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ABSTRACT

In this thesis, we consider two adaptive filtering tasks: Linear Adaptive Filtering and
Nonlinear Adaptive Prediction. We handle system identification and sequential (online)
nonlinear prediction problems for these tasks respectively. 3 novel adaptive algorithms (2
in linear filtering and 1 in nonlinear prediction) are presented in this thesis.

For linear adaptive filtering, Least Mean Squares (LMS) is a fundamental, simple yet
not fast enough converging algorithm. Proportionate update idea that is proposed by Dut-
tweiler in [1] achieves a significant development in the convergence speed of LMS for sparse
systems. We develop the Proportionate Normalized Least Mean Fourth (PNLMF) algo-
rithm by minimizing mean fourth error (MFE) in the same way as [2] produces the Least
Mean Fourth (LMF) algorithm from LMS. Yukawa’s implementation of a Krylov subspace
projection technique into the problem extends the use of proportionate update idea to non-
sparse systems. We exploit the same Krylov subspace projection technique and introduce
the Krylov-Proportionate Normalized Least Mean Fourth (KPNLMF) algorithm by again
minimizing MFE. The Krylov-Proportionate Normalized Least Mean Squares (KPNLMS)
algorithm minimizes mean square error (MSE) and our introduced KPNLMF algorithm is
the MFE counterpart of KPNLMS. We observe the same relation between KPNLMS and
KPNLMEF as the one between LMS and LMF that is presented in [2]. Simulations show
that KPNLMF attains a much lower mismatch (filter weight error power) than KPNLMS
when the system noise has a probability density function among certain types that are of
practical importance. It is also shown in the simulations that KPNLMF converges faster
than the Normalized LMF (NLMF) algorithm. Another contribution of this thesis is that
the steady-state MSE analysis is performed both for KPNLMS and KPNLMF. They are
both shown theoretically to converge to the desired solution according to the steady-state
MSE criterion.

In the second main part of the thesis, we deal with the sequential nonlinear prediction of

an arbitrary, deterministic and bounded signal from its noise-corrupted past samples under
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square error loss. We present a novel randomized sequential prediction algorithm and name
it Competitive Randomized Noisy Nonlinear Predictor (CRNNP). The main contribution of
this thesis in this topic is that the CRNNP algorithm achieves a high prediction performance
under additive noise. Since our CRNNP algorithm works for an arbitrary deterministic
signal, we introduce a competitive framework in order to define a meaningful performance
measure. CRNNP works in a competition class of algorithms that hypothetically work
in parallel. We show that CRNNP achieves the performance of the best algorithm that
can both select the best partition of the past observations space and the affine model
parameters based on the desired clean signal in hindsight. The competition class is the
class of certain nonlinear models, i.e. piecewise affine models represented on a context-tree.
So, we employ a context-tree structure to model the nonlinearity that exists in the problem.
The CRNNP algorithm serves for sequential decision problem and it makes its decision by
choosing a strategy from several number of strategies at each time in a randomized fashion.
Randomization weights are determined according to the prediction performances of the

strategies.



OZETCE

Bu tezde iki uyarlanir siizgecleme igini ele aliyoruz: Dogrusal Uyarlanwr Stzgegleme
ve Dogrusal Olmayan Uyarlanar Ongori. Bu isleri sirasiyla sistem tanimlama ve ardisik
dogrusal olmayan ongori problemleri iizerinde diigliniiyoruz. Bu tezde 3 adet yeni uyarlanir
algoritma (2 adet dogrusal siizgecleme i¢in ve 1 adet dogrusal olmayan 6ngérii i¢in) sunuluyor.

Dogrusal stizgeglemede, LMS (Least Mean Squares) algoritmasi temel bir algoritma olup
basit bir ¢aligma prensibi vardir ancak yeterince hizli yakinsama yapmaz. [1)’de Duttweiler
tarafindan 6nerilen orantili giincelleme fikri LMS algoritmasinin yakinsama hizinda seyreltik
sistemler i¢in 6nemli bir geligme saglar. Biz bu tezde [2]'nin LMS algoritmasindan LMF
(Least Mean Fourth) algoritmasimi iirettigi yolu takip edip hatanin dérdiincii kuvvetinin or-
talamasim kiigiilterek PNLMF' (Proportionate Normalized LMF) algoritmasimi tiretiyoruz.
Yukawa'nin [3]’de probleme bir Krylov altuzayi izdiigim teknigini dahil etmesi orantil
glncelleme fikrini syreltik olmayan ayirgan sistemler icin de kullanilabilir hale geitrir. Bu
tezde, ayni Krylov altuzay izdiigim teknigini kullanip yine hatanin dordiincii kuvvetinin
ortalamasimi kiigiilterek KPNLMF (Krylov-Proportionate NLMF) algoritmasimi sunuyoruz.
Burda, [2]’deki LMS ile LMF arasmdaki iligkinin aynisini KPNLMS ile KPNLMF arasinda
da gozlemliyoruz. Benzetimler, KPNLMF algoritmasinin tatbiki 6nem iceren farkl olasilik
yogunluk fonksiyonlarina sahip giiriiltiiler altinda KPNLMS algoritmasindan daha iyi ¢caligtigini
gosteriyor. Benzetimlerde ayrica KPNLMF algoritmasinin bagarimimin NLMF algoritmasinin
bagarimindan iistiin oldugu gosteriliyor. Bu tezin bir diger katkist KPNLMS ve KPNLMF
algoritmalari igin yatigkin durum ortalama karesel hata analizi gerceklestirmesi. Tki algo-
ritmanin da kuramsal olarak yatiskin durum ortalama karesel hata kistasina gore istenilen
sonuca yakinsama yaptiklar: kanitlaniyor.

Tezin ikinci kisminda herhangi bir sinirli, gergek degerli ve belirlenimci sinyalin giiriiltiiyle
bozulmug ge¢mis 6rneklerinden karesel hata kayip fonksiyonuyla ardigik dogrusal olmayan
ongoriilmesi ele aliniyor. CRNNP adinda yeni bir rasgelelestirilmis ardigik 6ngoriicii algo-

ritma sunuyoruz. Bu tezin bu konudaki ana katkis1 toplanir giiriiltii altinda yiiksek ongorii
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bagarimina ulagmasidir. CRNNP algoritmasi herhangi bir belirlenimci sinyalle ¢aligabildigi
i¢in anlaml bir bagarim 6lgiisii tanimlamak adina yarigmact bir ¢ergeve sunuyoruz. CRNNP,
igindeki algoritmalar varsayimsal olarak paralel galigan bir yarigma sinifinda iglem goriiyor.
CRNNP ulasgilmak istenen temiz sinayli kullanarak hem ge¢mis gozlem uzayindaki en iyi
boliimlemeyi hem de ilgin model parametrelerini segebilen, yarigma sinifindaki en iyi algorit-
manin bagarimina erigiyor. Yarigma sinifi, bir baglam agaci yapisinda temsil edilen parcali
ilgin modellerdir. Bu yiizden problemin dogasinda varolan dogrusal olmamay1 modellemek
i¢in baglam agaci yapisi kullaniyoruz. CRNNP algoritmas: ardigik karar verme problemine
hizmet ediyor ve kararlarini her zaman belli sayidaki yontemden birini rasgelelestirilmis bir
sekilde segerek veriyor. Rasgelelegstirme agirliklar1 yontemlerin 6ngorii bagarimina dayali

olarak belirleniyor.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Filtering, in general, means applying a device which can be a piece of physical hardware
or software to a set of noisy data in order to extract information about a quantity of interest.
The noise may arise from different sources like noisy sensors, a communication channel,
etc. Under any circumstances, filtering may help us to perform three basic information-

processing tasks [4]:

e Filtering: Extraction of information about a quantity of interest at time ¢ by using

data measured up to and including time ¢.

e Smoothing: Data measured after time ¢ can be used to obtain information about the
quantity of interest at time ¢. So, there is a delay in producing the result of interest

in the case of smoothing.

e Prediction: Forecasting side of information processing is present here. The goal of
prediction is to derive information about a future value of the quantity of interest at
some time like t 4+ 7, where 7 > 0, by exploiting data measured up to and including

time ¢.

If the output quantity of the filter is a linear function of the observations applied to the
filter input, then the filter is said to be linear. Otherwise, it is nonlinear. In this thesis, two
of the above tasks are studied. Novel algorithms for linear filtering and nonlinear prediction
are proposed and detailed explanations are supplied in the following chapters.

From the statistical viewpoint to the solution of the linear filtering problem, certain sta-
tistical parameters such as mean and correlation functions of the useful signal and unwanted
additive noise are assumed to be available. The goal is to minimize the effects of noise at

the filter output according to some statistical criterion. Minimizing the mean-square value
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of the error signal, which is defined as difference between some desired response and the
actual filter output, is a useful and common approach. The resulting solution for stationary
inputs is known as the Wiener filter which is optimum in the mean-square sense. When
dealing with situations in which nonstationarity exists, the optimum filter has to assume a
time-varying form. Kalman filter exhibits a highly successful solution to this more difficult
problem [5].

The statistics of the data to be processed are required for the design of the Wiener
filter. However, for most real-world applications the statistics of the input data are not
attainable. An efficient method to overcome this problem is to use an adaptive filter. An
adaptive filter is a device that is self-designing in that it relies for its operation on a re-
cursive algorithm. The algorithm starts from some predetermined set of initial conditions.
These initial conditions express whatever we know about the environment. If working in a
stationary environment, the algorithm converges to the optimum Wiener solution in some
statistical sense after successive iterations. In a nonstationary environment, the algorithm
offers a tracking capability. So, it can track time variations in the statistics of the input
data, provided that the variations are slow enough.

In the analysis of linear adaptive filters, the following factors are commonly considered:

e Rate of convergence: In response to the stationary inputs, it is defined as the number
of iterations required for the algorithm to converge to the optimum Wiener solution in
the mean-square sense. An algorithm with a fast rate of convergence adapts rapidly

to a stationary environment of unknown statistics.

o Misadjustment: It provides a quantitative measure of the amount by which the final
value of the mean-squared error, averaged over an ensemble of adaptive filters, deviates

from the minimum mean-squared error that is produced by the Wiener filter.

e Tracking: An adaptive algorithm is required to track the statistical variations in the

environment when operating in a nonstationary environment.

e Computational requirements: Here, the issues of concern include the number of opera-
tions required to make one complete iteration of the algorithm, the size of the memory

locations required to store the data and the program, and the investment required to
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program the algorithm on a computer. However, we basically deal with computational

complezity in this thesis.

e Robustness: Disturbances with small energy should only result in small estimation

errors. The disturbances may arise from a variety of internal or external factors.

In this thesis, we analyze our novel linear adaptive filtering algorithms in terms of the
first four factors listed above. These factors, in their own ways, enter into the design of
nonlinear adaptive filters. Nevertheless, we no longer have a well-defined frame of reference
in the form of a Wiener filter. Rather, we talk about rate of convergence by looking at

convergence curves and computational complexity of the algorithm.

1.1 Linear Adaptive Filtering

There is no unique solution to the linear adaptive filtering problem. Rather, we have
some tools represented by a variety of adaptive algorithms, each of which offers desirable
features of its own. Firstly, the user of adaptive filters should understand the capabilities
and limitations of various adaptive filtering algorithms. Then, this understanding should
be used in the selection of the appropriate algorithm for the application at hand.

