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ABSTRACT

This study is focused on the coordination of transportation and production policies between

a supplier and a retailer in an inventory system. Both a deterministic model, in which the

production and the demand rates of a specific product are known and constant, and a stochastic

model, in which the production and the demand rates are random, are considered. In these

models, the supplier makes the production, holds inventory and ships the products to the retailer

to satisfy the external demand that arrives to the retailer. We analyze two versions of this

problem. In the first model, we assume that the retailer also holds inventory and satisfies the

customer orders immediately and in the second model, we assume that the retailer does not

hold inventory but accumulates the customer orders and satisfies them at a later time, where

the customers are willing to wait at the expense of a waiting cost. We investigate both a

vendor-managed inventory (VMI) setting and a decentralized model (non-VMI setting). In the

non-VMI model, the retailer manages its own inventory and sends orders to the supplier and

the supplier determines its own production process and the amount to produce in an inventory

replenishment cycle considering the order quantity of the retailer. However, in the vendor-

managed inventory setting, the supplier makes all the decisions and determines the length of the

production and transportation cycles and the shipment quantities to the retailer. In this study,

for the deterministic case, we determine the length of the optimal production and transportation

cycles in both the VMI and non-VMI models and compare the costs of these models. Then, we

analyze the stochastic case in which the demand and the production rates are random. We use

an infinite-horizon dynamic programming approach and we show that the optimal production

and transportation decisions in the stochastic case are complex and non-monotonic. Therefore,

we also consider simpler policies such as time-based and quantity-based transportation policies,
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which are widely used in the industry, and we analyze the efficiency of these policies compared

to the optimal solution.



ÖZETÇE

Bu çalışma, bir üretim sisteminde tedarikçi-satıcı arasındaki üretim ve dağıtım kordinasyonunun

sağlanması üzerine odaklanmıştır. İlk olarak, üretim ve talep oranlarının bilinen ve sabit olduğu

deterministik model kullanılmıştır. Satıcı karşılaştığı dış talebi karşılamak için tedarikçiye

siparişte bulunur. Tedarikçi satıcıdan gelen bu talepleri karşılayabilmek için üretimini yaptığı

ürünleri stokta tutar. Bu problemin iki farklı modeli incelenmiştir. Bu iki modelin birinde satıcı

stok tutarken diğerinde stok tutmayıp müşterilerin taleplerini bekletmekte ve bunun karşılığında

bekletme ücreti ödemektedir. Deterministic modelde hem tedarikçi-yönetimli stok (VMI) hem de

tedarikçi-yönetimli olmayan stok (non-VMI) politikaları incelenmiştir. Tedarikçi-yönetimli stok

sisteminde, üretici üretim ve sipariş aralıkları ile satıcının sipariş adedini belirlemektedir. Diğer

modelde ise (non-VMI) satıcı kendi stoğunu takip ederken üretici de üretim düzenini satıcının

sipariş adetleri doğrultusunda kendi yönetir. VMI ve non-VMI model için en uygun üretim ve

taşıma aralıkları hesaplanıp sunulmuştur. Ardından üretim ve talebin rastgele olduğu stokastik

modeller geliştirilmiştir. Çözümde dinamik programlama yaklaşımı kullanılmış ve sonsuz-ufuk

modeli analiz edilmiştir. Stokastik modellerde optimum üretim ve dağıtım kararlarının komplike

ve düzensiz olduğu gösterilmiştir. Bu sebeple daha genel politika ve stratejiler geliştirmek adına,

piyasada da sıkça kullanılan, zaman-tabanlı ve miktar-tabanlı taşıma politikaları incelenmiştir.
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Chapter 1

INTRODUCTION

A supply chain is composed of different entities such as raw material supplier, manufacturer,

transporter, retailer, etc. whose designated aim is to convert the raw material into finished

product to satisfy the customer’s demand in time with least possible cost. Numerous academic

studies presented that the cost savings may be realized from collaborative initiatives such as

vendor-managed inventory (VMI) in a supply chain. Under a typical vendor managed inventory

agreement, the supplier decides the order quantities to be sent to the retailer and manages the

inventory levels at both facilities. There are a number of studies which show that the VMI

can improve the supply chain’s performance by reducing inventory holding costs and increasing

service levels. The problem considered in this thesis concerns a single supplier (manufacturer)

supplying a single retailer with a product which faces external demand. Our aim is to minimize

the total cost of supply chain and improve the performance of the system using the VMI Model.

The characteristics of the inventory management system is mainly determined by the struc-

ture of the demand and the supply processes. Replenishment and dispatch policies are directly

effected by the uncertainty of the demand and supply. First, we consider the deterministic

model which provides a basis for the analysis for the stochastic demand and supply model. In

practice, arrival probabilities of demand may not be known with certainty. For some cases, such

as random capacity of the supplier or lack of raw material, supply may also be stochastic. In the

stochastic models, we aim to minimize the expected average total cost of the system, since the

outcome of a decision may vary and can only be predicted to some extent due to the randomness

in demand and supply.

We consider two different problems throughout this thesis; in the first problem, the retailer
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does not hold any inventory but accumulates the demand which he faces externally. The problem

of interest can be stated as follows. Consider a product such as a luxury watch or an expensive

sports car that is obviously disadvantageous for the retailer to hold in stock. In this case,

inventory holding cost for the retailer is high, and customer waiting cost is relatively low for

reasonable time intervals so that the retailer does not carry inventory. Sales agents and stores

making catalog sales would be the examples for this case. In this scenario, both the supplier

and the retailer is engaged in setting an efficient integrated inventory/outbound dispatch policy.

[9], [10] and [8] are the instances in the literature in this context.

In practice, responsibility of the inventory ownership is not given to the third party provider

(retailer in our case), and all the real warehousing costs are paid by the supplier eventually.

In technology products industry, optimal shipment consolidation policies are generally initiated

under integrated warehousing/transportation contracts where both the supplier and the third

party provider are interested in saving of transportation costs.

On the other hand, in the second problem, the retailer also holds inventory like the supplier

and satisfies the external demand from its own inventory. All the other parameters are the same

with the first problem, except there is no customer waiting cost but the inventory holding cost

in the second problem in which the retailer holds inventory.

In the previous studies, Lu [26], Goyal [16] and Hill [21] examined vendor managed single

supplier single retailer inventory models. In their models, the supplier produces a product and

dispatches to the retailer according to some dispatch policy. The retailer holds inventory in

order to satisfy the external demand which is constant and known. The supplier and the retailer

cooperate to set an integrated policy in order to minimize the total cost per unit time. These

models can be used for the stores that directly buy from the producer and carry inventory

in real life situations. On the other hand, Çetinkaya and Lee [9] studied a vendor managed

inventory, VMI, model where the supplier does not produce a product but acts as a third party

warehouse, TPW. In this model, the retailer does not hold inventory but accumulates the orders

and the customers agree to wait for a reasonable time. This model is suitable for the products

which are unreasonable to keep in stock such as expensive laptop computers, large items like
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photocopy machines, luxury items etc. The main contribution of our deterministic VMI model

with shipment consolidation is to combine these two concepts described above in one model. In

our model, the supplier produces the product and satisfies the demand through retailer which

does not hold any inventory. Our model can be used for valuable products that are supplied to

customer via retailers directly from the factory.

In the stochastic models of this thesis, the supplier produces a product with a stochastic

production rate. Also, the retailer faces a stochastic demand and accumulates the orders similar

to the deterministic model. The supplier and the retailer cooperate in order to find an optimal

production and shipment policy. To the best of our knowledge, there is no similar study with

this configuration in the literature.

The remainder of the thesis is organized as follows. In Chapter 2, the literature on produc-

tion and demand coordination, vendor-managed inventory system and consolidation shipment

is reviewed. In Chapter 3, deterministic inventory models with shipment consolidation for both

VMI and non-VMI models are presented. Two different cases in which the retailer holds and does

not hold inventory are considered within this chapter. Chapter 4 studies stochastic inventory

models with shipment consolidation and different dispatch policies which use dynamic program-

ming. We investigate the dispatch policies reflecting interesting characteristics. In Chapter 5,

numerical studies that compare the performances of the models studied in the thesis are given.

In addition to that, the effects of different parameters, such as production set up cost, customer

waiting cost, arrival and processing rates, on the models are evaluated numerically. Finally, the

thesis is concluded with a short summary of the performed study and main results in Chapter

6.
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Chapter 2

LITERATURE REVIEW

In this chapter, we provide details and references on the advances in the areas related to the

different aspects of this thesis. We provide the literature review in two parts: In the first part,

we consider the literature about production and demand coordination in inventory management

problems and the second part discusses consolidation shipment policies such as time and quantity

based shipment.

2.1 Literature on Production and Demand Coordination

To the best of our knowledge, [13] and [14] were two of the first papers, in which an integrated

single supplier-single customer inventory model is analyzed. In the model set by Goyal [13], the

supplier produces a product and dispatches the product to a retailer which faces an external

demand. Goyal assumes infinite rate of production and zero lead time for the supplier and

the retailer. The supplier and the retailer cooperate to set an integrated inventory policy and

minimize the average total cost per unit time. Goyal concludes that, although the total cost

of the supply chain decreases, the individual cost of the retailer or the supplier can increase by

the integrated model. Hence, Goyal determines a method to allocate the variable cost to the

retailer and the supplier.

Joglekar [25] and Banerjee [2] examine the same model with a finite production rate. Joglekar

specifies a model in which a batch is dispatched in a number of separate shipments. Banerjee

considers a joint economic-lot-size model in which a vendor produces for a purchaser facing a

constant and known demand. Vendor produces each of the buyer’s orders as a separate batch

with a finite production rate. Goyal [15] suggests a more general joint economic-lot-size model

for the same problem which gives a solution with a lower cost. In this paper, it is illustrated
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that, when the order quantity of the purchaser is Q, the production quantity of the vendor

should be an integer multiple of Q. Goyal assumes that the whole batch must be finished before

any dispatches.

Goyal and Gupta [18] make a review of published work on buyer-vendor coordination models

up to 1988. In their paper, a scheme to classify these models is presented and some future

research areas are identified.

Lu [26] examines the heuristics for the same problem, again with the assumption of producing

an integer number of equal shipments, and relaxes the assumption of Goyal [15] about finishing

the whole batch before dispatching. Therefore, in this model, shipments are allowed during

production. Goyal [16] extends this policy to a new shipment policy involving unequal shipment

quantities. According to this new policy, successive shipment sizes increase by a factor equal to

the ratio of the vendor’s production rate and the demand rate of the buyer.

Hill [21] illustrates that, neither of the policies of Lu and Goyal [16] are optimal. Hill, sets a

λ parameter which denotes the proportional increase in the size of the successive shipments in

a production setting. He concludes that, optimal λ must be in the range of [1, P/D], where P

is the production rate and D is the constant demand rate. It is illustrated that, Goyal’s policy

leads to lower costs than the equal shipment policy, only when the holding cost of the supplier

is close to the holding cost of the retailer.

Hill [22] sets out an algorithm to obtain a globally-optimal solution by combining the Goyal’s

policy and the equal shipment size policy of Lu. It is shown that, it is optimal to dispatch the

first m shipments in sizes increasing by a fixed factor of k and the remaining n−m shipments

in equal sizes. The numerical examples illustrate that this policy performs better than Goyal’s

policy and the equal shipment policy for all holding cost ratios of retailer and supplier.

Goyal and Nebebe [17] consider an alternative policy to the problem that is stated in [21]. It

is assumed that the batch quantity is dispatched in several shipments to the buyer while the first

shipment quantity is less then the remaining equal sized shipments. According to the numerical

results, this policy generates lower costs than the previous policies in the literature.

The most common assumption in the literature is that the unit inventory costs for a product
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increase as stock moves down the supply chain. However, Hill and Omar [23] discuss that the

opposite may sometimes hold in integrated systems. Since they consider an integrated system,

the difference in holding costs between the vendor and the buyer only depends on the physical

storage costs rather than the financial costs. If the vendor is a small specialized manufacturer

and the buyer is a large manufacturer with low-cost bulk storage facilities, than it would be

expected for the inventory holding costs of the vendor to be greater than the buyer’s inventory

holding costs. In their paper, Hill and Omar extend the work of Hill [22] under the assumption

of larger holding costs for the vendor than for the retailer, and conclude that the shipment sizes

to the buyer may vary.

