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ABSTRACT

In this study, we focus on a one server queue with exponential service times. We assume that

the server provides colonoscopy service. We consider the capacity rationing of this facility within

patients coming from different risk groups, the highest risk corresponding to colorectal-cancer

patients. We assume that the facility providing the screening/diagnostic procedure operates in

a dynamic random environment, which determines the demand for diagnostic services. The ran-

dom environment represents the health of the population, where if the health of the population

is better, the demand rate of symptomatic patients is lower. The system can exercise admission

or scheduling or both controls. Scheduling lower risk patients is the screening process, improving

the health of the whole population in the long run. We consider three different models, depend-

ing on which of the controls is used. The objective is to minimize total expected discounted

costs over an infinite time horizon with a discount rate β as well as the long-run average costs.

We establish the existence of optimal monotone policies under certain conditions. We study

the effects of system parameters on the optimal policy and performance measures through a

numerical study.

In the second part of the thesis, we use compartmental model to investigate the effects of

operational controls on population dynamics. We use a four-stage health model (1) healthy,

(2) polyps, (3) preclinical, or early stage, colorectal cancer (4) clinical, or late stage, colorectal

cancer. We create four scenarios where the difference rises due to the allocation of the resources.

We present a numerical analysis that compares the performances of the different scheduling

strategies and explore the effect of system parameters in detail.
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ÖZETÇE

Bu çalışmada, hizmet süreleri üssel olan tek işgörenli bir kuyruk modelini inceliyoruz. İşgörenin

kolonoskopi hizmeti verdiğini kabul ediyoruz. Kolonoskopi aletinin farklı risk gruplarından gelen

hastalar arasında nasıl paylaşılması gerektiği konusunu ele alıyoruz. Risk gruplarında, en yüksek

risk grubu kolon kanseri olan hastaları temsil ediyor ki biz bunlara belirti gösteren hastalar an-

lamında belirtili hastalar diyeceğiz. Hem tarama hem de teşhis ve tedavi için kullanılan bu aletin

dinamik ve rassal bir ortamda çalıştığını, ve ortamın durum değerlerinin teşhis ve tedavi isteğiyle

gelen hasta hızını belirlediğini kabul ediyoruz. Rassal ortam halkın sağlık seviyesini temsil

ediyor, öyle ki halk sağlığı iyi olduğunda belirtili hasta sayısı düşüyor. Sistemin uygulayabileceği

iki çeşit kontrol var: belirtisiz hastaları kabul etme ve hastalar arasındaki hizmet önceliklerine

karar verme. Hizmette belirtisiz hastalara öncelik vermek, tarama yaparak halk sağlığının

uzun vadede iyileşmesini sağlar. Biz farklı kontroller kullanan üç farklı modeli düşüneceğiz:

yalnızca kabul etme, yalnızca öncelik veya iki kararıda en iyileyen modeller. Amacımız son-

suz zaman içerisinde toplanacak beklenen indirilmiş maliyetleri veya uzun-vadede beklenen or-

talama maliyetleri en azlamak. Bu modeller için, en iyi monoton politikaların var olduğunu

gösterdik. Sistem parametrelerinin bu politikalar ve çeşitli başarım ölçütler üzerindeki etkileri

sayısal örnekler üzerinde çalıştık.

Tezin ikinci kısmında, operasyonel kontrollerin halk sağlığı dinamiği üzerindeki etkilerini

anlamak için 4-aşamalı bölmeli model kullandık: (1) sağlıklı, (2) polipli, (3) erken kanser teşhisi

(4) geç kanser teşhisi. Kaynakların farklı kullanımlarını modelleyen 4 değişik senaryo yarattık.

Farklı kaynak kullanımlarının başarım ölçütlerine olan etkilerini ve sistem parametrelerin etki-

lerini sayısal örnekler üzerinde detaylı olarak inceledik.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Treatment of a disease at early stages is the most effective form of prevention, therefore

‘Screening saves lives’ is the motto of the healthcare system. Screening increases life expectancy

at the level of the individual and reduces mortality rate as well as treatment costs at the level of

the population. Death rates have decreased over the past several years and increasing awareness

of the importance of screening for the diseases is one of the major factors for this reduction.

The benefits of investment in screening services are realized as a reduction in disease preva-

lence and thus a reduction in treatment costs of the future. Since screening resources are limited

and effective screening tests are expensive, a better control of screening services is crucial. If in

addition, the resources have to be shared between screening and diagnostic services, a trade-off

between the immediate need for diagnostic and the long-term benefit of screening will arise.

This study focuses on this trade-off, by analyzing admission and scheduling control models for

screening services in environments where screening and diagnostic services are provided by a

shared resource. The main contribution of our study is introducing a modeling framework that

can help better design and control screening services by providing insights for such systems. An

application of the models is illustrated using colorectal cancer screening with colonoscopy as an

example.

Colorectal cancer is the third most commonly diagnosed cancer and second leading cause

of death in the United States (National Cancer Institute [43]). American Cancer Society [2]

estimated that 146,970 men and women will be diagnosed with colorectal cancer this year,

and 49,920 will die of the disease in the USA. Colorectal cancer is one of the most curable

cancers if diagnosed at early stages. For this reason, colorectal cancer screening is critically
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important. The demand for screening tests varies due to age, personal history of colorectal

cancer or adenomatous polyps, and family history of colorectal cancer or adenomatous polyps.

In particular, people of age 50-75 are the general target population for colonoscopy screening

[89]. However, people with a colorectal cancer history in their family are considered to be at a

higher risk, and therefore they are recommended to have screening starting from age 40 [63]. In

general, the demand for screening is generated by individuals from different risk groups.

There are various screening tests available for colorectal cancer. ACG [77] recommends

one of these screening tests for people at average risk for cancer and without any symptoms,

beginning at age 50. The tests are flexible sigmoidoscopy, colonoscopy, double contrast barium

enema, CT colonography, and fecal occult blood test (FOBT). They differ in cancer detection

rates, and false-positive (or false-negative) results. There is no perfect screening test, however

colonoscopy is widely viewed as the most accurate screening test among available screening

tests for colorectal cancer. It has the highest level of sensitivity 1 and specificity 2 for detection

of colorectal cancer [88]. Besides, colonoscopy has gained popularity in recent years as the

most accurate test because it allows the doctor to see the entire colon and remove polyps [49].

Colonoscopy is an expensive procedure due to expensive equipments, and most countries have

insufficient resources available to screen the entire population. Further, demand for colonoscopy

exceeds the available capacity [13]. There are long waiting times (approximately six months) for

colonoscopies and complaints about long waiting times have been in the news frequently [49, 25].

Limited capacity of colonoscopy raises the question of how to use the available colonoscopy

capacity more effectively.

Typically colonoscopy is performed for two purposes: as a screening procedure for asymp-

tomatic individuals, or as a diagnostic procedure for patients with a symptom (such as blood in

the stool). If a polyp is found during screening colonoscopy it can be removed before it turns

into cancer, thus colonoscopy may also prevent colorectal cancer. This eventually would mean

a reduction in demand for diagnostic purposes, a reduction in mortality rate and a reduction

1Sensitivity is the probability of a positive test among patients with disease

2Specificity is the probability of a negative test among patients without disease
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in treatment costs. The diagnostic procedure is required to start treatment of a person with

cancer, for which a delay may have significant health consequences, therefore timely provision

of service is crucial. For this reason, among the two types of demand, the diagnostic procedures

are typically given higher priority. Although the procedure duration may be slightly longer

when a polyp is removed, these two types of procedures (screening or diagnosis) are not sig-

nificantly different in terms of costs and duration. If the diagnostic procedure confirms cancer,

then further treatment is performed by other service providers. In this study we do not focus on

the treatment services such as surgery, since they require different resources which we assume

are available. Our focus is on a service such as colonoscopy, which is shared between screen-

ing demand and diagnosis demand, and therefore a rationing policy to use available resources

effectively is needed.

We assume that the facility providing the screening/diagnostic procedure operates in a dy-

namic random environment, which determines the demand for diagnostic services. The random

environment represents the health of the population, where we assume that if the health of the

population is better, the demand rate of symptomatic patients is lower. In the literature, random

environments are usually modeled as exogenous systems that cannot be influenced through the

decisions of the system under consideration. However, as discussed above, providing screening

services decreases the arrival rate of diagnostic services in the long-run. We model this effect

by a possible improvement in the environment upon providing a screening service. We assume

without loss of generality that there are E different environments {1, 2, · · · , E}, where environ-

ments are ordered so that environment 1 represents the best and environment E the worst. The

health of the population can change only gradually, so we assume that screening can improve

an environment e to e− 1. On the other hand, the worsening of the environment e to e+ 1 is an

exogenous transition, which models the effect of deteriorating health conditions that decreases

the effect of screening.

The demand arrivals to the facility providing the procedure occur according to a Poisson

process. We model the arrival rate of symptomatic patients as a Markov- modulated Poisson

process with rate λH(e) where e is the current environment. We assume, without loss of gener-
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ality, that asymptomatic patients form K different risk groups, and let λLi be the arrival rate

of asymptotic patients from risk group i. Throughout the thesis, we will refer to asymptomatic

patients also as low risk patients.

The facility providing the screening/diagnostic services is modeled as a single server. Its

service rate is taken as the overall service rate of all such facilities available to the population we

are interested in. Such a representation reflects our aim to analyze the whole population, rather

than optimizing a single facility. Our objective is to provide assistance in determining general

screening policies, which considers the trade-offs between the future health of the population

and the need of the current patients given the total capacity of such facilities.

The capacity of these facilities can be controlled through admission and scheduling policies.

Admission control can be performed by declining some patients with screening request. This

can be applied in practice by appropriate insurance coverage policies for different risk groups, or

by dynamically refusing patients given the workload in the system. Scheduling control concerns

the prioritization of screening vs. diagnostic demand, and a widely applied practice is strict

prioritization of diagnostic procedures. In this thesis, we consider systems which can exercise

only admission, only scheduling or both controls.

This study contributes to the understanding of better admission and scheduling control

policies for screening services such as colonoscopy. Although the motivation of this work comes

from colorectal cancer screening, the model developed here has potential applications in other

service contexts, such as maintenance services, where maintenance or prevention type of works

are performed along with a more costly repair services. The main characteristics of the systems in

question are the following: First, different customer classes demand service from a single service

provider where the delay and rejection costs are higher for one class, say class H. Second,

customers of class H cannot be rejected. Finally, serving a low-risk class has a potential to

reduce the demand from class H in the future. In this context, there is a trade-off between

providing service to class H to avoid immediate costs, and providing service to a low-risk class

to avoid future costs. We develop a Markov Decision Process (MDP) model for this system

and analyze the optimal admission and scheduling policies to minimize system costs. Although
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the model has applications in other services, we will use the colorectal cancer screening and

colonoscopy service context throughout the thesis.

In the second part of the thesis, we use a dynamic compartmental model to explore the

effects of operational controls on population dynamics. Dynamic compartmental models are

useful to analyze the effects of policies in population dynamics. Although there is no study

on screening of colorectal cancer which uses a compartmental model, this method is used to

model screening of other diseases and effects of policies on population dynamics. We model a

system with a single facility providing colonoscopy service and two types of risk groups. We

develop a four-stage health model where we indicate precursor clinical state (polyps) which may

cause inaccurate representation of disease progression if not considered. We consider various

scheduling policies where we allocate the capacity between screening and diagnostic purposes.

We present a numerical analysis that compares the performances of the scheduling strategies

and explore the effect of system parameters (service rate, compliance rate and rate for seeking

diagnosis)in detail. This chapter contributes to the understanding of better scheduling control

policies for limited resources which are shared between diagnostic and screening purposes.

The remainder of the thesis is organized as follows. In Chapter 2, an overview of the previous

studies about health care systems, admission and scheduling controls and environmental process

is provided. The problem description and the structural properties for the problem are presented

in Chapter 3. Basic structural results on optimal policies are stated in Chapter 4. Then, in

Chapter 5, the effects of different parameters, such as service rate, probability of improving

the environment on the performances of the models, and on the optimal policies are evaluated

numerically. In Chapter 6, the framework is modeled by compartmental modeling and we present

a numerical study that compares the performances of the different scheduling strategies . Finally,

Chapter 7 concludes the thesis, and summarizes the main results.
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Chapter 2

LITERATURE REVIEW

In this chapter, we provide details and references on advances in areas related to different

aspects of this thesis.

2.1 Healthcare Systems Literature

Literature on healthcare systems relevant to this thesis can be classified into two categories:

papers that develop simulation models to offer insights about the screening programs, and papers

that focus on the allocation of the available resources to different demand classes in healthcare

systems.

2.1.1 Simulation Models

We can review the papers in this stream in two groups. The first group investigates the

cost-effectiveness of screening programs through modeling and the second group focuses on the

disease process by considering compartmental modeling.

2.1.1.1 Cost-effectiveness of Screening Programs

Screening services research in the health care operations field typically focuses on screening

of a certain disease and models different aspects of the screening programs. Here we briefly

mention some examples from this literature on colorectal cancer. We refer the interested readers

to [4] and [44] for extensive reviews on cancer screening.

The following studies target the whole population. Harper and Jones [38] develop a semi-

Markov model for screening and treatment of colorectal cancer and evaluate alternative screening

policies. These policies are no screening, annual Fecal Occult Blood Test (FOBT), annual
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FOBT with sigmoidoscopy every 5 years, annual FOBT with sigmoidoscopy every 3 years,

sigmoidoscopy at 50 years of age and sigmoidoscopy at 60 years of age. Frazier et al. [32]

explore cost- effectiveness of alternative screening programs by developing an MDP model to

represent progression of colorectal cancer. The alternative screning programs are constructed by

various combination of screening tests and different time intervals. In [82], screening strategies

(no screening, single colonoscopy and multiple colonoscopy) for colorectal cancer are modeled

as Markov processes and the cost effectivenesses of these strategies are compared.

There are papers which concentrate on more specific groups. Eddy et al. [26] consider

high risk patients having a first-degree relative with colorectal cancer and develop a mathemat-

ical model to estimate the cost-effectiveness of colorectal cancer screening strategies. Leshno

et al. [57] compared the following strategies: no screening, one-time colonoscopic screening,

colonoscopy, colonoscopy in a 10-year interval, annual FOBT, annual FOBT and sidmoidoscopy

in a 5-year interval, and annual detection of altered human DNA in stool. They develop Par-

tially Observed Markov Decision Process model to analyze the cost-effectiveness of these screen-

ing strategies. Further, Khandker et al. [47] examine the screening and surveillance methods

for average-risk adults by using a decision model and cost-effectiveness framework. Wagner,

Herdman and Wadhwa [90] analyze the cost effectiveness of the screening methods for people

between the ages 65 and 85. In the studies evaluating cost effectiveness of screening strategies,

the common conclusion is that: colonoscopy every 10 years, and sigmoidoscopy in a 5-years

interval plus annual FOBT are the most cost-effective screening strategies.

Papers in this stream investigate the cost-effectiveness of screening programs but do not

model any resource allocation issues. Different from these papers, in this thesis we consider

resource allocation in screening.

2.1.1.2 Dynamic Compartmental Models

Dynamic compartmental models are useful to analyze the effects of policies in population

dynamics. Although there is no study on screening of colorectal cancer which uses a compart-

mental model, this method is used to model screening of other diseases and effects of policies
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on population dynamics. There is a wide literature but here we mention only a few examples.

We can refer interested readers to [76], [22], [28], [62], [83], [55], [54], [41],and [46] for further

information on compartmental modeling.

Brandeau et al. [10] develop a dynamic compartmental epidemic model to investigate costs

and benefits of the programs for HIV screening of women of childbearing age. The model is a

closed system with seven population classes (risk groups), each of which includes four disease

stages. They explore the performance of different screening policies on targeted risk groups. In

addition to policy evaluation, the authors study the sensitivity analyses of system parameters.

Zaric et al. [101] evaluate the cost-effectiveness of methadone maintanence treatment which

is an effective way of decreasing the spread of HIV among injection drug users. Different than

Brandeau et al. [10], Zaric et al. [101] design a compartmental model for HIV epidemic where

the entry into and exit from the population are allowed. In this setting, the compartments are

formed according to injection and risk levels. They study both health and economic outcomes

of the model.

Güneş et al. [36] use a compartmental model to form a three-stage health model in breast

cancer screening. The population is divided into twenty-one compartments according to health

status and the state of progress through the health service system. Güneş et al. [36] analyze

the effect of operational factors on breast cancer screening. Impacts of standards for minimum

reading volume to quality, outreach with or without decentralization of service facilities, and

the potential of queueing due to stochastic effects and limited capacity on health outcomes are

explored.

In the second part of the thesis, we use a compartmental model to evaluate the effect of

operational controls on population dynamics. We point out the limitations in OR models that

are observed by Alagöz et al. [4]. In general, operations researchers model the diseases by

ignoring precursor states which may cause inaccurate representation of disease progression. We

overcome this limitation by developing a four-stage health model where we indicate precursor

clinical state (polyps).
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2.1.2 Resource Allocation

We focus on two streams in this context. While one stream focuses on outpatient scheduling

(for a compherensive literature on outpatient scheduling see Çayırlı [18] and Mondschein [64]),

the other stream considers the problem of dynamic allocation of the resources which is closest

to our work.

There have been a number of studies on dynamic allocation of service capacity among several

customer classes in healthcare systems. Typically, customer classes have different priority levels

and costs associated with them.

Green, Savin and Wang [35] address the problem of managing patient demand for a diag-

nostic service. They consider various patient groups: emergency patients who must be served

immediately, inpatients whose demands occur randomly during the day and outpatients who

can be scheduled days or weeks in advance. The objective is to maximize expected profit for the

diagnostic service. Serving outpatients is an essential source for revenue in health care systems

since demands from inpatient and emergency patients are relatively low. Therefore, they inves-

tigate the design of outpatient appointment schedule. They establish structural properties of

the optimal service policy as well as threshold appointment schedules and analyze performance

of heuristic assignment policies numerically.

Patrick, Puterman and Queyranne [71] deal with a dynamic scheduling problem of multi-

priority patients to a diagnostic facility. In this setting, emergency patients and inpatients

are considered as patients with the highest priorities. Besides, there is incoming demand from

multiple outpatient priority classes. Similar to Green et al. [35], emergency patients must be

served as soon as possible. Inpatients can wait a maximum of one day and outpatients can often

be booked in advance. The objective is to allocate available capacity to incoming demand so

that waiting times are minimized. They formulate the booking problem as a Markov decision

process and apply the method of approximate dynamic programming. They propose a booking

policy and test it through simulation.

Kolisch and Sickinger [50] design an MDP model for resource scheduling of different demand

groups (emergency, inpatient and outpatient) in radiology services. In this system, scheduled
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outpatients arrive based on an appointment schedule and some do not show up. Inpatients

and emergency patients arrive at random. The objective is to maximize the expected reward

by allocating two parallel computer tomography scanners within a radiology department to the

different demands of the patient classes.

As considered in the above studies, we focus on screening services in environments where

screening and diagnostic services are provided by a shared resource, and model the control

problem in such systems. Different from them, our model also includes the feedback effect of

screening. Further, we study a queuing model with random arrivals whereas in these papers

there are scheduled arrivals. Our stochastic system dynamics model differs from these works

since two control mechanisms have not been considered all at once in the health care literature.

We concentrate on joint admission and scheduling problem in a healthcare system. Therefore,

we will now discuss the papers focused on admission control and scheduling.

2.2 Admission and Scheduling Control

The characterization of the admission control and the scheduling problems vary due to the

types of servers, queues and the customers. In general, researchers address each of these controls

separately in the literature. We provide a quick overview on the admission control policies.

Admission control is a well known approach to improve the performance of queuing systems.

There have been many studies done on the control of arrivals to queueing systems. The earliest

work on the control of admission to queuing system on M/M/1 is Naor’s work[65]. Stidham [84]

studies admission control to a single server queue with GI/M/1 system. For more information

on admission control in single server systems, we refer the reader to [45], [58]. Further, there

are papers on the optimal control of arrivals in networks of queues and multiple servers. In

particular, control of admission to two queues in series [34], admission to the first queue of a

series of queues [87], admission to parallel queues [24], and admission to a series of more than

two queues [86], dynamic admission control in a two class loss system with c identical parallel

servers [67]. Stidham [85] provides a summary of research papers on this area by focusing on

various queueing systems where admission of jobs to servers are controlled. Waldmann and
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Helm’s [40] differs from the mentioned works since it considers the admission of customers to

multiserver queues in a random environment. In general, it is shown that the optimal admission

policies are of threshold type.

Like admission control, assignment of customers to resources is well studied in literature.

Harrison [39] analyzes a single-server queuing system with several classes of customers. In Baras’

[6] work, there are two types of customers demanding service from a single server with infinite

buffer capacity. Liu and Nain [60] consider a multi-queue single server model. Stidham and

Weber [92] review a number of models and results by classifying them into control groups such

as service rates, admission, routing and scheduling. In addition, Crabill, Gross and Magazine

[23] present a classified bibliography about, static (design) models, dynamic (control) models,

and control of queue discipline. Earlier research papers on priority models, scheduling models

and allocation of customers to multiple servers can be found in this bibliography. Scheduling in a

system with multi-queues (finite or infinite capacity) where each queue has its own single server

[42], in the systems with heterogeneous parallel servers [98] , in general two-node network [37], in

the systems with two heterogeneous exponential servers [29], [59] are also studied. Optimality

of shorter queue faster server policy [42], switch over policy [37], shortest queue policy [29],

modified static policy [39], cµ rule [6], index rules for non preemptive scheduling of single server

facility [60] and threshold policies [98], [59] are shown in these studies.

Our contribution is in modeling. The combined study of admission and scheduling control in

dynamic programming has not been commonly addressed in the literature.We will now review

the literature in which admission control and scheduling problems are addressed together.

Carr and Duenyas [14] discuss a joint order acceptance/rejection and sequencing problem in

a production system with two classes of products. Type 1 products are made to stock, and type

2 products are made to order. Demands for type 1 product are met by inventory and decision

maker decides whether or not to accept type 2 order. Markov Decision Process (MDP) is used

as a tool to formulate the optimal admission and production control problem. It is shown that

the optimal production policy and the optimal type 2 order acceptance policy is characterized

by a switching curve. The complexity of the model leads the authors to explore the performance
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of simpler policies.

Xu and Shantkihumar [99] consider a first-come, first-served service system with m parallel

exponential servers. Customers arrive according to a Poisson process. The objective is to

maximize the discounted and long run average profit through admission control. They show

that the dual of the problem, the preemptive last come first serve system subject to expulsion

control is equivalent to the original problem for the proposed cost/reward structure. Expulsion

is a special type of admission control. In a system exercising expulsion control, the system does

not reject the arriving customer. Instead of rejecting the new customers, it expels customers

that are already in the system. They conclude that the optimal policy in the dual system is of

a threshold type which implies the structure of the original problem as well.

Xu [97] applies Xu and Shantkihumar [99]’s approach in the case of a M/M/2 queueing

system with heterogeneous processors and a single customer class. The system exercises both

admission and scheduling controls under nonpreemptive first come first serve service discipline.

The objective is to maximize the expected discounted and long run average profits. She converts

the problem to its dual, a system which is subject to expulsion and scheduling control. She shows

that the individually optimal policy in the dual is socially optimal in the original problem. She

characterizes the optimal policy as a threshold type for a system subject to both controls.

Righter [80] extends Xu’s [97] work to multiple customer classes. For class i customers, a

reward Ri is gained for each service completion and a holding cost Ci per unit time is incurred.

Priorities can be assigned for classes and this allows preemption. Righter aims to maximize the

expected discounted profit for the system. She extends Xu’s results for the single class system,

and then studies the multiclass system by focusing on two cases where in the first one expulsion

is not permitted and in the second one it is permitted. She derives that in both cases the optimal

policy is determined by thresholds on the number of customers of each type in the system. She

also shows that her results hold for the case of a finite buffer.

Systems subject to admission and scheduling control are complex. Therefore it is difficult to

obtain exact results. The above studies deal with admission/scheduling problems by converting

them to dual problems. These types of systems can be also studied by using approximations.
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The following studies approximate the optimal policies.

Plambeck, Kumar, and Harrison [72] study a multi-class, single server queue with upper

bound constraints on the throughput time of jobs. The queue is assumed to be in heavy traffic.

They analyze an admission and sequencing policy under heavy-traffic conditions. The objective

is to minimize the rejection penalties. They propose an asymptotically optimal scheduling policy

and study fluid-scale analysis of this proposed policy.

As a complementary study of [72], Maglaras and Mieghem [61] consider a multi-class queuing

network setting with certain lead time constraints. The jobs vary in arrival rates, and processing

requirements. They take the lead-times as given and focus on controling the system subject

to these lead-time constraints via admission and sequencing controls. Instead of a stochastic

system, they study the fluid analysis of joint admission and sequencing control under delay

constraints, since lead-time constraints can be guaranteed in the fluid model. They demonstrate

the performance of the policies through a simulation experiment and provide preliminary results

on admission and sequencing control.

Building up on [72], Ata [5] focuses on a queuing model of a make-to-order production system

with a single server. In the model, there are different classes of demands with a rigid due date

lead time. The system should decide on whether or not to accept orders and sequencing the

orders by assuring that the due date constraints are satisfied. The objective is to minimize

lost revenues in the long run. He employs a Brownian approximation method under heavy

traffic conditions. The corresponding Brownian control problem of the original system is solved

explicitly, and an effective scheduling policy is provided.

