
COLUMN GENERATION APPROACH FOR DYNAMIC BERTH

ALLOCATION PROBLEM

by

Özge Narin

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koç University

August, 2009

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Özge Narin

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Ceyda Oğuz

Asst. Prof. Onur Kaya

Asst. Prof. Sibel Salman

Date:

To my family

iii

ABSTRACT

Berth allocation problem (BAP) is to find the best allocation of berths (i.e., sections of

the quayside) to the incoming ships at a container terminal and the definition of the problem

is usually dictated by the objective function used and the constraints imposed. In this thesis

we addressed the well known berth allocation problem called Dynamic Berth Allocation

Problem (DBAP). The DBAP involves a set of ships that may not be ready for handling

before the berths become available as opposed to the Static Berth Allocation Problem

(SBAP). This means that the ships will arrive during the planning horizon which makes

the problem much harder than the SBAP because requirements of the problem formulation

increase in terms of introducing new variables and constraints to cover this relaxation.

The DBAP gets more difficult to solve exactly as the problem size increases (i.e., number

of berths and ships increases). In order to tackle this difficulty we proposed a Column

Generation (CG) Algorithm for DBAP. CG is a common method to solve large scale integer

programming (IP) problems. We first implement CG procedure similar to its application in

the literature where the relaxation of the master problem is solved at each iteration and the

subproblems are solved exactly to find the schedule (column) that has the minimum reduced

cost for the associated berth. The drawback of this approach is the high computation time

because the subproblems are Mixed Integer Programming (MIP) models and are solved

exactly at each iteration for a number that is equal to the number of berths in the problem

instance. In order to decrease the computational burden of the proposed CG algorithm,

a heuristic approach is developed for the subproblems. First, we relaxed the subproblem

by ignoring the constraints and the variables that complicates the problem. Consequently,

subproblem is turned into a simple assignment problem. This assignment problem is solved

exactly and the ships that are included in the optimal solution of the assignment problem

are used to find a better solution for DBAP’s subproblem by including the ignored variables

and constraints. This solution is found by a local search algorithm. If this heuristic cannot

find a schedule that has a negative reduced cost, the exact procedure is employed to ensure

iv

that there exist no more schedules that has a potential to improve the objective function of

the master problem for the berth related to the current subproblem.

The proposed CG algorithm is tested on 84 large scale DBAP instances which are taken

from the literature. Results of the small instances are not tested since the computation

times needed to find the optimal solution with the exact algorithm are almost negligible

in these instances. When the proposed decomposition based CG algorithm compared with

the other solution procedures in the literature, it does not perform the best for the entire

84 problem instances. The performance of the proposed algorithm is better than other

approaches on the instances that are more difficult than others in terms of the structure

of the parameter setting. Solution quality of the proposed algorithm is the same with the

exact solution for the instances that are solvable exactly. Moreover, CG algorithm gives

better solutions than the Variable Neighborhood Search (VNS) algorithm provided in the

literature which gives the best results in terms of computational time for the instances that

are not solvable by the exact procedure because of the out of memory error.

We conclude that the proposed CG algorithm provides the optimum solution for large

size instances which cannot be solved by the exact algorithms. Even though the computa-

tional time of the algorithm is large for these instances, as we can obtain exact solutions

compared to the heuristic methods, the CG algorithm provides an alternative for the man-

agers of the container terminals with respect to the quality of the solutions.

ÖZETÇE

Bu tezde literatürde yer alan Dinamik Rıhtım Tahsis Etme Problemi (DRTEP) üzerinde

çalışılmıştır. Rıhtım Tahsis Etme Problemleri rıhtıma yanaşan gemilerin belirlenen bir

amaca göre en iyi şekilde rıhtımda servis edilecekleri noktalara dağıtılmasıdır. Dinamik

Rıhtım Tahsis Etme Problemi (DRTEP), Statik Rıhtım Tahsis Etme Problemi’nin (SRTEP)

aksine rıhtı mdaki noktalar gemilere servis vermek için hazır olmadan önce gelebilecek gemi-

leri de içermektedir. Bu, gerçek hayatta olduğu gibi, gemilerin planlama ufuğu süresince

rıhtıma yanaşabilmelerine olanak sağlamaktadır. Bu esneklik probleme dinamiklik katarken,

problemi daha da zorlaştıran gereksinimlere yol açmaktadır. Dolayısıyla, problem örnekleri

büyüdükçe DRTEP’ın çözülmesi de daha zor hale gelmektedir. Bu sorunu aşabilmek için

büyük ölçekli tam sayı problemlerini çözmekte kullanılan bir kolon üretme algoritması

sunuyoruz. Çözüm yönteminde ilk olarak kolon üretme algoritmasını literatürde bilindiği

şekilde gevşetilmiş ana problemi indirgenmiş maliyeti eksi olan kolon kalmayana kadar

çözdük. Fakat bu yöntem alt problem her rıhtım noktası için ayrı ayrı tam sayı prob-

lemi olarak çözüldüğü için çok fazla zaman istemekteydi. İstenilen zamanı azaltabilmek

için algoritmanın en çok zaman harcayan kısmına, yani alt probleme, sezgisel bir yöntem

uyguladık. Alt problemin bazı değişken ve kısıtlarını yok sayarak problemi basit bir atama

problemine dönüştürdük. Bu problemin çözümüne de basit bir yerel araştırma algoritması

uyguladık. Bu sezgisel yö ntem indirilmiş maliyeti eksi olan kolon üretemediğinde, alt prob-

lem kesin çözümlü olarak tekrar çözüldü. Ayrıca algoritma, indirilmiş maliyeti eksi olan

kolon bulamayana kadar devam ettirildiğinde çözüm zamanı çok uzadığından algoritmanın

durma kriteri, ana problemin amaç fonksiyon değeri önceden belirlenmiş bir iterasyon sayısı

kadar değişmezse algoritmayı durdurmak olarak değiştirildi.

Önerilen kolon üretme yöntemi literatürden alınan 84 büyük problem örneği ile test edildi.

Küçük problem örnekleri test edilmedi. Bu problem örneklerinin test edilmeme nedeni ise

gerçek çözüm sürelerinin göz ardı edilebilecek kadar kısa olmasıdır. Literatürdeki diğer

yöntemlerle karşılaştırıldığında önerilen kolon üretme yönteminin 84 problem örneğinin

vi

hepsi için en iyi çözüm yöntemi olduğu söylenemez. Problem örnekleri büyüdükçe ve

parametre yapısı zorlaştıkça önerdiğimiz kolon üretme yönteminin performansı diğerlerinden

daha iyi hale gelmeye başlıyor. Önerilen yöntemin çözüm kalitesi çözülebilen problem

örnekleri için gerçek çözümle aynıdır. Ayrıca kolon üretme yöntemi literatürde bellek sorunu

yüzünden çözülemeyen problemler için en iyi çözüm yöntemi olarak gösterilen Degişken

Komşu Arama yönteminden daha iyi sonuç vermektedir.

Sonuç olarak, önerilen kolon üretme yöntemi literatürdeki gerçek çözüm yöntemleriyle çözülemeyen

büyük problem örnekleri için en iyi sonucu vermektedir. Kolon üretme yöntemi diğer sezgisel

yöntemlerle karşılaştırıldığında çözüm sürelerinin uzunluğuna rağmen, çözüm kalitesindeki

farklılıkla konteynır terminali yöneticilerine farklı bir alternatif sunmaktadır.

ACKNOWLEDGMENTS

I would like to thank my supervisor Assoc. Prof. Ceyda Oğuz who has been a great

source of inspiration and provided the right balance of suggestions, criticism, and freedom. I

acknowledge the computational support provided by the Koç-IBM Supply Chain Laboratory

for the computational experiments part of my thesis study.

I am grateful to members of my thesis committee for critical reading of this thesis and

for their valuable comments.

Moreover I thank my family and my friends for providing me a morale support that helps

me in hard days of my research. Finally I’d like to acknowledge TUBITAK for financial

support during my M.S. studies.

viii

TABLE OF CONTENTS

List of Tables xi

List of Figures xii

Nomenclature xiii

Chapter 1: Introduction 1

Chapter 2: Literature Review 6

2.1 Berth Allocation Problems . 6

2.2 Column Generation . 12

Chapter 3: Berth Allocation Problems 18

3.1 Problem Description and Mathematical Models 18

Chapter 4: Column Generation Approach for Dynamic Berth Allocation

Problem 30

4.1 The Master Problem . 31

4.2 The Pricing Problem (Subproblem) . 32

4.3 Relation of the Master Problem and the Pricing Problem 35

4.4 The Algorithm . 36

4.5 Implementation Details . 44

4.5.1 Test Problems . 44

4.5.2 Computational Platform . 44

4.5.3 Computational Results . 45

Chapter 5: Conclusions & Future Work 56

5.1 Conclusions . 56

ix

5.2 Future Work . 58

Bibliography 59

x

LIST OF TABLES

1.1 Growth of container traffic over the world . 2

3.1 An Example for 10 Berths - 20 Ships DBAP Instances 23

3.2 Example to show TD and TST are not proportional if ships have different

weights for departure delays. Service Time (ST), delay of departure (D-1) (all

weights=1), delay of departure (D-2) (ship A’s weight=3, ship B’s weight=1) 28

4.1 An example of the initial feasible solution for 10 berths - 20 ships instance . . 48

4.2 Column representation of the initial feasible solution given in Table 4.1 49

4.3 Results of DBAP instances for 5 berths-35 ships and 5 berths-40 ships with

heuristic CG . 53

4.4 Results of DBAP instances for 5 berths-45 ships and 5 berths-50 ships with

heuristic CG . 54

4.5 Results of DBAP instances for 10 berths-40 ships, 10 berths-45 ships and 10

berths-50 ships with heuristic CG . 55

xi

LIST OF FIGURES

2.1 Picture of a Container Terminal . 7

2.2 Container Terminal Layout [1] . 8

2.3 Quay crane [2] . 9

2.4 Process of loading and unloading operations of a ship [3] 9

3.1 A DBAP example where overpassing between ships is beneficial and the berth

may be kept idle even if a ship is waiting (idle time is represented by I). . . . 21

3.2 Example of handling ship at berth i for DBAP: A1=-1, A2=2, A3=12, A4=16,

W1=1, H1=4, W2=2, H2=6, W3=0, H3=6, W4=2, H4=2, TCT=23. 24

3.3 Service time and delay of departure for ships A and B 27

4.1 Slow convergence of CG algorithm (tailing-off effect) for a 5 berths - 40 ships

instance that has an optimal objective function value as 24875. 41

4.2 Flow Chart of the Heuristic CG Algorithm 52

xii

NOMENCLATURE

Abbreviations used in text
BAP Berth Allocation Problem

DBAP Dynamic Berth Allocation Problem

MIP Mixed Integer Programming

CG Column Generation

TEU Twenty Feet Equivalent Unit

BCP Branch-and-cut-and-price

LP Linear Programming

IP Integer Programming

TST Total Service Time

VNS Variable Neighborhood Search Algorithm
Parameters used in models

Si Availability time of the berth i

Aj Arrival time of ship j

cij Handling time of ship j at berth i

rid Cost of column d for berth i

αi Dual variable of berth i

βj Dual variable of ship j
Variables used in models

xijk Binary variable indicates whether ship j is scheduled at position k at berth i, or not.

yijk The length of the idle period at berth i before the arrival of ship j that will be scheduled

at the kth last position.

zd
i Binary variable indicates whether column d of berth is chosen, or not.

ajk Binary variable indicates whether ship j is scheduled at position k, or not.

wjk The length of the idle period before the arrival of ship j that will be scheduled

at the kth last position.

xiii

Abbreviations used in algorithms

Algorithm 1

kmax Maximum number of swaps between 2 random berths and

2 random ships in one iteration.

kmin Minimum number of swaps between 2 random berths and

2 random ships in one iteration.

maxIter Maximum number of iterations.

NoOfShips Number of ships in the problem instance.

NoOfBerths Number of berths in the problem instance.

fbest Best objective function found during the algorithm.

CostOfTheInitialSchedule Cost of the initial schedule found by the ordereded assignment

of the ships.

fs Objective function of the temporary schedule found during

the iterations.

CostOfTheNewSchedule Cost of the schedule found from swap of the ships.

Algorithm 2

NearZero A parameter which is very close to zero and also negative.

NumOfIterWithoutImp Counts the number of iterations that have same objective

function value consequtively.

NoOfShips Number of ships in the problem instance.

NoOfBerths Number of berths in the problem instance.

MaxNumOfIterWithoutImp Maximum number of iterations that have same objective

function value consequtively.

Schedule Schedule found from subproblem i

ObjFunSub Objective function of the schedule found from the subproblem.

ObjFunMas Objective function of the master problem that is solved with

the columns on hand.

FinalSchedule Final schedule found by algorithm.

IntegerSolution Schedule found by solving the RMP as an integer

programming problem at the end of the algorithm.

xiv

Algorithm 3

NearZero A parameter which is very close to zero and also negative.

NumOfIterWithoutImp Counts the number of iterations that have same objective

function value consequtively.

NoOfShips Number of ships in the problem instance.

NoOfBerths Number of berths in the problem instance.

MaxNumOfIterWithoutImp Maximum number of iterations that have same objective

function value consequtively.

Schedule Schedule found from subproblem i

NumOfExactSub Algorithm changes the subproblem solution procedure to

exact solution for at most NumOfExactSub

NumShips Number of ships scheduled in Schedule.

MaxNoTrial Maximum Number of trials for swapping the positions of

2 ships of Schedule to find a new schedule (NewSchedule).

ReducedCost Reduced cost of the schedules.

BestSchedule Best schedule found tduring the algorithm.

FinalSchedule Final schedule found by algorithm.

IntegerSolution Schedule found by solving the RMP as an integer

programming problem at the end of the algorithm.

xv

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Containers are large boxes that are used to transport goods from one destination to

another. Using containers has several superiorities over using conventional methods, such

as, strength and durability (i.e., they are designed to carry heavy loads when they are stacked

in higher columns), modularity (i.e., all shipping containers are made to the same standard

measurements and as such they provide modular elements that can be combined into larger

structures), transformation (i.e., pre-fabricated modules can also be easily transported by

ship, truck or rail, because they already conform to standard shipping sizes), availability

(i.e., used shipping containers are available across the globe), and cost. In this context, the

term twenty-feet-equivalent-unit (TEU) is used to refer to one container with a length of

twenty feet. A container of 40 feet is expressed by 2 TEU. This way of unit representation

simplifies the tracking of goods during the transportation.

Several transportation systems can be used to transport containers. Sea-borne trans-

portation is carried out by ships and trucks or trains can be used to transport containers

over land. Terminals or ports are used to transmit containers from one mode of transporta-

tion to another. For instance, a container can be taken off a ship and placed on a train

at a container terminal or the other way around. Containers were first used in mid-fifties

[2]. Proportion of cargo handled by containers has steadily increased through the years.