Bichescu and Fry [4] examine the channel power on supply chain and compare supply chain

performance under a VMI contract with the centralized supply chain and the traditional retailer-

managed inventory supply chain to derive the benefits of VMI. They assume that the customer

demand is normally distributed and the supplier produces with a deterministic constant rate.

There is a positive lead time for the orders and the supplier can outsource as required. They

analyze a VMI agreement in which the retailer chooses the service level and supplier decides the

reorder point. They show that the VMI leads to supply chain savings in many cases, independent

of the channel power contract. However, the amount of savings can be greatly affected by the

channel power relationships.

In their paper, Yao et al. [31] compare two-level supply chains consisting of a supplier

and a retailer using VMI and non-VMI systems to determine the benefits of VMI. As in our

deterministic model, they assume that the demand is deterministic and known by the retailer

which is also known by the supplier under VMI. Contrary to our model, the supplier does not

produce but order the product from its own upstream supplier. They assume that the ordering

cost of the retailer is lower under the VMI. They develop an analytical model to determine how

ordering and holding costs affect the benefits of the VMI and the distribution of the benefit

between the retailer and the supplier. They present their results in a numerical example and

conclude that when the retailer’s inventory holding cost is large relative to the supplier, the total

benefit is higher. However, the total benefit of VMI may be negative in some extreme cases.
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Vlist et al. [30] extend the model in the paper of Yao et al [31] with the transportation

costs. They calculate the minimum average cost of the supply chain for different supplier stock

patterns and compare their costs. They conclude that inventory level at the buyer increases

and inventory at the supplier decreases with the VMI setting, although Yao et al. claim the

opposite.

For extensive surveys on the areas of coordinating the order and the production policy in

the single-supplier single-buyer supply chains, see the papers by Bhatnagar [3], Thomas [29],

Sharafali [27], Eric [28]. The main difference between the above models and our model is that

the retailer does not hold inventory but accumulates the orders in our model and this difference

leads to significant discrepancies in the optimal production and shipment policies.

2.2 Literature on Shipment Consolidation

In a shipment consolidation strategy, orders/shipments are combined together to dispatch a

larger quantity on the same vehicle [19]. In literature, there are three different types of tem-

poral consolidation policies. These are time-based dispatch policies, quantity-based dispatch

policies and hybrid dispatch policies. In a time-based policy, orders are dispatched in every

pre-determined time intervals. On the other hand, under a quantity-based dispatch policy, all

orders are shipped when a pre-determined consolidation quantity is reached. Lastly, under a

hybrid policy, all orders are consolidated until the earliest of a pre-determined shipping date, or

a minimum pre-determined shipment quantity is reached [20, 11, 12, 24].

In their paper, Blumenfeld et al. [5] determine optimal shipping strategies on freight (di-

rect shipping, shipping via a consolidation terminal, and a combination of terminal and direct

shipping) networks by analyzing the trade-offs between the transportation, inventory, and pro-

duction set-up costs. They provide an interface between the transportation and the production

set-up costs and their effects on inventory. They develop an optimization method that simul-

taneously determines optimal routes and shipment sizes for the networks with a consolidation

terminal and concave cost functions.

Çetinkaya and Lee [9] study a coordination problem between a third party warehouse, TPW,
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and its retailer. The warehouse serves a single market area where the aggregate market demand

is constant and known. In their paper, TPW makes decisions regarding the order quantity

and the optimal length of the replenishment cycles in the context of VMI. They examine a

shipment consolidation policy where the TPW has the autonomy to consolidate orders until an

economical dispatch quantity accumulates. The retailer/distributer does not hold inventory and

the customers wait to receive their orders with a waiting penalty cost per unit per unit time.

Since the demand is deterministic, temporal consolidation policies are equal in this case. That

is, once the optimal quantity is computed, then the optimal cycle time, T , is known or vice versa.

The only difference from our deterministic model, in which the retailer does not hold inventory,

is that there is not a TPW but the supplier which is also the producer in our model. Hence,

contrary to their model, we consider the production set up cost and the inventory holding cost

of the supplier which depends on the production schedule. Çetinkaya and Lee [9] prove that the

optimal shipment release timing policy is non-stationary, which means that the transportation

cycle lengths are not necessarily equal in a replenishment cycle. Their results provide a basis

for the case of a stochastic demand.

Çetinkaya et al. [10] consider a VMI setting in which the vendor decides the quantity and

the timing of resupply to the retailer. Retailer faces a general stochastic demand process with

bulk arrivals and does not carry inventory. Vendor uses an (s, S) policy for replenishment,

and a quantity-based policy for transportation timings. More specifically, each demand on the

retailer is sent to the vendor as an order, and shipment is carried out when an economical

shipment quantity is accumulated. If the vendor does not have enough inventory when it is time

to dispatch, then it can be supplied from an ample supplier. They set a renewal theoretical

model, which considers the outbound transportation costs and the effects of the quantity-based

consolidation policy. Their numerical results show that, cost savings can be achieved by the

shipment consolidation.

Çetinkaya and Lee [8] develop a renewal theoretic model to compute the optimal replenish-

ment quantity and dispatch frequency under a time-based shipment consolidation policy in a

VMI setting. The vendor faces a sequence of random demands with identical sizes from a group
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of retailers in a given geographical region. Retailers does not hold inventory and agree to wait

until the latest possible dispatch time. Vendor uses the (s, S) policy for replenishing its inventory

and sends the accumulated orders to the retailers in every T time units. In this problem, the

shipment frequency T is a decision variable and the transportation costs are important for the

trade off between the scale of economies and customer waiting costs for the orders. Under the

assumption of poisson demands, they obtain a closed form solution to the problem and present

analytical results.

Axsater [1] considers the same problem as Çetinkaya and Lee [8]. Differently from their

model, Axsater ignores the unit procurement and transportation costs since these costs are not

related to the decision variables. Axsater provides an algorithm for the exact optimization of

the Çetinkaya and Lee’s model.

Çetinkaya and Bookbinder [6] analyze quantity and time-based policies for the private car-

riage and the common carriage cases. In the private carriage case, shipper owns the truck, hence

the transportation costs are mostly defined by the fixed transportation cost per shipment. Ship-

ment economies are the result of portioning out that fixed cost to the large shipment quantity.

On the other hand, in the common carriage case, an outside trucking company is hired. The

company applies a discount to the transportation cost per unit weight when the minimum weight

to obtain the quantity discount is reached. They apply renewal theory and present numerical

results.

In their paper, Çetinkaya et al. [7] make analytical comparisons between the quantity and

time based policies and the hybrid policy. Using the model in [8], they build a quantity-based

dispatch policy model and develop an exact optimization procedure. By comparing the models,

they conclude that the quantity-based dispatch policy results in smaller expected long run

average costs per unit time than both the time-based and the hybrid models. However, according

to the numerical results, hybrid policies are better than the quantity-based policies in terms of

service and average waiting times of the customers.

The main contribution of this thesis is the following; we combined the inventory management

model studied by Lu [27], Goyal [17] and Hill [22], and the shipment consolidation policies studied
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by Çetinkaya and Lee [9] in one concept of which the supplier produces the product and the

retailer does not hold any inventory. To the best of our knowledge, this thesis is considerably

different from the existing inventory-transportation models since the two different concepts are

studied in the same model. The studied concepts are the models where the supplier produces

at a finite rate and there is a shipment consolidation, and also the model that the retailer does

not hold any inventory in a VMI system.
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Chapter 3

DETERMINISTIC MODELS FOR COORDINATED PRODUCTION AND

SHIPMENT DECISIONS

In this chapter, we consider a single-supplier single-retailer supply chain system. Retailer

faces an external demand and sends orders to the supplier. Retailer does not hold inventory but

accumulates the orders to satisfy the customer’s demand where customers are willing to wait

at the expense of waiting costs. For instance, consider an expensive technology product that

is not reasonable for the retailer to keep in stock. In this case, inventory holding cost for the

retailer is high however waiting costs can be less for reasonable time intervals. This type of sales

is common for retail stores making catalog sales.

In our study, the supplier produces and holds inventory. She satisfies the orders from the

retailer according to the selected dispatch policies. When the supplier decides on the timing

and the quantity of the orders, one cost saving can be realized through shipment consolidation,

in which the orders are not sent immediately but they are accumulated for a while in order

to satisfy the scale of economies. There are two basic considerations of shipment dispatch

scheduling, which are: i) when to dispatch a vehicle in order to meet the service requirements

and ii) in what quantity to dispatch so that scale of economies are satisfied.

First we examine the case in which the supplier decides on the quantity and the timing of the

shipment dispatches to the retailer under the deterministic demand and production assumption.

This model minimizes the total cost of an integrated inventory/shipment consolidation policy

for the supplier and the retailer. In the second model, we consider a non-VMI model, in which

the retailer manages its own inventory and the inventory/shipment costs are assumed by the

retailer directly.
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3.1 Deterministic VMI Model with Shipment Consolidation

In this model, we introduce the problem of production and transportation policy of a supplier

in the case of a single supplier and a single retailer for a specific product in a vendor managed

inventory model. The production and the demand rate of the product is assumed to be constant

and known, denoted by µ and λ respectively.

Supplier produces the product and carries inventory to satisfy demand orders from the re-

tailer. Retailer faces an external demand from customers and receives the product from the

supplier. Retailer does not hold inventory and customers are willing to wait for their orders to

be satisfied for a reasonable waiting time. Waiting cost per unit time, denoted by w, is taken as

a penalty associated with delayed shipment. We assume that the transportation time between

the supplier and the retailer is negligible.

As we consider the case of using VMI, the supplier has full knowledge on demand and is

responsible for managing the inventory and determining the transportation amount Q, to the

retailer. According to our policy, supplier produces until an optimal amount of inventory level

is reached. During the production, the supplier continues to dispatch orders to the retailer. The

time length between the two successive starting production decisions is called as a replenishment

cycle, and the length of the time between two successive dispatches is denoted as a transportation

cycle. As it can be observed in Figure 3.1, T is the length of an inventory replenishment cycle

and there is a fixed number of transportation cycles within T . The length of the replenishment

cycle is important because of the production set up cost, which is paid by the supplier whenever

a production process starts. Kp is the production set up cost for the supplier and Kt is the fixed

cost of transportation of the product per shipment. The supplier’s cost of carrying one unit of

product per unit time is denoted by h, and customer waiting costs on retailer per unit per unit

time is denoted by w. We assume that the holding cost of the product is less than or equal to

the waiting cost per unit per unit time, i.e., h ≤ w.

The inventory transportation cycles within a replenishment cycle are illustrated in Figure 3.1.

We assume that the supplier produces until a predetermined inventory level, Qmax, and then
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stops producing until the end of the replenishment cycle. The retailer accumulates the demand

within a transportation cycle and satisfies all the demand at the end of the transportation cycle.

At the end of each transportation cycle, the supplier dispatches an amount equal to the demand

accumulated at the retailer since the previous dispatch decision.

Figure 3.1: Deterministic VMI Model.

Lemma 1 In the first cycle, the supplier produces an amount that is exactly equal to the demand

accumulated in that cycle.

Proof:

Consider a solution S, in which the supplier produces more than the demand accumulated

at the retailer within the first transportation cycle and then continues the production until the

inventory level at the supplier becomes Q. Consider another solution S′ which is exactly equal
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Figure 3.2: Deterministic VMI Model Lemma 1.

to S except that we start the production at a later time such that the supplier produces an

amount that is exactly equal to the demand accumulated in the first cycle and then continues

the production until the inventory level at the supplier becomes Q. We observe from Figure 3.2

that the supplier needs to pay a larger inventory holding cost with S compared to S′ because

of the excess inventory that the supplier needs to carry while everything else remains the same.

Thus, in the optimal solution, the supplier must start the production at time t within T1, such

that she produces an amount that is exactly equal to the demand accumulated in the first cycle.