Basically, we may identify two different approaches, namely stochastic gradient approach
and least-squares estimation, for deriving recursive algorithms for the operation of linear
adaptive filters [4].

Stochastic gradient approach uses the mean-squared error as the cost function for
the case of stationary inputs. The dependence of the mean-squared error on the unknown
filter coefficients may be viewed to be in the form of a multidimensional paraboloid with
a uniquely defined minimum point. We refer to this paraboloid as the error-performance
surface. The filter coefficients corresponding to the minimum point of the surface define
the optimum Wiener solution. We proceed in a two-stage manner in order to develop a
recursive algorithm for updating the filter coefficients of the adaptive filter. We first use the
method of steepest descent, a well-known optimization technique, to modify the system of
Wiener-Hopf equations (i.e., the matrix equation defining the optimum Wiener solution).
This modification requires the use of a gradient vector. The value of a gradient vector

depends on two parameters: the correlation matriz of the inputs in the filter, and the cross-



Chapter 1: Introduction 4

correlation vector between the desired response and the same inputs. In general, these two
parameters are not available to us, that is why we use adaptive filtering algorithms instead
of using the optimum Wiener filter. So, to derive an estimate for the gradient vector,
we next use instantaneous values for these correlations. The resulting algorithm is widely
known as the least-mean-square (LMS) algorithm. The essence of the LMS algorithm can

be described in words as follows for the case of a transversal filter operating on real-valued

data:
updated value of old value of learning-
input error
filter coefficient = | filter coefficient |+ rate
vector signal

vector vector parameter

where the error signal is defined as the difference between some desired response and the
actual filter response. Although, the LMS is simple, it is capable of achieving satisfactory
performance under the right conditions. Its major limitations are a relatively slow rate
of convergence and a sensitivity to variations in the condition number of the correlation
matrix of the input vector. Within a nonstationary environment, the orientation of the
error-performance surface varies continuously with time. In this case, the LMS algorithm
has the additional task of continually tracking the bottom of the error-performance surface
as long as the input data vary slowly compared to the learning rate of the LMS algorithm.

The LMS algorithm was devised by Widrow and Hoff in 1959 during their study of
a pattern recognition scheme. The LMS algorithm is closely related to the concept of
stochastic approzimation developed by Robbins and Monro (1951) in statistics for solving
certain sequential parameter estimation problems. The primary difference between them is
that the LMS algorithm uses a fixed learning-rate parameter to update each filter coefficient,
whereas in stochastic approximation methods the learning-rate parameter is made inversely
proportional to time t or to a power of t. Gradient adaptive lattice (GAL) algorithm is
another stochastic gradient algorithm that is closely related to the LMS algorithm (Griffiths,
1977,1978). The difference between them is structural in that the GAL algorithm is lattice-
based, whereas the LMS algorithm uses a transversal filter. In 1981, Zames introduced the
H® norm (or minimax criterion) as a robust index of performance for solving problems
in estimation and control. In this context, it is particularly noteworthy that Hassibi et al.

(1996) have shown that the LMS algorithm is indeed optimal under the H* criterion [6].
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Thus, for the first time, theoretical evidence was presented for the robust performance of
the LMS algorithm.

Least-squares estimation is the second approach to the development of linear adaptive
filtering algorithms. It is based on the method of least squares. Here, we minimize a cost
function that is defined as the sum of weighted error squares. Recursive least-squares (RLS)
estimation is the most popular way to formulate the method of least-squares. The RLS
estimation may be viewed as a special case of Kalman filtering. A distinguishing feature
of the Kalman filtering is the notion of state, which provides a measure of all the inputs
applied to the filter up to a specific instant of time. So, we may describe in words the

recursion that the Kalman filtering has as follows:

updated value old value
Kalman innovation
of the = of the +
gain vector
state state

where the innovation vector represents new information put into the filtering process at the
time of the computation. There is indeed one-to-one correspondence between the Kalman
variables and RLS variables [5]. This correspondence means that we can use the vast
literature on Kalman filters for the design of linear adaptive filters based on recursive least-
squares estimation. We may classify the RLS family of linear adaptive filtering algorithms
into three distinct categories: Standard RLS algorithm, Square-root RLS algorithms, Fast
RLS algorithms. This classification depends on the approach taken. However, we will not
go into the details of these different approaches to the RLS algorithm since our attention is
on the LMS family of linear adaptive filtering algorithms.

The original paper on the standard RLS algorithm belongs to Plackett (1950). On the
other hand, it must be said that many other investigators have derived and rederived the
RLS algorithm. In 1974, Godard used Kalman filter theory to derive a variant of the
RLS algorithm, which is also referred to in the literature as the Godard algorithm. Then,
Sayed and Kailath (1994) published published an enlightening paper, in which the exact
relationship between the RLS algorithm and Kalman filter theory was described for the first
time [7]. Therefore, this publication of Sayed et al. presented the groundwork for how to

exploit the vast literature on Kalman filters for solving linear adaptive filtering problems.
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1.2 Nonlinear Adaptive Prediction

Linear prediction and linear predictive models have long been central themes within the
signal processing literature [8]. More recently, nonlinear models based on piecewise linear [9]
and locally linear [10] approximations have gained significant attention. Nonlinear adaptive
prediction is a task that is carried out by a nonlinear adaptive filter. A nonlinear filter is a
signal processing device whose output is not a linear function of its input as we described
earlier. According to Haykin [4], there are fundamentally two types of nonlinear adaptive
filters, namely Volterra-based nonlinear adaptive filters and neural networks.

The first type of nonlinear adaptive filters mentioned here relies on the use of a Volterra
series that provides an attractive method for describing the input-output relationship of
nonlinear device with a memory. This special form of series derives its name from Vito
Volterra who studied it first in 1880 as a generalization of the Taylor series of a function.
Norbert Wiener was the first to use the Volterra series to model the input-output relationship
of a nonlinear system in 1958. Schetzen’s book discusses the Volterra series in detail [11].
In 1989, Rayner and Lynch also studied nonlinear adaptive filter based on Volterra series
[12], [13].

An artificial neural network or a neural network as it is commonly called, is a collection
of a large number of interconnected nonlinear processing units called neurons. In other
words, the nonlinearity is distributed throughout the network. The way the human brain
performs its operations motivated the development of neural networks. [14] is an example
of the usage of neural networks for nonlinear adaptive prediction.

In addition to the Haykin’s classification, tree-structured nonlinear prediction can be
seen as the third type of nonlinear adaptive filters. [9] is an example paper which stud-
ies tree-structured nonlinear adaptive prediction. Kozat et al. uses piecewise linearity via
context trees to model the nonlinearity for the nonlinear prediction problem [15]. In the
computational learning theory literature, the related problem of prediction as well as the
best pruning of a decision tree has been considered in which data structures and algorithms
similar to context trees have been used [16], [17], [18]. Our new nonlinear prediction algo-
rithm is also a member of the third type. We exploit piecewise linear models to do nonlinear

prediction under additive noise.
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1.3 Contributions

The contributions of this thesis are in two different topics. We propose in total 3 novel
adaptive algorithms: 2 for linear filtering and 1 for nonlinear prediction.

Contributions to linear filtering:

e 2 new fast-converging algorithms in the Least-Mean-Fourth (LMF) family of algo-

rithms

e Superior performance in uniformly, sine wave type and square wave type distributed

system noise cases

e Steady-state MSE analysis for the Krylov-Proportionate NLMS and the Krylov-Proportionate
NLMF algorithms.

Contributions to nonlinear prediction:

e A novel sequential nonlinear predictor that makes no stochastic assumptions and that

works for sequential decision problems

e High prediction performance under additive noise

1.4 Outline

We present here an outline of the thesis. In Chapter 2, two novel adaptive algorithms
namely, Proportionate Normalized Least-Mean-Fourth (PNLMF) and Krylov-proportionate
Normalized Least-Mean-Fourth (KPNLMF') algorithms for linear filtering problem are in-
troduced. Derivation of the introduced algorithms, steady-state mean square error (MSE)
analysis for the algorithms and the simulation results are provided in the sections of the
Chapter 2.

Chapter 3 concentrates on the nonlinear prediction problem and it suggests another
adaptive algorithm, namely Competitive Randomized Noisy Nonlinear Predictor (CRNNP)
in a competitive framework. Its sections point out the algorithm description and the simu-
lation results.

Finally, Chapter 4 summarizes the work that has been done and refer to the possible

future directions.
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1.5 Notation

In this thesis, all vectors are column vectors represented by boldface lowercase letters.
Matrices are represented with boldface capital letters. We reserve letters that are not
boldface to random variables. Time index appears as an argument within brackets, e.g.
d[t]. For a time-invariant vector @, x(¢) is the ith entry of the vector. For a vector with
time index «[t], z[t]) is the ith entry. For a random variable z (or vector x), E [x] (or
E [z]) is the expectation. (-)7 is the transpose operation, || - || is the lo-norm and | - | is the

absolute value.
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Chapter 2

LINEAR ADAPTIVE FILTERING TECHNIQUES BASED ON
KRYLOV SUBSPACE PROJECTION METHOD

In this chapter, we introduce two novel linear adaptive filtering algorithms and inves-
tigate their performances for the system identification task. System identification task is
chosen for the clearness of the problem statement. The first algorithm we introduce is
the proportionate normalized least-mean-fourth (PNLMF) algorithm. While developing
the PNLMF algorithm, we are inspired by the proportionate normalized least-mean-square
(PNLMS) algorithm presented by Duttweiler in [1]. The PNLMF algorithm is the mean
fourth error version of the PNLMS algorithm. The PNLMS algorithm has been proposed
for the identification of sparse systems. It is known to exhibit faster convergence than the
standard NLMS in certain setups [1]. We derive the PNLMF algorithm from the PNLMS
algorithm in the same way as to obtain the LMF algorithm from the LMS algorithm. We
note that for the derivation of the PNLMF algorithm, the improved PNLMS (IPNLMS)
algorithm [19] is going to be used instead of the direct PNLMS algorithm of [1].

The second algorithm presented in this chapter is the Krylov-proportionate normalized
least-mean-fourth (KPNLMF) algorithm. Here, Krylov subspace projection technique is
incorporated within the framework of the PNLMF algorithm. The Krylov-proportionate
normalized least-mean-square (KPNLMS) algorithm introduced in [3] extends the use of
the PNLMS algorithm to the identification of dispersive systems by benefiting from the
Krylov subspace projection technique. The KPNLMF algorithm inherits the advantageous
features of KPNLMS for dispersive systems [3]. In addition, the KPNLMF algorithm is
shown to outperform the KPNLMS algorithm in certain setups. An early version of this
work was presented at a conference [20].

Steady-state performances of both KPNLMS and KPNLMF are analyzed in terms of
MSE criterion in Section 2.3. We deal with stochastic signals, i.e., our input, output signals

and noise in the system are modeled as stochastic signals and in realistic applications the
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statistics of the input and output signals are not known exactly. Therefore, we approximate
the method of steepest descent [4] which employs deterministic gradient method by using
stochastic gradient algorithms. All adaptive algorithms discussed in this chapter (LMF,
NLMS, NLMF, PNLMS, IPNLMS, PNLMF, KPNLMS, KPNLMF) are members of the
family of stochastic gradient algorithms as they are derived from the Least Mean Squares
(LMS) algorithm which is the most popular member of the stochastic gradient family [4].
In our stochastic gradient assumptions, exact covariance and cross-correlation quantities
are replaced by instantaneous estimates resulting in gradient noise. As a consequence,
stochastic gradient algorithms perform worse than the original steepest descent method.
However, the degradation in the performance of LMS is not significant when a suitable
step-size is used [4]. Since our adaptive algorithms studied in this chapter are children of
LMS, we also expect an insignificant degradation in their performances. Results of Section
2.3 coincide with what we expect here. KPNLMS and KPNLMF are shown to have small
excess MSEs proving that their performances are very similar to the performance of the
original steepest descent algorithm.