Bassamboo, Harrison, Zeevi [7] consider a service system where there are multiple server

pools and multiple customer classes. The system exercises two controls. The customer can

be blocked or admitted upon her/his arrival. Customers who wait longer can abandon the

system. The objective of this paper is to minimize the expected operating costs (sum of blocking,

holding and abandonment costs) over a fixed and finite planning horizon. They implement the

stochastic fluid approximation method to derive admission and routing controls, and show that

their implementation is asymptomatically optimal.
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2.3 Environmental Processes

Most of the literature on stochastic models in operations research deal with models in which

the system parameters are constant. However, this setting is not applicable to many real life

problems. To overcome this limitation, researchers let parameters change by the randomly

changing environment, which affects the model as a whole. A widely-used approach to insert

an effect of fluctuating environment is defining a secondary Markov process. A process defined

as such is called a Markov-modulated process. The Markov-modulated processes can affect the

system either internally or externally. The external effect can be via exogenous environmental

variations, and the internal effect can be via the decisions of the system under consideration.

Most of the research consider extraneous influence of the Markov-modulated processes. Fluc-

tuating environment can be applied in queuing, reliability, inventory models and finance. Since

fluctuating environment in queuing models is closest to our work, we explain them in detail.

First, we present the papers on exogenous Markov-modulated processes, then we state the papers

on endogenous Markov-modulated processes.

The general set up for environmental processes in queueing context is as follows. There is

a queue which resides in an environment fluctuating within m environments. Sojourn time in

any environment is random, and the arrival and service rates depend on the environment. The

earliest work that considered the effect of a fluctuating environment in M/M/1 queuing model

was studied by Eisen and Tainiter [27]. They consider a system which fluctuates between two

environments and obtained some steady state results. Yechiali and Naor [100] study M/M/1

queuing system in which the system can be in either of two feasible levels. Neuts [66] generalizes

Yechiali and Naor’s [100] research to the M/G/1 case with m environments. Purdue [74] studies

the M/M/1 queue which is subject to extraneous phase changes. The environment process is

modeled as an m-state irreducible Markov chain in continuous time. He derives the busy period,

equilibrium conditions, and probabilities of an empty system. Prabhu and Zhu [73] analyze a

model where customer arrival and service rates are modulated by a Markov process. They

explore the properties of waiting time, idle time and busy periods. Righter [79] considers a



Chapter 2: Literature Review 15

system where there are incoming resources and they need to be assigned to available activities.

She investigates the system with random changes in the arrival rate of resources, random changes

in the activity values and deadline rates. The objective is to assign arriving resources to available

activities so that total expected return is maximized. She establishes the structure of the optimal

policy. Çil, Örmeci and Karaesmen [19] investigates the effect of parameters on optimal policies

for a number of queuing and inventory control models where the exogeneous environment is

modeled by a Markov chain.

Özekici and Soyer [70] introduce a periodic-review reliability model where each component’s

survival probability depends on the state of the environment in which the components operate.

They build a general set up for any network which is affected by a fluctuating environment,

and present results for network reliability assessments. Özekici [68] analyzes different inventory,

queueing and reliability models where demands, arrival and service processes and component

lifetimes vary due to randomly changing environments. He investigates the implications of

environmental processes.

Özekici and Parlar [69] consider periodic-review inventory model with unreliable suppliers.

Demand, supply and cost parameters vary stochastically in a random environment. The en-

vironmental process follows a time-homogeneous Markov Chain. They analyze the optimality

of environment-dependent base-stock and (S, s) policies. Feldman [31] considers (s, S) continu-

ous review inventory policy. He derives the steady-state distribution of the inventory position

in a continuous review inventory model where the demand is a Markov modulated compound

Poisson process. Song and Zipkin [81] study an inventory model where the demand process is

a Markov-modulated Poisson process. The demand fluctuates with a random environment due

to economic fluctuations, or stages in the product life-cycle. They discuss the implications of

optimal policies. Erdem and Özekici [30] design a single item inventory model that incorpo-

rates both random yield and random environment. The supply and the demand processes are

modulated by a Markov chain. Also the cost parameters change randomly by the state of the en-

vironment. They show that if the levels are environment dependent, the well-known base-stock

structure is optimal. Gayon et al. [33] investigate the effects of different pricing strategies avail-
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able to a production inventory system with capacitated supply where the demand is generated

by a Markov-modulated Poisson process. Different than other studies, the demand depends on

the state of the environment and the offered price. They focus on static pricing, environment-

dependent pricing, and dynamic pricing policies. They obtain structural results for the optimal

pricing and inventory ordering policies.

Çakmak and Özekici [15] study a portfolio selection problem in a stochastic market through

optimization. In the model, there are one riskless asset with known return and m risky assets

with random returns where the returns in both type of asset depends on the state of the en-

vironment. They determine the mean variance efficient frontier which shows the best possible

return for a given amount of risk.

Çanakoğlu and Özekici [16] considers multiperiod portfolio selection problem in a stochastic

market with exponential utility functions. In this setting, the objective of the investor is to

maximize the expected value of a utility function of the terminal wealth. The market states

are modulated by a Markov process. The states of the market describe the prevailing economic,

financial, social conditions that affect the returns of the assets and utility function. They study

the structure of the optimal policy.

Çanakoğlu and Özekici [17] extend the discussion in [16] to multiperiod portfolio optimization

by considering investors with logarithmic and power utility. Stochastic market is represented by

an external process which affects returns on risky assets and utility function. They assume that

the random changes in the market states are depicted by a Markov chain. They characterize

the optimal policy.

The above studies investigate the models in a randomly changing environment. However,

they do not consider the environment change in the context of an internal influence. Next, we

will present the researches with endogenous Markov-modulated processes.

Burman and Smith [12] consider a single server queueing system. In this model, the server

represents an access switch and the customers represent packets of data that are generated by

data terminals or computers. The customers generate the packets according to a nonhomoge-

neous Poisson process whose rate is proportional to the number of customers actively generating
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data. Therefore, arrivals are modeled by a Markov-modulated process. They characterize the

Markov process by its infinitesimal generator. They derive closed-form expressions for the mean

delay and mean number in the queue in light and heavy traffic. Gaver and Lehoczky [56] consider

a system where the service rate was modulated by an M/M/c/c queueing system and extends

the methodology of [12]. Cheng and Sethi [21] study the joint inventory promotion decision

problem. The demand process is driven by a Markov chain, which is influenced by uncertain

environmental factors and promotion decisions. They characterize the general structure of the

optimal policies.

In the studies reviewed so far [except [21]], the demand and service mechanism are modeled

either as exogenous or endogenous Markovian processes. Further, there is a limited literature

on the systems that are influenced by endogenous Markov-modulated processes. The most im-

portant contribution of this thesis is the formulation of environment. We provide a model where

these two factors (endogenous and exogenous) are considered together and influence the environ-

ment in which the system resides in. The system is under the external influence caused by the

deterioration of health conditions. In addition, the effect of screening is modeled as an internal

factor that improves the environment which leads to a change in the state of the environment.

The arrival rates vary due to the state of the environment. We employ this approach to construct

a complex queuing model, where we explore the trade-off between decreasing future risk level of

the population and the emergency of incoming patients with a limited capacity of service.
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Chapter 3

PROBLEM DEFINITION

In this study, we consider a single server system with different demand groups. The server

provides screening and diagnostic services. This chapter describes the process in the facility pro-

viding the screening/diagnostic services, how it can be modeled as an Markov Decision Process

(MDP) and presents necessary information which enable us to establish structural properties.

Section 3.1 describes the model in detail. Section 3.2 presents performance criteria for optimal-

ity. In section 3.3, we introduce event operators to represent three possible systems (identified

by the type of control(s) they use), as defined in Koole [51]. These are the building blocks of

the MDP models to be analyzed later. Finally, section 3.4 introduces certain structures for the

value functions, and summarizes which operators preserve these properties, by specifying certain

conditions when necessary.

3.1 Description of the system

This section describes the system and how we model it as an MDP. The notation is summa-

rized in Table 3.1.

Demand and Service: There is a single server with an exponential service rate µ. We

also assume non-idling server. By non-idling, we prevent such an expensive server to stay idle

which will not cost effective. We also assume preemptive scheduling. The demand for the service

comes from patients with different risk profiles. We consider K types of asymptomatic patients,

representing population groups with different risk factors demanding screening service, and one

type of symptomatic patients, representing patients demanding diagnostic service. λLi represents

the arrival rate of the patient without symptoms who belongs to risk group Li,1 ≤ i ≤ K. Risk

groups are ordered so that a patient in group Li has a higher risk than one in group Li+1. Patients
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without symptoms demand screening service and they may or may not have colorectal cancer.

We will assume that they do not have a cancer which would require further treatment. On the

other hand, we assume all symptomatic patients have cancer or serious illness. Symptomatic

patients arrive according to an environment dependent Poisson process with rate λH(e), where

e denotes the environment, and asymptomatic patients belonging to group Li arrive according

to a Poisson process with rate λLi .

Environment: The environment represents the health level of the population with respect

to the sickness being considered. We denote the state of the environment process by e, with

e ∈ {1, 2, · · · , E}. We assume that if no screening is provided, the environment process will

always be in state E. Hence, we can label this state as the worst state. We assume, without loss

of generality, that the arrival rates of high risk group patients are ordered in the environment e,

so that λH(e) < λH(e+ 1), for all e. In words, we can say that environment e+ 1 is worse than

environment e, in terms of the high risk arrival rates. We let λ̄H be the maximum arrival rate

of the high risk patients, i.e. λ̄H = λH(E). We note that the environment improves or worsens

gradually. Hence, we will allow the environment process to move only to e − 1 or e + 1 from

environment e.

Screening decreases the proportion of symptomatic patients in the population in the future,

which, in turn, decreases the disease prevalence and the arrival rate of symptomatic patients. To

model the effect of screening, we assume that if an asymptomatic patient is served in environment

e, then the environment improves to (e − 1) with probability pe,e−1, and remains in e with

probability 1 − pe,e−1. Thus, pe,e−1 represents the impact of a single screening service on the

number of symptomatic patients in the population, introduced as a proxy for the long-term

health effects of screening. This formulation allows us to incorporate the effect of screening

into the Markov decision model. Admittedly, improving the environment by screening only one

patient is not very realistic. This problem can be overcome by setting low values for pe,e−1

and by defining a large number of environments to represent the gradual improvement of the

population via screening.

We assume that the environment deteriorates (i.e., shifts from e to (e+ 1)) with rate γe,e+1
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due to uncontrollable factors such as aging and death. This models the diminishing effects

of screening through time. We consider the indirect effect of worsening environment if asymp-

tomatic patients were not screened. Asymptomatic patients will develop colorectal cancer if they

wait too much. However, we do not model this fact. We let γ̄ be the maximum deterioration

rate of the environment, such that γ̄ = max1≤e≤E−1{γe,e+1}.

Costs and Decision Structure: Holding costs cH ≥ 0 and cL ≥ 0 are incurred for

each symptomatic or asymptomatic patient in the system, respectively. Since the burden of a

symptomatic patient on the system is more than the burden of an asymptomatic patient, we

assume that cH ≥ cL. In addition, a fixed cost c > 0 is incurred for each symptomatic patient.

In reality, a symptomatic patient may or may not have colorectal cancer, and so the treatment

costs differ for each patient. The fixed cost c in our model represents the average treatment cost

of a symptomatic patient to the system.

In such a setting, the inflow of patients can be controlled by an admission decision to minimize

the total system costs. Symptomatic patients are always admitted, while asymptomatic patients

may be either accepted or rejected. We incur an immediate cost of denying screening service to

an asymptomatic patient, to represent the risk taken by the patient and the system. We assume

that rejection costs are ordered as rL1 > rL2 > rL3 > . . . > rLK
, in accordance with the ordering

of the risk groups where rLi ≥ 0 for all i. The second possible decision is scheduling of the

admitted patients. The service provider can give priority to either asymptomatic or symptomatic

patients depending on the state of the system. When a patient is served, a screening cost, s, is

incurred. A schematic representation of the model is given in Figure 3.1.

We will model three different systems depending on which controls they use: one which

exercises both admission and scheduling controls, one exercising only scheduling control while

admitting all customers, and finally one which controls the admission of asymptomatic patients

while always prioritizing the symptomatic patients in scheduling. In all these systems, the state

of the system can be defined as (e, xH , xL), where e represents the state of the environment

and xH and xL denote the number of symptomatic and asymptomatic patients in the system,

respectively. We let S be the state space of the system and define it as follows: S = {(e, xH , xL) :
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Parameters Definition

e Current environment state
λH(e) The arrival rate of symptomatic patient in environment e
λLi The arrival rate of asymptomatic patient belonging to group Li

cH Holding cost of a symptomatic patient
cL Holding cost of an asymptomatic patient
µ Service rate
pe,e−1 Probability of moving from e to e− 1 upon screening a asymptomatic patient
s Screening cost
rLi Rejection cost for an asymptomatic patient belonging to group Li

c Cost of a symptomatic patient
xH Number of symptomatic patients in the system
xL Number of asymptomatic patients in the system
γe,e+1 Deteriorating rate of environment from e to e+ 1
β Discount (exponential failure) rate
vn(e, xH , xL) Optimal total cost of n stage problem with patients (xH , xL) and environment e

Table 3.1: Summary of the notation used in the thesis

(xH , xL) ≥ 0, e ∈ {1, . . . , E}}.

All these models can be formulated as a discrete time Markov decision process with the

objective of minimizing total expected discounted costs over a finite time horizon with a discount

rate β. The discount rate β can be considered as an exponential failure rate such that the system

shuts down in an exponentially distributed time with rate β. The maximum possible rate out

of any state (e, xH , xL) is R =
∑K

i=1 λLi + λ̄H + µ + γ̄ + β. Since exponential transition rate

out of any state is finite, we use uniformization and normalization to analyze the system in

discrete time. We rescale the time by setting R = 1, so that the system will be observed at

exponentially distributed intervals with mean 1. There will be a potential arrival with probability

(
∑K

i=1 λLi + λ̄H), a potential service completion with probability µ, a change in the environment

with probability γe,e+1, a system failure with probability β, and a fictitious transition with

probability λ̄H − λH(e) + γ̄ − γe,e+1.

3.2 Performance Criteria

The performance criterion for optimality can be either the discounted cost criterion over

an infinite horizon or long run average cost criterion. Throughout this section, we will pay
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attention to these criteria. Meanwhile, we will provide information about algorithms that is

used for obtaining optimal policies.

Below, we introduce the notations we will use throughout this section.

Notations
a An action
As Set of available actions in state s
d Decision rule
d(s) Action chosen by decision rule d in state s
dt Decision rule at decision epoch t
e Vector in which all components equal 1
p(j|s, a) Stationary version of pt(j|s, a)
pt(j|s, a) Probability system occupies state j at decision epoch t+ 1

when action a is chosen in state s at each decision epoch t
r(s, a) Stationary version of rt(s, a)
rt(s, a) (Expected) present value of one period reward if system is in state s

at decision epoch t and action a is chosen
s A state
S Set of states
v An element of a normed linear space of functions on S
V Space of bounded functions on S

Table 3.2: Summary of the notation used in this section

3.2.1 Discounted Criterion

The objective of this criterion is to minimize (maximize) expected total discounted cost

(profit) over an infinite horizon. The following theorem provides the conditions to ensure the

existence of the optimal policies.

Theorem 1 (Theorem 6.2.10 of [75])

Assume S is discrete, and either

(a) As is finite for each s ∈ S, or

(b) As is compact, r(s, a) is continuous in a for each s ∈ S, and for each j ∈ S and s ∈ S,

p(j|s, a) is continuous in a, or
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(c) As is compact, r(s, a) is upper semicontinuous in a for each s ∈ S, and for each j ∈ S and

s ∈ S, p(j|s, a) is lower semicontinuous in a.

Then there exists an optimal deterministic stationary policy.

In our model, states are constructed by environment and number of patients in the system.

Thus, S is countable. Further, there are four actions available for a fixed state (e, xH , xL), these

are admission (reject or admit asymptomatic patients) and scheduling (serve asymptomatic or

symptomatic patients) decisions. Hence, As is finite for each s ∈ S. The model satisfies the

conditions of Theorem 1, so that for our problem, there is always an optimal deterministic

stationary policy.

As it is known that S is a countable set, we will introduce the assumptions which should be

satisfied in order to use value iteration algoritm to find the structure of the optimal policies [75];

Assumption 1 i)There exists a constant µ <∞ such that

sup
a∈As

|r(i, a)| ≤ µw(i). (3.1)

ii)There exists a constant 0 ≤ κ <∞, for which

∑
j∈S

p(j|i, a)w(j) ≤ κw(i), (3.2)

iii)For each λ, 0 ≤ λ < 1, there exists an α, 0 ≤ α < 1 and an integer J such that

λJ
∑
j∈S

P Jπ (j|i)w(j) ≤ αw(i), (3.3)

for all π = (d1, . . . , dJ) where dk ∈ DMD; 1 ≤ k ≤ J.

We let w(e, xH , xL) = cHxH + cLxL + c+ r + s. Then for µ = 1,

sup
a∈As

|r(i, a)| ≤ µw(i) (3.4)
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holds. Therefore the model satisfies the condition (3.1).

∑
j∈S

p(j|i, a)w(j) ≤ w(e, xH + 1, xL) (3.5)

= cHxH + cH + cLxL + c+ r + s (3.6)

≤ κ(cHxH + cLxL + c+ r + s) (3.7)

holds with κ = 1 + cH
c . Note that inequality (3.5) is true due to cH ≥ cL. Therefore, our system

satisfies (3.2).

λJ
∑
j∈S

P Jπ (j|i)w(j) ≤ λJw(e, xH + J, xL). (3.8)

Therefore, it is sufficient to show that

λJw(e, xH + J, xL) ≤ αw(e, xH , xL). (3.9)

which is equal to

λJ(cH(xH + J) + cLxL + c+ r + s) ≤ α(cHxH + cLxL + c+ r + s) (3.10)

We let λ = α. Since λJ < λ, inequality (3.10) is simplified into:

λJ−1(xH + J) ≤ xH . (3.11)

Consequently, for J sufficiently large, (3.11) holds. Therefore (3.3) holds. Hence, for this model

we can use value iteration algorithm.

We let vn(e, xH , xL) be the total β-discounted minimal cost of the system when it is currently

in state (e, xH , xL) and n transitions remain in the horizon. We define value iteration algorithm

as follows:
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3.2.2 Value Iteration Algorithm

1. Select v0 ∈ V specify ε > 0 and set n = 0.

2. For each i ∈ S, compute vn+1(i) by

vn+1(i) = max
a∈As

r(i, a) +
∑
j∈S

θp(j|i, a)vn(j)

 . (3.12)

3. If

||vn+1 − vn|| = ε(1− θ)/2θ,

go to step 4. Otherwise increment n by 1 and return to step 2.

4. For each i ∈ S, choose

dε(i) ∈ arg maxa∈As

r(i, a) +
∑
j∈S

θp(j|i, a)vn(j)

 . (3.13)

We let v(e, xH , xL) be the total expected β-discounted cost over an infinite horizon. Then,

for β > 0,

v(e, xH , xL) = lim
n→∞

vn(e, xH , xL).

All our results are shown under the objective of minimizing total expected β-discounted cost for

a finite number of transitions, n. The value iteration algorithm for discounting criterion ensures

that the results for vn extend to v.

3.2.3 Long Run Average Criterion

The objective of the Markov Decision problem is to minimize the expected long run average

cost. The conditions in [75] are not met by our model for the stationary average optimal policy.

In our model, the state space S is infinite. Weber and Stidham [91] show that even if the

state space is not finite and one-stage costs are unbounded, average cost optimal policy can be
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determined by taking the limit of discounted cost optimal policies. The conditions for limiting

scheme with the corresponding explanations of our model are stated below;

Assumption 2 i) The state space X is countable.

ii) The set of actions A(i) which is available in state i is a compact metric space.

iii) The probability Pa(i, j), of transition to state j when action a is taken in state i, is

continuous in a ∈ A(i).

iv) The one-stage cost Ca(i), of taking action a in state i, is non-negative and continuous in

a ∈ A(i).

v)It is possible to go from any state i to any other state j with finite expected cost.

vi)For each i there are only finitely many j for which Pa(i, j) > 0 for some a ∈ A(i).

vii) If there is some policy which achieves a finite average cost, say y∗, then the number of

states in which the one-stage cost can be no more than y∗ is finite.

Now, we will investigate whether or not these assumptions are met by our model.

In our model, S = {(e, xH , xL) : (xH , xL) ≥ 0, e ∈ {1, . . . , E}} is countable. In the model,

there are four actions available for a fixed state (e, xH , xL), these are admission (reject or admit

asymptomatic patients) and scheduling (serve asymptomatic or symptomatic patients) decisions.

Since any finite set is compact, the set of actions is compact. Since the action space is discrete, if

we take two points |a− a′| < ε, then these are exactly same points. Hence |Pa(i, j)−Pa′(i, j)| =

|Pa(i, j) − Pa(i, j)| = 0. Therefore, the continuity holds by definition, which shows that our

model satisfies (iii). Since the costs in the system are nonnegative, one stage costs, Ca(i),

are non negative. Similarly, taking two points |a − a′| < ε implies that |Ca(i) − Ca′(i)| =

|Ca(i) − Ca(i)| = 0. Therefore, condition (iv) is satisfied, too. We have a recurrent Markov

process. It is possible go from any state i to the state (2, 0, 0) since the system can reduce the

number of patients in the system by screening patients, and the environment move to e = 2

with a rate γ by deterioration of health conditions. We initialize v0(z) = 0 for all z, therefore

being a sum of finite numbers vn(i) and vn(j) are finite, which implies that their difference is

finite. From a state (e, xH , xL),the system can move to states (e, xH , xL + 1), (e, xH − 1, xL),

(e, xH , xL−1) and (e−1, xH , xL−1) with probability greater than zero. Since costs are increasing
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in all components, for a finite average cost, there are finitely many states with less finite average

cost.

We show that all the conditions are met, so that there exists an average cost optimal policy.

For average cost criterion, value iteration algorithm may not converge or it may cause nu-

merical instability. Therefore, we use relative value iteration for finding optimal policies. The

relative value algorithm is given below.

3.2.4 Relative Value Iteration Algorithm

1. Select v0 ∈ V , choose s∗ ∈ S, specify ε > 0, set

w0 = v0 − v0(s∗)e and n = 0. (3.14)

2. Set

vn+1 = Lwn and wn+1 = vn+1 − vn+1(s∗)e. (3.15)

3. If

sp(vn+1 − vn) < ε,

go to step 4. Otherwise, increment n by 1 and return to step 2.

4. Choose

dε ∈ arg max
d∈D
{rd + Pdvn}. (3.16)

We choose s∗ = (2, 0, 0). In our model, L is the combination of operators which we will

mention in the next section.

We will define the operators which specify the consequences of each of the events described

above in the next section. Different combinations of these operators represent the three models
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we are interested in. Section 3.4 will prove that these operators preserve certain properties of a

function f(e, xH , xL). This implies, by induction, that vn(e, xH , xL) has this property for all n

if v0(e, xH , xL) has them.

3.3 Operators

We use event based dynamic programming method introduced by Koole [51] to formulate

our models. Koole constructed the value functions as a combination of event operators and

investigated the properties of the event operators. A value function preserves the properties if

all event operators that form it has these properties. Therefore, we use the preserved properties

of event operators to characterize the structure of optimal policy. At each transition epoch, there

can be an arrival of a symptomatic patient, an arrival of an asymptomatic patient, a service

completion, and a fictitious transition. As in Koole [51] and Çil et al. [19], we will introduce

event operators for each event and study their properties. The event operators used to model

system transitions in these cases are explained below in detail. Let f be a generic function

defined on the state space S, f : S → R.

Arrival process of symptomatic patients: The system admits all symptomatic patients

by incurring a treatment cost of c > 0. We define an arrival operator, TARRH
, to represent the

arrival process of queueing system:

TARRH
f(e, xH , xL) = α[f(e, xH + 1, xL) + c] + (1− α)f(e, xH , xL), (3.17)

where α = λH(e)/λ̄H . λ̄H is the maximal arrival rate of symptomatic patients. Hence, α is the

probability that a symptomatic patient arrives at the system in environment e incurring a fixed

cost of c, and 1− α is the probability of a fictitious arrival.

Arrival process of asymptomatic patients: The arrival of asymptomatic patients can

be modeled in two different ways, depending on whether the arrivals are controlled or not.

The operator, TADMi , models the admission control of asymptomatic patients. If there is an

arrival of an asymptomatic patient, we compare the costs of the actions. Asymptomatic patient
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from the group Li would be accepted for screening only if

f(e, xH , xL) + rLi ≥ f(e, xH , xL + 1).

Hence, for 1 ≤ i ≤ K:

TADMif(e, xH , xL) = min{f(e, xH , xL) + rLi , f(e, xH , xL + 1)}. (3.18)

The operator TARRLi
, on the other hand, models the arrival of asymptomatic patients when

they are always admitted to the system. When a patient without symptoms arrives with rate

λLi in state (e, xH , xL), the system moves to state (e, xH , xL + 1):

TARRLi
f(e, xH , xL) = f(e, xH , xL + 1). (3.19)

for 1 ≤ i ≤ K.

Departure Process: The departure process can also be modeled in two ways, depending

whether the system is exercising scheduling control or not. In this framework, we assume a

non-idling policy.

The scheduling operator TSCH models the choice of whether to serve an asymptomatic patient

or a symptomatic patient, incurring the screening cost, s. Asymptomatic patients would be

served only if

g(e, xH , xL − 1) ≤ f(e, xH − 1, xL).

g function depends on the environment. Since we label environment 1 as the best environment,

environment can not improve for e = 1. In this case, the system serves an asymptomatic patient

if

f(1, xH , xL − 1) ≤ f(1, xH − 1, xL)

for any state (1, xH , xL).