Growth of container traffic over the world can be seen in Table 1 [4]. A further continuous

increase is expected in the upcoming years, especially between Asia and Europe [5]. Hence,

the importance of the container terminals has grown accordingly. Efficiency and produc-

tivity improvements in terminal operations result in cost and time effective handling of the

ships and containers as expected. Therefore, efficient management of container terminals

has gained significant attention in recent years.

This thesis concentrates on efficient berth allocation that finds out an assignment of

Chapter 1: Introduction 2

Table 1.1: Growth of container traffic over the world

Worlwide 2005 2006 2007

1 Singapore 23,190,000 24,800,000 (+6.94%) 27,932,000 (+12.63%)

2 Shanghai 18,084,000 21,700,000 (+20.00%) 26,150,000 (+20.51%)

3 Hong Kong 22,602,000 23,230,000 (+2.78%) 23,881,000 (+2.80%)

Europe 2005 2006 2007

1 Rotterdam 9,287,000 9,690,000 (+4.34%) 10,790,000 (+11.35%)

2 Hamburg 8,087,550 8,861,804 (+9.57%) 9,900,000 (+11.72%)

3 Antwerp 6,482,030 7,018,799 (+8.28%) 8,176,614 (+16.50%)

ships that are going to be handled at berths in a container terminal for cargo handling.

Quick turnaround of the ships is the main goal of the container terminal management.

This aim is also related to the customer satisfaction. Fast transmit time from an origin

to a destination is the primary issue for the shippers (i.e., customers). Any delay in a

transshipment port results in a significant delay for the overall schedule of the ship and

containers may loose their planned connection if they are planned to be transmitted to

other ships or other modes of transportation. Therefore, punctual schedule is the main goal

of both the shipping companies and the container terminals. This objective is achieved by

minimizing the total completion time of the ships (i.e., waiting time and the handling time

of the ships). Any delay is also considered by this objective implicitly since this objective

procures quick handling of the ships generally (this claim will be elaborated more in Chapter

3 by Theorem 1).

In most of the situations, planning horizon of the BAP is one week but the berthing plan

is updated every day. Some berths may not be available in some time when the problem

is reoptimized because of the rolling horizon. Moreover, there can be another availability

restriction on the quay due to the maintanence operations. Availability situations of the

berths are integrated to the BAP by assigning an availability parameter for each berth.

Moreover, every ship has its own time window starting from its arrival time, which is known

in advance, to its departure time. Container terminals can be managed efficiently when

both the user costs and the port costs are minimized that are associated with the service

time. That is why the objective of BAP is determined most of the time as minimizing

Chapter 1: Introduction 3

the total service time of the incoming ships. Different weights can be given to each ship if

the importance of the incoming ships is not the same. In that case, sum of the weighted

service times must be reflected in the objective function. These weights can be determined

to constitute a pricing scheme or to define the number of containers to be moved. In some

situations, a penalty term can be included in the objective function of BAP to satisfy the

contracted departure time of the ship if it exists. If this is the case, implicit consideration

of the delay of the ships cannot be accomplished (explanation is given by Theorem 1 in

Chapter 3).

In this thesis, we contribute to the solution of the well known Dynamic Berth Allocation

Problem (DBAP) by implementing a column generation (CG) algorithm. Although the

technique of CG has been around since the early sixties, it has not been applied to a

BAP before. However, there are a certain number of CG applications on shortest path

problems (SPP) [6], vehicle routing problems with time windows (VRPTW) [7], cutting

stock problems (CSP) [8], maritime transportation applications such as, large scale models

in airline industry [9], inventory ship routing [10], ship scheduling with recurring visits and

visit separation requirements [11] and production environments such as, machine scheduling

problems [12]. These applications result in different levels of success. Since DBAP has some

similarities with these problems, CG algorithm seems to be a promising method for it.

We worked on a compact Mixed Integer Programming (MIP) formulation of DBAP

proposed in [13] and in [14]. We split this compact MIP formulation into two formulations,

such as master problem and subproblems (pricing) where the master problem formulation

constitutes a set partitioning problem. These problems are interrelated in a way that

subproblem uses the dual variables that are derived from the master problem. Besides,

optimum solution that comes from the subproblem is added to the master problem as a new

column for the berth which the subproblem is solved for. This procedure continues until

optimum objective function value of the subproblem is no more negative, which means that

there exists no new column that has potential to improve the objective function of the master

problem (i.e., reduced cost of the new variable (column) is not negative). Since the berths

of the DBAP do not have the same characteristics (i.e., not identical), the optimum solution

of the subproblem is different for each berth. Subproblem must be solved individually for

each berth and solutions of the subproblems must be added to the columns of the associated

Chapter 1: Introduction 4

berth. Hence, we need to be sure that no columns with negative reduced cost exists for all

berths to terminate the CG algorithm.

The CG approach described in the above paragraph can be taken as an exact procedure

for DBAP because it continues until no more potential schedule exists for all berths. This

property is desirable in terms of the solution quality but it requires long computation times,

which is a common drawback of CG algorithms. Subproblems are the major contributors

to this large computation time because they are MIP models and they are solved exactly.

When the size of the problem instances has grown, the computational effort needed to find an

optimal solution for a single berth increases. Thus, we focus on the subproblem to decrease

the computation time of the CG algorithm. We propose a heuristic, which first solves the

corresponding assignment problem for the subproblem. Afterwards, optimal solution of the

assignment problem is improved by a local search algorithm, which is a modified version of

the VNS algorithm proposed in [13]. This heuristic first finds the objective function value

of the optimum solution found by the assignment problem corresponding to DBAP. After

that, it continues by swapping the positions of the randomly selected ships scheduled at the

current berth. Then, it deletes the randomly selected ships from the schedule of the current

berth and swaps the positions of the rest. When the algorithm finds a solution better than

the solution taken from the assignment problem in terms of the objective function value,

it keeps the solution as the final solution. If this heuristic fails to find a schedule with

negative reduced cost, heuristic approach is altered with the exact solution to ensure that

there exists no schedule with negative reduced cost. If exact solution finds any schedule

that has negative reduced cost, solution procedure is turned into heuristic approach again.

In this thesis, we will develop a solution approach for DBAP that will be a good tool

to find better solutions in terms of the solution quality. In doing this, we will address

the larger problem instances because they cannot be solved by exact procedures. In the

remaining part of this chapter, we will give a brief summary of our contribution and the

flow of the thesis. This study will contribute to the literature by being the first study of CG

algorithm on BAPs. Accordingly, it can be a good tool for the new studies of BAPs and

other problems that are similar to BAPs. Moreover, we will develop a heuristic model for

the subproblem to decrease the computation time of the CG algorithm. It can also be used

as a solution instrument for the problems that have a similar structure with the subproblem

Chapter 1: Introduction 5

(i.e., machine scheduling problems). CG approach used in this thesis is a successful solution

approach for DBAP in the way that it provides better solutions than the best solution

approach given in the literature so far especially for the instances that are not solvable by

exact procedures. The DBAP instances larger than 10 berths - 45 ships cannot be solved

exactly because of the out of memory error. CG algorithm that will be proposed in this

thesis gives the solutions that has the best solution quality for the instances larger than 10

berths - 45 ships compared to the literature.

The outline of this thesis can be summarized as follows. Literature review of BAPs and

CG algorithms is given in Chapter 2. Technical background of the DBAP and mathematical

formulations is provided in Chapter 3. CG approach developed for the DBAP is explained

in Chapter 4. Details of the master problem and subproblem are presented in Section 4.1

and Section 4.2, respectively. CG algorithm provided for DBAP is given in Section 4.4 as a

whole. Details of the CG implementation is given in Section 4.5. Finally, we conclude this

thesis by Chapter 5.

Chapter 2: Literature Review 6

Chapter 2

LITERATURE REVIEW

2.1 Berth Allocation Problems

Berth allocation problem (BAP) tries to find the best allocation of berths (i.e., sections of

the quayside) to the incoming ships at a container terminal. A typical container terminal

can be seen in Figure 2.1. When the ships arrive at a port, they enter in the harbor waiting

to moor at the quay. The main elements in the layout of a container terminals are given in

Figure 2.2. The quay is a platform that projects into the water to alleviate the loading and

unloading of cargo. The locations where mooring can take place are called berths. Berths

are equipped with giant cranes, called quay cranes which can be seen in Figure 2.3. Quay

cranes facilitate loading and unloading of containers. The containers are transferred to and

from the yard by a fleet of vehicles. If container terminal is a transshipment terminal, the

yard allows temporary storage before containers are transferred to another ship or another

mode of transporatation (i.e., railway or road). The process of loading and unloading

operations can be observed in Figure 2.4.

Two interrelated decisions are faced while assigning incoming ships to berth positions

which are where and when the ships should be moored. Where corresponds to the berth

that is chosen for the ship to be moored and when corresponds to the order of the ships that

are to be scheduled at the berth chosen. Berthing point and the distance between the berth

and the pick-up delivery area of a container stored in the yard affect the handling time of

a ship, which in turn determines the performance of a container terminal. Handling time

also depends on another associated decision which is the number of assigned quay cranes

to the ships. This decision is treated by the Quay Crane Assignment Problem (QCAP).

Number of cranes assigned to a ship not only affects the handling time, but also creates

an impact on the solution of BAP. In a complex system, like a transshipment port, the

decision making process is often hierarchical and the QCAP is solved before the BAP. In

fact, decisions about the QCAP are subject to less flexibility since the terminal must achieve

Chapter 2: Literature Review 7

Figure 2.1: Picture of a Container Terminal

a contractual performance level. Moreover, the number of quay cranes assigned to each ship

is chosen according to practical rules that consider the ship length and its priority. As there

are several criteria that influences the handling time of a ship, a more detailed analysis is

required in real world applications.

The BAP can be modeled as a discrete problem if the quay is regarded as a finite set

of berths and as a continuous problem if quay is represented as a continuous line. Here the

objective is the minimization of the total service time for all ships which is defined as the

sum of the elapsed times between the arrival of each ship to the harbour and its completion

of handling. For each ship, time elapsed in the harbor is also referred as the turnaround

time of the ship. Therefore, assigning berths to incoming ships for their cargo handling

plays an important role in minimizing the turnaround time. The main reason for this is

the nonidentical berths, so that the handling time for a specific ship being not necessarily

the same at every berth, that is berths have different characteristics that change handling

Chapter 2: Literature Review 8

Figure 2.2: Container Terminal Layout [1]

time of a ship as a consequence. Therefore, the BAP can be modeled as a discrete or a

continuous problem.

For the discrete case, berths are described as fixed length segments because when ships

have different lengths, dividing the quay by a set of berths, which have different lengths

is difficult to handle due to the dynamic variations among requirements of ships. By this

way, spatial dimension of the berths can be discarded and berths are treated as points.

This problem can be represented in two-dimensional space where one dimension is berths

and other dimension is the time. In the discrete case, BAP can be modeled as unrelated

parallel machine scheduling problem where ships are treated as jobs, berths are machines

and, arrival times of the ships are the release times of the jobs [15]. NP-hardness of this

Chapter 2: Literature Review 9

Figure 2.3: Quay crane [2]

Figure 2.4: Process of loading and unloading operations of a ship [3]

problem is proven in [16] and consequently BAP becomes NP-hard as well. In addition,

there can be other constraints relative to the water depth or the length of the ship.

Continuous BAP is used in cases where ships can be moored across the berth boundary

because of the ship length. In these cases, BAP should be solved without using the berth.

Furthermore, continuous BAP has a significant flexibility for the berth allocation but this

advantage is offset by the difficulty in solving the problem due to its complexity. In the

literature, this problem is addressed as static BAP in most of the cases in order to deal

with a simplified problem. Dynamic case of BAP is studied in [17] where authors utilize the

similarity between dynamic continuous space BAP and the two dimensional cutting stock

problem.

BAP can also be modeled as static or dynamic as mentioned in the previous paragraph.

Chapter 2: Literature Review 10

In Static Berth Allocation Problem (SBAP), a set of ships are given at the beginning of

the period that are ready to be handled before the berths become available [18]. If this

assumption is relaxed, SBAP turns into Dynamic Berth Allocation problem (DBAP) [19].

In DBAP, the ships may arrive before or after berths become available and this property

makes BAP dynamic. As a result, BAP becomes harder since finding the optimum schedule

results in a larger solution space. As a matter of fact, SBAP is solvable in polynomial time

with the Hungarian method [20] since it is reducible to the assignment problem. Similarly,

an appropriate Lagrangean relaxation procedure for the DBAP is also proposed in [20] where

the subproblem is an assignment problem. Computational results of this approach points

out that DBAP becomes easy to solve when the instances are similar to the SBAP which

means most of the ships arrive before berths become available. On the other hand, in [21] a

DBAP is considered where the quay is taken as a collection of berths with the assumption

that up to two ships can be handled at the same berth if their lengths are compatible with

the length of the berth segment. They modeled this problem as a non-linear integer program

as they incorporated additional constraints related with the water depth and proposed a

genetic algorithm for its solution due to the intractibility of the model.

An extended formulation for DBAP is presented in [19] that takes service priorities of the

ships into account by introducing a term to the objective function, which is related to the

service times of the ships. In this work, an appropriate Lagrangean relaxation is proposed

for the resulting non-linear formulation which has a subproblem that becomes a quadratic

assignment problem. Quadratic assignment problem is not solved well with exact solution

methods so they have developed a generic heuristic. In [22], the multiple ship treatment

in the discrete BAP, like [21], is applied to the indented terminal with a simple procedure

to deal with small ships at indented berths. Also, comparisons in terminal performances

between conventional and indented terminals are presented in this work. Allocating some

ships to other container terminals because of capacity limit of an extremely busy container

terminal in a developing country is considered in [23].

On the other hand, corrections to SBAP and DBAP models given in [19] and [24] were

introduced in [13]. The idea of reverse order for the position of the ships at a berth is used

in [13] in contrast to [19] where direct order is used. In addition, constraints given in [19]

are not sufficient to ensure that a ship is not going to be handled at a given berth in the kth

Chapter 2: Literature Review 11

first position while no ship is handled in the (k−1)st position at that berth. Therefore, [13]

mentioned that in order to solve this inaccuracy, additional constraint set should be added

to the models proposed in [19] or reverse order of ships can be used. An extended case of

[13] is proposed in [14] as Minimum Cost Berth Allocation Problem (MCBAP). Instead of

reflecting handling times of the ships to the objective function, they reflect handling costs,

which depends on the berth used (number of cranes used) and the number of containers that

is transmitted. Earliness and tardiness of the ships are included as premiums and penalties.

These premiums and penalties are weighted to express the fact that delays are more or less

important according to both the size of the ship and the commitments of the ship owners’

company, particularly, the scheduled arrival date at the next visited terminal.

Following these studies, continuous case of the BAP is studied in [25] by representing

quay as a continuous line. In this paper, handling times are assumed to be constant and

a heuristic procedure is developed to decide the berthing points given the berthing time of

the ships. However, this approach cannot solve the general problem in which the berthing

time is a decision variable and the handling times vary from berth to berth. A non-linear IP

model that also considers the quay crane assignment problem (QCAP) is introduced in [26].