The system identification problem is studied throughout the chapter. We particularly
investigate system identification framework since signal processing problems like noise can-
celing, echo canceling and channel equalization share the same system setup with system
identification. In this framework, an unknown system is modeled adaptively by minimizing
a certain statistical measure of the error between the output of the system to be identified
and the output of the model system. We emphasize that although minimizing the mean
square error (MSE) is the most widely known and used technique because of its tractability
and simple analysis, there are other ways to minimize the estimation error. Expected value
of the fourth power of the error is a popular alternative to minimize in linear adaptive filter-
ing. Modified steepest descent algorithm for the mean fourth error case is studied and the
least mean forth (LMF) algorithm is proposed as an adaptive filtering technique in [2]. The
PNLMF and KPNLMF algorithms are derived starting from the LMF algorithm in Section
2.2. In Section 2.3, steady-state MSE analysis of KPNLMS and KPNLMF are carried out.
Section 2.4 contains the simulation results for the sample cases, followed by the conclusion

in Section 2.5.
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Figure 2.1: Block diagram of system identification

2.1 System Description

We consider the system identification task presented in Fig. 2.1. In this figure, x[t] € R™
is the input regressor with zero mean and covariance matrix R = E [[t]z[t]”]. With this

input regressor, the output of the desired unknown system is given by
d[t] = wlx[t] + v[t], t € N, (2.1)

where wp € R™ is the coefficient vector of the unknown system to be identified. Here, v][t]

is the i.i.d. noise with zero mean and variance o2. We assume that the input regressor
and the noise signal are uncorrelated. The input regressor x[t] and the output signal d[t]
are available to estimate the filter coefficients of the unknown system. Given the input

regressor, the estimate of the desired signal is given by

dlt] = w[t]Tx[t], t € N, (2.2)
where w[t] = [w[t]V), w[t]?, ..., w[t]™)]T is the adaptive weight vector to estimate w,.
In this framework, our aim is to minimize a specific statistical measure of the error

between the desired signal d[t] and the estimate produced by an adaptive algorithm d[t],
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i.e., e[t] = d[t] — d[t]. In this chapter, we minimize the mean fourth power of the estimation

error. The mean square error (MSE) and the mean fourth error (MFE) are given by

MSE = E [e[t]’] (2.3)

MFE = E [e[t]*],

respectively. Given this setup, in the next section we introduce two different adaptive
algorithms that are constructed based on the MFE criteria using proportionate update idea
and Krylov subspace projections.

Here, R = E [z[t|z[t]”] is the autocorrelation matrix of the input regressor z[t| and
p = E[d[t]z[t]] is the cross-correlation vector between the input regressor x[t] and the
output d[t] at time ¢. Both R and p, which are statistical measures of the input and
the output, can be thought as known parameters for the exactness of the algorithm while
developing it. Otherwise, they can be approximated at the beginning of the algorithm. We
assume they are known beforehand for the sake of simplicity in the next section. The fact
that we really do not know exact R and p is considered in Section 2.4 while simulating the

algorithms.

2.2 Proposed Adaptive Filtering Algorithm

In this section, we first derive the update procedure for the filter coefficients of the PNLMF
algorithm inspired from the IPNLMS algorithm. Then, Krylov subspace projection tech-
nique is incorporated within the PNLMF algorithm framework to yield the KPNLMF al-
gorithm. We note that this order of constructing the corresponding algorithms is for the
clarity of the presentation. This order of derivation is also the chronological order of the
already developed algorithms following [1,3]. However, the logical flow of the proposed al-
gorithms are in the reverse direction. The unknown system is thought to be projected onto
the Krylov subspace in order to attain sparseness, then the PNLMF algorithm is applied to

the resulting system. A better intuition is tried to be given in the following subsections.

2.2.1 Derivation of the PNLMF algorithm

The standard LMS algorithm updates the filter coefficients as

wlt + 1] = wlt] + pelt]x[t], (2.4)
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where e[t]a[t] approximates the gradient VepE [e[t]?]. Here, p is the step size of the
update, usually constrained to be 0 < p < W, where m is the filter length. The
normalized LMS (NLMS) algorithm is introduced in order to alleviate the dependence of
the standard LMS algorithm on the statistics of the input data. The NLMS algorithm uses

the update equation

x[t]

wlt+ 1] = wlt] + ue[t]m,

(2.5)

where € is a small regularization factor. In [2], instead of using the approximate gradient of
E [e[t]?], the approximate gradient of E [e[t]*] is used to construct the update for the LMF
algorithm as

wlt + 1] = wt] + 2uelt)z[t], (2.6)

where p is the same step size as in the LMS algorithm. Following this, the NLMF algorithm

readily turns out to be
x[t]

wit + 1] = wlt] + 2#6#]3W

(2.7)

as stated in [21]. We emphasize that using the fourth power of the error signal in the update,
the LMF algorithm is shown to yield faster convergence in the start of the adaptation.

We next incorporate the proportional update rule [19] into the NLMF framework. The
motivation behind the IPNLMS algorithm is to update each filter coefficient individually
with different step sizes. Each filter coefficient is updated according to the absolute value of
the current filter coefficient in a proportional manner, where the name proportional stems
from. In this sense, by using an update proportional to the absolute value of the current
filter coefficients, the IPNLMS algorithm distinguishes between frequently used, rarely used

or unused coefficients and updates them separately as follows:

Glt]x[t]
wlt+1] = wlt]+ Me[t]:c[t]TG[t]:v[t} e (2.8)
Glt] = diag(¢[]V, o[]?,.... 8[1]"™)
pt]" = (1_7)i+7M teNke(l,..,m]|
m o wlt][l +x ’ U

where + is the proportionality factor and x is a small regularization constant [19]. This idea
of using a proportional update is applied to the NLMF algorithm following the IPNLMS al-
gorithm. For the PNLMF algorithm, the matrix multiplying the individual filter coefficients,
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i.e., G[t], remains unchanged while only the first equation in (2.8) is changed to:

Glt]z[t]
[T G[t]x[t] + €

wlt+ 1] = wlt] + 2,ue[t]3m (2.9)

In the next subsection, we extend the PNMLF algorithm using Krylov subspaces.

2.2.2  Projection over Krylov subspace

It has been shown in [19] through simulations that the IPNLMS algorithm achieves su-
perior performance than the NLMS algorithm in the system identification task when the
underlying unknown channel is sparse. We project the unknown system, which is poten-
tially dispersive, to the Krylov subspace to get benefit of the nice feature of the IPNLMS
algorithm upon sparse systems. In [3], the author demonstrates that projecting the impulse
response of the unknown system into the Krylov subspace yields a sparse representation if
the input regressor is nearly white, i.e., E [@[t]z[t]"] ~ I. To be more precise, if the auto-
correlation matrix R = E [@[t]z[t]”] of the input regressor «[t] has clustered eigenvalues or
the autocorrelation matrix has a condition number close to one, then any unknown system
will have a sparse representation at the new Krylov subspace coordinates. In case the input
is not white, a preconditioning process can be applied to the input regressor before applying
the algorithm. We explain in the next subsection how projecting an unknown system to the
Krylov subspace yields a sparse system in a different and more illustrative way than that
of [3]. Some preconditioning methods are also described in the next subsection.

Since we work at the new Krylov subspace coordinates where our unknown system has
a sparse structure, the PNLMF algorithm is altered to work in the new coordinates. This
algorithm will be called the Krylov PNLMF (KPNLMF) and has the update

QG[1]Q" =[t]
z[t|ITQGH|QT x[t] + ¢

wlt 4 1] = wt] + 2pue[t]? (2.10)

where the orthogonal matrix @ represents the Krylov subspace coordinates. The columns
of the matrix @ form a set of orthonormal basis vectors for the Krylov subspace which is

spanned by the Krylov vectors
p,Rp,R’p,... R 'p. (2.11)

The orthogonal matrix Q is formed by orthonormalizing the Krylov vectors in (2.11). This

orthonormalization process can be performed via Arnoldi’s method. Arnoldi’s method is an
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effective way of orthonormalizing Krylov vectors since it does not generate Krylov vectors
explicitly. The explicit generation of Krylov vectors is an ill-conditioned numerical oper-
ation. The well known Gram-Schmidt method does not help here as it first generates the
Krylov vectors and then orthonormalizes them. We form @ once in the whole process of the
algorithm. So, it does not bring much computational burden. Note that since we now work
in the space spanned by the columns of @, the step size scaling matrix, G[t] is updated
accordingly. Defining the projected weight vector w[t] = QT w]t], the new scaling matrix is

defined as:

Glt] = diag(¢[]", o[t]?, ..., ¢[t]"™)
ol = (1- 7)i +7M teN, kell,..,m] (2.12)
m o w[t]]l+ X ’ Y

Obtaining full G[t]™*™ and forming QG[t]QT with full Q™ at every iteration is computa-
tionally expensive by using the formula for G[t] in (2.12). This iteration has a computational
complexity of O(m?). However, fortunately we succeed to attain linear computational com-
plexity per iteration. Before showing how we achieve the linear computational complexity,
it will be beneficial to define new matrices Q[t] 2 QG[1QT, Qi\"”‘ as the first A(<« m)
columns of Q and G,[t]M* = diag(o[t]™, ..., d[t]M). So, Q = [QTX’\Q;ng\m_)‘)] and

(2.10) becomes
Q[t]x[t]
[T Q[t)x[t] + €

wit+ 1] = wlt] + 2,ue[t]3m (2.13)

Assigning a pre-specified small constant value to the remaining (m—\)¢|t]¥) values does not
affect the convergence speed significantly since they correspond to the rarely used coefficients
of the weight vector. So, if we assign a small constant value, 1) to the remaining (m—X\)e[t]*)

values, the scaling matrix G[t] becomes

G[t] = diag(d[t]V, ..., p[t]N, ¥, ..., ¥) (2.14)

If we look at the computation of the part Q[¢]x[t] in (2.13) replacing G[t] with the new
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scaling matrix G[t], we see that

. G T
Qe = (@ @l | D el
0 ¢I m—A\
T:B
- Gl ve.l| .
mf)\w[t]

= [Q\GAHQYz[t]™! + [¥Q,, Q) _\x[t] ™!
= Q\G\Q}z[t] — vQ\Q =[] + vQ, Q% x[t] + ¥Q,, ,QF, _\x[t]

= Q\(GA\[NQ z[t] — Q3 z[t]) + ¥ (Q\QX + @, Q) 1]
I
= Q\(G\HQTz[t] — vQiz[t]) + valt] (2.15)

Note that Q,,_, is not used anywhere except in the computations of ¢[t](k) values. In
(2.12), we need to compute w[t] = QT w(t]. However, only first X entries of w[t] are needed
since only first A components of ¢[t]*) are computed in our simplified algorithm. Subvector
W,y [t] can be updated as follows.

