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ABSTRACT

In this study, we focus on an agricultural planning problem under demand, yield and harvest
uncertainties. We present a model that captures variations of the harvest period, the yield, and
the demand. By using the proposed model, we consider finding both the optimal seeding areas
and seeding times for annual plants and only the optimal seeding areas for perennial plants.

We study two versions of the problem for annual and perennial plants, depending on the num-
ber of periods in the planning horizon: single-period case, and multi-period case. We establish
optimal solution for both annual and perennial plants for single-period case. When the number
of suppliers increases, the computational complexity of the objective function also increases, and
finding the optimal solution becomes computationally demanding. Hence, we propose a normal
approximation for the supply. The approximation provides results very close to the optimal
solution and the deviation from the optimal solution becomes negligible as the number of sup-
pliers increases. In the multi-period case the optimal solution is found for the planning problem
of perennial plants. However, like in the single period problem, the computational complexity
of objective function increases as the number of suppliers increases. Thus, we develop efficient
solution procedures to solve large-sized problem instances. Numerical experiments show that
these procedures are quite accurate. For solving the multi-period planning problem of annual
plants, we proposed several heuristics. We present numerical analysis that compares different
approaches with each other and with the optimal solution. The best performing two approaches
are selected and compared based on different criteria.

Finally, we study a case from the industry. The problem is modeled by using the presented
model and solved by using two introduced approaches. We observed that the proposed solution

methodology yields significant improvements in the objective function compared to the case

iii



where a deterministic planning approach is used. We compare results of both approaches and

explore the effect of system parameters in detail.



OZETCE

Bu calismada talep, hasat ve verimin belirsiz oldugu durumlarda tarimsal planlama problemini
ele aldik ve bu riskleri goz 6niine alan bir model olugturduk. Onerilen modeli kullanarak yillik
bitkiler icin en iyi dikim alanlar1 ve dikim zamanlarini, ¢cok yillik bitkiler icin ise sadece en iyi
dikim alanlarim1 bulmay1 hedefledik.

Planlama periyodunun uzunluguna baglh olarak problemleri tek periyotluk problemler ve ¢ok
periyotluk olarak iki grupta inceledik. Tek periyotluk problemlerde tek yillik ve ¢ok yillik bitkiler
igin en iyi ¢oziimii bulduk. Tedarik¢i sayisinin arttigi durumlarda, hedef fonksiyonun hesaplan-
masi ¢ok uzun zaman alabilmektedir. Bu sebeple, toplam arz miktarini normal dagilima sahip
oldugunu varsayan bir yaklagim gelistirdik. Bu yaklagim en iyi sonuca oldukca yakin sonuclar
vermektedir, en iyi sonuctan olan sapma tedarikc¢i sayisi artikca yok sayilabilecek bir degere
diigmektedir. ok periyotluk problemlerde ise, ¢ok yillik bitkilerin planlama probleminde en
iyi sonuc bulunabilmektedir. Ancak, tek periyotlu problemlerde de oldugu gibi hedef fonksiy-
onun hesaplama zorlugu tedarikci sayisina bagl olarak artmaktadir. Bu nedenle, tedarikci saysn
biiyiik oldugu problemler i¢in etkili ¢éziim yaklagimlan gelistirdik. Inceledigimiz sayisal drnekler
¢Oziim yaklagimlarinin dogrulugunu gostermektedir. Yillik bitkilerin ¢ok periyotluk problemi-
nin ¢6ziimi ic¢in de cesitli yaklagimlar onerildi. Bu yaklagimlar1 birbirleriyle ve en iyi sonucla
kargilagtiran sayisal analizlere yer verildi. Coziim yaklagimlarindan en iyi sonug veren iki tanesi
secildi ve farh kriterlerine gore kiyaslandi.

Son olarak, kiraz liretimi yapan bir iiretici ile ilgili bir vaka caligmasi incelendi. Problemi
onerilen model kullanilarak modelledik ve sunulan ¢6ziim yaklagimlarindan ikisi ile ¢ézdiik. Bu
iki yaklagimin sonuglar: karsilagtirildi ve onerilen ¢oziim yaklagmnn rassalligi gdz oniine almayan
¢oziimlere gore hedef fonksiyonu énemli dlgiide iyilestirdigi gozlemlendi. Ayrica her iki yaklagim

igin de sistem parametrelerinin hedef fonksiyondaki etkileri aragtirildi.
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Chapter 1

INTRODUCTION

The agricultural supply chain includes all the activities from production to distribution that
bring the agricultural products from farm to the table. It is a network of the organizations
working together to fulfill a customer request, as any other supply chain. The agricultural
supply chain differs from other supply chains due to the uncertainties caused by weather, yield,
harvest and demand and the importance of food quality and safety.

Matching supply and demand is an important problem in all industries. In agricultural
supply chains, this problem gets complicated by the biological nature of the production process.
Production planning decisions are made months before the actual demand is realized, with
almost no flexibility to change the production system. In addition, the quantity produced is
affected by the environmental conditions like weather and properties of soil, etc.. The weather
is one of the factors that influence the growth of the seed, thereby the length of maturation.
The weather conditions also affect the harvest period, during which crops are gathered. For
instance, the frost or the rain during the maturation period or the harvest period can destroy
all crops. Likewise undesirable weather conditions can draw out the growing season and cause
the harvest season to start late. Furthermore, all through the harvest the production quantity
is random due to the random yield. The yield of a farm highly depends on the weather and
farm characteristics.

In this thesis we are going to work on the production planning in a premium fresh produce
supply chain. We consider the planning problem of a company, that offers the fresh product
with consistent high quality, superior taste and full traceability, and supplies the goods through
contract farming. Providing a specific product enables the company to compete effectively in

commodity markets. On the other hand, the product has limited demand, due to the premium
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price or unique properties that appeal to only selected segment of customers. Furthermore,
excess production can not be sold in alternate channels, the oversupply should go to waste, to
protect the product brand image. In premium product supply chains, high product value and
limited market demand create greater incentives to avoid under or over-supply situations.

The production planning problem is challenging considering the uncertainties in agriculture.
The supply is random due to uncertain yields, maturation and harvest durations. In addition,
the demand is also random and unsatisfied demand will be lost. This thesis suggests a production

planning approach that will take yield, harvest and demand uncertainties into account.

1.1 Background

1.1.1 Contract Farming

The advanced agro-food sector consists of the interrelated activities of planting, harvesting,
storing and distributing the goods while the traditional view of agribusiness considers only
activities in the farms. This change brings the need of vertical integration of the supply chains
with allied industries; it is not enough to organize only the production anymore, processing and
distribution activities should also be considered. For the agricultural system, one of the ways to
obtain well-integrated supply chain is ‘contract farming’.

Contract farming has been defined as an agreement between farmers and firms for the pro-
duction and the supply of the agricultural products under forward agreements, frequently at
predetermined prices [1]. Under the contract system, the farmer agrees to supply products
according to the specifications of the contract in terms of quantity, quality, price, and time.

The use of contracts improves farmers’ access to the markets, especially for small farmers. In
addition, it decreases the risk of farmers by supplying input and market outlet, thereby favors the
income stability. The agribusiness firms can offer technological and management assistance to
the farmers or can give impetus to the long term production plans, which support the production
of higher valued crops. The contract farming also provides more reliable production in terms of

quality, quantity and timing which is in favor of the firms [1], [2].
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Contract farming has been in existence for many years; first contracts were employed for
sugar production in Taiwan after 1885 and for banana production in Central America in the
early 1920s. It has become an important part of food and fiber production in Western Europe by
the late twentieth century and since 1930s it has been widely used in vegetable canning industry
in North America and in seed industry in Western Europe [3].

Although, contracts have been used for a long time widely in agricultural environment, the
interest of policy makers, researchers and development planners in contract farming has in-
creased considerably in latest years. The recent technological developments, changing consumer
preferences, trade liberalization, financial capital mobility, food safety issues and regulations,

and the advances in biotechnology have provided the drive to usage of contract farming [2].

1.1.2 Agriculture in Turkey

Turkey has 270 000 sq. km agricultural area, with around 4 million farms. 23.67% of the
population work in agriculture in 2008[4].

The modern food industry in Turkey has begun with the establishment of the first sugar
factory in Afyon in 1926. Although considerable progress has been achieved in agriculture with
the annual programs in 1960s and with structural adjustment programs after 1980, the desired
level has not been achieved in this industry. The share of food supplied by processing is around
20%, in comparison to the 60% share in the developed countries.

The first contracts in Turkey were used in sugar beet production with the start of food
industry. Since the establishment of the first sugar factory, all the sugar beat production has
been done under contracts [3].

The second major use of contract farming in Turkey is growing tomatos. After China and
the USA, Turkey is the third biggest tomato producing country in the world, between 35,000
and 40,000 farm families produced about 6.8 million tons of tomato in 2006 and the biggest part
of the production was supplied from Marmara Region. Most of the tomato production for the
industry is supplied through contract farming; and according to a research, the productivity has

increased and net profit of the farms has raised by 19% with the contract farming in Canakkale
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province [5].
Some current example companies that use contract farming in Turkey are Tukas Food Com-
pany, Tat Food Company, Anadolu Efes Brewing Company. Figure 1.1 shows the companies

that employ contract farming, and its products.

Anadolu Efes

Il Barley

Tukas
Bl Tomato Anadolu Efes

Tat Barley
a
. Tomato .
P cd Anadolu Efes
ﬂ]')guuceunmblera arley Anadolu Efes
Frito Lay Barley Tat
Fersan ] Metro, Kipa  potato N [ | | Tomato

Cucumber  Vegetable

Figure 1.1: Contract Farming Practices in Turkey.

In our specific case, we consider the planing problem of one company that works with multiple
farms. The firm is the supply chain integrator, it gives the proprietary seeds to the growers for
free and pays for the production. According to the contract, the company pays for all the goods
produced in the contracted farms. Once the products leave the field, the company takes their
ownership till they are sold to the retailer. After the fruits are harvested, they are sent to
the retailer distribution centers from where they are shipped to markets. In the case of excess
production, since the product is perishable, the company can not keep it as an inventory. They
are wasted before sending them to distribution centers, which saves the transportion and packing
costs.

The company aims to supply fresh, high quality goods to its customers throughout its plan-
ning period. Due to the quality constraints, the demand can not be satisfied by outsourcing.

Since the company keeps no inventory, the demand for the period should be satisfied with the
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fruits harvested for that period. The unsatisfied demand will be lost. The production quantity
for a period consists of the total production in all farms harvested in that period. The length of
the harvest period of a farm is limited and varies for each farm. Also, the time of harvest season
differs based on the location of the farm. The company needs to use different farms in different
locations to provide supply to its customers during the whole planning period. However, while
planning the production period, the uncertainties in starting and ending times of the harvest
period should be also considered. For instance, depending on the weather, the harvest period
can start late or end early. This would cause the company have no supply or less supply then
desired and consequently the demand can be lost.

Another issue taken into account in the planning problem, is the randomness of the yield. The
yield is highly dependent on weather and growing conditions of the seeds. When the realization
of the yield is lower then expected, it causes the company to lose demand. On the other hand,
if the yield realization is higher then expected, the excess production is salvaged, thereby the
company loses money.

The objective of this study is to develop a method that matches the total supply and the
total demand such that the total profit is maximized. The demand and the supply are random,
so the exact match of the demand and supply is not possible at all times. Instead, we try to find
the optimal production decisions that maximizes the expected profit by considering all relevant
costs and uncertanities. We study methods for two different type of plants. First type is referred
as annual plants. They survive for only one growing season. In the planning problem of this
type of plants, the decision variables are area of each farm and the seeding times of crops in
these farms. Second type of plants is referred as the perennial plants. They live more then
two years. In the case of perennial plants, the only decision variable is seeding area of utilized
farms that must be contracted for the planning period. We analyze both single period and multi
period planning problem for these two types of plants.

The remainder of the thesis is organized in the following order: In the following chapter the
related literature is reviewed. In Chapter 3 the detailed description of the problem is given and

the model for production planning of multiple farms under yield, demand and harvest uncertainty
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is presented. The planning problem in a single period and the solution of this problem is in
Section 4. Section 5 presents multi period planning problem and the several approaches to solve
this problem. In Section 6, a case in cherry farming is studied. Conclusions are presented in

Section 7 along with future research directions.
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Chapter 2

LITERATURE SURVEY

There are two streams of literature relevant for this thesis: planning problems of the agricul-
tural supply chain and random yield problems. In this chapter, first we review the production
planning models in agri-food supply chains and then we study the production planning problems

in the existence of random yield.

2.1 Production Planning in Agricultural Supply Chains

Production planning problem in agricultural supply chains has received a great deal of attention
lately. Ahumada and Villalobas [6] provide comprehensive review of studies conducted in this
area. They review the models and organize them based on different factors. For instance, from
the perspective of storability of the products, the papers are grouped into two; papers focus
on the perishable products and papers focus on nonperishable products. From the perspective
of modeling approaches the papers are divided into two: deterministic and stochastic. They
also classify the papers according to the scopes: strategic, tactical, and operational planning.
Models for strategic planning study the problems such as financial planning, selection of farming
technology and equipment, design of supply networks, and crop rotation strategies. On the
other hand tactical models focus on the short to medium term decisions such as crop planning,
harvesting and planting policies and operational models concern with the harvesting plans,
equipment scheduling. Figure 2.1 presents the factors used to organize the review.

The scope of our work is tactical, and we study the medium-term planning problem of
perishable products by using a stochastic modeling approach. We first review the models that

deals with the planning decisions of the perishable products.
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Figure 2.1: Factors used to organize the review of Ahumada and Villalobas

Hamer|[7] studies the single period planting problem of a vegetable crop, assuming the de-
mand is known in advance. An LP-based approach is used to determine the best planting and
scheduling decisions. Darby-Dowman et al.[8] study the same problem and used a two-stage
stochastic programming with a revenue maximizing objective. In order to control the uncer-
tainty caused by weather, a sample of 31 weather patterns and yield profiles are considered. In
the first stage a planting plan is found which is common to all scenarios, that includes the deci-
sions as the area, spacing and timing of planting. In the second part harvest plan is studied for
each scenario. The objective function of the model presented is composite function of expected
profit over scenarios and a risk term representing the variation in profits between scenarios as
measured by mean absolute deviation. The weights of these two terms are determined by the
risk aversion coefficient.

Kazaz[9] considers production planning problem of a company that produces olive oil in

Turkey in the case of random yield and demand. The problem is modeled as a single period
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problem and a two stage stochastic model with objective of maximizing the expected profit
is developed. The company determines the number of trees to lease in the first stage, and
determines the amount of olive oil to produce and olives to buy from farmers considering the
realized yield and the prices of olives in the second stage. The paper differs form previous studies
of random yield in the sense that it defines the sale price and purchasing cost as a function of
yield.

Allen and Schuster [10] develop a mathematical model to control the harvest risk in a case
study of grape by deciding the harvest scheduling. The objective is to minimize the losses in crops
caused by weather and thereby, reduce the investment costs of installing excess capacity. The
model includes a joint probability distribution to represent risks associated with the harvest
length and crop size. The proposed model provides lower cost solutions compared with the
current policies in cases which involve variability in the length of the harvest season and crop
size. The main contribution of the paper is the use of nonlinear programming to reduce the risk
of uncertainties caused by weather.

Production planning problems include the problems of crop planning. Itoh [11] studies crop
planning where the profit coefficients are random and developed a LP model with the objective
of maximizing minimum value of revenue. Romero[12] examines the crop planning problem
using an approach similar to Markowitz’s mean-variance approach.

Most of the studies in the perishable goods focus on the harvesting decisions; such as how
to allocate transportation equipment, scheduling of packing and processing plants, or amount of
harvest per period for single picking plants such as flowers, whet, potatoes and etc. Some works
in this area are; Widodo et. al. [13], Caixeta and Filho [14], Ferrer et. al. [15]

The number of articles that focus on the nonperishable products are significantly higher
than those that focus on perishable products. Jones et al.[16] study the production planning
problem of Syngenta Seeds, and develop a production-planning model, that is used currently for
80 percent of its product. The company has two planning periods; first one refers to the North
American growing season, and second period refers to the growing season in South America. The

demand and the yield are taken as random through both periods, and discrete approximations
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are generated to the distribution functions of both. To decide on the number of acres for each
period, linear programming is used and parameters for the second period are updated based on
the results of first period.

Most of the work on the perishable products focus on the crop choice models. One of the
interesting works on this are Kobzar [17] that develops a risk programming model with mean-
variance objective function to capture joint stochastic distributions. Also, Maatman et. al. [18]
who use a SP to model the farmers’ response to uncertain rain, trying to minimize the food
shortages for the farmer. Other works in this area are; Schilizzi and Kingwell [19], Nevo et. al.
[20], Recio et. al.[21], Biswas and Pal [22].

This study considers the planning problem of a perishable product over a multi-period plan-
ning horizon in the existence of random yield and random demand. The most relevant works
to ours are Jones et al.[16] and Kazaz[9]. Both consider a planning problem with two periods
and the decision variable is how much to produce. In both problems, the decision maker can
decide just before each period, updating the information according to the previous period. In
our study we consider a planning horizon where the decision maker needs to decide before the

first period starts.

2.2 Random Yield

The literature in the area of random yield is sparse. Yano and Lee[23] present an extensive
literature review of lot sizing models with random yield. The inventory planning problem with
random supply and random demand was first addressed by Karlin[24]. Karlin considers an
inventory model where the inventory holding and shortage cost functions are convex increasing
functions and the number of good units in a batch is random with a known distribution. The
only decision is whether to order. He shows that there exists a single critical initial on-hand
inventory below which an order should be placed.

Silver [25] presents a single-period inventory problem with a constant demand rate and
considers two cases; in the first case the standard deviation of the supply quantity is independent

of the lot size, in the second case it is proportional to the lot size. For both cases, the optimal
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lot size is a modification of EOQ. Shih [26]considers the same problem with linear inventory
holding and shortage costs where the demand is random. He assumes that the yield uncertainty
is caused by defective units and invariant with the batch size. He finds the optimal lot size with
a simple modification in the economic order quantity formula, EOQ, as in Silver’s paper. Noori
and Keller[27] study the problem and provides closed form solutions for uniform and exponential
demand distributions and for various distributions of the quantity received. Ehrhardt and Taube
[28] generalize Shih’s model by using general forms for inventory holding and shortage costs and
derive the necessary optimal conditions. Gerchak et al.[29] consider the problem when there is
an initial stock.

Regarding the supply uncertainty, many studies are conducted in a newsvendor setting. A
comprehensive review of the newsvendor literature was provided by Khouja[30].

Anupindi and Akella [31] focus on the strategy of supplying from two suppliers for three
cases. In the first model, they discuss a single-delivery contract where both suppliers supplies
the whole order quantity with a given probability. In the second case, each supplier delivers
a random fraction and the rest is canceled, while in the third case the order not delivered is
transported in next period. They derive the optimal sourcing policies and proposed solution
algorithms for three cases.

Dada et al.[32] consider the procurement problem of a newsvendor when the suppliers are
unreliable. Each supplier either delivers the complete order or with some probability delivers
the amount less then desired. They figure out that, in an optimal solution, a supplier is active
only if all less expensive suppliers are active regardless of reliability level and offer an algorithm
for determining optimal solution.

Yang et al.[33] examine a supplier selection problem, where decision maker orders from a set
of suppliers with different yields while facing a random demand. They provide a formulation
based on the newsvendor problem and developed solution methodology, consists of the active
set method and the Newton search procedures.

Rekik et al.[34] study the newsvendor problem with unreliable supply and investigate the

optimal order quantities for different cases. They derive the closed from formulation for optimal
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order quantity when the error in the quantity received and demand is uniformly distributed.
Also an analysis is provided for normally distributed demand and error.

Our work contributes to random yield, random demand problems by providing the closed
form solution of newsvendor problem when the demand and the supply are normal random
variables. Rekik et al.[34] has provided analytic solutions for the cases where the standard
deviation of supply can be written as an additive function of the mean. We generalize the
solution for the cases where both the mean and the standard deviation are written as a function
of a variable.

Most of the work in the literature focus on the random yield problems when the number of
supplier is less then 3. We study the general case of the problem, where the supplier number is not
limited. Dada et al.[32] also study the problem with multiple suppliers. Dada et al.[32] consider
suppliers with different reliabilities and updates the critical ratio of newsvendor according to
the suppliers’ reliability. In our work, we assume that the yields of all suppliers are normally
distributed. In that sense Yang’s work is more relevant to ours [33]. They also consider multiple
suppliers with normally distributed yields. Different than our work, they use a Manto-Carlo
sampling method to evaluate the derivatives.

We make four contributions in this study. First, a model that captures harvest, maturation,
yield and demand uncertainty in the same planning problem is presented. Second, we find
an exact analytical solution for the single-period planning problem for the farm areas as well
as the seeding times. Third , we propose computationally efficient heuristic solutions for the
multi-period problem and analyzed their accuracy in a number of different cases. Finally, we
analyzed a case study from the industry and used these heuristics to show the effectiveness of

the proposed method.
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Chapter 3

AGRICULTURAL PLANNING PROBLEM

In this thesis, the main objective is analyzing the multi-period planning problem of a single
product produced by multiple farms of an agricultural supply chain system. The demand of the
product at time t is random and denoted with D;. The production quantity, @, is the total
amount of crop supplied from all farms, and the output of each farm depends on the area of
seeding and the crop yield in that farm. The planting area of each farm is a decision variable
whereas the yield of the farm, which means the amount of the output per unit area of land
under cultivation, is a random variable.

The other decision variable of the problem for the case of annual plants is the seeding time
of crops in farms. After the seeds are planted at a given time in farm ¢, the harvest starts
after a random maturation time. When the plants are perennial, the seeding times are no
longer decision variables. Instead, they are parameters that indicate the start of the maturation
process. The crops are available to be picked only during the harvest period and the length of
harvest period at the farm is random. Throughout this period, the target plant can be reaped
more than once, and the crop should be gathered as soon as it matures; so we assume that the
crops are gathered at the end of each certain time unit. Furthermore, the crops harvested in
one period can only be used to satisfy the demand of the same period since no inventory can be
kept due to the perishability of the product.