Main asssumption that integrates BAP and QCAP is that the handling times vary linearly

with the number of cranes assigned to a ship. Authors assumed that the optimal berthing

point is known and if different berthing point is chosen, they apply a penalty over that ship.

Their objective function is to minimize the total penalty over all ships. Thus, lagrangean

relaxation and a subgradient optimization method are used as a solution procedure in this

study.

In recent years, metaheuristics are used as a solution method for most of the studies.

Some of these studies can be summarized as follows. Variable Neighborhood Search (VNS)

algorithm is used in [13] to solve Minimum Cost Berth Allocation Problem (MCBAP) and

DBAP. This study has already mentioned above in this section. Genetic algorithm is used

in [27] to develop an efficient heuristic. They addressed the problem of determining the

berthing position and time of each ship as well as the number of quay cranes assigned to

each ship and the objective function is determined as minimizing total service time, waiting

time and delay time for every ship. In [28], GA is used to develop an appropriate heuristic

for simultaneous berth and crane allocation problem. This objective is almost the same

Chapter 2: Literature Review 12

with the objective used in [27]. Another method to consider guay crane assignment with

berth allocation is solving the Quay Crane Assignment Problem (QCAP) before BAP. This

method is used in [4] with additional depth of water and time windows on completion time

constraints. The common point of these recent studies is to integrate QCAP and BAP in

order to make the solution more realistic.

2.2 Column Generation

A wide range of real-life optimization problems can be formulated as maximizing or mini-

mizing a linear function of variables subject to equality or inequality constraints and some

variables are restricted to integers. Such problems are modeled as mixed integer programs

(MIP). In order to find a successful solution to large-scale MIP problems, their linear pro-

gramming (LP) relaxations should give a better approximation to the convex hull of feasible

solutions of MIP. These approximations are used as bounds to carry out a technique that

uses an implicit enumeration of all feasible solutions called branch-and-bound. The qual-

ity of the approximations (bounds) is critical for the efficiency of the algorithm. Bounds

are provided by LP relaxations of the MIP formulation in conventional branch-and-bound

algorithm. Solving MIP formulation by relaxing the integrality constraints is easy but the

quality of the bound is often poor. In order to provide better bounds, other types of ap-

proximation algorithms are used. Lagrangean relaxation relaxes some of the constraints of

a given formulation of the problem as opposed to all integrality constraints. Polyhedral

approach improves LP relaxation by adding inequalities to strengthen the LP formulation.

An alternative way to branch-and-bound algorithms is decomposing the constraint set

of the problem formulation. Consider a simple integer problem given as

Min cx (2.1)

s. t.

Ax = b (2.2)

Dx ≤ d (2.3)

x integer (2.4)

Chapter 2: Literature Review 13

which has constraints that can be partitioned into a class of global constraints (2.2) and

a class of specific constraints referred as a subsystem (2.3 and 2.4). All the solutions of

the subsystem of constraints can be enumerated and problem can be reformulated in terms

of subsystem solutions by performing a variable transformation. First situation for the

natural usage of this decomposition approach is when the optimization problem is easy

to solve over subsystem of constraints (i.e., constraint set (2.3) constitutes a well-known

polyhedron) but global constraints complicate the problem. Second situation is reached

when Dx ≤ d have a block diagonal structure in which the subsystem can be decomposed

into K subsystems.Therefore, K subsystems become independent from each other without

global constraints (2.2) regarded as linking constraints in this case. Whether the integer

program with a large number of variables results from decomposition or not, it is referred

to as master problem by reference to Dantzig-Wolfe decomposition algorithm in LP.

Branch-and-cut-and-price (BCP) algorithms are actually branch-and-bound algorithms

where dual bounds are obtained by solving a linear program with huge number of rows

and columns. Therefore, cut generation (seperation) and column generation (pricing) must

be performed during the execution of the algorithm. It is mentioned in [29] that such al-

gorithm is robust when structures of the separation and pricing subproblems continue to

be unchanged during the execution of the algorithm. First BCP algorithm is applied on

edge-coloring problem by [30] but this algorithm is not robust. The new columns added to

the master problem complicate the pricing subproblem so it becomes costly to be solved.

In late 90’s, researchers argued that structure of the subproblem will remain unchanged by

separating generated cuts from the original formulation. As a consequence, cuts are gener-

ated first and translated to columns. Afterwards, these columns are added to the master

problem. This idea allowed the construction of robust BCP algorithms in the subsequent

studies (i.e., [31], [32], [33], [34], [35]) .

There are several reasons for formulating the problems with huge number of variables

as stated in [36]:

• Compact formulation of MIP may have a weak LP relaxation. Relaxation can be

reformulated with a huge number of variables to be tightened.

• Compact MIP may have a symmetric structure that causes branch-and-bound algo-

Chapter 2: Literature Review 14

rithm to perform poorly. Reformulation with huge number of variables can handle

this problem.

• Column generation decomposes problem into master and subproblems. This decompo-

sition may have an interpretation that allows for incorporation of additional important

constraints.

• Formulation with huge number of variables can be the only choice.

There are fundamental difficulties in applying LP column generation techniques in IP

solution methods as stated in [36]:

• Conventional IP branching on variables may not be effective because fixing variables

can destroy the structure of the pricing problem.

• Solving LPs and these subproblems to optimality may not be efficient in which case

different rules will apply for managing the branch-and-price tree.

Master reformulation of integer program is beneficial because its LP relaxation provides

a tight bound on the integer solution value and it also takes away the difficulties that come

from the inherent symmetry of the problem considered. Master reformulation proposes

a two level decomposition with an aggregated level which is the master problem, and a

disaggregated level which is the subproblem that determined with the subsystem of the

constraints (2.3) of the compact MIP formulation.

In general, decomposition principle is presented by Dantzig and Wolfe in 1960 [37]. This

decomposition algorithm increases the number of applications of CG to solve large scale

linear programs and become a standard LP solution methodology. This decomposition

principle is also mentioned in various textbook and publications such as, [38], [39], [40] and

[41]. Actually, Dantzig-Wolfe decomposition is introduced to solve large scale LP problems

in computers with limited core storage capacity. Its aim is to complement simplex method

by extending the applicability range of LP. When Dantzig-Wolfe decomposition is applied

to linear programs, it performs by generating an equal master problem having only a few

more rows than the linking constraints (2.2) but having many more columns.

Chapter 2: Literature Review 15

Even though the Dantzig-Wolfe decomposition principle was introduced for LP, it is

also used in IP to obtain good approximations. In this approach, an LP reformulation

(master problem) was offered because it results in a generally tighter relaxation than the

standard linear relaxation. When decomposition is applied to an integer program, an integer

master problem is obtained with a large number of columns. The linear relaxation of the

master problem is solved by CG algortihm. Subproblem is also an integer program in all

IP applications of CG algorithm. The master IP reformulation that includes all possible

columns and the initial compact IP formulation is equivalent so that solving the master

IP resulting from the decomposition is equivalent to solving the original IP formulation in

terms of finding the optimal solution.

Let pq, q ∈ Q, be the set of the extreme points of the polyhedron x ∈ <n
+ : Dx ≤ d which

is constructed by Constraint set (2.3) where Q is the set of possible columns. Then the equiv-

alent master linear program of the integer program formed with equations (2.1),(2.2),(2.3)

and (2.4) is given as

Min
∑
q∈Q

cqλq (2.5)

s. t.

∑
q∈Q

aqλq = b (2.6)

∑
q∈Q

λq = 1 (2.7)

λq ≥ 0 ∀q ∈ Q (2.8)

where cq = cpq, aq = Apq and λq’s are in between 0 and 1 that denoted the selection

percentage of column q.

Briefly, the idea of CG algorithm is to deal with a subset of variables (columns) and

generate missing variables if and when it is necessary. At every iteration of CG algorithm,

restricted master problem (RMP) is solved with a subset Q̃ ⊂ Q of columns (i.e., the basic

feasible solution plus eventually a few other columns). New column, q, is introduced to the

RMP as λq by augmenting Q̃. The purpose of the RMP is to provide dual variables to be

used in the subproblem to price out new non-basic variables to enter the basis. Algorithm

Chapter 2: Literature Review 16

gathers a primal feasible solution for the compact formulation of the problem (MIP) in the

end.

The IP CG algorithm is an exact optimization procedure that integrates CG with branch-

and-bound technique. The bounding plan which is used in pruning the branch-and-bound

tree is based on the linear relaxation of the master problem. The CG algorithm is used

in each node of the branch-and-bound tree to solve the linear relaxation of the master

problem because of the huge number of columns in the master problem. Subproblem is

adjusted appropriately to make branching plan compatible with the CG algorithm.

The CG algorithm is a primal method that ensures the primal feasibility and works

towards the dual feasibility. Dual point of view gives most valuable insight into the func-

tioning of the algorithm because the dual solution of the RMP directly affects the selection

of the new columns as stated in [42]. The CG algorithm starts with a known basic feasible

solution of the linear relaxation of the master problem. This initial solution can be gener-

ated by formulating the problem with appropriate artificial basic variables and using the CG

to solve this augmented problem with an artificial objective function which penalizes the

presence of the artificial variables in the basis. An alternative way to find an initial feasible

solution is to use heuristics. A feasible solution is found for the compact MIP formulation

and the solution is transformed into new variables (columns) for the linear relaxation of the

RMP. This feasible solution constitutes the begining primal basis in order to take the first

dual variables needed to find new columns for the primal basis.

The algorithm continues by pricing out the variables (columns) that do not exist in the

subset Q̃. After solving the linear relaxation of the RMP, values of the dual variables are

gathered and passed to the subproblem. Subproblem uses the dual variables to find a new

column that has a potential to improve the objective function value of the master problem

by minimizing the reduced cost of the new column. If the reduced cost of the column

found from the subproblem has a negative reduced cost, it has a potential to improve the

objective function of the master problem when the MIP is a minimization problem. The new

column found from the subproblem is not added to the master problem if it has nonnegative

reduced cost. The new RMP can be solved with any LP solver and the entire procedure can

be repeated until no more columns found by the subproblem with negative reduced costs.

Satisfaction of this condition ensures the optimality because this means no more solution

Chapter 2: Literature Review 17

exists that has a potential to improve the objective function value of the master problem

(i.e., objective function of the DBAP). Afterwards, the RMP is solved as an integer program

by turning the column variables into integer variables as opposed to the linear relaxation

case. This last solution gives the optimal integer solution to the problem.

Chapter 3: Berth Allocation Problems 18

Chapter 3

BERTH ALLOCATION PROBLEMS

BAP determines an efficient assignment of incoming ships to the berths in the container

terminal before loading and unloading operations (cargo handling). The most realistic objec-

tive might be indicated as the customer’s satisfaction (i.e., the incoming ship’s satisfaction).

Transit time of the ships from origin port to the destination port is the first concern for the

ship owners and the companies that wait for the consignees in container shipping. In order

to increase the customer’s satisfaction, ship departure needs to be kept on schedule. Any

delay in departure results in a late arrival for the next port and late departure from that

port consecutively. If these delays continue, ships suffer from a substantial delay at the final

port but the most important point is that those containers that planned to be transhipped

to other vessels might loose their scheduled connections. Thus, punctual departure schedule

is the most intended goal in shipping lines for the shipping companies. Significance of the

BAPs for efficient management of the container terminals is stated in [43] and, [44]. In order

to be consistent, we defined our objective in this study as to minimize the total service time

of the ships which is the sum of total cargo handling and waiting times. This objective also

handles the minimization of the total delay times of the incoming ships and this is explained

by Theorem 1 in Section 3.1.

3.1 Problem Description and Mathematical Models

In this section, we will present problem description and the mathematical model for SBAP

and DBAP following the notation in [13]. As mentioned in Section 2.1, SBAP is the simplest

form of the berth allocation problems. Assumptions made through SBAP are as follows [13]:

(a) Set of berths is B and indexed by i=1,2,...,I and berths are available after time Si.

(b) Set of ships is denoted by V and indexed by j=1,2,...,T and ships have arrival times Aj .

(c) Each berth can handle one ship at a time or can remain idle for some time.

(d) Any ship j can be handled at any berth i, with a handling time cij .

Chapter 3: Berth Allocation Problems 19

(e) Total completion time, i.e, waiting and handling time for all ships is to be minimized.

(f) All ships arrive before any berths becomes available, i.e.,

max
j
Aj ≤ min

i
Si (3.1)

Due to assumption (f), all ships are ready to be handled by all berths. This situation

provokes a problem environment in which ships can be scheduled to berths consecutively

without any idle times between ships. If this assumption does not hold, possible idle time

between consecutively scheduled ships should be taken into account (as in DBAP). Since

ships have to arrive before berths become available, SBAP model can only be applied to

short-term models. Moreover, SBAP is deterministic and fractional assignments such as

changing a ship’s berth during loading or unloading operations is forbidden.

Since the direct order of the ships requires extra constraints to be sure that no ship

is assigned to order k when there is no ships assigned to position k − 1 (as mentioned in

Section 2.1), reverse order of ships is used in the model. Binary variables xijk is introduced

to show which ship j is handled at berth i.

xijk =

 1 ship j is scheduled at position k at berth i

0 otherwise

An index k is used for assigning the reverse order at which ships will be handled at each

berth such that k ∈ O, where O is the set that contains the information of the position of

the ships (i.e., order of the ships). One should notice that this reverse order is not known.

Now it is easier to see that the total completion time of all ships handled at berth i will be

∑
j∈V

∑
k∈O

(Si −Aj)xijk +
∑
j∈V

∑
k∈O

kcijxijk, (3.2)

where the first term is for calculating the waiting times of all ships handled at that berth

before the berth becomes available and the second term is the sum of the handling time

for all such ships and the waiting time of the k − 1 ships still to be handled while the kth

ship is being attended to. This situation is illustrated in Figure 3.1, where Wj represents

the waiting time, Hj represents the handling time of the ship j, j = 1, 2, ..., T , and TCT

denotes the total completion time. The SBAP, which is formulated as a more general model

than the one given in [18], is presented in [13] as follows:

Chapter 3: Berth Allocation Problems 20

(SBAP)

Minimize
∑
i∈V

∑
j∈V

∑
k∈O

(kcij + Si −Aj)xijk (3.3)

subject to

∑
i∈B

∑
k∈O

xijk = 1 ∀j ∈ V, (3.4)

∑
j∈V

xijk ≤ 1 ∀i ∈ B, k ∈ O, (3.5)

xijk ∈ 0, 1 ∀i ∈ B, j ∈ V, k ∈ O. (3.6)

The ships will be assigned to consecutive positions at each berth since the coefficients

of the variables xijk in the objective function (3.3) decrease as k increases. It is easy to

see that ships will be handled at each berth in increasing order of their handling time, cij

in the optimum solution. This problem can be turned into a two-dimensional assignment

problem and easily solved by the polynomial algorithm presented in [45] or the “auction”

algorithm stated in [46]. It is also noted in [18] and [13] that this problem is a particular

case of a scheduling problem, i.e., minimizing the total completion time for independent

tasks on unrelated parallel machines. A solution to this problem is also given in [47].