5 GH[1]Q =[]
z[t|TQ[t)x[t] + €

’li))\[t + 1] = 11]/\[t] + 2ue[t] (2.16)

So, we do not need Q,,,_, anywhere. By computing only first A components of d)[t](k) values
used in matrix G[t] and first A\ columns of the orthogonal matrix @ we can attain linear
computational complexity per iteration as showed in [3]. Then, we use the following formula

in order to update filter coefficients in KPNLMF.

[t]a[t]
z[t|TQ[t)x[t] + €

wlt + 1] = wt] + 2pelt)? (2.17)

Here, computation of Q[t]x[t] is given in (2.15), @, is formed by orthonormalizing first A
Krylov vectors via Arnoldi’s method, G\[t] = diag(¢[t]!V, ..., ¢[t]V) and ¢ is a constant.

2.2.8 Sparsity obtained by Krylov subspace projection technique

In this subsection, we try to see how sparsity is obtained as a result of Krylov subspace pro-
jection technique. We consider solving the linear Wiener-Hopf equation, Rw = p by using
the Generalized Conjugate Residual (GCR) method which is a Krylov subspace technique.

Since the autocorrelation matrix, R is symmetrical, the subspace spanned by the Krylov
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vectors equals to the subspace spanned by the residuals in the algorithm as shown next in
2.18.

span{p, Rp, ..., R™"'p} = span{rg,r1,...."m_1} (2.18)

where m is the filter length, i.e. length of the filter coefficient vector w. Residuals have the

following properties:

ro = P (2.19)
k—1

T = ’l"o—ZOziR’l"i (220)
i=1

since at each iteration system is projected to the next Krylov vector. So, residual decreases

gradually. Then,
wy, = & (R)p (2.21)

where &, (R) is the kth order polynomial which minimizes ||ry1||%.

rhi1 = p— Rwy (2.22)
= p—R&.(R)p (2.23)
— (I-R&(R)p (2.24)
= Yo (R)p (2.25)

Here, 7,1 (R) is the k+1th order polynomial which minimizes ||r41]|? subject to v, (0) =

1.
Ireall < lveq (R)2ll (2.26)
|74l
IIZ;FII < e (Bl (2.27)

Noting that p = rg we get an upper bound for the percentage of the residual that is left

after kth iteration in 2.27. So, we continue investigating this upper bound polynomial. If

R=VAV!
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then
Vet B = IV (A VT (2.28)
< VIV vea (M) (2:29)
————
cond(V')
Yit1(A1)
< cond(V) ' . (2.30)
L ’Yk+1()\m)_

Here, V is the eigenvector matrix and A is the eigenvalue matrix of R. 2.28 follows from

the spectral mapping theorem which states that
spectrum(f(R)) = f(spectrum(R)) (2.31)
because

RR = VAV 'VAV ' =vA*V!
R" = VAV
f(R) = aVV 14+ VAV 1+ . +a,VAV!
= V(eI + a1A+ ...+ a,A") V1
= VfAVL (2.32)
cond(V') is the conditional number of V. In our case because R is symmetrical, V' has
orthonormal columns (cond(V') = 1) and R has real eigenvalues. Actually A; > 0 since R

is positive semi-definite.

Now, we know that the upper bound for the residual after kth iteration is

(Bl = cond(V) max |7v,(s)]

< max |7;(A)] (2.33)

So, we try to minimize the maximum response of the « function to the eigenvalues of R.
v is any kth order polynomial such that «,(0) = 1. So, our task turns into fitting a
polynomial v, at each iteration (k:iteration number) to the eigenvalues \;, i = 1,...,m of
the autocorrelation matrix R that are on the positive real axis. Fig. 2.2 illustrates this

polynomial fitting task.
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Figure 2.2: Polynomial fitting of GCR. GCR fits a higher order polynomial to the eigenvalues
of R in order to minimize the maximum response to the eigenvalues.

It is obviously easy to fit a low order polynomial to clustered eigenvalues. In case that

cond(R) = i*:;i ~ 1, eigenvalues are very close to each other on the real positive axis which
means again that a low order polynomial can easily fit them. Therefore, for either cases
in a few iterations a good approximation to w can be obtained since residual will be small
with a small upper bound as a result of good polynomial fit. If R has clustered eigenvalues
or has condition number close to 1, then the representation in the new Krylov coordinates
W = QTw of the system impulse response w is sparse because only first few columns of
Q are enough to have a good approximation, i.e. in a few iteration of Krylov subspace
projection residual becomes sufficiently small and a good approximation is obtained.

In case that R has neither clustered eigenvalues nor condition number close to 1, one
can use a preconditioner to whiten the input regressor x[t]. Preconditioning helps R to
have clustered eigenvalues. Some methods for preconditioning are provided next. For more

preconditioning techniques, see [22] and [23].
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If R is a diagonal matrix,

N

then R has N distinct eigenvalues and we need a preconditioner for R to have clustered

eigenvalues. Using a preconditioner,

N[

1

N

(2.34)

we have the equation PRw = Pp where PR = I has all eigenvalues equal to 1. For R being

a diagonally dominant matrix, we can implement a similar procedure for preconditioning.

Let R= D + R, ; where D is the diagonal part and R, is the nondiagonal part. R, 4 has

very small entries compared to diagonal entries. Applying D~! as the preconditioner we

get

(D'R)w=(I+D 'Ryq)w=D""p

Using the inverse of the diagonal part as the preconditioner usually improves the convergence

and the inverse of a diagonal is cheap to compute. Diagonal and diagonally dominant cases

are demonstrated in Figures 2.3 and 2.4.

One should choose a preconditioner P such that

e R~ R

e R is easy to invert or factor
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Figure 2.3: R is diagonal and has 3 distinct eigenvalues. At most 3 iterations a polynomial
is fitted perfectly to the eigenvalues and residual becomes zero.

Let R~ LU. Then, by using this approximate LU factorization as preconditioner we get,
(LU)'R)w = (LU) 'p (2.35)

If we apply a right preconditioner, we should find first w, then w in RPw = p = w = Pw

2.3 Steady-State MSE Analysis

This section proceeds with the same order as in [24]. First, an energy conservation relation is
derived. Then, a variance relation is developed from that energy conservation relation since
we are interested in evaluating the steady-state variance of the estimation error. Afterwards,
excess MSE expressions at steady- state are found for KPNLMS and KPNLMF. Full matrix
representations of 2, @ and G are used for clarity since MSE performances of the algorithms

are not affected by the simplification made to attain linear computational complexity.

2.3.1 FEnergy Conservation Relation

wlt] = w[t — 1] — pQt]x(t]g [e[t]] (2.36)
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Figure 2.4: (a)Eigenvalues of R are clustered around 3 points and in 3 iterations a small
residual is achieved without preconditioning. (b)By using the inverse of the diagonal part
as the preconditioner, we can achieve a small residual in only one iteration.

where w(t] = wo — w(t] is the weight-error vector, 0 < p < 2, Qt] = QG[t]QT and
elt]
2l + <
€alt] + v[ ]

= W (2.37)

gleltll =

for KPNLMS
2elt]?
2l +

2ealt] + o[1)?
Iy, + e

for KPNLMF Here, e[t] = eq[t] + v[t] is the total error composed of the estimation error

glelill =

(2.38)

eq[t] and the i.i.d. noise v[t] with zero mean and variance 2. If we multiply (2.36) by z[t]”

from left, we get

eplt] = ealt] — pllz[t] [y 9 [elt] (2.39)
Here, e,[t] = z[t]Tw[t] and e,[t] = x[t]T @[t — 1] are the aposteriori and apriori estimation
errors respectively. Then, from (2.39)

glelt]]l =

€alt] — eplt]

ey, (240
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Substitute (2.40) in (2.36).

1L 1 ealt] — ep[t]
wlt] = wlt—1] - pQtaf) =P
R 2l
w M = wlt— Me
g, T e,
P LR R A L UL U
]+ etz ealt] t—1]+ [P olt] (2.41)

Next, we equate the squared weighted norms of both sides of (2.41) using £2[¢] ! as weighting

matrix.

(@[] + ) Qt)ztedt]" QU (@[] + alt]QAe)z[tlealt]] = (2.42)
[t — 1] + alt)Qte(tep[t] Q] [wlt — 1] + AlQAt)[t ey [t]]

Here, i is defined as,

1 .
i a[t] £ 0
a2 ) T,

0 otherwise
Noting that Q7 = Q = QGQ? since G is a diagonal matrix, (2.42) becomes,

@ty + Bl QU Qtxtealt] +  (2.43)
altlz[t] QO ealtlwlt] + Al x[t] Qt]ea 120 T Q] x[tlealt] =
lwlt = 1llgy, - + Altlwlt — 17 Q' Qftlzltle, [t +
altlz[t] QIO eptlwlt — 1) + Alt]x ()" Qt]e, [1120] " Q2t]x[t]ep[1]

Substituting e,[t] = z[t]Tw[t] and e,[t] = z[t]T @[t — 1] we get,

1@ty + Al (@I, Wt — 1)) Ry, + Altlealtleplt] + Al [ty leal] =

ot = iy + Al @, wlt = 1)) gy, + Altlealtlep[t] + At || [t [y lepI*  (2:44)

Here, (-, -) is the inner product operator, Ry is the covariance matrix of the input regressor
which is used as weighting matrix for the inner product. Common terms on both side are

canceled and since )
282y

D2 a2
Al el gy = (EZa1lrot
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equation (2.44) reduces to

I [A)2y-1 + Altllealt]l® = N[t — 1112y, + Aldlep A (2.45)

Equation (2.45) states the Energy Conservation Relation.

2.8.2 Variance Relation
Steady-state filter operation, [24]:
E[w[t] = Ew[t—1]=s ast — oo (usually s =0)  (2.46)
E[w[tlw[t]"] = E[wlt—1]w[t—1]"] = Rgy ast — oo (2.47)
(R :covariance matrix of the weight error vector)
Ellwfl?] = E[lolt-1]"] =Tr(Rgy) ast— oo (2.48)
In our case,
E|@lly, | = E ol el ] (2.49)
E [Hfu[t - 1]||§m,1] = Efwlt— 170 ‘ol - 1]] . (2.50)

If we define w(t] 2 QT w(t], then (2.49) and (2.50) become

Bl .| = F|on'Qcn ™ @ wl
N—— N——
wt” wit]

= Tr(RyyGlt]™) (2.51)
Elolt - 1lg,| = Blok-176H vl - 1]
= Tr(Rypy_ Gl ™). (2.52)

We know that G[t] is a diagonal matrix, so G[t]~! is also a diagonal matrix. Next, we show

that Rﬁ)[t] = Rﬂ][t—l]'

Ryy = E[w[jw]t)"]

= Q"E[wlw[]"]Q

= Q"RyQ (2.53)
Ry = Q'E[wlt—1wit—1"]Q

= QTRfU[t]Q (2.54)
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(2.53) and (2.54) follow from the fact that E [@[t]w[t]’] = E [w[t — 1wt — 1]7] = Ry
in (2.47). In (2.53) and (2.54), it is shown that Ry,,; = Regp_qj- So, from (2.51) and (2.52)
we can conclude that

E |y, | = B |lolt - 11If, | = Tr(Rey Gl (2.55)

Energy conservation relation:

Returning to energy conservation relation we remember from (2.45) that
- 2 - 2 _ | 2 = 2
Ity o + Altlealdl? = ol — 12y + Allley ]
and from (2.55) we know that E [Hﬁ;[t]“zﬂ[t]fl} =F [Hﬁ;[t - 1]“29[15}71}‘ Therefore, taking
expectation of both sides our energy conservation relation turns into
E [altlleal]?] = E [alt]le,[t]]?] (2.56)
Using the fact that ep[t] = eq[t] — p||£c[t]|\zﬂ[ﬂg[e[t]] in (2.39) we get
E [llealt)] = B [flt]lealt] - 28]y, 9lelt]?] (2.57)
If we expand the inside of the expectation on the right hand side of (2.57), we get
it ealf)2 + 121 2ty lol? — ety ealfla” — el gy ealti®a.  (259)
The argument of gle[t]] is not written while developing equations for clarity. We know that

alt]||z[t] H%l[t] =1 for all x[t] except the trivial case x[t] = 0 for which the product is zero.
So,

E [altlll2 (8|97 = B [l2 (gl (2:59)
E alt)l2 [0}y caltlg| = E lealtlg] (2.60)
Next, we substitute (2.59) and (2.60) in (2.58) and continue with (2.57).
E [ltllealt]?] = B [altllealt))?] + 12 [I2[tlIy 19| - 1B lealtls"] - 1E lealt]"g

E [[t]|eq[t]|?] terms on each side cancel each other and we get,

uE [ty lo?| = Elealtl” +eatl"s]  ast — oo
uE 2] loP] = 2Re{Elealt)’gl} ast — oo (2.61)
uE ||allyye’] = 2B[ealfly]  ast - oo (2:62)

(2.61) and (2.62) represent the Variance Relation for complex-valued and real-valued

data respectively.
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2.3.3 MSE of KPNLMS

For KPNLMS,
eqlt] + |t
glelt]] = calf] ol ]2 ] (2.63)
Define a new variable fi[t] 2 W and substitute(2.63) in the variance relation (2.61).
Qy
pE [ﬂ[t]Qﬂw[t] gy lealt] + vlt][*| = 2Re{ B [alt]ea[t] (ealt] + v[t])]} (2.64)

Separation Principle, [24]:
At steady-state, ||a:[t]||§][t] is independent of e, [t].

Lemma, [24]:
v[t] is independent of e,[t], [t] and w[j], w[j] where j <t (e.g.,j =t—1).

So, expectations including cross terms of e,[t] and v[t] are separated and since v[t] is zero

mean they are canceled.

ul |l @)y lealt] | + noE [l |21ty | = 2E [alt)lealt)] (2.65)

where 02 = E [[v[t]|?] = Jmin- f is a function of ||a:[t]||%2[t] and if we apply separation

principle, (2.65) reduces to
ul [P elt] | B lleald?] + nolE |altPl2(tiigy, | = 2B A1) B [lead?]  (2.66)

Define new variables,

>

N A N
oz = B [l =gy, | naw = BlA]
Then, (2.66) becomes

(277w[t] - ,Uaa:[t])E Uea[t]ﬂ = NUgaw[t] t — o0

2
[0
limi— oo B [Iea[t]|2] — ¢KPNLMS _ MOy [t)

=" 2.67
277:c[t} — KOt ( )

(2.67) is the Excess MSE of KPNLMS. We can simplify (2.67) by assuming that e is

sufficiently small, € ~ 0, which is usually the case. Using this assumption in two different
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places we can approximate the excess MSE of KPNLMS in two different ways.

First approximation:

Effect of € can be ignored in the definitions of ag and ngjy (fult] = ).
1z,
agy = B [ﬂ[t]2||:c[t]|\2ﬂ[tJ : Nz = E R[]
= B leltli? ot =
Iy, M 20 =, ]HQM
Q) = Nzl = (2.68)
I ]um
Accordingly (2.67) reduces to,
¢KPNLMS  _ ooy
(2 - N)aaz[t}
po;
gRPNLMS ﬁ (when € is small) (2.69)
(2.69) is the first approximation to the excess MSE of KPNLMS.
Second approximation:
Use € = 0 in (2.65) before applying the separation principle — (fft] =~ W)
Qy
1
pE | |2 [t ealt]* | + ot E l2[t] I = 2B | o lea[t]]®
el [0 ]||Q[t 1 =%,
a 2 1 a 2
o LU T E ealtl” |9 79)
[ =%, T,

Then, implement the following steady-state approximation instead of separation principle

n (2.70).
ealt])? ealt]|?
E[Ha‘cﬁﬁgﬁ] NEE[HEL[CL]{;];[]J < nmen o
z[t] = QT xt]
T(;;H“GWE lealdl’) = 1o}B | — HHW
KPNIMS QMfguTr(R@mG[t])E e ]IHQM (2.72)

(when € is small)
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(2.72) is the second approximation to the excess MSE of KPNLMS. In (2.71), E [H:z:[t] ||29[tJ =

E [elTQGHQ 2 [t)] = E [#[)TGlt)alt] = Tr(RayyGlt).
Both approximations resulted small numbers for the excess MSE of KPNLMS meaning
that the KPNLMS algorithm converges to the desired filter coefficients.

2.3.4 MSE of KPNLMF/KPNLMMN

For KPNLMMN (Krylov Proportionate Normalized Least Mean Mixed Norm),

eft] [0 + (1 —9)2le HIQ}

2%y, - &%)

gleltl] =

KPNLMMN is a generic algorithm in which both KPNLMS and KPNLMF are included as
special cases. § arranges the ratio of the usages of KPNLMS and KPNLMF. Larger J is,
KPNLMMN is more like KPNLMS and smaller ¢ is, it is more like KPNLMF. KPNLMF
is the specific case of KPNLMMN where § = 0 and also 6 = 1 yields KPNLMS. So we
will continue the derivation for the general case KPNLMMN and afterwards the result for
KPNLMF will be obtained easily. We can also check the result we found for the excess MSE
of KPNLMS in the previous part when we reach the result for KPNLMMN.

gle[t]] for KPNLMF is given by the equation,

2e H+vH]3

B @)

glelt]] =
where e, [t] + v[t] = e[t].

Real-valued Data

Define § £ 1 — 5. Write (2.73) again by using the new variable § and ji[t]. Time index, t

will be ignored while developing equations for the sake of clarity.
g(e) = fi6(eq +v) + [120(eq + v) (€2 + v* + 2e,0) (2.75)

In order to use the variance relation stated in (2.62) first we compute Eleqg(e)]. The

argument of g(e) will be dropped again for the sake of clarity. From (2.75),

Eleqg] = (6 + 6502) E [fie2] + 20 E [fiey) (2.76)



Chapter 2: Linear Adaptive Filtering Techniques Based on Krylov Subspace Projection Method 29

since e, and v are independent. We ignore the third and higher order powers of e, since

the estimation error e,[t] becomes small in steady-state.

Eleqg) = (0 + 602) E [ie2] = b E [ie?] (2.77)

a

where we defined a new variable

b2 (6 +6502). (2.78)

Next, we compute E [Hw”%lgﬂ Start by finding ¢°.

g? = [20%€? + 1246%e + 4p%65e! (2.79)
e = e2+420+07 (2.80)
et = el +6e2v? + 4edv + deqv® + 0t (2.81)
b = €84 6edv+ 6e,0° + 15eiv? + 1520t + 20e30 + o° (2.82)

We do the following tasks: substitute (2.80),(2.81) and (2.82) in (2.79); multiply (2.79) by
||ac||%2 from left; take the expectation of both sides; use the fact that v is independent of

both x and e,; ignore third and higher order terms in e,. The result is,

Bzl =~ aB|lalfi?] +c B |illalifed] + (2.83)

1635 E [,12”@»”?2@@} E[v3] + 245°E [Hmng]ea} E[]
where

a 2 6202 + 4661} + 46%78 (2.84)

4

c 6% 4 246602 + 606%7) (2.85)

We defined 7 2 p [|v*|] and 7$ 2 p [|v°]]. Remembering that az = E [H:p\laﬂﬂ, and
combining (2.77) and (2.83) we obtain the variance relation for KPNLMMN.

% E [fie?] = paog + e E [[f”a:”%leg] 416408 E [g?uxuaea} 1 24ud? E [quaea} 75
(2.86)

as t — 0o. We can simplify (2.86) in two ways depending on the step-size p.

Sufficiently small p:

Small step-size yields small E [|ea|2] in steady-state and consequently small e,. So, the last
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three terms on the right hand side of the equation (2.86) can be neglected. As a result,

E [e?] = B2 (2.87)
2b
If we apply separation principle,
Elp) E[e2] = 2%
[ILL] [ea] 2b
nx

E [e2] = ¢KPNLMMN - _ *;ZO‘:” (2.88)

T

Small € provides that ag = ng and accordingly we have,

¢KPNLMMN _ % (2.89)

For KPNLMF, § = 0 and this leads to a = 47¢ from (2.84), b = 602 from (2.78). So,

gKPNLMF MTE (2.90)

9,2
307

For sufficiently small i, € and applying separation principle we get the excess MSE formula
for KPNLMF in (2.90).
For KPNLMS, § = 1 and accordingly a = 02, b= 1. So,

¢KPNLMS _ ﬂ;g (2.91)

The result found here for KPNLMS is similar to the one in (2.69). In (2.69), there is an
extra —p at the denominator. Actually, the result in (2.91) is the same result with the

assumption of small p. If 4 < 2, then it can be neglected. So, two results for the excess

MSE of KPNLMS are consistent.

Large p:
If we apply the separation principle, terms including 73 and 72 in (2.86) are zero since e,

has zero mean. Then, (2.86) turns into

2bng B [e2] = pacg + pcag E [e2]
¢KPNLMMN Hacx
2bng — peog
¢KPNLMMN Ha (small e (ag =nz)) (2.92)

2b — pc
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For KPNLMF, ¢ = 607} from (2.85) and this results in,
KPNLMF pry
13 = m (2.93)
In case of large u, small € and separation principle applied we have the excess MSE formula
for KPNLMF given in (2.93). Excess MSE for KPNLMF, ¢KPNLME i hoth cases is a
small number which depends on the step-size u and the statistics of the noise v. Latter
excess MSE (valid when step-size is large) is a little larger than the former one (valid when
step-size is small) as expected.
In order to compare the result for KPNLMS (§ = 1) with the previously obtained one in
(2.69) we substitute a = 02, b = 1 and ¢ = 1in (2.92). The result is
o2
¢KPNLMS _ QIu—ivM (2.94)
which is same as the one in (2.69) as expected because we do not make small 1 assumption

here.

Complex-valued Data

g = f[ide+ 2adelel? (2.95)
= 6(eq +v) + 26(eq + v)(eq +v)(el +v*) (2.96)
eag = Opleal® +opeiv + 20[i(leal® + efu)(leal* + eav® + veg + [vf) (2.97)
Elezg] = 0 E [jilea?] + 6 Elfie;) B[] +26{E [plea|'] + E [fleal®ea] Elv*] +
0 0
E [filea*e;] E[v] +E [flea’] o) + E [pleal’es] Elv] +E [fleal’] op +
0 0
E [fi(e;)?] E [v?] +Elpe;] o} Elv]} (2.98)
0
0
= (6+4002) E [filea|’] + 20 E [fifea|"] (2.99)
~ (64 4607) E [fileq|?] (2.100)
~ bE [jiea*] (2.101)

From equations (2.98) to (2.101), we used the following features:

e v[t] is independent of x[t] and e,|t]
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Efv]

v

= E[v*]=0and E [[v]*| =02

v[i] is assumed to be circular, i.e. E [v?] =0

third and higher order terms of e, are neglected since e, is small at steady-state

a new variable is defined,

b2 5+ 4502 (2.102)

Following the same order as in the real-valued data subsection we proceed now by computing

B [[ll3)9?]
92 = A26%e|? + 44260el* + 43%5%)el° (2.103)
le]? = |ea|* + e} 4+ eqv* + |v]? (2.104)
le[* = Jeal* + 4leal*[v]? + 2leql*leav” + efv] + 2Jv[*[eav® + efov] + 07 (e])® +

el

(v*)%e2 + |v[* (2.105)
lea|® 4 [0]® + 3|eq|eav™ + €Xv] + 3|v|Heav™ + efv] + |ea|?ev[3eiv + 2e,v*] +
leal?eqv*[3eqv™ + 2e5v] 4 5|v|*|eal 4 5leq|?|v|* 4 [v]2elv[3elv + 2e,v*] +

[v[2eqv* [3eqv* + 2eiv] + 9|v|?|eq |2 [eqv™ + efv] + (ef)303 + 3 (v*)? (2.106)

Substitute (2.104),(2.105) and (2.106) in (2.103) and use the same features listed while

computing Elelg].