Considering agricultural processes are random by nature, there is always a risk in the avail-
ability of the crop in each period for each farm. The lengths of the maturation and the harvest
period are the two important factors for the output availability. Although accurate estimations
can be done for both, they are highly dependent on weather, and farm conditions which makes

it difficult to assume those durations as deterministic variables.
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Maturation Period Harvest Period

‘ m | rlv_h | i

T 1,7,

Figure 3.1: The relation between the seeding time, the maturation and the harvest period

In each period, after the crops are harvested, the company pays the supplier for all harvested
products and earns revenue for the satisfied demand. The excess production is salvaged at the
end of each period. The decision maker is risk neutral and aims to maximize the expected profit

over the planning period.

3.1 Model

The system is modeled as a discrete time-discrete state space stochastic process observed at
timet=1,...,7.

Contract

We assume, the decision maker, the firm, buys the whole production from the contracted
farms. If excess production occurs, the surplus is salvaged. We define r; as the revenue , s; as
the salvage value, and ¢; as the total production and distribution cost of supplying from farm ¢
at time t where r; > ¢; > ;.

Farms

There are N different farms located in different regions. The area seeded in farm 4 is a;
(acres). In the planning problem, a; is a decision variable.

Demand

Demand in period ¢ is a random variable denoted with D; (pounds). The mean and the

standard deviation of the demand are E[D;] and Stdev[D;] respectively.
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Parameters Description
Ty Unit selling price of a product at time ¢
St: Unit salvage price of a product at time ¢
Ct . Unit variable cost of a product at time ¢
Qy: Supply quantity at time ¢
Dy: Demand at time ¢
m(a,T) : Profit function
¢ : The standard normal pdf
P The standard normal cdf
Di,z; (t) : The probability that the output will be available from farm ¢ in period ¢ given
that seeding time is 7;
Y; The yield of farm i(pounds/acre/time)
T The seeding time of farm ¢
a; The seeding area of farm ¢
Z"% The length maturation period in farm ¢ given that the seeding time is 7;
ijﬂ The length of harvest period in farm ¢ given that the seeding time is 7;
Fprn (t): The cumulative density function of T},
Table 3.1: Problem parameters

Profit Function
The total profit during the planning period is;

T

Elr(a,m)] = 3 rBmin Qi Dy)] + siB(Q — D)*] - aBlQ] (3.1)
t=1

where a = (ay, ag,...,an) and 7 = (71, T2, ..., TN ).
Formally, we choose the decision variables that are the farm area, a; and the seeding time
Tiy 1 =1,..., N for each farm such the total expected profit would be maximized. The problem

is written as follows for annual plants;

hg[%x E[r (a, )] (3.2)
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and as following for perennial plants;
Max E[rn (a,T)]
a

Harvest

The length of the maturation and the harvest period are discrete random variables, denoted
with 77 and Ti}}n respectively. The cumulative density function of Tzhn is FTZ_hT_ (t). The prob-
ability function for the maturation time is also given, P[T]7. = t] for all t,t € ZT. Combining
the uncertainty in the maturity time and also in the harvest time, we can define an indicator
random variable [; -, (t) that is 1 if the output from farm i is available at time ¢ when the seeds

are planted in period 7;.

1 t—7m—Tm >0,t—7<Th,
Ii,n (t) = ' o ’ ' n

0 otherwise

Let p; -, (t) be the probability that the output from farm ¢ will be available in period ¢ given
that the seeds are planted in period 7;. With this definition E[l; -, (t)] = pir, (t) and p; -, (t) is

given as

t

pin(t) = S Plt—t <TWPEN =~ (3.3)
t'=7;+1
¢
- Z (1= Fpn (t=1)P[T]% =t — 7).
t'=r;+1 o

Equation (3.3) yields p; -, (t) based on distributions of the lengths of the harvest time and
the maturity time. Let us consider the case, where T}, and Tzhﬁ are uniformly distributed .
Figure 3.2 shows p; -, (t) values for three different cases.

Alternatively, the form and definition of p;r,(t) allows us to incorporate expert opinion.
Furthermore, specifying p; -, (t) directly makes it easier to capture harvest risk dependencies

among different farms possibly located in the same region.
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Yield

In this formulation, yield is defined as the amount of output gained from one acre of seeded
farm. When the harvest starts at farm 4, at the end of each time period, an output of Y;a; is
obtained until the end of the harvest period. The yield is denoted with Y;. We assume that Y;

is a normal random variable with mean, E[Y;], and variance, Var[Y;].

08 /\ 1 08 1 0.8
06 086

i, (t)

06
0.4} 1 0.4 1 0.4
) / \ . / \ ) / \
] 0 0
0 2 4 6 3 10 0 2 4 , B 8 10 0 2 4 6 8 10
t 4
Ty ~ Unif(1,3) Ty ~ Unif(2,4) Ty ~Umf(1,3) T#) ~ Unif(3,5) Ty ~Unif(1,3) T#y ~ Unif(4,6)

Figure 3.2: The harvest probabilities with different harvest and maturation period length dis-
tributions

Supply

The supply from farm ¢ at time ¢ is ¢;; = I; -, (t)Y;a;(pounds). The total supply from all the
farms at time ¢ is Q¢ = Zf\; 1 ¢t Figure 3.3 depicts a sample realization of the output from 3
different farms and the total output in each period.

Since I; 7, (t) and Y; are random variables @, is also a random variable. The first two moments

of Q; are
N N

N
ElQ:] = Z Elgit] = Z B[l ,(t)Yiai] = Zpi,n (t)E[Yi]a; (3.4)
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Figure 3.3: A sample realization for the total production @; for a specific case
and
N 2 N 2
B2 = (zq@ b (ny)
i=1 i=1
N N N
= > pin(OENaf + ) Zpi,Ti(t)Pj,Tj  EYi]E[Y]aia;. (3.5)
i=1 i=1 j=1
i#]
By using the first two moments, the variance of the total supply can be calculated:
N
Var[Q] =Y (pir () EYPa} — pi.,(t) E[Yi]%a}) (3.6)
=1

3.1.1 Modeling of the Problem when Variabilities are Ignored

The maximization problem given Equation (3.2) is complex due to the randomness in the prob-

lem parameters. If variabilities of problem parameters are ignored, the problem can be modeled

as a linear integer model. We model the problem for the annual plants. The model can be used

for the annual plants when the seeding time variables are taken as parameters. The problem is

modeled with using only the expected values of the random variables; yield, demand, maturation

and harvest lengths. Then the indicator variable I; -, (t) becomes a definite parameter, Ilﬂ

Ti (t)7
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and is written as follows;
1 t-n-B [T 20, t-n<E|Th
1L () = i ’ (3.7)
0 otherwise
Then, the multi-farm, multi-period problem can be modeled as follows;
Max Y remin(E[Qd] — E[D]) + si(E[Qd] — EIDi)* — ¢:E Q4] (3.8)
t=1
subject to
N
ElQ]=) I . (E[Y]a; t=1,.T (3.9)
i=1
T
7= Sty i=1,.,N (3.10)
t=1
T
Y Stig<1l, i=1,..,N (3.11)
t=1
Stiy€{0,1}, i=1,.,Nit=1,..T (3.12)

The above model is a nonlinear integer maximization problem. By rewriting some variables

and some constraints it can be written as a linear model. Assigning positive variables for the

difference between the demand and the supply quantities shown below

E[Qi) — E[D] = Af — Ay,

and rewriting the objective function to avoid minimum and positive functions yield,

T

T (a,T) = ZTt (E [Dt] — At_) + StA?_ — CtE [Qt}
t=1

where 7 is the profit obtained when all the random variables are replaced with their expected

values.
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Another nonlinearity in the model is in the constraint (3.9). It can be replaced by three

constraints to avoid the nonlinearity. Then the model is written as an mixed-integer linear

model:
Modelg
T
l\éllf’lrx Z Tt (E [Dt} — At_) + StA;_ - CtE [Qt] (313)
t=1
subject to

T
S Sty <1, i=1,..,N
t=1
Sti; € {0,1}, i=1,.,N;t=1,.T

where M is a large number.
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Chapter 4

SINGLE PERIOD PROBLEM

In this chapter, we examine the planning problem for a single period. The problem is the
same as the main problem described in the previous chapter, except for the fact that the demand
only exists for a single period ¢'. This problem is of interest for planning problems for seasonal

products.

4.1 Single Farm, Single Period Problem

In this section we consider the case where there is only one farm available for seeding, N = 1.
In the beginning of the planning period, the seeding area and , if necessary, the seeding time
decisions should be given for the farm. Throughout this section, the planning problem of annual
plants is taken as the main problem since the solution of this problem includes the solution of
the planning problem of perennial plants.

Let the harvest period start at ¢ and end at ¢’ based on the seeding time 7. Throughout

all the periods t,where t' < t < t”, the expected output from the farm is as follows;

E[Qd] = ElL () EM]ai] = p1r () EY1]ax (4.1)

We want to maximize the expected profit of the period ¢, which is

Elr (a1,7)] = ry Elmin (Qyt, Dyt )] + s E[(Qyr — DtT)+] — it EQu] (4.2)

The aim is to find the optimal decisions for the seeding time and the area for the seeding
process. The decision variables are the farm area of farms and seeding times for the annual

plants and only the seeding areas for the perennial plants.
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The problem is similar to the newsvendor problem in the sense that a single decision must
be made before observing the demand when there are overage and underage costs, however in

this case the supply is also random.

4.1.1  Newsvendor Problem with Random Supply

In this section, newsvendor problem with random supply is investigated when supply and demand
are normally distributed variables. Let ) and D be normal. The mean and standard deviation
of @ and D are denoted with (1g,0q) and (up,op) respectively. The subscripts ¢ and t is
dropped from the notations, listed in Table 3.1. The single period stochastic inventory model,
referred as the newsvendor model, is a well-known problem in the literature. The expected profit

for the classical newsvendor problem is written as;
E[r'(Q)] = rE[min (Q, D)] + sE[(Q — D)*] — cE[Q].
Replacing E[(Q — D)"] with Q — E[min(Q, D)] , the expected profit becomes;

E[r'(Q)] = (r — 5)Emin (Q, D)] — (c — s) E[Q]. (4.3)

One of the main assumptions in classical newsvendor problem is that there is no variability
in the supplied quantity. In this part we will investigate the one-period inventory model with
normally distributed demand and supply. The expected value of the minimum of bivariate two
normal random variables can be written in the following way [35];

E[min (Q, D)] = po® (“D;”Q> + up® <“Q5“D> — 0¢ (W) L (44)

where 6 = \/ 02? —2pogog + 02D and p is the correlation coefficient between Q and D.
In our problem, @ and D are independent variables, thus the correlation coefficient p is zero.

Using Equation (4.4) Equation (4.3) can be written as;
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Bl (Q) = (-~ 5) [ng® (“2 52 ) 4 up (M52 ) — 00 (M2 79| (e 5 g
(4.5)
By using the above closed-form expression for the expected total profit, the decision variables
that maximize the expected total profit can be determined. In order to provide a general solution
we consider the case where the mean and the standard deviation of @) are functions of a single
decision variable z. The following theorem shows that the optimal z can be determined by

solving a nonlinear equation.

Theorem 1 Let the mean and the standard deviation of the supply be functions of parameter
z, pg = f(x) and og = g(x). If f(z) is linear and g(z) is concave , then the optimal x should
satisfy the following,

-5 x — fz z) !
) = = 0 (= 4 () 20 o) 10 (2 L)) O ] (1.6

Proof 1 See Appendix.

By using the above results, we first analyze specialized cases for additive, multiplicative,
and additive-multiplicative random yield cases and then apply this result to the single period

agricultural planning problem.

4.1.1.1 Specialized Cases

Let us consider the case when the quantity can be written as ; @ = yx + ¢, where v and ¢
are normal random variables with (p,0,) and (g, 0c). For this instance the mean and the

standard deviation of the supply are f(z) = p,x+ pe and g(x) = /o222 + o2 respectively.

Using Equation (4.6), the following condition can be found for optimal z.

0@ ot [T gyt (MR A T
@) = o =0 (@)@ [EZ0 —atep @y to (ST )| )
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where 0(z) = \/ 0212 + 02 + o}, In the following sections, we investigate two cases; additive
and multiplicative random yield problems, those can be derived from this model.

Additive Case

In the additive case the standard deviation of the supply quantity is independent of Q; @
can be written as ) = x + . Since ¢ is normal with (u.,0.), the supply is normal with the
mean, f(z) = x+ pe and the standard deviation, g(z) = o.. Without the loss of generality
assume p. = 0. If we place f(z) = = and g(x) = o, into Equation (4.6), we can find a closed

form expression for the optimal quantity for this case.

po=pp—0(z) " <0_8> (4.8)

r—s

Note that &1 (C_5> can be written as -®~! (1 — $;5>7 the optimal quantity becomes,

rT—S —S

r—s

1o = pp +0 () @1 <H> .

where 6(z) = (/02 + 0%. This result is the same as the optimal quantity presented in the
analysis of Rekik et al.[34].

Multiplicative Case

In the multiplicative case, the deviation is proportional to the expected value of supply ,
Q = vx. Let v be normal with (p,0.), then @Q is normal with (f(x),g(z)), where f(x) = pyx
and g(x) = o,2.Using Equation (4.6), the optimal z, should satisfy;

@) =np = 0@ 0 [{E20 - o200 (227100 ) i (1.9

where 6 = /0222 + 07,. The optimal quantities in Rekik et al.[34] satisfy Equation (4.9).
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4.1.2  Solution of Single-Farm, Single-Period Problem

In the previous section, we examined the newsvendor problem with random supply, and deter-
mined the optimal decision for the supply quantity when both the demand and the supply are
normally distributed. Through this section we study the solution of single farm, single period
problem, described in Section 4.1, and we aim to maximize the expected profit given in Equation
(4.2), by finding the optimal decisions for the farm area and the seeding time. The problem
differs from the newsvendor problem described in the previous section, since the distribution of
the supply quantity is unknown.

The supply quantity depends on two random variables; one is the binary indicator that shows
the availibilty of harvest in the related period, the other is the random variable yield. From
section (3) , it is known that in period ¢ with probability p; -, (t) the output quantity from farm

1 is equal to Y;a;, otherwise it is zero.

0 with probability 1 — p1 - (t)

1
Qr = Z Qi =
=1

Although from Equations (3.4) and (3.6), the mean and variance of the variable @); can

Yia; with probability pi - (t)

be obtained, we do not know the distribution. Thereby, E [min(Q;, D;)] can not be found

analytically. On the other hand, we know Y; and consequently Y;a; are normal. Let us call Y;a;
1

as q;, and ) q;, as @ in period ¢, then min(Q¢, D¢) and E [min(Q, Dt)] can be written as

1=1
follows;

1 . -
] 0 with probability 1 — p1 - (t)
min(Q¢, Dy) = Z%’,t = "
i—1 min(Q}, Dy) with probability pi -, ()

Using Equation (4.4), E [min(Q¢, D;)] is written as,

o (EDL B QL))
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where E[Q)] = E[Y]a, Var[Q)] = E[Y?] a* - E[Y]a® and 0, = \/Var [Q}] + Var [Dy] . Then

the expected profit for period ¢! given in Equation (4.2), can be written as;

Elr(a,7)] = (m_sﬂ)plyTl(m(E [%]@(E[Dﬂ]e—/m tT])

- E[Dt’r]> . (E[th] — B [QH> )
tt ng

+E[D ]@(E[ v
tt %

—(cpt — 841 ) E[Qyt - (4.10)
There are two decision variables in the problem; a and 7. First we discuss the optimal a.

Theorem 2 Let the mean and standard deviation of Q) be functions of parameter a , E [Q}] =
f'(a) , and Stdev [Q}] = ¢'(a). If f'(a) is linear and ¢'(a) is concave , then the optimal a should

satisfy the following,

o) — gt | s o 09'a) o (E[Di] = f(a) 0f'(a)
f/(a) = B[D] b0} 1[@}_35'+9<@ Fdoyta) o (P ) O ](41n

Proof 2 See Appendizx.

After replacing the f’(a1) , ¢'(a1) ,0;, %ﬁ?l) and %ﬁl) in Equation (4.11), the optimality

condition for a; in Theorem 2 becomes;

(ct — st)

a1 (Var[Y1])
V(E[Y?]at - EYi]a}) + E[Dy]?

(D] - B mm*))
V(B2 at - Bvi]a}) + o},

¢

From the equation above, the optimal decision for the farm area can be found independent of the
seeding time decision. Also, Theorem 2 provides the optimal solution for the planning problem
of perennial plants.

Theorem 3 Let 7 denote the seeding time. The seeding time TF is optimal as long as there

exists no Tf’ values that has bigger p, _k ) where k # k.
Ty
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Proof 3 See Appendizx.

Theorem 2 and Theorem 3 provide the optimal solution for the single farm, single period problem.

Let us study the optimal solution in a numerical example with parameters given in Table
4.1. We aim to maximize the profit for the period 8. By using Theorem 2 and 3, the optimal
decisions for seeding time and the planting area can be found as a] = 0.311 ,7{ = 5. The harvest

probabilities for the seeding time 71 = 5 can be seen in the following figure;

Parameters Values

Tyt )

Cyt 2

S¢t t 0.5

Dy: Norm(2000, 500)
Yi: Norm(6000, 1000)
Ti,tTh : U(2,3)

T;,tTm : U(1,5)

Table 4.1: Parameters of Numeric Example

09

piri(t)

08k

07+

06

05

o4k

a3

02

01

Figure 4.1: Harvest probabilities when seeding time, 7 is 5
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The change in the profit function as a; and 7 change can be seen in Figure 4.2 and 4.3.

=™ ! ! ! ! I

w(a, 1)

i ;
a1 i i i i
0321 03 03 0351 031

2480 i i
P 0z 0 0 GET] 031
ay(acres)

Figure 4.2: The relation between seeding area and expected profit
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Figure 4.3: The relation between seeding time and expected profit

In Figure 4.2 and Figure 4.3, we can see the changing profit with respect to different a and

7 values. Also, in both graphs the expected profit, and 95% confidence interval for the expected
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profit, based on the simulation results, can be seen. It can be seen that the expected profit,

E [r (a,7)] value given in Equation(4.2), is very close to simulation results.

4.2 Multi Farm, Single Period Problem

In this section the planning problem for multi farm and single period is studied. The problem is
similar to the single farm, single period problem. The only difference is in the total production
variable. In this case, the supply quantity depends on the production of multiple farms. The

expected profit for period ¢! is written as follows;
Elr (a,7)] = (rgt — s¢t) Emin (Qyt, Dyt)] — (et — 541 E [Qyt] (4.12)

Like in the previous section the aim is to maximize the profit in period t'. There are multiple
farms available and before the planning period starts, the decision maker needs to determine

the seeding areas and seeding times for those farms.
Max Elr (a,1)] (4.13)

4.2.1  Solution of the Multi Farm, Single Period Problem

In this part, to provide better understanding of the solution, we first investigate the solution for
the case of two farms available and then generalize it for the multiple farm problem.

Let us consider the supply quantity when there are two farms. Seeding times and planting
areas are given. Based on the seeding times, the harvest period can be calculated for each
farm by using the probability function defined in Equation(3.3). The farms has maturation and
harvest period distributions that leads harvest probabilities shown in Figure 3.2. The harvest
probabilities for the first farm can be seen in the first graph of the figure. For the second farm,
the harvest probabilities are given in the third graph.

Assume that the demand exists for only the fourth period, t' = 4. Both of the farms are

seeded in period 1. From Figure 3.2, the probabilities for the fourth period can be seen; the
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harvest probability for the first farm is 0.9 while it equals to 1 for the second farm.
In Figure 4.4, the histogram of output quantity of two farms are given. The total output in
period t, Q¢, shown in the third row, is equal to the sum of the supply quantities of the farms

in period ¢'. The histogram of gits and @; obtained by simulation can be seen in the following

figure.

914 w A{HW’}L

L | | I
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. ] ] i o S
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Figure 4.4: Histogram of ¢; ;s and @

As it can be seen from Figure 4.4, the production quantity has a different pattern. The total

supply quantity gathered from all two farms is written as follows;

(

0 with probability (1 —p1,7, (t))(1 = p2.r, ()
0, — A ¢ with probability p1,r, (£)(1 — p2,r, (1))

dhs with probability (1 — p1,r, (£))p2,r, ()

Zi]\il qz’-7t with probability p1,r, (£)p2,r, (t)

By using the @; given above, and the fact that ql’-yts are normal, the min(Qy, D) can be

written as;
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0 with probability (1 — p1,r, (£))(1 — p2,r, (¢))
min(Qs. D) = min (g} ;, Dy) with probability pi,r, (£)(1 — p2,m, (2))
min (¢34, Dy) with probability (1 — p1,r, (£))p2,m (t)
\ min (Efil qat, Dt> with probability pi1,r, (t)p2,r, (t)

Then the expected minimum of Q; and D; and the the profit function is written as follows;

E [min(Qta Dt)] = Pim (t) (1 — P2y (t)) min (qll,ta Dt) + (1 —Piin (t))p2a7'2 (t) min (qg,th)

N
+P1,m (t)p277-2 (t) min (Z qg,ta Dt) (4.14)
=1

and

Elaan)] = (e = su) (p1n (01 (1= ey () min (i 04

+ (1 — P (tT)) P2, (tT) min (QQ,th DH)
N

+p1,7, (£)P2,r, (t7) min (Z i 4 Dt> ) — (et — st)E Q4] (4.15)
i—1

For the general case, where there are N farms available, the expected @) is written as,

E(04] = Z Z (Hpaz ih) ( — T))) (éfé,ﬁai).

an=0

Then, the minimum of @;+ and D;: and the the profit function is written as,

E [min(Qy+, Dyt)] Z Z (pr”ﬂ tT ( pzlﬁal( )) min <<Z q; tt%) 7th> )

an=0
(4.16)
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and

E[r(a,7)] = (rs — s4) Z Z (Hpaz (th ( pleaz(tT >> mm((quaZ) )
=0  an=0

— (et — StT)E[ ] (4.17)

Theorem 4 E[r(a,7)] is a concave function of a. For all N wvalues, N, € RT, there exist a

unique a = (ay, ...,an), that mazimizes the expected profit function, E[r(a,T)].
Proof 4 See Appendizx.