In the model SBAP, constraint set 3.4 ensures that every ship is scheduled just once,

constraint set 3.5 ensures that at most one ship must be scheduled at any position k and

constraint set 3.6 indicates that xijk is a binary variable.

Dynamic Berth Allocation Problem (DBAP) is arisen when the assumption (f) of SBAP

is relaxed, i.e., some ships may arrive before some or all berths become available. If this

problem is considered with a single berth, it reduces to minimizing the total completion time

with release dates on a single machine and it is proven to be NP-hard in [48]. The first come,

first served rule seems to be adopted for this problem, which prevents overpassing between

ships. This rule does not give the optimal solution for the objective of total completion

time. This situation can be explained on a simple example that is represented in Figure 3.1.

In this example, there are 2 ships with A1=0, A2=1, c11=10, c12=1 and S1=0. Start times

of the ships are denoted by sik where index i is used for berth and k is used for order. If ship

1 is scheduled first, its start time will be s11=0, and then ship 2 is scheduled on time such

Chapter 3: Berth Allocation Problems 21

that s12=10, and the total completion time is 0+10+10+1=21. If ship 2 is scheduled first

then, s11=3, s12=1, and total completion time is 1+1+2+10=14. This example indicates

that in order to minimize the total completion time, berths can be kept idle even if there

exists a ship that has already arrived at port.

Figure 3.1: A DBAP example where overpassing between ships is beneficial and the berth
may be kept idle even if a ship is waiting (idle time is represented by I).

If the case Aj > Si holds for some ships and berths, possibility of idle periods for berths

should be taken into account. This situation is included in [19] by introducing a continuous

variable yijk representing the idle period at berth i before the arrival of ship j, which will

be handled at position k. Additional constraints are also included to the model for giving

the right values to these variables. After the corrections mentioned in Section 2.1 applied

to the DBAP model proposed in [19], continuous variable yijk is defined as:

yijk = the length of the idle period at berth i before the arrival of ship j that will be

scheduled at the kth last position.

So the mathematical model for DBAP is given as follows:

(DBAP)

Minimize
∑
i∈B

∑
j∈V

∑
k∈O

(kcij + Si −Aj)xijk +
∑
i∈B

∑
j∈V

∑
k∈O

kyijk (3.7)

Chapter 3: Berth Allocation Problems 22

s. to ∑
i∈B

∑
k∈O

xijk = 1 ∀j ∈ V, (3.8)

∑
i∈B

∑
k∈O

xijk ≤ 1 ∀i ∈ B, k ∈ O, (3.9)

∑
l∈V

∑
m∈Pk

(cilxilm + yilm) + yijk − (Aj − Si)xijk ≥ 0 ∀i ∈ B, j ∈Wi, k ∈ O, (3.10)

xijk ∈ {0, 1} ∀i ∈ B, j ∈ V, k ∈ O, (3.11)

yijk ≥ 0 ∀i ∈ B, j ∈ V, k ∈ O. (3.12)

where Pk = {m ∈ O : m > k} (Pk is the set that includes the indexes m which are bigger

than index k) and Wi = {j ∈ V : Aj > Si} (Wi is the set that includes the ships which

have arriving time greater than the starting time of berth i).

An example for the problem instance can be seen in Table 3.1.

Total completion time of all the ships that are scheduled at berth i can be found from

the equation below (3.13): ∑
j∈V

∑
k∈O

[(kcij + Si −Aj)xijk + kyijk]. (3.13)

An arriving ship may have to wait when Aj < Si (for j=1 in Figure 3.2) or the berth

is occupied (for j=2 in Figure 3.2), which is denoted by Wj in Figure 3.2 or because a ship

with a short handling time will be arriving soon. If the berth is unoccupied, an arriving

ship may be handled immediately. An idle period (denoted by I in Figure 3.2 for ship 3

and may be equal to 0) for the berth occured which immediately precedes the handling of

the ship. The total completion time of the ships handled at berth i is given by 3.13 and

shown by the shaded area in Figure 3.2. This equation can be explained as follows:

Let

j∗i (k) = j ∈ V |xijk = 1, (3.14)

which denotes the index of the ships handled in the kth last position at berth i for k=1,

2,..., Ti. Furthermore, let Oi = 1, 2,..., Ti, where Ti is the number of ships scheduled at

Chapter 3: Berth Allocation Problems 23

Table 3.1: An Example for 10 Berths - 20 Ships DBAP Instances

Berths 1 2 3 4 5 6 7 8 9 10

Si 203 203 203 203 203 203 203 203 203 203

Ships Aj Handling Times (cij)

1 143 56 56 94 114 105 115 116 110 109 99

2 129 81 64 116 99 115 72 71 58 92 108

3 14 65 67 90 103 114 88 55 81 50 99

4 212 51 98 76 101 66 82 52 110 95 59

5 231 91 88 88 83 101 99 52 69 70 109

6 14 87 55 68 72 109 87 73 100 70 65

7 116 53 97 93 63 65 88 112 94 64 88

8 42 108 66 74 104 92 77 56 73 85 67

9 170 94 77 56 111 85 63 105 68 62 94

10 102 55 72 63 84 81 51 81 5 60 58

11 152 95 84 84 103 111 62 55 4 114 80

12 111 91 84 63 89 83 52 104 112 56 86

...

...

...

19 110 86 70 65 80 85 76 112 86 112 89

20 70 60 115 68 101 115 89 78 63 81 114

Si is starting time of berth i and, Aj is arrival time of ship j.

berth i, for all i ∈ B. Sum of the waiting times of the ships that arrive before Si until berth

i become available, where Wi = {j ∈ V : Aj > Si} is given in equation (3.15):

∑
k∈Oi

∑
j∗i (k)∈V/Wi

(Si −Aj∗i (k)). (3.15)

This sum is shown by the shaded rectangles to the left of the vertical line passing through

Si = 0 in Figure 3.2. The sum of the difference between departure time and Si for all ships

handled at berth i, which involves waiting, handling, idle and those periods before a ship

arrives, is given by the equation (3.16):

Chapter 3: Berth Allocation Problems 24

Figure 3.2: Example of handling ship at berth i for DBAP: A1=-1, A2=2, A3=12, A4=16,
W1=1, H1=4, W2=2, H2=6, W3=0, H3=6, W4=2, H4=2, TCT=23.

∑
k∈Oi

∑
j∗i (k)∈V

(dj∗i (k) − Si), (3.16)

where dj∗i (k) stands for the departure time of ship j which is scheduled at position k of the

berth i. This departure time is the end of the each Hj period that defines the handling

time of ship j which are presented in Figure 3.2. Equation 3.16 corresponds to the sum of

the areas between the end of Hj ’s (i.e., dj∗i (k)) and the right of Si = 0 for each ship j. If

these areas are partitioned into rectangles, we see that Equation (3.16) is equal to Equation

(3.17) below:

∑
k∈Oi

k(yij∗i (k)k + cij∗i (k)). (3.17)

An estimation of the total completion time is found by summing (3.15) and (3.17) when

ships with j ∈W i arrive after Si. A correction amount which is given by

∑
k∈Oi

(Aj∗i (k) − Si) (3.18)

must be subtracted from this sum. This gives the area bounded by the vertical line through

Si, the abscissae axis and a staircase line immediately below and to the right of the shaded

Chapter 3: Berth Allocation Problems 25

rectangles corresponds to the handling a ship at berth i in Figure 3.2. Therefore, the sum

will give

∑
k∈Oi

∑
j∈V

(Si −Aj∗i (k)) + k(yij∗i (k)k + cij∗i (k)), (3.19)

which is the same as (3.13) when the decision variables are known (fixed).

Minimizing the total service time of the ship also refers to the minimization of the total

delay in ships’ departure time when the weight is not taken into account. Corresponding

theorem and its proof is given below [22]:

Theorem 1. The minimization of the total service time results in minimization of the total

delay time for DBAP.

Proof. Delay of ship j is given by dj which is defined by equation below:

dj = fj − Fj (3.20)

where Fj is the planned departure time and fj is the completion time (actual departure

time) of handling ship j.

Therefore, if we sum these delays over all ships, total delay (TD) can be interpreted as:

TD =
∑
j∈V

dj =
∑
j∈V

fj − Fj =
∑
j∈V

fj −
∑
j∈V

Fj . (3.21)

When the ship is handled at the best berth (i.e., the berth that has the minimum

handling time among others) as soon as it arrives at the container terminal, Fj can be

found by the equation below (3.22):

Fj = Aj + min
i
cij . (3.22)

Since the total service time (TST) is determined as the sum of the service times of all

ships, it is found by summing the difference of the completion time and the arrival time of

the ship which can be seen in the folllowing equation (3.23):

TST =
∑
j∈V

(fj −Aj) =
∑
j∈V

fj −
∑
j∈V

Aj . (3.23)

Chapter 3: Berth Allocation Problems 26

If we consider equations (3.22) and (3.23) together, we have

TST =
∑
j∈V

fj −
∑
j∈V

Aj = TD +
∑
j∈V

Fj −
∑
j∈V

Aj (3.24)

As
∑

j∈V Fj −
∑

j∈V Aj =
∑

j∈V mini cij is constant for ships in set V , TST is propor-

tional to TD. �

If different weights are assigned to the ships, minimization of the TST does not lead to

minimization of TD time. This claim can be confirmed by a simple example given in Figure

3.3. Service times (ST) indicates the sum of waiting time and handling time, D-1 is the

name of the case where all ships have the same weight that equals to 1, D-2 is the name

of the case where ship A and ship B have different delay of departure weights. Weights of

departure delay for ship A is 3, and 1 for ship B for the case D-2 for two different schedules

on one berth as given in Table 3.2. Ship A and B have arriving times as 1 p.m. and 2 p.m,

and handling times as 10 hours and 4 hours, respectively. There are two possible schedules

for one berth and two ships case. In schedule 1, ship A is scheduled first and ship B is next

and in schedule 2, ship B is scheduled first and ship A is next. These schedules have total

service times 23 and 19 hours, respectively. If all the weights are 1, the weighted delay for

both schedules are 9 and 5 hours, respectively (see Delay of departure D-1 column in Table

3.2). However, if these ships have different weights (i.e., 3 for ship A and 1 for ship B), the

weighted delays turn out to be 9 and 15 hours, respectively (see Delay of departure D-2

column in Table 3.2). Therefore, this example proves that if the ships have different weights

for departure delays, there will be no proportional relation between TST and TD any more.

A new constraint set (3.10) is added to SBAP to identify idle periods at berth i in DBAP.

When kth ship to be handled arrives, the time during which berth i has been available is

Aj∗i (k) − Si (3.25)

and it has been used or idle until the departure of the ship handled at the (k + 1)st last

position, for a time of 0 if k = Ti and

∑
m∈Oi,m>k

(yij∗i (m)m + cij∗i (m)) (3.26)

otherwise.

Chapter 3: Berth Allocation Problems 27

Figure 3.3: Service time and delay of departure for ships A and B

After the decision variables have been fixed, subtracting 3.26 from 3.25 corresponds to

constraint set 3.10 on the length yijk of the idle period before handling the kth last ship.

The size of the DBAP rapidly increases with the number of berths and ships considered.

Size of a problem can be identified with the number of the existing variables and constraints.

There are IJT = |B| |V | |O| binary variables xijk and as many continuous variables yijk, J

of constraint set (3.8), IT of constraint set (3.9) and IJT of constraint set (3.10). IJT =

|B| |V | |O| gives an upper bound for the number of constraints in Constraint set (3.10)

because some j ∈ V/Wi for some i and then no idle time yijk occurs. For example, for a

realistic case used in [19], there are 25,000 0-1 binary variables, 25,000 continuous variables,

50 constraints of type (3.8), 500 constraints of type (3.9) and 25,000 constraints of type

(3.10). Such numbers are very large for a MIP, even if constraints (3.8) and (3.9) are

multiple-choice ones.

Chapter 3: Berth Allocation Problems 28

Table 3.2: Example to show TD and TST are not proportional if ships have different weights
for departure delays. Service Time (ST), delay of departure (D-1) (all weights=1), delay of
departure (D-2) (ship A’s weight=3, ship B’s weight=1)

ST Delay of departure (D-1) Delay of departure (D-2)

Schedule 1 Ship A 10 0 0

Ship B 13 9 9

Total 23 9 9

Schedule 2 Ship A 4 0 0

Ship B 15 5 15

Total 23 5 15

In [1], DBAP is modeled as a variant of Multiple Depot Vehicle Routing Problem with

Time Windows (MDVRPTW). In this model the ships are formulated as the customers,

and the berths as the depots where one vehicle is located. They authors construct a tabu

search heuristic on MDVRPTW formulation of DBAP. This heuristic always yields optimal

solutions for small instances and it outperforms CPLEX solution for larger instances however

the problem with 10 berths and 35 ships is the largest instance they have tried. It can be

observed that the efficiency of tabu search decreases as problem instance size increases.

Although tabu search algorithm is a good solution tool compared to CPLEX, it is not

enough for larger problem instances in terms of solution quality. In [21], a genetic algorithm

(GA) is developed for DBAP with simultaneous service in the public berth system for a

container terminal. They first solved DBAP without simultaneous service to compare with

the Lagrangian relaxation-based heuristic (LR) given in [19]. Although run time is good

for small size problem instances, there is still a 10% optimality gap and this gap increases

to 20% for larger instances and becomes closer to the LR. As a result of our calculations

and the results of the studies given above, size of the DBAP gets more problematic when

the problem instance is larger than 10 berths-35 ships. In fact, exact solution for some of

the large instances of DBAP become unsolvable due to the memory errors related with the

huge size of the branch-and-bound tree. In this thesis, CG algorithm is proposed for DBAP

in order to overcome this memory problem without sacrificing from the solution quality

by decomposing it into master and subproblems. Application of column CG to DBAP is

Chapter 3: Berth Allocation Problems 29

explained in Chapter 4.

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 30

Chapter 4

COLUMN GENERATION APPROACH FOR DYNAMIC BERTH

ALLOCATION PROBLEM

CG is a good approach for those problems where the size of the MIP model grows

immensely as a result of dealing with all the variables explicitly. CG generates only those

variables which has the potential to improve the objective function. These variables, which

have negative reduced costs, are determined by the subproblem (pricing problem). If the

generated variable has nonnegative reduced cost, it is not considered as a new variable for

the rest of the algorithm.

Structure of BAPs are similar to parallel machine scheduling problems in such a manner

that jobs are scheduled to machines in parallel machine scheduling problems as ships are

scheduled to berths in BAP. In fact, DBAP is the same with R|rj |
∑
Cj which is unre-

lated parallel machine scheduling to minimize the total completion times of the jobs with

arbitrary release dates (i.e., constraints and variables have almost the same role in problem

formulation). In R|rj |
∑
Cj , jobs have different processing times for each machine as ships

have different handling times for each berth in DBAP. Moreover, R|rj |
∑
Cj deals with the

jobs that have release dates similar to the arrival times of the ships considered in DBAP.

Finally, the objective function of R|rj |
∑
Cj minimizes the total completion time of the jobs

and the objective function of DBAP minimizes the total service times of the ships.