However, for e ∈ {2, . . . , E}, if an asymptomatic patient is served, then the environment will



Chapter 3: Problem Definition 31

improve with probability pe,e−1, and remain the same with probability (1− pe,e−1). So for any

state (e, xH , xL) we compare the functions pe,e−1f(e−1, xH , xL−1)+(1−pe,e−1)f(e, xH , xL−1)

and f(e, xH − 1, xL). Moreover, in both cases a screening cost, s ≥ 0, is incurred. Thus, the

scheduling operator TSCH is defined as:

TSCHf(e, xH , xL) = min{f(e, xH − 1, xL), g(e, xH , xL − 1)}+ s, (3.20)

where

g(e, x, y) =

 f(1, x, y) if e = 1

pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1) otherwise.

The operator TDEP models the system which always serves the symptomatic patients first:

TDEP f(e, xH , xL) = Ψ(e, xH , xL) + s,

where

Ψ(e, x, y) =


f(e, x− 1, y) x 6= 0, and e ∈ {1, . . . , E}

f(1, x, y − 1) x = 0, and e = 1

pe,e−1f(e− 1, x, y − 1) + (1− pe,e−1)f(e, x, y − 1) x = 0, and e ∈ {2, . . . , E}.

Environment Shift: In the deterioration operator, TDET , either a transition from an

environment e to e+ 1 occurs with probability τ = γe,e+1/γ̄ or a fictitious environment change

occurs with probability 1− τ :

TDET f(e, xH , xL) = τf(e+ 1, xH , xL) + (1− τ)f(e, xH , xL). (3.21)

Cost: The cost operator, TCOST , indicates a non-negative holding cost, h(e, xH , xL) =

cHxH + cLxL, to the system:

TCOST f(e, xH , xL) = f(e, xH , xL) + h(e, xH , xL). (3.22)
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Uniformization: The operator, TUNIF , forms the convex combination of the functions fj

with propabilities pj > 0 for all j. For any function fj : S → R,

TUNIF ({fj(e, xH , xL)}; {pj}) =
∑
j

pjfj(e, xH , xL). (3.23)

We can model discounting criterion by satisfying the condition
∑m

j=1 pj < 1, and long-run

average criterion by
∑m

j=1 pj = 1.

3.4 Structural Properties Preserved by the Operators

In this section, we define certain structural properties of the operators.

We define the following notations to represent the effects of additional patients, deterioration

of environment and interchanging patients respectively.

∆H(e, xH , xL) = v(e, xH + 1, xL)− v(e, xH , xL), (3.24)

∆L(e, xH , xL) = v(e, xH , xL + 1)− v(e, xH , xL), (3.25)

∆e(e, xH , xL) = v(e+ 1, xH , xL)− v(e, xH , xL), (3.26)

∆HL(e, xH , xL) = v(e, xH + 1, xL)− v(e, xH , xL + 1). (3.27)

Equations 3.24 and 3.25 represents the burden for an additional symptomatic or asymptomatic

patients respectively in state (e, xH , xL), and Equation 3.26 indicates the burden of worsening

environment e to e+ 1 in state (e, xH , xL). Equation 3.27 represents the burden of switching an

asymptomatic patient with a symptomatic patient.

First we will consider the monotonicity properties. We call a value function increasing in x

if f(x) ≤ f(x+ 1). Now, we give the modified definitions of the monotonicity properties for our
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model:

Inc(xH) : ∆H(e, xH , xL) ≥ 0, (3.28)

Inc(xL) : ∆L(e, xH , xL) ≥ 0, (3.29)

Inc(e) : ∆e(e, xH , xL) ≥ 0. (3.30)

Equation 3.28 implies that when a symptomatic patient enters the system, the expected total

cost increases. In other words, a positive burden is incurred for an additional symptomatic

patient. Similarly, equation 3.29 implies a burden for an additional low risk patient on the

system. Lastly, Equation 3.30 implies that deterioration of an environment has a burden on

the system. In other words, when environment worsens, proportion of high risk patients in the

population increases, so that expected total cost increases, too.

We also call a function decreasing in x if f(x) ≥ f(x + 1). We let vp(e, xH , xL) be the

value function in state (e, xH , xL) where p is the probability of improving the environment upon

screening. then we define Dec(p) property as follows:

Dec(p) : vp+ε(e, xH , xL) ≤ vp(e, xH , xL), ∀ ε > 0. (3.31)

Next, we let Diag(xH , xL) represent the monotonicity on the diagonal and define it:

Diag(xH , xL) : ∆HL(e, xH , xL) ≥ 0. (3.32)

Due to the complex structure of scheduling, this property does not have a general implication

on scheduling. However, for e = 1, it characterizes the optimal scheduling policy, as prioritizing

symptomatic patients.

Further, we consider the inverse diagonality property by taking account of the environment

factor. We represent it by IDiage(xH , xL) and describe it as follows:

IDiage(xH , xL) : v(e− 1, xH + 1, xL) ≤ v(e, xH , xL + 1). (3.33)
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First, we assume that the state is (e − 1, xH , xL + 1). We consider short run and long run

effects. The short-run burden can be represented by switching one asymptomatic patient to a

symptomatic patient. Mathematically, it is represented as:

v(e− 1, xH + 1, xL)− v(e− 1, xH , xL + 1).

Further,

v(e, xH , xL + 1)− v(e− 1, xH , xL + 1)

expresses the burden of worsening environment which can be considered as a long-run effect.

The difference is equal to IDiage(xH , xL):

v(e, xH , xL + 1)− v(e− 1, xH , xL + 1)− v(e− 1, xH + 1, xL) + v(e− 1, xH , xL + 1)

= v(e, xH , xL + 1)− v(e− 1, xH + 1, xL).

Therefore, IDiage(xH , xL) ≥ 0 implies that the burden of switching one asymptomatic patient

to a symptomatic patient is less than the burden of worsening the environment. In other words,

long run effects are stronger than short run effects. This property is important to understand

the structure of the optimal scheduling policy in environment e ≥ 2.

We also consider the convexity in xL:

Conv(xL) : ∆L(e, xH , xL) ≤ ∆L(e, xH , xL + 1), (3.34)

which specifies the existence of an optimal admission policy as a threshold type.

Finally, we define supermodularity properties. First one is the supermodularity of the value

functions in (xH , xL) and the second one is the supermodularity of the value functions in (e, xL).

Sup(xH , xL) : ∆H(e, xH , xL) ≤ ∆H(e, xH , xL + 1), (3.35)

Sup(e, xL) : ∆e(e, xH , xL) ≤ ∆e(e, xH , xL + 1). (3.36)
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Equation 3.35 implies that the optimal admission policy can be characterized with a threshold

on xH , and equation 3.36 implies that it can be characterized with a threshold on e.

Table 3.3 summarizes the results. Ticks in the table imply that the event operator preserves

the corresponding property. For some operators, additional conditions are required. These

conditions are remarked as superscripts. Moreover, the operator TUNIF preserves a property if

all functions constituting the operator preserves this property. All proofs are stated in Appendix.

If a certain operator T is defined as Tvn = vn+1, where T is a combination of the operators

TARRH
, TADMi , TARRLi

, TSCH(TDEP ), TCOST , and TDET then the properties Inc(xH), Inc(xL),

Inc(e), Dec(p) and Diag(xH , xL) are always preserved by T . IDiage(xH , xL) is preserved under

some conditions. For the operator, TCOST , the condition cH−cL
c ≤ λH(e + 1) − λH(e), and

for the operator TDET , the condition λH(e + 1) − λH(e) ≥ γe,e+1 should be met. Moreover,

those operators, if alone, are not enough for IDiage(xH , xL) property. They should form the

model with the operator TARRH
. Then we define an operator U as Uvn = vn+1, where U is

a combination of the operators TARRH
, TADMi , TARRLi

, TDEP , TCOST , and TDET . We can

say that U preserve Conv(xL) property anyway. However, it preserves Sup(xH , xL) property if

TDEP preserves Sup(e, xL) property. Also, it preserves Sup(e, xL) property if TARRH
preserves

Sup(xH , xL) property.

The first three properties show that all operators preserve monotonicity with respect to xH ,

xL and e respectively. Hence, the value functions of all the models we consider will be increasing

in xH , xL and e. This is very intuitive, since increasing the number of symptomatic patients

or low risk patients in the system can only increase the total cost. Moreover, the assumption

λH(e) < λH(e+ 1) implies that environment e is better than environment e+ 1. In other words,

the total minimal costs for each environment state e have the same ordering with the arrival

rates of symptomatic patients of corresponding environment. Further, the value functions are

decreasing in p. This is expected since as the probability of improvement the environment

increases, the costs should decrease. An observation from Table 3.3 is on the operator TSCH ,

as it does not preserve a number of properties. Accordingly, we will see below that systems

exercising scheduling control will not have certain monotonicity properties.
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Chapter 4

MODEL FORMULATION AND STRUCTURAL PROPERTIES OF

OPTIMAL POLICIES

In this chapter, we will introduce three models differentiating on controls, and establish

structural properties of these models.

4.1 Systems Exercising Both Scheduling and Admission Control

In this section, we model systems which exercise both scheduling and admission control. We

study the implications of the structural properties preserved by the operators on the structure

of optimal policies. As before, we let vn(e, xH , xL) be the total expected β-discounted cost of

such a system with n transitions remaining in the horizon. Using the event based dynamic

programming technique, the optimality equations are given by:

vn+1(e, xH , xL) = TCOST (TUNIF ({TARRH
vn(e, xH , xL), {TADMivn(e, xH , xL)}i,

TSCHvn(e, xH , xL), TDET vn(e, xH , xL)}; {λ̄H , {λLi}i, µ, γ̄})), (4.1)

with boundary conditions

vn(e,−1, xL) = vn(e, 0, xL),

vn(e, xH ,−1) = vn(e, xH , 0),

and,

v0(e, xH , xL) = 0, ∀ (e, xH , xL).
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Remark: From now on, we will use vn instead of vn(e, xH , xL).

This model preserves Inc(xH), Inc(xL), Inc(e), and Dec(p) and Diag(xH , xL) properties

for any parameter set. Further, it preserves Diage(xH , xL) property if the necessary conditions

are satisfied.

4.1.1 Scheduling Control

Intuitively, we expect the system to always give priority to symptomatic patients. However,

this is not valid for the whole model since we assume that screening asymptomatic patients will

decrease the arrival rate of the symptomatic patients in the long run. We aim to observe the

effect of p on the optimal policy. Since screening asymptomatic patients could not improve the

environment, scheduling policy is characterized for the best environment as giving priority to

symptomatic patients. In this context, the operator Diag(xH , xL) will have direct implications

on the optimal scheduling policy. The following proposition characterizes the scheduling policy

for the systems which exercises both admission and scheduling control.

Proposition 1

i) If e = 1 and xH > 0, then symptomatic patients are always scheduled first.

ii) If p = 1, and the following conditions are satisfied, then asymptomatic patients gain priority

in e ∈ {2, . . . , E}:

(a)
cH − cL

c
≤ λH(e)− λH(e− 1), (4.2)

(b) λH(e)− λH(e− 1) ≥ γe−1,e. (4.3)

iii) Otherwise, the optimal scheduling policy is dynamic.

In particular, i) does not hold for e ∈ {2, . . . , E}. In order to serve symptomatic patients

first in e ∈ {2, . . . , E}, the following criterion should be satisfied;

v(e, xH − 1, xL) ≤ pe,e−1v(e− 1, xH , xL − 1) + (1− pe,e−1)v(e, xH , xL − 1). (4.4)

However, inequality (4.4) is not satisfied for all parameter values. Actually we can show that for
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e > 1, under certain conditions asymptomatic patients obtain priority. We consider the extreme

case where pe,e−1 = 1. Then our scheduling decision is characterized by

v(e, xH − 1, xL)− v(e− 1, xH , xL − 1). (4.5)

The expression (4.5) is greater than zero if the conditions stated in (4.2) and (4.3) are satisfied.

We check the conditions in order to see when the system satisfies these conditions. Since,

cH ≥ cL, cH − cL ≥ 0. c is a huge number and as c goes to infinity, cH−cL
c goes to zero. It

implies λH(e) ≥ λH(e−1), which is one of the model’s assumption. Therefore, (a) is valid for our

system. In (b), the change in the arrival rates of symptomatic patients which can be considered

as an effect in the medium term has a higher impact than the deterioriation rate of long term

other effects. Hence the equations (4.2) and (4.3) will generaly hold. Therefore, asymptomatic

patients obtain priority if conditions in Proposition 1 are satisfied. More generally, we can

conclude that asymptomatic patients may obtain priority. Therefore (i) cannot be extended for

other environments. Figure 4.1 is the illustration of Proposition 1. The shaded regions imply

that asymptomatic patients obtain priority. The conditions (a) and (b) are satisfied for the

parameter set. First graph represents part (i), second graph part (ii), and third graph part (iii).

Further, we can make the following conjecture.

Conjecture 3 Let p be the largest value such that symptomatic patients always obtain priority

and p be the smallest value such that asymptomatic patients always obtain priority. Then for

any number p < p symptomatic patients always obtain priority and for any number p > p

asymptomatic patients always obtain priority. For other p values we have dynamic scheduling.

We illustrate this observation with the following example.

Example 1 We consider long-run average cost criterion with the following parameter values.

λL = 11, λH = [0.36 1.2], µ = 12, cH = 1, cL = 0.02, r = 0.5, s = 0, c = 35100, and γ = 1/3600.

In e = 1, the system serves symptomatic patients as proved. We change p values to observe

the optimal scheduling policy in e = 2. We observe that if p ∈ [0, 0.0008278], we give priority

to symptomatic patients (p = 0.0008278). In other words, screening asymptomatic patients is
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Figure 4.1: Illustration of optimal scheduling policies for different p values (Remaining parame-
ters are as follows; cH=1, cL=0.02, λL=1.6, λH(2)=1.82, λH(1)=0.55, µ=1.73, γ=0.0004, β=0,
r=0.5, s=0, and c=35100).
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not enough to improve the environment. So the system chooses to serve symptomatic patients.

When p ∈ [0.76, 1], the system gives priority to asymptomatic patients since in the long run the

number of symptomatic patients decreases (p = 0.76). Otherwise, there is a dynamic scheduling.

4.1.2 Admission Control

Intuitively, we expect rejection costs to be inversely proportional with rejection regions for

all environments, since the rejection costs are ordered but screening costs are the same. The

implication of this result on the optimal policy is given in Proposition 2:

Proposition 2 Given (e, xH , xL), let k be the smallest integer such that; if it is optimal to

accept a patient from the group Lk, then it is optimal to accept a patient from the group Li

whenever k ≥ i, where rLK
< rLK−1

< . . . < rL2 < rL1.

Proof. There are K different risk groups with rejection costs: rLK
< rLK−1

< . . . < rL2 < rL1 .

Let Ai denote the set where the asymptomatic patient in the ith group is admitted, and Ri

denote the set where the asymptomatic patient in the ith group is rejected. Suppose that the

state is (e, xH , xL) and k is the smallest integer such that asymptomatic patient is admitted.

Let an asymptomatic patient be in Ak (by the definition of k, this patient is in Rk+1). In other

words:

v(e, xH , xL) + rLk
≥ v(e, xH , xL + 1),

and

v(e, xH , xL) + rLk+1
< v(e, xH , xL + 1).

By assumption,

v(e, xH , xL) + rL1 > v(e, xH , xL) + rL2 > . . . > v(e, xH , xL) + rLk
> v(e, xH , xL + 1).

This implies that in state (e, xH , xL), if the patient in the kth group is admitted then the patients

who are in the groups with greater rejection costs than kth group in that state is also admitted.



Chapter 4: Model Formulation and Structural Properties of Optimal Policies 42

Figure 4.2: Optimal Policy with Discounting Model

Hence,

v(e, xH , xL) + rLj ≥ v(e, xH , xL + 1)

means the patient is in Aj in state (e, xH , xL) for all j ≤ k. Therefore if we order the sets, we

obtain

AK ⊂ AK−1 ⊂ . . . ⊂ A2 ⊂ A1,

and

R1 ⊂ R2 ⊂ . . . ⊂ RK−1 ⊂ RK .

2

Further, we observe that if symptomatic patients are not always scheduled first, we can not

characterize the structure of the optimal admission policy due to the effect of event operator

TSCH . We illustrate this with an example.

Example 2 We consider the discounting model with parameters cH=100, cL=0.02, λL=11,

λH(2)=1.2, λH(1)=0.36, µ=12, γ=0.01, β=0.35, p=0.096, r=0.5, s=0, c=30000. Figure 4.2
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shows the optimal policy of the system. We observed that rejection region is not increasing in

symptomatic patients. Thus, we cannot show the existence of the threshold on symptomatic

patients.

As observed, this model is difficult to analyze in terms of optimal policies due to scheduling.

So we simplify the model by considering dynamic admission model given symptomatic patients

are always scheduled first, irrespective of the environment, and analyze this special case in the

next section.

Before moving to dynamic admission model, we analyze the case where there is a dynamic

scheduling with a fixed admission policy as admit all. We rewrite the model.

For e ∈ {1, . . . , E},

vn+1 = TCOST (TUNIF ({TARRH
vn, {TARRLi

vn}i, TSCHvn, TDET vn}; {λ̄H , {λLi}i, µ, γ̄})). (4.6)

The new operator TARRLi
preserves the monotonicity properties in xH , xL, and e. Further, it

maintains Dec(p), Diag(xH , xL) and IDiage(xH , xL) properties. All the results of the previous

model apply to this case. However, due to the complex behaviour of the operator TSCH we can

not characterize the structure of optimal scheduling policy in this model as well.

4.2 System Exercising Only Admission Control

In this model, we assume that symptomatic patients have priority, so that if there is a

symptomatic patient in the system, he/she will be served. Therefore, an asymptomatic patient

will be served only when there is no symptomatic patients in the system. The model is presented

below;

For e ∈ {1, . . . , E},

vn+1 = TCOST (TUNIF ({TARRH
vn, {TADMivn}i, TDEP vn, TDET vn}; {λ̄H , {λLi}i, µ, γ̄})). (4.7)

The operator TDEP , which replaces TSCH , preserves the monotonicity properties in xH , xL, e, p

and other diagonality properties. Thus, the results derived in Section 4.1 are still valid for this
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model.

Sup(xH , xL) property implies that if the system rejects an asymptomatic patient for any

pair (xH , xL), then it will still reject him/her when there are more symptomatic patients in

the system. In other words, the cost of an additional asymptomatic patient to the system

should increase in the number of symptomatic patients in the system. The operators, TARRH
,

TADMi , TDEP , TDET , TCOST and TUNIF preserve the Sup(xH , xL) property if they also preserve

Sup(e, xL) property. Supermodularity guarantees the existence of optimal threshold policies, so

we conclude that the optimal policy is of threshold type for xH . The following theorem states

the supermodularity of value functions in (xH , xL). The proofs for these results are provided in

the Appendix.

Theorem 1 Given (e, xL), there exists an optimal threshold lH(e, xL) on xH such that if xH ≥

lH(e, xL) it is optimal to reject the incoming asymptomatic patient, otherwise it is optimal to

admit her.

Proof. We would like to show that an optimal threshold policy exists. We define

lH(e, xL) = arg min{xH : vn(e, xH , xL + 1)− vn(e, xH , xL)− r ≥ 0}.

Assume that lH(e, xL) = x∗H , so that the following inequality is satisfied,

vn(e, x∗H , xL + 1)− vn(e, x∗H , xL)− r ≥ 0.

By Sup(xH , xL) property,

vn(e, x∗H + 1, xL + 1)− vn(e, x∗H + 1, xL)− r ≥ vn(e, x∗H , xL + 1)− vn(e, x∗H , xL)− r ≥ 0.

Hence, given (e, xL), if the system rejects an asymptomatic patient when there are x∗H symp-

tomatic patients in the system, then it rejects an asymptomatic patient when there are more
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symptomatic patients in the system. Since x∗H is the smallest value that satisfies;

vn(e, x∗H , xL + 1)− vn(e, x∗H , xL)− r ≥ 0,

Asymptomatic patients will be admitted for all values less than x∗H . So we proved the existence

of optimal threshold lH(e, xL).

2

Now the following example illustrates the thresholds.

Example 3 We consider a system with two environments over an infinite horizon, where we

set parameters as cH=1, cL=0.008, λL=11, λH(2)=1.2, λH(1)=0.36, µ=12, γ=1/3650, β=0,

p=0.0005, r=0.5, s=0, and c=35100. The optimal policy is given in Figure 4.3. The thresholds

for symptomatic patients can be easily derived from Figure 4.3: lH(1, 0) = 6, lH(1, 1) = 5,

lH(1, 2) = 4, lH(1, 3) = 3, lH(1, 4) = 2, lH(1, 5) = 1, and lH(1, 6) = 0.

Sup(e, xL) property implies that if the system admits an asymptomatic patient in an envi-

ronment e∗ with a pair (xH , xL) where the proportion of symptomatic patients is high, then the

system admits an asymptomatic patient in a better environment e ≤ e∗. The operators, TARRH
,

TADMi , TDEP , TDET , TCOST and TUNIF also preserve Sup(e, xL) property if Sup(xH , xL) is

preserved. Therefore, optimal policy is of threshold type for e as stated in the following theo-

rem.

Theorem 2 Given (xH , xL), there exists a threshold policy le(xH , xL) on e such that if e ≥

le(xH , xL) it is optimal to reject the incoming asymptomatic patient, otherwise it is optimal to

admit her.

Proof. We define

le(xH , xL) = arg min{e : vn(e, xH , xL + 1)− vn(e, xH , xL)− r ≥ 0},

and refer to Sup(e, xL) property. The rest is similar to the proof of Theorem 1.
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Figure 4.3: Illustration of optimal policies for the system in Example 3.

2

Let us give a representative example of the result.

Example 4 We consider a system with two environments over an infinite horizon, for which

we set cH=1, cL=0.005, λL=11, λH(2)=1.2, λH(1)=0.36, µ=12, γ=1/3650, β=0, p=0.0005,

r=0.5, s=0, and c=35100. Figure 4.4 shows the optimal policies. The triangle in the right figure

covers the states in which asymptomatic patients are admitted to the system in e = 2. In a

better environment namely e = 1, we observe that asymptomatic patients are also admitted in

those states. More explicitly, if an asymptomatic patient is accepted in e = 2, then s/he will be

accepted in e = 1.

Moreover, the operators, TARRH
, TADMi , TDEP , TDET , TCOST and TUNIF preserves convex-

ity in xL which guarantees the existence of an optimal threshold policy on xL. An immediate
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Figure 4.4: Illustration of optimal policies for the system in Example 4.

consequence of convexity can be expressed via thresholds on the number of asymptomatic pa-

tients in the system.

Theorem 3 Given (e, xH), there exists an optimal threshold lL(e, xH) on xL such that if xL ≥

lL(e, xH) it is optimal to reject the incoming asymptomatic patient, otherwise it is optimal to

admit her.

Proof. We define

lL(e, xH) = arg min{xL : vn(e, xH , xL + 1)− vn(e, xH , xL)− r ≥ 0},

and refer to Conv(xH , xL) property. The rest is similar to the proof of Theorem 1.

2

Let us visualize the result with an example.
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Figure 4.5: Illustration of optimal policies for the system in Example 5.

Example 5 We consider a system with two environments over an infinite horizon, where we

set parameters as cH=1, cL=0.02, λL=11, λH(2)=1.2, λH(1)=0.36, µ=12, γ=1/3650, β=0,

p=0.0005, r=0.5, s=0, and c=35100. The optimal policy is given in Figure 4.5. The thresholds

for asymptomatic patients are as follows: lL(1, 0) = 3, lL(1, 1) = 2, lL(1, 2) = 1, and lL(1, 3) = 0.

4.2.1 Conclusion

In this chapter, we establish properties for a system which exercises both admission and

scheduling controls. In particular, we show that if the prevalence of the disease is low, then it is

optimal to always schedule symptomatic class first. However, if the demand from symptomatic

class is high, i.e. the disease prevalence is high, and if screening is effective to reduce disease

prevalence, then asymptomatic class can be given priority. Moreover, we show that in each

state there exists a threshold on the risk groups, such that asymptomatic patients with higher
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Both Controls Admission Control Scheduling Control

Increasing in xH , xL, e Increasing in xH , xL, e Increasing in xH , xL, e
Monotonicity on the diagonal Monotonicity on the diagonal Monotonicity on the diagonal

Threshold policies on xH , xL, e

Table 4.1: Summary of the results

risk than the threshold are admitted to the system, while the others are rejected. Then, we

consider a system which always gives priority to the symptomatic patients for service. The

system exercises its control only through the admission of asymptomatic patients. We show

that optimal admission policies are of threshold type, where the thresholds are on the number of

symptomatic patients, the number of asymptomatic patients, and on the environments. Table

4.1 summarizes the results.



Chapter 5: Numerical Results 50

Chapter 5

NUMERICAL RESULTS

In this chapter, we will discuss the sensitivity of optimal policies and performance measures

to model parameters through numerical examples. Our objective is to present insights into how

the system responds to the changes in the system parameters.

This chapter is structured as follows. Section 5.1 provides the set-up for numerical study.

Section 5.2 explores the effect of system parameters on the optimal policies for systems exercising

different controls. Section 5.3 investigates the impact of system parameters on the performance

measures.

5.1 Set-up of the Numerical Study

The first step in analyzing the model described in the previous chapters is to create a base

case scenario using realistic values for the parameters. We consider a case where we estimate the

parameters of the system according to published data and statistical information from national

agencies. In general, the model was implemented with data for the State of New Hampshire,

obtained from [13]. We conduct a numerical analysis with two risk groups and two environments.

Since colonoscopy cannot be performed on weekends, we assume that there are approximately

250 days in a year excluding weekends, so that µ and other parameters will be consistent.

