turbulence 

models because of its simple and well defined initial and boundary conditions, and its 

ability to maintain the flame stabilization for a wide range of inlet flow conditions with a 

complex recirculation zone [1]. The swirling flow studied here is among the target flows 

selected for the assessment of performance of the turbulence and combustion models in 

TNF workshops. As mentioned before, this is the first step towards modelling of the 

swirling flames and combustors.  

4.2 Experimental Setup 
The experimental setup used by Masri et al. [1] is first described here. A schematic of the 

Sydney swirl burner is shown in Fig. 4.1 where the axisymmetric computational domain 
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is also sketched. The swirl burner is essentially an extension to the bluff-body burner 

developed by the same group. Swirl is induced aerodynamically into the primary (axial) 

air stream at a distance of 300 mm upstream of the burner exit. This occurs via tangential 

(air) swirl ports (7 mm diameter) that are inclined at 150 upwards (off the horizontal 

plane). Two diametrically opposed ports, also located on the periphery of the burner, but 

ahead of the tangential inlets, supply the axial streams of the air [1]. As can be seen in 

Fig. 4.1, a fuel jet is ejected through a 3.6 mm-diameter nozzle centred in a 50 mm-

diameter cylindrical bluff-body surrounded by a 5 mm wide annulus which supplies the 

swirling air stream. For the sake of well-defined boundary conditions, the burner is 

placed in a square wind tunnel with an exit cross section of 130 x 130 mm2. Further 

details about the setup can be found online [20] and in the original publication by Masri 

et al. [1].  

 In Sydney swirl burner, there are four main parameters that determine the flow 

behaviour and the flame characteristics. These are the bulk velocity of the fuel jet Uj, the 

bulk axial and tangential velocity in the primary air supply denoted by Uc and Wc, 

respectively, as well as the velocity of the coflow in the wind tunnel, Ue. The level of 

swirl is characterised by the geometric swirl number Sg defined by Masri et al. [1] as the 

ratio of bulk tangential to primary axial air velocities (Sg = Wc/Uc).  

 Masri et al. [1] investigated both the non-reacting and reacting swirling bluff-

body flows in various flow conditions. The non-reacting cases are important in order to 

assess the performance of the turbulence models separately from the chemistry models. In 

addition, it allows to test the performance of the numerical solution algorithm and to 

optimize the numerical parameters such as relaxation factors. Once the turbulence model 

and solution algorithm are optimized for the non-reacting case, then we can study the 

reacting cases concentration on the chemistry models and related issues. In the present 

study, one particular non-reacting case, i.e., N16S159 cases in Masri et al. [1] is selected  
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Figure 4.1: Sketch of the swirling bluff‐body flows. The diameter of the bluff‐body is 
denoted by Db. Axial and radial lengths of the computational domain are set to 15Db 
and 3Db, respectively. The boundaries of the computational domain are shown in 
red. 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as test case. The bulk axial velocity is linearly proportional to the mass flow rate of air 

through the annulus and is set to Uc = 16.3 m/s in the case of N16S159. The tangential 

component of the velocity in the annulus (swirl) is set to =25.9 m/s. The secondary 

(co-flow) air stream generated in the wind tunnel is fixed at = 20 m/s. The jet velocity 

through the central tube of diameter 3.6 mm iss set to = 66 m/s. By changing the 

relative magnitudes of the tangential and axial airflow rates, the swirl number, which is 

= 1.59 in the flow case studied in this thesis, can be varied. Table 4.1 outlines the flow 

conditions investigated in this thesis.  

Flow Case  Uc (m/s)  Wc (m/s)  Uj (m/s)  Ue (m/s)  Sg 

N16S159  16.3  25.9  66  20  1.59 

Table 4.1: Investigated flow conditions. 

In Figure 4.2, 3D geometry of the Sydney swirl burner and the helical characteristics of 

the swirling flow through the annulus as well as the coflow air stream through the wind 

tunnel and axial fuel jet are sketched to help visualizing the turbulent flow studied here. 

Note that the outer boundary is sufficiently far from the bluff-body and swirling annulus 

so that the flow is considered as unconfined in the present study. This also allows us to 

model the flow as statistically axisymmetric. 
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Figure 4.2: 3D technical drawings of the Sydney Swirl Burner from different angles. 