CG algorithm is applied to P ||
∑
Cj problem which is identical parallel machine schedul-

ing to minimize the total completion times of the jobs without considering release dates ([49]

and [50]). This problem needs less computational effort than R|rj |
∑
Cj because P ||

∑
Cj

deals with the jobs that do not have release dates. In addition to this, jobs have the same

processing times among the machines because all the machines have the same properties

that affect the processing time of the jobs (i.e., identical machines). In this thesis, we

implemented CG algorithm to solve DBAP which is described in Section 2.1, and which

is computationally more difficult than R|rj |
∑
Cj . CG algorithm is a decomposition algo-

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 31

rithm as mentioned in Section 2.2. In order to use this decomposition algorithm, we first

formulate DBAP as an integer program, and then reformulate this integer program as a

set partitioning problem. CG algorithm needs initial partial schedules formed by a subset

of ships for each berth. These partial schedules must satisfy the constraints of the master

problem so, the initial solution given to the CG algorithm must be a feasible solution. This

initial feasible solution is found by a simple heuristic in a negligible time. Details of the

initial feasible solution procedure will be given in Section 4.4. We split the DBAP into

two problems: the master problem and the subproblem (pricing problem). The master

problem is the original problem with only a subset of variables being considered and the

subproblem is a new problem created to identify a new variable. The objective function

of the subproblem is the reduced cost of the new variable (column) with respect to the

current dual variables, and the new column should satisfy the constraints of DBAP. More

detailed explanation of the master problem and the subproblem are provided in Section 4.1

and Section 4.2, respectively.

4.1 The Master Problem

All assumptions made in DBAP model in Section 3.1 remain the same and the new assump-

tions for the master problem are introduced as follows:

(g) All berths have a feasible column set Di indexed by Di =1, 2,..., di.

(h) Variable zd
i denotes dth column of berth i and if this variable is 1, cost of rid is incurred

for column d=1, 2,...,Di of berth i=1,2,...,I.

(i) Columns have T number of components for the ships denoted by zd
i = {zd

i1, z
d
i2, ..., z

d
iT }.

If it is decided to schedule ship t at berth i in column d, zd
it component of column d is 1,

otherwise it is 0.

Only variable introduced to the master problem decides whether the associated column

(schedule) is selected for the berth that is considered, or not. Description of this decision

variable can be seen below:

zd
i =

 1 if column d ∈ Di is chosen for berth i,

0 otherwise.

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 32

Formulation of the master problem is given as follows:

(Master Problem Model)

Minimize
∑
i∈B

∑
d∈Di

zd
i rid (4.1)

s.t.

∑
d∈Di

zd
i = 1 ∀i ∈ B, (4.2)

∑
i∈B

∑
d∈Di

zd
itz

d
i = 1 ∀t ∈ V, (4.3)

zd
i ∈ {0, 1} ∀i ∈ B, d ∈ Di. (4.4)

Constraint sets (4.2) and (4.3) correspond to the original constraint sets (3.8) and (3.9)

respectively. These constraints dictates that each ship is covered by exactly one feasible

schedule and each berth is occupied by exactly one feasible schedule, respectively. In order

to get the corresponding dual variables of the constraints of the Restricted Master Problem

(RMP), the linear relaxation of the RMP (i.e., by defining zd
i as continuous variables) is

solved in each iteration with the existing columns. After this solution, dual variables of the

constraint sets (4.2) and (4.3) are passed to the pricing problem which are given as follows:

αi = Dual variable that is associated with the constraint i of constraint set (4.2).

λj = Dual variable that is associated with the constraint j of constraint set (4.3).

Every berth and every ship has its associated dual variable (i.e., αi’s are used for the berths

and λj ’s are used for the ships). These dual variables will help to find new partial schedules

by solving the subproblems (pricing) for each berth one by one.

4.2 The Pricing Problem (Subproblem)

The goal of the subproblem is to find the column (schedule) with the minimum reduced cost

for the associated berth to be added to the RMP. Since DBAP has berths that have different

starting times (Si) and different handling times for the ships (cij). A schedule which is

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 33

optimal for one berth may not be optimal for any other berth, hence the subproblem should

be solved for each berth separately.

Only difference between the variables defined in the DBAP and in the subproblem is

that one index of the variables of the subproblem are dropped off compared to the ones

in the DBAP. Since we solve the subproblem for each berth, the index used for berths in

variables xijk and yijk of DBAP are not necessary any more for the subproblem formulation.

Number of the constraints defined for berths in DBAP is also decreased (3.9 and 3.10). These

differences lessen the computational requirements of the DBAP formulation enormously so

the resulting subproblem formulation is much easier in terms of finding the optimal solution.

New variable associated with the variable xijk of DBAP is introduced as follows:

ajk =

 1 if ship j is scheduled in position k,

0 otherwise.

This variable is necessray to find whether ship j is scheduled at the associated berth in

position k or not. It can be easily realized that this variable corresponds to an element of

the columns generated for the RMP. Any element of variable zd
i of master problem indicates

whether the corresponding ship t is included in schedule d of berth i or not by zd
it. Thus,

the value of the variable ajk is turned into zd
it by changing index j into t and, ignoring the k

index. Index d is set automatically by the program to denote a schedule by calculating the

number of columns added for each berth individually. If the last column added for berth

i has column number n for index d, the next column generated for this berth should have

column number n+ 1 for index d.

Next, the continuous variable wjk is defined to find the idle period before the arrival of

ship j that will be scheduled at position k.

wjk = the length of the idle period before the arrival of ship j that will be scheduled at

position k.

This variable is not valid if there is no such ship scheduled at position k. Then, this variable

is either 0 or positive if there is an idle period before the arrival of the ship that will be

scheduled at position k. Reduced cost of schedule d for berth i can be found by the equation

given below:

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 34

r
′
id = rid −

∑
j∈V

∑
k∈O

λjajk − αi, (4.5)

where αi=α1,...αB are the given value of the dual variable corresponding to constraint set

(4.2) and λj=λ1,..., λT are the given values of the dual variables corresponding to constraint

set (4.3). To test whether the current solution is optimal, we determine whether there exists

a berth schedule d ∈ Di with negative reduced cost for all of the berths independently or

not. Thus, pricing problem is solved for finding the berth schedule in Di with minimum

reduced cost. Therefore, we essentially have to minimize

rid −
∑
j∈V

∑
k∈O

λjajk − αi =
∑
j∈V

∑
k∈O

(kcij + Si −Aj − λj)ajk +
∑
j∈V

∑
k∈O

kwjk − αi (4.6)

subject to the adopted versions of constraint sets 3.9 and 3.10. As a result, subproblem is

given by equations 4.7 - 4.11 as follows:

(Subproblem Model for bert i)

Minimize
∑
j∈V

∑
k∈O

(kcij + Si −Aj − λj)ajk +
∑
j∈V

∑
k∈O

kwjk − αi (4.7)

s.t. ∑
k∈O

ajk ≤ 1 ∀j ∈ V, (4.8)

∑
l∈V

∑
m∈Pk

(cilalm + wlm) + wjk − (Aj − Si)ajk ≥ 0 ∀j ∈Wi, k ∈ O, (4.9)

ajk ∈ {0, 1} ∀j ∈ V, k ∈ O, (4.10)

wjk ≥ 0 ∀j ∈ V, k ∈ O. (4.11)

The subproblem model needs to be solved I (number of berths) times, one time for

each berth separately at each iteration. If this problem has berths that are identical, the

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 35

CG algorithm can be terminated when the reduced cost obtained from the subproblem is

nonnegative (i.e., there is no candidate schedule to improve the objective function of the

master problem). When this condition holds, the RMP is turned into the master problem

that includes all necessary schedules as there exist no more candidate columns left to be

added to column set D. This master problem is solved as a MIP to find an integer feasible

solution. Since DBAP has nonidentical berths, subproblems associated with each berth

give different optimal schedules with different reduced costs at each iteration. Therefore,

iterations cannot be terminated by the common stopping criterion that looks whether there

exists a schedule with negative reduced cost or not. Details of the CG algorithm will be

explained in Section 4.4.

4.3 Relation of the Master Problem and the Pricing Problem

Relation of the master problem and the pricing problem is explained in Sections 4.1 and 4.2.

In this section, economical interpretation of the dual variables that come from constraints

of the master problem and their contribution to find a potentially improving column will be

given to clarify the relationship between the master problem and the pricing problem. In

order to understand the relation of the master and the subproblem, one should start from

the calculation of the reduced cost of the new schedule that is found from the solution of

the subproblem. This reduced cost calculation which is also given in Section 4.2 can be seen

below.

r
′
id = rid −

∑
j∈V

∑
k∈O

λjajk − αi, (4.12)

The equation given above gives the reduced cost of schedule d for berth i where rid is the

cost of schedule d for berth i. Aim of minimizing the reduced cost of the new schedule is to

find a new schedule that has a negative reduced cost so as to improve the objective function

of the master problem. Correspondingly, improving the objective function of the master

problem means improving the objective functon of the original DBAP.

The question here is how the reduced cost of the new schedule is found. Solving the linear

relaxation of the master problem gives dual variables for each berth and each ship which are

λj and αi correspondingly. Economical interpretatons of these variables can be explained

as follows;

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 36

λj = the cost or benefit of adding one unit of ship j to the schedule considered.

αi = the cost or benefit of adding one unit of berth i to the schedule considered.

These are the general interpretations of the dual variables. Interpretations of these variables

should be given by considering the properties of the DBAP to make them more understand-

able. Therefore, interpretation of the λj is given below as;

λj = the cost or benefit of scheduling ship j at the corresponding berth.

For example, if the pricing problem of berth i is considered and ship j is scheduled at that

berth i, one of the binary variables ajk become 1 for one order k. This means corresponding

λj value of the ship j is subtracted from the cost of the schedule by the
∑

j∈V

∑
k∈O λjajk

part of the reduced cost equation. Cost of scheduling ship j at berth i is calculated in rid

part of the reduced cost by considering order of the ship in new schedule and subtracting∑
j∈V

∑
k∈O λjajk from rid gives the reduced cost of scheduling ship j at berth i.

In addition to λj , interpretation of αi is given below as;

αi = the cost or benefit of using berth i for the new schedule.

Since new schedules are found berth by berth, αi is just subtracted from the objective func-

tion of the subproblem of berth i. This means that it just affects the objective function

value of berth i. Since αi is not multiplied with any other decision variable of the pricing

problem, we are sure to subtract this value from the cost of the new schedule to find the

reduced cost of the new schedule. Since αi is subtracted from all of the possible schedules,

value of this dual variable does not affect the optimal solution of the pricing problem by

means of finding the new schedule. Therefore, αi is just used to find the real reduced cost

of the new schedule.

As a result, when a new schedule with negative reduced cost is found, it is added to the

master problem as a new column and master problem is solved after solving the pricing

problem for all berths. After the solution of the master problem, new dual variables are

taken from the constraints and they are passed to the new pricing problems of the berths.

This process goes on like this until no more schedules with negative reduced cost exists.

4.4 The Algorithm

As explained in Chapter 4, the CG algorithm needs an initial feasible solution to obtain

dual variables of the linear relaxation of RMP. A simple heuristic algorithm is used to find

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 37

this initial feasible solution in a negligible time. This algorithm sorts the ships and berths

in increasing order of their arriving times and starting times. After that, it schedules first

ship to the first berth, second ship to the second berth and when it comes to the end of the

berths, it starts from the first berth to schedule the remaining ships. Cost of this schedule

is calculated and kept as best schedule on hand. Then, the algorithm chooses 2 random

ships among 2 random berths and swaps them for a predetermined iteration number. If

the schedule obtained from this swap has smaller objective function value than that of the

best schedule, the algorithm changes best schedule to the schedule obtained from the swap

operation. Outline of this simple algorithm is given by Algorithm 1.

After the execution of this heuristic algorithm, we get a feasible solution for the DBAP.

This feasible solution should be turned into the column structure to be added to the RMP.

The solution taken from Algorithm 1 gives the schedule of all berths and the costs of these

schedules. An example for solution of a 10 berths - 20 ships instance can be seen in Table

4.1. The numbers in Table 4.1 indicate the order of the corresponding ship in schedule of

the corresponding berth. For example, entry 3 given at the first column for ship 4 means

that ship 4 is scheduled at berth 1 in order (position) 3 (i.e., ship 4 is the 3rd ship to be

handled at berth 1).

Actually, the column structure is an array of size equal to the number of ships in the

problem instance so column size is 20 for this example problem instance. Since berths are

not identical, there exist different optimal schedules (i.e., equal to the number of berths in

the problem instance) for different berths in a feasible solution. These columns consist of

just 0’s and 1’s such that, 0 indicates that the corresponding ship is not scheduled at the

associated berth and 1 indicates that the corresponding ship is scheduled at the associated

berth which the schedule is belonging to. Each optimal schedule is a new column for the

RMP. The column representation of the initial feasible solution given in Table 4.1 can be

seen in Table 4.2.

Information given in Table 4.2 is the only information provided to the RMP for the

initiation of the CG algorithm. Order of the ships scheduled at one berth cannot be realized

from the columns passed to the RMP but costs of the columns are calculated according to

the orders of the ships. Influence of the order of the ships is reflected to the objective

function of the RMP by adding the column with the cost of that schedule. Moreover,

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 38

Algorithm 1 Heuristic Approach for Initial Solution of DBAP
Sort ships in increasing order of their arrival times and store it in OrderShip

Sort berths in increasing order of their starting times and store it in OrderBerth

kmax← 15

kmin← 1

maxIter ← 10

iter ← 0

i← 0

k ← 1

for j = 1 to NoOfShips do

if i ≥ NoOfBerths then

k ← k + 1

i← 1

else

i← i+ 1

end if

ii← OrderBerth[i]

x[ii][k]← OrderShip[j]

end for

fbest← CostOfTheInitialSchedule

while iter < maxIter do

iter ← iter + 1

kcur ← kmin

while kcur ≤ kmax do

Choose 2 random berths and 2 random ships, then swap the positions of the ships

fs← CostOfTheNewSchedule

if fs < fbest then

fbest← fs

kcur ← kmin

else

kcur ← kcur + 1

end if

end while

end while

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 39

order information of the ships can be obtained from the variables ajk of the corresponding

subproblem of the column which are introduced in Section 4.2. Therefore, there is no need

to complicate the RMP by introducing a new variable or a new index that contains the

order of the ships.