Ellzliplol?] ~ a B [ilelgy] + ¢ B [il2lfel?] + 85 B |2l o (e’ + egv)] +
1262 B [|yxu2ﬂyvy4(eav* + e;;v)} (2.107)

G = 0%02 + 4667, + 4678 (2.108)

¢ = 64160002 4 360°T, (2.109)

We are now ready to utilize the variance relation in (2.61) by combining (2.101) and (2.107).

2E [jlea?] = piog +pé B |i|2lleal?] + 8100 B ||l (eav” + eiv)| +

1202 E [||m||§2|v|4(eav* n e;v)} (2.110)

We will again investigate two conditions on the step-size pu.

Sufficiently small p:
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We can ignore again last three terms in (2.110) because they contain e,, which is small at

steady-state when p is small.

E[jle?] = /“;2‘33 (2.111)
(KPNLMMN - Zzam (separation principle) (2.112)
Uk
¢KPNLMMN — _ % (small e (ag =nz)) (2.113)
gKPNLMF H 47’3
2 402
pry

= 2.114

For KPNLMF, § = 0 and this leads to ¢ = 478 from (2.108), b = 402 from (2.102) used in
(2.114).
For KPNLMS, § = 1 and consequently ¢ = Jg,é = 1. So,

¢KPNLMS _ M;g (2.115)

which is the expected result with the assumption of small y. This confirms our unified
investigation of excess MSE for KPNLMS in real-valued and complex-valued data. We see

here that real-valued and complex-valued data gives the same excess MSE expression for

KPNLMS.

Large p:
Last two terms in (2.110) cancel because they result zero like in real-valued data subsection.

We assume small € and use separation principle.

2 E [fleal?] = phog +pé E ||l el (2.116)
g E lleal’] = pdoax + péag E [|eq]?] (separation principle) (2.117)
Efled?] = 1= (2.118)
20ng — plog
gRPNLMMN e (smalle (ax =nzx)) (2.119)
2b — ué
¢RPNLME A (¢ = 3672 for KPNLMF) (2.120)
802 — 36uTh v
6
¢KPNLMF KTy (2.121)

202 — 9ut}
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Both small p and large p produced a small excess MSE for KPNLMF. Large p results in
slightly larger excess MSE as expected.

The results in real-valued data (2.90),(2.93) and complex-valued data (2.114),(2.121)
prove that the KPNLMF algorithm converges to the desired solution with a small excess
MSE.
¢ =1 for KPNLMS (8 = 1). Hence, XPNEMS = 1% approving the result in (2.69).

2.4 Simulation Results

This section contains numerical examples. Performance of the KPNLMF algorithm is com-

pared to the performances of KPNLMS and NLMF algorithms in the following subsections.

2.4.1 KPNLMS-KPNLMF

In this subsection, we compare the performances of the KPNLMS and the KPNLMF algo-
rithms. In [2], Walach and Widrow studied the LMF algorithm and compared the perfor-
mance of the LMF algorithms to the performance of the LMS algorithm. Since we work
with the Krylov-variants of the LMS and the LMF algorithms, we can expect the same com-
parison results with the ones in [2]. Our Krylov-proportionate LMS and LMF algorithms
implement LMS and LMF like in [2], but the normalized versions in the Krylov subspace
coordinates. Walach and Widrow looked at the performances of the LMS and the LMF
algorithms at different noise contexts. Probability density functions (PDFs) of the investi-
gated noise types are depicted in Fig. 2.5. Gaussian, uniform, sinusoidal and square wave
probability densities are chosen because of their practical importance.

Here, we define a parameter o = % to measure the ratio between the mismatches of
LMS and LMF where M ;s is the mismatch of LMS and My s r is the one of LMF. Table

2.1 shows the « values in 4 different noisy environments [2].

Gaussian | Uniform | Sine Wave | Square Wave

o 0.6 2.3 3.6 9

Table 2.1: Values of the mismatch ratio between LMS and LMF, o = % under different
noise types
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(@ (b)

(c) (d)

Figure 2.5: PDFs of the investigated noise types. (a)Gaussian density, (b)Uniform density,
(c)Sinusoidal density, (d)Square wave density

According to the Table 2.1, KPNLMF should have a mismatch value which is 10log199 ~
9.5 dB less than the mismatch of KPNLMS under square wave type noise (v[t] = %a) for
the same speed of convergence since we expect the same results for « with our Krylov-
proportionate LMS and LMF algorithms. Similarly, under uniformly distributed noise
Mipyr(dB) &~ Mpps(dB)—3.6dB and under sine wave type noise My yrr(dB) ~ Mpyrs(dB)—
5.6dB. However, under Gaussian type noise Mpyp(dB) ~ Mpays(dB) + 2.2dB which
means KPNLMS performs better than KPNLMF under Gaussian noise. On the other
hand, KPNLMF beats KPNLMS considerably in terms of weight error power (mismatch)
when the system noise has one of the distributions among uniform, sinusoidal and square
wave. Our simulation results depicted in Fig. 2.6 through Fig. 2.9 agree this statement.

The examples in [2] are implemented here. In Fig. 2.6 through 2.9, we try to estimate
the system with an impulse response given by w! = [0.1,0.2,0.3,0.4,0.5,0.4,0.3,0.2,0.1]
where m = 9. A random input signal which is white and of unit power is used. Step sizes

UrKPNLMS = 1.8 X 10~3 and pwrpNLmrE = 0.3 X 10~° are used to yield the same speed of
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convergence. For parameters that only belong to our Krylov-proportionate algorithms, we
use A = 2, v = 0.5 in our experiments. € = 0.0001. Weight error powers, i.e. mismatches,
are averaged over 200 independent trials. The experiments are carried out in low SNR
conditions. Gaussian and uniform noises are simulated as white random processes of power
100. Sinusoidal noise is generated according to the model v[t] = a cos(wt) where a = 10v/2

and w = 7/4. Square wave noise is randomly modeled as v[t] = £10. Weight error powers

are delineated after averaging over periods that are 25 iterations-long.

weight error power (dB), log scale

-3

-6

System Mismatch (gaussian noise)

= = =KPNLMS
= KPNLMF ||
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PN
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iterations (x25)
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weight error power, linear scale
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System Mismatch (gaussian noise)

= = = KPNLMS
= KPNLMF ]

______
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iterations (x25)

(b)

Figure 2.6: Mismatch graphs for Gaussian noise case. (a)Log scale graph. At steady-state,
Mgpnims =~ —8.1dB and MgpynrLymyr = —5.9dB. SO, Mgpnimvr = Mgpnoyvs + 2.2dB
which is a perfect match with the theoretical result obtained in [2]. (b)Linear scale graph.

Our experimental results are in a good harmony with the theoretical ones that are
obtained in [2]. We provide the log scale graphs in Fig. 2.6 through 2.9 to illustrate this
strong consistency. We also provide linear scale graphs for all types of noisy environments

studied here to show that mismatch values are in steady-state.

2.4.2 NLMF-KPNLMF

System to be identified has a random dispersive impulse response with length m where
m = 50 in the comparison between the NLMF and KPNLMF algorithms. Elements of the

impulse response vector sum up to 1. Here, A = 4 (< m = 50) and 200 independent trials
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weight error power (dB), log scale
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Figure 2.7: Mismatch graphs for uniform noise case. (a)Log scale graph. At steady-state,
MKPNLMS ~ —7.9dB and MKPNLMF ~ —11.5dB. SO, MKPNLMF ~ MKPNLMS — 3.6dB
which is a perfect match with the theoretical result obtained in [2]. (b)Linear scale graph.

are performed with uniformly distributed, zero mean noise process and white inputs. We

Blz[t)?]
E[o[t]?]

set signal-to-noise ratio, SNR = 10log ~ 22dB. The mean square error and the
system mismatch (normalized weight error power) averaged over 200 trials are plotted as
performance measures. The figures are in dB scale. As the regularization constant, we use
€ = 0.0001 for all algorithms.

Fig. 2.10 compares the KPNLMF and the NLMF algorithms in terms of the MSE.
The KPNLMF algorithm surpasses the NLMF algorithm in terms of the MSE performance.
Two methods are also compared in the system mismatch setup and again the KPNLMF
algorithm yields considerably superior performance with respect to the NLMF algorithm.
The system mismatch performances for both algorithms are shown in Fig. 2.11. KPNLMF

enjoys the superior performance related to the sparse structure of the unknown impulse

response as a result of the Krylov projection technique.

2.5 Conclusion

The proportionate and Krylov-proportionate normalized least mean fourth algorithms are

proposed in this chapter. It is shown through simulations that the KPNLMF' algorithm
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weight error power (dB), log scale
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Figure 2.8: Mismatch graphs for sine wave noise case. (a)Log scale graph. At steady-state,
MKPNLMS ~ —6.4dB and MKPNLMF ~ —12dB. SO, MKPNLMF ~ MKPNLMS — 5.6dB
which is a perfect match with the theoretical result obtained in [2]. (b)Linear scale graph.

outperforms the NLMF algorithm in convergence while having only linear computational
complexity. The KPNLMF algorithm performs better than the NLMF algorithm since it
benefits from both the sparse structure of the Krylov-projected unknown system and the
proportional update technique. The system mismatch performance of KPNLMF is also
compared to the performance of KPNLMS in several types of noisy environments that have
practical importance. Although the KPNLMF algorithm is similar with the KPNLMS,
simulation results demonstrated that the KPNLMF algorithm attains smaller amounts of
weight error power, i.e. mismatch, in case the system noise has a probability distribution
among uniform, sinusoidal and square wave distributions. KPNLMF achieves this superior
performance against KPNLMS when they converge at the same speed. For the Gaussian
noise case KPNLMS has smaller mismatch values than KPNLMF.

Steady-state MSE performances of KPNLMS and KPNLMF are investigated and excess
MSE of both algorithms are found to be small. We showed that both algorithms converge

to the desired solution according to the steady-state MSE criterion.
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Figure 2.9: Mismatch graphs for uniform noise case. (a)Log scale graph. At steady-state,
MKPNLMS ~ —8dB and MKPNLMF ~ —17.5dB. SO, MKPNLMF ~ MKPNLMS — 9.5dB
which is a perfect match with the theoretical result obtained in [2]. (b)Linear scale graph.
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Chapter 3

COMPETITIVE NONLINEAR ADAPTIVE PREDICTION UNDER
ADDITIVE NOISE

In this chapter, we consider sequential (online) nonlinear prediction of an arbitrary,
deterministic and bounded signal from its noise-corrupted past samples under square error
loss and we propose a novel algorithm called Competitive Randomized Noisy Nonlinear
Predictor (CRNNP).