In numerical experiments, we observed that Theorem 3 holds for the optimal seeding time
for each farm in the multi-farm problem. However, we could not prove this result in this thesis.

Therefore it is stated as a conjecture.

k

Conjecture 1 Let 7'-k denote the seeding time,where ¢ € N. The seeding time 7;° is optimal as

long as there exists no ’7' " values that has bzggerp (t)

4.3 Normal Approximation for The Total Supply in The Single Period Problem

The profit function in Equation(4.18) has computational complexity O(2") which makes it
difficult to evaluate for big instances of N. Motivated by the solution of newsvendor problem
in section 4.1.1, let us approximate the supply as a normally distributed random variable in
each period t. Using Equations (3.4) and (3.6),the mean and the standard deviation of supply

quantity for period t' are written as,

QtT Z Di ‘r, Y; aia

and

N

Stdev [Qu) = | 3 (pin () BV 202 — 2 (1) E[Yi]%a? ).
i=1

Under the approximation that the total supply is normally distributed, the profit function

can be approximated as;
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Far) = (rp _Sﬂ><E Q] (E[th]e;E[Qﬂ]> D] ® (E[Qtf]e;E[Dﬂ])

a0 (FPERY ) e - sl (4.18)

where 7 is the expected profit obtained when @ is approximated with a random variable and D,

is a normal variable. From Section 4.1.1 we know that when both the demand and the supply
are normally distributed, in the optimal solution all a; € a, satisfy Equation (4.6) for the given
seeding times, 7; € 7. If we place E[Q;] and E[Q:] into Equation (4.6), then we can write the

optimal a; as following,

i = p (OB (EID] - B oas e (22
(BY2)a? — pi () BIYi02)

- 3 7

E[Dy] — E[Q4]
i ))). (4.19)

Although the single period planing problem is very similar to the newsvendor problem with
random supply, it differs in the sense that there exist two decision variables, a and 7 while the
other has only one variable that corresponds to a. Thus, not all a, 7 pairs that satisfy Equation

(4.6) are optimal.

Theorem 5 Let af be the value that satisfies the Equation (4.19) given that the seeding time is

7k such that Tik = k. The seeding time Tik and the seeding area af

g are optimal as long as there

exists no T values that has bigger P k(1)

Proof 5 See Appendizx.

Theorem 3 and Theorem 5 suggest that both for the exact solution and for the approximated
solution, the optimal time decisions provide the maximum harvest probability for the target

period, thus in both cases, the optimal time decisions are the same.
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Let us study the performance of the normality approximation for the single period, multi farm
problem. We compare the results obtained by the solution approach with normality assumption
to the optimal result for eight different cases where the number of available farms varies from
1 to 8. All farms are assumed to be identical. For each case, we generate 60 scenarios with
different expected yield, expected demand, production cost and harvest probability values. The
parameters of scenarios can be seen in the Table 4.3.

While generating harvest probability values, only the maximum of harvest probabilities are
considered. The optimal solution uses the maximum value, thus scenarios are created for the
maximum value of harvest probability, not for the maturation and harvest probability distri-
bution functions. The maximum value of harvest probability depends on the distributions of
harvest and maturation lengths. Let T} and Tzhn be uniformly distributed with (a,, by,) and
(ap,by) respectively. In the following table the maximum harvest probabilities are given for

different distributions of harvest and maturation lenghts. In all cases FE [TZ}fn] and E[T]7.] are

constant.
bm — am by —ap
2 3 4 )
2 1 1 095 0.89
3 0.93 0.88 0.83 0.78
4 0.71 0.71 0.69 0.67

Table 4.2: The maximum value of harvest probability as distribution parameters of maturation
and harvest length change

Table 4.2 shows that the maximum harvest probability decreases as the variation in lengths
of harvest and maturation decreases. This time, we keep b,, — a,, and b, — aj;, constant and
change E[Tzhn] and E[T]7] . The change of E[T]7 ] does not affect the maximum harvest
probability, while increase of E [Tzhﬁ] increases the maximum value of the harvest probabilities.
The seeding times of the optimal solution are found by using Conjecture 1, and the seeding
times of the solution approach are found by using Theorem 5. Both provide the same solution,

thus the optimal seeding times are the same for both the optimal solution and the approximated
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Parameters Values

Ny - 2,3,4

Tt 5

Cit t 2,3

Syt ot 0.5

E[Dyi]: 2000

Cv[Dyi] : 0.1,0.2,0.3
maz(p; -, (t7) :  1,0.9,0.8,0.7,0.6
E[Y4] : 6000

ColYyi] 0.1,0.2

Table 4.3: Parameters of Scenarios

solution. On the other hand, the seeding areas are different for the two solutions. The optimal
seeding area decisions are described in section 4.2.1, and can be found by Theorem 4 . However,
in the second case, the total supply quantity is assumed as normal and the seeding areas are
found by Theorem 1.

We investigate the performance of the approximation as the number of the available farms in-
creases. In Figure 4.5, the percent difference between the optimal solution and the approximated
solution in the base 10 logarithmic scale can be seen for different N values.

Figure 4.5 shows that as the number of the available farms increases, the approximation pro-
vides better results. The difference between the optimal solution and the approximate solution
is 2.3% when the number of farms is one and it decreases to 0.001% as the number of farms
increases to eight. Also, from the central limit theorem it is known that the sum of random
variables approaches to the normal distribution as the number of random variables increases. It

can be stated that the solution approach performs better as the number of farms increases.
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% difference between optimal and approxiamation

Figure 4.5: The relationship between the number of farms and the percentage error between the
optimal solution and the approximation
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Chapter 5

MULTI PERIOD PROBLEM

In this chapter, we consider the planning problem when the planning period consist of 7°
periods and the number of available farms is N, where N > 2. The demand exists for all periods
and the aim is to maximize the sum of profit through the planning period. In the beginning of
the planning period, the decision maker needs to decide the farm areas to be seeded and the
seeding times if necessary.

Although the problem is similar to the multi farm single period problem, discussed in the
previous section, it differs from that problem due to the number of periods considered in the
planning period. In the multi period problem, the production through all periods should be
taken into account, while in the single period problem only the production in a certain period,
t4, is considered. In the multiperiod problem, the production quantity of a farm in all periods is
dependent to each other. Deciding about the seeding time and the seeding area of the farm, de-
termines the expected production through all the harvest period. The expected output quantity
is given in Equation(3.4).

Let us consider the supply quantity when there are three farms with the given seeding times
and planting areas. The yield of each farm is random with normal distribution. Based on
the seeding times, the harvest period can be calculated for each farm by using the probability
function defined in Equation(3.3). Farms have maturation and harvest period distributions that
are shown in Figure 3.2.

In Figure 5.1, the histogram of output quantity of all three farms are given. The seeding
time for the first farm m = 4. By looking at the Figure 3.2, it is easy to see that the harvest
period can start after one period of the seeding time and can last for six periods. Namely it is

possible to harvest crops in periods between the fifth and tenth period. Both the second and
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the third farm are seeded in period 1, leading possible harvest periods between second period
and seventh period for the second farm, and between second period and seventh period for the
third one.

Throughout the periods discussed above, it is possible to have an output. The total output
in period t, Q¢, shown in the fourth row, is equal to the sum of the supply quatitites of all farms
that are available in that period ¢. For instance, in period 3, the total quantity is equal to the
production in Farm 2 and in Farm 3, and in period 6, the total supply is equal to the the sum
of the production all three farms while in period 10, since there is only one farm available, the
total production quatitity is equal to the production of farm 3. The histogram of ¢;; and @

obtained by simulation can be seen in the following figure.
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Figure 5.1: The histogram of g; ;s and @

In the previous section, the expected profit in period t¢; is given in Equation (4.18). The

total profit of all periods is equal to the sum of profits in each period and is written as follows;

T 1 1 N N
Elr(an] = > (n=s) > > (I]pin ()0 = pi 7 ) min((}_ gi,0), Dr)
t a;=0 an=0 i=1 i=1
—(cr — s¢) E[Q] (5.1)

We examine the multi farm, multi period problem for two cases. In the first case, the planning
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problem of perennial plants, where seeding times are not decision variables, is studied. In the
second case, the planning problem of annual plants is considered. In this case, the decision

maker needs to decide both for seeding areas and seeding times.

5.1 The Planning Problem of Perennial Plants

In the planning problem of perennial plants, the aim is to maximize the total profit by deciding

how many acres to seed in each farm.
Max Elr (a,7)] (5.2)
a

where E[m (a, )] is given in Equation (5.1).

Theorem 6 E[r(a,7)] is a concave function of a. For all N and T values,where N,T € R*,
there exist a unique a = (ay,...,an), that maximizes the expected profit function, E[r(a,T)] for

given T.

Proof 6 See Appendix A.

Theorem 6, states that the optimal a can be found if the seeding times are given. However
the profit function has an order of 2" time complexity, O(2"), to evaluate which makes Theorem
6 computationally inefficient when N is big. To overcome that problem, we propose several

heuristics to solve the problem effectively when NV is big.

5.1.1 Approaches for the Determination of Farm Areas

Throughout this section we examine two approaches for finding the seeding areas. Proposed ap-
proaches and the exact solution are summarized and the time complexity of objective function is
given in Figure 5.2. A, represents the optimal solution found by using Theorem 6. A, orm and
Aeqp are two approaches presented in this section. Ao, applies the approximation introduced
for single period case in section 4.3 to multi period case. Agzp solves the problem replacing all

the random variables with their expected values. First, both approaches are introduced, then
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they are compared with the optimal solution for 288 different scenarios. From Theorem 6, it is
known that the optimal a can be found for the given seeding times. To find the optimal solution,
we found the optimal a for each possible 7. The 7,a* pair that provides the maximum profit is

taken as the optimal solution. The parameters of scenarios are given in the Table 5.1.

Max FE[r (a,7)]
a

M;ax 7 (a, 1) M;}X T(a,T) I\'[;ax Elr(a, )]
Find a* using expected Find a* using a normal Find «* using exact
values are for r.v approximation (); expression for E[(Q:] and
by solving a LP by solving a NLP Std[Q)¢] by solving a NLP
Acrp Anorm Acret
(Om)) (O(n)) (0(27))
Section 5.1.1.1 Section 5.1.1.2 Section 5.1

Figure 5.2: The approaches for the determination of Farm Areas

5.1.1.1 Normality Approximation for The Total Supply Quantity, Anorm

In Section 4.3, we study solution of the single period problem with normality approximation
for the total supply quantity in that period. This time we approximate the supply quantity in
each period ¢, as normally distributed with mean E[Q;], and standard deviation Std[Q;], given
in Equations (3.4) and (3.6). By using Equation (4.5), the expected profit can be written as;

d E[D] - E[Q] E[D] - E[Q]

Aar) = S soElQn P E@ 4 pip g HPL EQ
o EPAEQy (o Eiq (5.3)

0y
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We can obtain an approximate solution to the problem given in Equation (5.2) by maximizing
7 (a, 7) given in Equation (5.3);

Max 7 (a,7) (5.4)
a
The solution is given in the following theorem.

Theorem 7 Let a* be the a value that mazimizes 7 (a,7). All a; € a*, should satisfy the

following;

5= et (- cam (P EO) ) -

ai(E[Y?] — pi-()EYi]*)  (E[D] - ElQ]\ Y _
0 ? < 0 > > =0

(1t —ct) (5.5)

Proof 7 See Appendiz A.

By solving the set of equations stated above, optimal values of @ can be found. Using a* found
by this approach, the expected profit for each scenario is found and compared with the optimal
profit. Let us define OG() as the optimality gap which shows the percentage deviation from the

optimal solution. The optimality gap with respect to the number of farms is given in Figure 5.3.

The average optimality gap is 0.64%, and we observe that the optimality gap decreases as

the number of farms increases. The results of this approach is given in Appendix B, Table B.1.

where OG(Ayorm) = 100 % E[r (a*,7)] — E[r (a*,7)])/E[r (a*, 7)),
Cv() denotes coefficient of variation,

E[D}]=(2000 2000 2000 2000 2000 2000 2000 2000 2000 2000)
E[D?]=(2000 2000 3000 3000 2000 2000 2000 2000 2000 2000)
E[D$]=(2000 4000 1000 3000 2000 3000 1000 4000 2500 1500)

and DD, and DDy, are general discrete distributions.
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Figure 5.3: The optimality gap of A,omm with respect to the changing number of farms

Parameters Values

N : 2,3,4

T: 10

Tyt 5

Ct 2,4

St - 0.5

E[Dy] E(Dy{], E[D}], EID}]

Cv[D], 0.1,0.3

ElYi] : 6000

ColYi] : 0.1

T U(2,4),U(1,5), DD} (t1,t2, ..., t7 : ™, py't, ., pit),
DD?n(tl,tg, ot U Py, pg?)

T" U(3,5),U(2,6), DD} (t1, ta, ...t = P, pht, .. pht),

DD}QL(tl’t% -~-atT : pilmapgmv ’plleg)

Table 5.1: Parameters of Scenarios

DD} (1,2,3,4,5,...,7 :0,0.2,0.6,0.2,0, ...,0)
DD?2(1,2,3,4,5,...,7 :0.1,0.1,0.6,0.1,0.1, ..., 0)
DDL(1,2,3,4,5,6,...,7 : 0,0,0.2,0.6,0.2,0, ...,0)

DD2(1,2,3,4,5,6,...,7 : 0,0,0.2,0.6,0.2,0, ..., 0)
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5.1.1.2  Deterministic Approach

The problem is modeled by using the expected values of random variables in Section 3.1.1,
Modely. In that model, both the seeding area, a, and the seeding times, 7, are decision variables.

When the seeding times are no longer decision variables, the model is written as follows;

Mﬁx 7 (a,7) (5.6)

subject to
ElQ]<MI/ (), i=1,..,N;t=1,..T (5.7)
EYi]a, <BEQ)+MQ-1I_(t), i=1,...,N;t=1,.T (5.8)
ElQ]<E[Ya;, i=1,..,N;t=1,.T (5.9)

ElQ)]—E[D])=A —A;, t=1,..T

where 7 (a, 7) is given in Equation(3.13).

The model is solved for 288 scenarios given in Table 5.1, using CPLEX solver in GAMS.
Results of all scenarios are given in Appendix B, Table B.2. The optimality gap with respect to
the number of available farms is given in the following figure.

The average optimality gap of this approach is 10.26% and it increases as the number of
farms increases. Results show that the previous approach, A,.-m performs better.

The optimal solution is not found for bigger N values due to the high computational time.
For bigger instances of N, two approaches are compared with each other. We generated 96
scenarios for each N with parameters given in Table 5.1. The results are given in Appendix

B, Table B.3. Approach Ayorm provides higher objective value then approach Acy, by 15.43%
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Figure 5.4: The optimality gap of Ay, with respect to the changing number of farms

on average. Let Ajyorm—ezp donate the percent difference between objective values of Ajorm
and Aczp. Dporm—erp = (E[m (8%, 7)] — E[n (&%, 7)])/E[r (a*,7)]. The following figure shows
Aporm—ezp 0N a logarithmic scale.

It can be observed that A, performs better then A, and the difference increases as
the number of farms increases. A, fails to employ multi farms to decrease risk in the total
supply, leading to bigger variations from the optimal. On the other hand, the results of A,orm
get better as the number of available farms increases. This can be explained by two facts. The
real optimal profit tends to increase, when there are more available farms. The decision maker
gets the opportunity to decrease the risks by employing more farms. Second, the normality

approximation works better as the number employed increases.

5.2 The Planning Problem of Annual Plants

In the planning problem of annual plants, we need to find optimal decisions not only for seeding
areas but also for seeding times. Although Thereom 6 provides the optimal values for a, the

optimal 7 can not be found analytically. For the multi farm, multi period problem where the
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Percent Improvement

Figure 5.5: The difference between A,orm and Aeczp, Anorm—ezp With respect to the changing

number of farms

decision maker also needs to decide on seeding times of the farms, the optimal solution can be

found by solving the following model.
Modely

Max E [ (a,7)]

)

subject to
T
=Y tStiy, i=1,..,N
t=1

T
Y Stig<1l, i=1,..,N
t=1

St € {0,1}, i=1,..,N;t=1,..

T

(5.10)

(5.11)

(5.12)

(5.13)
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where E[m (a,7)] is given in Equation (5.1).
The above problem is a mixed-integer non-linear optimization problem and expected profit
function has evaluation complexity of order 2", O(2"). In order to find an approximate solution

to the above problem, we propose several approaches.

5.2.1 Approaches for the Determination of Farm Areas and Seeding Times

In this section we propose eight approaches, grouped into three. In the first part, the problem
is modeled by using the normality approximation for the total supply quantity and to solve
the model two methods are discussed. In the second part, we analyze the results of M odely,
introduced in Section 3.1.1 and study on the improvements. Finally, we add a new constraint
to Modely, by analyzing the weakness in the second part and apply the improvements proposed
in the previous part. All proposed approaches are summarized and the time complexity of
objective function evaluations are given in Figure 5.6. Like in the previous section, the results
of the heuristics are compared with the optimal solution for 288 different scenarios, parameters
of which are given in Table 5.1. To find the optimal solution total enumeration and Theorem 6
are used. The optimal a is found for each possible seeding time. Then a, T values that provide

the highest profit is taken as optimal solution.

5.2.1.1 Normality Assumption for The Total Supply Quantity

In section 5.1.1.1, the function in Equation (5.3) is maximized when seeding times are known.
In order to find optimal 7 as well as optimal a, the following model should be solved.

M odels

Max 7 (a,7) (5.14)

subject to

T
=Y tStiy, i=1,.,N (5.15)
t=1
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T
d Sty <1, i=1,.,N (5.16)
t=1

Stiy€{0,1}, i=1,.,N;t=1,..T (5.17)

The above model is a nonlinear integer model. It is solved for 288 scenarios by using DICOPT
solver in GAMS. The parameters of the scenarios are given in Table 5.1. The problem is
nonlinear, thus we can not guarantee the optimal solution. The optimality gaps are given in
Appendix B, Table B.4 and the average optimality gap with respect to number of farms is shown
in Table 5.2.

Iterative Approach

We propose a two-stage approach where in the first stage the farm sizes are determined for
given seeding time and in the second stage, the best seeding times are determined for given

seeding areas . By solving these two problems iteratively, we obtain an approximate solution to

M odels.

Assign k: k=0 Max 7 (a,7})
o Assiandg » Updatek: k=k+1; [¢
ay={a;la; = aji,j € N} Find a;

k.

Max 7 (&}, .7)

Find 7

Report ay, 7 as

solution (af,. 7;,

Figure 5.6: The iterative approach, ATy orm—iter
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In order to determine seeding areas, a, we solve the problem given in the previous section
for given seeding times. The problem becomes the same as the problem described in Section
5.1.1.1, of which solution is given in Theorem 7. The starting 7 is taken as, the optimal 7, when
a is an a random vector where all a; € a are equal to each other.

After seeding areas are found, M odels is solved again with provided seeding areas. This time
seeding times are decision variables while seeding areas are parameters. When the seeding areas
taken as parameters, the problem can be formulated as a mixed-integer linear programming
program.

The two problems are solved iteratively for 288 scenarios described in previous sections, until
the same result is given successively or the number of iterations exceeds 6. 244 of 288 scenarios,
the iterative method converged to a solution. In cases where the maximum number of iterations
exceeded, the last solution is taken as the optimal. The results are provided in Appendix B,

Table B.5. The optimality gap is given in the following table;

N Optimality Gap(%)
ATnorm ATnorm—iter

2 6.20 2.76
3 4.37 4.34
4 6.56 3.29
Average 5.71 3.46

Table 5.2: The optimality gap of AT orm and AT orm—iter

Table 5.2 shows that solving Modely iteratively rather then directly provides better results.
We also observe that the performance of both approaches are not affected by the number of

available farms.

5.2.1.2  Deterministic Approach

It is known that Modely, presented in Section 3.1, is linear so it can be solved precisely. In

this section we analyze the results of that model and propose several heuristics to improve the
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solution. First the approaches will be discussed, then results for all approaches will be compared
together. The problem is solved as it is modeled in Section 3.1 by using Conopt solver in GAMS.

The first approach,AT¢,),, is solving Modely and using a* and 7* values provided by the
model as solution.

In the previous parts of this section, it is given that the optimal values for a can be found
when seeding times are given. Using 7* given by the model above, the optimal values for a are
found. This method is referred as AT, p—cqct-

As a third approach, we use the approximation given in the Section 5.1.1.1. By using Theorem
7, a* are found for the seeding times provided by the model, 7*. This approach is referred as
ATyp—norm- The results of these approaches for all scenarios are given in Appendix B, Table

B.6,Table B.7 and Table B.8 respectively.

N Optimality Gap (%)
ATeacp ATexpfem ct ATezpfnorm
2 3.50 0.19 1.53
3 10.05 7.51 8.84
4 13.37 10.94 12.21
Average  8.97 6.21 7.53

Table 5.3: The optimality gap of ATy, AT rp—cact, and ATezp—norm

We expect ATeyy—cret performs best while it uses the optimal seeding areas with given 7.
But since this approach has high computational time, we don not prefer to use it. Comparing
other approaches, we can say AT,;p—norm performs better then AT.,,. However, ATcry—norm is
not employing multi farms like AT,,, and for that reason the optimality gap increases as the

number of available farms increases.

5.2.1.8 Deterministic Approach with Additional Constraint

In the previous section, it is observed that the results of the model is not utilizing all available

farms although they are identical. It is known that for sum of random variables, increasing the
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number of variables in the sum, decreases the variation. Based on this idea, we add the following

constraint to Modely.

aiH—ai:O iZl,...,N—l (5.18)

After the model is solved, the solution provided by the model, @} and 7} is used as an
approach for the problem and referred as AT¢;pcon. Using 7. values as parameters, we maximize
E[r(a, )] to find a* and refer this approach as AT ypcon—cazct- Next, with @} values as parameters,
7(a, T) is maximized to find a*, and results are reported as AT¢ypcon—exct- The optimality gaps
of these approaches for all scenarios are given in Appendix B, Table B.6,Table B.7 and Table

B.8 respectively. The average optimality gaps are shown in the following table.