We briefly explain how we set the parameters. On the average 1.73 colonoscopies can be

performed in a day [13]. So, we take the service rate equal to 1.73. Therefore, µ = 1.73 per

day. In [13], the total population for a single server is approximately 4000, therefore we let

population size be N = 4000. For the average risk population, colonoscopy is recommended for

every ten years ( World Health Organization [93]). Therefore, we assume that one-tenth of the

population demand colonoscopy each year. With this information, we estimate the arrival rate
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of asymtomatic patients to be 1.6 per day. So, we set λL = 1.6. From SEER (Surveillance,

Epidemiology and End Results) data [53], we obtain that the incidence rate (new incidences in

a year) by 2005 is 45.5 (per 100,000 person). Population size times incidence rate gives us the

arrival rate of the symptomatic patient in the bad environment. Therefore, we estimate that the

arrival rate of symptomatic patients in bad environment is 1.82 per day. Thus, λH(2) = 1.82.

National Polyp Study [95], suggests that a periodic colonoscopy could prevent 76% to 90% of

colon cancers. Being conservative, we assume that 70% of colon cancers will be prevented by

periodic colonoscopy. Therefore, the arrival rate of the symptomatic patient in the good envi-

ronment is equal to 30% of the arrival rate of the symptomatic patient in the bad environment.

With this information, we estimate arrival rate of symptomatic patients in good environment

to be 0.55 per day, λH(1) = 0.55. According to World Health Organization [93], for an effective

screening test, 70% of the population at risk needs to be screened. With this information, we

further approximate the probability of improving the environment upon screening an asymp-

tomatic patient to be 0.000357 (p = 0.000357) from the expression 1/(N(1− incidence rate)0.7).

Since colonoscopy should be repeated every ten years, the effectiveness of screening lasts for ten

years. Therefore, we assume that the expected duration in good environment is 10 years. Thus,

deterioriation rate of environment is 0.0004 per day, γ = 0.0004.

Brown [11] estimates that the average treatment cost for colorectal cancer is approximately

$35,100. So we let treatment cost of symptomatic patient to be 35,100 (c = 35, 100). Further,

we let rejection cost be r = 0.5 > 0 since it is important for characterizing optimal admission

policy. However, we let screening costs be s = 0 because it is the same for both patient types.

Since delaying symptomatic patients is more costly than asymptomatic patients, we let cH = 1,

and cL = 0.02. The base case parameter values are listed in Table 5.1.

In this chapter, we focus on four systems with different control mechanisms defined in Table

5.2.

The solution algorithm for the presented models were programmed in Matlab Version 7.0. We

compute the optimal policies numerically by the relative value iteration algorithm by allowing

a maximum of 100 patients in the system.
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Parameters Definitions

λL = 1.6 The arrival rate of asymptomatic patient
λH(1) = 0.55 The arrival rate of symptomatic patient in environment 1
λH(2) = 1.82 The arrival rate of symptomatic patient in environment 2
µ = 1.73 Service rate
p = 0.000357 Probability of moving from worse environment to best environment

upon screening a asymptomatic patient
γ = 0.0004 Deteriorating rate of environment
β = 0 Discount (exponential failure) rate
c = 35100 Cost of a symptomatic patient
cH = 1 Holding cost of a symptomatic patient
cL = 0.02 Holding cost of an asymptomatic patient
r = 0.5 Rejection cost for an asymptomatic patient
s = 0 Screening cost

Table 5.1: Set up values of the numerical problem

Policy Description
Model B System exercising both controls
Model S System exercising only scheduling control
Model A System exercising only admission control
Model N System does not exercise any control

Table 5.2: Models with description

For sensitivity analysis, we focus on the system parameters µ and p. The service rate,

µ, for the base case is 1.73, which is insufficient for the total demand in both environments

(λL + λH(2) > λL + λH(1) > µ). We set µ = 2.151 which represents the case when the service

capacity is barely sufficient for total demand in environment 1. Setting µ=2.5 and 3, we analyze

the system when the service capacity is sufficient in environment 1, but not in environment 2.

Finally, we take µ = 3.5 which represents the sufficient capacity in both environments. For the

p values we have 0.001 and 0.01 in addition to the base case p = 0.000357, in order to capture

the effect of screening.

We present varying optimal policies in a two dimensional graph. The lines on the graphs

represent thresholds. The system admits asymptomatic patients if the number of the patients

(asymptomatic and symptomatic) in the system is less than threshold value for admission policy.

For scheduling policy, asymptomatic patients obtain priority in any state in which the number
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of patients is less than the one that are determined by thresholds.

In this chapter, we scale down the graphs for visual simplicity. The dimensions of the graphs

may not be equal. For example, in Figure 5.2, xH ≤ 10, and xL ≤ 10, in the admission for

e = 1, xH ≤ 100, and xL ≤ 10, for e = 2, and finally for scheduling xH ≤ 100, and xL ≤ 100.

Moreover, we exclude the graphs of scheduling policy in e = 1 since we have shown that the

system schedules symptomatic patients first.

5.1.1 Optimal Policies of the Base Case

We find the optimal admission and scheduling policy for the Model B. In this case, asymp-

tomatic patients are never admitted. Symptomatic patients obtain priority for scheduling in

both environments. In the base case, the holding cost ratio (cH/cL) is 50. If we increase this

ratio by decreasing the holding cost of asymptomatic patients, then the opimal admission policy

changes. Figure 5.1 summarizes the results for this case. The two graphs at the top of Figure

5.1 present optimal admission policy. We observe that when number of patients in the system is

low, asymptomatic patients are admitted in e = 1. When the holding cost of an asymptomatic

patients is lower, the system decides to admit asymptomatic patients since they bring less bur-

den on the system. The two graphs at the bottom of Figure 5.1 provides the optimal scheduling

policy which shows that symptomatic patients obtain priority for both environments. In Model

S, symptomatic patients obtain priority in e = 2, and in Model A, the asymptomatic patients

are never admitted in both environments.

The reason why symptomatic patients are scheduled first is; there is an insufficient capacity

of colonoscopy service and estimated p value is not high enough to improve the environment upon

screening an asymptomatic patient, so the system chooses to screen the patients with colorectal

cancer. In health care systems, there is a prioritization in the urgent cases considering patients

with colorectal cancer. Further, The New York City Department of Health and Mental Hygiene

[8] recommends to prioritize symptomatic patients in order to allocate limited colonoscopy based

on need and use time efficiently. Thus, the current practice of allocating resources is consistent

with our results depending on the estimated parameters.
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Figure 5.1: Optimal policies for cL = 0.005 for Model B.

5.2 Policies

In this section, we analyze how optimal policies change as the model parameters vary.

5.2.1 Model B

First we study the effects of system parameters on the optimal policy for the model in which

both admission and scheduling decisions are available.

5.2.1.1 Sensitivity of p on Model B

We consider the effect of p on the optimal policy. Figure 5.2 summarizes the optimal admis-

sion and scheduling policies for the p values. Note that the admission regions in e = 1 are the
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Figure 5.2: Optimal policies with corresponding p values for Model B.

same for the cases p = 0.01 and p = 0.001. The optimal admission policies are of threshold type,

where the thresholds are on the number of symptomatic and asymptomatic patients. We observe

that when the number of patients in the system is low, asymptomatic patients are admitted.

For e = 2, we observe that if there is a high probability of improving the environment by giving

priority to asymptomatic patients, then the system serves asymptomatic patients in order to

decrease the arrival rate of symptomatic patients in the long run. In particular, asymptomatic

patients are admitted in e = 2, if the number of asymptomatic patients is relatively low in the

system. However, we do not observe any monotonic behaviour in optimal admission policy for

e = 2.
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5.2.1.2 Sensitivity of µ on Model B

Next, we analyze the effect of µ, which is significant for both controls (See Figure 5.3).

Recall that in the good environment, symptomatic patients are scheduled first. As service rate

increases, the system is more likely to reach any state (1, 0, xL) ∈ S. Therefore, the system wants

to schedule asymptomatic patients as well. Hence it admits more asymptomatic patients as µ

increases. As can be observed in Figure 5.3, thresholds for admission region in e = 1 increases

with µ.

For the bad environment, the increase in service rate results in an increase in the number of

states, where asymptomatic patients obtain priority. As we schedule asymptomatic patients in

more states, we also admit more asymptomatic patients especially when the number of asymp-

tomatic patients is low in the system.

Figure 5.3: Optimal policies with corresponding service rates for Model B.
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5.2.2 Model S

We consider the system exercising scheduling control. In this system, asymptomatic patients

are always admitted. Thus, we provide only optimal scheduling policy in e = 2.

5.2.2.1 Sensitivity of p on Model S

We will examine the effect of p on the optimal scheduling policy. Figure 5.4 reports the

Figure 5.4: Optimal policies corresponding to p values for Model S.

results on scheduling control. We can conclude that, as p increases, the system serves more

asymptomatic patients. Figure 5.2 and Figure 5.4 are similar in the scheduling decision in

e = 2. In particular, we can say that the admission decision does not affect the scheduling

policy significantly.

5.2.2.2 Sensitivity of µ on Model S

Now, we analyze the effect of µ on scheduling decision. As indicated in Figure 5.5, if the

number of symptomatic patients are high, the system serves them first. Otherwise, the system

gives priority to asymptomatic patients. As µ increases, the system serves asymptomatic patients
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in more states. We can also conclude that the effect of µ on the optimal policies is similar in

both models considered so far.

Figure 5.5: Optimal policies corresponding to service rates for Model S.

5.2.3 Model A

Finally, we consider the model where symptomatic patients are always scheduled first in both

environments. Thus, we do not provide graphs representing scheduling policies.

5.2.3.1 Sensitivity of p on Model A

We investigate the impact of p on the optimal admission policy. Figure 5.6 shows the optimal

admission policies. Note that the admission regions in both environments are the same for the

cases p = 0.01 and p = 0.001. This figure shows the significant effect of scheduling policies

on admission decisions, as opposed to the insignificant effect of admission on scheduling. If the

system prioritizes symptomatic patients, then only very few asymptomatic patients are admitted

in e = 2. Figure 5.6 differs significantly from Figure 5.2 which shows the sensitivity of admission

policies to scheduling policies with varying p values.
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Figure 5.6: Optimal policies corresponding to p values for Model A.

5.2.3.2 Sensitivity of µ on Model A

We compare the effects of µ on Model A (see Figure 5.7) and Model B (see Figure 5.3).

While the admission region of asymptomatic patients in e = 1 remains unchanged, this region

is significantly smaller in e = 2 in Model A when compared to that in Model B. This shows that

the interaction of two control mechanisms can be quite high. When symptomatic patients have

priority, then the system does not choose to admit asymptomatic patients.

5.3 Performance Measures

In this section, we will conduct a computational study to discuss the sensitivity of perfor-

mance measures to model parameters. Typical performance measures are the number of patients

in the system and the proportion of time the system stays in both environments, which affects

long run arrival rate of symptomatic patients in the long run.

Firstly, we will explore the effect of µ on all performance measures. We begin with the
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Figure 5.7: Optimal policies corresponding to µ values for Model A.

effective arrival rate of symptomatic patients. We define it as follows:

λeff = π1λH(1) + π2λH(2),

where πe is the long-run proportion of time the system stays in e. The results are stated in

Figure 5.8.

When the capacity is insufficient and p is relatively low, we observe that all models offer same

λeff (for µ ≤ 2.1). For µ ≤ 2.1, symptomatic patients obtain priority and πe, 1 ≤ e ≤ 2 does not

differ among the models. For 3.4 ≥ µ ≥ 2.1, we have λL + λH(2) ≥ µ ≥ λL + λH(1) so that

the capacity can be sufficient in some cases. Therefore, optimal scheduling policy changes and

the asymptomatic patients begin to obtain priority (refer to Figure 5.3). Model B and Model

S provide slightly lower λeff than Model A and Model N do, since they screen asymptomatic

patients which will improve the health of the population and increase the amount of time spent

in e = 1, π1. For 3.4 ≤ µ, the difference in λeff increases between the models B, S and A,

N, since the capacity is sufficient in all cases. We note that Model B and S perform better in
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Figure 5.8: The effective arrival rate of symptomatic patients, λeff for µ values for p=0.000357 .

improving the health of poulation in the long run. Hence we can conclude that scheduling is a

more effective control.

We continue with the long run average number of symptomatic patients in the system. Figure

5.9 presents the results for varying service rates.

Since the scheduling policy is to give priority to symptomatic patients, Model A and N always

give priority to symptomatic patients. As µ increases, more symptomatic patients receive service.

Once they are served, they leave the system. Therefore, the number of symptomatic patients

decreases. The behaviour of Model S and B are similar to Model A and N for µ ≤ 2.151,

(Recall that for µ = 1.73 and µ = 2.1, symptomatic patients obtain priority). For µ ≥ 2.1,

since the asymptomatic patiens starts to obtain priority in Model S and B (refer to Figure 5.3),

the number of symptomatic patients in the system increases. When µ ≥ λL + λH(2) (µ ≥ 3.4),

the capacity is sufficient for all types of patients and in both environments which decreases the
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Figure 5.9: Long-run average number of symptomatic patients for µ values for p=0.000357.

number of symptomatic patients in the system decreases.

Figure 5.10 shows the long-run average number of asymptomatic patients. Model N and

Model S admit all asymptomatic patients. Therefore the number of asymptomatic patients

are high in these models. As µ increases from 1.73 to 2.1, the system is more likely to reach

any state (e, 0, xL) ∈ S where asymptomatic patients will be served. Hence the number of

asymptomatic patients decreases in µ. For µ ≥ 2.1, the Model N and Model S begin to differ,

since asymptomatic patients begin to obtain priority in optimal scheduling. Therefore, the

average number of asymptomatic patients in Model S is less than that in Model N. Additionally,

the number of asymptomatic patients increases slightly for the remaining models (Model A and

B) since as µ increases, the systems admit more asymptomatic patients.

Now we will focus on the effect of p on performance measures. Figure 5.11 presents the

results.
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Figure 5.10: Long-run average number of asymptomatic patients for µ values for p=0.000357.

Recall that in this analysis, µ = 1.73 which means there is insufficient capacity. We observe

that in addition to insufficient capacity, if p values are low, all models perform almost the same

with a high λeff . As p increases to 0.01, the effectiveness of screening increases. λeff decreases

only a little for the Model A and N because these systems give priority to symptomatic patients.

However, for the Models B and S, λeff decreases significantly, since these systems give priority

to asymptomatic patients and we observe the effect of screening which improves the health of

the population. Screening high risk groups will have a higher p value; hence it is important to

identify the risk groups and screen them rather than screening the whole population.

Figure 5.12 shows the effect of p on the long-run average number of symptomatic patients

in the system. With small p and insufficient capacity, all models perform the same. When p

increases, we observe the effect of screening in Models B and S. High p improves the environment

faster, and decreases the number of symptomatic patients in the population. Since the effective
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Figure 5.11: The effective arrival rate of symptomatic patients, λeff , for p values for µ = 1.73.

arrival rate of symptomatic patients decreases, less symptomatic patients demand colonoscopy

which implies a reduction in the number of symptomatic patients in the system. Even though

Model A and N prioritizes symptomatic patients, the number of symptomatic patients is much

higher when compared to Model B and S showing the effectiveness of screening.

Next, we analyze the effect of p on the long run average number of asymptomatic patients in

the system. As seen in Figure 5.13, the number of asymptomatic patients are high in Model N

and S for low p values. As p increases, Model N has the same number of asymptomatic patients

in the system, since it is not subject to any control. In Model S, the number of asymptomatic

patients decreases, because as p increases asymptomatic patients gain priority. For Model B and

A, the asymptomatic patients are admitted to the system in a fewer number of states. Therefore,

the values do not vary as much.
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Figure 5.12: Long-run average number of symptomatic patients for p values for µ = 1.73.

Figure 5.13: Long-run average number of asymptomatic patients for p values for µ = 1.73.
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5.3.1 Conclusion

In this chapter, we aim to determine the effects of factors on the optimal policies and per-

formance measures. In general, increasing µ and p increase the number of states in which

asymptomatic patients are admitted and the number of states in which asymptomatic patients

are scheduled. However, admission region and scheduling policy may not be monotone. We ob-

serve that admission policy does not affect the optimal scheduling policy, but scheduling policy

has a significant influence on admission. Indeed, focusing on scheduling control and explor-

ing the effective ways of capacity allocation rather than admission control is advantageous for

preventive services. Hence, in practice only scheduling can be considered.

For low µ and p, the performance of the models do not deviate from each other significantly.

For low p and high µ, Model A and N have lower symptomatic patients in the system than

Models B and S due to prioritizing of symptomatic patients and the low long-run effect of p.

Model A and B have lower asymptomatic patient in the system than Model N and S due to

admission. For low p, the models induce rather close effective arrival rates. The models start

differing when p increases. High p promises an improvement in the health level of the population.

Therefore we would like to increase p. One way of this is to screen proper risk groups. If there

is a patient who is a potential candidate for colorectal cancer in future, screening him is more

valuable than screening a patient with relatively low risk. Therefore, classifying risk groups

accurately is crucial and will reduce the health costs of the population.
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Chapter 6

DYNAMIC COMPARTMENTAL MODEL FOR COLORECTAL CANCER

SCREENING

6.1 Introduction

In this chapter, we will investigate the effects of operational controls on population dynamics.

Our analysis is based on a dynamic compartmental model of the colorectal cancer. Dynamic

compartmental models are widely used to model the progression of the diseases. Compartments

are the homogenous, disjoint groups of the population, which are defined by stage of the cancer

and screening process in that case. For screening programs, most of the research focuses on

three-stage health models (healthy, early stage, late stage) where they ignore the stages which

will influence the disease progress [4]. A good example of these stages is polyps for colorectal

cancer. During colonoscopy, polyps if there are any, are removed, which shows the effectiveness

of the screening programs. If we do not include that process, then we will not be able to model

the interaction between the colorectal cancer development and screening processes. Therefore,

in this chapter, we consider a four-stage health model. We create four scenarios where the

difference arises due to the allocation of the resources. We present a numerical analysis that

compares the performances of the different scheduling strategies and explore the effect of system

parameters in detail.

6.2 Model Description

Our analysis is based on a fluid model of colorectal cancer in a population of individuals

aged 50 to 80. A schematic of the model is presented in Figure 6.1.

Colorectal cancer has four stages depending on the progress of the disease. Stage I is the

least advanced and stage IV is the most advanced stage. We assume that preclinical (early
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stage) cancer includes stages I, II, and clinical (late stage) cancer includes stages III, IV in

this model. We assume a four-stage health model: (1) healthy, (2) with polyps, (3) preclinical

(early stage), colorectal cancer (4) clinical (late stage), colorectal cancer. Moreover, we have

three groups in the screening process: (1) no screening, (2) waiting for screening, (3) under

treatment The number of individuals in the stage of cancer j = 1, 2, 3, 4 and screening process

state i = 1, 2, 3 is denoted Xi,j . This results in a model with 10 compartments. Healthy people,

individuals with polyps, individuals having preclinical cancer and individuals having clinical

cancer are represented by
∑

iXi,1,
∑

iXi,2,
∑

iXi,3 and
∑

iXi,4 respectively. We assume 100%

sensitivity of the colonoscopy, and the polyps are removed during screening service. Therefore,

healthy people and individuals having polyps do not go under treatment after being screened.

Thus, we do not define the compartments X3,1 and X3,2. Individual flows through the service

process are represented vertically in Figure 6.1, and changes in cancer stages are illustrated with

horizontal flows from compartment to compartment.

In our system, we consider healthy people, individuals with colon polyps and preclinical

cancer as low risk patients. Low risk patients demand screening service with rate λL. Healthy

people will develop colon polyps with rate γ. Colon polyps can transform to early stage colorectal

cancer with a rate ε. Further, rate of cancer advancing from early stage to late stage is η.

Patients having colorectal cancer demand service with rate λH . Healthy people, individuals

with colon polyps, preclinical and clinical cancer will complete the service with rate σ, ρ, φ and

χ respectively. These rates allow us to model different scheduling policies. We assume 100%

sensitivity of colonoscopy. α % of the preclinical patients are cured and become healthy after

the screening process, and (1 − α) % of them continue to treatment. After being screened, an

individual with preclinical cancer who continues treatment demands service again with rate τ .

Also, the disease may progress in spite of the treatment and the patient will undergo the same

treatment with clinical patients with rate ψ. Further, we assume that individuals with preclinical

and clinical cancer become healthy if they survive ten years during treatment. If there is no

recurrence in a ten year time interval, then the patient is considered as healthy person [20] and

this occurs with rate β. Patients with clinical cancer demand service again with rate θ after the
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first service.

Exit out of the population from any compartment occurs via maturation of 80-year-olds with

rate ω. Colorectal cancer related deaths are assumed to affect only the individuals with clinical

cancer X1,4, X2,4, and X3,4. Individuals, who are not under treatment, can leave the system

with rate κ. If they are under treatment, then they can die and leave the population with rate

ξ. We ignore the non-cancer related deaths. Entry into the population occurs with rate δ due

to the maturation of 49-year-olds. We assume a constant population so that a new individual

enters the target population as an exit occurs. Therefore we assume that the rate of entering to

the population is equal to the rate of leaving the population due to aging plus mortality rate,

Xmortality, where we will define mortality rate in the next section. The population dynamics

with these assumptions is represented by the following differential equations:

dX1,1(t)
dt

= ω

4∑
j=1

3∑
i=1

Xi,j(t) +Xmortality + σX2,1(t) + ρX2,2(t)

+αφX2,3(t) + β(X3,3(t) +X3,4(t))− (γ + λL + ω)X1,1(t) = 0

dX1,2(t)
dt

= γ(X1,1(t) +X2,1(t))− (λL + ε+ ω)X1,2(t) = 0

dX1,3(t)
dt

= ε(X1,2(t) +X2,2(t))− (λL + η + ω)X1,3(t) = 0

dX1,4(t)
dt

= η(X1,3(t) +X2,3(t))− (λH + ω + κ)X1,4(t) = 0

dX2,1(t)
dt

= λLX1,1(t)− (σ + γ + ω)X2,1(t) = 0

dX2,2(t)
dt

= λLX1,2(t)− (ρ+ ε+ ω)X2,2(t) = 0
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dX2,3(t)
dt

= λLX1,3(t) + τX3,3(t)− (φ+ η + ω)X2,3(t) = 0

dX2,4(t)
dt

= λHX1,4(t) + θX3,4(t)− (χ+ ω + κ)X8(t) = 0

dX3,3(t)
dt

= (1− α)φX2,3(t)− (β + τ + ψ + ω)X9(t) = 0

dX3,4(t)
dt

= χX2,4(t) + ψX3,3(t)− (θ + β + ω + ξ)X3,4(t) = 0

We focus on different policies and compare the effects of these policies. We create four cases

where the difference arises due to the allocation of the resources. The policies includes (a)

priority for high risk patients, (b) priority for low risk patients, (c) no screening for low risk

patients and, (d) rationing of resources among high and low risk patients. Before moving to

policies, we will estimate the values of parameters based on recent available data in order to

make accurate analyses for real life problems.

6.3 Parameter Estimation

The parameters are estimated from medical journal articles or national statistical publica-

tions. Where that was not possible, we made reasonable assumptions so that the simulation

output was of the same magnitude as real life cases. The parameter values corresponding to our

base case described by Table 6.1.

For people over 50, it has been recommended to have a colonoscopy every ten years [77]. We

assume 100% compliance for colonoscopy. Hence, the arrival rate of low risk patients is 0.1 per

year, λL=0.1. We assume that high risk patient demands service within a month on the average,

therefore λH=12 per year. In previous chapter, service rate is estimated as 1.73 per day where

the population size is 4,000. For a simulation model, this population size is not enough to make

accurate estimations. Therefore, service rate is scaled up to 21 per day for a targeted population

of 50,000 people.
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Parameters Description
λL = 0.1 arrival rate/person/year for screening from low risk group
λH = 12 arrival rate/person/year for screening from high risk group
µ = 5, 412 (21 per day) service rate/person/year
ω = 0.033 maturation rate/person/year out of the population
γ = 0.004 rate/person/year of developing colon cancer
β = 0.058 treatment completion rate/person/year after early diagnosis
κ = 0.29 death rate/person/year from late stage cancer without treatment
α = 0.45 percentage of to be cured in preclinical stage
ε = 0.1 rate/person/year of acquiring preclinical cancer
η = 0.2 rate/person/year of cancer advancing from preclinical to clinical stage
ψ = 0.04 rate/person/year of cancer advancing from preclinical to clinical stage

during treatment
θ = 0.5 rate/person/year for re-screening, from preclinical stage
τ = 0.24 rate/person/year for re-screening, from clinical stage
ξ = 0.1 death rate/person/year from late stage cancer during treatment

Table 6.1: Base case problem parameters

Since the targeted age interval is 30 years and after 30 years a person leaves the population,

we assume ω = 1/30 per year. We estimate ψ to be 0.04 per year by fitting the relative survival

rates for early stage cancer, assuming an exponential distribution for the time to be cancer.

We assume that expected remaining lifetime of a patient with clinical cancer who undergoes

treatment is 10 years, therefore we let ξ = 0.1 [9]. X1,4 and X2,4 includes stage III type cancer

patients as well as stage IV type (distal) cancer patients. Mean survival rate for distal cancer is

1.9 years [52]. Therefore, the expected remaining lifetime for people in compartments X1,4 and

X2,4 should be greater than 1.9. Also it should be less than 1/ξ since the probability of dying

of cancer without treatment is relatively high. With respect to this information, we estimate

κ to be 0.29 per year (3.5 years of survival). We estimate β = 0.058 per year assuming an

exponential survival process [48]. Colorectal cancer is curable more than 90 % of the time if it is

detected early (at stage I) according to American Gastroenterological Association [3]. Since the

compartment X2,4 includes two stages (I, II), we take α=0.45. On the average, it takes 10 years

for a colon polyp to transform into a cancer [94]. So ε=0.1 per year. Further, an early stage
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cancer turns into a late stage cancer in approximately 3 years in a high risk group [96]. Since

we assume an average risk group population, we take η = 1/5. According to American Cancer

Society [1], colonoscopy is recommended within a year after surgery and it should be repeated

in three years. Then, it will be followed by repeat examinations at 5-year intervals. Since the

expected remaining lifetime is 25 years for early stage cancer, after being screened, patients with

colon cancer demand 6/25 service in a year. Hence, we take θ=6/25. We set τ=1/2 per year

since colonoscopy is recommended once every two years for high risk population [78]. We can

not reach any data that give an insight about the rate of developing colon polyps. Therefore

we estimate it in order to obtain model output close to the real data. We assume that polyp

developing rate is greater than incidence rate (which is 157.02 per 100,000 person), and let it

be 400 per 100,000 person. Assuming an exponential distribution for developing polyps, we set

γ = 0.004.