Lemma 2 Under an optimal policy, if a replenishment cycle consists of more than two trans-

portation cycles, then all of the transportation cycles except the first one will be of equal length.
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Proof: Let P be a policy such that there are two successive transportation cycles, Ti and Tj ,

neither of which is the first transportation cycle, such that Ti > Tj . Also, suppose that P
′
is an

identical policy to P with the exception that the lengths of these two successive transportation

cycles are T
′
i = Ti− ε and T

′
j = Tj + ε where epsilon is a small constant. Hence, the total length

of the two cycles are of equal length in these two policies. We consider the inventory and demand

vs. time graphs, and calculate the cost differences between the policies P and P
′
. The difference

in the inventory holding cost which is shown as the hatched areas in the corresponding figures

between the policies P and P
′

are denoted as either loss or gain. The additional area caused

by P
′
compared to P is called as gain and the opposite is called as loss. In order to prove that

the policy P
′
is optimal, we have to show that the net area, (net area=loss-gain), which is the

difference between the loss and the gain must be positive. For this purpose, we analyze 4 cases

depending on the location of the successive cycles Ti and Tj . In Case 1, we assume that both of

these cycles are during the period when the supplier is making the production. In Case 2, we

analyze the case when Ti is during the production and the production stops during Tj . In Case

3, we consider the case that the production stops during Ti and no production is done during Tj

and finally in Case 4, we analyze the case when both Ti and Tj are in a no production period.

Case 1:In this case, we analyze the case when the two successive transportation cycles are

during the production phase as seen in Figure 3.3.
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Figure 3.3: Deterministic VMI Model Lemma 2 Case 1.

The cost decrease and increase caused by P
′
will be:

The decrease in cost caused by P
′
: (Ti − ε)λεh + (Ti − ε)λεw = (Ti − ε)λε(h + w).

The increase in cost caused by P
′
: λεTjh + λεTjh = λεTj(h + w).

In order to prove that the policy of P
′
is better than the P , we have to show that the net cost

difference (net area=loss-gain) is positive.

Net difference in the cost: λε(h + w)(Ti − ε− Tj) > 0.

Case 2: There are two successive transportation cycles in which there is a production process

during the transportation cycle and in the second one supplier stops production after reaching

Qmax. Case 2 is illustrated in Figure 3.4.

The cost decrease and increase caused by P
′
will be:

The decrease in cost by P
′
: (Ti − ε)λεh + (Ti − ε)λεw = (Ti − ε)λε(h + w).
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Figure 3.4: Deterministic VMI Model Lemma 2 Case 2.

Excess inventory holding cost by P
′
: λεTjh + λεTjh = λεTj(h + w).

In order to prove that the policy of P
′
is better than the P , we have to show that the net cost

difference (net area=loss-gain) is positive.

Net cost difference by P
′
: λε(h + w)(Ti − ε− Tj) > 0.

Which is the same result with case 1.

Case 3: There are two successive transportation cycles in which the supplier stops producing

after reaching Qmax and in the second one there is no production process as can be observed

in Figure 3.5.

The cost decrease and increase caused by P
′
will be:

Loss: (Ti − ε)λεh + (Ti − ε)λεw = (Ti − ε)λε(h + w).

Gain: λεTjh + λεTjh = λεTj(h + w).
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Figure 3.5: Deterministic VMI Model Lemma 2 Case 3.

In order to prove that the policy of P
′
is better than the P , we have to show that the net area

(net area=loss-gain) is positive.

Net: λε(h + w)(Ti − ε− Tj) > 0.

Which is the same result with case 1.

Case 4: There are two successive transportation cycles in which the supplier does not

produce as it is illustrated in Figure 3.6.

The cost decrease and increase caused by P
′
will be:

Loss: (Ti − ε)λεh + (Ti − ε)λεw = (Ti − ε)λε(h + w).

Gain: λεTjh + λεTjh = λεTj(h + w).

In order to prove that the policy of P
′
is better than the P , we have to show that the net area

(net area=loss-gain) is positive.
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Figure 3.6: Deterministic VMI Model Lemma 2 Case 4.

Net: λε(h + w)(Ti − ε− Tj) > 0.

Since the net area is positive when 0 < ε < Ti − Tj , we can decrease the costs by decreasing

Ti and increasing Tj proving that a solution in which Ti > Tj can not be optimal. In the similar

manner, we can also show that a solution in which Ti < Tj can not be optimal either. Thus,

in the optimal solution, two successive transportation cycles, except the first one, should be of

equal length.

Lemma 3 Under the optimal policy, if there is more than one transportation cycle within a

replenishment cycle, then the first transportation cycle is at least as long as the other cycles.
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Figure 3.7: Deterministic VMI Model Lemma 3.

Proof: Let P be a policy such that the first transportation cycle, T1, is shorter than its

predecessor, Tn, such that T1 < Tn. Also, suppose that P
′
is an identical policy to P with the

exception that the first transportation cycle T
′
1 = T1 + ε and T

′
n = Tn − ε where epsilon is a

small constant. Hence, the total length of the two cycles are of equal length in two policies. We

consider the inventory and demand vs. time graphs, and calculate the cost differences between

the policies P and P
′
.

Note that when Tn becomes shorter by ε, there will be less orders accumulated at the retailer

during the previous replenishment cycle. Hence, with P
′
, the supplier carries less inventory in

order to satisfy the demand at the retailer during the previous replenishment cycle compared

to the policy P . Let L > 0 denote the difference in inventory holding costs between P and P
′
,

which is coming from the previous cycle.
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Then, we can write the decrease in the inventory holding cost by P
′
as:

Tnλεh + (Tn − ε)λεh + λ(Tn − ε)εw + L = λεTnh + (Tn − ε)λε(h + w) + L

The increase in the inventory holding cost by P
′
will be:

[
λ2(T1 + ε)2

2µ
− λ2T 2

1

2µ

]
h + λεT1w

Net cost difference between P and P
′
will be:

Tnλεh + (h + w)(ελTn − ε2λ)− λεT1w − λ2hε2

2µ
− λ2hT1ε

µ
+ L > 0

Thus, we can decrease the cost by increasing T1 by ε when T1 < Tn. Hence, using lemma 2,

the first transportation cycle, denoted as T1 in Figure 3.7 should be at least as long as the other

cycles in the optimal solution.

The optimal production and transportation schedule is illustrated in Figure 3.8. Using the

Lemmas 1, 2 and 3, the supplier starts the production at a time t such that the inventory

level of the supplier drops to zero at the end of the first transportation cycle. T1 is the first

transportation cycle in a replenishment cycle and length of the first transportation cycle is at

least as long as the other transportation cycles. T = T1 + nTc is the length of a replenishment

cycle and the replenishment cycle consists of the first transportation cycle and n transportation

cycles which have the same time length.

Observe that, in Figure 3.7, l =
nλ

µ
, and lTc is the length of the production time after the

first cycle within the replenishment cycle; where k =
⌊

nλ

µ

⌋
is the number of Tc’s within the

production time period, and d =
lµ− (k + dme)λ

λ
= n− (k + dme) denotes the number of Tc’s

without production, where mTc is the production time within the last transportation cycle in

which there is a production process, m = l − k.
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Figure 3.8: Deterministic VMI Model.

Average total cost per unit time, denoted by G(n, T1, Tc), is given by

G(n, T1, Tc) =
cost of an inventory replenishment cycle

length of an inventory replenishment cycle
,

G(n, T1, Tc) =
Kp

T
+

(n + 1)Kt

T
+

λ2T 2
1 + AµT 2

c

2µT
h +

λ(T 2
1 + nT 2

c )
2T

w

=
Kp

T1 + nTc
+

(n + 1)Kt

T1 + nTc
+

λ2T 2
1 + AµT 2

c

2µ(T1 + nTc)
h +

λ(T 2
1 + nT 2

c )
2(T1 + nTc)

w,
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where

A = k2µ− k(k − 1)λ + [(k + l)µ− 2kλ]m + 2[lµ− kλ](1−m) + 2dlµ− [2dk + d(d + 1)]λ.

Note that the first term in the average total cost function is the supplier’s production cost

and the second term is the retailer’s transportation cost. The third term is the inventory holding

cost per unit time for the supplier and the last term is the customer waiting cost for the retailer.

In all the problems studied in this thesis, the objective is to minimize the total cost. Hence,

our problem can be presented as

min G(n, T1, Tc)

s.t. T1 ≥ 0, Tc ≥ 0 and n positive integer.

Lemma 4 For a given n, G is jointly convex in T1 and Tc.

Proof Let H be the Hessian matrix of G with two variables of T1 and Tc. The determinant

of the first element of H, H11, and H itself will be:

|H11| =
2µ[Kp + (n + 1)Kt] + T 2

c h(λ2n2 + Aµ) + µλT 2
c wn(n + 1)

µ(T1 + nTc)3

|H| =
2[Kp + (n + 1)Kt][λ2n2h + µλwn(n + 1) + Aµh]

µ(T1 + nTc)4

Since |H11| ≥ 0 and |H| ≥ 0, H is positive semidefinite. Thus G is jointly convex in T1 and Tc.

Setting the first derivative of G(n, T1, Tc) equal to zero and solving for T1, we obtain an ex-

pression of T1 as a function of Tc and n:

T1 = (λ2h + µλw)
√

2µ[Kp + (n + 1)Kt] + µT 2
c (AT1 + λnµ) + (λ2T1 + µλw)n2T 2

c − nTc.
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By substituting this expression of T1 into the cost function and setting the first derivative of

G(n, Tc) equal to zero and solving for Tc, we obtain Tc as a function of n,

Tc =

√
2n2λ(λh + µw)[Kp + (n + 1)Kt]

(Ah + λnw)[λn2(λh + µw) + µ(Ah + λnw)]
.

We obtain the cost function as a function of n and make a numerical search for the optimal

n which gives the smallest cost function value. Our cost function to make numerical search is

as follows:

G[n, T1(n), Tc(n)] =

√
2λ(λh + µw)[Kp + (n + 1)Kt](Ah + λnw)

λn2(λh + µw) + µ(Ah + λnw)
.

3.2 Deterministic non-VMI Model with Shipment Consolidation

In this model, we consider a non vendor managed inventory model such that the retailer buys

the product from the supplier and the retailer decides on the timings and the quantities of the

orders. The main difference from using VMI is that the order quantity of the retailer is not

determined by the supplier in a non-VMI system. Since the demand is observed by the retailer,

the retailer determines its own order quantity. When a retailer decides on the order quantity

under deterministic conditions, he will place orders based on his economic order quantity. Once

the retailer reaches its reorder point, a replenishment request is sent to the supplier, and the

order quantity Q is immediately shipped to the retailer. In this model, the supplier needs to

decide on his own production quantities. Observe that, for a given order quantity Q determined

by the retailer, it is optimal for the supplier to produce an amount equal to nQ in a production
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cycle where n is an integer. Otherwise, there will be an unnecessary excess inventory left over

at the end of the production cycle and it will increase the inventory costs of the supplier. In

this case, the supplier should decide on the value of n to minimize his own costs, considering

the value of Q which is determined by the retailer.

All the parameters used in this model are the same as the VMI model in the previous section.

Then the cost function of the retailer is as follows:

Cret =
2λKt + Q2w

2Q
.

Setting the first derivative of retailer’s cost function equal to zero and solving for Q, we

obtain the optimum order quantity Q for the retailer:

Qret =

√
2Ktλ

w
and Tc =

Qret

λ
.

According to Qret and Tc, determined by the retailer, the supplier determines the number of

transportation cycles in a production cycle, which is denoted by n. Then the average total cost

of the supplier is calculated as follows:

Csup =
Kp

nTc
+

ATc

2n
h,
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where

A =
λ2

µ
+ k2µ− k(k − 1)λ + [(2k + m)µ− 2kλ]m + 2[(k + m)µ− kλ](1−m)

+ 2d(k + m)µ− [2dk + d(d + 1)]λ

= k2(µ− λ)−m2µ− kλ + 2µl,

and all the other parameters are the same as the previous section.

Then, the total cost for the supply chain without VMI is:

Ctotal =
Kp + nKt

nTc
+

(Ah + nλw)Tc

2n
.

3.3 Deterministic Models When The Retailer Holds Inventory

In the previous sections, we assume that the retailer does not carry any inventory. However, in

this section the retailer holds inventory and the external demand of the customer is immediately

satisfied. We assume that the supplier’s cost of carrying one unit of a product per unit-time, h1,

is less than the retailer’s cost of carrying one unit of a product per unit-time, h2. As a result,

both the supplier and the retailer would like to take advantage of cost saving opportunities at

the supplier’s location. All the other parameters are the same with the models studied in the

previous chapter, except that h is replaced by h1 and, w is replaced by h2.