N Optimality Gap (%)
ATezpcon ATe:vpconfewct ATe:vpconfnorm
2 4.69 0.41 1.78
3 13.93 6.27 7.36
4 12.98 7.00 7.78
Average 10.54 4.56 5.64

Table 5.4: The optimality gap of ATerpcon, ATexpcon—exct a0d ATerpcon—norm

Although AT¢pcon—exct Performs best among those three approaches, we do not select ATz pcon—exct
because of the computational time problem.

The optimal solution is not provided for bigger N values due to the high computational time.
The average optimality gaps of all proposed approaches are given in Table 5.5.

Best two approaches introduced in this section are AT}, opm—iter in Section 5.2.1.1 and ATezpeon—norm
in Section 5.2.1.3 with optimality gaps 7.63% and 5.64% respectively. Assuming AT¢,, as the
base solution, we compared the improvement of those two approaches for different N values,
where N € 2,...10. 98 scenarios are generated for each IV value.

Let A denotes improvement of approaches according to base solution. Apormiter—exp, Dn—e
in short , and Aczpeonnorm—erps De—e in short , are compared in the following table. Results for

all scenarios can be seen in Appendix B, Table B.9 and B.10 respectively.
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SolutionApproach ~Average Optimality Gap (%)

AT vorm 5.71
ATnormfiter 3.46
ATewp 8.97
ATe:cp—exct 6.21
ATexp—norm 7.54
ATexpcon 10.54
ATezpconfeacct 4.56
ATexpcon—norm 5.64

Table 5.5: The optimality gaps of the approaches for the determination of Farm areas and
Seeding times

ATnorm—iter ATezpConfno’r‘m
N Ap_e flAn—e >0  flAp—e>2]=0.95 N Ac_e flAe—e > 0] flAc—e >x] =0.95
2 0.87 62.50 —5.05 2 1.93 58.33 —2.94
3 6.60 83.33 —18.54 3 3.05 82.29 —1.64
4 12.57 91.67 —-9.97 4 6.46 87.50 —1.00
5 14.42 89.58 —18.19 5 7.51 87.50 —0.70
6 18.99 92.71 —15.38 6 9.16 86.46 —1.53
7 19.89 92.71 —5.51 7 11.12 91.67 —0.51
8 22.95 98.96 10.00 8 11.56 91.67 —0.49
9 25.37 98.96 11.73 9 13.36 92.71 —0.48
10 21.94 91.67 —17.97 10 12.83 92.71 —0.48
Average  15.96 89.12 —-7.70 Average 8.56 85.65 —1.09

Table 5.6: Percent Improvement of AT, orm—iter and ATezpcon—norm according to base solution
ATy

where A denotes the mean, and f[A] denotes the frequency.

The approach AT}, orm—iter Provides better results then ATe,, for 89.12% of time and improves
results by 15.96% on average. On the other hand, 5% of time, it may provide solutions 7.7% lower
then ATeyp. Other approach, AT,ypcon—norm performs better then ATe,, for 85.65% of time and
gives results, that are 8.56% better then base approach. The result provided by AT.zpcon—norm
is lower then AT,,, on average 1.09% for 5% percent of time. So, the decision maker should
prefer AT, orm—iter procedure under the assumption that he is risk neutral.

In all cases, normal approximation to total supply quantity provide close results to the

optimal solution. However, the problem is nonlinear so the problem can not be solved precisely.
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On the other hand,the deterministic model can be solved easily, but it fails to consider the

variability in supply.

As a result, we propose using approach A,y described in Section 5.1.1.1 to solve planning

problems of pereannual plants and AT},orm—iter t0 solve planning problems of annual plants.
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Chapter 6

THE PLANNING PROBLEM OF ALARA AGRI BUSINESS

In this section, we present the planning problem of Alara Agri Business and analyze the
possible improvements over the deterministic approach by using the proposed solution approach

for annual plants.

6.1 Alara Agri Business

Alara Agri Business produces and exports fresh cherries and figs to 22 countries across 5 con-
tinents. It has established in 1986 in Bursa, and now it is the world’s largest producer and
exporter of fresh cherries and figs.

The company has 300ha orchards and 10000 contracted growers. Throughout the harvest
season, every day the products are gathered according to quality specifications. Mobile hydro-
coolers are used in order to cool the fruits right after the harvest in each region, and then
they are shipped directly to the central pack house in Bursa. The fruits are kept at the ideal
temperature through the whole chain. Once the fruits arrive at the packing facility, the quality
assurance department checks the product and then the fruits are transferred to the packing
line. The fruits are sorted and packed according to the customer demand. Alara implements a
traceability system from the orchard to the supermarket shelf. Also, the company assures the
quality of the fruits.

The fig season starts in the middle of August and finishes in the middle of October. The
figs are supplied through contracted growers around Bursa. On the other hand, the company
supplies the cherry for eight months, four months in Turkey, and four months in Argentina.
In Argentina, again the company supplies all the fruits from local growers but in Turkey the

company also produces cherry as well as buying from the contracted growers. The harvest period
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of cherry is from May to August, in different regions across Turkey. The harvest availabilities

can be seen in the following Figure 6.1.
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Figure 6.1: The harvest availabilities of cherry in Turkey

The company has four cherry orchards, total 300ha; in Manisa, Canakkale, Bursa and
Eskigehir. The aim of having orchards in those regions is to assure the cherry supply in early

and late periods. Through the main period, the company does not face any difficulties in supply-
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ing cherry from the growers that Alara established a contractual agreement with. The forecast
about the cherry production is done based on the weather conditions through the year. The
weather is compared to the previous years, and the yield estimation is done depending on the

year that seems similar to the current year.

6.2 Planning Problem

We assume there is an available farm in each of the locations given in Figure 6.1 and all the
farms are identical except their harvest availabilities that can be seen in the same figure. Since
cherry trees are perennial plants, the planning problem does not involve the decision of seeding
times. However, there exists different maturation period for each farm. In order to capture the
randomness caused by maturation time, we assume that all farms are seeded in the beginning
of May.

We incorporate an expert opinion' to decide the probability function for the harvest and
maturation lengths. We use two types of distribution for the lengths of harvest and maturation
period. Both distributions have the same mean but different variations. The time between
theoretical seeding times and expected start of the harvest, are taken as the expected length of
maturation. Also, based on Figure 6.1, the length of available periods are taken as the expected

length of harvest. The distributions are summarized in Table 6.1.

m
4Ty

DDay (0, . &ms T +1:0,...,0,1,0, ..., 0)
DDap, (0, & — 1, €msém +1,..T +1:0,...,,0,0.2,0.6,0.2,0, ..., 0)
DD, (0, .y &m = 2,&m — 1, &msm + 1,Em +2,..T +1:0,...,0,0.1,0.2,0.4,0.2,0.1,0, ..., 0)

h
DDan, (0, ..én, . T +1:0,..,0,1,0,...,0)
DDap, (0, €p — 1,6, &0 +1,..T +1:0,...,0,0.2,0.6,0.2,0, ..., 0)
DDap, (0, e €p — 2,60 — 1, €0, €0 + 1,6 +2,.. T +1:0,...,0,0.1,0.2,0.4,0.2,0.1,0, ..., 0)

Table 6.1: The harvest and maturation lenght distributions in the planning problem of Alara
Agri Business

!Belit Balci, Orchard Operational Director of Alara Agri Business
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where &, and &, equal to the expected values of maturation and harvest lengths in each case.

The problem is modeled and solved in two different methods. First, A.., approach, given in
section 5.1.1.2, is used to solve the problem. As a second method, A, approach, described
in section 5.1.1.1 is used. We solve the problem with both approaches for 162 scenarios. The
parameters of scenarios are given in Table 6.2.

The results of all scenarios is given in Appendix C, Table C.1. The average expected profit
of Aporm is 643119, while it is 546551 for A..p. The service levels for Ay orp and Aeyp are 71.45%
and 73.34% respectively. The increase in the profit is 17.67% when A, is used instead of
Aczp while service level does not change significantly. In Table 6.3, we present some results that

we want to analyze further.

Parameters Values

N 30

T : 16

Ty : 5

Ct 2,4

St . 0.5

E[D,] (0 1000 2000 3000 4000 4000 4000 4000
4000 4000 4000 4000 3000 2000 1000 0)

Cv[Dy] 0,0.1,0.3

E[Y]: 30

CwlYy] : 0,0.1,0.3

T DDayy, DD, , DDa,

T DDay,, DDay,, DDay,

Table 6.2: Parameters of Scenarios

From Table 6.3, it can be observed that the improvement in the profit changes considerably.
For instanstance the improvement in the profit function in the first two scenarios is 0 while it
is 877.51% for scenario 162. Note that the variation of lenght of both maturation and harvest
periods increase becomes 1.68 in scenario 162 while the expected lenght of those periods are 6.6
and 3.5 respectively. By analyzing Table C.1, it can be claimed that approach A, performs

better than approach A.;;, when the randomness in the problem increases.
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o8

Expected Profit A (%) Expected S.Level
CU[Dt] C'U[Yz] Z{L.,-. Z’V:-i Ct Sc.No A'norm Ae:cp noel o Anorm Aeacp
DDan. | 2 I 1184995,65  1185000,00 0,00 0,84 0,86
o | 4 2 389999,99  390000,00 0,00 0,82 0,82
2 3 1092251,08  1059329,40 3,11 0,81 0,80
0 0 DDan, | DDamy |4 4 312204,20  282351,90 10,57 0,69 0,77
Dha. | 2 5 1045023,16  947744,25 10,26 0,78 0,74
2| 4 6 287718,94  190174,80 51,29 0,64 0,73
Dhan | 2| 7 932106,99  858369,84 8,59 0,78 0,71
ol 4| 158 210157,98  77931,10 169,67 0,60 0,71
2 | 159 926872,80  830395,12 11,62 0,76 0,69
0.3 0.3 | DDan, | DDam, | 4 | 44 206196,51  49940,00 312,89 0,57 0,69
DDa 2 [ 161 920321,56  798231,75 15,30 0,76 0,67
™24 | 162 199861,17  20445,99 877,51 0,55 0,67
Average 642309,18  557492,85 122,57 0,72 0,74

Table 6.3: The results of some scenarios

We want to study the effects of randomness in detail. Thus, we study the effects of change in

variability of demand, yield ,maturation length and harvest length in the proposed solution. The

change in the average profit function, A, rm—ezp, With respect to changing coefficinst variations

of demand, and yield, is given in the following figure.
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Figure 6.2: The change in A as coefficient variations of demand and yield increase

Figure 6.2 shows that as the variations of demand and yield increase, the difference between

Aegzp and Ay orm increases as expected. In addition, it can be claimed that the change in variation

of demand and yield has the same effect in the Ao —ezp. Next, we analyze the effect of change
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in variation of maturation and harvest periods in the profit function in Figure 6.3.

Percent Improvement

DDay, & DDay,

Figure 6.3: The change in A as variations of harvest length and demand length increase

Figure 6.3 shows the change in the variation of maturation length effects Ay opm—ezp more.

We know A, fails to employ multiple farms to decrease the variation in the supply quantity.
To illustrate, the pooling effect in the problem, we analyzed ten alternate solutions of Acgp. At
first, just one of ten identical farms in Figure 6.1 is used. Then, the number of farms employed

is increased while the total seeded area remains the same. The results are as follows;

Elr(a,7)]

Figure 6.4: The expected profit of as the number of farms employed increases
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The blocks show the expected profit of the different solutions while the line above them
illustrates the optimal profit. As the figure shows, employing multiple farms, increases the the
expected profit. However, although the number of farms increases, A, orm still performs better.

In the next two figures, we see the total supply quantity provided by the solutions of two

approaches.

E[Qd]

Figure 6.6: The total supply quantity of A,qm and Aezp when ¢ = 4

In the first figure ¢; equals to 2, while it is 4 in the second one. The figures show that A,orm
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is more sensitive to the changes in costs. When ¢; equals to 2, supply quantities are almost same.
However, as ¢; increases to 4, the supply quantity of solution of A,y becomes significantly
lower then one of Aggp.

This case study shows that the proposed method that captures the demand, harvest, and
yield uncertanities jointly allows the decision maker increase their profit substantially. The
expected benefit increases with the uncertanities present in the model. As a result, we propose
this model and the solution procedure as an effective planning tool to be used in agricultural

supply chain.
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Chapter 7

CONCLUSION

In this thesis, we consider an agricultural planning problem when both demand and supply
are random. In the literature, there are some works similar to this problem but none of them
offers an approach considering all variability caused by harvest, yield and demand.

We study two versions of the problem: single period and multiperiod. We first analyze the
problem when the demand exist for one period and only one supplier is available. This version
of the problem is similar to the newsvendor problem. In the literature, there are some studies
that tackle the newsvendor problem with random supply. However, none of them could solve
the problem when both are normally distributed. We provide the analytical solution to the
newsvendor problem for that case, then utilize this solution in our solution procedure. For the
single period problem, we then study the case when there are multiple identical suppliers. When
the number of the suppliers increases, it becomes difficult to find the optimal solution due to
the computational complexity of the objective function. Therefore we propose a normal approx-
imation for the supply. The normality approximation provides results that deviate from the
optimal optimal solution by 2.3% on average for single farm case. The results of approximation
improves as the number of farms increases, the optimality gap decreases to 0.001% as number
of supplier increases to 8.

In the second part we first study the solution of the multiperiod, multi supplier problem
for perennial plants where the seeding time is not a decision variable. As in the single period,
multi supplier case, exact evaluation of the profit function is computationally demanding. Hence
efficient solution procedures are required to solve large-sized problem instances. Recognizing this
fact, we develop some efficient solution procedures for both problems. For the planing problem

of perennial plants, we propose a normal approximation to the supply quantity and use the
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solution of the newsvendor problem with random supply. The problem is also solved with a
deterministic approach. Both solutions are compared with the optimal solution for a number of
cases when the number of farms is small so an optimal solution can be found numerically. The
proposed approach yields solutions that deviate from the optimal solutions by no more than 1%
on average. When the number of farms is large, the two solution approaches are compared with
each other. The proposed approach provides higher profit than the deterministic approach by
15% on average.

Finally, for the multiperiod planning problem of annual plants where both farm areas and
seeding times are decision variables, we proposed several heuristics for that problem and com-
pared them with the optimal solution for small instances of N. The optimal solution of the
planning problem of annual plants is found by total enumeration and nonlinear optimization.
Taking the optimality gap as an performance criteria, we identified two best heuristics. First
one uses the normal approximation for the total supply, and solves a nonlinear-integer model
iteratively. The second one finds the seeding times using a deterministic model where all seed-
ing areas are forced to be equal to each other, and then finds the seeding areas based on those
seeding times using the normal approximation to the total supply. Both of the proposed meth-
ods provide better objective results then deterministic approach. The first one provides better
results on average 15.96% while the second one improves the results by 8.56%.

The main contributions of this study are:

e Presenting a model that captures variations of the harvest period, the yield and the de-

mand.

e Finding an exact solution of seeding areas and seeding time for single period case.

e Developing computationally efficient heuristic solutions for the multi-period problem.

e Analyzing a case study from the industry and showing the effectiveness of the proposed

method.



Chapter 7: Conclusion 64

This work can be extended in several ways. Some noteworthy of future research directions
are analyzing the problem under different type of contracts between the firm and the suppliers
including profit sharing, total rent, etc., solving the problem for different decision makers with
different risk aversion and finding more efficient solution procedures for the multiperiod problem.
Also, the dependency of harvest probabilities between the farms in the same region can be
explored. A possible way of incorporating the dependency is using the same distribution of
maturation period and harvest period for the farms located in the same region. More effective

handing requires further investment.
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Appendix A

PROOFS FOR THEOREMS

A.1 Proofs for Chapter 4

A.1.1  Proof of Theorem 1

The first derivative of E[n’'[Q]](4.5) is as follows;

O] _ (s sy (2eda (M0 0) ¢ (1) o (B2 01 2 (oSt

iz oL ) 0(z) ) or\ 0z
90 (S0 g (B S) D (s S)) o 2000

where 0(z) = 1/¢%(z) + 0% and

then, the derivative becomes;

Y Iy (R L e (T= CCAVNNE (2

The second derivative of the profit function is as following;
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where 0(z) = \/¢%(x) + 0%, and
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Replacing % (%ﬂﬁ@) with the function given above and replacing 6(z) with g*(z) + 0%
yield;
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and g denote
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Then the second derivative, is written as;

O?E[r]  0%f(x)
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Since ® and ¢ donate the standard normal cumulative and probability distribution function

respectively, the terms & (%) and ¢ (%) are always non-negative. Also 6(z), which
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is equal to \/ aé —2poqog + 0,23 , and g(z), that is the standard deviation supply, are non-
negative. Although we know (r-s) is bigger then (c-s) by definition, since ® changes from 0 to 1
, the sign of ¢ can not be known. On the other hand, we know ¢ is positive when the second
derivative of g(x) is non-negative. The second derivative profit function is non-positive as long

Pg(z) . . 9 f(x)
as —5z.~ is non-negative and —5 =

is equal to zero.
When second derivative non-negative,x value that satisfies the first order optimality condition

is optimal z.

A.1.2  Proof of Theorem 2

We want to find the optimal a to maximize E[n(a, )], given in Equation (4.11). The first order

optimality condition to find a is:

OE[r(a,7)]
~oa
Elr(am)] = (rag—sa)pin(th (E [Q] @ (E D] 9_’TE Q3] )

+E[Dy] ® (E[ a1 _E[DtT]> Y (E[Dﬂ]e—/E[ H))
tt

9;1
—(cpt — 541 ) E[Qyt]

where 6; = 4 /Jét + O'%t.

Replacing (rys — s44)p1. (t1) with (74 — s4+)’, expected profit is written as follows;

Elr(a,m)] = (mSH>'<E[Q;T}¢<E[DH1—E[ H]>

.
+E[Dy] @ (E[ il — E[DH]> "y (E[th] -E [QH) )

9;[ Hl’ff
—(cpt — 841) E[Qyt]

Let Q' be functions of parameter a , ug, = fi(a) , and og, = gj(a). If f'(a) is linear and
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¢'(a) is concave, then from Theorem 1, we know optimal a should satisfy Equation (4.6).

A.1.83 Proof of Theorem 3

In Theorem 3 , we need to prove that Equation (4.11) is an increasing function of py ,, (t7). The

equation (4.11) is as follows;

Efr(ar)] = (rg—si)pin(th) (E Q)] @ <E (D] 9_,TE [Qt’r]>

+E D] ® <E[ i) — E[DH]> e (E[th] - E| H) >

9/
—(cpt — 541 ) E[Qyt]

Il

The derivative of the function is written as;

Pele )l _ (ret = 50 )pLm (£) (E Q] @ (E =l 9_’TE | H)

apl,'rl(ﬁ)
+E [Dy] ® (E[ HQ/—E[DH]> Y (E[Dﬂ]a—/E[ H))
tt

—(epr — 541 ) E[Qyt]

which can be rewritten as a function of expected profit.

OFE[r (a,T)] _ Elr (a,7)]
op1,7, (tT) b1,n (tT)

It is known that in an optimal solution E[m (a,7)] is always greater or equal to zero, then

the derivative of E[r (a,T)] over py -, (t!) is always greater or equal to zero.

A.1.4 Proof of Theorem 4

We need to show E[rn(a,7)], Equation (4.18), is concave function of a; where a; € a. We take

the derivative of function for two cases; for o; = 0 and o = 1.
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When «a; = 0;
OE[m (a,T)]
8ai

When o; = 1;

1 1 1 N
aE[gEZ’T)] = (ryt — s41) Z Z Z Z(Hpi’”(ﬂ))

a1=0 o;—1=0a;41=0 an=0 =1

0 min ((Zf\il qz/‘,tTO‘i> ,th) — (et — 541 ) B [ Q]
Oa;

Omin ZZI\L q .o;),D,+)—(c,+—s,4)E|Q
From Theorem 2, we know ( (( 1% et )8%”) i =oet) B tT]) is concave. Then Equation

(4.18) is also concave.

A.1.5 Proof of Theorem 5

Assume Tik and Tik, are two seeding times, such that the probability of harvesting in period ¢
given that seeding time is Tf s Dj ok (t), greater then the same probability when the seeding time
is 7F, P; 1k (t). Let a¥* denote the optimal a for the seeding time 7. We need to show that for
all le,Tikl eT, w (af*,Tf) is greater or equal to 7 <a;‘, Tl-k/). In order to show 7 (a}*, Til) >=
T (al* 72) when Pirl (t) >= Pi 2 (t), check the first derivative of 7 with respect to p; r, at point

7 )

(ail*, 7'-1).

OE[w(a,7)] A B BDJ-FQ]y . B
Tm _a’l<E[Y;]((rt ct)(D(E gtE ) (Ct St))

a;(E[Y*—2p;. . () E[Y]* = E[Q:
— (e — ) (E[Y'] 21;;2(15) [ ])qs(E[D]etE[Q]))

It is known that for (a}*, 7‘1) the derivative of expected profit with respect to a; is zero, by

re-organizing Equation (4.19),% can be written as follows;

1,7y



Appendiz A: Proofs for Theorems 74

OE[m(a,T)]

da; — b (E[Yi]((” — ) o(EPLERD)g,) — (¢, — 5)) -

t

(Tt — Ct

a;i (B[Y2]—pi.r. (£)E[Y;]? —
) B0 p9;2<t> [ }>¢(E[Dt}9tm@t1)>

If the terms in parenthesis are examined, it can be seen that the second term of both equations
are greater or equal to zero: (ry — ¢), a;, 6; and ¢ (M> are positive by definition, and
it is known that expected value of the square of a variable is greater then equal to square of the
expected value of the variable so both (E[Y?] — 2p; -, (t)E[Yi]?) and (E[Y;?] — pi -, (t)E[Yi]?) are

positive . Since the first terms are the same in the two equations,to show w

OF[7(a,T)]

is greater or

equals to zero, it is sufficient to prove

ct)ai(E[Yf]*Qé?;;n(t)E ;]2 )¢( [D:]—~ E[Qt}) The

equal to zero while
)ai(ED/iQ}*pi,Ti(t)E[Yi]z)¢(E[Dt]0—tE[Qt}) >

2

(Tt—Ct Tt —

difference of these two terms can be written as; (g’b:ct%(E[Dt]e_t (04 Y(E[Y?])