The model was validated against the incidence and mortality data given by National Cancer

Institute [53]. Table 6.2 presents the 5-year age specific incidence and mortality rates. We cal-

culated the incidence rate for people between 50-80 ages as 157.02 per 100,000 person by taking

the average of 5-year age specific incidence rates. In our model, we assume that incidence rate

is determined by two factors. Firstly, it includes the number of patients who die from colorectal

cancer without any diagnosis. It also includes the number of patients who are diagnosed after

service. However, we do not count the number of patients who are under treatment and demand

colonoscopy in order to prevent double counting. We define incidence rate as

dXincidence(t)
dt

= (φ− τ)X2,3 + (χ− θ)X2,4 + κ(X1,4 +X2,4).

Moreover, we use this parameter as one of our performance measures in the following sections.

Death rate estimations are done taking the average of 5-year mortality rates among the people

between 50-80 ages (in Table 6.2). We estimate the mortality rate to be 53.08 per 100,000
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Age Interval Incidence Rates Mortality Rates
per 100,000 person per 100,000 person

50-54 53.9 13.7
55-59 76.7 22.3
60-64 114.2 36.5
65-69 173.6 55.5
70-74 230.2 79.3
75-79 293.5 112.2

Table 6.2: Age specific incidence and mortality rates per 100,000 ([53])

person. In this part, we introduce mortality rate, Xmortality, and define it as follows:

dXmortality(t)
dt

= κ(X1,4(t) +X2,4(t)) + ξX3,4(t). (6.1)

This will also be the performance measure of the model and we will analyze the effects of system

parameters on performance measures in detail later. We verify our simulation parameters by

using the model where high risk patients always obtain priority since it is the current practice

of health care systems. As indicated in Table 6.3, the parameter values give a good fit with

incidence and mortality data from National Cancer Institute [53].

Source of estimate Incidence Colorectal Cancer Deaths
[53] 157.02 53.08
Model Estimate 149.345 54.880
|Error| 4.8 % 3.4%

Table 6.3: Comparison of statistics with simulation results (per 100000)

Moreover, we use the number of people with cancer in the population as one of the per-

formance measures. It will be a good measure for determining the effectiveness of screening

programs. We express it as follows;

# Cancer =
4∑
j=3

(X1,j(t) +X2,j(t) +X3,j(t)). (6.2)
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For our calculations, we set time division to be one day. Data were collected after the model

had reached steady state. Our simulation model was run on a PC platform in Vensim R© PLE

for Windows Version 5.9 with Windows XP SP2, 1.73 GHz Pentium Processor.

6.4 Policies

Now we will continue with the models to explore their performances. As stated before, we

have four policies which differs due to resource allocation. For simplicity, we enumerate the

policies. Policies are summmarized in Table 6.4.

Policy Description
Policy H High risk patients always obtain priority
Policy L Low risk patients always obtain priority
Policy NS No screening demand from low risk patients
Policy R Rationing the capacity between the two groups

Table 6.4: Policies with description

6.4.1 Policy H: Priority for High Risk Patients

In this policy, high risk patients have the priority. If a high risk patient enters the system,

she/he will be served as soon as possible. Resource capacity should be allocated for low risk

patients only if there is no high risk patients in the system. The flow going out of X2,4 is,

χX2,4 = µmin{1, X2,4}. (6.3)

The remaining service capacity is given to low risk patients. We allocate the remaining

service between healthy people, individuals with polyps and individuals with preclinical cancer

randomly since polyps, and early stage cancer may not be observed. The flow going out of X2,j ,

1 ≤ j ≤ 3 when the service is given, is such that

σX2,1 + ρX2,2 + φX2,3 = µmin{max{1−X2,4, 0}, X2,1 +X2,2 +X2,3}. (6.4)
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More specifically, we can represent the flow going out of X2,j , (1 ≤ j ≤ 3)
X2,j

X2,1+X2,2+X2,3
µmin{max{1−X2,4, 0}, X2,1 +X2,2 +X2,3} if X2,1 +X2,2 +X2,3 6= 0

0 otherwise.

For this policy, we explore the impact of µ on its performance. Table 6.5 shows the results.

Service rate

5 10 15 21∗ 25 30 40 50

Incidence 212.852 181.629 149.345 149.345 149.345 149.345 149.345 149.345
Mortality 107.39 83.0392 54.8835 54.8806 54.8794 54.8784 54.8771 54.8764
# Cancer 1040.67 821.786 573.15 573.15 573.151 573.151 573.151 573.151

Table 6.5: The Effect of µ on the Performance Measures for Policy H

∗ Estimated parameter

As capacity increases, the opportunity of satisfying demand increases. The server can serve

more individuals, which increases the probability of screening low risk patients in this policy.

Once low risk patients receive service, the polyps, if there are any, are removed and the patients

become healthy. Therefore, the risk of developing colorectal cancer decreases. This causes a

reduction in the incidence rate. Increased capacity enables the system to screen more individuals.

After being screened by colonoscopy, if necessary the patients undergo surgery, or they continue

treatment (i.e. periodical colonoscopy). The actions that are taken to prevent the progression of

the cancer decreases the mortality rate. Accordingly, as service capacity increases, the number of

people with cancer decreases since early detection reduces the probability of developing colorectal

cancer.

Compliance is an important variable which affects the demand of colonoscopy. Compliance

rate indicates the proportion of people who demand colonoscopy in low risk group. Thus, as

compliance rate increases, demand for colonoscopy of screening purposes increases. Now, we

will analyze different compliance rates of low risk patients. Table 6.6 summarizes the results.

As stated above, an increase in compliance rate implies more demand for colonoscopy by
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Compliance(%)

0 30 50 70 100∗

Incidence 240.957 203.113 183.729 168.392 149.345
Mortality 127.356 94.753 79.474 67.9716 54.8806

# Cancer 1222.56 933.285 796.474 692.782 573.15

Table 6.6: Impact of Compliance for Policy H

∗ Estimated parameter

low risk patients. If these individuals have colon polyps, then the polyps are removed since

we assume 100% sensitivity for colonoscopy. Therefore, transformation of polyps into cancer

is prevented. This decreases the incidence rate. Mortality rate also decreases because early

detection enables the patients to overcome the disease. As observed in Table 6.6, compliance

rate also increases the health level of the population by decreasing the number of people with

cancer, which shows the effectiveness of screening.

Rate for Seeking Diagnosis

1 2 3 4 6 12∗

Incidence 147.079 148.181 148.623 148.848 149.096 149.345
Mortality 63.1242 59.2377 57.695 56.8599 55.8032 54.8806
# Cancer 551.832 562.592 566.88 569.152 570.639 573.15

Table 6.7: The Effect of λH for Policy H

∗ Estimated parameter

In addition to compliance rate, one factor that affects the demand is the average time to

seek diagnosis. As seen in Table 6.7, as arrival rate of high risk group increases, incidence rate

will increase. This is expected since every high risk patient will be diagnosed with cancer due to

our assumption of %100 specificity for the colonoscopy. At the same time, the chance of serving

low risk patients decreases, because the capacity is allocated to clinical patients. Therefore, we

do not observe the beneficial effects of screening. Mortality rate decreases because patients with

clinical cancer go under treatment. Moreover, a reduction in the average time to seek diagnosis

decreases the deaths among patients without diagnosis. More high risk patients begin treatment

since they are always scheduled first. This decreases the capacity allocated to low risk patients
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and healthy people continue to develop symptoms. Therefore, in the overall population, the

number of people with cancer increases.

6.4.2 Policy L: Priority for Low Risk Patients

In this policy, low risk patients obtain priority. The flow going out of X2,j , 1 ≤ j ≤ 3 when

the service is given, is

+σX2,1 + ρX2,2 + φX2,3 = µmin{1, X2,1 +X2,2 +X2,3}. (6.5)

More specifically, we can represent the flow going out of X2,j , (1 ≤ j ≤ 3)
X2,j

X2,1+X2,2+X2,3
µmin{1, X2,1 +X2,2 +X2,3} if X2,1 +X2,2 +X2,3 6= 0

0 otherwise.

The remaining service is given to high risk patients. So the flow going out of X2,4 is

χX2,4 = µmin{max{1−X2,1 −X2,2 −X2,3, 0}, X2,4}. (6.6)

Service rate

5 10 15 21 25 30 40 50

Incidence 186.126 160.474 149.345 149.345 149.345 149.345 149.345 149.345
Mortality 173.936 132.676 54.8835 54.8806 54.8794 54.8784 54.8771 54.8764

# Cancer 804.778 633.276 573.15 573.15 573.151 573.151 573.151 573.151

Table 6.8: The Effect of µ for Policy L

Table 6.8 summarizes the results for service rate. As capacity increases, more low risk

patients are screened, which implies more polyps are removed. Therefore the probability of

developing cancer reduces. This decreases the incidence rate. By the same logic, early detection

reduces mortality rate. Removing polyps and early detection also increases the health level of

the population by preventing development of cancer. Therefore as service capacity increases,
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the number of people with cancer decreases. Note that we do not observe the non monotonic

property between the service rate and the number of cancerous people. This is expected because

the system do not allocate capacity to high risk patients when µ = 0 and µ = 1 (total demand

from low risk patients is 4.61) for this system. Deaths can occur via high risk patients and since

they do not receive service the number of deaths are close to each other in both cases. So deaths

can not manipulate the monotonicity property.

Table 6.9 and Table 6.10 present the effects of compliance rates and arrival rate of high risk

patients on the performance measures respectively. Similar effects with Policy H are observed

for compliance rates and arrival rate of high risk patients.

Compliance(%)

0 30 50 70 100

Incidence 240.957 203.113 183.729 168.392 149.345
Mortality 127.356 94.753 79.474 67.9716 54.8806
# Cancer 1222.56 933.285 796.474 692.783 573.15

Table 6.9: Impact of Compliance on Performance Measures for Policy L

Rate for Seeking Diagnosis

1 2 3 4 6 12

Incidence 147.079 148.181 148.623 148.848 149.096 149.345
Mortality 63.1242 59.2377 57.695 56.8599 55.8032 54.8806
# Cancer 551.832 562.592 566.88 569.152 570.639 573.15

Table 6.10: The Effect of λH for Policy L

6.4.3 Policy NS: No Screening For Low Risk Patients

In this case, we never let low risk patients be screened. The colonoscopy service is only used

for diagnostic purposes. Therefore, we set λL = 0. The flow going out of X2,4 is

χX2,4 = µmin{1, X2,4}. (6.7)



Chapter 6: Dynamic Compartmental Model for Colorectal Cancer Screening 80

As observed in Table 6.11 in the case of no screening, as service capacity increases, we observe

an insignificant increase in incidence rate, and an insignificant decrease in mortality rate. This

is due to the absence of early detection. Also, there is an insignificant increase in the number

of people with cancer. The values are relatively higher compared to previous two policies. This

shows the effectiveness of screening programs.

Service rate

5 10 15 21 25 30 40 50

Incidence 240.945 240.953 240.955 240.957 240.957 240.958 240.958 240.959
Mortality 127.399 127.371 127.362 127.356 127.354 127.353 127.35 127.349
# Cancer 1222.45 1222.52 1222.54 1222.56 1222.56 1222.57 1222.58 1222.58

Table 6.11: The Effect of µ for Policy NS

Table 6.12 shows the response of incidence rate, mortality rate and number of people with

cancer for the rate of seeking policy when there is no screening program for low risk patients.

We observe that incidence rate increases and mortality rate decreases as the average time for

seeking diagnosis decreases. No screening worsens the health of the population, therefore the

number of people with cancer increases.

Rate for Seeking Diagnosis

1 2 3 4 6 12

Incidence 235.62 238.212 239.207 239.785 240.346 240.957
Mortality 147.371 137.519 133.733 131.725 129.59 127.356
# Cancer 1171.38 1195.18 1205.29 1210.82 1216.52 1222.56

Table 6.12: The Effect of λH for Policy NS

6.4.4 Policy R: Rationing Capacity

This policy allows high and low risk patients to share the resource. Let c be the percentage

of the server which is reserved for low risk patients, and 1 − c be the percentage of the server

which is reserved for high risk patients. The flow going out of X2,j , 1 ≤ j ≤ 3 when the service
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is given, is

σX2,1 + ρX2,2 + φX2,3 = cµmin{1, X2,1 +X2,2 +X2,3}. (6.8)

More specifically, we can represent the flow going out of X2,j , (1 ≤ j ≤ 3)
X2,j

X2,1+X2,2+X2,3
cµmin{1, X2,1 +X2,2 +X2,3} if X2,1 +X2,2 +X2,3 6= 0

0 otherwise.

We also define the flow going out of X2,4 as

χX2,4 = (1− c)µmin{1, X2,4}. (6.9)

c

0 0.1 0.2 0.5 0.6 0.7 0.8 0.9 1

Incidence 241.28 226.71 185.641 171.545 158.558 149.342 149.339 149.331 138.745
Mortality 127.528 117.232 86.6744 75.1386 63.2957 54.8944 54.9034 54.9312 92.7442
# Cancer 1224.2 1130.49 853.696 750.866 647.063 573.12 573.092 573.013 471.219

Table 6.13: The Impact of Capacity Rationing on Performance Measures

As indicated in Table 6.13, the effect of screening becomes more significant when the system

allocates more capacity to low risk patients. As c increases, incidence rate and the number of

people with cancer decrease (See Figure 6.2). Hence, allocating more capacity to low risk patients

improves these performance measures. However, for high values of c, the system allcoates less

capacity to high risk demand which increases mortality rates. Moreover allocating all capacity

to one type of patients will not be effective since the remaining service capacity, if any, can not

be used. Therefore to avoid ineffective use of service capacity, we analyze only the cases where

c = 20%, 50% and 80%.

6.4.5 Model Comparison

In this section we compare the policies in detail. Figure 6.3 includes the incidence rates of
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(a) Incidence and Mortality rates with c values (b) Number of People with Cancer with c values

Figure 6.2: Performance measures for c values

different scheduling policies respectively. We observe that the highest incidence rate belongs

to Policy NS. This is intuitive, since if the system does not perform colonoscopy for screening

purposes, then the system can not detect the abnormalities and remove them when they are less

harmful. So incidence rate will be higher compared to other policies. We analyze the system and

observe that whenever service capacity is more than 14 (µ ≥ 14), the capacity exceeds the total

demand. As observed in Figure 6.3 , when the demand is less than the capacity, the performance

measures differ in Policy H and Policy L, otherwise they behave similarly. Incidence rates are

the same for the capacity values greater than µ = 14. This result is expected since in the case of

sufficient capacity, the system meets all the demand. Therefore, policies converge to each other.

However, when capacity is not enough then the allocation of the capacity becomes significant

on performance measures. In Policy H, since high risk patients are diagnosed and considered in

the incidence rate, the incidence rate is higher than in Policy L. For the rationing policies, we

observed that as the system allocate more capacity to low risk patients, incidence rate decreases.

Moreover, the incidence rates for rationing policies are bounded by the incidence rate of Policy
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Figure 6.3: Comparison of incidence rates with varying µ

Figure 6.4: Comparison of mortality rates with varying µ
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NS from above and Policy H from below.

Figure 6.4 indicates the sensitivity of mortality rates to service capacity in various policies.

Policy H has the lowest mortality rate among all the policies, since the deaths can occur via high

risk patients, and giving priority to them decreases mortality rate more than it does by giving

priority to low risk patients. However, we also observe that if we serve only high risk patients

and do not screen low risk patients, then this leads ineffective use of capacity, and results

with high level of mortality rate (Policy NS). For µ < 14, in Policy L, the service capacity

does not satisfy the low risk demand which prevents the system to allocate capacity for high

risk patients, therefore the mortality rate for Policy L is the highest among other policies for

µ < 14. In other words, we can state that the capacity is neither enough for low risk patients

nor high risk patients. As µ increases, Policy L begins to satisfy certain level of low risk demand.

Satisfying such demand returns similar effects with allocating c% of capacity to low risk demand

and remaining capacity to high risk demand. Therefore, Policy L intersects with Policy R. As

capacity becomes enough to serve all type of patients in Policy L and Policy H, both policies

give the same mortality values, and these values are almost constant. In rationing policies, we

observed that as c increases, mortality rate decreases. (Note that we are analyzing effective c

values.)

As observed in Figure 6.5, no screening policy results with a highest level of cancerous

population. Policy H and Policy R follow non monotonic trends in service rate. As stated in

the analysis of Policy H, at the low values of µ, deaths when µ = 0 can be high enough to

supress the monotone behaviour of service capacity. As c increases, the number of people with

cancer decreases since the system improves the health level of low risk patients by removing

polyps in precursor stage, or apply effective treatment methods as a result of early detection.

When low risk patients have the priority, the number of people with cancer is less than other

policies, because the system can minimize the flow from precursor stage to preclinical stage and

maximize the flow from preclinical stage to healthy stage.

Figure 6.6, Figure 6.7 and Figure 6.8 show the incidence rates, mortality rates and the number

of people with cancer for varying compliance rates, respectively. We observed that compliance
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Figure 6.5: Comparison of the number of cancerous people with varying µ

Figure 6.6: Comparison of incidence rates with varying compliance rates
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rates influence the performance measures similarly. Note that Policy H and Policy L behave

similarly, since we ran the simulation for µ = 21, which is a sufficient capacity. Moreover, when

c = 80% we have similar results with Policy H and L. Recall that this is true for the cases where

there is enough capacity (See Figure 6.3, Figure 6.4 and Figure 6.5). Incidence rate, mortality

rate and the number of people with cancer decreases with compliance rates for these policies.

Policy R with c = 20% differs from other policies if compliance rate is greater than 30 %, the

performance measures start increasing beginning from that level, since the capacity allocated

to low risk patients do not meet the demand of low risk patients. This advances the flow from

non-cancer stages to cancer stages. Hence incidence rate, mortality rate and the number of

people with cancer increases. The same reason can be concluded for Policy R with c = 50%,

too. For the compliance rates greater than 70 %, Policy R with c = 50% differentiates from

Policy H and L.

Figure 6.7: Comparison of mortality rates with varying compliance rates

The results for varying λH values can be found in Figure 6.9, Figure 6.10 and Figure 6.11.

We conclude that the most insignificant parameter is λH . The change in λH , does not influence
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Figure 6.8: Comparison of the number of cancerous people with varying compliance rates

the performance measures at all. There are slight differences between the data points. If average

time for seeking diagnosis decreases, then more high risk patients can receive service. Screening

high risk patients will increase the incidence rate since they will be diagnosed with cancer. As

average time for seeking diagnosis decreases, the deaths decreases. Moreover, the number of

people with cancer increase with the arrival rate of high risk patients, since there is a decrease

in mortality rate meanwhile there is a flow from precursor stage to cancer stages. As verified

in figures (Figure 6.9, Figure 6.10 and Figure 6.11), incidence rate and the number of people

with cancer are increasing in λH , whereas mortality rate is decreasing in λH . We observe that

the effect of not screening low risk patients is drastic. Since capacity is enough, we observe that

the performance measures for Policy H and Policy L are same. Moreover, different practices of

Policy R vary between these values.
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Figure 6.9: Comparison of incidence rates with varying λH

Figure 6.10: Comparison of mortality rates with varying λH
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Figure 6.11: Comparison of the number of cancerous people with varying λH

6.4.6 Conclusion

As mentioned before, emphasising on scheduling alone is more cost-effective than admission

control. Therefore in this chapter, we consider possible scheduling policies and analyze perfor-

mance of the policies. In this study, we consider four stage health model for colorectal cancer

screening. By doing this, we aim to obtain highest efficiency from screening methods as a result

of classifying the risk groups accurately.

There have been decreases in incidence and mortality rates year to year according to Seer data

[53]. One reason for that trend can be an increasing awareness of the importance of screening

in the population. This can increase the demand for screening. In general, we observe that as

policies improve, incidence and mortality rates decrease. The results in this chapter confirm

these findings.

When service capacity is enough, incidence rate, mortality rate and the number of patients

with cancer behave similarly to compliance rates for all policies. Also in the case of enough
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capacity, an increase in the rate for seeking diagnosis leads an increase in incidence rate and

the number of cancerous patients whereas a decrease in mortality rates for all policies. If the

capacity is not enough, the behaviour of the performance measures can vary. We can observe

non monotonic behaviours as well as reordering in the rankings. Therefore, capacity allocation

should receive attention in this case.

In Model A (systems exercising only admission decision and give priority to high risk patients)

in the previous chapter, we observe that as µ increases, the system can decrease the number of

high risk patients more easily and allocate the remaining service to low risk patients. Serving

low risk patients reduces the long- run effective arrival rate for high risk patients in the future.

This verifies the importance of screening. The system saves lives by screening low risk patients

as a result of early detection. Policy H, a duplicate of Model A in this chapter, states the same

results. In this policy as µ increases, incidence and mortality rates decrease. This shows the

beneficial effect of screening programs.

Policy NS returns the highest value for the number of cancerous people, incidence and mor-

tality rates. No screening worsens the health level of the population and deterioriates the

environment. We can also say that the models which do not screen asymptomatic patients,

namely Model A and N, also has the highest values for long- run effective arrival rate for symp-

tomatic patients. This is unfavorable, since it shows that the ratio of symptomatic patients are

high. That is, these models worsen the population health compared to Model S and B. Hence,

we conclude that in both chapters, the systems that do not use capacity for screening purposes

gives the unfavorable results for the population health, hence the results are consistent.
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Chapter 7

CONCLUSION

In this thesis, we consider a single server where the capacity is shared between screening and

diagnostic services. There are different risk groups who demand service for screening purposes.

There are high risk patients who demand service for diagnostic purposes. The feedback effect

of screening can be observed after service completion. For such a system, we aim to provide

insights of better admission and scheduling control policies for screening services.

Firstly, we study the micro level analysis of the system. We assume that the facility pro-

viding the screening/diagnostic procedure operates in a dynamic random environment, which

determines the demand for diagnostic services. The random environment represents the health

of the population, where if the health of the population is better, the demand rate of symp-

tomatic patients is lower. We provide a model where the system is under the external influence

which is caused by deterioration of health conditions. Moreover, scheduling lower risk patients

is the screening process, improving the health of the whole population in the long run. We

employ this approach to model complex queuing model where we explore the trade off between

decreasing future risk level of the population and the emergency of incoming patients with a

limited capacity of service. The system can exercise admission or scheduling or both controls.

We consider three different models, depending on which of the controls is used.

Our main contribution in this framework is the formulation of the environment. We provide

a model where endogenous and exogenous facrors are considered together and influence the

environment in which the system resides in. The system is under the external influence caused

by the deterioration of health conditions. In addition, the effect of screening is modeled as

an internal factor that improves the environment which leads to a change in the state of the

environment. The arrival rates vary due to the state of the environment.
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In the models where two decisions are available, interaction can be observed between the

decisions. In this study, we have shown that admission control does not influence the scheduling

control at all. However, scheduling policy has an significant effect on admission policy. Hence,

instead of two controls, considering only scheduling control can be an effective practice for health

care systems. Allocating more time and fund for determining the scheduling strategy increases

the effectiveness of screening programs, which results with a reduction in disease prevalence

and thus a reduction in treatment costs of the future. The current practice in the health

care system is to prioritize high risk patients. However, the numerical results show that this

practice is not optimal. By allocating capacity to low risk patients, we can improve the health

conditions. Therefore, we stress the importance of capacity allocation. Moreover, p is the most

deterministic parameter for the performance of the policies. High p improves the future health

of the population. High level of p can be obtained by screening the right risk group. Therefore

classifying the risk groups accurately is crucial. In order to decrease health costs in future,

insurance companies may cover the costs of screening procedures for the individuals who belong

to risk group with higher p value.

The model we propose represents a step in further understanding in the effective allocation

of capacity for diagnostic and screening services via admission and scheduling control. It can ve

extended in many aspects. For an extension, we can introduce a new operator, TWORSE , and

let it represent the process of developing cancer while waiting for the service in the queue where

M is the fixed cost of developing cancer. We define it as follows:

TWORSEf(e, xH , xL) = f(e, xH + 1, xL − 1) +M.

We show that this operator preserves all the properties defined in Chapter 3. The proofs are in

the Appendix B.1.

One of the shortcomings of the model is we assume same pe,e−1 values for different asymp-

tomatic groups because estimating specific pe,e−1 values for risk groups is difficult.

Another limitation of this study is we assume preemptive scheduling. For non-preemptive
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scheduling, we can define a new state where we also record which type of patient the sys-

tem serves. By doing this, we formulate a new state space, Snew = {(A, e, xH , xL) : A ∈

{H,L} (xH , xL) ≥ 0, e ∈ {1, . . . , E}} where H indicates that symptomatic patients receives

service whereas L stands for asymptomatic patient. Then

vn+1(A, e, xH , xL) = TCOST (TUNIF ({TARRH
vn(A, e, xH , xL), {TADMivn(A, e, xH , xL)}i,

TSCHvn(A, e, xH , xL), TDET vn(A, e, xH , xL)}; {λ̄H , {λLi}i, µ, γ̄})), (7.1)

and

TSCHf(A, e, xH , xL) = min{f(H, e, xH − 1, xL), g(L, e, xH , xL − 1)}+ s, (7.2)

where

g(L, e, x, y) =

 f(L, 1, x, y) if e = 1

pe,e−1f(L, e− 1, xH , xL − 1) + (1− pe,e−1)f(L, e, xH , xL − 1) otherwise.