4.3 Computational Domain and Computational Grid  

As sketched in Fig. 4.1, a rectangular computational domain with 0.75 m (15Db) in the 

axial direction and 0.15 m (3Db) in the radial direction is selected, where Db stands for 

the diameter of the bluff-body. Inlet boundary conditions are specified at z = 0. The 

radius of the fuel jet is Rj = 0.0018 m and the radius of the bluff-body is Rb = 0.025 m. 

The outer boundary in the radial direction is located at r = 0.15 m. 
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 A tensor-product two-dimensional Cartesian grid is employed in the present 

study. The computational grid is stretched in the jet region and also in the jet/bluff-body 

and bluff-body/co-flow shears layers as the flow properties are expected to change most 

rapidly in these regions. The computational grid is also stretched in the re-circulating 

region. Figure 4.3 shows a sample (coarse) computational grid used in this study with 

= 25 and = 20, where  and  are the number of cells in axial and radial directions, 

respectively. Some properties of the computational grids used in this thesis are 

summarized in Table 4.2. Note that the same computational grid is used both in the FV 

and particle codes for convenience although it is possible to use different grid sets if 

needed. Using the same grid set has an advantage especially in interpolating the mean 

velocity field onto particle. This interpolation must be done carefully in order to 

guarantee the mass conservation at discrete level as discussed by Jenny et al. [13] and 

recently by McDermott and Pope [21].  

 

Figure 4.3: A coarse computational grid with number of grid parts in the axial and 
radial directions,  = 25 and  = 20, respectively. 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Grid  Region 1  Region 2  Region 3 

64 x 64  8  40  16 

96 x 96  12  60  24 

128 x 128  16  88  32 

160 x 160  20  108  40 

 

Table 4.2: Number of cells used in three regions in different grids. Region 1, 2 and 3 
denote jet, bluffbody and coflow regions, respectively. 

4.4. Boundary Conditions  

An important advantage of the present swirling bluff-body flow is its well-defined 

boundary and initial conditions. The geometry and the computational setup of the bluff-

body flows are sketched in Fig. 4.1. The inlet and boundary conditions are the same as 

those used by Masri et al. [1] for the non-reacting case. A fully developed turbulent pipe 

flow is assumed in the jet region and variances of velocity are interpolated from the 

experimental data. Following Jenny et al. [13] and Muradoglu et al. [22], the mean 

turbulent shear stresses are calculated as 

                                                                      (4.1) 

where  and  are axial and radial components of the fluctuating velocity, 

and  in the coflow and jet regions, respectively. Particle 

fluctuating velocity components are specified so that they have zero mean at the inlet. 

Turbulent frequency at the inlet is specified using 
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          (4.2) 

where  is the turbulent kinetic energy and  is the mean turbulent energy production 

rate defined as . A perfect slip is assumed on the bluff-body since it is 

computationally costly to resolve the thin boundary layer on the bluff-body surface. The 

inlet boundary conditions are also used as initial conditions since we are only interested 

in the statically stationary solutions so the initial conditions are not important as long as a 

statistically steady state is reached. In the co-flow region the experimental data are used 

as the inlet conditions for the mean velocity fields including tangential velocity 

component. The experimental data are available from Internet [20]. Initially, the 

tangential velocity field is set to the primary inlet coflow air velocity in the entire 

computational domain. Density is set to the air density at the standard conditions. The 

outlet boundary conditions are set at z = 0.75 m. At the outlet, pressure is set to the 

atmospheric pressure, 1 atm. Particles leaving the computational domain at the outlet are 

simply eliminated. At the centreline, symmetry boundary conditions are applied both for 

FV solver and particle method. Particles crossing the centreline are reflected back into the 

computational domain. 

4.5. Simulations  
PDF simulations are now performed for the non-reacting swirling bluff-body flow case 

labelled as N16S159 by Masri et al. [5]. The consistent hybrid method is employed to 

solve the modelled velocity-turbulence frequency PDF evolution equation. Table 4.2 

summarizes the flow conditions used in the simulations. The number of particles per cell 

is fixed at 50, which has been shown previously to be sufficient to reduce the associated 
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numerical error below 5% for this kind of flows [8]. Maximum outer iterations are set to 

15 for the FV solver and 1 for the particle algorithm. 