Since all multiplier factors are greater or equal to zero, the term is non-negative. This proves

that when —“_ is zero 8_”
az 81%,7—

is non-negative.
i

A.2 Proofs for Chapter 5

A.2.1 Proof of Theorem 6

We need to show El[r(a,7)](5.1) is a concave function of a;.

T 1 1

Elr(ar)] = > (re—s) > . (Hpm ( — Pl o) >>m1n<<2qztal>, )
t a;=1 ay=1
_(Ct - St)E [Qt]

From Theorem 4, we know

(re — s1) Z Z (Hp”l ( - (1) ))mm((Zqztaz), >—(Ct—8t)E[Qt]

01171 anN= 1
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is a concave function of a; for ¢ € N. Since the sum of concave functions is also concave, equation

(5.1) is also concave.

A.2.2  Proof of Theorem 7

We need to show E[7(a,)](5.3) is a concave function of a;.

T

wan) = Yon—soEiQleCPL ) 4 pipeERA - E,
t=1
pp(EA By, Bl

0y

From Theorem 4, we know

(re = s0)(BIQAD(HPFHL) 1 BID o (HRAZER) — po(FPGEL)) — (¢ — 5) F[Q)]

is a concave function of a;. Then equation (5.3) is also concave function of a.
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Appendix B

RESULTS OF COMPUTATIONAL STUDIES

The List of Abbreviations used in Appendiz B.

N
D.S

:Number of Farms

:Demand Scenarios

1:[2000 2000 2000 2000 2000 2000 2000 2000 2000 2000]
2:[2000 2000 3000 3000 2000 2000 2000 2000 2000 2000]
3:[2000 4000 1000 3000 2000 3000 1000 4000 2500 1500]]
:Coefficient of variation

:Cost of a unit product at time t

:Harvest Probability Scenarios

L T -U(2,4), T -U(3,5)

2: T -U(2,4), T} -U(2,6)
3: T -U(1,5), T} -U(3,5)
4: T -U(1,5), T}, -U(2,6)
5: 1}’7’%~DD,1n(t1,t2, ot i Dyt p), 1}%~DD,11(tl,t2, ot Uty L ptt)
6: T, -DD},(t1,ta, oy tr = pY™, P8 o pt), T} - DD (t, b, oot < pT 05 o DY)
7 TZ-%~DD$n(tl,t2, ot pt Pyt L ptt), E?Ti~DD}1L(t1,t2, cotr pt et L ptt)
8: Ti’,’;{DD?n(tl,tg, ot i Dyt p), ﬂ?Ti~DD,21(t1,t2, ot Uyt L ptt)
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N-D.S

2

3

4

2

2

2

2,99

2,70

0,01

1,11

0,89

0,07

0,51

0,55

0,19

1,46

3,65

0,12

1,40

1,07

0,12

0,55

0,53

0,33

4,50

3,52

1,00

0,74

0,83

0,28

0,96

0,46

0,25

4,49

3,43

0,31

0,56

0,57

0,15

0,88

0,21

0,17

1,90

1,60

0,13

0,51

0,41

0,43

0,20

0,26

0,07

3,21

2,66

0,55

1,12

0,88

0,38

0,51

0,59

0,11

4,86

3,95

1,16

1,05

1,10

0,10

0,84

0,80

0,18

0.1

1,29

3,56

1,27

1,08

1,16

0,03

0,82

0,80

0,17

1,61

1,69

0,05

0,51

0,57

0,14

0,34

0,06

0,15

2,08

1,56

0,06

0,47

0,71

0,15

0,46

0,67

0,02

1,76

2,39

0,01

0,76

1,06

0,18

0,75

0,01

0,19

1,93

2,77

0,39

1,08

1,12

0,29

0,09

0,00

0,23

0,66

0,68

0,00

0,21

0,24

0,01

0,12

0,13

0,01

1,88

1,87

0,01

0,61

0,76

0,05

0,38

0,47

0,04

2,55

2,34

0,03

0,88

1,31

0,11

0,35

0,39

0,14

2,95

2,79

0,04

0,85

1,37

0,19

0,45

0,58

0,15

1,26

1,28

0,04

0,23

0,28

0,06

0,13

0,16

0,01

2,20

2,04

0,12

0,42

0,41

0,08

0,20

0,19

0,01

2,02

1,66

0,52

0,24

0,30

0,14

0,14

0,15

0,13

2,01

0,51

0,15

0,14

0,18

0,04

0,08

0,07

0,10

0,75

0,71

0,08

0,08

0,11

0,08

0,05

0,06

0,04

1,43

1,37

0,17

0,25

0,31

0,12

0,16

0,18

0,09

2,51

2,21

0,55

0,35

0,46

0,14

0,26

0,31

0,15

0.3

1,90

2,48

0,62

0,38

0,49

0,12

0,27

0,31

0,14

0,17

0,26

0,05

0,02

0,03

0,00

0,01

0,02

0,00

0,30

0,44

0,05

0,07

0,09

0,03

0,03

0,04

0,03

0,22

0,43

0,08

0,12

0,19

0,06

0,06

0,06

0,04

0,23

0,31

0,23

0,14

0,20

0,09

0,06

0,06

0,04

0,09

0,14

0,05

0,01

0,01

0,02

0,00

0,01

0,02

0,24

0,33

0,03

0,04

0,06

0,01

0,02

0,02

0,01

0,29

0,40

0,04

0,09

0,14

0,03

0,02

0,09

0,02

0,33

0,47

0,05

0,10

0,16

0,03

0,06

0,09

0,02

Average

1,32

0,38

0,22

Table B.1: The optimality gap of A,um for different scenarios
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N-D.S

2 3 4
Cv(D) [ ¢ [ PS 1 2 3 1 2 3 1 2 3
1] 2,53 | 094 | 3,02| 854 | 747 | 7,66 | 10,22 | 9,91 | 8,14
2| 232| 079 2,62 11,00 | 10,20 | 8,51 | 12,81 | 13,05 | 12,99
3| 3,12 | 1,50 | 3,45 | 15,64 | 15,08 | 14,26 | 18,78 | 19,57 | 18,67
| 440U 236 1,29 | 17,24 16,70 | 16,41 | 21,13 | 21,80 | 21,06
5| 2,71 1,05| 0,29 | 589 | 489 | 3,94 | 7,58 | 6,50 | 6,28
6| 2,60| 097| 038| 694 | 6,11 | 4,76 | 8,78 | 7,90 | 7,82
71 1,89 096 | 1,30 | 9,27 | 8,65 | 6,40 | 10,96 | 10,92 | 9,81
0.1 8| 1,80 | 0,74 | 6,38 | 10,28 | 9,69 | 7,75 | 12,00 | 12,17 | 10,91
' 1] 240 | 1,58 | 5,47 | 595 | 4,62 | 1539 | 9,46 | 8,11 | 17,76
2| 1,29| 053 4,09 | 6,59 | 5,19 16,13 | 10,68 | 9,47 | 19,12
31 490 | 4,06 | 12,56 | 8,27 | 7,04 | 23,57 | 13,09 | 12,89 | 28,08
5 4| 16,77 | 15,59 | 18,15 | 10,38 | 9,32 | 23,32 | 15,81 | 16,22 | 28,44
5| 1,13 | 055 3,73 | 3,83 | 2,83 | 11,72 | 648 | 5,41 | 13,39
6| 1,44 | 293 | 4,14 | 4,74 | 3,68 | 13,05 | 7,46 | 6,35 | 15,23
71 358 | 271 | 521 | 543 | 4,45 14,57 | 875 | 9,35 | 17,74
8| 3,056 2,09|2960| 6,25 | 524 | 1559 | 9,77 | 9,79 | 18,99
1 6,22 2,52 3,50 | 12,65 9,61 8,54 | 14,87 | 12,09 | 12,14
2| 57| 2,16 | 045 | 14,49 | 11,99 | 10,29 | 17,33 | 15,10 | 14,40
3| 6,19| 2,55| 1,36 | 18,40 | 16,49 | 15,46 | 22,37 | 21,20 | 20,17
1 4| 4,10 3,65 | 1,68 | 19,83 | 17,95 | 17,57 | 24,35 | 23,26 | 22,53
5| 6,64| 2,79 | 090 |10,85| 7,39 | 5,59 | 1241 | 9,01 | 7,85
6| 6,39 | 2,60| 1,09 | 11,52 | 8,41 | 6,61 | 13,42 | 10,32 | 9,27
71 480 | 2,51 | 2,09 | 13,21 | 10,65 | 8,66 | 15,59 | 13,17 | 11,62
0.3 8| 4,51 32,32 | 6,33 | 13,98 | 11,55 | 9,97 | 16,60 | 14,33 | 12,67
’ 1] 411 | 2,45| 544 | 983 | 7,93 | 14,89 | 12,74 | 10,41 | 17,52
2| 580 | 2,02 4,16 | 13,98 | 10,30 | 15,73 | 17,70 | 14,05 | 19,34
3| 7,93 | 5251|1489 | 17,72 | 13,63 | 23,13 | 20,40 | 18,77 | 27,37
3 417,38 | 17,40 | 21,12 | 20,00 | 15,94 | 23,10 | 23,24 | 21,68 | 27,94
5| 249 | 128 | 520 | 6,88 | 5241|1283 | 9,15 | 7,38 | 14,92
6| 324| 1,76 | 581 | 870 | 6,99 | 14,35 | 11,17 | 9,43 | 16,85
71 401] 229 | 6,68 | 10,26 | 8,64 | 15,84 | 13,23 | 12,80 | 18,76
8| 4,65 | 25,82 | 32,07 | 11,75 | 10,11 | 16,90 | 15,01 | 14,07 | 20,09

Average 5,34 11,11 14,35

Table B.2: The optimality gap of Ay, for different scenarios
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D.S

Cv(D)

10

0.1

20,48

751

9,76

10,12

12,43

12,87

13,12

14,20

14,36

2,24

9,73

12,32

14,47

16,28

17,19

18,01

18,63

19,06

1,44

15,01

17,99

19,36

22,37

23,76

24,58

25,32

25,03

20,50

16,78

20,43

21,94

24,57

26,31

27,00

27,78

28,51

0,82

5,41

7,39

8,06

8,58

8,90

10,13

10,35

10,85

-0,63

9,89

8,31

9,18

9,83

10,21

11,70

11,96

12,65

3,12

8,31

10,21

11,58

12,17

12,58

14,43

14,69

15,54

-2,60

9,30

11,28

12,90

13,55

14,02

16,01

16,31

17,21

0,80

5,47

9,15

8,02

10,47

11,06

11,44

13,01

13,28

1,74

6,15

10,26

11,80

14,43

16,11

17,32

18,45

19,28

3,20

7,56

12,44

16,26

19,79

21,80

23,45

24,81

25,84

15,13

9,40

15,73

18,52

22,49

924,69

26,11

27,68

28,84

0,47

3,63

6,37

7,26

9,10

9,67

10,05

11,17

11,45

20,45

4,15

7,11

8,27

10,65

11,32

11,60

13,07

13,23

1,06

4,59

8,42

9,90

12,47

13,36

13,81

15,45

15,75

0,10

5,45

9,36

10,92

12,44

13,52

16,35

17,09

18,48

0.3

5,03

12,45

14,77

15,20

17,26

17,61

17,83

18,88

19,01

3,63

14,13

17,16

19,30

20,77

21,65

22,36

22,03

23,33

1,26

18,20

22,27

24,46

26,47

27,69

28,42

29,18

29,72

2,13

19,72

24,29

26,31

28,56

29,04

30,60

31,47

32,09

9,94

10,78

12,37

13,14

13,61

13,92

15,12

15,33

15,76

5,03

11,29

13,28

14,25

14,82

15,19

16,69

16,93

17,50

2,34

12,01

15,37

16,54

17,21

17,63

19,45

19,72

20,39

2,65

13,65

16,38

17,70

18,46

18,94

20,89

21,20

21,01

3,05

9,81

12,73

13,30

16,03

17,07

17,35

18,81

19,25

5,51

13,92

17,68

20,28

22,23

23,47

24,49

25,34

25,96

7,73

17,62

20,36

23,24

25,08

27,73

29,12

30,28

31,14

17,19

19,89

23,20

25,68

28,74

30,70

31,90

33,21

34,17

2,40

6,88

9,14

10,04

11,96

12,44

12,74

13,79

14,00

3,00

8,66

11,16

12,53

13,39

13,99

16,18

16,61

17,54

3,73

10,18

13,21

14,64

15,65

16,34

18,96

19,43

20,62

CO| IO UY i W[IN| =00 || U x| W N[00 IO U x| W N |00 | U ix| W N —=| 2

4,34

11,66

14,96

16,79

17,96

18,77

21,31

21,86

23,03
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N
D.S | Cv(D) S 2 3 1 5 6 7 8 9 10
1] 181 6,63 941 | 876 | 11,42 | 11,79 | 11,99 | 13,11 | 13,23

21 2,97 | 9,23 | 12,59 | 13,98 | 15,64 | 16,82 | 17,39 | 17,08 | 18,46

31 2,00 | 14,37 | 19,19 | 20,51 | 22,79 | 24,24 | 24,95 | 25,95 | 26,58

4] 1,10 | 16,22 | 21,63 | 22,63 | 25,20 | 26,80 | 27,35 | 28,50 | 29,25

51 -0,57 | 4,50 | 6,25 | 7,26 | 7,74 | 8,11| 9,06 | 9,31 | 9,67

6| -1,73| 5,28 | 7.36| 857 | 9,14 | 9,58 | 10,76 | 11,03 | 11,55

71 3,12 | 7,63 ] 10,20 | 11,40 | 12,17 | 12,59 | 14,12 | 14,40 | 15,07

o1 8| 2,02 | 8,62 11,46 | 12,79 | 13,66 | 14,12 | 15,75 | 16,06 | 16,76
' 1] 0,11 | 4,07 | 805 7,00 | 9,25 | 9,85 | 10,22 | 11,61 | 11,88
2 -1,05 | 4,52 | 8,86 | 10,98 | 13,53 | 15,08 | 16,25 | 17,29 | 18,05

3] 1,71 | 6,04 | 12,88 | 16,16 | 19,31 | 21,14 | 22,64 | 23,92 | 24,87

413,19 | 8,29 | 16,22 | 18,64 | 22,07 | 24,21 | 25,43 | 26,94 | 28,00

51 -0,13| 2,59 | 529 | 594 7,76 | 8,44 | 8,66 | 9,72 | 9,84

6| 1,08] 2,94| 591 7,07 | 9,50 | 10,14 | 10,45 | 11,88 | 12,06

71 0,38 3,18 | 8,99 | 822 9,56 | 10,44 | 13,18 | 13,78 | 15,00

) 81 -0,72| 3,93 | 9,27 10,03 | 11,60 | 12,64 | 15,25 | 15,96 | 17,15
1| 1,26 | 9,36 | 11,05 | 11,64 | 13,96 | 14,25 | 14,43 | 15,60 | 15,70

2 0,12 | 11,62 | 14,93 | 16,59 | 18,19 | 19,15 | 19,69 | 20,30 | 20,73

31 0,91 | 16,23 | 21,08 | 22,77 | 25,00 | 26,39 | 26,94 | 27,83 | 28,48

4] 3,16 | 17,80 | 23,21 | 24,71 | 27,19 | 28,76 | 29,23 | 30,24 | 30,97

5| 2,10 | 7,29 | 8,95| 9,81 | 10,33 | 10,66 | 11,63 | 11,85 | 12,18

6| 1,25 8,13 10,16 | 11,19 | 11,79 | 12,19 | 13,43 | 13,68 | 14,13

71 0311024 | 12,90 | 14,18 | 14,91 | 15,38 | 16,91 | 17,21 | 17,76

01 8 130,60 | 11,11 | 14,06 | 15,50 | 16,31 | 16,83 | 18,47 | 18,79 | 19,38
' 1] 220 7,90 | 10,40 | 11,28 | 13,79 | 14,71 | 15,02 | 16,36 | 16,76
2| 1,59 | 10,22 | 14,02 | 16,02 | 18,18 | 19,55 | 20,53 | 21,46 | 22,14

3| 4,84 | 13,47 | 18,72 | 21,64 | 24,30 | 26,12 | 27,38 | 28,52 | 29,36

417,14 | 15,77 | 21,63 | 24,13 | 27,23 | 29,18 | 30,24 | 31,54 | 32,49

5| 1,15| 5,23 | 7,37 | 822 10,02 | 10,49 | 10,77 | 11,76 | 11,96

6| 1,44 6,94 | 9,40 | 10,75 | 11,60 | 12,18 | 14,26 | 14,68 | 15,56

71 1,90 | 8,52 | 12,73 | 12,52 | 13,61 | 14,35 | 16,91 | 17,43 | 18,60

82547 | 9,97 | 13,99 | 14,58 | 15,36 | 16,74 | 19,11 | 19,72 | 20,79
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N

D.S

Cv(D) | C

2

3

4

5

6

7

8

9

10

0.3

3,02

7.59

7,07

9,12

11,20

11,77

12,05

13,22

13,40

2,51

8,41

12,71

15,26

17,03

18,15

18,73

19,37

19,87

2,47

14,02

18,46

21,09

23,27

24,50

25.15

25,90

26,37

0,09

16,28

20,92

23,33

25,77

27,16

27,73

28,60

29,16

0,15

3,52

6,21

6,32

8,14

8,57

8,75

9,85

9,07

-0,16

1,40

7,72

9,34

10,06

10,55

12,19

12,60

13,08

0,14

6,31

9,65

11,19

12,02

12,48

14,78

15,15

15,89

0,18

7,72

10,76

12,41

13,41

13,93

16,54

16,93

17,66

5,42

15,27

17,64

15,00

16,60

17,49

17,63

18,11

18,55

4,03

16,01

19,11

18,44

20,41

21,96

22,38

23,16

23,80

12,55

23,43

27,05

26,54

28,76

30,69

32,13

33,39

34,15

17,83

23,10

28,27

28,13

30,61

32,73

33,95

35,35

36,23

3,73

11,71

13,38

12,10

13,79

13,85

14,39

15,11

15,45

1,13

13,00

15,19

16,45

17,31

17,77

18,75

19,09

19,79

5,18

14,48

17,62

19,26

20,41

21,05

22,60

23,04

24,08

29,57

15,42

18,87

20,64

21,89

22,61

24,42

24,92

26,13

3,46

8,48

12,13

12,25

14,61

15,26

15,36

16,49

16,74

0,34

10,22

14,39

16,54

18,28

19,27

19,86

20,50

20,07

0,85

15,34

20,07

22,63

24,69

25,88

26,54

27,25

27,75

1,53

17,54

22,46

24,82

27,12

28,48

29,09

29,90

30,47

0,83

9,51

7,81

7,84

9,52

9,87

10,06

10,94

11,05

0,02

6,50

9,19

9,42

11,34

11,77

12,02

13,01

13,17

1,56

8,53

11,49

12,97

13,78

14,29

16,51

16,86

17,49

5,74

9,86

12,55

14,21

15,13

15,70

18,19

18,57

19,23

5,39

14,89

17,52

16,29

17,95

18,97

19,31

20,00

20,49

4,11

15,71

19,32

19,64

21,88

23,28

23,83

24,78

25,47

14,82

23,08

27,34

26,54

29,35

31,13

32,40

33,56

34,40

20,93

23,03

27,91

28,17

31,23

33,18

34,31

35,57

36,49

5,15

12,82

14,01

16,00

16,65

17,09

17,84

18,12

18,48

0,78

14,34

16,84

18,17

18,99

19,53

20,66

21,02

21,59

6,64

15,81

18,75

20,34

21,32

21,98

23,66

24,10

24,91

32,04

16,87

20,08

21,82

22,90

23,64

25,58

26,06

27,01

Average

4,04

10,76

14,16

15,32

17,07

18,00

19,11

19,89

20,51

Table B.3: The difference between Ao and Aezp,Aporm—ezp for different scenarios
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N-D.S
2 3 4

Cv(D) [c¢ [ PS| 1 2 3 1 2 3 1 2 3
11000]| 06312691 | 0,00 4,04 | 26,88 | 1,32 | 6,98 | 27,29
21006 | 0,19 18,38 | 0,00 | 0,00 | 0,00 | 0,55| 0,00 | 18,16
31000 | 455 7,97| 0,00| 0,00| 3,37 | 0,00 | 0,00| 2,99
1 41325| 051 | 401 0,00| 0,00| 1,84 | 2,18 | 0,00 | 1,87
510,00 | 20,90 | 34,38 | 2,04 | 0,00 | 0,82 | 1,80 | 2,57 | 0,77
60,00 | 0,00]3008| 206| 000 1,09 | 1,98 | 2,09| 0,53
71004 | 0,18 | 25555| 0,00| 0,00 838| 0,65| 2,48 | 0,65
0.1 810,00 | 0,00/21,97| 000| 000 7,77 | 054 | 1,60 | 1,63
111,76 | 0,00 22,17 | 3,64 | 3,09 | 26,34 | 8,86 | 35,78 | 26,64
210,19 | 0,00 | 12,56 | 555 | 4,69 | 0,00 | 9,69 | 8,99 | 23,54
31000 000| 928 | 6,77| 6,25 | 3,12 | 11,68 | 12,16 | 2,31
3 41000 /| 0,00 0,00| 861 | 835| 291 | 14,15 | 1532 | 1,94
510,00 (2427 | 0,00| 273| 229 | 0,00| 541 | 4,89 | 0,98
6000 0002724 | 3,34 | 298| 0,00 9,02 | 817 | 1,13
710,00 | 0,00|24,34 | 3,74 | 357| 000| 7,11 | 6,83 | 1,37
812,13 | 1,66 | 21,84 | 6,36 | 579 | 0,00 | 9,87 | 9,40 | 1,42
1]1066| 0862553 | 0,00 0002558 | 0,52| 0,00 | 26,47
21017 | 0,39 | 16,68 | 0,00 | 0,00 | 17,01 | 0,84 | 0,00 | 17,72
31000 365| 7,78 0,00| 0,00 | 3,07 | 1,75 | 0,00 | 3,01
1 41,13 | 0,00| 3,92| 066| 08| 1,62 | 0,00 | 0,00 | 2,00
51092 0,00 10,05| 295 | 0,00 | 1,21 | 1,27 | 2,04 | 0,72
6059 080|28,75| 000| 000| 1,49 | 0,89 | 0,65| 0,82
710,17 | 0,41 | 2887 | 0,00| 0,00 2,00| 055| 0,00| 0,69
0.3 810,00 | 003|21,11| 0,00| 0,00| 803 | 056 1,05| 0,69
112,78 1,87 1]21,73| 628 | 7,39 | 2580 | 9,31 | 10,17 | 25,95
21,80 | 081 16,95 | 10,33 | 9,10 | 22,22 | 14,21 | 12,99 | 22,86
31205| 098 | 2,02 1246 | 11,82 | 0,00 | 17,38 | 17,06 | 1,96
3 41225| 1,62 | 3,97 | 14,05 | 13,63 | 0,98 | 19,66 | 19,53 | 1,56
51000 0,00 0,00| 451 | 401| 0,00 6,83 | 6,18 | 1,23
6000 000| 000| 564| 532| 0,00| 820 | 7,80 | 1,21
710,00 0,00|3127| 651] 650| 0,00 9,61| 949 | 0,94
81331 | 241 | 0,00 10,51 | 9,79 | 0,00 | 13,81 | 13,22 | 0,87