An example for the columns generated can be provided by using the information given

in Table 4.2. First columns of the berths added to the master problem can be represented as

below (only the zd
ij elements of the columns that have value 1 is represented, other elements

of the columns have value 0):

z1
1 = 1(z1

11), ..., 1(z1
14), ..., 1(z1

1,20); with the objective function coefficient r11 = 523

z1
2 = ..., 1(z1

22), ..., 1(z1
26), ...; with the objective function coefficient r21 = 437

z1
3 = ..., 1(z1

38), ...; with the objective function coefficient r31 = 235

z1
4 = ..., 1(z1

47), ..., 1(z1
4,19), ...; with the objective function coefficient r41 = 386

z1
5 = ..., 1(z1

5,15), ..., 1(z1
5,18), ...; with the objective function coefficient r51 = 448

z1
6 = ..., 1(z1

6,13), ..., 1(z1
6,17), ...; with the objective function coefficient r61 = 341

z1
7 = ..., 1(z1

73), ..., 1(z1
7,11), ...; with the objective function coefficient r71 = 405

z1
8 = ..., 1(z1

85), ..., 1(z1
8,14), ...; with the objective function coefficient r81 = 253

z1
9 = ..., 1(z1

99), ..., 1(z1
9,12), ...; with the objective function coefficient r91 = 299

z1
10 = ..., 1(z1

10,10), ..., 1(z1
10,16), ...; with the objective function coefficient r10,1 = 425

These columns are added to the master problem and its linear relaxation is solved for

only those columns at the first iteration. New dual variables are obtained from the solution

of the RMP at every iteration that is solved with the updated column set D. That is

why the master problem is called the restricted master problem. In most of the cases, CG

algorithms terminate if there exists no column with negative reduced cost which means that

the objective function of the subproblem is nonnegative as indicated at the beginning of

the Chapter 4. We have different subproblems at the end of each iteration because of the

parameters that depend on the dual variables of the previous RMP (i.e., λj and αi).

The CG algorithm is presented in Algorithm 2 and CG can be explained as follows. We

define two decision criteria before the execution of the algorithm which are given as NearZero

and NumOfIterWithoutImp. NearZero is a small negative number which is determined to

decide whether the column obtained from the subproblem should be added to the RMP or

not. If the column has a reduced cost smaller than NearZero, it is decided to be added to

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 40

the RMP. NumOfIterWithoutImp is determined to decide whether to stop the algorithm or

not. If the objective function value of the RMP does not change for NumOfIterWithoutImp

sequential iterations, algorithm is terminated. This control criterion is used to avoid the

tailing-off effect. In this algorithm, the relaxation of the RMP is solved for the columns

obtained from the initial feasible solution. Dual variables for each berth and each ship

are passed from the RMP to the subproblem. Subproblem is solved exactly for each berth

and a column (i.e., schedule) is obtained for the corresponding berth. If the objective

function of the subproblem (i.e., reduced cost of the new column) is smaller than NearZero,

it is added to the RMP, otherwise it is not. After the execution of the subproblems, the

relaxation of the RMP is solved for the columns on hand. This process goes on like this and

NumOfIterWithoutImp is updated at each iteration if the objective function value of the

RMP does not improve. If an improvement is observed in this value, NumOfIterWithoutImp

is set to zero. When NumOfIterWithoutImp is reached to a predetermined number (i.e.,

maximum number of iterations without improvement (MaxNumOfIterWithoutImp)), the

algorithm is terminated and RMP is solved as a MIP and an integer solution is found as a

final solution.

Termination criterion of CG can be modified as if there exists no columns with negative

reduced cost for all subproblems (berths), terminate the CG. We tried this stopping criterion

for our CG algorithm but we have faced the most common drawback of the CG algorithm

which is the tailing-off effect. Simplex-based CG is known for its poor convergence as

stated in [42]. While usually a near optimal solution is attained considerably fast, only a

little progress per iteration is made when algorithm gets close to the optimal solution. There

can be another case where the CG algorithm does not improve the solution for prominent

amount of iterations since the optimal solution is already found in previous iterations. The

CG algorithm does not terminate since it continues to find columns with negative reduced

cost for some or all berths. The solution obtained may also be a degenerate solution and it is

time consuming to prove optimality of a degenerate optimal solution. When the behaviour

of the CG algorithm displayed figuratively, a long tail is observed for the values of the best

solution of each iteration at hand by [51]. Moreover, performing the CG algorithm until no

more column with negative reduced cost can be found by all of the subproblems may result

in tailing-off effect due to the slow convergence of the CG algorithm. Subproblems need long

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 41

iterations to reach nonnegative objective function values (i.e., reduced costs for generated

columns) however, the CG algorithm may achieve the optimal solution long before the

subproblems reach nonnegative objective function values. This situation is shown in Figure

4.1 for a 5 berths - 40 ships instance which has an optimal objective function value as 24,875.

Figure 4.1: Slow convergence of CG algorithm (tailing-off effect) for a 5 berths - 40 ships
instance that has an optimal objective function value as 24875.

The so-called long tail is observed in Figure 4.1 as a result of repeating objective function

value at hand between iterations 130 and 310, which is the optimal objective function value.

Although the optimal objective function value is obtained at iteration 130, CG algorithm

did not terminate since it did not ensure the stopping criterion which is described as finding

no more columns with negative objective function values. Following similar observations, we

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 42

come up with a decision about changing the stopping criterion to improve the computation

times of the CG algorithm without sacrificing the solution quality. Thus, we used number

of iterations without improvement in objective function value of the master problem as a

stopping criterion. Different values for this stopping criterion are used for different problem

instances according to the difficulty in finding the optimal solution of the problem instance.

This algorithm needs to solve subproblem for each berth (number of berths times) exactly

at each iteration. If algorithm needs NumIter iterations to terminate, subproblem must

be solved NumIter × BerthNo exactly until the CG algorithm terminates. When the

problem instances get larger and harder, it gets difficult to find the optimal solution for the

subproblems. This means that the CG algorithm requires more computational effort for

the larger and harder problem instances. Computational results for the CG algorithm are

given in Section 4.5.3. When we analyzed the results of the CG algorithm, we still observe

the long computation times, especially for the harder instances.

The data used have different difficulty levels for same group instances (i.e., they have

same number of berths and ships as described in Section 4.5.1). This difficulty levels are

labeled by taking 1/2, 3/5, 5/8 and 7/8 of the time between the arrivals of the first and the

last ships for the availability times of the berths (starting times Si). Instances that have the

ratio 1/2 for the starting times of the berths are the most difficult instances and we have

3 different instances for the same difficulty level. Thus, there are 12 different instances for

same number of berths and ships.

The effect of this different difficulty levels can be seen in subproblems because the starting

times of the berths and the arrival times of the ships are employed only in the subproblems.

Moreover, since the linear relaxation of the RMP is solved at each iteration, most of the

elapsed time is spent for solving the subproblems. Therefore, we decided to apply a heuristic

algorithm to the subproblems for decreasing the computation time of the CG algorithm.

This heuristic algorithm is a local search heuristic and we used the solution that come from

the assignment problem as the initial solution for the local search heuristic. Subproblem

of the CG algorithm is developed as an assignment problem by ignoring the constraint set

(4.9) and changing the objective function as minimizing;

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 43

∑
j∈V

∑
k∈O

(kcij + Si −Aj)ajk −
∑
j∈V

∑
k∈O

λjajk − αi. (4.13)

Eventually, the assignment problem with objective function 4.13 and constraint sets

(4.8), (4.10) and (4.11) is solved and a local search algorithm is performed for its solution.

The CG approach with the heuristic applied for the subproblem is given in Algorithm 3.

Moreover, a flow chart of the Algorithm 3 can be seen in Figure 4.2. Since the CG algorithm

cannot guarantee the optimality with a heuristic approach, subproblems are solved exactly

when heuristic cannot find a schedule with negative reduced cost. Hence, the CG algorithm

should be terminated when none of the subproblems find a column with negative reduced

cost at any iteration.

The reason why we use both heuristic and exact solution for subproblem is to prevent

stucking in a local optimal solution. This algorithm ensures that if the columns generated

by heuristic algorithm cannot improve objective function value of the RMP (Maximum

Number of Iterations Without Improvement - Max Number of Exact Subproblem Iterations)

iterations consecutively, the algorithm changes subproblem solution procedure to exact so-

lution for at most Max Number of Exact Subproblem Iterations exact iterations as can be

seen in Algorithm 3. If the columns generated by the exact procedure can improve the

objective function value of the RMP, subproblems continue to be solved by the heuristic

procedure until Maximum Number of Iterations Without Improvement consecutive itera-

tions are recorded with the same objective function value. If an improvement cannot be

achieved through Max Number of Exact Subproblem Iterations iterations, the algorithm

terminates with the current best integer solution by solving the RMP as a MIP. Param-

eters such as Maximum Number of Iterations Without Improvement and Max Number of

Exact Subproblem Iterations can be tuned according to the behaviour of the instance that

is considered to be solved. For example if the problem has a tendency to stuck in local

optimal solution for long iterations, Max Number of Exact Subproblem Iterations should be

increased to find a solution with good quality.

We achieved better computation times for DBAP instances by Algorithm 3 without sac-

rificing the solution quality. Results and comparisons of this algorithm with the Algorithm

2 and other algorithms provided for DBAP in the literature are given in Section 4.5.3.

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 44

4.5 Implementation Details

4.5.1 Test Problems

We tested the proposed CG approach for the DBAP by using the data from the literature.

We report the computational results for medium and large size instances of DBAP which are

given in [14]. These test data are generated according to the procedure given in [19]. [14] also

presented a Variable Neighborhood Search (VNS) algorithm and compared the performance

of VNS with a Genetic Algorithm proposed in [21], Multi-Start Variable Neighborhood

Descent (MVDN) and Memetic Search Algorithm (MA) which is the extension of the GA.

Problem instances used in this study can be summarized as follows:

• Number of berths, |B|= 5, 10.

• Number of ships, |V | = 35, 40, 45, 50.

• Arrival times of the ships, Aj , are from a uniform distribution in the range of

[1, (7000/60)(|V | / |B|)].

• Handling times, cij =(2*uij + 1.5)* 2000/60, where uij is a random number from the

uniform distribution between 0 and 1.

• Availability times of the berths, Si = 1/2, 3/5, 5/8, 7/8, of the arrival time interval

between the arrivals of the first and the last ships.

Three problem instances for each combination of the data above are generated. There-

fore, there are twelve problem instances for each berth-ship combination. Si = 1/2, 3/5, 5/8, 7/8

gives the difficulty level of the problem sets where 1/2 indicates the most difficult one and

7/8 indicates the easiest level. The reason why the small number of ships, such as 10, 15,

20, and 25 are not used in this study is that the VNS, the CG and the exact algorithms all

result in short computational times. In addition to this, they all give the optimal solution

for these instances so that a comparison is not meaningful for these instances.

4.5.2 Computational Platform

Computational experiments are performed on an Intel(R) computer with Xeon(R) CPU

3.00 GHz, 4.00 GB of RAM. We report the total elapsed times, not the CPU time for

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 45

each instance. We have used ILOG CPLEX version 11.0 [52]. Mixed integer and primal

simplex optimizers of CPLEX are used to solve MIP and LP relaxations respectively. The

CG heuristic algorithm and the exact method are implemented with C++ API of ILOG

CPLEX Concert Technology with Microsoft Visual Studio 2005.

4.5.3 Computational Results

Performance of the CG heuristic algorithm and the heuristic CG heuristic algorithm have

been tested on 84 problem instances which can be assumed as medium and large size prob-

lem instances of DBAP. These problem instances can be named by the number of berths

and the number of ships in the problem. Since there are four difficulty levels for each berth-

ship combination and three problem instances for each difficulty level, difficulty level and

order of the problem instance in that difficulty level should also be included in the name of

the problem instances. As an example, DBAP-10B-50S-1/2-1 refers to the DBAP problem

instances comprised of 10 berths, 50 ships, first difficulty level (i.e., 1/2). Since a difficulty

level includes three different problem instances of the same difficulty (i.e., availability (start-

ing) times of the berths are computed with the same ratio), the number 1 at the end of the

problem instance name corresponds to the first problem instance of the difficulty level 1/2.

In our computational experiment, we compare a heuristic method (VNS) from the lit-

erature, a hybrid approach (the proposed CG heuristic algorithm) and an exact method

(CPLEX solution). Even though we have the same data with [14] where the results of VNS

and the exact algorithm were given, it is not fair to compare the run times due to different

computational platforms. For this reason, we implemented an exact method on the same

computational platform with our CG heuristic algorithm. VNS computation times are the

results that are taken from [14]. Since they provided the average of the computation times,

we use the same run times for the instances that have the same number of berths, number

of ships and difficulty level.

The smallest size test instances have 5 berths-35 ships and 10 berths-40 ships because for

smaller size test instances all three methods give the optimal solution with almost negligible

run times.

It can be seen from Table 4.3 that the CG heuristic algorithm has the same solution

quality with the exact method. Thus, the CG heuristic algorithm reaches optimality but

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 46

run times of the exact solution is lower than the CG heuristic algorithm for all instances

given in Table 4.3. If we compare the solution quality of the CG heuristic algorithm with

VNS, we see that the CG heuristic algorithm has better objective function values than those

provided by VNS in 5 of the 24 instances. Since CG is a hybrid algorithm, it needs exact

solutions for the subproblems. As a consequence, the CG heuristic algorithm needs longer

computation times than VNS heuristic.

Table 4.4 can be interpreted in a similar way as Table 4.3. In this case, the CG heuristic

algorithm has reached optimality in all of the instances but there is one instance that we

cannot find the optimal solution with the exact method because of the out of memory error

(DBAP-5B-50S-1/2-2). Run times of VNS for the instances in Table 4.4 are smaller than

the run times of the CG heuristic algorithm similar to the instances presented in Table 4.3

but the CG heuristic algorithm outperforms VNS in 2 of the 24 instances in terms of the

objective function value.

When the berth number is increased to 10, the problem becomes more difficult which

can be observed from the increase in the run times given in Table 4.5. The CG heuristic

algorithm has better objective function values than the VNS heuristic in 17 of the 36 problem

instances given in Table 4.5. However the computation times of the CG heuristic algorithm

are extremely longer than the VNS algorithm. For the exact solution, comparison of the CG

heuristic algorithm becomes more difficult than the 5 berths problem instances case because

of the out of memory error taken from 14 problem instances out of 36. The CG heuristic

algorithm reaches optimality for the instances that are solvable by the exact method (i.e.,

for the problem instances that we know the optimal objective function value) and the exact

method has smaller run times than the CG heuristic algorithm for the solvable instances.

Overall, we can observe from the results that the CG heuristic algorithm is successful

in finding the optimal solution where the exact algorithm fails to do so. Even though the

computation time of the CG heuristic algorithm is larger compared to the computation time

of the exact algorithm, the CG heuristic algorithm can be used as a practical algorithm since

these decisions are taken on a weekly basis in real life.

On the other hand, since CG heuristic algorithm provides better quality solutions than

VNS algorithm, it proves to be a usable approach to obtain optimal solutions.

These outcomes are promising for the future of the CG heuristic algorithm application

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 47

for DBAP. The CG heuristic algorithm may become more compatible with the heuristic

algorithms provided in the literature by some improvements such as, a heuristic algorithm

that gives better solutions for the subproblem, addition of dual-optimal inequalities that

have potential to accelerate the CG heuristic algorithm, or other stabilization methods.