In the next section, the system that is studied throughout the chapter is described and
the frameworks in which the described system is handled are explained. Later in Section
3.2, we first summarize the notion of context-trees. We then introduce CRNNP which is a
randomized predictor constructed using context-trees, competes against all piecewise affine
models defined on the context-tree and requires a computational complexity only linear in
the depth of the context-tree per prediction. Simulations are performed to illustrate the
performance of the introduced algorithm using chaotic signals. We finally conclude the

chapter in Section 3.4.

3.1 System Description

In this fundamental signal processing problem [25], a bounded deterministic signal {z[t]}:>1,
|z[t]] < by, z[t] € R, 0 < by < oo is observed through an additive noise channel, Y[t] =
z[t] + N[t], where {N[t]};>1 is an i.i.d., bounded noise process with variance o2 such that
IN[t)| < by, N[t] € R, 0 < by, < 00 with probability 1. Hence, [Y[t]] < by, by 2= by + b, with
probability 1. Then, the underlying signal z[t] is predicted using the noise-corrupted past
samples {Y'[1],...,Y[t — 1]} at each time ¢.

We emphasize that although we desire to predict the underlying signal {z[t]}:>1 and the
performance measure including the loss function is defined with respect to {z[t]}+>1, the
desired clean signal {x[t]};>1 is not available for prediction or training. In this sense, this

noisy framework differs from common classical adaptive signal processing approaches [4],
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where the desired clean signal, certain statistics or past samples are usually available for
training or constructing predictions. This noisy framework is explained in the following
subsection.

In this chapter, we refrain from making stochastic assumptions on the desired signal
{z[t]}+>1 and require uniformly good performance for any deterministic signal {x[t]};>1. If
the desired signal #[t] and the noise N [t] are random processes, conditional mean E [z [t] |y§*1}
yi=t 2 {y[1],...,y[t — 1]} is the optimal predictor of z[t] that minimizes the mean-square
error (MSE) between the desired signal and the prediction [4]. Since we make no such
stochastic assumptions on the desired signal, we introduce a competitive framework, which
is detailed in Subsection 3.1.2, in order to define a meaningful performance measure.

Another framework we consider in this chapter is the one where the underlying compe-
tition class is the class of certain nonlinear models, i.e., piecewise affine models represented
on a context-tree. Although we discuss only affine models, as shown in the next section, one
can assign arbitrary predictors (or regressors) to each region. The affine models are specifi-
cally used to yield smoothly varying arbitrary nonlinear models. This nonlinear framework
which is based on context-tree structure is represented in Subsection 3.1.3.

Randomized selection framework is the last framework that is employed in this thesis.
Sequential decision problem is the subject that is handled in this framework. A decision
should be made among several choices in this problem. Our algorithm works in a randomized
fashion and it uses randomization weights to select one of the possible choices as the output.
Subsection 3.1.4 is dedicated to this framework.

To this end, we introduce a novel randomized prediction algorithm, CRNNP based on
context-trees that uses only the past noisy samples of a desired signal and has computa-
tional complexity only linear in the depth of the context-tree per prediction. Without ever
observing the desired clean signal, this algorithm will achieve the performance of the best
piecewise affine predictor that can both choose its partition of the past observations space
(from a class of a doubly exponential number of possible partitions) and tune the parameters
of the affine models for these piecewise regions using the clean desired signal. We consider
the square error loss function, however, our results can be generalized to several different

loss functions, such as those considered in [26].
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3.1.1 Noisy Framework

The framework in which additive noise exists on an individual deterministic sequence is
introduced in [27] for binary prediction. The results in [27] are extended to the filtering
problem in [28]. We are inspired by [27] and [28] to extend the results presented in [29], [30]
and [15] to the noise-corrupted nonlinear prediction problem. This work is the nonlinear
version of the noise-corrupted prediction problem in [25]. Context-tree structure is used to

incorporate the nonlinearity. [31] also deals with the same problem.

3.1.2  Competitive Framework

This competitive approach has extensive roots in machine learning [32], [33], [34], adaptive
signal processing [15] and information theory [35], [36] literature. Much of these works
build on the Hannan’s influential work on prediction of individual sequences [37]. Such
competitive framework for sequential prediction of deterministic sequences was examined
in [26] and [29] against a finite number of predictors, in [38] against the class of fixed-order
linear models, and finally in [30] and [15] against switching linear and certain nonlinear
models. However, in these past approaches [26], [38], [30] and [15] there is no consideration
for noise, i.e. the desired clean signal is available.

In this competitive framework, we have, say m sequential (online) prediction algorithms
as the competition class producing outputs {X k[t]}e>1, k= 1,...,p, that “hypothetically”
work in parallel to predict the underlying signal {z[t]};>1. At each time ¢, each sequential
algorithm suffers the loss (z[t] — X;[t])? (which is not available to us since {z[t]};>1 is not
observable). Our goal is then to find a sequential predictor that asymptotically achieves
the performance of even the best algorithm in this class uniformly for any deterministic,
bounded and arbitrary signal. Specifically, we seek a sequential predictor, say X [t], that
has access to only noisy past samples {Y[1],...,Y [t — 1]}, predictions of the constituent
algorithms {Xk[l], . ,Xk[t}}, k=1,...,p, never observes {x[t|};>1 and satisfies

n n

lim LB > (@[t] - X[H)* =) (x[t] — Xi[t])?| =0, (3.1)

n—oo n,
t=1 t=1

for all £ and n when it is used to predict any {z[t]}:+>1. Here, the expectation is with respect

to the noise process and the randomization of the introduced algorithm.
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3.1.8 Context-tree Framework

As an example for the usage of context-tree structure, look at Fig. 3.1. We divide the space
of the most recent observation space [—by, by| (which Y[t — 1] belongs to) into four disjoint
regions Aq,..., Ay such that [—b,,b,] = U?‘Zl A; and assign each region an affine model
say (w; Y[t — 1] + ¢;), wi,¢; € R, ¢ = 1,...,4. These assignments define a piecewise affine
predictor where the prediction at each time ¢ is given by (w; Y[t — 1] + ¢;) if Y[t — 1] € A,.
For all w;, ¢; € R, one can define similar piecewise affine predictors yielding a competition
class that has a continuum of predictors. Although one can approximate smoothly varying
nonlinear functions by increasing the number of regions and the number of past samples
used in prediction in this piecewise affine model, the boundaries of the piecewise regions are
fixed. To make the boundaries of the piecewise regions also a design parameter, we will use
the notion of context-trees to represent a doubly exponential number different partitions of

the past observations space in the next section.

3.1.4 Randomized Selection Framework

In this framework, we serve for certain signal processing problems where one is expected to
choose a particular strategy from a class of strategies at each time, instead of producing a
new outcome based on the outcomes of the constituent algorithms. A well-studied problem
that fits this framework is tracking a finite class of finite-delay scalar quantizers [39], [40].
The functional forms of the randomization weights of the introduced algorithm are sim-
ilar to the weights used in [15] to construct weighted predictions. However, note that the
algorithm of [15] trains on and uses the past observations of the clean desired signal {z[t]}+>1,
which is unavailable here. Furthermore, we use these weights to define a randomized algo-

rithm instead of using convex combination ideas as in [15].

3.2 Algorithm Description

In this section, as an illustrative example for the notion of context-tree structure, we present
a binary context-tree to partition the space of only the most recent past observation, i.e.,
[—by, by] where Y[t — 1] belongs to. As shown in Fig. 3.1, a depth-D binary context-tree

(D = 2 in this figure) has 2 leaves and 2P+ — 1 nodes. Each node on the context-tree, if
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Figure 3.1: (a) A binary context-tree that partitions [—b,,b,]. This tree has depth D = 2
with 4 leaves and 7 nodes. Each node is assigned a region as the union of the regions
assigned to its children. (b) The complete sub-trees along with the partitions they define.
A depth-D context-tree defines m ~ 1.52” such sub-trees or partitions.

it is not a leaf node, has two children: the left hand side child and the right hand side child.
We use this context-tree to define different partitions of [—by, by| as follows. We first assign
each leaf of the context-tree a different region of [—b,, b,] as seen in Fig. 3.1. Each node on
the context-tree is then assigned the region which is constructed as the union of the regions
assigned to its children. On this context-tree, one can define a doubly exponential number,
m ~ 1.52° [15], of different prunings or “complete” sub-trees. As an example, for a depth-2
context-tree, we provide 5 different sub-trees in Fig. 3.1. We call these sub-trees “complete”
since the union of the regions assigned to the leaves of a sub-tree (which are the nodes or the
leaves of the original context-tree) yields [—by, b,]. Hence, a sub-tree along with the regions
assigned to its leaves defines a partition of [—by,b,]. Given a depth-D binary context-tree,
we get a doubly exponential number m = 1.52" of such partitions, say (Q, k =1,...,m. For
each partition €2, we represent the constituent regions as = {Ak1,..., Ay K, } such that
[—by, by] = U; Aki, K is the number of the leaves in the partition and Ay, are the regions
assigned to the leaves of the partition, e.g., for Q2,we have Ao = A1 UAg, Aoo = Az UAy
and Ky = 2.

D+1
., 2D+

Suppose, given this context-tree, we assign each node p, p =1, .. —1, a sequential
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predictor X ,[t] and define sequential predictors XQk [t], kK =1,...,m, corresponding to each
partition Qy, as: Xq, [t] = X, [t] if Y[t — 1] € Ay; (for some j) and A, = Ay, ;. We initially
define these m sequential predictors as our competition class. Later, by selecting X olt]’s
as certain sequential affine predictors, we will demonstrate that our algorithm asymptoti-
cally achieves the performance of the best piecewise affine model which can tune both its
partitioning of the real line as well as the affine models in each region to {z[t]}¢>1.