Average 6,20 4,37 6,56

Table B.4: The optimality gap of AT}0ry for different scenarios
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N-D.S

2 3 4
Cv(D) [ ¢ | PS 1 2 3 1 2 3 1] 2 3
11 299 2,70 0,01 | 1,11 | 0,89 | 26,96 | 1,29 | 0,55 | 27,30
2| 446 | 365| 0,12 | 1,40 | 1,07 | 0,47 | 1,18 | 0,53 | 18,21
3| 450| 5,17| 1,00| 0,74| 0,83 | 0,28 | 0,96 | 0,46 | 0,25
1 4| 449 123| 031 056 057 | 0,15| 0,88 0,21 | 0,17
5| 1,90| 160| 059 | 051 | 041 | 0,75 | 1,14 | 1,24 | 0,56
6| 321| 266| 055| 3,81 | 0,83 | 0,68 | 1,27 | 1,44 | 0,59
7| 48| 395| 1,16 | 1,05| 1,10| 0,10 | 1,01 | 0,80 | 0,90
0.1 8| 561 | 452 | 1,27 | 1,08 | 1,16 |22,59 | 0,74 | 0,80 | 0,58
’ 112640 | 1,32 | 22,43 | 26,73 | 0,57 | 26,38 | 4,88 | 1,88 | 26,64
2| 298| 3,29 |1289 | 0,47 | 1,59 |22,93| 0,97 | 0,82 | 23,54
3| 283 | 345| 181]10,93| 1,06 | 0,18 | 0,66 | 2,11 | 2,45
3 4| 2,49 | 564| 039| 1,08| 1,12 | 0,29 | 0,09 | 0,00 | 0,23
5| 066| 068 ]| 0003201 29| 6,75 | 1,28 |3,82| 1,02
6| 1,88 | 19,07 | 0,01 | 0,61 | 16,50 | 0,05| 0,93 | 1,03 | 1,17
71 255| 2341| 003| 08| 1,31 | 0,11 | 0,35 0,63 | 1,52
8| 295| 2,799 0,04 | 08| 1,37 | 0,19 | 045 | 1,14 | 1,57
1] 1,26 | 1,28 | 0,04 | 0,23 | 0,28 | 0,75 | 0,57 | 1,26 | 0,01
2 220 2,04| 0,12] 042 041 1,38] 0091 ]0,19] 0,01
3| 202| 303| 052 024| 030]| 0,14 | 1,76 | 0,15 | 0,13
1 4| 2,01| 051| 015| 0,14 | 0,18 | 0,52 | 0,08 | 0,07 | 0,10
5| 0,75| 0,71 | 0,08 2,75| 0,11 | 0,08 | 0,35 | 1,04 | 0,39
6| 1,43| 1,37| 0,17 | 3,14| 0,31 | 0,12 | 0,37 (0,74 | 0,39
71 2,51 221 | 0,55|24,21 | 0,46 | 29,76 | 0,60 | 0,31 | 29,84
0.3 8| 3,02| 248 | 062 0,38 | 0,49 | 0,12 | 0,60 | 1,12 | 0,87
) 11 0,17 | 1,90 | 21,76 | 25,08 | 0,03 | 25,80 | 25,74 | 0,08 | 25,95
2| 030| 044 |17,00| 0,07 | 0,09 ]| 22,22 | 0,03 0,04 | 22,86
3| 022 4% | 079 0,12| 0,19 | 0,06 | 1,30 | 0,37 | 0,04
3 4| 023| 031| 2,12 | 0,14 | 0,20 | 6,33 | 0,06 | 0,26 | 0,04
5| 009]| 0,14 | 0,05|30,92| 0,01| 645 | 0,00 0,41 | 1,23
6| 024| 033] 0,03| 0,04| 0,06 | 0,01| 0,02]0,29| 1,21
71 029 040 | 0,04 | 0,09| 0,14 | 0,03| 0,22 0,09 | 0,95
8| 033] 047| 0,05| 565| 0,16 | 0,03 | 0,06 0,09 | 0,89

Average 2,76 4,34 2,77

Table B.5: The optimality gap of ATyorm—iter for different scenarios
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N-D.S

2 3 4
CvD) [c¢[PS| 1] 2 3 1 2 3 1 2 3
11239]094| 0,14 | 8,41 | 747| 7,66 | 10,10 | 9,91 | 10,79
211,810,579 | 0,21 10,53 | 10,20 | 8,51 | 12,35 | 13,05 | 12,99
31165 |150| 0,97 | 14,36 | 15,08 | 14,26 | 17,55 | 19,57 | 18,67
] 411631236 | 1,29 15,19 | 16,70 | 16,41 | 19,18 | 21,80 | 21,06
512,75 |105| 029 | 593 | 4,89 | 431 | 7,62 | 6,50 | 6,64
61235(097| 038| 6,71 | 6,11 | 4,88 | 855 | 7,90 | 7,82
711891092 1,30 | 8,71 | 8,65 | 6,40 | 10,40 | 10,92 | 9,81
01 81180 1,06 | 1,29 | 938 | 9,69 | 7,14 | 11,12 | 12,17 | 10,91
' 11167086 | 6,53 | 524 | 3,92 | 10,49 | 8,78 | 7,43 | 13,01
21250 1,72 825 | 7,74 | 6,32 | 12,27 | 11,78 | 10,55 | 15,40
313,50 2,68 12,56 | 10,03 | 8,77 | 10,79 | 14,76 | 14,52 | 16,06
o | 4[3,95[304 14,56 | 12,22 | 11,13 | 11,16 | 17,54 | 17,90 | 17,08
511,13 1055 | 3,73 | 3,83 | 2,83 | 599 | 648 | 541 | 7,77
61,44 0,72 | 4,14 | 4,74 | 3,68 | 6,98 | 7,46 | 6,35 | 9,31
711,76 | 091 | 521 | 543 | 4,45 | 6,23 | 875 | 7,68 | 9,70
81202108 | 546 | 6,25 | 524 | 7,18 | 9,77 | 8,87 | 10,92
11532]252| 039 |11,80| 9,61 | 854 | 14,05 | 12,09 | 12,14
21454 2,16 0,45 | 13,40 | 11,99 | 10,29 | 16,27 | 15,10 | 14,40
314,14 |255| 1,36 | 16,62 | 16,49 | 15,46 | 20,68 | 21,20 | 20,17
1 414,10 |3,65| 1,68 | 17,35 | 17,95 | 17,57 | 22,01 | 23,26 | 22,53
51586279 0090|1011 | 7,39 | 6,03 | 11,67 | 9,01 | 8,28
6536|260 1,09 | 10,54 | 841 | 6,80 | 12,47 | 10,32 | 9,46
71480248 | 2,09 | 11,94 | 10,65 | 8,66 | 14,36 | 13,17 | 11,62
0.3 814511234 | 2,06 | 1241 | 11,55 | 9,39 | 15,08 | 14,33 | 12,67
’ 11379214 | 894 | 983 | 7,64 | 14,11 | 12,74 | 10,41 | 16,77
215803591091 | 13,98 | 11,74 | 15,46 | 17,70 | 15,43 | 19,07
31793 5,25 14,89 | 17,72 | 15,62 | 13,75 | 22,34 | 20,64 | 18,50
3 419,02 6,59 | 18,18 | 20,00 | 17,98 | 14,22 | 25,22 | 23,58 | 19,61
51249128 | 520 | 6,88 | 5,24 | 10,12 | 9,15 | 7,38 | 12,27
6324|176 | 581 | 870 | 6,99 | 11,01 | 11,17 | 9,43 | 13,60
714,01 229 | 6,68 10,26 | 8,64 | 10,17 | 13,23 | 11,57 | 13,29
814,65 |27 | 7,17 | 11,75 | 10,11 | 10,96 | 15,01 | 13,54 | 14,38

Average 3,50 10,04 13,37

Table B.6: The optimality gap of AT,,, for different scenarios
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N-D.S
2 3 4

CvD) [c[PS| 1] 2] 3 1 2 3 1 2 3
110,52 0,00|0,00 | 666]| 659 7,05| 8,38]| 9,06 | 10,20
210,06 |000|000| 894 | 948 | 7,87 10,79 | 12,36 | 12,38
310,00 0,80 0,00 | 12,93 | 14,48 | 13,10 | 16,17 | 19,00 | 17,57
1 410,00 1,74 0,25 | 13,78 | 16,17 | 15,23 | 17,84 | 21,30 | 19,94
510,76 | 0,00 | 0,00 | 4,01 | 3,88 | 3,80 | 5,74 | 551 | 6,14
6|044 000|011 | 48| 519 | 439 | 6,76 | 7,00 | 7,35
710,04 000|069| 698| 7,80 | 5,76 | 871 | 10,09 | 9,19
0.1 810,00 020|072 7,71 | 890 | 6,54 | 9,49 | 11,40 | 10,34
110,00 0,00]|0,00/| 364]| 309 742| 7,23| 6,63 | 10,02
210,00 033|0,00]| 537| 500| 896 | 951 | 9,29 | 12,21
310,08|0,66|000]| 684| 687| 6,51 11,75 | 12,74 | 12,03
3 410,06 |0,63|0,75| 866 | 892 | 6,04 | 14,20 | 15,86 | 12,31
510,00 |0,00|000]| 2,73| 229 | 427 | 541 | 4,89 | 6,08
6| 0,00 000|000| 33| 298| 519 | 6,11 | 567 | 7,57
710,00 |0,00|000| 374| 357| 458 | 7,11 | 6,83 | 8,11
810,00 | 0,00 000]| 432| 421| 538| 791 | 787 | 9,19
110,66 |0,00]|0,00/| 747 | 727 | 7,28 | 9,82 | 9,82 10,93
20,17 | 0,00 | 0,00 | 9,43 | 10,05 | 9,05 | 12,44 | 13,22 | 13,21
310,00 |0,63|0,00]| 13,02 | 14,83 | 13,71 | 17,25 | 19,64 | 18,52
1 410,00 1,94 |0,27 | 13,81 | 16,49 | 15,83 | 18,68 | 21,89 | 20,90
510,92 (0,00 0,09| 539| 473| 4,73 | 7,04| 6,39 | 7,01
61059 |000|031| 603| 597 | 558 | 806 | 7,93 | 827
710,17 (0,00 082]| 7,67| 838| 7,25 | 10,20 | 10,96 | 10,26
0.3 810,00 | 0,00085| 828 | 9,43 | 8,07 | 11,07 | 12,28 | 11,40
110,00 0,00]|0,00 | 628 562]| 7,56 | 931 | 8,45 | 10,42
210,00 |0,00000| 869| 845 | 852 | 12,64 | 12,28 | 12,43
310,00 | 0,00 0,00] 10,62 | 10,94 | 594 | 15,65 | 16,24 | 11,13
3 410,00 040 (1,83 | 12,07 | 12,56 | 5,31 | 17,81 | 18,563 | 11,26
510,00 | 0,00 0,00| 4,51| 4,01| 595| 683 | 6,18 | 8,20
6| 0,00 |0,00000]| 564| 532| 667 | 820 | 7,80 | 9,39
710,00 |000|000| 651 650| 624| 961 | 949 | 9,50
810,00 | 0,00 |0,00| 744 | 7,56 | 6,69 | 10,86 | 11,08 | 10,27

Average 0,19 7,51 10,94

Table B.7: The optimality gap of AT,;p—esct for different scenarios
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N-D.S

2 3 4
Cv(D) [c[PS]| 1 2 31 1 2 31 1 2 3
11283 | 88211050 (2,70 | 9,11 | 11,51 | 0,01 | 7,62 | 10,76
213,53 | 12,10 | 13,88 | 3,65 | 12,79 | 15,57 | 0,12 | 8,68 | 13,15
314,50 | 16,84 | 19,94 | 5,16 | 18,23 | 22,55 | 1,00 | 14,54 | 18,94
| 41449 [17,65 | 21,52 | 6,00 | 10,80 | 24,71 | 1,22 | 16,64 | 21,27
51257 576 | 745|160 | 543 | 7,02 0,13 | 4,24 | 6,57
6303 735 | 9,18 2,66 | 7,71 | 947|017 | 4,92 | 7,86
714,12 | 10,78 | 12,43 | 3,95 | 11,45 | 13,64 | 1,59 | 6,85 | 10,25
0.1 814,29 | 11,68 | 13,37 | 4,52 | 12,85 | 15,24 | 1,67 | 7,72 | 11,47
' 1(161| 519 | 873|169 | 4,72 | 821 |0,05| 7,87 10,45
21298 | 819 |12,21 (3,29 | 7,82 | 11,98 | 0,06 | 9,35 | 12,58
31283 9,41 | 14,18 | 3,45 | 9,49 | 15,20 | 0,01 | 6,83 | 12,33
3 412491089 | 16,29 | 3,28 | 11,35 | 18,10 | 0,76 | 6,43 | 12,67
51066 | 337 | 6,03]068| 29| 553|000 4,88 | 6,68
6188 | 5,16 | 7,87 | 187 | 4,79 | 7,43 0,01 | 575 | 8,11
71255 619 | 9,49 12,34 | 582 | 9,00 | 0,03 | 4,94 | 8,46
81295 | 7,14 10,62 | 2,79 | 6,88 | 10,44 | 0,04 | 5,75 | 9,55
1]1,55| 8291063 | 1,28 | 846 | 10,97 | 0,04 | 7,46 | 11,10
211,57 | 10,70 | 13,67 | 2,04 | 11,88 | 14,99 | 0,12 | 9,48 | 13,62
312,02 | 14,77 | 18,92 | 3,03 | 16,90 | 21,59 | 0,52 | 14,55 | 19,31
| 4[201[ 1554|2031 [ 4,25 | 1846 | 23,74 | 0,78 | 16,64 | 21,66
51156 | 6,00 7,64|0,71| 540 | 7,06 | 0,09 | 4,80 | 7,08
6157 | 6,9 | 897|137 | 725| 9,18 | 0,35 | 5,74 | 8,43
71194 | 931 | 11,80 | 2,21 | 10,40 | 12,93 | 1,19 | 7,76 | 10,76
0.3 811,90 | 10,02 | 12,77 | 2,48 | 11,67 | 14,45 | 1,26 | 8,65 | 11,95
' 11017 | 6,44 | 946 | 0,26 | 5,86 | 8,69 | 0,05| 7,69 | 10,54
21030 | 8,96 | 12,90 | 0,44 | 8,85 | 12,67 | 0,05 | 8,61 | 12,52
310,22 10,82 | 15,83 | 0,43 | 11,32 | 16,60 | 0,08 | 6,09 | 11,27
3 410,23 | 12,27 | 18,00 | 0,88 | 12,98 | 18,92 | 1,98 | 5,51 | 11,46
51009 | 459| 6,91 ]0,14 | 4,14 | 6,30 | 0,05 | 6,07 | 8,33
6024 | 587 | 8421033 | 564 | 811|003 | 6,76 | 9,48
71029 | 6,79 | 9,870,440 | 6,87 | 986|004 | 6,31 | 9,57
81033 | 7,75 | 11,16 | 0,47 | 8,00 | 11,51 | 0,05 | 6,76 | 10,34

Average 7,77 8,22 6,60

Table B.8: The optimality gap of AT,;p—norm for different scenarios
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N-D.S

2 3 4
CvD) [c¢[PS| 1] 2 3 1 2 3 1 2 3
11239254 | 38 | 549 | 1,10 | 7,26 | 6,88 | 5,80 | 2,98
21181210 | 348 | 4,71 | 1,14 | 6,26 | 6,62 | 6,63 | 1,99
311651235 | 3,071 12,19 | 15,53 | 14,31 | 14,46 | 20,32 | 19,58
] 41163 13,28 | 4,15 13,06 | 16,93 | 16,17 | 16,18 | 22,18 | 21,55
512,75 |273| 1,564 | 6,09| 083 | 547 | 6,45 | 441 | 2,36
61235244 | 146 | 516 | 0,71 | 5,02 | 585 | 4,35| 2,06
7118|146 | 1,12 | 796 | 947 | 7,41 | 9,16 | 12,10 | 11,42
01 81180 1,66 | 1,16 | 856 | 10,37 | 8,09 | 9,76 | 13,08 | 12,36
111,67]0,86 | 11,58 | 24,17 | 22,63 | 17,48 | 0,70 | 0,65 | 7,34
21250 1,72 | 14,47 | 25,32 | 23,69 | 1822 | 1,60 | 1,79 | 8,01
313,50 2,68 |19,19 | 19,58 | 18,17 | 12,98 | 34,79 | 34,02 | 25,58
3 41395 13,04 21,96 | 21,39 | 20,14 | 12,09 | 36,92 | 36,62 | 25,46
511,13 1 055 | 6,62 | 23,20 | 21,94 | 13,42 | 0,53 | 0,45 | 4,01
61,44 (0,72 | 7,80 | 23,04 | 21,73 | 14,00 | 0,72 | 0,64 | 4,42
711,76 | 0,91 | 892 | 10,84 | 9,77 | 11,77 | 19,48 | 18,26 | 18,97
81202108 | 992 11,37 | 10,28 | 12,30 | 20,01 | 18,93 | 19,65
115321563 252 6,70| 2,07 | 7,38 | 8,01 | 548 | 2,48
2454|110 | 2,23 | 565 | 1,93 | 7,37 | 819 | 6,58 | 1,70
314,14 1,22 | 244 | 14,11 | 15,00 | 14,38 | 17,02 | 20,09 | 20,02
| 4410252 361 | 1489 [ 16,37 | 1627 | 18,46 | 21,92 | 22,03
51586 | 1,73 022 7,79 | 2,06 | 6,19 | 7,15 | 4,33 | 1,82
6536|144 | 025| 665| 1,80 | 596 | 6,70 | 4,40 | 1,59
71480051 0,16 | 10,97 | 9,13 | 8,00 | 12,72 | 12,06 | 11,64
0.3 814511052 | 0,18 | 11,39 | 10,00 | 8,71 | 13,35 | 13,05 | 12,56
113,79 2,14 | 16,39 | 29,05 | 26,34 | 19,19 | 1,52 | 1,33 | 9,95
21580359 19,56 | 31,85 | 29,07 | 19,61 | 3,41 | 3,48 | 10,55
31793 5,25 | 24,17 | 27,29 | 24,87 | 14,69 | 42,84 | 40,37 | 27,24
3 419,02 6,59 | 28,28 | 29,29 | 26,95 | 13,89 | 45,17 | 42,77 | 27,21
512,49 | 1,28 | 10,48 | 26,70 | 24,47 | 15,67 | 1,20 | 097 | 7,34
61324 |1,76 | 11,88 | 27,40 | 25,11 | 16,14 | 1,72 | 1,61 | 7,43
714,01 | 2,29 | 12,85 | 15,75 | 13,95 | 14,08 | 24,31 | 22,29 | 21,11
814,65 2,76 | 14,11 | 16,96 | 15,14 | 14,42 | 25,56 | 23,72 | 21,64

Average 4,69 13,93 12,98

Table B.9: The optimality gap of AT,zpcon for different scenarios
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N-D.S
2 3 4