In this section, production and demand rates are assumed to be constant and known. Supplier

produces the product and both the retailer and the supplier carry inventory to satisfy the

demand. Retailer satisfies the external demand from its inventory which is replenished by the

supplier when inventory of the retailer drops to zero.
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3.3.1 Deterministic VMI Model When The Retailer Holds Inventory

Goyal [16] considers an integrated single supplier (vendor) single retailer (buyer) problem, in

which the supplier manufactures at a finite rate. Demand of the retailer is assumed to be

deterministic and the supplier dispatches shipments to the retailer per increasing quantities by

a factor which equals to the production rate divided by the demand rate. In his study Goyal

uses the same numerical examples as Lu [26], who considers the same problem based on the

integral number of equal shipments assumption. Numerical results of the Goyal gives better

solutions than the solutions of the study of Lu.

Hill [22] considers the same problem and concludes that the optimal shipment policy in-

volves a predetermined number, m, of shipments in a production cycle which increases by

a fixed factor and followed by fixed (number of transportation cycles-m) number of equal

sized shipments. The optimal sequence of shipments can therefore be written in the form

(q, kq, k2q, ..., km−1q, qc, ..., qc) where qc ≥ km−1q. Figure 3.9 shows the graph of the supplier,

retailer and the system inventory levels for this case. As the goal is to minimize the stock held

by the retailer, the deliveries are made when the retailer is about to be out of stock. This is

done to maintain the buffer stock x which is the stock that is needed by the retailer to satisfy

the demand during the suppliers manufacture of the first shipment. Hence the total stock in the

system is held at the bare minimum level.

Since this model was researched by Goyal, Lu and Hill [16, 26, 22], we are not going to

discuss the model in detail.
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Figure 3.9: VMI Model with Deterministic Production and Demand.

3.3.2 Deterministic non-VMI Model When The Retailer Holds Inventory

In the previous VMI model, demand is assumed to be deterministic and known by both the

retailer and the supplier. On the contrary, in a supply chain without VMI, the supplier observes

demand only indirectly through the retailer’s ordering policy.

In this section, since the demand is known by the retailer, we assume that he determines his

order quantity and so the time length between the transportation cycles, Tc. Once the retailer’s

inventory level drops to 0, a replenishment request is sent to the supplier, and the order quantity

is immediately shipped to the retailer. Supplier determines its own production process and the

length of the replenishment cycles. The main difference between not using and using VMI is

that the retailer’s order quantity is not determined by the supplier in a non-VMI system.

In case of not using VMI, the inventory model of the retailer is the same as the economic

order quantity model in inventory management. Observe that this model will be exactly the

same as the model analyzed in section 3.2. The length of Tc and the average total cost of the

retailer are calculated as follows:
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Gret(Tc) =
Kt

Tc
+

λTch2

2
, where Tc =

√
2Kt

λh2
.

According to Tc which is determined by the retailer, supplier determines the number of

transportation cycles in a replenishment cycle, denoted by n. Then the average total cost of the

supplier is calculated as follows:

Gsup(n) =
Kp

nTc
+

ATch1

2n
,

where

A =
λ2

µ
+ µ + (k2 − 1)µ− k(k− 1)λ + [(2k + m)µ− 2kλ]m + 2[(k + m)µ− kλ](1−m) + 2d(k +

m)µ− [2dk + d(d + 1)]λ.

Then, the total cost for the supply chain without VMI is:

GnoV MI = Gret(Tc) + Gsup(n) =
nKt + Kp

nTc
+

nλTch2 + ATch1

2n
=

(2nKt + Kp)λh2 + AKth1

n
√

2Ktλh2
.
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Chapter 4

STOCHASTIC MODELS FOR COORDINATED PRODUCTION AND

SHIPMENT DECISIONS

In this chapter, we analyze the coordinated inventory and shipment models under stochastic

demand and stochastic production. In the inventory system literature, the main source of the

system uncertainty is assumed to be randomness of the demand. However, in some cases, the

uncertainty in an inventory system can be caused by the random capacity of the supplier. Lack

of raw material, equipment failures and scraps in a production run may cause the randomness

in production. Additionally, classical literature assumes that demand should be satisfied as they

arrive. However, for some cases, a shipment consolidation policy can be implemented at the

expense of the inventory holding costs and the customer waiting costs. The main motivation of

the supplier and the retailer for a shipment consolidation is to dispatch larger quantities sat-

isfying the economies of scale in transportation. Shipment consolidation, that is implemented

on its own without coordination with the inventory decisions is denoted as a pure consolidation

policy. However, if the shipment consolidation is coordinated with inventory decisions, than

this approach is called as integrated inventory shipment consolidation policy. There are three

different shipment consolidation policies in the logistics literature. These are quantity-based,

time-based and hybrid policies. Under a quantity-based policy, shipments are dispatched when

a pre-determined consolidation quantity, Q, is reached. However, under a time-based policy,

shipments are dispatched in every pre-determined T periods, hence the dispatch quantity is a

random variable, and the transportation scale of economies may not be satisfied for some in-

stances. Hybrid policy is also called as time-and-quantity based policy. Under this policy, a

dispatch decision is at made at either when the size of a consolidated load exceeds Q (predeter-

mined dispatch quantity), or when the time from the last dispatch exceeds T (predetermined
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dispatch time), min{T (Q), Q}.

In the deterministic demand model explained in the previous chapter, these shipment con-

solidation policies are equivalent. That is, once the optimal order quantity is obtained than

the optimal transportation cycle length is known, and vice versa. However, for the case of

stochastic demand, the type of the shipment consolidation has an impact on the cost saving

of the vendor managed inventory system. In this chapter, we examine the cases in which the

supplier decides on the quantity and timing of the shipment dispatches according to the different

shipment policies by receiving demand information at the retailer under a VMI model setting.

We use Markov Decision Processes (MDP) to model this problem. First, we present a general

model using dynamic programming to obtain the optimal dispatching and replenishment policies

under general conditions. Then, we also examine the time-based and quantity-based dispatch

policies and provide models using dynamic programming approach in order to compare their

cost savings.

We use the same notation as in the deterministic model in the previous chapter. Because of

the stochastic rates of the demand and the production, the supplier may not satisfy all demand

orders from its own inventory. We assume that there is an ample supplier where the supplier

can buy with a cost of s per unit per unit time. We assume that the retailer is facing a random

demand which follows a poisson process with an arrival rate of λ and the production times

are assumed to have an exponential distribution with mean 1/µ. Cost parameters taken into

account are as follows:

Kp : fixed cost of production set up

Kt : fixed cost of dispatching shipment from the supplier to the retailer

h : inventory holding cost per unit per unit-time

w : customer waiting cost per unit per unit-time

s : supplier’s unit purchase price from an ample supplier
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4.1 VMI Model with Stochastic Production and Demand

In this model, the supplier manages a stochastic inventory system for a product that is undesir-

able for the retailer to keep in stock. Retailer does not satisfy the demand from its inventory but

accumulates the orders. The supplier satisfies the orders from its own inventory or by buying

from an ample supplier with a cost of s. The production rate of the supplier is µ, where the

production amount is a random variable distributed with Poisson distribution. The demand

also has a Poisson distribution with rate λ. The inventory level of the supplier is denoted by

I1 and the quantity of the demand orders at the retailer, which are waiting to be satisfied, is

denoted by I2. I1 and I2 are bounded by the capacity of the supplier and the retailer.

We use a dynamic programming approach and analyze an infinite-horizon model in order

to obtain optimal production and dispatch policies. Every time a product is produced by the

supplier or a demand arrives for the retailer, supplier must take decisions such as dispatching

and stock replenishing. Decisions of the supplier on start/continue production or dispatching the

product depend on the current inventory of the supplier and number of the orders accumulated

at the retailer. Whenever the supplier decides to dispatch, she needs to determine the dispatch

quantity Q, which is 0 ≤ Q ≤ I2, where I2 is the total unsatisfied demand accumulated at

the retailer. After each decision and the action, the inventory on hand and the accumulated

unsatisfied order quantity are recorded. The state of the system can be defined as (j, I1, I2),

where j represents the state of the production and I1 and I2 denote the inventory level of the

supplier, and the accumulated demand at the retailer, respectively. Let S be the state space

of the system and be defined as follows: S = {(j, I1, I2) : (I1, I2) ≥ 0, j ∈ {0, 1}} where j = 0

means there is no production at the supplier and j = 1 denotes that the production process

is ongoing at the supplier at that time. This model can be formulated as a continuous time

Markov decision process with the objective of minimizing expected total discounted cost over

an infinite time horizon, with a discount rate β. We use uniformization and normalization to

analyze the system. We rescale the parameters as λ′ + µ′ + β′ = 1, so that the system will be

observed at exponentially distributed intervals with mean 1. In the remainder of the thesis, the
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tildes will be omitted to simplify the appearance. Let V (j, I1, I2) be the expected minimum

total cost when the production is in state j, inventory level of the supplier is I1 and there are

I2 customers waiting at the retailer.

The mathematical model for state {0, I1, I2} is as follows:

V (0, I1, I2) = min
0≤Q<I2+1

{λV (1,max(0, I1 −Q), I2 + 1−Q)

+ µV (1,max(1, I1 + 1−Q), I2 −Q) + s(Q− I1)+ + Kp + IQ>0Kt,

λV (0,max(0, I1 −Q), I2 + 1−Q) + µV (0, I1, I2) + s(Q− I1)+ + IQ>0Kt}

+ I1h + I2w.

(4.1)

In the equation 4.1, V (0, I1, I2) denotes that there is no production process at the supplier,

supplier’s inventory level equals to I1, and there are I2 customers at the retailer. After each

production or on a new demand arrival, the supplier decides on the dispatch quantity minimizing

the total cost, which is 0 ≤ Q ≤ I2. If the supplier decides to dispatch more products than

there are in her inventory, then she buys from an ample supplier with a cost of s per unit per

unit time, s(Q − I1)+. Note that, s can be chosen high enough if outsourcing is not allowed.

Whenever a shipment is dispatched, Q > 0, the supplier must pay the transportation cost Kt,

leading to the term IQ>0Kt.

Supplier may decide to start the production and whenever supplier starts producing, the

state of the production changes from j = 0 to j = 1. After the decision of starting production,

the inventory level of the supplier increases by 1 with the probability of µ, leading to the term

µV (1,max(1, I1 + 1 − Q), I2 − Q), or a new demand arrival may occur with probability of λ,

which leads to the term λV (1,max(0, I1 −Q), I2 + 1−Q). In the case of new demand arrival,

the number of customers waiting at the retailer, I2, increases by 1. Each time production starts,

the supplier must pay production set up cost, Kp. If the supplier decides to dispatch more than

her own inventory, then she has to buy Q− I1 units of the product from an ample supplier with
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the cost of s(Q− I1)+. For every dispatch decision, the supplier has to pay the transportation

cost Kt.

On the other hand, the supplier may decide not to start production and there may be a new

demand at the retailer with probability λ. Arrival of a new customer increases I2 by 1 and it

leads to the term λV (0,max(0, I1 −Q), I2 + 1−Q).

In every period, the supplier must pay the inventory holding cost, I1h and the retailer pays

customer waiting cost I2w. We also include the term µV (0, I1, I2) to account for the dummy

production in state j = 0.

For state {1, I1, I2} the mathematical model is:

V (1, I1, I2) = min
0≤Q<I2+1

{λV (1,max(0, I1 −Q), I2 −Q + 1)

+ µV (1,max(1, I1 −Q + 1), I2 −Q) + s(Q− I1)+ + IQ>0Kt,

λV (0,max(0, I1 −Q), I2 −Q + 1) + µV (0, I1, I2) + s(Q− I1)+ + IQ>0Kt}

+ I1h + I2w.

(4.2)

In equation 4.2, V (1, I1, I2) denotes that there is a production at the supplier, the inventory

level of the supplier and the number of customers at the retailer are I1 and I2, respectively. The

supplier may decide to continue the production or stop.

If the supplier continues production, the new product may be produced with probability

µ before any demand arrival, or a demand arrival may occur with probability λ before the

production. Similar to equation 4.1, after each production of an item or a new demand arrival,

the supplier decides on the dispatch quantity minimizing the total cost, which is 0 ≤ Q ≤ I2,

and whenever Q > 0, the supplier must pay the transportation cost Kt, IQ>0Kt.