 As mentioned before, the present hybrid algorithm is designed to simulate the 

statistically stationary flows. Therefore, the statistical stationarity is first examined for 

N16S159 case. For this purpose, the mean axial velocity and mean turbulent kinetic 

energy are monitored at six selected locations and are plotted as a function of particle 

time step in Fig. 4.4. As can be seen in this figure, the statistically stationary state is 

reached in about 2500 particle time steps.  

 

                                      Axial Distance                      Radial Distance 

Location 1  0.6 Db  0 

Location 2  0.6 Db  Rj 

Location 3  0.6 Db  mid bluff‐body = 13.4 mm 

Location 4  1 Db  0 

Location 5  1 Db  Rj 

Location 6  1 Db  mid bluff‐body = 13.4 mm 

 

Table 4.3: Six selected locations in the downstream of the bluffbody to monitor the 
statistically steady state. Db = 50 mm is bluffbody diameter and Rj = 1.8 mm is jet 
radius. 
 

 After showing the statistical stationarity of the hybrid method, the computed mean 

fields are now compared with the experimental data. The computations are performed 
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using a 64x64 grid. Note that the issue of grid convergence will be discussed below in 

this section. The mean axial and tangential velocity contours are first compared 

qualitatively in Figs. 4.5 and 4.6, respectively. These figures indicate reasonably good 

qualitative agreement between the computed and experimental results. Then the 

experimental and computed velocity vectors are plotted in Figs. 4.71a and 4.7b, 

respectively in order to show the flow field in the recirculation region. Again a good 

qualitative agreement is observed in the velocity vector plots. Finally the statistically 

stationary streamlines are plotted in Fig. 4.8 to show the overall flow structure of the 

recirculation zone behind the bluff-body. This plot shows that the recirculation zone is 

captured by the PDF simulations. However, it shows some indications for vortex 

shedding that has not been observed experimentally. In fact, similar results were also 

reported by Jenny et al. [14] for the non-reacting and non-swirling bluff-body flow case. 

The vortex shedding increases as the grid is refined as also observed by Jenny et al. [14]. 

Now the computed results are quantitatively compared with the experimental data in 

terms of mean quantities. For this purpose, the computed mean axial velocity profiles are 

compared with the experimental data in Figs. 4.9a and 4.9b at the axial locations of z/Db 

= 0.136, 0.2, 0.5, 0.6, 0.8, 1.2, 2.0 and 2.5. These figures indicate that there is reasonably 

good agreement between the computed and experimental mean axial velocity profiles 

especially near the bluff-body. Predicting the mean tangential velocity is of critical 

importance since it represents the effects of the swirl. The computed tangential mean 

velocity profiles are plotted in Fig. 4.10 and are compared with the experimental data. As 

can be seen in this figure, the computed tangential mean velocity profiles match well with 

experimental data indicating the accuracy of resolving the effects of the swirl. As can be 

seen in Figs.9 and 10, there is generally a reasonably good agreement between the 

computational and experimental results for all mean fields. Finally, the hybrid algorithm 

is applied to swirling non-reacting bluff-body flow using different grid sizes in order to 
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examine grid convergence. For this purpose, the profiles of mean axial and tangential 

velocities computed using 64x64, 96x96, 128x128 and 160x160 grids are plotted in Figs. 

4.11(a, b) and 4.12(a, b), respectively. As can be seen in these Figures, the mean axial 

and tangential velocity fields are successfully resolved by different grid sizes. However, 

although the experimental and computational results are in a good agreement, a full grid 

convergence is not really achieved mainly due to the fact that a vortex shedding occurs on 

very fine grids as mentioned above. Note that similar vortex shedding was also observed 

in the PDF simulations performed for the non-swirling bluff-body flow [14]. 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(a) 

 
(b) 

Figure 4.4: Convergence histories of (a) the mean turbulent kinetic energy and (b) 
the mean axial velocity for non‐reacting swirling bluff‐body flow. 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(a) 