We show that this new model preserves Inc(xH), Inc(xL), Inc(e), Diag(xH , xL), IDiage(xH , xL)

and Conv(xL) properties (See Appendix B.2). We continue with the following conjecture.

Conjecture 4 Value functions preserve Sup(xH , xL) and Sup(e, xL) properties for state space

Snew.

In this thesis, we have considered linear holding costs for risk group. We have shown various

properties of value functions. As the number of patients increase in the system, the burden of

one additional patient will increase, therefore we can also assume non-decreasing and convex

costs in xH and xL. Under non-linear holding costs, we lose some of the properties of value

functions. The following conjecture includes these properties:

Conjecture 5 The properties, Diag(xH , xL), IDiage(xH , xL), Sup(e, xL) and Sup(xH , xL) are

preserved by convex holding costs.
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The remaining properties are preserved by convex holding costs (See Appendix B.3).

Secondly, we use compartmental model to analyze the effects of operational controls on

population dynamics. While doing this, we pay attention to determine the risk groups. We

develop a four-stage health model where we indicate precursor clinical state (polyps) which may

cause inaccurate representation of disease progression if not considered. We consider various

scheduling policies where we allocate the capacity between screening and diagnostic purposes.

Numerical results suggest that screening low risk patients decrease the incidence rate of colorectal

cancer as well as mortality rate. Moreover, screening improves the health of the population.

When capacity is enough to meet the demand, then the scheduling strategies may converge to

each other. If this is not the case, a trade-off between the immediate need for diagnostic and

the long-term benefit of screening will arise. Therefore service providers should pay attention to

the allocation of the resource for screening or diagnostic purposes. Applying effective screening

programs will decrease the burden on the health system and improves the health level of the

population.
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Appendix A

PROOFS FOR CHAPTER 3

We will give a representative example of proofs for Chapter 3.

A.1 Monotonicity in xH

We will prove that all operators defined in Chapter 3, preserve the monotonicity property of

any monotone function f in xH , such that the following inequality,

Tf(e, xH , xL) ≤ Tf(e, xH + 1, xL)

holds for any non-decreasing function f in xH and for all operators T .

Monotonicity in xH Preserved by TARRH

α[f(e, xH + 1, xL) + c] + (1− α)f(e, xH , xL)

−α[f(e, xH + 2, xL) + c]− (1− α)f(e, xH + 1, xL)

= α[f(e, xH + 1, xL)− f(e, xH + 2, xL) + c− c] + (1− α)[f(e, xH , xL)− f(e, xH + 1, xL)]

≤ 0,

is true by the monotonicity of f(e, xH , xL) in xH .

Monotonicity in xH Preserved by TADMi

Let A(e, xH , xL) be the optimal action for admission control in state (e, xH , xL), define it as

follows;
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A(e, xH , xL) =

 0 : asymptomatic patient is rejected in (e, xH , xL)

1 : asymptomatic patient is accepted in (e, xH , xL)

We also define

AAxH (e, xH , xL) = {(x, y) : x ∈ A(e, xH , xL), y ∈ A(e, xH + 1, xL)}.

We consider when there is an arrival of asymptomatic patient and there are four possible cases

due to the actions.

Case 1: AAxH = {(0, 0)},

f(e, xH , xL) + rLi − f(e, xH + 1, xL)− rLi ≤ 0,

holds due to the monotonicity of f(e, xH , xL) in xH .

Case 2: AAxH = {(0, 1)},

Since an asymptomatic patient is rejected in state (e, xH , xL),

f(e, xH , xL) + rLi ≤ f(e, xH , xL + 1).

By monotonicity of f(e, xH , xL) in xH ,

f(e, xH , xL + 1) ≤ f(e, xH + 1, xL + 1).

So

f(e, xH , xL) + rLi ≤ f(e, xH , xL + 1) ≤ f(e, xH + 1, xL + 1).

Therefore,

f(e, xH , xL) + rLi − f(e, xH + 1, xL + 1) ≤ 0.

Case 3: AAxH = {(1, 0)},
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Admission of an asymptomatic patient in state (e, xH , xL) implies that

f(e, xH , xL + 1) ≤ f(e, xH , xL) + rLi .

By monotonicity of f(e, xH , xL) in xH ,

f(e, xH , xL) ≤ f(e, xH + 1, xL).

So

f(e, xH , xL + 1) ≤ f(e, xH , xL) + rLi ≤ f(e, xH + 1, xL) + rLi .

Therefore,

f(e, xH , xL + 1) ≤ f(e, xH + 1, xL) + rLi .

Case 4: AAxH = {(1, 1)},

By monotonicity of f(e, xH , xL) in xH ,

f(e, xH , xL + 1)− f(e, xH + 1, xL + 1) ≤ 0,

Hence, the operator, TADMi , preserves the monotonicity of a function f in xH .

Monotonicity in xH Preserved by TSCH

We define P (e, xH , xL) be the optimal action for scheduling control in state (e, xH , xL), such

that;

P (e, xH , xL) =

 0 : symptomatic patient is scheduled in (e, xH , xL)

1 : asymptomatic patient is scheduled in (e, xH , xL)

We also define

PPxH (e, xH , xL) = {(x, y) : x ∈ P (e, xH , xL), y ∈ P (e, xH + 1, xL)}.
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We consider scheduling of a patient and there are four possible cases due to the actions.

Case 1: PPxH = {(0, 0)},

By monotonicity of f(e, xH , xL) in xH ,

f(e, xH − 1, xL)− f(e, xH , xL) ≤ 0.

Case 2: PPxH = {(0, 1)},

Since symptomatic patient is served in state (e, xH , xL),

f(e, xH − 1, xL) ≤ pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1).

By monotonicity of f(e, xH , xL) in xH ,

f(e, xH , xL − 1) ≤ f(e, xH + 1, xL − 1).

Therefore,

pe,e−1f(e− 1, xH , xL − 1)

+(1− pe,e−1)f(e, xH , xL − 1)
≤

pe,e−1f(e− 1, xH + 1, xL − 1)

+(1− pe,e−1)f(e, xH + 1, xL − 1).

So,

f(e, xH − 1, xL)− pe,e−1f(e− 1, xH + 1, xL − 1) + (1− pe,e−1)f(e, xH + 1, xL − 1) ≤ 0.

Case 3: PPxH = {(1, 0)},

Since asymptomatic patient is served in state (e, xH , xL),

pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1) ≤ f(e, xH − 1, xL).
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By monotonicity of f(e, xH , xL) in xH ,

f(e, xH − 1, xL) ≤ f(e, xH , xL).

Therefore,

pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1) ≤ f(e, xH − 1, xL) ≤ f(e, xH , xL).

So,

pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1)− f(e, xH , xL) ≤ 0.

Case 4: PPxH = {(1, 1)},

pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1)

−pe,e−1f(e− 1, xH + 1, xL − 1)− (1− pe,e−1)f(e, xH + 1, xL − 1)

= pe,e−1[f(e− 1, xH , xL − 1)− f(e− 1, xH + 1, xL − 1)]

+(1− pe,e−1)[f(e, xH , xL − 1)− f(e, xH + 1, xL − 1)]

≤ 0,

is valid by monotonicity of f(e, xH , xL) in xH . We show that TSCH preserves monotonocity of

a function f in xH .

Monotonicity in xH Preserved by TDET

τf(e+ 1, xH , xL) + (1− τ)f(e, xH , xL)− τf(e+ 1, xH + 1, xL)− (1− τ)f(e, xH + 1, xL)

= τ [f(e+ 1, xH , xL)− f(e+ 1, xH + 1, xL)] + (1− τ)[f(e, xH , xL)− f(e, xH + 1, xL)]

≤ 0,

is true due to the monotonicity of f(e, xH , xL) in xH .
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A.1.0.1 Monotonicity in xH Preserved by TUNIF

Since, TUNIF is the sum of TARRH
, TADMi , TSCH and TDET which preserve monotonicity of

f(e, xH , xL) in xH , TUNIF preserves that monotonicity property too.

Monotonicity in xH Preserved by TCOST

cHxH + cLxL − cH(xH + 1)− cLxL ≤ 0,

since cH is non-negative.

So h is non-decreasing in xH which implies that TCOST preserves monotonicity property too.

A.2 Monotonicity in xL

We will prove that all operators defined in Chapter 3, preserve the monotonicity property of

any monotone function f in xL, such that the following inequality,

Tf(e, xH , xL) ≤ Tf(e, xH , xL + 1)

holds for any non-decreasing function f in xL and for all operators T .

Proof is similar to the previous one.

A.3 Monotonicity in e

We will prove that all operators defined in Chapter 3, preserve the monotonicity property of

any monotone function f in e, such that the following inequality,

Tf(e, xH , xL) ≤ Tf(e+ 1, xH , xL)

holds for any non-decreasing function f in e and for all operators T .
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Monotonicity in e Preserved by λ̄HTARRH

λH(e)(f(e, xH + 1, xL) + c) + (λ̄H − λH(e))f(e, xH , xL)

−λH(e+ 1)(f(e+ 1, xH + 1, xL) + c)− (λ̄H − λH(e+ 1))f(e+ 1, xH , xL)

= λ̄H [f(e, xH , xL)− f(e+ 1, xH , xL)]

+λH(e)[f(e, xH + 1, xL) + c− f(e, xH , xL)]

−λH(e+ 1)[f(e+ 1, xH + 1, xL) + c− f(e+ 1, xH , xL)]

≤ λ̄H [f(e, xH , xL)− f(e+ 1, xH , xL)]

+λH(e)[f(e, xH + 1, xL) + c− f(e, xH , xL)]

−λH(e)[f(e+ 1, xH + 1, xL) + c− f(e+ 1, xH , xL)]

= (λ̄H − λH(e))[f(e, xH , xL)− f(e+ 1, xH , xL)]

+λH(e)[f(e, xH + 1, xL) + c− f(e+ 1, xH + 1, xL)− c]

≤ 0.

The first inequality holds since λH(e) < λH(e+1) and the second inequality holds by the mono-

tonicity of f in e.

Monotonicity in e Preserved by TADMi

Let A(e, xH , xL) be the optimal action for admission control in state (e, xH , xL), define it as

follows;

A(e, xH , xL) =

 0 : asymptomatic patient is rejected in (e, xH , xL)

1 : asymptomatic patient is accepted in (e, xH , xL)

We also define

AAe(e, xH , xL) = {(x, y) : x ∈ A(e, xH , xL), y ∈ A(e+ 1, xH , xL)}.
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We consider when there is an arrival of asymptomatic patient and there are four possible cases

due to the actions.

Case 1: AAe = {(0, 0)},

f(e, xH , xL) + rLi − f(e+ 1, xH , xL)− rLi ≤ 0,

holds by the monotonicity of f in e.

Case 2: AAe = {(0, 1)},

f(e, xH , xL) + rLi − f(e+ 1, xH , xL + 1) ≤ f(e, xH , xL + 1)− f(e+ 1, xH , xL + 1) ≤ 0.

The first inequality holds since in state (e, xH , xL) the patient is rejected. That is:

f(e, xH , xL) + rLi ≤ f(e, xH , xL + 1),

and second inequality holds by monotonicity of f in e.

Case 3: AAe = {(1, 0)},

f(e, xH , xL + 1)− f(e+ 1, xH , xL)− rLi leqf(e, xH , xL) + rLi − f(e+ 1, xH , xL)− rLi ≤ 0.

The first inequality holds since in state (e, xH , xL) the patient is admitted. That is;

f(e, xH , xL + 1) ≤ f(e, xH , xL) + rLi ,

and the second inequality holds by monotonicity of f in e.

Case 4: AAe = {(1, 1)},

f(e, xH , xL + 1)− f(e+ 1, xH , xL + 1) ≤ 0,

is true due to monotonicity of f in e.

Thus, TADMi is non-decreasing in e.
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Monotonicity in e Preserved by TSCH

We define P (e, xH , xL) be the optimal action for scheduling control in state (e, xH , xL), such

that;

P (e, xH , xL) =

 0 : symptomatic patient is scheduled in (e, xH , xL)

1 : asymptomatic patient is scheduled in (e, xH , xL)

We also define

PPe(e, xH , xL) = {(x, y) : x ∈ P (e, xH , xL), y ∈ P (e+ 1, xH , xL)}.

We consider scheduling of a patient and there are four possible cases due to the actions.

Case 1: PPe = {(0, 0)},

f(e, xH − 1, xL)− f(e+ 1, xH − 1, xL) ≤ 0,

holds by monotonicity of f in e.

Case 2: PPe = {(0, 1)},

f(e, xH − 1, xL)− pe+1,ef(e, xH , xL − 1)− (1− pe+1,e)f(e+ 1, xH , xL − 1)

≤ pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1)

−pe+1,ef(e, xH , xL − 1)− (1− pe+1,e)f(e+ 1, xH , xL − 1)

= pe,e−1[f(e− 1, xH , xL − 1)− f(e, xH , xL − 1)]

+(1− pe+1,e)[f(e, xH , xL − 1)− f(e+ 1, xH , xL − 1)]

≤ 0.

First inequality holds since in state (e, xH , xL) symptomatic patient is served (f(e, xH−1, xL) ≤

pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1)).
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Case 3: PPe = {(1, 0)},

pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1)− f(e+ 1, xH − 1, xL)

≤ f(e, xH − 1, xL)− f(e+ 1, xH − 1, xL)]

≤ 0,

First inequality holds since in state (e, xH , xL) asymptomatic patient is served (pe,e−1f(e −

1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1) ≤ f(e, xH − 1, xL)).

Case 4: PPe = {(1, 1)},

pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1)

−pe+1,ef(e, xH , xL − 1)− (1− pe+1,e)f(e+ 1, xH , xL − 1)

= pe,e−1[f(e− 1, xH , xL − 1)− f(e, xH , xL − 1)]

+(1− pe+1,e)[f(e, xH , xL − 1)− f(e+ 1, xH , xL − 1)]

≤ 0,

holds by monotonicity of f in e where 0 ≤ p ≤ 1.

Therefore, the operator, TSCH , will be non-decreasing in e.

Monotonicity in xH Preserved by γ̄TDET

γe,e+1f(e+ 1, xH , xL) + (γ̄ − γe,e+1)f(e, xH , xL)

−γe+1,e+2f(e+ 2, xH , xL)− (γ̄ − γe+1,e+2)f(e+ 1, xH , xL)

= (γ̄ − γe,e+1)[f(e, xH , xL)− f(e+ 1, xH , xL)]

−γe+1,e+2[f(e+ 2, xH , xL)− f(e+ 1, xH , xL)]

≤ 0,
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holds by monotonicity of f in e.

Therefore, TDET f is non-decreasing in e if f is a non-decreasing function of e.

Monotonicity in xH Preserved by TUNIF

Since, TUNIF is the sum of TARRH
, TADMi , TSCH and TDET which preserve monotonicity of

f(e, xH , xL) in e, TUNIF preserves that monotonicity property too.

Monotonicity in xH Preserved by TCOST

cHxH + cLxL − cHxH − cLxL ≤ 0,

by simple algebra.

Since h is not a function of e, TCOST preserves monotonicity property too.

A.4 Dec(p)

We assume that p ≤ p. Let f(e, xH , xL) be the corresponding function for p, and f(e, xH , xL)

be the corresponding function for p. We assume that f and f satisfies the following inequality,

f(e, xH , xL)− f(e, xH , xL) ≥ 0 (A.1)

for any state (e, xH , xL) which implies Dec(p) property.

We will show that

Tf(e, xH , xL)− Tf(e, xH , xL) ≥ 0

holds for any functions f , f satisfying Dec(p) property and for all operators T .
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Dec(p) Property Preserved by TARRH

αf(e, xH + 1, xL) + (1− α)f(e, xH , xL)

−αf(e, xH + 1, xL)− (1− α)f(e, xH , xL)

= α[f(e, xH + 1, xL)− f(e, xH + 1, xL)]

+(1− α)[f(e, xH , xL)− f(e, xH , xL)]

≥ 0,

is true due to the Dec(p) property for the state (e, xH , xL).

Dec(p) Property Preserved by TADMi

Let A(e, xH , xL)(A(e, xH , xL)) be the optimal action for admission control in state (e, xH , xL)

for probability p(p), define it as follows;

A(e, xH , xL)(A(e, xH , xL)) =

 0 : asymptomatic patient is rejected in (e, xH , xL)

1 : asymptomatic patient is accepted in (e, xH , xL)

We also define

AAxH (e, xH , xL) = {(x, y) : x ∈ A(e, xH , xL), y ∈ A(e, xH , xL)}.

We consider when there is an arrival of asymptomatic patient and there are four possible cases

due to the actions.

Case 1: AAxH = {(0, 0)},

f(e, xH , xL) + rLi − f(e, xH + 1, xL)− rLi ≥ 0,

holds due to the Dec(p) property for the state (e, xH , xL).

Case 2: AAxH = {(0, 1)},
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Since an asymptomatic patient is admitted in A(e, xH , xL),

f(e, xH , xL) + rLi ≥ f(e, xH , xL + 1).

By the Dec(p) property for the state (e, xH , xL),

f(e, xH , xL) ≥ f(e, xH , xL).

f(e, xH , xL) + rLi ≥ f(e, xH , xL) + rLi ≥ f(e, xH , xL + 1).

Therefore,

f(e, xH , xL) + rLi − f(e, xH , xL + 1) ≥ 0.

Case 3: AAxH = {(1, 0)},

Rejection of an asymptomatic patient in A(e, xH , xL) implies that

f(e, xH , xL + 1) ≥ f(e, xH , xL) + rLi .

By the Dec(p) property for the state (e, xH , xL),

f(e, xH , xL + 1) ≥ f(e, xH , xL + 1).

So

f(e, xH , xL + 1) ≥ f(e, xH , xL + 1) ≥ f(e, xH , xL) + rLi .

Therefore,

f(e, xH , xL + 1)− f(e, xH , xL)− rLi ≥ 0.

Case 4: AAxH = {(1, 1)},

By the Dec(p) property for the state (e, xH , xL + 1),

f(e, xH , xL + 1)− f(e, xH , xL + 1) ≥ 0,
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Hence, the operator, TADMi , preserves the property in (A.1).

Dec(p) Property Preserved by TSCH

We define P (e, xH , xL)(P (e, xH , xL)) be the optimal action for scheduling control in state (e, xH , xL)

for p(p), such that;

P (e, xH , xL)(P (e, xH , xL)) =

 0 : symptomatic patient is scheduled in (e, xH , xL)

1 : asymptomatic patient is scheduled in (e, xH , xL)

We also define

PP xH (e, xH , xL) = {(x, y) : x ∈ P (e, xH , xL), y ∈ P (e, xH , xL)}.

We consider scheduling of a patient and there are four possible cases due to the actions.

Case 1: PP xH = {(0, 0)},

By the Dec(p) property for the state (e, xH − 1, xL),

f(e, xH − 1, xL)− f(e, xH − 1, xL) ≥ 0.

Case 2: PP xH = {(0, 1)},

Since asymptomatic patient is served P (e, xH , xL),

f(e, xH − 1, xL) ≥ pf(e− 1, xH , xL − 1) + (1− p)f(e, xH , xL − 1).

By the Dec(p) property for the state (e, xH − 1, xL),

f(e, xH − 1, xL) ≥ f(e, xH − 1, xL).

Thus,

f(e, xH − 1, xL) ≥ f(e, xH − 1, xL) ≥ pf(e− 1, xH , xL − 1) + (1− p)f(e, xH , xL − 1),
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which leads to

f(e, xH − 1, xL)− pf(e− 1, xH , xL − 1)− (1− p)f(e, xH , xL − 1) ≥ 0.

Case 3: PP xH = {(1, 0)},

Since symptomatic patient is served in state P (e, xH , xL),

pf(e− 1, xH , xL − 1) + (1− p)f(e, xH , xL − 1) ≥ f(e, xH − 1, xL).

Hence,

pf(e− 1, xH , xL − 1) + (1− p)f(e, xH , xL − 1)− f(e, xH − 1, xL)

≥ pf(e− 1, xH , xL − 1) + (1− p)f(e, xH , xL − 1)

−pf(e− 1, xH , xL − 1)− (1− p)f(e, xH , xL − 1)

= p(f(e− 1, xH , xL − 1)− f(e− 1, xH , xL − 1))

+(p− p)(f(e, xH , xL − 1)− f(e− 1, xH , xL − 1))

+(1− p)(f(e, xH , xL − 1)− f(e, xH , xL − 1))

≥ 0,

holds by Inc(e) property and by the Dec(p) property for the state (e − 1, xH , xL − 1) and

(e, xH , xL − 1).

Case 4: PP xH = {(1, 1)},

pf(e− 1, xH , xL − 1) + (1− p)f(e, xH , xL − 1)

−pf(e− 1, xH , xL − 1)− (1− p)f(e, xH , xL − 1
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= p(f(e− 1, xH , xL − 1)− f(e− 1, xH , xL − 1))

+(p− p)(f(e, xH , xL − 1)− f(e− 1, xH , xL − 1))

+(1− p)(f(e, xH , xL − 1)− f(e, xH , xL − 1))

≥ 0,

is valid by Inc(e) property and by the Dec(p) property for the state (e − 1, xH , xL − 1) and

(e, xH , xL − 1).

We show that TSCH preserves monotonocity of a function f in p.

Dec(p) Property Preserved by TDET

τf(e+ 1, xH , xL) + (1− τ)f(e, xH , xL)− τf(e+ 1, xH , xL)− (1− τ)f(e, xH , xL)

= τ [f(e+ 1, xH , xL)− f(e+ 1, xH , xL)] + (1− τ)[f(e, xH , xL)− f(e, xH , xL)]

≥ 0,

is true due to the Dec(p) property for the state (e, xH , xL) and (e+ 1, xH , xL).

Dec(p) Property Preserved by TUNIF

Since, TUNIF is the sum of TARR, TFIC , TADM , TSCH and TDET which preserve the property

of Dec(p), TUNIF preserves that property too.

Dec(p) Property Preserved by TCOST

cHxH + cLxL − cHxH − cLxL = 0,

which implies that TCOST preserves property of Dec(p) too.
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A.5 Monotonicity on the Diagonal

In this proof, we show that all operators preserve monotonicity on the diagonal property of

function f . More explicitly, we will show the inequality for (xH , xL):

Tf(e, xH − 1, xL) ≤ Tf(e, xH , xL − 1)

for any function f with the monotonicity on the diagonal property and for all operators T .

Monotonicity on the Diagonal Preserved by TARRH

α[f(e, xH , xL) + c] + (1− α)f(e, xH − 1, xL)

−α[f(e, xH + 1, xL − 1) + c] + (1− α)f(e, xH , xL − 1)

= α[f(e, xH , xL) + c− f(e, xH + 1, xL − 1)− c]

+(1− α)[f(e, xH − 1, xL)− f(e, xH , xL − 1)]

≤ 0

holds by monotonicity on the diagonal of f in (xH + 1, xL) and (xH , xL).

Monotonicity on the diagonal Preserved by TADMi

Let A(e, xH , xL) be the optimal action for admission control in state (e, xH , xL), define it as

follows;

A(e, xH , xL) =

 0 : asymptomatic patient is rejected in (e, xH , xL)

1 : asymptomatic patient is accepted in (e, xH , xL)

We also define

AADiag(e, xH , xL) = {(x, y) : x ∈ A(e, xH − 1, xL), y ∈ A(e, xH , xL − 1)}.
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We have several cases due to different optimal actions in states (e, xH−1, xL) and (e, xH , xL−1).

Case 1: AADiag = {(0, 0)},

f(e, xH − 1, xL) + rLi − f(e, xH , xL − 1)− rLi

= f(e, xH − 1, xL)− f(e, xH , xL − 1)

≤ 0,

holds by monotonicity on the diagonal property of f in (xH , xL).

Case 2: AADiag = {(0, 1)},

f(e, xH − 1, xL) + rLi − f(e, xH , xL)

≤ f(e, xH − 1, xL + 1)− f(e, xH , xL)

≤ 0,

First inequality holds since in state (e, xH−1, xL) the patient is rejected (f(e, xH−1, xL)+rLi ≤

f(e, xH − 1, xL + 1)), and last inequality holds by monotonicity on the diagonal property of f

in (xH , xL + 1).

Case 3: AADiag = {(1, 0)},

f(e, xH − 1, xL + 1)− f(e, xH , xL − 1)− rLi

≤ f(e, xH − 1, xL) + r − f(e, xH , xL − 1)− rLi

= f(e, xH − 1, xL)− f(e, xH , xL − 1)

≤ 0,

First inequality holds since in state (e, xH−1, xL) the patient is admitted (f(e, xH−1, xL+1) ≤

f(e, xH − 1, xL) + rLi), and last inequality holds by monotonicity on the diagonal property of f

in (xH , xL).



Appendix A: Proofs for Chapter 3 123

Case 4: AADiag = {(1, 1)},

f(e, xH − 1, xL + 1)− f(e, xH , xL) ≤ 0,

holds by monotonicity on the diagonal property of f in (xH , xL + 1).

Monotonicity on the Diagonal Preserved by TSCH

We define P (e, xH , xL) be the optimal action for scheduling control in state (e, xH , xL), such

that;

P (e, xH , xL) =

 0 : symptomatic patient is scheduled in (e, xH , xL)

1 : asymptomatic patient is scheduled in (e, xH , xL)

We also define

PPDiag(e, xH , xL) = {(x, y) : x ∈ P (e, xH − 1, xL), y ∈ P (e, xH , xL − 1)}.

Four possible cases arise with respect to the different optimal actions .