In this case, if the supplier decides to stop production, then j changes from 1 to 0. The rest

of the terms in the equation 4.2 are the same as in the equation 4.1.

In this section, we develop a dynamic programming model for a single supplier single retailer

inventory control and shipment planning problem, aiming to optimize the expected minimum
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total discounted cost. Since our objective is to understand the behavior of the optimal policies,

we study a general model. However, because of the non monotonicity and the complex results

depending on the states of the system, it is difficult to obtain a general policy on the shipment

and inventory management. Also, in practice it is hard to implement such policies since the

decisions that need to be taken depend on the states and there are no general rules, which

causes the companies invest money and time while making decisions. Thus, managers would

prefer more applicable policies in order to adapt the fast pace of the market. Hence, in the next

section, we study the temporal shipment dispatch policies to obtain more general policies and

strategies.

4.2 VMI Model with Time-Based Dispatch Policy

In a time-based dispatch policy, the accumulated load, which satisfy all outstanding demands, is

dispatched in every T time lengths. Under a time-based dispatch policy, the dispatch quantity

is a random variable in the stochastic demand case. Therefore, for some demand quantities

dispatch load may not realize the economies of scale. However, a time-based policy assures that

each demand is dispatched at a predetermined shipment date. Hence, a time-based policy is

more appropriate for satisfying customer service requirements because of the pre-determined

due dates of the shipments. Moreover, in practical applications, it may be easier to schedule

dispatches so that a shipment is realized on a periodic basis.

In the transportation contracts between the supply chain members, time-based shipment

policies are also known as time definite delivery (TDD) agreements. These kind of contracts

are common between the manufacturers and their third party logistics service provider part-

ners. According to the TDD agreements, the third party logistics provider supplies warehousing

and transportation for a manufacturer and guarantees the timely delivery to the customers of

the manufacturer. TDD agreements may also be adopted for the inbound dispatches to the

manufacturer itself.

In this model, similar to the previous models, the retailer faces an external demand from

customers and accumulates these orders to be satisfied at a later time when a shipment is
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received from the supplier. The retailer does not hold any inventory. The supplier produces the

product and she is authorized to manage her inventory and determine the dispatch frequency to

the retailer. The supplier adopts a time-based policy and ships an amount equal to the amount

of the accumulated orders at the retailer during a predetermined time length T . Along with the

optimal maximum inventory level, Qmax for the supplier, the transportation cycle length, T , is

also a decision variable. As shipments are consolidated, the trade off between scale economies

associated with the transportation and customer waiting costs play an important role in this

model.

Figure 4.1: Time-Based Stochastic Production Model.
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In this model, production and demand quantities are stochastic and assumed to have a

poisson distribution with rate µ and λ respectively. In this model, we aim to determine the

optimal values of the cycle length, T , the maximum inventory level that the supplier should set

for production, Qmax and when to start the production if he is in a non-production state. As

seen in figure 4.1, when the supplier is in a non-production state and has an inventory level of I

just after making a shipment to the retailer, he waits for a certain time, tI and then starts the

production until the predetermined maximum inventory level Qmax is achieved. The supplier

dispatches the shipments to the retailer in every T time periods. Note that if tI > T , then the

supplier would not produce anything in that transportation cycle. Let P the be amount of the

products that the supplier produces and D be the demand accumulated at the retailer during

a transportation cycle period, T . The supplier dispatches D units of the product to the retailer

from its own inventory or by buying from an ample supplier at the end of each T time periods.

Once the inventory level of the supplier reaches Qmax, then the supplier stops production for

some time and whenever the supplier decides to start production again the new replenishment

cycle begins.

Let P1 be the quantity of the products produced in time length T . The probability that

P1 = x is:

P (P1 = x) = PP1 =
e−µT (µT )x

x!
, x ≥ 0.

Let tI be the waiting time before starting the production, whenever the inventory level on the

supplier equals to I and there is no production at the supplier and P2 denote the quantity of

the products produced in time length T − tI which has the probability distribution as:

P (P2 = x) = PP2 =
e−µ(T−tI)[µ(T − tI)]x

x!
, x ≥ 0.

Let Vi(j, I) be the total β-discounted minimal cost of the system when it is currently in state

(j; I) at stage i where j represents the state of the production process and I is the inventory

level of the supplier. j = 0 denotes that there is no production currently at the supplier and,
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j = 1 denotes ongoing producing at the supplier. Let S be the state space of the system and

define it as follows: S = {f(j; I) : I ≥ 0; jε{0, 1}}.

We look at the system at every T time units, after a shipment is made, and write a dynamic

programming model for this system. For a given T and Qmax, the dynamic programming model

for state (1, I) is as follows:

Vi(1, I) = ED,P1

{
e−βT Vi+1[1I+P1<Qmax ,max(0,min{Qmax, I + P1} −D)]

+ e−βT s[D − (min{Qmax, I + P1})]+ +
DT

2
w

+
[
IT +

T

P1 + 1
(min{Qmax − I, P1 + 1} − 1)(min{Qmax − I, P1 + 1})

2

+ min{Qmax − I, P1+1}
(

T − T

P1 + 1
min{Qmax − I, P1 + 1}

)]
h

}
+ Kt.

(4.3)

Vi(1, I) =
Qmax−I−1∑

P1=0

{ ∞∑
D=0

[
e−βT Vi+1[1,max(0, I + P1 −D)] + e−βT s[D − (I + P1)]+ +

DT

2
w

]
pD

+
(

IT +
P1T

2

)
h

}
PP1

+
∞∑

P1=Qmax−I

{ ∞∑
D=0

[
e−βT Vi+1[0,max(0, Qmax −D)] + e−βT s(D −Qmax)+ +

DT

2
w

]
pD

+
[
IT +

T

P1 + 1
(Qmax − I − 1)(Qmax − I)

2
+ (Qmax − I)

(
T − T

P1 + 1
(Qmax − I)

)]
h

}
PP1

+ Kt.

(4.4)

In the equation 4.4, Vi(1, I) denotes that the production is ongoing and there are I products

at the supplier. According to our assumption for this model, whenever a production starts, the
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supplier must produce till the inventory level reaches Qmax. Hence, the supplier does not have

to decide on producing or not since the production has already been started. Therefore, in this

equation, there is no minimization, but we sum the costs over the demand and the production

probabilities.

First two lines of the equation 4.4, are the total cost of producing less than Qmax in the time

length T with probability PP1 . In the case of production quantity of P1, the inventory level of

the supplier increases by P1 and decreases by the quantity of the demand D with probability

pD, where 0 ≤ D ≤ ∞. If the accumulated demand within T is higher than the inventory

level of the supplier at the end of T , then the supplier must buy the difference from an ample

supplier with the cost of s per unit, leading to a cost of s[D − (I + P1)]+. Then,
DT

2
w is the

customer waiting cost during T depending on the demand quantity D and the probability pD,

and
(

IT +
P1T

2

)
h is the inventory holding cost of the supplier, which depends on the quantity

of P1 with probability distribution PP1 .

The third and fourth lines of the equation 4.4 are the total cost in the case of stopping

the production within the transportation cycle T . According to our assumption, the supplier

produces till Qmax, and when this level is achieved, we stop the production. At the end of the

time length of T , just after a shipment is made, the inventory level of the supplier equals to

max(0, Qmax −D).

At the end of the each transportation cycle, the supplier must pay the transportation cost

of Kt.

Similarly, for given T , Qmax and tI values, the dynamic programming model for state (0, I)

is as follows:
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Vi(0, I) = ED,P1

{
e−βT Vi+1[1I+P2<Qmax ,max(0,min{Qmax, I + P2} −D)]

+ e−βT s[D −min{Qmax, I + P2}]+ +
DT

2
w

+
[
IT +

(T − tI)min{Qmax − I, P2 + 1}min{Qmax − I − 1, P2}
2(P2 + 1)

]
+ (1I+P2<Qmax)(Qmax − I)

(
T − (T − tI)(Qmax − I − 1)

P2 + 1

)
h

}
+ Kp + Kt,

∞∑
D=0

[
e−βT Vi+1[0,max(0, I −D)] + e−βT s(D − I)+ +

DT

2
w

]
pD + ITh + Kt.

(4.5)

Vi(0, I) = min

{ Qmax−I−1∑
P2=0

{ ∞∑
D=0

[
e−βT Vi+1[1,max(0, I + P2 −D)] + e−βT s[D − (I + P2)]+ +

DT

2
w

]
pD

+
[
IT +

P2(T − tI)
2

]
h

}
PP2

+
inf∑

P2=Qmax−I−1

{ ∞∑
D=0

[
e−βT Vi+1[0,max(0, Qmax −D)] + e−βT s(D −Qmax)+ +

DT

2
w

]
pD

+
[
IT +

T − tI
P2 + 1

(Qmax − I − 1)(Qmax − I)
2

+ (Qmax − I)
(

T − (T − tI)(Qmax − I − 1)
P2 + 1

)]
h

}
PP2

+ Kp,
∞∑

D=0

[
e−βT Vi+1[0,max(0, I −D)] + e−βT s(D − I)+ +

DT

2
w

]
pD + ITh

}
+ Kt.

(4.6)

In the equation 4.6, Vi(0, I) denotes that there is no production at the supplier and the

inventory level of the supplier is I at the beginning of stage i. The supplier has to decide whether

to start production during this transportation cycle or not. In case of starting production, the

supplier has to chose the production starting time, which is denoted as tI , to minimize the
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total cost. P2 is the number of units produced during the time length T − tI . Whenever the

production starts j = 0 becomes j = 1.

The first two lines of equation 4.6 show the cost when the supplier starts production at time

tI and the total inventory of the supplier is less than Qmax at the end of T . In this case, the

inventory of the supplier equals to max(0, I + P2 − D) at the end of the transportation cycle

depending on the demand quantity D. Similar to Equation 4.3, the supplier must buy the excess

demand from an ample supplier with a cost of s[D − (I + P2)]+. Then,
∑∞

D=0

(
DT

2
w

)
pD is

the customer waiting cost depending on D and
∑Qmax−I−1

P2=0

{[
IT +

P2(T − tI)
2

]
h

}
PP2 is the

inventory holding cost of the supplier depending on the quantity of P2.

The third and fourth lines of equation 4.6 denote the cost of the supplier when he produces

Qmax − I units during T − tI time units. In this case, the inventory level of the supplier is

max(0, Qmax − D) at the end of the transportation cycle, and j = 0 since the inventory level

reaches to Qmax within T and the production is stopped. Thus, the cost of the next state will

be Vi+1[0,max(0, Qmax − D)]. Since buying from ample supplier, customer waiting and the

inventory holding cost terms are similar to the terms in the previous equation, we are not going

to discuss them further. When the supplier starts production, he must pay the production set

up cost Kp.

The last line of the equation 4.6, is the cost when the supplier decides not to produce during

stage i. Since there is no production, the inventory of the supplier decreases by the demand

quantity D at the end of the transportation cycle, Vi+1[0,max(0, I − D)]. If the demand is

more than the inventory of the supplier, then the supplier must buy from an ample supplier

with a cost of s(D − I)+. In both cases the transportation cost must be paid in every T time

intervals. ITh is the inventory holding cost of the supplier during the time length T . The

supplier has to choose between starting production or not according to their costs. Hence, there

is a minimization problem between the sum of the first five lines and the last line of the equation

4.6. In both cases, the supplier must pay the transportation cost Kt at the end of T .
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4.3 VMI Model with Quantity-Based Dispatch Policy

A quantity-based dispatch policy makes a shipment whenever the outstanding customer orders

are accumulated to a predetermined quantity, Q. Under the quantity-based policy, the dispatch

quantity assures transportation scale of economies, but a specific dispatch time cannot be guar-

anteed. In the literature, it is presented that the quantity-based policy is always superior to the

time-based dispatch policy in terms of the resulting average supply chain costs. On the other

hand, because the quantity-based shipment requires continuous updating of the information on

customer orders, it may incur higher auditing cost than the time-based shipment, where the

system is periodically reviewed. Moreover, it is not practical to make dispatches whenever the

dispatch quantity Q is realized, compared to the periodical shipment of the time based policy.