 
(b) 

Figure 4.5: Mean axial velocity contour plots. (a) Computational (b) Experimental. 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(a)  

 
(b) 

Figure 4.6: Mean tangential velocity contour plots. (a) Computational (b) 
Experimental. 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(a) 

 
(b) 

Figure 4.7: (a) Experimental and (b) computational statistically steady sate velocity 
vector filed in the recirculation zone behind the bluff‐body. 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Figure 4.8: Computed statistically steady state streamlines for the non‐reacting 
swirling bluff‐body flow. 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Figure 4.9a: Mean axial velocity profiles at the axial distances of z/Db = 0.136, z/Db = 
0.2, z/Db = 0.5 and z/Db = 0.6 from left to right and top to bottom, respectively. 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Figure 4.9b: Mean axial velocity profiles at the axial distances of z/Db = 0.8, z/Db = 
1.2, z/Db = 2 and z/Db = 2.5 from left to right and top to bottom, respectively. 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Figure 4.10a: Statistically steady mean tangential velocity profiles at the axial 
distances of z/Db = 0.136, z/Db = 0.2, z/Db = 0.5 and z/Db = 0.6 from left to right and 
top to bottom, respectively. 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Figure 4.10b: Statistically steady mean tangential velocity profiles at the axial 
distances of z/Db = 0.8, z/Db = 1.2, z/Db = 2 and z/Db = 2.5 from left to right and top 
to bottom, respectively. 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Figure 4.11a: Statistically steady mean axial velocity profiles computed using the 
grid resolutions of 64x64, 96x96, 128x128 and 160x160 at the axial distances of 
z/Db = 0.136, z/Db = 0.2, z/Db = 0.5 and z/Db = 0.6 from left to right and top to 
bottom, respectively. 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Figure 4.11b: Statistically steady mean axial velocity profiles computed using the 
grid resolutions of 64x64, 96x96, 128x128 and 160x160 at the axial distances of 
z/Db = 0.8, z/Db = 1.2, z/Db = 2.0 and z/Db = 2.5 from left to right and top to bottom, 
respectively. 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Figure 4.12a: Statistically steady mean tangential velocity profiles computed using 
the grid resolutions of 64x64, 96x96, 128x128 and 160x160 at the axial distances of 
z/Db = 0.136, z/Db = 0.2, z/Db = 0.5 and z/Db = 0.6 from left to right and top to 
bottom, respectively. 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Figure 4.12b: Statistically steady mean tangential velocity profiles computed using 
the grid resolutions of 64x64, 96x96, 128x128 and 160x160 at the axial distances of 
z/Db = 0.8, z/Db = 1.2, z/Db = 2.0 and z/Db = 2.5 from left to right and top to bottom, 
respectively. 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Chapter 5 

 

CONCLUSIONS AND COMMENTS 
 

 

PDF simulations are performed for the non-reacting swirling bluff-body flow studied 

experimentally by Masri et al. [1]. The velocity-turbulence frequency PDF model 

equations are solved a consistent finite-volume/particle-based Monte Carlo method. The 

finite-volume method is based on the SIMPLE algorithm coded by Peric. The new 

consistent hybrid algorithm has been shown to be more robust that the earlier version 

especially for the non-reacting and reacting bluff-body flow [10]. This is the first step in 

assessing the performance of the PDF approach for the challenging swirl burner 

simulations and aims to lay foundations for a future study in which reacting swirl burners 

will be simulated. 

Since the hybrid method is designed to solve the statically stationary flows, it is 

first shown that the computed results reach a statistically steady stat. For this purpose, the 

mean axial velocity and mean turbulent kinetic energy are monitored at selected six 

points in the recirculation zone. It is found that the computational results reach a statically 

stationary state in about 2500 particle time steps on a moderately fine grid, e.g., 64x64 

grid, in terms of mean fields. After that the computational results are compared with the 

experimental data qualitatively for the non-reacting swirling bluff body flow labelled as 