Cv(D) | ¢ | PSS 1 2 3 1 2 3 1 2 3
110521063238 | 498| 0,00| 4,65 | 539 | 2,19 | 2,23
21006019194 | 430 | 0,00 | 4,01| 567 | 229 | 1,51
310,00 0,80 | 2,14 | 10,99 | 13,64 | 12,54 | 13,44 | 17,91 | 16,84
1 410,00 1,74 | 3,24 | 11,88 | 15,09 | 14,46 | 15,18 | 19,85 | 18,90
510,76 | 0,00 | 0,00 | 547 | 0,00 | 2,48 | 4,05 | 1,52 | 0,77
6044|000 011| 462| 0,00 | 222| 4,32 | 1,57| 0,66
710,04 |000)069| 639]| 7,76 | 576 | 7,73 | 10,01 | 9,19
0.1 810,00 020072 | 7,06| 873 | 646 | 8,38 | 11,15 | 10,22
110,00 0,00 |000| 330 2,75 | 7,42 | 0,00 | 0,03 | 1,49
21000033000 480 | 4,45 | 896 | 0,41 | 0,64 | 1,75
310080661000 629| 6,34 | 6,51 | 10,81 | 11,86 | 11,89
3 41006063075 802]| 833 | 6,04 | 13,13 | 14,87 | 12,13
510,00 | 0,00|000| 255| 212| 427 | 0,00 | 0,00| 0,98
6| 0,00 000|000 306]| 271 519| 0,00 | 0,00| 1,13
710,00 000|000 365| 349 | 458 | 6,97 | 6,68 | 8,11
810,00 | 0,00|000| 421| 4,11 | 538 | 7,72 | 7,69 | 9,19
11066086217 | 540 | 0,00 | 4,64 | 594 | 1,82 | 2,04
210171039180 | 4,56 | 0,00 506 | 6,63 | 197| 1,38
310,00 |0,63|212 | 11,07 | 13,98 | 13,17 | 14,47 | 18,41 | 17,78
1 410,00 1,94 |3,27 | 11,91 | 15,40 | 15,08 | 15,98 | 20,35 | 19,87
51092 |0,00009| 6,26 | 0,00 3,22 | 4,32 | 1,45| 0,83
61059000031 | 530| 000 | 3,24 | 4,48 | 1,42 | 0,77
71017000082 7,07| 829 | 7,25| 9,20 | 10,80 | 10,26
0.3 810,00 00008 | 7,61| 923| 800 /| 996 | 11,94 | 11,29
110,00 0,00 | 0,00 | 557| 491 | 7,56 | 0,00 | 0,00 | 1,16
21000000000 749 | 726 | 852 | 1,06 | 1,21 | 1,72
310,00 |0,00|000| 947 | 9,80 | 594 | 13,79 | 14,39 | 10,98
3 410,00 0,40 | 1,83 10,81 | 11,31 | 5,31 | 15,83 | 16,57 | 11,09
510,00 |0,00|000| 4,15| 3,66 | 595| 0,00 0,00| 1,23
6| 0,00 000|000 505| 474 6,67 | 0,16 | 0,27 | 1,21
710,00 | 0,00|000| 633| 6,33| 6,24 | 9,28 | 9,17 | 9,50
810,00 0,00|000| 7,21 | 7,34 | 6,69 | 10,45 | 10,68 | 10,27

Average 0,41 6,27 7,00

Table B.10: The optimality gap of AT.zpcon—exct for different scenarios
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N-D.S

2 3 4
CvD) [c[PS| 1] 2] 3 1 2 3 1 2 3
11283304298 | 668| 0,89 | 526 | 6,72 | 249 | 2,45
2135312991280 | 6,11 | 1,07 | 482 | 7,47 | 2,43 | 1,66
314,50 | 5,16 | 3,77 | 14,27 | 16,99 | 14,10 | 16,39 | 20,64 | 18,30
1 41449 | 6,00 | 4,85 | 15,17 | 18,26 | 15,94 | 18,13 | 22,47 | 20,33
5125712721059 | 69| 041 | 2,83 | 480 | 1,76 | 0,93
6303284055 659| 088 | 2,71 | 543 | 1,89 | 0,93
714,12 395 | 1,16 | 10,03 | 11,28 | 6,85 | 11,12 | 13,33 | 10,25
o1 814,29 | 452 | 1,27 | 10,83 | 12,55 | 7,60 | 11,91 | 14,70 | 11,42
' 1161|169 |0,05| 491 | 448 | 7,87 | 0,34 | 0,40 | 1,54
21298329006 | 650| 606]| 935| 097 | 1,38 | 1,87
31283345001 795 | 797 | 683 | 11,84 | 12,91 | 12,15
3 412491328 |0,76| 9,15| 953 | 6,43 | 13,75 | 15,60 | 12,50
510,66 |068]|000]| 360| 325| 488 | 0,12 | 0,13 | 1,02
6188|187 10,01 | 502| 471 | 575 | 038 | 0,47 | 1,17
712551234 (1003| 628| 597 | 494 | 9,50 | 9,10 | 8,46
812952791004 | 712| 6,90 | 5,75 | 10,43 | 10,29 | 9,55
1]1155(1,84|235| 599 | 0,28 | 4,789 | 6,45 | 1,86 | 2,14
2115671169227 520| 041 533 | 7,23 | 2,00 | 1,50
312,023,031 3,07 | 12,54 | 15,75 | 14,05 | 15,78 | 19,86 | 18,57
1 41201 |4,25| 4,20 | 13,38 | 17,06 | 15,90 | 17,29 | 21,71 | 20,61
51156 |182]0,08| 6,81 | 0,11 | 3,27 | 4,68 | 1,50 | 0,88
6157181017 | 599 | 031 | 3,34 | 498 | 1,50 | 0,88
711942211055 | 8,63 10,24 | 7,76 | 10,63 | 12,63 | 10,75
0.3 811,90 |248 | 0,62 | 9,26 | 11,38 | 8,61 | 11,46 | 13,93 | 11,89
11017026 | 0,05| 5,74 | 516 | 7,69 | 0,01 | 0,02 | 1,16
21030044 |005| 764| 749 | 861 | 1,10 | 1,27| 1,72
31022043 1]0,08| 9,61 10,08| 6,09 | 13,88 | 14,59 | 11,11
3 410,230,838 1,98 | 10,94 | 11,60 | 5,51 | 15,92 | 16,79 | 11,27
51009014 |0,05| 430| 387 | 6,07 | 0,00 0,01 | 1,23
6]024|033]003| 531| 509]| 6,76 | 0,18 | 0,29 | 1,21
71029040 |0,04| 6,64| 6,75| 631 ] 959 | 959 | 9,57
81033047 ]005| 755| 7,81 | 6,76 | 10,76 | 11,13 | 10,34

Average 1,78 7,36 7,78

Table B.11: The optimality gap of ATeipcon—norm for different scenarios
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N
D.S | Cv(D) S 2 3 1 5 6 7 8 9 10
1| -0,62| 7,97 | 9,79 12,80 | 14,50 | 1547 | 16,48 | 17,14 | 17,82

2| 2,70 | 10,20 | 12,74 | 16,30 | 18,81 | 20,24 | 21,50 | 22,24 | 23,25

3 -2,90 | 15,91 | 20,12 | 22,92 | 26,90 | 29,20 | 30,57 | 31,90 | 32,67

4 -2,90 | 17,26 | 22,64 | 25,00 | 29,37 | 32,43 | 33,67 | 35,37 | 36,49

5| 087 | 5,76 ]| 7,02| 882 ]| 944 | 10,88 | 10,08 | 11,91 | 12,31

6 | -087 | 311 | 7,96 984 | 11,74 | 12,67 | 13,23 | 13,92 | 14,24

71 -3,02| 839 | 1049 | 1323 | 14,75 | 15,99 | 16,82 | 17,49 | 16,74

01 8| 388 | 915 | 11,67 | 14,45 | 16,30 | -7,00 | 18,63 | 18,29 | 19,01
1| 25,15 | 22,67 | 4,27 | -19,91 | 13,86 | 15,61 | 12,11 | 18,37 | 8,61

2| -049 | 7,88 | 12,26 | 15,75 | 19,87 | 22,18 | 20,53 | 21,41 | 26,52

3 0,69 | -1,00 | 16,55 | 21,54 | 26,99 | 30,39 | 33,18 | 35,61 | 37,42

4] 1,552 12,69 | 21,16 | 26,75 | 31,72 | 34,41 | 38,18 | 41,18 | 42,88

5| 047 | 29,31 | 556 | 6,72 | 7,51 | 11,29 | 12,09 | 13,02 | 13,66

6| -0,45| 4,33 7,05 10,20 | 10,09 | 13,29 | 14,65 | 14,93 | 12,64

71 081 | 481 | 920 10,05 | 14,25 | 16,30 | 13,66 | 19,20 | 20,06

. 8 -0,94 | 5,77 | 10,33 | 13,69 | 16,17 | -10,80 | 20,05 | 17,58 | 23,45
1| 428 | 13,12 | 15,68 | 18,67 | 19,52 | 21,36 | 22,29 | 22,81 | 22,08

2| 2,45 | 14,99 | 1834 | 22,36 | 24,62 | 25,88 | 27,35 | 27,97 | 28,95

3] 221 | 19,64 | 23,85 | 29,55 | 33,00 | 35,33 | 36,86 | 38,17 | 38,84

1| 2,18 | 20,82 | 28,12 | 31,62 | 35,77 | 38,46 | 40,32 | 41,54 | 42,73

5| 543 | 8,18 | 12,81 | 14,83 | 1548 | 16,47 | 17,06 | 17,38 | 17,77

6 | 4,14 | 827 | 1382 | 16,25 | 17,15 | 18,35 | 18,74 | 19,50 | 19,33

7| 2,40 | -13,93 | 16,07 | 19,28 | 20,45 | 21,95 | 22,36 | 22,77 | 23,07

03 8| 1,56 | 13,73 | 17,05 | 20,62 | 22,41 | 23,65 | 24,66 | 25,29 | 25,96
T | 376 | -16,91 | -14,00 | 18,08 | 17,43 | 21,68 | 18,93 | 19,42 | 16,57

2| 584 | 16,17 | 21,48 | 24,62 | 27,36 | 28,18 | 29,28 | 30,14 | 35,60

3| 838 | 21,38 | 27,00 | 33,21 | 38,56 | 41,33 | 44,60 | 47,02 | 48,74

4| 9,66 | 24,83 | 33,66 | 38,76 | 43,00 | 45,79 | 50,63 | 53,60 | 55,32

5| 2,46 | 25,82 | 10,06 | 4,35 | 13,58 | 12,26 | 7,18 | 12,99 | 16,97

6 | 3,00 | 948 | 12,56 | 15,51 | 15,46 | 18,63 | 16,85 | 20,79 | 17,67

71 3,87 | 11,33 | 15,00 | 18,87 | 18,55 | 19,53 | 24,20 | 25,66 | 26,60

8| 453 | 692 | 17,59 | 21,63 | 23,11 | 23,10 | 28,10 | 29,35 | 30,12

1| -1,78 | 7,11 | 10,39 | 11,87 | 13,51 | 14,68 | 15,73 | 15,41 | 17,11

2| 2,89 | 10,16 | 14,41 | 16,13 | 18,64 | 20,58 | 21,54 | 22,55 | 23,40

3| -3,73 | 16,78 | 23,75 | 27,59 | 29,52 | 32,00 | 34,09 | 35,35 | 36,48

4| 1,106 | 19,36 | 27,60 | 32,01 | 33,68 | 36,62 | 39,14 | 40,73 | 41,68

51 -056 | 4,71 | 562 | 7,72] 893 | 952 9,96 | 10,40 | 10,65

6| -1,70 | 558 | 7,02 | 937 | -7.52 | 11,58 | 12,22 | 12,72 | 13,19

71 -3,06 | 8,27 | 11,36 | 13,33 | 14,91 | 16,05 | 16,83 | 17,37 | 17,95

) o1 8| 350 | 944 12,95 | 14,66 | 16,94 | 16,44 | 19,25 | 19,86 | 20,46
1| -047 | 348 6,00 ]| -6,73| 850 | 9,18 | 9,68 | 1591 | 10,37

2| -1,60 | 5,05 | 10,87 | 13,86 | 18,15 | 17,17 | 18,18 | 23,39 | 24,78

3 -0,79 | 845 | 14,52 | 21,53 | 24,55 | 29,22 | 31,73 | 33,95 | 35,57

4 -2,60 | 11,26 | 21,79 | 26,80 | 30,94 | 33,36 | 36,84 | 39,44 | 41,72

5| -0,13 | -0,13| 1,68 |-17,61 | 841 | 961 | 6,72 | 11,18 | 7,10

6 | -18,48 | -1331 | 5068 | 8,67 | 8,60 | 9,42 | 10,02 | 14,31 | 14,54

7 -1,44 | 328 | 7,64 | 10,41 | 12,86 | 15,02 | 16,16 | 17,75 | 18,51

8| -1,73 | 4,09 | 8,48 | 12,17 | 1348 | 17,57 | 15,87 | 20,70 | 22,11
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N
D.S | Cv(D) S 2 3 1 5 6 7 8 9 10
1| 127 10,32 | 12,32 | 1543 | 17,18 | 17,99 | 19,16 | 19,97 | 20,57
2| 0,13 | 13,15 | 17,55 | 19,78 | 22,42 | 24,09 | 24,92 | 26,07 | 26,91
3 -0,49 | 19,38 | 26,71 | 29,48 | 33,33 | 35,86 | 37,63 | 38,80 | 40,17
1] 326 21,66 | 30,22 | 35,01 | 38,22 | 40,37 | 42,51 | 44,10 | 45,42
51 2,14 | 786 ]| 8,75 | 11,10 | 12,13 | 12,60 | 13,19 | 13,45 | 13,81
6 | 1,27 | 885 10,68 | 13,06 | 13,80 | 14,07 | 15,67 | 16,13 | 16,54
7 028 | 11,40 | 14,81 | 17,15 | 18,79 | 10,74 | 20,59 | 21,18 | 21,66
) 03 8 | -0,14 | 12,50 | 1541 | 18,34 | 20,86 | 21,05 | 22,65 | 23,71 | 24,20
I 025 823 11,53 | 12,82 | 16,45 | 18,25 | 19,10 | 20,32 | 21,14
2| 327 | 13,20 | 18,20 | 21,71 | 25,21 | 24,39 | 25,40 | 290,72 | 31,42
3 052 1829 | 2554 | 30,75 | 35,37 | 38,54 | 40,93 | 43,19 | 44,63
4| 6,72 | 21,68 | 30,53 | 36,60 | 40,84 | 44,73 | 44,45 | 49,71 | 51,07
51 1,06 | 552 | 7,52 | 864 | 9,35 12,35 | 13,12 | 13,88 | 14,44
6 | 1,46 | 7,46 | 10,08 | 12,05 | 14,69 | 16,24 | 17,39 | 14,84 | 18,97
71 1,93 | 931 | 12,08 | 16,40 | 18,34 | 17,45 | 21,56 | 23,00 | 2,75
8| 2,35 | 11,07 | 15,55 | 19,00 | 21,18 | 21,00 | 24,80 | 26,55 | 27,87
1| 0,13 | -20,90 | -18,51 | 14,88 | 15,96 | 17,60 | 18,50 | 19,20 | 19,90
2| 0,09 | 880 ]| -6,00| -3,95| 21,33 | -1,56 | 23,88 | 24,64 | 2552
3 -0,03| 16,30 | 22,64 | 13,39 | 30,32 | 32,46 | 33,61 | 34,95 | 35381
4| 1,00 | 19,45 | 26,46 | 31,37 | 34,71 | 37,29 | 39,03 | 40,06 | 41,17
51 -031| 3,72]| 652 -31,45 | 31,06 | 10,00 | 11,27 | 11,95 | -29,89
6 | -0,16 | 442 | 7,84 | 10,70 | 11,49 | 13,25 | 14,08 | 14,54 | 15,14
71 0,14 | 6,74| 989 | 13,77 | 14,74 | 16,84 | 17,34 | 18,26 | 18,88
o1 8| 0,03 ]-16,63 | 11,60 | 15,77 | 16,09 | 19,06 | 20,16 | 20,72 | -12,49
1| -17,01 | -17,75 | -15,67 | 17,25 | 27,25 | 21,48 | 22,68 | 31,43 | 21,97
2| 5,06 | -12,15 | -9,62 | 19,68 | 29,24 | -5,01 | 26,92 | 35,19 | 29,87
3 12,20 | 11,89 | 16,21 | 0,24 | 31,53 | 27,87 | 30,78 | 38,54 | 33,75
4 16,59 | 12,23 | 20,32 | 23,61 | 30,07 | 30,55 | 33,26 | 37,71 | 37,16
51 387 | -0,82]| 7,32 -32,74 | 24,65 | 11,03 | 12,07 | 25,38 | -31,20
6| 431 | 745 8,99 | 11,65 | 2354 | 14,34 | 14,93 | 27,17 | 16,30
71 546 | 6,53 | 9,07 | 12,90 | 25,93 | 16,76 | 17,71 | 31,11 | 20,00
5 8| 5,73 | 7,53 10,50 | 14,79 | -16,18 | 19,22 | 21,20 | 29,62 | 23,40
T 036 852 13,80 | 1648 | 17,75 | 19,24 | 20,19 | -12,80 | -12,53
21 034 994 16,80 | -1,74 | 22,27 | 24,32 | 25,57 | 1,96 | 27,08
3| 085 18,12 | 25,10 | 20,24 | 32,79 | 34,92 | 36,14 | 37,46 | 38,41
I 1,55 | 20,68 | 28,96 | 33,20 | 37,22 | 39,82 | 41,53 | 42,66 | 43,83
51 084 633 8,60 -2943 | -28,93 | 12,56 | 12,86 | 13,58 | -27,84
6| 093] 7,16 ]| 10,01 | 12,61 | 13,47 | -23,15 | -22,83 | 16,17 | 16,77
71 1,58 | -23,11 | -20,61 | 16,19 | 17,19 | -17,71 | 20,03 | 20,49 | -16,69
03 8| 1,47 | 1023 | 1352 | 18,13 | 19,24 | 21,29 | 21,82 | 22,99 | 23,75
' 1| -14,08 | -13,61 | -11,03 | 22,46 | 32,94 | 25,84 | 27,03 | 0,51 | 27,30
2| 683 | -800]| -4,68 | -2,53 | 35,79 | 31,28 | 33,21 | 40,96 | 35,59
3| 16,56 | 15,86 | 22,66 | 6,26 | 35,11 | 32,30 | 33,70 | 43,09 | 38,32
4| 19,63 | 9,20 | 24,35 | 28,25 | 34,36 | 35,05 | 36,17 | 41,65 | 41,68
5| 542 | 4,08 | 12,58 | -28,72 | -18,22 | 17,19 | 18,03 | 34,67 | -26,97
6 | 6,14 | 12,35 | 14,34 | 17,61 | -15,12 | 20,36 | 21,46 | 35,36 | 22,71
71 7,12 | 11,28 | 14,23 | 18,14 | 33,41 | 22,05 | 22,52 | 38,24 | -21,80
8| 7,67 | 1228 | 15,76 | 20,14 | 32,77 | 24,28 | 25,94 | 3823 | 27,49
Average 0,87 | 6,60 | 12,58 | 14,42 | 18,99 | 19,89 | 22,95 | 25,37 | 21,94

Table B.12: Percent Improvement of AT, rm—iter according to base solution AT.,),.
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N
D.S [ Cv(D) S 2 3 1 5 6 7 8 9 10
1]-045| 1,80 | 3,76 | 9,72 | 2,86 | 13,20 | 13,76 | 15,76 | 15,88

2 | -1,75 | 4,04 | 5,57 | 13,09 | 5,20 | 17,02 | 18,35 | 20,75 | 20,97

302,90 0,10 1,41 2,21 | -1,44| 3,16 | 3,38 | 3,58 | 3,74

41290 002 1,30 2,08| -1,80 | 3,03 | 3,25 | 3,45| 3,61

51 0,19 | -1,12 | 3,06 | 7,13 | 0,98 | 9,10 | 9,80 | 11,14 | 11,18

6]-0,60 | 013 341 | 834 2,10] 10,90 | 11,75 | 13,21 | 13,32

71227 | 1,45 | -0,81 | -0,27 | 2,37 | 053 | 0,81 | 1,05| 1,26

o1 8254 -161 | 0,89 | -0,31 | 2,76 | 0,57 | 0,89 | 1,15 | 1,36
1] 005 0,35 9.25| 9,63 13,76 | 14,22 | 15,37 | 15,56 | 17,87

2 1-0,49 | 1,34 | 12,26 | 13,49 | 18,57 | 19,62 | 21,24 | 21,74 | 24,76

31 0,69 | 230 343 | 422 487 537 | 5,78 | 6,13 | 6,42

A 152 350 4,60 543 | 6,07 | 6,57 | 698 | 7,31 | 7,59

5| 047 | 024 6,80 | 6,89 | 10,01 | 10,22 | 10,77 | 10,84 | 12,69

6 |-0,45 | -0,30 | 7,66 | 8,06 | 11,66 | 12,24 | 13,06 | 13,28 | 15,38

71-0,81 | -0,90 | -0,83 | -0,73 | -0,62 | -0,51 | -0,41 | -0,30 | -0,21

. 81-0,94 | -0,93 | -0,73 | -0,54 | 0,36 | 0,19 | -0,04 | 0,11 | 0,25
1] 308 6,59 | 8,84 1523 | 7,25 18,93 | 19,46 | 21,50 | 21,60

2 3,11 | 9,47 | 10,80 | 18,74 | 9,53 | 23,63 | 24,05 | 26,45 | 26,67

3] 221 | 489 6,17 | 6,95 | 3,54 | 7,84 | 8,11 | 8,32 8,48

4] 2,18 480 6,06 | 6,83 3,09| 7,72 7,99 | 819 8,35

5| 4,57 | 3,66 | 7,92 | 12,46 | 5,11 | 14,50 | 15,27 | 16,60 | 16,63

6| 4,00 | 508 | 855 | 13,81 | 6,24 | 16,43 | 17,23 | 18,74 | 18,33

71 2,99 | 376 | 4,35 | 482 3,03 | 551 | 5,77 599 | 6,18

03 8| 2,73 | 3,60 | 4,26 | 4,78 | 2,64 | 554 | 582 | 6,06 6,26
1] 3,76 | 4,54 | 14,59 | 15,22 | 19,66 | 20,18 | 21,16 | 21,38 | 23,63

2| 5,84 | 7,37 20,17 | 21,27 | 27,20 | 28,12 | 29,66 | 30,11 | 33,03

31 8,38 | 9,84 10,90 | 11,65 | 12,22 | 12,66 | 13,02 | 13,31 | 13,56

4] 0,66 | 11,33 | 12,44 | 13,22 | 13,80 | 14,25 | 14,61 | 14,90 | 15,15

51 2,46 | 2,78 | 10,06 | 10,40 | 13,58 | 13,88 | 14,28 | 14,38 | 16,07

6| 3,00 3,71 | 12,38 | 13,04 | 16,79 | 17,40 | 18,02 | 18,27 | 20,20

71 3.87 | 4,03 | 420 | 4,36 | 451 | 4,64 | 4,76 | 4,88 | 4,98

8| 453 | 4,76 | 5,00 | 5,21 | 5,41 | 559 | 5,75 | 590 | 6,03
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N
D.S [ Cv(D) S 2 3 1 5 6 7 8 9 10
1| 212 711 | 823 | 861 | 8,05 13,23 | 14,59 | 15,95 | 15,84