Figure 4.2: Quantity-Based Stochastic Production Model.
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In this model, production of the supplier and the demand are stochastic and have a Poisson

distribution with rate µ and λ respectively. The supplier must dispatch a quantity of Q to

the retailer whenever there are Q orders at the retailer. Let tI denote the waiting time before

starting the production, whenever the inventory level on the supplier equals to I just after a

shipment is made, and the supplier is not currently in a production state. As seen in figure 4.2,

the supplier starts the production after tI time units in the first transportation cycle within a

replenishment cycle and he continues the production till the inventory level of Qmax is reached

and then stops production. Let T denote the time length between successive dispatches. Note

that T is a random variable in this case and has an Erlang distribution with the parameters Q

and λ:

f(T ;Q,λ) =
λQTQ−1e−λT

(Q− 1)!
, T, λ ≥ 0, Q is integer.

The amount of the products produced during T time units is denoted as P1 and it is a

random value depending on the length of the time length T and has probability distribution

PP1(x), where

P (P1 = x) = PP1 =
e−µT (µT )x

x!
, x ≥ 0.

Also let P2 denote the amount of the products produced in time length T − tI which has the

probability:

P (P2 = x) = PP2 =
e−µ(T−tI)[µ(T − tI)]x

x!
, x ≥ 0.

Vi(j, I) is the total β-discounted minimum cost of the system. The states of the system and

the actions are the same as in the time-based dispatch policy model discussed in the previous

section.

We look at the system at the times of the shipments and write a dynamic programming
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model for this system. For a given Q and Qmax, the dynamic programming model for state

(1, I) is as follows:

Vi(1, I) = ET,P1

{
e−βT Vi+1[1I+P1<Qmax ,max(0,min{Qmax, I + P1} −Q)]

+ e−βT s[Q− (min{Qmax, I + P1})]+

+
[
IT +

T

2
min{Qmax − I, P1 + 1}min{Qmax − I − 1, P1}

P1 + 1

+ (Qmax − I)
(

T − T

P1 + 1
min{Qmax − I − 1, P1 + 1}

)]
h +

(Q− 1)T
2

w

}
+ Kt.

(4.7)

Vi(1, I) =
∫ ∞

T=0

{ Qmax−I−1∑
P1=0

[
e−βT Vi+1[1,max(0, I + P1 −Q)] + e−βT s[Q− (I + P1)]+

+
(

IT +
P1T

2

)
h

]
PP1

+
inf∑

Qmax−I

[
e−βT Vi+1[0,max(0, Qmax −Q)] + e−βT s(Q−Qmax)+

+
[
IT +

T

P1 + 1
(Qmax − I − 1)(Qmax − I)

2
+ (Qmax − I)

(
T − T (Qmax − I − 1)

P1 + 1

)]
h

]
PP1

+
(Q− 1)T

2
w

}
f(T )

+ Kt.

(4.8)

In the equation 4.8, Vi(1, I) denotes that the system is in stage i, the supplier is in a produc-

tion state and there are I units of product at the supplier. According to our assumptions, after

the production begins, the supplier has to continue the production until her inventory reaches
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Qmax.

The first two lines of the equation 4.8 denote the cost when the inventory level of the supplier

does not reach to Qmax in that cycle, when the demand accumulated at the retailer is equal to Q.

At the end of the period, inventory level of the supplier increases by the amount that is produced

within T minus the dispatch quantity Q, leading to the value function Vi+1[1,max(0, I+P1−Q)].

Whenever the dispatch quantity Q is more than the inventory of the supplier, the supplier has

to buy Q − (I + P1) units of the product from an ample supplier with the unit cost of s.(
IT +

P1T

2

)
h is the inventory holding cost of the supplier within time period T .

The third and fourth lines of the equation 4.8 denote the cost for the case of producing

Qmax − I units within T . The inventory level of the supplier is equal to Qmax − Q at the end

of the period and the supplier has to buy from an ample supplier if Q is bigger than Qmax with

a cost of s(Q−Qmax)+. The fourth line of the equation 4.8 is the inventory holding cost of the

supplier.

Customer waiting cost of the retailer within T is
(Q− 1)T

2
w, and the supplier has to pay

the transportation cost Kt at the end of each stage.

Vi(0, I) = min

{ ∫ ∞

T=0

[
e−βT Vi+1[0,max(0, I −Q)] + e−βT s(Q− I)+ + ITh +

(Q− 1)T
2

w

]
f(T ),∫ tI

T=0

[
e−βT Vi+1[0,max(0, I −Q)] + e−βT s(Q− I)+ + ITh +

(Q− 1)T
2

w

]
f(T )

+ ED,T>tI

{
e−βT Vi+1[1I+P2<Qmax ,max(0,min{Qmax, I + P2} −Q)]

+ e−βT s[Q−min{Qmax, I + P2}]+

+
[
IT + (T − tI)

min{Qmax − I, P2 + 1}min{Qmax − I − 1, P2}
2(P2 + 1)

+ (Qmax − I)
(

(T − tI)−
T − tI
P2 + 1

min{Qmax − I − 1, P2 + 1}
)]

h +
(Q− 1)T

2
w + Kp

}}
+ Kt.

(4.9)
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Vi(0, I) = min

{ ∫ ∞

T=0

[
e−βT Vi+1[0,max(0, I −Q)] + e−βT s(Q− I)+ + ITh +

(Q− 1)T
2

w

]
f(T ),∫ tI

T=0

[
e−βT Vi+1[0,max(0, I −Q)] + e−βT s(Q− I)+ + ITh +

(Q− 1)T
2

w

]
f(T ) (4.10)

+
∫ ∞

T=tI

{ Qmax−I−1∑
P2=0

[
e−βT Vi+1[1,max(0, I + P2 −Q)] + e−βT s[Q− (I + P2)]+ (4.11)

+
(

IT +
P2(T − tI)

2

)
h

]
PP2 (4.12)

+
∞∑

P2=Qmax−I

[
e−βT Vi+1[0,max(0, Qmax −Q)] + e−βT s(Q−Qmax)+ (4.13)

+
[
IT +

(Qmax − I − 1)(Qmax − I)(T − tI)
2(P2 + 1)

(4.14)

+ (Qmax − I)
(

(T − tI)−
(Qmax − I − 1)(T − tI)

P2 + 1

)]
h

]
PP2 (4.15)

+ KP +
(Q− 1)T

2
w

}
f(T )

}
(4.16)

+ Kt.

(4.17)

In the equation 4.9, Vi(0, I) denotes that the system is at stage i, there is no production at

the supplier, and the inventory level of the supplier equals to I. Since the production has not

started yet, the supplier has to decide on whether to start the production or not. If the supplier

decides to commence production then she has to determine the time to start production, which

is denoted by tI in the above equation.

The first line of equation 4.9 denotes the cost for the case when the supplier does not start

production within T . The state of the production remains the same, j = 0, and the inventory

level of the supplier is I −Q or 0 at the end of the period. If the dispatch quantity Q is more

than the inventory of the supplier, then the supplier buys Q − I units of the product from an

ample supplier. ITh and
(Q− 1)T

2
w is the inventory holding and the customer waiting costs of

the supplier and the retailer respectively.
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Equation 4.10 is the cost that the supplier decides to start production, but the length of

the time period T is shorter than the waiting time before production tI . Hence, there is no

production within T and the production state j remains 0. Inventory level of the supplier is

I −Q at the end of the transportation cycle, the supplier holds inventory level of I during the

cycle, and if Q is more than the amount of the inventory at the supplier, the supplier buys the

difference from an ample supplier.

4.11 and 4.12 denote the cost when the supplier decides to start production and produces

less than or equal to Qmax − I − 1 during the cycle. P2 denotes the amount that the supplier

produces during the transportation cycle. Since the production is ongoing, j changes from 0 to

1.

4.13, 4.14 and 4.15 denote the cost in the case that the supplier decides to start production

and the supplier produces Qmax − I units during this cycle. After reaching the inventory level

of Qmax, the supplier stops production, thus j equals to zero at the end of the cycle.

In the equation 4.17, the first line is the cost when the supplier decides not to start production,

where the sum of the equations from 4.10 to 4.16 denotes the cost of the decision of starting

production. KP is the production set up cost of the supplier and
(Q− 1)T

2
w is the customer

waiting cost of the retailer. In both decisions, the supplier has to pay the transportation cost at

the end of the transportation cycle in order to dispatch Q units of the product to the retailer.
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4.4 Stochastic Inventory Models When The Retailer Holds Inventory

In this section, we consider the stochastic demand and production for the retailer and the supplier

respectively in a model where the retailer also holds inventory and satisfies the customer demand

immediately from the inventory. Similarly to the previous chapter, we analyze the time-based

and quantity-based dispatch policies for this model.

4.4.1 VMI Model with Time-Based Dispatch Policy

In time based dispatch policy, the supplier sends product to the retailer in every predetermined

T time units. In every dispatch, supplier increases the retailer’s inventory to the level of Q. If

the inventory of the retailer drops to zero before the dispatch of the supplier, the retailer can

not satisfy all the external demand within T and incurs a lost sales cost of b per unit per unit

time. In this case, the supplier sends Q units to the retailer at the time of shipment. In the case

of the demand in T being less than Q, the supplier dispatches to the retailer in the amount of

D, where D denotes the quantity of the external demand. At the dispatch time, if the inventory

of the supplier is not sufficient to satisfy the order of the retailer, the supplier supplements from

an ample supplier with a cost of s per unit per unit time.

In this section, production of the supplier is also stochastic as the demand, and P1 denotes

the quantity of the products produced in time length T . The probability that P1 = x is:

P (P1 = x) = PP1 =
e−µT (µT )x

x!
, x ≥ 0.

Similar to the previous section, Vi(j, I) is the expected minimum total cost at stage i when the

inventory level of the supplier is I. j = 0 denotes that there is no production and j = 1 means

that the supplier is in production in that stage.
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Figure 4.3: Time-Based Stochastic Production Model.

The mathematical model for the state (1, I) is as follows:

Vi(1, I) =
Qmax−I∑

P1=0

{ ∞∑
D=0

[
e−βT Vi+1[1,max(0, I + P1 −min(Q,D))] + b(D −Q)+

+ s[min(Q,D)− (I + P1)]+ +
[
Q[min(Q,D) + 1]− min(Q,D)[min(Q,D) + 1]

2

]
T

D + 1
h2

]
pD

+
(

IT +
P1T

2

)
h1

}
PP1

+
∞∑

P1=Qmax−I+1

{ ∞∑
D=0

[
e−βT Vi+1[0,max(0, Qmax −min(Q,D))] + b(D −Q)+ + s[min(Q,D)−Qmax]+

+
[
Q[min(Q,D) + 1]− min(Q,D)[min(Q,D) + 1]

2

]
T

D + 1
h2

]
pD

+
[
IT +

T

P1 + 1
(Qmax − I − 1)(Qmax − I)

2
+ (Qmax − I)

(
T − T

P1 + 1
(Qmax − I)

)]
h1

}
PP1 + Kt

(4.18)
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In equation 4.18, Vi(1, I) is the expected minimum total cost when the system is in stage

i, the supplier is in production and the inventory level of the supplier is I. First three lines

denote the total cost when the produced quantity within T is less than Qmax. Inventory of the

supplier increases by P1 and decreases by the minimum of the predetermined amount Q or the

total demand at the retailer within T . Whenever the demand is more than Q, the inventory of

the retailer, there is a backlog cost of b per unit per unit time. If the inventory of the supplier

is not sufficient to satisfy the dispatch quantity, min(Q,D), then she has to supply from an

ample supplier with the cost of s per unit per unit time. h2 is the inventory holding cost of the

retailer and the total inventory holding cost of the retailer depends on the demand during the

time length T . Inventory holding cost of the supplier is h1. Last three lines of the equation 4.18

denote the total cost when the supplier produces until Qmax and stops production. In this case,

j changes to 0 from 1. At the end of the each dispatch time T , the supplier must dispatch the

minimum of (Q,D) and pay the transportation cost of Kt.

In this model, tI denotes the waiting time before starting the production, whenever the

inventory level on the supplier equals to I and there is no production at the supplier. Let P2

denote the quantity of the products produced in time length T − tI which has the probability:

P (P2 = x) = PP2 =
e−µ(T−tI)[µ(T − tI)]x

x!
, x ≥ 0.