N16S159 by Masri et al. [1]. For this purpose, the axial velocity contours and velocity 

vector fields are compared. It is found that the present results are in good qualitative 

agreement with the experimental data. The then grid convergence is examined. For this 

purpose, the computations are repeated using successively refined grids. It is found that 

the mean fields compare reasonably well with the experimental data on all the grids but a 

full grid convergence is not achieved due to vortex shedding occurring behind the bluff-

body at the shear layer between the bluff-body, swirl and co-flow region. This behaviour 

has not been observed experimentally and it is not clear at this point whether this 

unphysical behaviour is due to numerical error or due to the turbulence model employed 
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here. It is emphasized here that similar unphysical vortex shedding behaviour has been 

also observed in PDF simulations of the non-reacting and non-swirling bluff-body flow 

studied by Jenny et al. [14]. The resolution of this problem requires further study and it is 

deferred to the future studies.  

It is found that 30 CPU hours are needed to carry out a PDF simulation for 

swirling bluff-body flow simulations on a P-IV PC computer nodes of Hattusas HPC at 

Koc University.  

 



Bibliography    55 

  55 

 

 

 

 

BIBLIOGRAPHY 
 

[1] Y. M. Al-Abdeli, and A. R. Masri. Recirculation and flowfield regimes of unconfined 

non-reacting swirling flows. Experimental Thermal and Fluid Science, 27:655-665, 2003.  

[2] S. V. Alekseenko, V. M. Dulin, Y. S. Kozorezov, and D. M. Markovich. Effect of 

axisymmetric forcing on the structure of a swirling turbulent jet. International Journal of 

Heat and Fluid Flow, 29:19699-1715, 2008.  

[3] J. C. Broda, S. Seo, R. J. Santoro, G. Shirhattikar, and V. Yang. Proc. Combust. Inst., 

27:1849-1856, 1998. 

[4] L. S. Caretto, A. D. Gosman, S. V. Patankar, and D. B. Spalding. Two calculation 

procedures for steady, three-dimensional flows with recirculation. 3rd Int Conf on 

Numerical Methods in Fluid Mechanics, 1972.  

[5] B. B. Dally, D. F. Fletcher, and A. R. Masri. Modelling of turbulent flames stabilised 

on a bluff-body. Combust. Theory Modelling, 2:193-219, 1998. 

[6] C. Dopazo. Recent developments in PDF methods, in: P.A. Libby, F.A. Williams 

(Eds.), Turbulent Reacting Flows, Academic Press, London, 1994, p. 375, 2003.  

[7] T. D. Dreeben and S. B. Pope. Nonparametric estimation of mean fields with 

application to particle methods for turbulent flows. Cornell Report FDA 92-13, 1992.  

[8] D.C. Haworth and S. B. Pope. A generalized langevin model for turbulent flows. 

Phys. Fluids, 29:387-405, 1986.  

[9] H. El-Asrag, and S. Menon. Large eddy simulations of bluff-body stabilized swirling 

non-premixed flames. Proceedings of the Combustion Institute, 31:1747-1754, 2007.  



Bibliography    56 

  56 

[10] O. Eren. M.S. Thesis, Department of Computational Sciences and Engineering, Koc 

University, 2006. 

[11] Ford Motor Company, Annular report, 2009. 

[12] A.E. German and T. Mahmud. Modelling of non-premixed swirl burner flow using a 

Reynolds-stress turbulence closure. Fuel, 84:583-594, 2005. 

[13] P. Jenny, S. B. Pope, M. Muradoglu, and D. A. Caughey. A hybrid algorithm for the 

joint pdf equation of turbulent reactive flows. J. Comp. Phys., 166:218-252, 2001.  

[14] P. Jenny, M. Muradoglu , K. Liu, S.B. Pope and D.A. Caughey . PDF simulations of 

a bluff-body stabilized flow.  J. Comp. Phys.,169:1-23, 2001. 

[15] A. Kempf, W. Malasekera, K.K.J. Ranga-Dinesh and O Stein. Large eddy 

simulations of swirling non-premixed flames with flamelet models: A comparison of 

numerical methods. Flow Turb. Combust. 81(4):523-561, 2008. 

[16] C. Kulsheimer and H. Buchner. Combustion dynamics of turbulent swirling flames. 

Combust. Flame, 131(1-2):70-84, 2002. 