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 48

Table 4.1: An example of the initial feasible solution for 10 berths - 20 ships instance

Berths

Ships 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0

2 0 2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0

4 3 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 2 0 0

6 0 1 0 0 0 0 0 0 0 0

7 0 0 0 1 0 0 0 0 0 0

8 0 0 1 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 2 0

10 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 2 0 0 0

12 0 0 0 0 0 0 0 0 1 0

13 0 0 0 0 0 2 0 0 0 0

14 0 0 0 0 0 0 0 1 0 0

15 0 0 0 0 2 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 2

17 0 0 0 0 0 1 0 0 0 0

18 0 0 0 0 1 0 0 0 0 0

19 0 0 0 2 0 0 0 0 0 0

20 2 0 0 0 0 0 0 0 0 0

Cost 523 437 235 386 448 341 405 253 299 425

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 49

Table 4.2: Column representation of the initial feasible solution given in Table 4.1

Berths

Ships 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0

4 1 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 1 0 0

6 0 1 0 0 0 0 0 0 0 0

7 0 0 0 1 0 0 0 0 0 0

8 0 0 1 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 1 0

13 0 0 0 0 0 1 0 0 0 0

14 0 0 0 0 0 0 0 1 0 0

15 0 0 0 0 1 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 1

17 0 0 0 0 0 1 0 0 0 0

18 0 0 0 0 1 0 0 0 0 0

19 0 0 0 1 0 0 0 0 0 0

20 1 0 0 0 0 0 0 0 0 0

Cost 523 437 235 386 448 341 405 253 299 425

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 50

Algorithm 2 Algorithm of CG Approach
NearZero← −10−3 (A parameter defined for deciding to add a column).

NumOfIterWithoutImp ← 0 (For counting the iterations that have the same objective function value

consecutively).

Solve the LP relaxation of the RMP with the columns derived from the initial solution.

Pass the dual variables (λ and α) to the subproblem.

for i = 1 to NoOfBerths do

Solve the subproblem for berth i with the set of current dual variables.

Schedule is the schedule of ships obtained from subproblem i.

if ObjFunSub < NearZero then

Add Schedule to the RMP as a new column for berth i.

end if

end for

while NumOfIterWithoutImp < MaxNumOfIterWithoutImp do

Solve the LP relaxation of RMP with the curent columns.

if New ObjFunMas = Old ObjFunMas then

NumOfIterWithoutImp← NumOfIterWithoutImp+ 1

else

NumOfIterWithoutImp← 0

end if

for i = 1 to NoOfBerths do

Solve the subproblem for berth i with the set of current dual variables.

Schedule is the schedule of ships obtained from subproblem i.

if ObjFunSub < NearZero then

Add Schedule to the RMP as a new column for berth i.

end if

end for

end while

solve the RMP as an integer problem to get an IntegerSolution

F inalSchedule← IntegerSolution

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 51

Algorithm 3 Algorithm of CG Approach with the Heuristic Applied to the Subproblem
First 11 lines of Algorithm 2.

while NumOfIterWithoutImp < MaxNumOfIterWithoutImp do

Solve the LP relaxation of RMP with the current columns.

if New ObjFunMas = Old ObjFunMas then

NumOfIterWithoutImp← NumOfIterWithoutImp+ 1

else

NumOfIterWithoutImp← 0

end if

for i = 1 to NoOfBerths do

if NumOfIterWithoutImp > MaxNumOfIterWithoutImp−NumOfExactSub then

Solve the subproblem for berth i exactly with the set of current dual variables.

Schedule is the schedule of ships that come from subproblem i.

if ObjFunSub < NearZero then

Add Schedule to the RMP as a new column for berth i.

end if

else

Solve the assignment problem version of the subproblem for berth i.

Schedule is the schedule of ships obtained from subproblem i.

Set NumShips to the number of ships scheduled in Schedule.

BestSchedule← NewSchedule

for k = 0 to NumShips do

remove k random ships from Schedule

for t = 0 to MaxNoTrial do

define 2 random ships from Schedule and change their position to get a NewSchedule

if ReducedCost of NewSchedule < ReducedCost of BestSchedule then

BestSchedule← NewSchedule

end if

end for

end for

add BestSchedule to the RMP as a new column for berth i.

end if

end for

end while

solve RMP as an integer problem to get an IntegerSolution

F inalSchedule← IntegerSolution

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 52

Linear relaxation of restricted

master problem (RMP) solved

with existing columns.

Continue with the

next berth for the

subproblem

Define ships that have a potential to

improve objective function by solving

the subproblem as an assignment

problem.

Dual variables

(λ's)

k=0

Remove k random ships from

the potential ships

setpotential ship set

Define 2 random index to

change their position and get

a new schedule

 t=0

If reduced cost(RC)

of new schedule<RC

of best schedule

best schedule=new schedulekeep the best schedule

If t==max # of t

keep the best schedule

keep the best schedule and

t=t+1

If k ==#of

potential ships-1

keep the best schedule and

k=k+1

Add best schedule to the MP

as a new column for the berth

considered

If subproblem is

solved for all berths

iteration no=iteration no+1

Count # of iterations that have

same objective function

consecutively

Solve subproblem

exactly for each

berth

Add columns to the

RMP and solve

Solve MP as MIPTerminate

Y

N

Y
N

Y

N

Y

N

Y

N

New Obj <

Last Obj.

Y

SameObjCount+=1

SameObjCount

<

MaxSameObj.

N

iteration no=iteration no+1

SameObjCount <

MaxSameObj-

NumOfExactSub

N

Y

Figure 4.2: Flow Chart of the Heuristic CG Algorithm

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 53

Table 4.3: Results of DBAP instances for 5 berths-35 ships and 5 berths-40 ships with
heuristic CG

Objective Function Values Computation time (Seconds)

Problem Instance VNS CG Exact VNS CG CG Heuristic Exact

DBAP-5B-35S-1/2-1 8289 8282 8282 1.08 1803.92 1269.00 162.27

DBAP-5B-35S-1/2-2 8348 8348 8348 1.08 1710.00 1754.36 288.28

DBAP-5B-35S-1/2-3 8102 8102 8102 1.08 6164.33 3994.48 3005.41

DBAP-5B-35S-3/5-1 11393 11393 11393 0.60 1258.83 616.28 19.71

DBAP-5B-35S-3/5-2 11657 11657 11657 0.60 1218.61 1038.59 28.50

DBAP-5B-35S-3/5-3 11206 11206 11206 0.60 2220.77 1137.86 64.73

DBAP-5B-35S-5/8-1 10744 10740 10740 0.60 1388.393 807.61 22.06

DBAP-5B-35S-5/8-2 10990 10990 10990 0.60 1707.30 851.84 58.93

DBAP-5B-35S-5/8-3 10602 10602 10602 0.60 2036.23 1431.20 123.59

DBAP-5B-35S-7/8-1 17761 17761 17761 0.87 147.07 162.51 1.27

DBAP-5B-35S-7/8-2 18579 18579 18579 0.87 201.70 202.67 2.17

DBAP-5B-35S-7/8-3 17910 17910 17910 0.87 219.13 161.92 2.50

DBAP-5B-40S-1/2-1 9893 9868 9868 3.71 9414.15 7017.59 4725.28

DBAP-5B-40S-1/2-2 9463 9463 9463 3.71 18865.80 18744.00 8119.95

DBAP-5B-40S-1/2-3 11778 11778 11778 3.71 7850.98 4359.14 1554.27

DBAP-5B-40S-3/5-1 14168 14168 14168 0.98 4249.30 2229.36 109.25

DBAP-5B-40S-3/5-2 13601 13601 13601 0.98 6589.31 3481.00 574.53

DBAP-5B-40S-3/5-3 16043 16043 16043 0.98 2841.72 1938.50 184.30

DBAP-5B-40S-5/8-1 13274 13263 13263 2.29 2818.75 2109.00 243.20

DBAP-5B-40S-5/8-2 12742 12737 12737 2.29 7298.20 5236.94 970.86

DBAP-5B-40S-5/8-3 15201 15201 15201 2.29 3354.25 1814.06 252.81

DBAP-5B-40S-7/8-1 23341 23341 23341 0.07 343.86 388.344 3.00

DBAP-5B-40S-7/8-2 22511 22511 22511 0.07 851.78 758.56 7.32

DBAP-5B-40S-7/8-3 24875 24875 24875 0.07 271.11 350.84 2.24

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 54

Table 4.4: Results of DBAP instances for 5 berths-45 ships and 5 berths-50 ships with
heuristic CG

Objective Function Values Computation time (Seconds)

Problem Instance VNS CG Exact VNS CG CG Heuristic Exact

DBAP-5B-45S-1/2-1 13843 13843 13843 3.54 20641.60 13625.10 13843.00

DBAP-5B-45S-1/2-2 12674 12674 12674 3.54 36457.50 29271.00 44686.10

DBAP-5B-45S-1/2-3 15205 15205 15205 3.54 9931.91 7401.14 1020.44

DBAP-5B-45S-3/5-1 19254 19254 19254 2.74 9822.77 4920.19 602.48

DBAP-5B-45S-3/5-2 17866 17866 17866 2.74 13080.90 7895.16 436.06

DBAP-5B-45S-3/5-3 20363 20363 20363 2.74 7974.00 3509.25 105.58

DBAP-5B-45S-5/8-1 18145 18145 18145 3.68 11029.10 6654.13 520.02

DBAP-5B-45S-5/8-2 16797 16797 16797 3.68 15773.50 9056.59 1372.97

DBAP-5B-45S-5/8-3 19305 19305 19305 3.68 8436.45 4567.41 135.25

DBAP-5B-45S-7/8-1 30697 30697 30697 0.36 1181.54 851.05 6.89

DBAP-5B-45S-7/8-2 29186 29186 29186 0.36 2824.97 1953.44 13.02

DBAP-5B-45S-7/8-2 31085 31085 31085 0.36 517.08 345.67 3.18

DBAP-5B-50S-1/2-1 17738 17733 17733 3.71 47700.00 18093.30 6771.73

DBAP-5B-50S-1/2-2 17380 17380 (**) 3.71 41564.70 20976.00 (**)

DBAP-5B-50S-1/2-3 18205 18205 18205 3.71 27059.90 13641.50 2491.28

DBAP-5B-50S-3/5-1 24514 24514 24514 2.80 22202.20 11194.30 1194.64

DBAP-5B-50S-3/5-2 24045 24036 24036 2.80 20518.20 9662.84 425.09

DBAP-5B-50S-3/5-3 24955 24955 24955 2.80 12314.50 5200.11 306.56

DBAP-5B-50S-5/8-1 23088 23088 23088 3.89 20502.90 11321.60 716.92

DBAP-5B-50S-5/8-2 22715 22715 22715 3.89 21184.70 8281.11 471.92

DBAP-5B-50S-5/8-3 23590 23590 23590 3.89 12308.30 6812.20 386.55

DBAP-5B-50S-7/8-1 38416 38416 38416 1.63 1534.42 1522.30 8.66

DBAP-5B-50S-7/8-2 37898 37898 37898 1.63 1584.78 1453.10 8.00

DBAP-5B-50S-7/8-3 38813 38813 38813 1.63 2514.06 1627.33 13.92

(**)Solution cannot be found because of “out of memory” error.

Chapter 4: Column Generation Approach for Dynamic Berth Allocation Problem 55

Table 4.5: Results of DBAP instances for 10 berths-40 ships, 10 berths-45 ships and 10
berths-50 ships with heuristic CG

Objective Function Values Computation time (Seconds)

Problem Instance VNS CG Exact VNS CG CG Heuristic Exact

DBAP-10B-40S-1/2-1 6373 6373 6373 1.33 4054.36 2484.95 1095.14

DBAP-10B-40S-1/2-2 6586 6585 6585 1.33 5661.38 2893.97 890.66

DBAP-10B-40S-1/2-3 6058 6052 6052 1.33 5348.92 2634.22 2838.56

DBAP-10B-40S-3/5-1 8432 8432 8432 1.79 2892.11 976.87 47.83

DBAP-10B-40S-3/5-2 8586 8586 8586 1.79 2393.42 906.03 58.10

DBAP-10B-40S-3/5-3 7925 7924 7924 1.79 2446.34 996.75 83.73

DBAP-10B-40S-5/8-1 7997 7997 7997 1.25 2597.78 1063.69 64.67

DBAP-10B-40S-5/8-2 8171 8171 8171 1.25 2448.36 1029.58 51.06

DBAP-10B-40S-5/8-3 7536 7536 7536 1.25 3009.14 1143.11 86.67

DBAP-10B-40S-7/8-1 12818 12818 12818 1.20 438.70 131.09 4.06

DBAP-10B-40S-7/8-2 12949 12947 12947 1.20 685.28 142.34 5.55

DBAP-10B-40S-7/8-3 12042 12042 12042 1.20 760.52 152.23 7.16

DBAP-10B-45S-1/2-1 7886 7876 (**) 2.99 10901.00 4961.33 (**)

DBAP-10B-45S-1/2-2 6446 6446 (**) 2.99 24615.30 3476.32 (**)

DBAP-10B-45S-1/2-3 7143 7135 (**) 2.99 5546.34 13241.50 (**)

DBAP-10B-45S-3/5-1 10527 10516 10516 2.13 4603.72 1019.64 6356.25

DBAP-10B-45S-3/5-2 8841 8841 (**) 2.13 10898.30 2093.45 (**)

DBAP-10B-45S-3/5-3 9689 9689 9689 2.13 7402.84 1547.78 144.84

DBAP-10B-45S-5/8-1 9938 9938 9938 3.19 7577.30 1556.22 97.22

DBAP-10B-45S-5/8-2 8298 8297 (**) 3.19 9397.80 2159.26 (**)

DBAP-10B-45S-5/8-3 9152 9143 9143 3.19 7634.28 1647.37 242.42

DBAP-10B-45S-7/8-1 16081 16080 16080 1.13 1616.03 273.81 15.92

DBAP-10B-45S-7/8-2 14471 14471 14471 1.13 3259.05 568.79 27.64

DBAP-10B-45S-7/8-3 15472 15472 15472 1.13 1686.53 399.53 13.61

DBAP-10B-50S-1/2-1 7060 7060 (**) 3.10 60528.50 30980.30 (**)

DBAP-10B-50S-1/2-2 9370 9370 (**) 3.10 27952.00 8836.73 (**)

DBAP-10B-50S-1/2-3 9020 9020 (**) 3.10 33527.20 13948.60 (**)

DBAP-10B-50S-3/5-1 9966 9961 (**) 3.53 30238.80 7728.98 (**)

DBAP-10B-50S-3/5-2 12631 12628 (**) 3.53 12257.80 3065.83 (**)

DBAP-10B-50S-3/5-3 12155 12153 (**) 3.53 21270.60 5060.73 (**)

DBAP-10B-50S-5/8-1 8177 8172 (**) 3.33 32360.30 8644.39 (**)

DBAP-10B-50S-5/8-2 10740 10740 (**) 3.33 11345.20 6607.11 (**)

DBAP-10B-50S-5/8-3 11076 11068 (**) 3.33 11198.80 5123.20 (**)

DBAP-10B-50S-7/8-1 15753 15749 15749 2.04 5703.70 1809.47 45.57

DBAP-10B-50S-7/8-2 18544 18544 18544 2.04 2259.80 511.03 14.42

DBAP-10B-50S-7/8-3 18931 18930 18930 2.04 1800.38 340.23 12.86

(**)Solution cannot be found because of “out of memory” error.