The mathematical model for the state (0, I) is as follows:
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Vi(0, I) = min

{ Qmax−I∑
P2=0

{ inf∑
D=0

[
e−βT Vi+1[1,max(0, I + P2 −min(Q,D))] + b(D −Q)+

+ s[min(Q,D)− (I + P2)]+ +
[
Q[min(Q,D) + 1]− min(Q,D)[min(Q,D) + 1]

2

]
T

D + 1
h2

]
pD

+
[
IT +

P2(T − tI)
2

]
h1

}
PP2

+
inf∑

P2=Qmax−I+1

{ inf∑
D=0

[
e−βT Vi+1[0,max(0, Qmax −min(Q,D))] + b(D −Q)+ + s[min(Q,D)−Qmax]+

+
[
Q[min(Q,D) + 1]− min(Q,D)[min(Q,D) + 1]

2

]
T

D + 1
h2

]
pD

+
[
IT +

T − tI
P2 + 1

(Qmax − I − 1)(Qmax − I)
2

+ (Qmax − I)
(

T − (T − tI)(Qmax − I − 1)
P2 + 1

)]
h1

}
PP2

+ Kt + Kp,

inf∑
D=0

[
e−βT Vi+1[0,max(0, I −min(Q,D))] + b(D −Q)+ + s[min(Q,D)− I]+

+
[
Q[min(Q,D) + 1]− min(Q,D)[min(Q,D) + 1]

2

]
T

D + 1
h2

}
pD + ITh1 + Kt

}
(4.19)

In equation 4.19, Vi(0, I) denotes that the system is at stage i, there is no production at the

supplier and the inventory level of the supplier is I. Sum of the first seven lines is the cost of

the system when the supplier decides to start production, thus there is a production set up cost

Kp at the end of line seven, and the last two lines are the cost in the case of deciding not to

produce in that stage. The first three lines denote the cost when the supplier produces less than

Qmax within T . P2 differs from P1 in the equation 4.18, since there is a waiting time before

starting production in equation 4.19 and production has been already started in the previous

stage in equation 4.18. In the last two lines of the equation, the supplier does not produce but

dispatches the minimum of the Q or demand to the retailer. Since all the terms are similar to

the terms in 4.18, we do not discuss them in detail.
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4.4.2 VMI Model with Quantity-Based Dispatch Policy

In this model, we assume that when the inventory level of the retailer drops to 0 and a demand

arrives to the retailer, the supplier makes a shipment of amount Q to the retailer. We assume

that the lead time is negligible, there is no need to make a shipment before the inventory of the

retailer is 0 and a demand comes to the retailer. If the inventory level of the supplier is not

sufficient to ship Q units, then the supplier buys the necessary quantity from an ample supplier.

Therefore, the supplier always sends Q units to the retailer.

All the formulations are identical to the quantity-based dispatch policy which is studied in

the previous chapter thus we shall not discuss the models again. As stated before, the parameter

h is replaced by h1 and w by h2.

Figure 4.4: Quantity-Based Stochastic Production Model.
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The mathematical model for state (1, I) is as follows:

Vi(1, I) =
∫ ∞

T=0

{ Qmax−I−1∑
P1=0

[
e−βT Vi+1[1,max(0, I + P1 −Q)] + e−βT s[Q− (I + P1)]+

+
(

IT +
P1T

2

)
h1

]
PP1 +

inf∑
Qmax−I

[
e−βT Vi+1[0,max(0, Qmax −Q)] + e−βT s(Q−Qmax)+

+
[
IT +

T

P1 + 1
(Qmax − I − 1)(Qmax − I)

2
+ (Qmax − I)

(
T − T (Qmax − I − 1)

P1 + 1

)]
h1

]
PP1

+
(Q− 1)T

2
h2

}
f(T ) + Kt.

(4.20)

The mathematical model for state (0, I) is as follows:

Vi(0, I) = min

{ ∫ ∞

T=0

[
e−βT Vi+1[0,max(0, I −Q)] + e−βT s(Q− I)+ + ITh1 +

(Q− 1)T
2

h2

]
f(T ),∫ tI

T=0

[
e−βT Vi+1[0,max(0, I −Q)] + e−βT s(Q− I)+ + ITh1 +

(Q− 1)T
2

h2

]
f(T )

+
∫ ∞

T=tI

{ Qmax−I−1∑
P2=0

[
e−βT Vi+1[1,max(0, I + P2 −Q)] + e−βT s[Q− (I + P2)]+

+
(

IT +
P2(T − tI)

2

)
h1

]
PP2

+
∞∑

P2=Qmax−I

[
e−βT Vi+1[0,max(0, Qmax −Q)] + e−βT s(Q−Qmax)+

+
[
IT +

(Qmax − I − 1)(Qmax − I)(T − tI)
2(P2 + 1)

+ (Qmax − I)
(

(T − tI)−
(Qmax − I − 1)(T − tI)

P2 + 1

)]
h1

]
PP2 + KP +

(Q− 1)T
2

h2

}
f(T )

}
+ Kt.

(4.21)
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Chapter 5

NUMERICAL ANALYSIS

In this chapter, we present the results of our numerical study. The purpose of our numerical

study is to explain the impact of various factors such as production and demand rates, pro-

duction, transportation, inventory holding and customer waiting costs. In Section 5.1, the two

deterministic models referred in Chapter 3 are compared. Savings using VMI model is tabulated

and the effect of the parameters are discussed. In Section 5.2, the results of the VMI model

with stochastic production and demand are presented while changing the input parameters. We

also compare the time-based and quantity-based models with the general model with serves as

a lower bound on the costs of the system.
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5.1 Deterministic VMI and non-VMI Models

In this section, we analyze the cost savings obtained by using a VMI model as opposed to a

non-VMI model and also analyze the sensitivity of the cost performances of the deterministic

VMI and non-VMI models depending on the parameters of the system.

We use the parameters λ = 0.3, µ = 0.7 and h = 2. We also use different values for the other

parameters such as: Kp = 400, 600, 800, Kt = 100, 150, 200 and w = 4, 8, 16. In Table 5.1, we

present the results for these parameter settings.

Parameters Varied Deterministic VMI Model Det. non-VMI Model Savings
Kp Kt w w/h Kp/Kt n T1 Tc Cost n Tc Cost %
400 100 4 2 4 3 20.77 10.70 30.26 4 12.9 36.0 15.8%
400 100 8 4 4 5 14.04 7.91 37.31 5 9.1 41.2 9.5%
400 100 16 8 4 7 9.26 6.00 46.81 8 6.5 49.5 5.5%
400 150 4 2 3 2 23.17 13.58 33.77 3 15.8 40.3 16.2%
400 150 8 4 3 4 15.88 9.65 42.20 4 11.2 46.8 9.8%
400 150 16 8 3 5 10.62 7.55 53.73 6 7.9 56.9 5.5%
400 200 4 2 2 2 25.14 14.73 36.63 3 18.3 44.1 16.9%
400 200 8 4 2 3 17.41 11.49 46.27 4 12.9 51.5 10.1%
400 200 16 8 2 4 11.78 8.80 59.59 5 9.1 63.1 5.6%
600 100 4 2 6 4 23.07 10.60 33.61 5 12.9 39.7 15.4%
600 100 8 4 6 6 15.35 8.07 40.79 6 9.1 45.0 9.3%
600 100 16 8 6 8 9.97 6.19 50.42 9 6.5 53.2 5.2%
600 150 4 2 4 3 25.44 13.10 37.07 4 15.8 44.0 15.8%
600 150 8 4 4 5 17.20 9.69 45.69 5 11.2 50.5 9.5%
600 150 16 8 4 7 11.34 7.35 57.33 8 7.9 60.6 5.5%
600 200 4 2 3 3 27.48 14.15 40.04 3 18.3 47.7 16.1%
600 200 8 4 3 4 18.73 11.39 49.78 5 12.9 55.2 9.8%
600 200 16 8 3 6 12.49 8.47 63.17 6 9.1 66.9 5.6%
800 100 4 2 8 5 25.01 10.37 36.44 5 12.9 42.8 14.9%
800 100 8 4 8 7 16.46 8.10 43.74 8 9.1 48.1 9.1%
800 100 16 8 8 10 10.57 6.05 53.44 11 6.5 56.4 5.2%
800 150 4 2 5 4 27.38 12.58 39.90 4 15.8 47.2 15.5%
800 150 8 4 5 5 18.31 10.32 48.64 6 11.2 53.6 9.3%
800 150 16 8 5 8 11.94 7.41 60.36 9 7.9 63.8 5.3%
800 200 4 2 4 3 29.37 15.13 42.80 4 18.3 50.9 15.8%
800 200 8 4 4 5 19.86 11.19 52.76 5 12.9 58.3 9.5%
800 200 16 8 4 7 13.09 8.49 66.20 8 9.1 70.0 5.5%

Table 5.1: Numerical Results of Deterministic Models
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We observe that, in each scenario, the cost of the VMI model resulted to be less than the

cost of the non-VMI model. The cost saving percentages from using VMI are tabulated in Table

5.1 in the ”Savings” column.

Setting the customer arrival rate λ = 0.3, production rate of the supplier µ = 0.7 and

inventory holding cost of the supplier h = 2, we have observed that the maximum cost saving is

achieved when both the Kp/Kt and the w/h ratios are at their minimum values. In general, cost

savings in using VMI model decrease as w increases, w/h increases, Kp decreases, Kt increases

or Kp/Kt decreases.

In VMI setting, the overall cost is decreased by optimizing the cost considering the expenses

of both the supplier and the retailer simultaneously. However, in non-VMI setting the retailer

minimizes his costs by considering only his own expenses. As customer waiting cost, w increases,

the overall supply chain cost becomes more dependent to the cost of the retailer. Hence the

saving due to the VMI setting decreases as w and w/h increases. In the same manner, when the

transportation costs of the product Kt increases or the Kp/Kt ratio decreases, the saving due

to the VMI setting decreases.

In addition, we observe that the ratio of T1/Tc decreases as w increases, w/h increases, Kp

decreases, Kt increases or Kp/Kt decreases.

Finally, the cost savings seem less sensitive to the changes in the ratio of Kp/Kt than changes

in the ratio of w/h, which means the production and the transportation cost is less dominant

in cost saving.

The effect of demand arrival rate of the retailer and the production rate of the supplier on

deterministic models are studied and the results are tabulated in Table 5.2.

In order to investigate the effects of the demand arrival and production rate on the cost and

also the cost saving using VMI model, λ/µ ratio is changed while keeping Kp, Kt, h and w

constant, which are 600, 150, 8 and 4 respectively. According to the results as shown in Table

5.2, the decrease on λ decreases the cost. Also the saving due to using VMI model becomes

more significant as λ decreases. We also observe that as the ratio of λ/µ increases, the lengths of

the transportation cycles decrease while the number of transportation cycles in a replenishment
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Parameters Varied Deterministic VMI Model Determ. non-VMI Model Savings
Lambda/Mu n T1 Tc Cost n Tc Cost %

0.18 4 26.74 13.46 33.50 4 15.8 38.6 13.3%
0.25 4 22.54 11.98 38.32 5 13.7 43.7 12.3%
0.34 4 19.55 11.05 42.36 5 12.3 47.6 10.9%
0.43 5 17.20 9.69 45.69 5 11.2 50.5 9.5%
0.55 5 15.17 9.42 48.18 6 10.4 52.3 7.9%
0.68 7 13.30 8.46 49.64 7 9.7 52.8 5.9%
0.83 9 11.34 8.23 49.17 9 9.1 51.0 3.6%

Table 5.2: The Effect of Demand Arrival/Production Rate on Deterministic Models

cycle increases.
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5.2 VMI Model with Stochastic Production and Demand

In this section, we study the effect of the parameters such as Kp, Kt and w on the cost of the

stochastic production and demand model. The demand arrival rate λ = 0.3, production rate of

the supplier µ = 0.69, discount rate β = 0.01 and the inventory holding cost of the supplier h = 2

are taken as constant parameters with indicated values. The numerical results are tabulated in

Table 5.3.

Parameters Varied 4.1 Stoc. Model
Kp Kt w Kp/Kt w/h Avg. Cost
400 100 4 4 2 3231
400 100 8 4 4 4117
400 100 16 4 8 5085
400 150 4 3 2 3502
400 150 8 3 4 4412
400 150 16 3 8 5830
400 200 4 2 2 3910
400 200 8 2 4 4813
400 200 16 2 8 6385

Table 5.3: VMI Model with Stochastic Production and Demand

According to the results, the average cost of the supply chain decreases as the customer

waiting cost w and w/h ratio decrease. In addition to that, when the transportation cost per

shipment, Kt, increases and the ratio of
Kp

Kt
decreases, average cost of the supply chain increases.