[17] W. Malalalsekara, K.K.J.R. Dinesh, S.S. Ibrahim and M.P. Kirkpatrick. LES of 

isothermal swirling jets. Combust. Sci. Tech., 179(8):1481-1525, 2007. 

[18] A. R. Masri, S. B. Pope, and B. B. Dally. Probability density function computations 

of a strongly swirling nonpremixed flame stabilized on a new burner. Proceedings of the 

Combustion Institute, 28:123-131, 2000. 

[19] A.R. Masri, P.A.M. Kalt and R.S. Barlow. The compositional structure of swirl-
stabilised nonpremixed flames. Combust. Flame, 137(1-2):1-37, 2004. 

[20] A. R. Masri. http://www.aeromech.usyd.edu.au/thermofluids. 2009 

[21] R. McDermott and S.B. Pope SB. Parabolic edge reconstruction method (PERM) for 

Lagrangian particle advection. J. Comp. Phys., 227(11):5447-5491, 2008. 

[22] M. Muradoglu, S. B. Pope, and D. A. Caughey. The hybrid method for the pdf 

equations of turbulent reactive flows: consistency conditions and correction algorithms. J. 

Comp. Phys., 172:841-878, 2001.  



Bibliography    57 

  57 

[23] M. Muradoglu, and S. B. Pope. Local time-stepping algorithm for solving the 

probability density function turbulence model equations. AIAA J., 40: 1755-1763, 2002. 

[24] M. Peric and J. H. Ferziger. Computational Methods for Fluid Dynamics, 1996.  

[25] S. B. Pope. PDF methods for turbulent reactive flows. Prog. Energy Combust Sci., 

11:119-192, 1985.  

[26] S. B. Pope. On the relationship between stochastic lagrangian models of turbulence 

and second-moment closure. Phys. Fluids, 6:973-985, 1986.  

[27] S. B. Pope. Turbulent Flows, 2000.  

[28] B. Rembold, and P. Jenny. A multiblock joint PDF finite-volume hybrid algorithm 

for the computation of turbulent flows in complex geometries. Journal of Computational 

Physics, 220:59-87, 2006.  

[29] J. Rotta. Statistische theorie nichthomogener turbulenz. Z. Phys., 129:547-572, 1951.  

[30] S. Seo. Ph.D. Thesis, Department of Mechanical Engineering, The Pennsylvania 

State University, University Park, PA, 1999. 

[31] O. Stein, and A. Kempf. LES of the Sydney swirl flame series: A study of vortex 

breakdown in isothermal and reacting flows. Proceedings of the Combustion Institude. 

31: 1755, 1763, 2007. 

[32] O. Stein, A.M. Kempf and J. Janicka. LES of the Sydney swirling jet in a bluff-body 

burner. Combust. Sci. Tech., 179(1-2):173-189, 2007. 

[33] N. Syred. A review of oscillation mechanism and the role of the precessing vortex 

core (PVC) in swirl combustion system. Prog. Energy Combust. Sci., 32(2):93-161, 2006. 

[34] Q. Tang, J. Xu, and S. B. Pope. Pdf calculations of local extinction and no 

production in piloted-jet turbulent methane/air flames. Proceedings of the Combustion 

Institute, 28:133-139, 2000.  

[35] V. Tangirala, R. H. Chen, J. F. Driscoll. Combust. Sci. Technol., 51:75-95, 1987. 

[36] P. R. Van Slooten, Jayesh, and S. B. Pope. Advances in pdf modeling for 

inhomogeneous turbulent flows. Phys. Fluids, 10:246-265, 1998.  



Bibliography    58 

  58 

[37] J. Xu and S. B. Pope. Pdf calculations of turbulent nonpremixed flames with local 

extinction. Combustion and Flame, 123:281-307, 2000.      

 

 



Vita    59 

  59 

 

 

 

Vita 
 

Ismail Filiz was born in Istanbul, Turkey on January 26, 1982. He received the B.S. 

degree in Mechanical Engineering from Koc University, Istanbul, in 2006. In October 

2006, he joined to the Computational Science and Engineering Department of Koc 

University, Turkey as a teaching and research assistant and worked on "PDF 

modeling of the non‐reactive swirling turbulent flows." 