Case 1: PPDiag = {(0, 0)},

f(e, xH − 2, xL)− f(1, xH − 1, xL − 1) ≤ 0,

holds by monotonicity on the diagonal property of f in (xH − 1, xL).

Case 2: PPDiag = {(0, 1)},

f(e, xH − 2, xL)− pe,e−1f(e− 1, xH , xL − 2)− (1− pe,e−1)f(e, xH , xL − 2)

≤ pe,e−1f(e− 1, xH − 1, xL − 1) + (1− pe,e−1)f(e, xH − 1, xL − 1)

− pe,e−1f(e− 1, xH , xL − 2)− (1− pe,e−1)f(e, xH , xL − 2)
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= pe,e−1[f(e− 1, xH − 1, xL − 1)− f(e− 1, xH , xL − 2)]

+ (1− pe,e−1)[f(e, xH − 1, xL − 1)− f(e, xH , xL − 2)]

≤ 0,

The first inequailty holds since in state (e, xH−1, xL) symptomatic patient is screened (f(e, xH−

2, xL) ≤ pe,e−1f(e − 1, xH − 1, xL − 1) + (1 − pe,e−1)f(e, xH − 1, xL − 1)), and last inequality

holds by monotonicity on the diagonal of f in (xH , xL − 1).

Case 3: PPDiag = {(1, 0)},

pe,e−1f(e− 1, xH − 1, xL − 1) + (1− pe,e−1)f(e, xH − 1, xL − 1)− f(e, xH − 1, xL − 1)

= pe,e−1[f(e− 1, xH − 1, xL − 1)− f(e, xH − 1, xL − 1)]

+f(e, xH − 1, xL − 1)− f(e, xH − 1, xL − 1)

≤ 0,

is valid due to the monotonicity of f in e.

Case 4: PPDiag = {(1, 1)},

pe,e−1f(e− 1, xH − 1, xL − 1) + (1− pe,e−1)f(e, xH − 1, xL − 1)

− pe,e−1f(e− 1, xH , xL − 2)− (1− pe,e−1)f(e, xH , xL − 2)

= pe,e−1[f(e− 1, xH − 1, xL − 1)− f(e− 1, xH , xL − 2)]

+ (1− pe,e−1)[f(e, xH − 1, xL − 1)− f(e, xH , xL − 2)]

≤ 0,

holds by monotonicity on the diagonal property of f in (xH , xL − 1).
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Monotonicity on the diagonal Preserved by TDET

τf(e+ 1, xH − 1, xL) + (1− τ)f(e, xH − 1, xL)− τf(e+ 1, xH , xL − 1)− (1− τ)f(e, xH , xL − 1)

= τ [f(e+ 1, xH − 1, xL)− f(e+ 1, xH , xL − 1)] + (1− τ)[f(e, xH − 1, xL)− f(e, xH , xL − 1)]

≤ 0,

holds due to monotonicity on the diagonal of f in (xH , xL).

Monotonicity on the diagonal Preserved by TUNIF

Since, TUNIF is the sum of TARRH
, TADMi , TSCH and TDET which preserve the monotonicity

on the diagonal property of f , then TUNIF preserves this property, too.

Monotonicity on the diagonal Preserved by TCOST

For holding costs,

h(e, xH − 1, xL)− h(e, xH , xL − 1) = cHxH − cH + cLxL − cHxH − cLxL + cL

= −cH + cL ≤ 0

holds since cH ≥ cL.

TCOST , being a sum of TUNIF and holding costs, preserves the monotonicity of f on the diagonal.

A.6 IDiage Property

In this proof, we show that all operators preserve the following property of function f for

(xH , xL);

f(e− 1, xH , xL − 1) ≤ f(e, xH − 1, xL) (A.2)
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Explicitly, we will show the inequality:

Tf(e− 1, xH , xL − 1) ≤ Tf(e, xH − 1, xL)

for any function f satisfying Equation A.2 for all operators T .

IDiage Property Preserved by TARRH

λH(e− 1)
λ̄H

[f(e− 1, xH + 1, xL − 1) + c] + (1− λH(e− 1)
λ̄H

)f(e− 1, xH , xL − 1)

−λH(e)
λ̄H

[f(e, xH , xL) + c]− (1− λH(e)
λ̄H

)f(e, xH − 1, xL)

= [f(e− 1, xH , xL − 1)− f(e, xH − 1, xL)]

+
λH(e− 1)

λ̄H
[f(e− 1, xH + 1, xL − 1)− f(e− 1, xH , xL − 1)]

+
λH(e)
λ̄H

[f(e, xH − 1, xL)− f(e, xH , xL)] +
λH(e− 1)

λ̄H
c− λH(e)

λ̄H
c

= (1− λH(e− 1)
λ̄H

)[f(e− 1, xH , xL − 1)− f(e, xH − 1, xL)]

+
λH(e− 1)

λ̄H
[f(e− 1, xH + 1, xL − 1)− f(e, xH , xL)]

+
(λH(e)− λH(e− 1))

λ̄H
[f(e, xH − 1, xL)− f(e, xH , xL)] +

(λH(e− 1)− λH(e))
λ̄H

c

≤ 0,

holds due to IDiage property of f on (xH , xL), and (xH + 1, xL), and monotonicity of f in xH

respectively.

IDiage Property Preserved by TADMi

Let A(e, xH , xL) be the optimal action for admission control in state (e, xH , xL), define it as

follows;

A(e, xH , xL) =

 0 : asymptomatic patient is rejected in (e, xH , xL)

1 : asymptomatic patient is accepted in (e, xH , xL)
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We also define

AAIDiage(e, xH , xL) = {(x, y) : x ∈ A(e− 1, xH , xL − 1), y ∈ A(e, xH − 1, xL)}.

There are four possible cases due to the actions on the states (e−1, xH , xL−1), and (e, xH−1, xL).

Case 1: AAIDiage = {(0, 0)},

f(e− 1, xH , xL − 1) + rLi − f(e, xH − 1, xL)− rLi

= f(e− 1, xH , xL − 1)− f(e, xH − 1, xL)

≤ 0,

holds due to the property of f in (xH , xL).

Case 2: AAIDiage = {(0, 1)},

f(e− 1, xH , xL − 1) + rLi − f(e, xH − 1, xL + 1)

≤ f(e− 1, xH , xL)− f(e, xH − 1, xL + 1)

= f(e− 1, xH , xL)− f(e, xH − 1, xL + 1)

≤ 0,

First inequality holds since in state (e− 1, xH , xL− 1), the patient is rejected (f(e− 1, xH , xL−

1) + rLi ≤ f(e− 1, xH , xL)), and last inequality is due to the property of f in (xH , xL + 1).

Case 3: AAIDiage = {(1, 0)},

f(e− 1, xH , xL)− f(e, xH − 1, xL)− rLi

≤ f(e− 1, xH , xL − 1) + rLi − f(e, xH − 1, xL)− rLi

= f(e− 1, xH , xL − 1)− f(e, xH − 1, xL)

≤ 0,
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First inequality holds since in state (e−1, xH , xL−1), the patient is admitted (f(e−1, xH , xL) ≤

f(e− 1, xH , xL − 1) + rLi), and last inequality is due to the property of f in (xH , xL).

Case 4: AAIDiage = {(1, 1)},

f(e− 1, xH , xL)− f(e, xH − 1, xL + 1) ≤ 0,

holds due to the property of f in (xH , xL + 1).

IDiage Property Preserved by TSCH

We define P (e, xH , xL) be the optimal action for scheduling control in state (e, xH , xL), such

that;

P (e, xH , xL) =

 0 : symptomatic patient is scheduled in (e, xH , xL)

1 : asymptomatic patient is scheduled in (e, xH , xL)

We also define

PPIDiage(e, xH , xL) = {(x, y) : x ∈ P (e− 1, xH , xL − 1), y ∈ P (e, xH − 1, xL)}.

We consider scheduling of a patient and there are four possible cases due to the actions.

Case 1: PPIDiage = {(0, 0)},

f(e− 1, xH − 1, xL − 1)− f(e, xH − 2, xL) ≤ 0,

holds by the property of f in (xH − 1, xL).

Case 2: PPIDiage = {(0, 1)},

f(e− 1, xH − 1, xL − 1)− pe,e−1f(e− 1, xH − 1, xL − 1)− (1− pe,e+1)f(e, xH − 1, xL − 1)

≤ (1− pe,e−1)[f(e− 1, xH − 1, xL − 1)− f(e, xH − 1, xL − 1)]

≤ 0,
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holds due to monotonicity of f in e.

Case 3: PPIDiage = {(1, 0)},

pe−1,e−2f(e− 2, xH , xL − 2) + (1− pe−1,e−2)f(e− 1, xH , xL − 2)− f(e, xH − 2, xL)

≤ f(e− 1, xH − 1, xL − 1)− f(e, xH − 2, xL)

≤ 0.

First inequality holds since in state (e − 1, xH , xL − 1), the asymptomatic patient is served

(pe−1,e−2f(e− 2, xH , xL− 2) + (1− pe−1,e−2)f(e− 1, xH , xL− 2) ≤ f(e− 1, xH − 1, xL− 1)), and

last inequality is due to the property of f in (xH − 1, xL).

Case 4: PPIDiage = {(1, 1)},

pe−1,e−2f(e− 2, xH , xL − 2) + (1− pe−1,e−2)f(e− 1, xH , xL − 2)

−pe,e−1f(e− 1, xH − 1, xL − 1)− (1− pe,e−1)f(e, xH − 1, xL − 1)

≤ f(e− 1, xH − 1, xL − 1)− pe,e−1f(e− 1, xH − 1, xL − 1)− (1− pe,e−1)f(e, xH − 1, xL − 1)

≤ (1− pe,e−1)[f(e− 1, xH − 1, xL − 1)− f(e, xH − 1, xL − 1)]

≤ 0.

First inequality holds since in state (e−1, xH , xL−1), the low patient is screened (pe−1,e−2f(e−

2, xH , xL− 2) + (1− pe−1,e−2)f(e− 1, xH , xL− 2) ≤ f(e− 1, xH − 1, xL− 1)), and last inequality

is due to monotonicity of f in e.

IDiage Property Preserved by λ̄HTARRH
+ γ̄TDET

TDET alone does not preserve the mentioned property. However, if it is used with the operator

TARRH
, then we could show that λ̄HTARRH

+ γ̄TDET preserves the property stated in Equation
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A.2.

λH(e− 1)(f(e− 1, xH + 1, xL − 1))− λH(e)(f(e, xH , xL))

+(λ̄H − λH(e− 1))f(e− 1, xH , xL − 1)

−(λ̄H − λH(e))f(e, xH − 1, xL)

+γe−1,ef(e, xH , xL − 1)− γe,e+1f(e+ 1, xH − 1, xL)

+(γ̄ − γe−1,e)f(e− 1, xH , xL − 1)− (γ̄ − γe,e+1)f(e, xH − 1, xL)

= λ̄H [f(e− 1, xH , xL − 1)− f(e, xH − 1, xL)]

+λH(e)[f(e, xH − 1, xL)− f(e, xH , xL)]

+λH(e− 1)[f(e− 1, xH + 1, xL − 1)− f(e− 1, xH , xL − 1)]

+γ̄[f(e− 1, xH , xL − 1)− f(e, xH − 1, xL)]

+γe−1,e[f(e, xH , xL − 1)− f(e− 1, xH , xL − 1)]

+γe,e+1[f(e, xH − 1, xL)− f(e+ 1, xH − 1, xL)]

= (λ̄H − λH(e− 1)− γe−1,e)[f(e− 1, xH , xL − 1)− f(e, xH − 1, xL)]

+(λH(e)− λH(e− 1)− γe−1,e)[f(e, xH − 1, xL)− f(e, xH , xL)]

+λH(e− 1)[f(e− 1, xH + 1, xL − 1)− f(e, xH , xL)]

+γ̄[f(e− 1, xH , xL − 1)− f(e, xH − 1, xL)]

+γe−1,e[f(e, xH , xL − 1)− f(e, xH , xL)]

+γe,e+1[f(e, xH − 1, xL)− f(e+ 1, xH − 1, xL)]

≤ 0. (A.3)

λH(e)−λH(e−1) ≥ γe−1,e is satisfied by the assumption, and this also implies that λ̄H−λH(e−

1) ≥ γe−1,e.

Equation A.3 holds by IDiage property of f on (xH , xL), monotonicity of f in xH , IDiage

property of f on (xH + 1, xL), IDiage property of f on (xH , xL), monotonicity of f in xL, and

monotonicity of f in e respectively.
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IDiage Property Preserved by TUNIF

Since, TUNIF is the convex combination of TARRH
, TADMi , TSCH and TDET which preserve the

property of f , then TUNIF preserves this property, too.

IDiage Property Preserved by TCOST

In this part, we evaluate fixed cost c, and holding costs together.

λH(e− 1)c− λH(e)c− cHxH + cLxL − cL − cHxH + cH − cLxL

= (λH(e− 1)− λH(e))c− cL + cH

≤ cL − cH
c

c− cL + cH = 0,

holds by the assumption.

TCOST , being a sum of TUNIF and holding costs, preserves the property of f .

A.7 Convexity in xL

In this proof, we show that all operators preserve convexity of function f . In other words, we

will show that:

Tf(e, xH , xL)− Tf(e, xH , xL + 1) ≥ Tf(e, xH , xL + 1)− Tf(e, xH , xL + 2)

holds for any convex function f for all operators T .

Convexity Preserved by TARRH

αf(e, xH + 1, xL) + (1− α)f(e, xH , xL)

−2αf(e, xH + 1, xL + 1)− 2(1− α)f(e, xH , xL + 1)

+αf(e, xH + 1, xL + 2) + (1− α)f(e, xH , xL + 2)
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= α[f(e, xH + 1, xL)− 2f(e, xH + 1, xL + 1) + f(e, xH + 1, xL + 2)]

+(1− α)[f(e, xH , xL)− 2f(e, xH , xL + 1)− f(e, xH , xL + 2)]

≥ 0,

is true due to the convexity of f in xL. Hence, TARRH
preserves convexity of a function f .

Convexity Preserved by TADMi

We would like to show that

min{f(e, xH , xL) + rLi , f(e, xH , xL + 1)}

−min{f(e, xH , xL + 1) + rLi , f(e, xH , xL + 2)}
≥

min{f(e, xH , xL + 1) + rLi , f(e, xH , xL + 2)}

−min{f(e, xH , xL + 2) + rLi , f(e, xH , xL + 3)}

We use coupling method. We let

δ = min{f(e, xH , xL) + rLi , f(e, xH , xL + 1)}

−min{f(e, xH , xL + 1) + rLi , f(e, xH , xL + 2)}

−min{f(e, xH , xL + 1) + rLi , f(e, xH , xL + 2)}

+ min{f(e, xH , xL + 2) + rLi , f(e, xH , xL + 3)}.

We let systems A, B, C and D correspond to systems in states (e, xH , xL), (e, xH , xL+1),(e, xH , xL+

1) and (e, xH , xL+2) in period n, respectively. We let system A and system D follow the optimal

policy, and system B and system C imitate all the decisions of system A and system D.

First we assume that A and D accept to screen the patients. Since B and C imitate them, B

and C accept the patients, too. So we have,

δ ≥ f(e, xH , xL + 1)− f(e, xH , xL + 2)

−f(e, xH , xL + 2) + f(e, xH , xL + 3)

= f(e, xH , xL + 1)− 2f(e, xH , xL + 2) + f(e, xH , xL + 3)

≥ 0,
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which is true due to convexity of f .

Now, we assume that A and D reject the patients, and let B and C imitate them. Then we have,

δ ≥ f(e, xH , xL) + rLi − f(e, xH , xL + 1)− rLi

−f(e, xH , xL + 1)− rLi + f(e, xH , xL + 2) + rLi

= f(e, xH , xL)− 2f(e, xH , xL + 1) + f(e, xH , xL + 2)

≥ 0

which holds by convexity of f .

Now, we consider the cases where A and D make different decisions. We let system A accept to

screen the patient and system D reject the patient. We assume system B imitates the decisions

of system D, and system C imitates the decisions of system A.

δ ≥ f(e, xH , xL + 1)− f(e, xH , xL + 1)− rLi

−f(e, xH , xL + 2) + f(e, xH , xL + 2) + rLi = 0.

Now, we let system A reject the patient and system D accept to screen the patient with the

above assumption.

δ ≥ f(e, xH , xL) + rLi − f(e, xH , xL + 2)

−f(e, xH , xL + 1)− rLi + f(e, xH , xL + 3)

= f(e, xH , xL)− f(e, xH , xL + 1)

−f(e, xH , xL + 2) + f(e, xH , xL + 3)

≥ f(e, xH , xL + 1)− f(e, xH , xL + 2)

−f(e, xH , xL + 2) + f(e, xH , xL + 3)

≥ 0,
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where the inequalities hold by convexity of f .

Convexity Preserved by TDEP

There are two cases where xH = 0 and xH 6= 0.

Case 1: xH = 0

To begin with, let

∆ = Ψ(e, xH , xL − 1)− 2Ψ(e, xH , xL) + Ψ(e, xH , xL + 1).

For e = 1,

∆ = f(1, xH , xL − 1)− 2f(1, xH , xL) + f(1, xH , xL + 1) ≥ 0

holds by convexity of f .

For e = 2, ..., E,

∆ = pe,e−1[f(e− 1, xH , xL − 1)− 2f(e− 1, xH , xL) + f(e− 1, xH , xL + 1)]

+(1− pe,e−1)[f(e, xH , xL − 1)− 2f(e, xH , xL) + f(e, xH , xL + 1)]

≥ 0

is true due to convexity of f .

Case 2: xH 6= 0

Since there are symptomatic patients in the system, first we serve them. So,

f(e, xH − 1, xL)− 2f(e, xH − 1, xL + 1) + f(e, xH − 1, xL + 2) ≥ 0,

holds by convexity of f .
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Convexity Preserved by TDET

τf(e+ 1, xH , xL) + (1− τ)f(e, xH , xL)

−2τf(e+ 1, xH , xL + 1)− 2(1− τ)f(e, xH , xL + 1)

+τf(e+ 1, xH , xL + 2) + (1− τ)f(e, xH , xL + 2)

= τ [f(e+ 1, xH , xL)− 2f(e+ 1, xH , xL + 1+)f(e+ 1, xH , xL)]

+(1− τ)[f(e, xH , xL)− 2f(e, xH , xL + 1) + f(e, xH , xL)]

≥ 0,

which is true due to the convexity of f in xL. Hence, TDET preserves convexity of a function f .

Convexity Preserved by TUNIF

Here, we note that sum of convex functions are convex. Since, TUNIF is the sum of TARRH
,

TADMi , TDEP and TDET which are convex operators, then TUNIF is convex.

Convexity Preserved by TCOST

cHxH + cLxL − cHxH − cL(xL + 1)− cHxH − cL(xL + 1) + cHxH + cL(xL + 2) ≥ 0, (A.4)

is true by simple algebra. Hence h is convex in xL. Therefore, as a sum of two convex functions

TUNIF and h, TCOST is convex in xL.

A.8 Supermodularity Property in (e, xL)

In this proof, we show that all operators preserve supermodularity property of f in (e, xL).

Mathematically, we will show the inequalities for the pair (xH , xL):

Tf(e, xH , xL)− Tf(e, xH , xL + 1)− Tf(e+ 1, xH , xL)− Tf(e+ 1, xH , xL + 1) ≥ 0. (A.5)

for any supermodular function f in (e, xL) and for all operators T .
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Supermodularity Property in (e, xL) Preserved by λ̄HTARRH

λH(e)[f(e, xH + 1, xL)− f(e, xH + 1, xL + 1)]

− λH(e+ 1)[f(e+ 1, xH + 1, xL)− f(e+ 1, xH + 1, xL + 1)]

+ [λ̄H − λH(e)][f(e, xH , xL)− f(e, xH , xL + 1)]

− [λ̄H − λH(e+ 1)][f(e+ 1, xH , xL)− f(e+ 1, xH , xL + 1)]

= λH(e)[f(e, xH + 1, xL)− f(e, xH + 1, xL + 1)

− f(e, xH , xL) + f(e, xH , xL + 1)]

+ λH(e+ 1)[f(e+ 1, xH + 1, xL + 1)− f(e+ 1, xH + 1, xL)

− f(e+ 1, xH , xL + 1) + f(e+ 1, xH , xL)]

+ λ̄H [f(e, xH , xL)− f(e, xH , xL + 1)

− f(e+ 1, xH , xL) + f(e+ 1, xH , xL + 1)]

= λH(e)[f(e, xH + 1, xL)− f(e, xH + 1, xL + 1)

− f(e, xH , xL) + f(e, xH , xL + 1) + f(e+ 1, xH + 1, xL + 1)− f(e+ 1, xH + 1, xL)

− f(e+ 1, xH , xL + 1) + f(e+ 1, xH , xL) + f(e, xH , xL)− f(e, xH , xL + 1)

− f(e+ 1, xH , xL) + f(e+ 1, xH , xL + 1)]

+ (λH(e+ 1)− λH(e))[f(e+ 1, xH + 1, xL + 1)− f(e+ 1, xH + 1, xL)

− f(e+ 1, xH , xL + 1) + f(e+ 1, xH , xL)]

+ (λ̄H − λH(e))[f(e, xH , xL)− f(e, xH , xL + 1)

− f(e+ 1, xH , xL) + f(e+ 1, xH , xL + 1)]

= λH(e)[f(e, xH + 1, xL)− f(e, xH + 1, xL + 1)

− f(e+ 1, xH + 1, xL) + f(e+ 1, xH + 1, xL + 1)]

+ (λH(e+ 1)− λH(e))[f(e+ 1, xH + 1, xL + 1)− f(e+ 1, xH + 1, xL)



Appendix A: Proofs for Chapter 3 137

− f(e+ 1, xH , xL + 1) + f(e+ 1, xH , xL)]

+ (λ̄H − λH(e))[f(e, xH , xL)− f(e, xH , xL + 1)

− f(e+ 1, xH , xL) + f(e+ 1, xH , xL + 1)]

≥ 0.

Inequality holds due to supermodularity of f in (e, xL) for fixed xH + 1, supermodularity of f

in (xH , xL) for fixed e+ 1, and supermodularity of f in (e, xL) for fixed xH .

Supermodularity Property in (e, xL) Preserved by TADMi

We let

δ = min{f(e, xH , xL) + rLi , f(e, xH , xL + 1) + s}

−min{f(e, xH , xL + 1) + rLi , f(e, xH , xL + 2) + s}

−min{f(e+ 1, xH , xL) + rLi , f(e+ 1, xH , xL + 1) + s}

+ min{f(e+ 1, xH , xL + 1) + rLi , f(e+ 1, xH , xL + 2) + s}.

Let systems A, B, C and D correspond to systems in states (e, xH , xL), (e, xH , xL + 1),(e +

1, xH , xL) and (e+1, xH , xL+1) in period n, respectively. We let system A and system D follow

the optimal policy, and system B and system C imitate all the decisions of system A and system

D.

First we assume that A and D accept to screen the patients, so do B and C. Hence we have,

δ ≥ f(e, xH , xL + 1)− f(e, xH , xL + 2)− f(e+ 1, xH , xL + 1) + f(e+ 1, xH , xL + 2)

≥ 0,
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which holds due to supermodularity of f in (e, xL).

Now, we assume that A and D reject the patients, and since B and C imitate them we have,

δ ≥ f(e, xH , xL) + rLi − f(e, xH , xL + 1)− rLi

−f(e+ 1, xH , xL)− rLi + f(e+ 1, xH , xL + 1) + rLi

= f(e, xH , xL)− f(e, xH , xL + 1)

−f(e+ 1, xH , xL) + f(e+ 1, xH , xL + 1)

≥ 0,

holds by supermodularity of f in (e, xL).

Now, we consider the cases where A and D make different decisions. We let system A accept

to screen the patient and system D reject the patient. We let system B imitate the decisions of

system D so that it rejects the same patient that system D rejects, and system C imitate the

decisions of system A so that it accepts the same patient that system A accepts.

δ ≥ f(e, xH , xL + 1)− f(e, xH , xL + 1)− rLi

−f(e+ 1, xH , xL + 1)− f(e+ 1, xH , xL + 1) + rLi

= f(e, xH , xL + 1)− f(e, xH , xL + 1)

−f(e+ 1, xH , xL + 1)− f(e+ 1, xH , xL + 1)

= 0.

Now, we let system B and system C imitate the decisions of system A and system D respectively.

We assume system A rejects the patient, whereas system D accepts to screen the patient.

δ ≥ f(e, xH , xL) + rLi − f(e, xH , xL + 1)− rLi

−f(e+ 1, xH , xL + 1) + f(e+ 1, xH , xL + 2)
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= f(e, xH , xL)− f(e, xH , xL + 1)

−f(e+ 1, xH , xL + 1) + f(e+ 1, xH , xL + 2)

≥ f(e+ 1, xH , xL)− 2f(e+ 1, xH , xL + 1) + f(e+ 1, xH , xL + 2)

≥ 0,

where the first inequality holds by supermodularity of f in (e, xL), and second inequality holds

by convexity of f in xL.

Supermodularity Property in (e, xL) Preserved by TDEP

We let

∆ = Ψ(e, xH , xL)−Ψ(e, xH , xL + 1)−Ψ(e+ 1, xH , xL) + Ψ(e+ 1, xH , xL + 1).

There are two possible cases due to the number of symptomatic patients in the system.

Case 1: xH = 0

In this case, there is no symptomatic patient in the system, so we serve asymptomatic patients.