Chapter 5: Conclusions & Future Work 56

Chapter 5

CONCLUSIONS & FUTURE WORK

5.1 Conclusions

In this thesis, we studied a well-known optimization problem which is Dynamic Berth Al-

location Problem (DBAP). For the DBAP, we applied a hybrid Column Generation (CG)

algorithm where subproblem is solved heuristically or exactly if necessary. This research is

the first study that proposes a CG for the solution of Berth Allocation Problems (BAP).

Since DBAP can be thought as a large scale MIP problem, we were motivated by the promis-

ing results of the application of CG heuristic algorithm to the large scale MIP problems such

as, cutting stock, bin-packing, crew scheduling, multi-comodity network flow and vehicle

routing. The decomposition technique which is successfully applied to several optimization

problems has been utilized. The DBAP has been decomposed into two subproblems. The

master problem is a set partitioning problem with assignment constraints and the subprob-

lem is a Mixed Integer Programming (MIP) problem with the complicating constraints of

the DBAP. The CG technique has been applied to solve the relaxed master problem (RMP)

and a hybrid algorithm has been designed in order to generate the columns in the subprob-

lem. It is observed that the linear master problem (i.e, relaxation of RMP) is solved easily.

Although the computation times for the master problem increase as the number of columns

increase, the total solution times spent in solving the relaxation of the master problem

is always negligible compared to the solution times required for the subproblems. Hence,

solving the subproblem efficiently is very crucial for the performance of the CG heuristic

algorithm. For this reason, we introduced a heuristic algorithm for the subproblem which is

the most time-consuming part of the CG heuristic algorithm. We reduced the subproblem

to an assignment problem by ignoring the complicating constraints and related variables.

Afterwards, we applied a local search heuristic to the solution obtained from the assignment

problem. When the result of the master problem is repeated for a predetermined number of

iterations, heuristic algorithm is changed with the exact procedure for finding the necessary

Chapter 5: Conclusions & Future Work 57

columns to prevent stucking in a local optima. If this modification does not result in a

change in the objective function value of the master problem, algorithm terminates with

the current best integer solution by solving the master problem as an integer problem.

Previously, a Variable Neighborhood Search (VNS) heuristic was proposed in the lit-

erature with good solution quality and computation times [14]. Hence, we compared our

method with this VNS algorithm. We observe that our proposed CG heuristic algorithm

also gives good quality solutions. When we analyzed the results, it is observed that the CG

heuristic algorithm performs well especially on the harder and larger problem instances.

Compared to the VNS, computation times are not better for the proposed CG heuristic

algorithm. However, CG heuristic algorithm outperforms VNS algorithm in 24 of the 84

instances in terms of the objective function value. DBAPis not solvable exactly in 15 of

84 instances because the size of the branch-and-bound tree causes memory error and we

are not sure that proposed CG heuristic algorithm reaches the optimal solution for these

problem instances. However, it provides better solutions than VNS algorithm in 8 of these

15 problem instances in terms of the solution quality.

We can conclude that the CG heuristic algorithm requires longer computation times for

all of the tested problem instances but it always gives good quality solutions even for large

problems. The CG heuristic algorithm can be a good tool to find a good quality solution

for larger and harder instances since it decomposes the problems and deals with the smaller

parts of the problems subsequently. It is superior over VNS algorithm for larger and harder

instances as this can be seen in computational results. It is also observed that the solution

quality gap between CG heuristic algorithm and VNS algorithm widens as the size of the

problem instances grow. If the algorithm can be improved so that its computation time will

decrease, it will become the most prefarable tool for the DBAP even for the small problem

instances. In order to do so, a well-developed heuristic for the subproblem can be developed

since the structure of the subproblem of the DBAP is not suitable for fast exact solution

methods. Therefore, the CG heuristic algorithm is a promising technique especially for the

larger and harder problem insantances of the DBAP.

Chapter 5: Conclusions & Future Work 58

5.2 Future Work

As our proposed solution procedure uses the assignment problem to find an initial schedule,

harder but still easily solvable problems can be found and applied to initiate the heuristic

algorithm. Doing so improves the quality of the initial solution and subsequently decreases

the overall run time of the problem. Another extension can be made by constructing a

metaheuristic algorithm, such as tabu search or genetic algorithm, instead of local search

algorithm used in the thesis. Developing such metaheuristics may improve both the solution

quality and the run time of the problem if one can build those heuristics by considering

the specific characteristics of the DBAP. However, it is difficult to construct such smarter

metaheuristics as they are more complex than other search algorithms.

Bibliography 59

BIBLIOGRAPHY

[1] J.F. Cordeau, G. Laporte, P. Legato, and L. Moccia, “Models and Tabu Search Heuris-

tics for the Berth Allocation Problem,” Transportation Science, vol. 39, no. 4, pp.

526–538, 2005.

[2] I.F.A. Vis and R. de Koster, “Transshipment of Containers at a Container Terminal:

An Overview,” European Journal of Operational Research, vol. 147, no. 1, pp. 1–16,

2003.

[3] D. Steenken, S. Voß, and R. Stahlbock, “Container Terminal Operation and Operations

Research-a Classification and Literature Review,” OR Spectrum, vol. 26, no. 1, pp. 3–

49, 2004.

[4] G. Giallombardo, L. Moccia, M. Salani, and I. Vacca, “The tactical Berth Alloca-

tion Problem with Quay Crane Assignment and Transshipment-related Quadratic Yard

Costs,” in Proceedings of the European Transport Conference (ETC), 2008.

[5] H.O. Günther and K.H. Kim, “Container Terminals and Terminal Operations,” OR

Spectrum, vol. 28, no. 4, pp. 437–445, 2006.

[6] S. Irnich and G. Desaulniers, Shortest Path Problems With Resource Constraints,

Springer, 2004.

[7] B. Kallehauge, J. Larsen, O.B.G. Madsen, and M.M. Solomon, “Vehicle Routing Prob-

lem with Time Windows,” Column Generation, pp. 61–98, 2005.

[8] H. Ben Amor and J.M. Valerio de Carvalho, “Cutting Stock Problems,” Column

Generation, pp. 131–161.

[9] D. Klabjan, Large Scale Models in the Airline Industry, Springer, 2005.

[10] M. Christiansen and B. Nygreen, “Robust Inventory Ship Routing by Column Gener-

ation,” Column Generation, pp. 197–224, 2005.

Bibliography 60

[11] M.M. Sigurd, N.L. Ulstein, B. Nygreen, and D.M. Ryan, “Ship Scheduling with Re-

curring Visits and Visit Separation Requirements.,” Column Generation, pp. 225–245,

2005.

[12] M. van den Akker, H. Hoogeveen, and S. van de Velde, “Applying Column Generation

to Machine Scheduling,” Column Generation, pp. 303–330, 2005.

[13] P. Hansen and C. Oğuz, A Note on Formulations of the Static and Dynamic Berth

Allocation Problems, Groupe d’études et de recherche en analyse des décisions, 2003.

[14] P. Hansen, C. Oğuz, and N. Mladenović, “Variable Neighborhood Search for Minimum

Cost Berth Allocation,” European Journal of Operational Research, vol. 191, no. 3, pp.

636–649, 2008.

[15] M.L. Pinedo, Scheduling: Theory, Algorithms and Systems, Springer, 2008.

[16] M.R. Garey, D.S. Johnson, et al., Computers and Intractability: A Guide to the Theory

of NP-completeness, Freeman San Francisco, 1979.

[17] A. Imai, X. Sun, E. Nishimura, and S. Papadimitriou, “Berth Allocation in a Container

port: Using a Continuous Location Space Approach,” Transportation Research Part

B, vol. 39, no. 3, pp. 199–221, 2005.

[18] A. Imai, K.I. Nagaiwa, and C.W. Tat, “Efficient Planning of Berth Allocation for

Container Terminals in Asia,” Journal of Advanced Transportation, vol. 31, no. 1, pp.

75–94, 1997.

[19] A. Imai, E. Nishimura, and S. Papadimitriou, “The Dynamic Berth Allocation Problem

for a Container Port,” Transportation research part B, vol. 35, no. 4, pp. 401–417, 2001.

[20] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and

Complexity, Dover Publications, 1998.

[21] E. Nishimura, A. Imai, and S. Papadimitriou, “Berth Allocation Planning in the Public

Berth System by Algorithms,” European Journal of Operational Research, vol. 131, no.

2, pp. 282–292, 2001.

Bibliography 61

[22] A. Imai, E. Nishimura, M. Hattori, and S. Papadimitriou, “Berth Allocation at In-

dented Berths for Mega-containerships,” European Journal of Operational Research,

vol. 179, no. 2, pp. 579–593, 2007.

[23] A. Imai, E. Nishimura, and S. Papadimitriou, “Berthing Ships at a Multi-user Con-

tainer Terminal with a Limited Quay Capacity,” Transportation Research Part E, vol.

44, no. 1, pp. 136–151, 2008.

[24] A. Imai, E. Nishimura, and S. Papadimitriou, “Berth Allocation with Service Priority,”

Transportation Research Part B, vol. 37, no. 5, pp. 437–457, 2003.

[25] A. Lim, “The Berth Planning Problem,” Operations Research Letters, vol. 22, no. 2-3,

pp. 105–110, 1998.

[26] Y.M. Park and K.H. Kim, “A Scheduling Method for Berth and Quay Cranes,” OR

Spectrum, vol. 25, no. 1, pp. 1–23, 2003.

[27] C. Liang, Y. Huang, and Y. Yang, “A Quay Crane Dynamic Scheduling Problem by

Hybrid Evolutionary Algorithm for Berth Allocation Planning,” Computers & Indus-

trial Engineering, vol. 56, no. 3, pp. 1021–1028, 2009.

[28] A. Imai, H.C. Chen, E. Nishimura, and S. Papadimitriou, “The Simultaneous Berth

and Quay Crane Allocation Problem,” Transportation Research Part E, vol. 44, no. 5,

pp. 900–920, 2008.

[29] M.P. de Aragão and E. Uchoa, “Integer Program rRformulation for Robust Branch-and-

Cut-and-Price Algorithms,” in Proceedings of the Conference Mathematical Program

in Rio: A Conference in Honour of Nelson Maculan, 2003, pp. 56–61.

[30] G.L. Nemhauser and S. Park, “A Polyhedral Approach to Edge Coloring.,” Operations

Research Letters, vol. 10, no. 6, pp. 315–322, 1991.

[31] F. Vanderbeck, “Lot-Sizing with Start-up Times,” Management Science, vol. 44, no.

10, pp. 1409–1425, 1998.

[32] N. Kohl, J. Desrosiers, O.B.G. Madsen, M.M. Solomon, and F. Soumis, “2-path Cuts

for the Vehicle Routing Problem with Time Wndows,” Transportation Science, vol. 33,

no. 1, pp. 101–116, 1999.

Bibliography 62

[33] J.M. Van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh, “Time-Indexed For-

mulations for Machine Scheduling Problems: Column Generation,” INFORMS Journal

on Computing, vol. 12, no. 2, pp. 111–124, 2000.

[34] C. Barnhart, C.A. Hane, and P.H. Vance, “Using Branch-and-Price-and-Cut to Solve

Origin-Destination Integer Multicommodity Flow Problems,” Operations Research, vol.

48, no. 2, pp. 318–326, 2000.

[35] D. Kim, C. Barnhart, K. Ware, and G. Reinhardt, “Multimodal Express Package

Delivery: A Service Network Design Application,” Transportation Science, vol. 33, no.

4, pp. 391–407, 1999.

[36] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance,

“Branch-and-Price: Column Generation for Solving Huge Integer Programs,” Opera-

tions Research, vol. 46, no. 3, pp. 316–329, 1998.

[37] G.B. Dantzig and P. Wolfe, “Decomposition Principle for Linear Programs,” Operations

Research, vol. 8, no. 1, pp. 101–111, 1960.

[38] A.M. Geoffrion, “Lagrangean Relaxation For Integer Programming,” Mathematical

programming studies, vol. 2, pp. 82–114, 1974.

[39] T.L. Magnanti, J.F. Shapiro, and M.H. Wagner, “Generalized Linear Programming

Solves the Dual,” Management Science, vol. 22, no. 11, pp. 1195–1203, 1976.

[40] M. Savelsbergh, “A Branch-and-Price Algorithm for the Generalized Assignment Prob-

lem,” Operations Research, pp. 831–841, 1997.

[41] J.F. Shapiro, Mathematical Programming: Structures and Algorithms, Wiley New

York, 1979.

[42] M.E. Lubbecke and J. Desrosiers, “Selected Topics in Column Generation,” Operations

Research, vol. 53, no. 6, pp. 1007–1023, 2005.

[43] P.J.M. Meersmans and R. Dekker, Operations Research Supports Container Handling,

Econometric Institute, Erasmus University Rotterdam]; Erasmus University [Host],

2001.

Bibliography 63

[44] R.I. Peterkofsky and C.F. Daganzo, “A Branch and Bound Solution Method for the

Crane Scheduling Problem,” Transportation Research B, vol. 24, no. 3, pp. 159–172,

1990.

[45] R. Jonker and A. Volgenant, “A Shortest Augmenting Path Algorithm for Dense and

Sparse Linear Assignment Problems,” Computing, vol. 38, no. 4, pp. 325–340, 1987.

[46] D.P. Bertsekas, “Auction Algorithms for Network Flow Problems: A Tutorial Intro-

duction,” Computational Optimization and Applications, vol. 1, no. 1, pp. 7–66, 1992.

[47] J.L. Bruno, E.G. Coffman, and R. Sethi, “Scheduling Independent Tasks to Reduce

Mean Finishing Time,” Communications of the ACM, vol. 17, no. 7, pp. 382–387, 1974.

[48] J.K. Lenstra, A.H.G. Kan, and P. Brucker, “Complexity of Machine Scheduling Prob-

lems,” in Studies in Integer Programming: Proceedings of the Institute of Operations

Research Workshop, Sponsored by IBM, University of Bonn, Germany, Sept. 8-12,

1975. North Holland, 1977, vol. 1, pp. 343–362.

[49] Z.L. Chen and W.B. Powell, “Solving Parallel Machine Scheduling Problems by Column

Generation,” INFORMS Journal on Computing, vol. 11, no. 1, pp. 78–94, 1999.

[50] J.M. Van Den Akker, J.A. Hoogeveen, and S.L. Van De Velde, “Parallel machine

scheduling by column generation,” Operations Research, vol. 47, no. 6, pp. 862–872,

1999.

[51] P.C. Gilmore and R.E. Gomory, “A Linear Programming Approach to the Cutting

Stock Problem-Part II,” Operations Research, vol. 11, no. 6, pp. 863–888, 1963.

[52] CPLEX I., “11.0 Users Manual,” ILOG SA, Gentilly, France, 2008.