212,22 10,16 | 12,22 | 12,89 | 13,00 | 18,70 | 20,12 | 21,54 | 21,59

313,71 | 2,26 | -1,33 | -0,60 | -0,27 | 0,02 | 024 | 0,41 0,54

4372 187 ] 085 -0,15| 0,34| 064| 086 | 1,04 1,18

51-1,69 | 4,71 | 5,06 | 5,20| 3,88 | 8,17 | 9,14 | 10,24 | 10,04

6|-1,89 | 558 | 6,53 6,85| 6,03 10,26 | 11,57 | 12,65 | 12,57

71-3,06 | 2,88 | 2,71 | 2,57 | 2,43 | 2,32 | 2,21 | 2,12 | 2,03

o1 83,50 | 3,17 | 2,88 | -2,63 | 2,41 | 2,22 | 2,05 | -1,90 | -1,77
1]-084| 0,58 | 7,59 | 8,01 11,67 | 12,16 | 14,24 | 14,75 | 16,02

2 1-1,60 | 0,28 [ 10,25 | 11,59 | 16,33 | 17,49 | 20,34 | 21,38 | 23,13

31-0,79 | 087 | 1,88 | 2,65| 3,27 | 3,76 | 4,16 | 4,50 | 4,78

41-025] 1,80 | 2,80 | 3,62 | 4.23| 4,71 | 5,11 | 5,44 | 5,71

51-0,13 | 0,44 | 5,58 | 5,67 | 8,50 | 8,72 | 10,38 | 10,64 | 11,69

6 |-1,15 | -1,06 | 6,28 | 6,70 | 10,08 | 10,70 | 12,59 | 13,28 | 14,36

711,44 | -1,59 | 1,54 | -1,46 | -1,37 | -1,28 | -1,19 | -1,10 | -1,01

) 8 [-1,73 | -1,75 | -1,56 | -1,39 | -1,23 | -1,07 | -0,03 | -0,79 | -0,66
1] 0,69 |10,32 | 11,65 | 12,25 | 11,57 | 16,97 | 18,05 | 19,30 | 19,19

2| 0,47 | 13,15 | 15,41 | 16,52 | 16,58 | 22,50 | 23,61 | 24,93 | 24,99
31-0,49 | 0,89 1,70 | 2,23 | 2,60 | 2,86 | 3,06 | 3,20 | 3,32

41-0,62] 1,08 2,00 | 2,61| 3,01]| 3,30 352 3,68 381

51 0,99 | 7,86 | 8,25 | 8,38 | 7,47 | 11,43 | 12,36 | 13,42 | 13,27

6| 081 | 8,85 9,84 10,20 | 9,68 | 13,79 | 14,92 | 15,99 | 15,92

71 028 046 | 0,62 0,76 | 089 | 1,00 | 1,00 1,18 | 1,26

03 8[-0,14| 0,19 047 0,71 091 | 1,09| 1,25| 1,38 1,50
1] 1,03 2,68 | 11,60 | 12,28 | 16,08 | 16,66 | 18,65 | 19,16 | 20,32

2| 3,27 | 4,82 16,75 | 17,91 | 23,26 | 24,25 | 27,08 | 27,99 | 29,59

31 5,00 6,56 7,62 838| 8,95| 9,40 | 9,76 | 10,06 | 10,31

4] 6,11 7,79 889 | 9,67 | 10,24 | 10,69 | 11,05 | 11,34 | 11,59

51 1,16 | 1,45 | 7,96 | 8,33 | 11,14 | 11,47 | 12,95 | 13,25 | 14,12

6| 1,46 | 2,04 | 10,08 | 10,78 | 14,22 | 14,88 | 16,61 | 17,24 | 18,17

71 1,93 2,07 2,23 2,38 252 | 2,66 2,78 2,89 | 2,99

8| 2,35 | 2,56 | 2,78 | 3,00 3,19 | 3,37 | 353 | 3,67 3,80
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N
DS|[Cv(D)| C[PS 2 3 1 5 6 7 8 9 10
1] 285 | 259 9,35 9,31 10,86 | 13,08 | 15,53 | 14,45 | 16,21

2 [ 2,59 | 4,04 | 13,02 | 13,77 | 15,11 | 19,61 | 20,60 | 19,69 | 22,27

3] 282 0,18] 045]| 062] 0,72 0,79 | 0,84 | 088 091

| 4]-360| 056 092 L15| L3T| 140 | 146 151 | 155
5]-0,31| 1,55]| 6,12 6,05| 7,06| 9,05| 955 9,23 10,80

6| 0,16 | 2,28 747 | 7,71 | 8,94 | 11,46 | 11,84 | 11,62 | 13,53

71 0,14 | -0,48 | 0,48 | 0,48 | -0,48 | -0,48 | -0,48 | -0,48 | -0,48

o1 8 0,03 -0,59 | -0,56 | -0,54 | -0,52 | -0,51 | -0,50 | -0,49 | -0,48
1] 6,93 2,03 13,18 9,66 | 19,67 | 17,37 | 19,14 | 25,34 | 18,64

2| 892 3,33 15,99 | 12,11 | 21,00 | 22,29 | 24,88 | 28,14 | 23,83

314,35 | 4,44 | 4,65 | 12,86 | 20,03 | 24,40 | 21,25 | 30,55 | 28,07

| 41616 532 553 | 1507 | 20,64 | 26,63 | 23,65 | 30,41 | 31,36

5| 387 | L18]| 7,32 3,72 16,37 | 11,21 | 12,07 | 22,56 | 11,64

6| 431 1,33 8,99 | 4,93 16,32 | 13,66 | 14,95 | 22,81 | 14,01

7| 5,46 | 1,37 | 1,37 | 544 | 16,82 | 14,35 | 11,40 | 24,65 | 16,09

5 8 5,73 154]| 1,54 6,75 16,21 | 16,11 | 12,99 | 24,09 | 18,16
1| 1,97 | 4,11 | 11,38 | 11,92 | 12,93 | 15,93 | 17,40 | 16,30 | 18,07

2 [ -1,82 | 5,53 | 15,06 | 16,21 | 17,16 | 21,33 | 22,32 | 21,48 | 24,07

31 -1,73| 1,67| 2,00]| 221 2,36 | 2,46 | 2,53 | 2,59 | 2,64
4256 | 202 2487 276 | 2,94 | 308 | 317| 325 331

5| 0,84 2,93 8,07 | 834 | 9,04 11,13 | 11,52 | 11,27 | 12,63

6| 093 3,71| 9,47 | 10,19 | 10,98 | 13,52 | 13,80 | 13,62 | 15,29

71 158 098] 098] 098] 0,99 0099 099 | 0,99 | 0,99

) 8 147 087] 090] 093] 095 0,97 | 098] 099 1,01
1| 9,76 | 7,48 | 18,75 | 14,47 | 25,22 | 23,51 | 25,46 | 31,49 | 24,40

2 12,20 | 8,10 | 21,44 | 16,91 | 25,96 | 28,34 | 31,26 | 33,48 | 29,62

311740 | 887 | 9,07 | 16,01 | 24,79 | 28,86 | 25,24 | 34,12 | 32,06

0 |4 19,80 10,15 | 10,37 | 19,30 | 24,15 | 31,45 | 28,00 | 33,66 | 35,58

5| 5,42 4,50 | 12,58 | 7,50 | 23,15 | 16,04 | 17,30 | 29,75 | 16,12

6| 6,14 | 4,77 | 14,34 | 9,02 | 22,95 | 18,77 | 20,43 | 29,08 | 18,38

71 712 4,30 | 4,30 | 8,88 | 22,54 | 18,71 | 15,55 | 30,67 | 20,14

8| 767 | 4,73 | 4,72 | 10,53 | 21,92 | 20,70 | 17,42 | 30,02 | 22,48

Average 1,93 | 3,05| 6,46 | 7,51 | 9,16 | 11,12 | 11,56 | 13,36 | 12,83

Table B.13: Percent Improvement of AT¢;pcon—norm according to base solution AT.,),.
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Appendix C

RESULTS OF PLANNING PROBLEM OF ALARA AGRI BUSINESS

The List of Abbreviations used in Appendiz B.

Cv() :Coefficient of variation
ct :Cost of a unit product at time t
Sc.No  :Scenario Number

S.Level :Service Level

DDapg (0, by +1:0,..,0,1,0,..,0)
DDa, (0, oo €m — 1, Ems b+ 1,.. T +1:0,...,,0,0.2,0.6,0.2,0, ..., 0)
DDay, (0, oo — 2,€m — 1, Em e+ 1,Em +2,.. T +1:0,...,0,0.15,0.15,0.4,0.15, 0.15, 0, ..., 0)

T
DDay, (0, ....n,.. T +1:0,...,0,1,0,...,0)
DDap, (0.6, — 1, &, & +1,.. T +1:0,...,0,0.2,0.6,0.2,0, ..., 0)

DDap, (0, ... &n — 2,60 — 1, En, &+ 1,6, +2,...T +1:0,...,0,0.15,0.15,0.4,0.15,0.15,0, ..., 0)

Table C.1: The harvest and maturation lenght distributions

where &, and &, equal to the expected values of maturation and harvest lengths in each case.
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Expected Profit

Expected S.Level

Cv[Dy] | CvYi] | DDan | DDa,, | ¢ | Se.No Anorm Anp An—e(%) Aoy
L2 1 | 1184995,65 | 1185000,00 0,00 0,84 0,86

1 2 | 389999,09 | 390000,00 0,00 0,82 0,82

0 5 |2 3 | 1092251,08 | 1059329,40 3,11 0,81 0,80

1 4| 312204,20 | 282351,90 10,57 0,69 0,77

5 2 5 | 1045023,16 | 947744,25 10,26 0,78 0,74

1 6 | 287718,94 | 190174,30 51,29 0,64 0,73

L2 7 | 1121012,31 | 1113070,20 0,71 0,83 0,83

1 8 | 332001,43 | 328640,25 1,30 0,76 0,80

0 ) 5 |2 9 | 1072832,34 | 1021091,25 507 | 0,80 0,78
1 10 | 302363,69 | 252100,35 19,04 0,67 0,76

5 2 11 | 1039459,51 | 929049,75 11,88 0,78 0,74

1 12 | 284897,42 | 176835,65 61,11 0,64 0,72

L2 13 | 1074235,34 | 1044184,30 2,88 0,82 0,78

1 14 | 30668823 | 264379,05 16,00 0,72 0,78

) 5 |2 15 | 1052746,53 | 992929,20 6,02 0,79 0,74

1 16 | 294118,88 | 212419,90 38,46 0,66 0,74

5 2 17 | 1032805,83 | 935937,60 10,35 0,78 0,71

1 18 | 280471,01 | 157028,95 78,61 0,63 0,71

2 19 | 1161663,92 | 1131535,45 2,66 0,84 0,83

1 20 | 364042,00 | 343216,67 6,07 0,78 0,80

0 0 5 |2 21 | 1085958,53 | 1015487,35 6,04 0,80 0,78
1 22 | 308606,63 | 248807,01 24,03 0,68 0,75

5 2 23 | 1038087,38 | 912435,61 13,77 0,78 0,73

1 24 | 284766,090 | 165135,42 72,44 0,64 0,71

2 25 | 1108820,72 | 106472787 1,14 0,83 0,81

1 26 | 32526347 | 289375,24 12,40 0,74 0,78

o1 ) 5 |2 27 | 1066845,37 | 980232,17 8,84 0,80 0,77
: 1 28 | 299332,50 | 221147,39 35,35 0,67 0,74
5 2 29 | 1034958,85 | 896761,27 15,41 0,78 0,72

1 30 | 282839,66 | 154063,18 83,59 0,63 0,71

2 31 | 1064163,89 | 1012334,39 5,12 0,81 0,76

1 32 | 302098,75 | 23223897 30,08 0,70 0,76

) 5 |2 33 | 1047183,18 | 965934,15 8,41 0,79 0,73

1 34 | 29140854 | 18616843 56,53 0,66 0,73

5 L2 35 | 1020521,67 | 915263,17 12,48 0,78 0,70

1 36 | 27884509 | 135740,56 105,43 0,63 0,70

2 37 | 1089692,38 | 1011088,83 7T 0,80 0,78

1 38 | 310747,20 | 24660227 29,66 0,71 0,75

03 0 5 |2 39 | 1042587,05 | 915763,00 13,85 0,77 0,73
' 1 40 | 288233,44 | 171857,26 67,72 0,64 0,71
5 2 41 | 1008542,79 | 832503,46 21,15 0,76 0,69

1 42 | 271153,75 | 107227,73 152,88 0,61 0,69
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Expected Profit

Expected S.Level

Cv[Dy] | Cv|Y;] | DDay, | DDam, | ¢t | Sc.No Anorm Acap An—c(%) Aporm Acap
1 2 43 | 1054386,60 956318,08 10,25 0,80 0,76

1 A4 | 207586,44 | 204658,28 1541 | 0,68 0,74

1 9 2 45 | 1028193,18 887848,21 15,81 0,77 0,72

4 46 281955,20 152858,02 84,46 0,64 0,71

3 2 47 | 1006288,08 820408,81 22,66 0,76 0,69

0 03 4 48 269830,96 97898,70 175,62 0,61 0,68
’ 1 2 49 | 1025887,01 940423,91 9,09 0,79 0,73
4 50 283215,24 160637,38 76,31 0,66 0,73

9 9 2 51 | 1014889,97 904557,58 12,20 0,77 0,70

4 52 276514,22 123963,95 123,06 0,63 0,70

3 2 53 | 1003803,68 864366,87 16,13 0,76 0,68

4 54 267748,25 84311,73 217,57 0,61 0,68

1 2 55 | 1140763,59 | 1127378,80 1,19 0,83 0,83

4 56 344061,47 330520,67 4,10 0,77 0,80

0 9 2 57 | 1073703,81 | 1012518,33 6,04 0,80 0,78

4 58 297369,93 238821,20 24,52 0,67 0,75

3 2 59 | 1028820,87 911277,82 12,90 0,78 0,73

4 60 275551,31 159142,30 73,15 0,63 0,71

1 2 61 | 1093568,01 | 1061443,64 3,03 0,83 0,81

4 62 314012,56 278605,58 12,71 0,73 0,78

0 1 9 2 63 | 1055878,80 978204,63 7,94 0,80 0,77
4 64 289284,56 213651,78 35,40 0,66 0,74

3 2 65 | 1025916,28 896204,08 14,47 0,78 0,72

4 66 273858,54 148201,77 84,79 0,63 0,71

1 2 67 | 1054741,24 | 1003197,61 5,14 0,81 0,76

4 68 293595,18 223306,87 31,48 0,70 0,76

01 9 9 2 69 | 1038057,76 959183,54 8,22 0,79 0,73
’ 4 70 281999,19 178701,94 57,80 0,65 0,73
3 2 71 | 1019668,77 909687,20 12,09 0,78 0,70

4 72 270267,04 131043,53 106,24 0,62 0,70

1 2 73 | 1130741,07 | 1105465,14 2,29 0,83 0,82

4 74 336519,70 314213,11 7,10 0,76 0,79

0 9 2 75 | 1068324,91 99492491 7,38 0,80 0,77

4 76 294269,00 226596,93 29,86 0,67 0,74

3 2 77 | 1024996,58 896234,60 14,37 0,78 0,72

01 4 78 273562,85 150134,91 82,21 0,62 0,71
’ 1 2 79 | 1086308,69 | 1041858,58 4,27 0,82 0,80
4 80 309634,45 264640,29 17,00 0,72 0,77

1 9 2 81 | 1050207,59 961486,29 9,23 0,79 0,76

4 82 286886,30 201952,08 42,06 0,66 0,74

3 2 83 | 1021440,71 881217,90 15,91 0,77 0,72

4 84 272061,47 139325,42 95,27 0,62 0,70
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Expected Profit

Expected S.Level

Cv[Dy] | CvlY;] | DDap | DDam | ¢t | Se.No Anorm Aczp An—e(%) Aporm Acap
1 2 85 | 1049291,25 991604,78 5,82 0,81 0,76

4 86 290298,89 211842,06 37,04 0,69 0,76

01 01 9 9 2 87 | 1033587,43 949660,35 8,84 0,79 0,73
4 88 280046,84 169185,33 65,53 0,65 0,73

3 2 89 | 1016729,54 902344,44 12,68 0,78 0,70

4 90 268764,15 122584,97 119,25 0,62 0,70

1 2 91 | 1071157,78 999678,61 7,15 0,80 0,78

4 92 304661,86 232976,99 30,77 0,69 0,75

0 9 2 93 | 1027555,11 907415,51 13,24 0,77 0,73

4 94 277501,59 161724,30 71,59 0,63 0,71

3 2 95 996441,80 825351,82 20,73 0,76 0,69

4 96 261613,50 98938,64 164,42 0,60 0,68

1 2 97 | 1039401,99 946040,44 9,87 0,79 0,76

4 98 286177,36 191923,78 49,11 0,67 0,74

01 03 1 9 2 99 | 1015185,13 879044,47 15,49 0,77 0,72
' ’ 4 100 271769,10 142410,03 90,84 0,63 0,71
3 2 101 995715,66 812208,17 22,59 0,76 0,69

4 102 260788,39 90575,01 187,93 0,60 0,68

2 103 | 1012489,47 | 929546,46 892 | 0,79 0,73

4 104 273511,92 148570,14 84,10 0,65 0,73

9 9 2 105 | 1002989,35 895160,17 12,05 0,77 0,70

1 106 | 267020,73 | 114409,62 | 133,40 | 0,62 0,70

3 2 107 992675,99 855543,43 16,03 0,76 0,68

4 108 258772,09 77012,07 236,01 0,60 0,68

1 2 109 | 1018947,56 | 1003630,72 1,53 0,82 0,80

4 110 241758,90 200289,48 20,70 0,66 0,76

0 2 111 | 976584,14 | 911729,46 7A1 | 0,79 0,75

4 112 222321,99 136475,06 62,90 0,60 0,72

3 2 113 946159,30 830335,78 13,95 0,77 0,71

1 114 | 20772924 | 79156,19 | 162,43 | 0,56 0,70

1 2 115 988831,72 950172,40 4,07 0,81 0,78

4 116 230809,23 163969,94 40,76 0,64 0,75

03 0 1 9 2 117 963705,46 883886,71 9,03 0,79 0,74
4 118 218219,29 118239,39 84,56 0,60 0,72

3 2 119 944206,94 817232,86 15,54 0,77 0,70

1 120 | 207243,47 | 70549,43 | 193,76 | 0,56 0,69

1 2 121 962691,88 904562,73 6,43 0,80 0,74

4 122 220278,09 124387,44 77,09 0,63 0,74

9 9 2 123 952616,81 872407,71 9,19 0,78 0,71

4 124 214233,76 93322,47 129,56 0,59 0,71

5 [ 2 125 | 042292,32 | 838213,18 1242 | 0,77 0,69

4 126 206282,17 58488,99 252,69 0,56 0,69
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Expected Profit An—o(%) Expected S.Level

Cv[Dy] | CvlYi] | DDay, | DDam | ¢ | Sc.No Anorm Acap noe Anorm Acap
1 2 127 | 1013579,32 | 992484,97 2,13 0,81 0,79

4 128 | 239687,08 | 193035,40 24,17 0,66 0,76

0 9 2 129 | 972395,19 | 902688,25 7,72 0,79 0,75

4 130 221074,19 | 130137,11 69,88 0,60 0,72

3 2 131 942563,38 | 822027,64 14,66 0,77 0,71

4 132 | 206567,42 | 73687,13 180,33 0,56 0,70

1 2 133 984623,33 | 940414,99 4,70 0,81 0,78

4 134 | 228807,76 | 157284,35 45,47 0,64 0,75

01 1 9 2 135 | 960281,30 | 875768,25 9,65 0,78 0,74
’ 4 136 217340,59 | 112756,64 92,75 0,60 0,72
3 2 137 | 941876,27 | 809793,78 16,31 0,77 0,70

4 138 | 206458,72 | 65866,39 213,45 0,56 0,69

1 2 139 | 958582,52 | 899237,75 6,60 0,80 0,74

4 140 | 218828,03 | 119076,78 83,77 0,62 0,74

9 9 2 141 949165,23 | 868299,10 9,31 0,78 0,71

i 142 | 213242,74 | 87853,30 142,72 0,59 0,71

3 2 143 | 940231,88 | 832865,33 12,89 0,77 0,69

0.3 4 144 | 205279,43 | 54087,56 279,53 0,56 0,69
' 1 2 145 | 974347,53 | 922996,17 5,56 0,79 0,76
4 146 | 226090,61 | 144783,57 56,16 0,62 0,73

0 5 | 2 147 | 943084,14 | 842647,96 11,92 0,77 0,72

4 148 | 211927,84 | 89016,62 138,08 0,58 0,70

3 2 149 | 921403,10 | 771196,00 19,48 0,75 0,68

4 150 | 200550,44 | 37920,77 428,87 0,55 0,68

1 2 151 952605,30 | 876550,92 8,68 0,78 0,75

1 152 | 217463,27 | 112534,39 93,24 | 0,61 0,72

03 1 9 2 153 | 934220,80 | 818419,53 14,15 0,76 0,71
4 154 | 208816,00 | 72341,40 188,65 0,57 0,70

3 2 155 | 921926,29 | 760972,68 21,15 0,75 0,68

1 156 | 200224,05 | 31109,13 543,62 | 0,55 0,67

1 2 157 | 932106,99 | 858369,84 8,59 0,78 0,71

4 158 | 210157,98 | 77931,10 169,67 0,60 0,71

) 5 | 2 159 | 926872,89 | 830395,12 11,62 | 0,76 0,69

4 160 | 206196,51 | 49940,00 312,89 0,57 0,69

3 2 161 920321,56 | 798231,75 15,30 0,76 0,67

1 162 | 199861,17 | 20445,00 87751 | 0,55 0,67

Average 643119,07 | 546551,09 58,21 0,71 0,73

Table C.2: The expected profit and service levels for Ao, and Agyp for Alara Agri Business

Problem
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