Since xH = 0,

∆ = pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1)

−pe,e−1f(e− 1, xH , xL)− (1− pe,e−1)f(e, xH , xL)

−pe+1,ef(e, xH , xL − 1)− (1− pe+1,e)f(e+ 1, xH , xL − 1)

+pe+1,ef(e, xH , xL) + (1− pe+1,e)f(e+ 1, xH , xL)

= f(e, xH , xL − 1)− f(e, xH , xL)

−f(e+ 1, xH , xL − 1) + f(e+ 1, xH , xL)

+pe,e−1f(e− 1, xH , xL − 1)− pe,e−1f(e, xH , xL − 1)

−pe,e−1f(e− 1, xH , xL) + pe,e−1f(e, xH , xL)
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−pe+1,ef(e, xH , xL − 1) + pe+1,ef(e+ 1, xH , xL − 1)

+pe+1,ef(e, xH , xL)− pe+1,ef(e+ 1, xH , xL)

= f(e, xH , xL − 1)− f(e, xH , xL)

−f(e+ 1, xH , xL − 1) + f(e+ 1, xH , xL)

−pe+1,e[f(e, xH , xL − 1)− f(e+ 1, xH , xL − 1)

−f(e, xH , xL) + f(e+ 1, xH , xL)]

+pe,e−1[f(e− 1, xH , xL − 1)− f(e, xH , xL − 1)

−f(e− 1, xH , xL) + f(e, xH , xL)]

= (1− pe+1,e)[f(e, xH , xL − 1)− f(e, xH , xL)

−f(e+ 1, xH , xL − 1) + f(e+ 1, xH , xL)]

+pe,e−1[f(e− 1, xH , xL − 1)− f(e, xH , xL − 1)

−f(e− 1, xH , xL) + f(e, xH , xL)]

≥ 0,

holds due to supermodularity of f in (e, xL − 1) and (e− 1, xL − 1).

Case 2: xH 6= 0

Since there are symptomatic patients in the system, first we serve them. Then for any environ-

ment e,

∆ = f(e, xH − 1, xL)− f(e, xH − 1, xL + 1)− f(e+ 1, xH − 1, xL) + f(e+ 1, xH − 1, xL + 1)

≥ 0,

holds due to supermodularity of f in (e, xL) for fixed xH .
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Supermodularity Property in (e, xL) Preserved by γ̄TDET

γe,e+1[f(e+ 1, xH , xL)− f(e+ 1, xH , xL + 1)]

−γe+1,e+2[f(e+ 2, xH , xL)− f(e+ 2, xH , xL + 1)]

+(γ̄ − γe,e+1)[f(e, xH , xL)− f(e, xH , xL + 1)]

−(γ̄ − γe+1,e+2)[f(e+ 1, xH , xL)− f(e+ 1, xH , xL + 1)]

= γe,e+1[f(e+ 1, xH , xL)− f(e+ 1, xH , xL + 1)

−f(e, xH , xL) + f(e, xH , xL + 1)]

+γ̄[f(e, xH , xL)− f(e, xH , xL + 1)

−f(e+ 1, xH , xL) + f(e+ 1, xH , xL + 1)]

+γe+1,e+2[f(e+ 1, xH , xL)− f(e+ 1, xH , xL + 1)

−f(e+ 2, xH , xL) + f(e+ 2, xH , xL + 1)]

= (γ̄ − γe,e+1)[f(e, xH , xL)− f(e, xH , xL + 1)

−f(e+ 1, xH , xL) + f(e+ 1, xH , xL + 1)]

+γe+1,e+2[f(e+ 1, xH , xL)− f(e+ 1, xH , xL + 1)

−f(e+ 2, xH , xL) + f(e+ 2, xH , xL + 1)]

≥ 0,

holds due to supermodularity of f in (e, xL) and (e+ 1, xL).

Supermodularity Property in (e, xL) Preserved by TUNIF

Since, TUNIF is the sum of TARRH
, TADM , TDEP and TDET which preserve supermodularity of

f in (e, xL), then TUNIF preserves this property, too.
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Supermodularity Property in (e, xL) Preserved by TCOST

cHxH + cLxL − cHxH − cL(xL + 1)− cHxH − cLxL + cHxH + cL(xL + 1) = 0.

is true by simple algebra. Hence h is supermodular in (e, xL). Therefore, as a sum of two

functions TUNIF and h, TCOST preserves this property.

A.9 Supermodularity Property in (xH , xL)

In this proof, we show that all operators preserve supermodularity property of f in (xH , xL).

More explicitly, we will show for the pair (xH , xL):

Tf(e, xH , xL)− Tf(e, xH + 1, xL)− Tf(e, xH , xL + 1) + Tf(e, xH + 1, xL + 1) ≥ 0, (A.6)

holds for any supermodular function f and for all operators T .

Supermodularity Property in (xH , xL) Preserved by TARRH

αf(e, xH + 1, xL) + (1− α)f(e, xH , xL)

− αf(e, xH + 2, xL+) + (1− α)f(e, xH + 1, xL)

− αf(e, xH + 1, xL + 1) + (1− α)f(e, xH , xL + 1)

+ αf(e, xH + 2, xL + 1) + (1− α)f(e, xH + 1, xL + 1)

= α[f(e, xH + 1, xL)− f(e, xH + 2, xL)− f(e, xH + 1, xL + 1) + f(e, xH + 2, xL + 1)]

+ (1− α)[f(e, xH , xL)− f(e, xH + 1, xL)− f(e, xH , xL + 1) + f(e, xH + 1, xL + 1)]

≥ 0,

holds by supermodularity of f in (xH + 1, xL) and (xH , xL).
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Supermodularity Property in (xH , xL) Preserved by TADMi

We let

δ = min{f(e, xH , xL) + rLi , f(e, xH , xL + 1)}

−min{f(e, xH + 1, xL) + rLi , f(e, xH + 1, xL + 1)}

−min{f(e, xH , xL + 1) + rLi , f(e, xH , xL + 2)}

+ min{f(e, xH + 1, xL + 1) + rLi , f(e, xH + 1, xL + 2)}.

Let systems A, B, C and D correspond to systems in states (e, xH , xL), (e, xH+1, xL),(e, xH , xL+

1) and (e, xH + 1, xL + 1) in period n, respectively. We let system A and system D follow the

optimal policy, and system B and system C imitate all the decisions of system A and system D.

First we assume that A and D accept to screen the patients. Therefore, all systems accept to

screen the patients. So we have,

δ ≥ f(e, xH , xL + 1)− f(e, xH + 1, xL + 1)− f(e, xH , xL + 2) + f(e, xH + 1, xL + 2)

≥ 0,

which holds by supermodularity of f in (xH , xL + 1).

Now, we assume that A and D reject the patients. Since systems B and C imitate them, we

have,

δ ≥ f(e, xH , xL) + rLi − f(e, xH + 1, xL)− rLi − f(e, xH , xL + 1)− rLi + f(e, xH + 1, xL + 1) + rLi

= f(e, xH , xL)− f(e, xH + 1, xL)− f(e, xH , xL + 1) + f(e, xH + 1, xL + 1)

≥ 0,

which holds by supermodularity of f in (xH , xL).

Now, we consider the cases where A and D make different decisions. We let system A reject
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the patient and system D accept to screen the patient. We assume that system B imitates the

decision of system A and system C imitates the decision of system D.

δ ≥ f(e, xH , xL) + rLi − f(e, xH + 1, xL)− rLi − f(e, xH , xL + 2) + f(e, xH + 1, xL + 2)

= f(e, xH , xL)− f(e, xH + 1, xL)− f(e, xH , xL + 2) + f(e, xH + 1, xL + 2)

≥ f(e, xH , xL + 1)− f(e, xH + 1, xL + 1)− f(e, xH , xL + 2) + f(e, xH + 1, xL + 2)

≥ 0,

where the first inequality is due to the supermodularity of f in (xH , xL), and second inequality

is due to the supermodularity of f in (xH , xL + 1).

Now, we let system B imitate the decision of system A so that it accepts the patient that system

A accepts, whereas system C imitate the decision of system D so that it rejects the patient that

system D rejects.

δ ≥ f(e, xH , xL + 1)− f(e, xH + 1, xL + 1)− f(e, xH , xL + 1)− rLi + f(e, xH + 1, xL + 1) + rLi

= f(e, xH , xL + 1)− f(e, xH + 1, xL + 1)− f(e, xH , xL + 1) + f(e, xH + 1, xL + 1)

= 0.

Supermodularity Property in (xH , xL) Preserved by TDEP

To begin with, we let

∆ = Ψ(e, xH , xL)−Ψ(e, xH + 1, xL)−Ψ(e, xH , xL + 1) + Ψ(e, xH + 1, xL + 1).

Case 1: xH = 0

In this case, the system has no symptomatic patient, hence we serve asymptomatic patients.
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Then for e = 1,

∆ = f(1, xH , xL − 1)− f(1, xH , xL)− f(1, xH , xL) + f(1, xH , xL + 1)

= f(1, xH , xL − 1)− 2f(1, xH , xL) + f(1, xH , xL + 1)

≥ 0,

holds due to convexity of f in xL − 1 for fixed xH .

For e ∈ {2, · · · , E},

∆ = pe,e−1f(e− 1, xH , xL − 1) + (1− pe,e−1)f(e, xH , xL − 1)− f(e, xH , xL)

− pe,e−1f(e− 1, xH , xL)− (1− pe,e−1)f(e, xH , xL) + f(e, xH , xL + 1)

= pe,e−1[f(e− 1, xH , xL − 1)− f(e, xH , xL − 1)− f(e− 1, xH , xL) + f(e, xH , xL)]

+ [f(e, xH , xL − 1)− f(e, xH , xL)− f(e, xH , xL) + f(e, xH , xL + 1)]

≥ 0.

The terms in the first bracket is positive due to Sup(e, xL) property of f , and remaining terms

are positive due to convexity of f in xL − 1 for fixed xH .

Case 2: xH 6= 0

Since there are symptomatic patients in the system, first we serve them. So,

∆ = f(e, xH − 1, xL)− f(e, xH , xL)− f(e, xH − 1, xL + 1) + f(e, xH , xL + 1)

≥ 0,

and holds by supermodularity of f in (xH − 1, xL).
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Supermodularity Property in (xH , xL) Preserved by TDET

τf(e+ 1, xH , xL) + (1− τ)f(e, xH , xL)

−τf(e+ 1, xH + 1, xL)− (1− τ)f(e, xH + 1, xL)

−τf(e+ 1, xH , xL + 1)− (1− τ)f(e, xH , xL + 1)

−τf(e+ 1, xH + 1, xL + 1)− (1− τ)f(e, xH + 1, xL + 1)

= τ [f(e+ 1, xH , xL)− f(e+ 1, xH + 1, xL)− f(e+ 1, xH , xL + 1) + f(e+ 1, xH + 1, xL + 1)]

+(1− τ)[f(e, xH , xL)− f(e, xH + 1, xL)− f(e, xH , xL + 1) + f(e, xH + 1, xL + 1)]

≥ 0,

holds by supermodularity of f in (xH , xL).

Supermodularity Property in (xH , xL) Preserved by TUNIF

Since, TUNIF is the sum of TARRH
, TADMi , TDEP and TDET which preserve supermodularity

property of f in (xH , xL), then TUNIF preserves this property, too.

Supermodularity Property in (xH , xL) Preserved by TCOST

cHxH + cLxL − cHxH − cL(xL + 1)− cH(xH + 1)− cLxL + cH(xH + 1) + cL(xL + 1) = 0.

is true by simple algebra. Hence h is supermodular. Therefore, as a sum of two functions TUNIF

and h, TCOST preserves this property.
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Appendix B

PROOFS FOR CHAPTER 7

B.1 The Properties Preserved by TWORSE

We introduce a new operator, TWORSE , and let it represent the process of developing cancer

while waiting for the service in the queue where M is the fixed cost of developing cancer. We

define it as follows:

TWORSEf(e, xH , xL) = f(e, xH + 1, xL − 1) +M

We investigate which properties it preserves. We will show that the operator, TWORSE , preserves

the following properties;

(a)

Inc(xH) : TWORSEf(e, xH , xL) ≤ TWORSEf(e, xH + 1, xL),

for any non-decreasing function f in xH .

f(e, xH + 1, xL − 1) +M − f(e, xH + 2, xL − 1)−M ≤ 0,

holds by monotonicity of f in xH .

(b)

Inc(xL) : TWORSEf(e, xH , xL) ≤ TWORSEf(e, xH , xL + 1),
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for any non-decreasing function f in xL.

f(e, xH + 1, xL − 1) +M − f(e, xH + 1, xL)−M ≤ 0,

holds by monotonicity of f in xL.

(c)

Inc(e) : TWORSEf(e, xH , xL) ≤ TWORSEf(e+ 1, xH , xL),

for any non-decreasing function f in e.

f(e, xH + 1, xL − 1) +M − f(e+ 1, xH + 1, xL − 1)−M ≤ 0,

holds by monotonicity of f in e.

(d)

Dec(p) : TWORSEf(e, xH , xL)− TWORSEf(e, xH , xL) ≥ 0,

for any two function f and f (with p and p respectively where p ≤ p) satisfying the following

inequality,

f(e, xH , xL)− f(e, xH , xL) ≥ 0.

f(e, xH + 1, xL − 1) +M − f(e, xH + 1, xL − 1)−M ≥ 0,

is true due to the Dec(p) property for the state (e, xH + 1, xL − 1).

(e)

Diag : TWORSEf(e, xH − 1, xL) ≤ TWORSEf(e, xH , xL − 1).
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for any function f with the monotonicity on the diagonal property.

f(e, xH , xL − 1) +M − f(e, xH + 1, xL − 2)−M ≤ 0,

holds by monotonicity on the diagonal property of f .

(f)

IDiage : TWORSEf(e− 1, xH , xL − 1) ≤ TWORSEf(e, xH − 1, xL),

for any function f satisfying IDiage property.

f(e− 1, xH + 1, xL − 2) +M − f(e, xH , xL − 1)−M ≤ 0,

holds by IDiage property of f .

(g)

Conv(xL) : TWORSEf(e, xH , xL)− TWORSEf(e, xH , xL + 1)

≥ TWORSEf(e, xH , xL + 1)− TWORSEf(e, xH , xL + 2),

holds for any convex function f .

f(e, xH+1, xL−1)+M−f(e, xH+1, xL)−M−f(e, xH+1, xL)−M+f(e, xH+1, xL+1)+M ≥ 0,

holds by convexity of f .

(h)

Sup(e, xL) : TWORSEf(e, xH , xL)− TWORSEf(e, xH , xL + 1)

≥ TWORSEf(e+ 1, xH , xL)− TWORSEf(e+ 1, xH , xL + 1),
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for any supermodular function f in (e, xL).

f(e, xH+1, xL−1)+M−f(e, xH+1, xL)−M−f(e+1, xH+1, xL−1)−M+f(e+1, xH+1, xL)−M ≥ 0,

holds by supermodularity of f in (e, xL).

(i)

Sup(xH , xL) : TWORSEf(e, xH , xL)− TWORSEf(e, xH + 1, xL)

≥ TWORSEf(e, xH , xL + 1)− TWORSEf(e, xH + 1, xL + 1),

holds for any supermodular function f in (xH , xL).

f(e, xH+1, xL−1)+M−f(e, xH+2, xL−1)−M−f(e, xH+1, xL)−M+f(e, xH+2, xL)+M ≥ 0,

is true by supermodularity of f in (xH , xL).

B.2 The Properties Preserved by the State Space Snew

For Snew, the optimality equation is given as follows:

vn+1(A, e, xH , xL) = TCOST (TUNIF ({TARRH
vn(A, e, xH , xL), {TADMivn(A, e, xH , xL)}i,

TSCHvn(A, e, xH , xL), TDET vn(A, e, xH , xL)}; {λ̄H , {λLi}i, µ, γ̄})),

and

TSCHv(A, e, xH , xL) = min{v(H, e, xH − 1, xL), g(L, e, xH , xL − 1)}+ s, (B.1)

where

g(L, e, x, y) =

 v(L, 1, x, y) if e = 1

pe,e−1v(L, e− 1, xH , xL − 1) + (1− pe,e−1)v(L, e, xH , xL − 1) otherwise.
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For this section, it is enough to analyze the multiplier of µ since the results for other com-

ponents are similar to the proofs with state space S. We make the following assumption.

Assumption 6 The value functions preserve the corresponding property.

Inc(xH) Property

In this section, we will show that the following inequality is true:

TSCHv(A, e, xH , xL) ≤ TSCHv(A, e, xH + 1, xL).

Assuming that in both states ((A, e, xH , xL) and (A, e, xH + 1, xL)), symptomatic patients are

scheduled:

v(H, e, xH − 1, xL)− v(H, e, xH , xL) ≤ 0, (B.2)

is true by the assumption.

Assuming that in both states ((A, e, xH , xL) and (A, e, xH + 1, xL)), asymptomatic patients are

scheduled:

pe,e−1v(L, e− 1, xH , xL − 1) + (1− pe,e−1)v(L, e, xH , xL − 1)

−pe,e−1v(L, e− 1, xH + 1, xL − 1)− (1− pe,e−1)v(L, e, xH + 1, xL − 1)

≤ pe,e−1(v(L, e− 1, xH , xL − 1)− v(L, e− 1, xH + 1, xL − 1))

+(1− pe,e−1)(v(L, e, xH , xL − 1)− v(L, e, xH + 1, xL − 1))

≤ 0, (B.3)

is true by the assumption.

Let H and L be the optimal scheduling actions. We define costs of optimal actions

(X,Y ) =

{TSCHv(A, e, xH , xL)− TSCHv(A, e, xH + 1, xL) ∧X ∈ (A, e, xH , xL), Y ∈ (A, e, xH + 1, xL)}



Appendix B: Proofs for Chapter 7 152

Let us assume that it is optimal to schedule symptomatic patient in state (A, e, xH , xL),

and it is optimal to schedule asymptomatic patient in state ((A, e, xH + 1, xL). Therefore the

following expression

(H,L) (B.4)

is less than

(L,L), (B.5)

since the cost of optimal actions will give the minimum value. Expression (B.5) is less than 0

by equation (B.3), which ensures that Expression (B.4) is less than 0.

Assuming that it is optimal to schedule asymptomatic patient in state (A, e, xH , xL), and it is

optimal to schedule symptomatic patient in state ((A, e, xH + 1, xL), we obtain

(L,H) ≤ (H,H) ≤ 0,

by equation (B.2).

Inc(xL) Property

Similar to previous proof.

Inc(e) Property

We will show that the following inequality holds

TSCHv(A, e, xH , xL) ≤ TSCHv(A, e+ 1, xH , xL).
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Assuming that in both states ((A, e, xH , xL) and (A, e + 1, xH , xL)), symptomatic patients are

scheduled:

v(H, e, xH − 1, xL)− v(H, e+ 1, xH − 1, xL) ≤ 0, (B.6)

is true by the assumption.

Assuming that in both states ((A, e, xH , xL) and (A, e+ 1, xH , xL)), asymptomatic patients are

scheduled:

pe,e−1v(L, e− 1, xH , xL − 1) + (1− pe,e−1)v(L, e, xH , xL − 1)

−pe+1,ev(L, e, xH , xL − 1)− (1− pe+1,e)v(L, e+ 1, xH , xL − 1)

= pe+1,e(v(L, e− 1, xH , xL − 1)− v(L, e, xH , xL − 1))

+(1− pe,e−1)(v(L, e, xH , xL − 1)− v(L, e+ 1, xH , xL − 1))

≤ 0, (B.7)

is true by the assumption.

Let H and L be the optimal scheduling actions. We define costs of optimal actions

(X,Y ) =

{TSCHv(A, e, xH , xL)− TSCHv(A, e+ 1, xH , xL) ∧X ∈ (A, e, xH , xL), Y ∈ (A, e, xH , xL + 1)}

Let us assume that it is optimal to schedule symptomatic patient in state (A, e, xH , xL),

and it is optimal to schedule asymptomatic patient in state ((A, e + 1, xH , xL). Therefore the

following expression

(H,L) (B.8)
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is less than

(L,L), (B.9)

since the cost of optimal actions will give the minimum value. Expression (B.9) is less than 0

by equation (B.7), which ensures that Expression (B.8) is less than 0.

Assuming that it is optimal to schedule asymptomatic patient in state (A, e, xH , xL), and it is

optimal to schedule symptomatic patient in state ((A, e, xH + 1, xL), we obtain

(L,H) ≤ (H,H) ≤ 0,

by equation (B.6).

Monotonicity on the Diagonal Property

We will prove that the following inequality holds.

TSCHv(A, e, xH − 1, xL) ≤ TSCHv(A, e, xH , xL − 1).

Let H and L be the optimal scheduling actions. We define costs of optimal actions

(X,Y )Diag =

{TSCH(A, e, xH − 1, xL)− TSCHv(A, e, xH , xL − 1) ∧X ∈ (A, e, xH − 1, xL), Y ∈ (A, e, xH , xL − 1)}.

There are four cases to be considered.

(H,H)Diag = v(H, e, xH − 2, xL)− v(H, e, xH − 1, xL − 1) ≤ 0, (B.10)
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holds by monotonicity on the diagonal property of value functions.

(L,L)Diag = pe,e−1v(L, e− 1, xH − 1, xL − 1) + (1− pe,e−1)v(L, e, xH − 1, xL − 1)

−pe,e−1v(L, e− 1, xH , xL − 2)− (1− pe,e−1)v(L, e, xH , xL − 2)

= pe,e−1(v(L, e− 1, xH − 1, xL − 1)− v(L, e− 1, xH , xL − 2))

+(1− pe,e−1)(v(L, e, xH − 1, xL − 1)− (1− p)v(L, e, xH , xL − 2))

≤ 0, (B.11)

holds by monotonicity on the diagonal property of value functions.

(L,H)Diag ≤ (H,H)Diag ≤ 0,

holds by equation (B.10).

(H,L)Diag ≤ (L,L)Diag ≤ 0,

holds by equation (B.11).

IDiage Property

We will show that we can extend the result of the operator TSCH in the case of new state space.

Mathematically, for the value function preserving IDiage property, the following inequality

holds.

TSCHv(A, e− 1, xH , xL − 1) ≤ TSCHv(A, e, xH − 1, xL).

Let H and L be the optimal scheduling actions. We define costs of optimal actions

(X,Y )IDiage = {TSCH(A, e− 1, xH , xL − 1)− TSCHv(A, e, xH − 1, xL) ∧

X ∈ (A, e− 1, xH , xL − 1), Y ∈ (A, e, xH − 1, xL)}
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There are four cases due to available actions.

(H,H)IDiage = v(H, e− 1, xH − 1, xL − 1)− v(H, e, xH − 2, xL) ≤ 0, (B.12)

holds by IDiage property of value functions.

(L,L)IDiage = pe−1,e−2v(L, e− 2, xH , xL − 2) + (1− pe−1,e−2)v(L, e− 1, xH , xL − 2)

−pe,e−1v(L, e− 1, xH − 1, xL − 1)− (1− pe,e−1)v(L, e, xH − 1, xL − 1)

= pe−1,e−2(v(L, e− 2, xH , xL − 2)− v(L, e− 1, xH − 1, xL − 2))

+(pe,e−1 − 1)(v(L, e− 1, xH , xL − 2)− v(L, e− 1, xH − 1, xL − 1))

+v(L, e− 1, xH , xL − 2)− v(L, e, xH − 1, xL − 1)

≤ 0, (B.13)

holds by IDiage and Diag property of value functions.

(L,H)IDiage ≤ (H,H)IDiage ≤ 0,

holds by equation (B.12).

(H,L)IDiage ≤ (L,L)IDiage ≤ 0,

holds by equation (B.13).

Convexity in xL

We will need to show that the operator TDEP preserves the convexity property which is equal

to

TDEP v(A, e, xH , xL)− TDEP v(A, e, xH , xL + 1) ≥ TDEP v(A, e, xH , xL + 1)− TDEP v(A, e, xH , xL + 2)
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for convex value functions.

We define

(X,Y, Z,W ) =

{TDEP v(A, e, xH , xL)− TDEP v(A, e, xH , xL + 1)− TDEP v(A, e, xH , xL + 1)

+TDEP v(A, e, xH , xL + 2)|X ∈ (A, e, xH , xL), Y ∈ (A, e, xH , xL + 1),

Z ∈ (A, e, xH , xL + 1),W ∈ (A, e, xH , xL + 2)}

There are two cases where xH = 0 and xH 6= 0.

Case 1: xH 6= 0

(H,H,H,H) = v(H, e, xH − 1, xL)− v(H, e, xH − 1, xL + 1)

−v(H, e, xH − 1, xL + 1) + v(H, e, xH − 1, xL + 2)

≥ 0,

holds by the assumption. Case 2: xH = 0

(L,L,L, L) = pe,e−1v(L, e− 1, xH , xL − 1) + (1− pe,e−1)v(L, e, xH , xL − 1)

−2pe,e−1v(L, e− 1, xH , xL)− 2(1− pe,e−1)v(L, e, xH , xL)

+pe,e−1v(L, e− 1, xH , xL + 1) + (1− pe,e−1)v(L, e, xH , xL + 1)

= pe,e−1(v(L, e− 1, xH , xL − 1)− 2v(L, e− 1, xH , xL) + v(L, e− 1, xH , xL + 1))

+(1− pe,e−1)(v(L, e, xH , xL − 1)− 2v(L, e, xH , xL) + v(L, e, xH , xL + 1))

≥ 0,

holds by the assumption.

B.3 Non-linear Holding Costs

We assume increasing and convex costs for xH , and xL.
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Assumption 7

i) h(xH , xL) is non-decreasing in xH , and xL.

ii) h(xH , xL) is convex in xH , and xL.

Inc(xH)

h(xH , xL) ≤ h(xH + 1, xL)

holds by i).

Inc(xL)

h(xH , xL) ≤ h(xH , xL + 1)

holds by i).

Inc(e)

h(xH , xL) ≤ h(xH , xL)

holds by simple algebra.

Convexity in xL

h(xH , xL)− h(xH , xL + 1) ≥ h(xH , xL + 1)− h(xH , xL + 2)

holds by convexity of holding costs in xL.
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