In the Figure 5.2 below, the optimal dispatch quantities according to the level of the inventory

of the supplier and the number of the customers accumulated at the retailer are illustrated.

We observe that the supplier has a tendency to ship more units to the retailer when there

is a production ongoing at the supplier. In addition, we observe that the supplier does not ship

anything to the retailer if his inventory level or the number of accumulated orders at the retailer

is below some level. However, as the inventory level of the supplier and the accumulated orders

at the retailer increase, more units are shipped from the supplier to the retailer. But, we also

observe that there are irregularities in the optimal shipment pattern.

In Table 5.4, we present the average costs under the general model as well as the time-based
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Figure 5.1: Dispatch Quantities in VMI Model with Stochastic Production and Demand.

and quantity based models for different Kp, Kt and w values. We also present the optimal T , Q

and Qmax values in the time-based and quantity based models. In all the scenarios, the inventory

holding cost of the supplier, h; demand arrival rate, λ; the production rate, µ; discount rate, β;

and the supplier’s product buying cost from an ample supplier, s are taken as 2, 0.3, 0.0.69, 0.01

and 350 respectively. The percentage increase in costs of the time-based and the quantity-based

models relative to stochastic VMI model are shown in the ”Cost Inc.” columns.
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Parameters Varied 4.1 Stoc. Model 4.2 Time-Based Policy 4.3 Quantity-Based Policy
Kp Kt w Kp/Kt w/h Avg. Cost T Qmax Cost Inc. Q Qmax Cost Inc.
400 100 4 4 2 3231 10.5 12 27.9% 3 10 16.8 %
400 100 8 4 4 4117 7.6 11 13.9% 2 11 2.1%
400 100 16 4 8 5085 5.9 11 8.5% 2 11 0.1%
400 150 4 3 2 3502 11.7 12 32.4% 3 10 23.0%
400 150 8 3 4 4412 9.6 12 20.2% 3 10 7.2%
400 150 16 3 8 5830 7.1 11 8.2% 2 11 0.1%
400 200 4 2 2 3910 14.0 13 29.5% 5 11 19.4%
400 200 8 2 4 4813 10.5 12 20.5% 3 10 9.4%
400 200 16 2 8 6385 8.1 12 9.5% 2 11 1.1%
600 100 4 6 2 3291 9.6 13 36.2% 3 10 27.0%
600 100 8 6 4 4214 7.7 13 19.1% 2 11 7.8%
600 100 16 6 8 5183 5.9 13 12.9% 2 11 0.1%
600 150 4 4 2 3514 12.1 14 41.3% 3 10 34.1%
600 150 8 4 4 4509 9.3 13 24.9% 3 10 14.0%
600 150 16 4 8 5928 7.2 13 12.0% 2 11 0.3%
600 200 4 3 2 3616 13.6 14 48.8% 3 10 45.1%
600 200 8 3 4 4909 10.5 14 25.1% 3 10 15.6%
600 200 16 3 8 6483 8.2 13 12.9% 2 11 0.8%
800 100 4 8 2 4587 9.8 15 3.8% 3 10 0.1%
800 100 8 8 4 4311 7.8 14 23.1% 2 11 13.3%
800 100 16 8 8 5282 5.8 14 16.1% 2 11 0.4%
800 150 4 5 2 3514 12.2 15 49.4% 3 10 45.7%
800 150 8 5 4 4605 9.4 15 28.4% 3 10 20.5%
800 150 16 5 8 6026 7.2 14 15.0% 2 11 1.0%
800 200 4 4 2 3617 13.8 15 56.5% 3 10 56.3%
800 200 8 4 4 5004 10.5 15 28.2% 3 10 21.5%
800 200 16 4 8 6580 8.2 14 15.6% 2 11 4.5%

Table 5.4: Stochastic VMI Model vs. Stochastic VMI Models with Shipment Consolidation

We observe that, in the time-based dispatch policy, when w and w/h increases the time

length of the transportation cycles, T , and the maximum level of the inventory at the supplier,

Qmax decreases. As the customer waiting costs become higher, the system has a tendency to

release the shipments in shorter time arrivals which means a decrease in T . In the same manner,

with an increase in w, there are less orders accumulated at the retailer and less inventory carried

at the supplier, hence the Qmax decreases. As the production set up cost of the supplier Kp

increases, the supplier produces more during a replenishment cycle and so the the maximum
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level of the inventory at the supplier, Qmax increases. Also T and Qmax increase when the

product shipment cost Kt increases since the supplier tends to dispatch the product rarely and

with higher quantities of the product.

With the quantity-based dispatch policy, when the transportation cost of the product per

shipment, Kt decreases, the quantity of the product dispatched, Q and the maximum level of

the inventory at the supplier, Qmax decreases in order to satisfy the lower inventory holding

and customer waiting costs. Hence, when Kp/Kt increases, Q and Qmax decrease. When the

customer waiting cost increases, retailer accumulates less orders and satisfies the demand more

frequently. Hence, the shipment quantity Q decreases as w increases.

Cost increases in the time-based and the quantity-based models relative to the general sto-

chastic model decrease as w and w/h increase.

Considering the percent cost increases in the ”Cost Inc” column, in every scenario the

quantity-based dispatch policy outperforms the time-based dispatch policy. However, in prac-

tical applications, it is important to take into account the simplicity and periodic delivery ad-

vantages of time-based dispatch policies in evaluating the cost improvements obtained through

quantity-based policy. That is, in practice, it may be easier to schedule shipments so that a

shipment is released on a periodic-basis, rather than as needed. It is worth noting that, both

time-based and quantity-based dispatch policies are popular in practice, and they are incorpo-

rated in VMI contracts for the purposes of achieving timely delivery and load optimization, re-

spectively. Typically, time-based policies are used for lower volume, higher value products, such

as expensive hardware in the computer industry, to guarantee timely delivery. Quantity-based

policies are used for higher volume, lower value items, such as peripheral computer equipment.

On the other hand, our numerical results show that quantity-based policies also offer large sav-

ings for lower volume, lower value items, i.e., those items where the inventory holding cost h are

smaller. Note that h is typically a percentage of the per unit procurement cost/value.

In table 5.4, the effect of the
Demand arrival rate

Production rate
ratio, λ/µ, is studied and tabulated with

the constant parameters taken as, Kp = 600, Kt = 150, h = 2, w = 8, λ = 0.3, µ = 0.69, s = 350.

According to the results, when λ/µ ratio increases, average costs of all the three stochastic models
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Param. varied 4.1 Stoc. Model 4.2 Time-Based Policy 4.3 Quantity-Based Policy
Lambda/Mu Avg. Cost T Qmax Avg. Cost Cost Inc. Q Qmax Avg. Cost Cost Inc.

0.25 4040 10.5 11 4754 18% 3 10 4310 7%
0.34 4299 10.5 12 5220 21% 3 10 4762 11%
0.43 4509 9.3 13 5631 25% 3 10 5140 14%
0.55 4875 8.8 14 5938 22% 3 11 5475 12%
0.68 5548 8.4 15 6202 12% 3 14 5681 2%
0.83 6049 8.0 17 6490 7% 4 16 6178 2%

Table 5.5: The Effect of Demand Arrival/Production Rate on Stochastic Models

increase. We observe that, as the ratio λ/µ increases, the products are shipped more often to

the retailer and more products are produced in a production cycle. We also observe that the

time-based and quantity-based models perform close to the optimal solution when the ratio λ/µ

is either very large or very small, however, as λ/µ ratio gets close to 0.5, the performances of

the time-based and quantity-based models worsen.
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Chapter 6

CONCLUSION

As a final note, additional savings may also be achievable by implementing non-stationary

time-based, quantity-based, and hybrid policies, and analyses of such dispatch policies, as well

as the structure of optimal dispatch policies, remain worthwhile areas for future research.”

In this study, optimal outbound dispatch policies in supply chain models are investigated.

Our aim was to minimize the total cost of supply chain and improve the performance of the

systems with using various models. These models included deterministic model with and without

VMI, a stochastic VMI model and VMI models with time-based and quantity-based dispatch

policies.

We have considered two different context in this study. In the first context, the retailer does

not hold any inventory but accumulates the external demand. In the second context, the retailer

also holds inventory and satisfies the external demand.

The difference of this study from the previous studies, and also the main contribution of this

thesis, is that the two different concepts, which are the models where the supplier produces at a

finite rate and there is a shipment consolidation, and also the model that the retailer does not

hold any inventory in a VMI system, are studied in the same model.

We have started with the literature review on the vendor-managed inventory system and

consolidation shipment. Later on, deterministic inventory models with shipment consolidation

for both VMI and non-VMI models are presented. In this chapter, two different cases in which the

retailer holds and does not hold inventory are considered. The study continued on with stochastic

inventory models including shipment consolidation and various dispatch policies. Solution of

these models are acquired with dynamic programming. In the proceeding chapter, numerical

studies are carried on to compare the performances of the models that are aforementioned.

Additionally, the effects of the parameters on the total cost, including production set up cost
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and customer waiting cost, are evaluated numerically.

In the deterministic inventory models, a single-supplier single-retailer supply chain system is

considered. In this system, retailer faced an external demand and sent orders to the supplier. In

one of the models, retailer did not hold inventory whereas in the other retailer hold inventory.

VMI and non-VMI systems are considered for both of the two cases. The main difference

between not using and using VMI is that the order quantity of the retailer is not determined

by the supplier in a non-VMI system. In a vendor managed inventory setting, that the supplier

decides on the timing and the quantity of the orders, it is shown that cost saving can be realized

through shipment consolidation.

According to the results of the deterministic models, it is proved that in the first transporta-

tion cycle, the supplier produces an amount that is exactly equal to the demand accumulated

in that cycle for the optimal policy. Moreover, the first transportation cycle is at least as long

as the other cycles whereas all the other transportation cycles was equal in length. Finally the

optimal cost function is obtained for all of the models.

A general model is examined in order to set the main principles of the dispatching and

replenishment policies. In the stochastic models with shipment consolidation, the aim was to

minimize the expected average total cost of the system. For the case of stochastic demand, the

type of the shipment consolidation that is chosen, have an impact on the cost saving of the

vendor managed inventory system. Two types of shipment consolidation were studied in the

VMI setting. The first one is time-based dispatch policy, and the second one is quantity-based

dispatch policy.

In a time-based dispatch policy, the accumulated load satisfying all outstanding demands, is

dispatched in every predetermined T time lengths so the dispatch quantity is a random variable.

This model assures that each demand is dispatched at a predetermined shipment date therefore

it is more appropriate for satisfying customer service requirements. A quantity-based dispatch

policy ships a dispatch whenever the outstanding customer orders (demands) are accumulated to

a predetermined quantity, Q. The dispatch quantity assures transportation scale of economies.

It is shown that the quantity-based policy is always superior to the time-based dispatch policy



Chapter 6: Conclusion 65

in terms of the resulting average supply chain costs.

In the last chapter, we present the results of our numerical study. The two deterministic

models are numerically solved and the cost savings due to the VMI setting are examined. The

stochastic models are solved using dynamic programming approach with an infinite horizon, and

their numerical results are compared and tabulated.

In the deterministic models it is shown that the minimum cost is achieved when the Kp/Kt

ratio is at its highest value whereas the w/h ratio is at its smallest value. Also, the decrease on

λ resulted in a decrease in the cost.

In the VMI model with stochastic production and demand, the average cost of the supply

chain was decreased as, w and w/h decreased. Also, the supplier has a tendency to dispatch

a shipment to the retailer when there is a production ongoing at the supplier. Moreover, the

supplier dispatches the same amount independent of the production, after a determined level of

inventory is reached.

In the time-based and the quantity-based models, it is presented that ”the relative costs in-

crease” decrease as w and w/h increase, compared to the VMI model with stochastic production

and demand model. Also, the average costs of all the three stochastic models increased with

increasing λ.

In this study, two concepts are merged together and the improvements are shown and sup-

ported with numerical results. As a future work, hybrid dispatch policies may be included

in order to decrease the overall cost and increase the performance. Other possible extensions

may consider (i) variable unit costs of transportation for shipments, (ii) cargo capacity for dis-

patch quantities, and (iii) the production capacity of the manufacturer for stochastic demand

processes.
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