To this end, we introduce the randomized algorithm, CRNNP in Fig. 3.2, i.e., X[t],
that is constructed using context-tree weighting method [41]. This randomized algorithm
hypothetically constructs all ng [t], Kk =1,...,m, and run these in parallel. At each time
t, the final estimation X [t] selects one of the outputs XQk [t] to repeat it as its prediction,
where the selection weights are calculated proportional to the performance of each XQk [t]
on the past data. However, note that, although there are m different piecewise competing
algorithms, at each time ¢, each X@k [t] is equal to one of the D + 1 node predictions that
Y[t — 1] belongs to. Hence, as shown in [15], at each time ¢, for the nodes that Y[t — 1]
belongs to (these nodes are stored in vector v in Fig. 3.2), all the weights assigned to
ng [t], K = 1,...,m can be merged using certain functions of node performance. These
functions are represented as F),[t] and T',[t] in Fig. 3.2, and updated recursively in (line
C), (line D) and (line E) in Fig. 3.2 with computational complexity only linear in depth
of the context-tree. At each time ¢, these functions that reflect the combined prediction
performance of that node on the past data are used to construct the probabilities n that
are used for randomization. The CRNNP algorithm introduced in Fig. 3.2 satisfies:

Theorem: Let Y|t] 2 x[t]+ N|t] represents the observation sequence such that {x[t]};>1
2

is the desired deterministic signal with |z[t]| < b, and NJt] is i.i.d. with variance o},

IN[t]| < by, ie., [Y[t]] < by = by + b, with probability 1. The sequential randomized
prediction algorithm presented in Fig. 3.2, which uses only the past noisy observations

(Y[A],..., Y[t =1}, {X,[1),..., X,[t]}, p=1,...,2P% —1 and never observes {z[t|};>1 or

prediction errors (z[t] — X[t]), (z[t] — X,[t]), achieves
1 [& n 9P+
<0 3.2
< ( — (3:2)
for all n and any partition €, when it is applied to predict any {z[t]};>1. Here, the

“E Y (alt) - X[)? - Y (alt] - Xy lt])?

n
t=1 t=1

expectation is with respect to the noise process and randomization.
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A Pseudo-code of the CRNNP Algorithm:

% Initialize
2P+ _ . F,[0] = €1, T'p[0] = €2, where €1 and e are small positive constants. (line A)
% Proceed
Fort=1,...
Find nodes such that Y[t — 1] € A, and store them in the vector v starting from the top node to the leaf node.
% Form the prediction.
z(1)=1/2.
Fori=2:D+1: z(i) = %F(v(i),s)[t —1]z(i — 1) (line B)
(where (v (t), s) is the sibling node of v (%), i.e., they are the children of the same node).
Construct a weight vector n of size D + 1 as n(i) = (2(i)T'y ;) [t — 1))/ (F,U(l)[t - 1])
Select randomly one of the entries of v by using the weights in 7, i.e., v(i) is selected with probability n(z).
Set X[t] = Xv(i) [t] if 4 is the selected entry.
% Update after observing Y [t]. All the other nodes remain the same.

Fori=D+1,..., 1,
Doy (1) [t] = Ty (4 [t — 1 exp(—a(Y[t] — Xy () [t)?) (line C)
If i == D + 1, then Fy(4)[t] = Ty (4)[t] (line D)
If i # D + 1, then Fy(y)[t] = 5 Fw(s),0) [1F(w (i), [t] + 3Tw (i) [t (line E)

Update Xv(i) [t + 1] from Xv(i) [t]

Figure 3.2: A randomized sequential prediction algorithm using context-trees. Finding the
nodes that Y[t — 1] belongs to require O(D + 1) operations since one only needs to find
the leaf node that Y[t — 1] belongs and proceeds to the top. At each time ¢, the algorithm
combines and updates the parameters of only D + 1 node predictors with computational
complexity O(D + 1).

To get the upper bound in (3.2), we need to set a = /8 2P+1In2/n in Fig. 3.2. Note
that although a is optimized over n, this need for a priori knowledge of n can be readily
surpassed by applying the algorithm over exponentially increasing segments of {Y'[t]}+>1. To
achieve the performance of the best affine model with the best partition, we assign each node

a special affine predictor studied in

25], which uses only the past samples {Y[1],...,Y[t—1]}

1>

that belong to that node as X,[t] = 1,[t — 1]Y [t — 1] + &,[t — 1], where

| @l &l ]T —R[t—1p[t—1], Rt—1] 2 (Z Y- Y[ —1)7s,[] +5I> (3.3)
=1

and p[t — 1] 2 IZLYIY [l — 1]s,[l], where Y[I] = [ Y[ 1 ]T, sp[l] is the indicator
variable for node p, i.e., s,[l] =1 if Y[l — 1] € A, otherwise s,[l] = 0. The affine predictor
in (3.3) is a least squares predictor that trains only on the observed data {Y[t]};>; that
belongs to that node, i.e., that falls into the region A,. Note that the update in (3.3) can
be implemented with O(D) computations using the matrix inversion lemma [4]. For the
randomized predictor in Fig. 3.2 using these least squares predictors in each node, we have

the following result:
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Corollary: The sequential randomized prediction algorithm of Fig. 3.2, with the

affine predictors (3.3) at each node p that only depends on the past noisy observations

{Y[1],..., Y[t — 1]} and never observes {z[t]};>1, achieves
! 3 X [£1)2 - 9 lnn 973+
nt ;(xm - X7 ;(ﬂf[ﬂ = wea VI =11+ cean)’| <O (57 | +0{ "2

(3.4)
for all n, wy; € R, cx; € R, j = 1,..., K}, for all partitions €3, when it is applied to
predict any {x[t|}:>1. Here, di[t] is the selection variable for partition € such that if
Yt —1] € Ay, dilt] = 5.

Note that one can use the binary context-tree to partition the space of {Y[t — 1], Y[t —
2],..., Y[t — r|} for some r or use dth order affine predictors in each node that use {Y[t —
1],..., Y[t —d]} as input regressor for some d. To use dth order regressors for affine predic-
tion, one needs to update only (3.3). To partition [—by, by|", one needs to change the line in
Fig. 3.2 that explains how to find the leaf node that {Y[t —1],..., Y[t —r]} belongs to. As
explained in the caption of Fig. 3.2, the randomized algorithm has O(D + 1) computational
complexity at each time ¢t since finding the nodes used for prediction as well as updating the
node predictors require only O(D + 1) additions and multiplications. The algorithm also
has O(2P+1) storage complexity to store weights and predictors corresponding to all nodes.

Remark 1: Note that the corollary holds for any w; ; € R, ¢ ; € R, i =1,..., K}, even
with the ones that are tuned by observing the whole {z[t]};>1 and {Y[t]};>1, in hindsight,
for all n, before we even start predicting {z[t]}:+>1. Hence, the algorithm of corollary asymp-
totically achieves the performance of the best piecewise affine predictor that can choose both
its partitions as well as the prediction coefficients for that partition based on {x[t|};>1 and
{Y'[t]}+>1 in hindsight.

Remark 2: We emphasize that the best piecewise model with the optimal weights tuned
using all {x[t]}¢>1 corresponds to the finest partition, i.e., the 5th partition shown in Fig.
3.1. Hence, at first sight, one is tempted to use the sequential predictor corresponding to the
finest partition, i.e., XQS [t] in Fig. 3.1, with the sequential algorithms from (3.3). However,
note that this sequential predictor needs to learn the corresponding optimal weights in each
region sequentially, hence, it may not be the best sequential algorithm as shown in the
simulations section. Furthermore the bound in (3.4) holds for all partitions and the regret

of our algorithm with respect to the best piecewise affine model corresponding to the finest
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partition is the largest, however, still o(n).

Outline of the Proofs of the Theorem and the Corollary: For each sequential predictor
corresponding to a partition, we define a function of its prediction loss on {Y[t|};>1 as
Fq, [n] 2 exp (—a S (Y[ - X, [t])Q), a € R, at each time n, that only depends on
noisy observations. We further define a weighted sum of these functions

m
Fln] =Y 27 Fy, [n), (3.5)

k=1
where C(;) are certain weights introduced in [41] satisfying Sp-,27¢(%) = 1 and
C() < 2Ky —1 <2 2P — 1. The weights C () are introduced for proof purposes and
are not explicitly used in the final algorithm. Clearly, F[n] is as large as any 2_C(Qk)ng [n].
Our initial goal is to show that for some randomized predictor, say X[t], F[n] is as large as
F[n], i.e., the performance of X[t] for predicting {Y[t]};>1 is as good as any Xq, [t]. We will
then use this predictor for prediction of {z[t]};>1. To accomplish the first step, we observe
that Fin] = [[;_,(F[t]/F[t — 1]) by telescoping (F[0] = 1). However for each term in this

product, we have

m 9—C(Q) _ R
F[I;[j] 1] _ Z 2 F[tFi)kl[]t 1] exp (—a(Y[t] . XQk [t])2>
k=1
N a?
< e {-aB [T - Kn10?] + 5 ). (3.6)

N . e e, 276U FG (-1
where the expectation in the last inequality is with respect to the probabilities %’“[t]
and the inequality follows from Hoeffding’s inequality [42]. Hence, if we construct a random-

. : 5 5 . L . ip 279 Py [t—
ized predictor, say X [t], that outputs Xg, [t] as its prediction with probability el G

Fli—1]
at each time ¢, then by (3.6), the accumulated loss of this algorithm will satisfy
InFo,[n] = C(Q)In2 = —a) (Y] — X, [t])* — C(%) In2
t=1
< InFlin]
< B[V - X+ @)
- t=1 8 '

for all k. Since C() < 2PF! setting a = /8 2P+t1In2/n, yields an upper bound
/n2P+11n2/8 on the accumulated loss of X [t]. This upper bound yields the upper bound in
the theorem after normalization with n. Hence the randomized predictor X [t] is the desired

predictor if the goal was to predict {Y[t]};>1. However, even in this case, this randomized
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predictor X [t], at each time ¢, needs to calculate and update a doubly exponential number,
i.e., m, of predictions, which is clearly an impossible feat even for modest m. However, note
that, in X[t], at each time ¢, only D + 1 node predictions Xp[t] that Y[t — 1] belongs to are
used such that all the weights with same node predictions can be merged. It can be shown
as in [15] that if one defines certain functions of performance for each node as F[t], I',[t]
which are initialized in (line A) and updated in (line C), (line D) and (line E) of Fig. 3.2,

then the corresponding F[t] can be written as

D+1 t
Fif] =" z(@)exp | —a Y [(V11] = Ko i) 5001 | (3.8)
=1 j=1

where v is the vector of nodes that Y[t — 1] belongs to, the recursion for z is given in (line B)
of Fig. 3.2 and v(i) is the ith entry of the vector v. Hence X[t] is defined as the randomized
predictor using probabilities

o X2 @ e (—e it [T - Kol s )
i) = Flt— 1] |

(3.9)

Note that all these performance bounds are with respect to the prediction of {Y[t]};>1 not

with respect to the prediction of the desired signal {x[t|}:>1. However, we observe that

E[(Y[t] - Xo,[t)?] = E[(=[t] + N[t] — Xo,[t])?]
= E[([t] - Xo,[t)?] + o2 (3.10)
and
E((Y[t] - X[])*] = E[(=[t]+ N[t] - X[])?]
= E[(z[t] - X[t])?] + 02, (3.11)

since N[t] is i.i.d. and independent from both Xq, [t] and X[t]. Note that Xgq, [t] and X[t]
are sequential and do not use Y[t]. Hence, using these equations yields the result in (3.2).
This concludes the proof of the theorem. O

To get the corollary, it has been shown in [25] that the affine predictor X,[t] in (3.3)

achieves

n

E|> (zt] - X, zn: [t] —wY[t — 1] — ¢)%s,[t]| < 2In(n,) +O0(1)  (3.12)

t=1 t=1
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for all w,c € R and n, where n, is the number of times node p is used in prediction, i.e.,
Y[t —1] € A,. Applying this result to any ng [t] that uses these affine predictors in each
node yields,

n n

E > (2[t] - Xo,[t)? =D (@[t] = wY [t — 1] — ¢)*| < 2In(n) + O(1) (3.13)

t=1 t=1
after maximization over n,’s. Combining this bound with (3.2) and selecting an appropriate
value for a yields the result in the corollary. This completes the outline of the proof of the

corollary. O

3.3 Simulation Results

In this section, we illustrate the performance of the introduced algorithm, CRNNP, when it
is used to predict noise-corrupted chaotic signals generated using the Duffing map described
by z[t] = c12[t — 2]+ coz[t — 1] — (x[t — 1])3. The Duffing map demonstrates chaotic behavior
when ¢; = —0.2 and ¢ = 2.75. For these values of ¢; and cp, we plot in Fig 3.3, a
sample function generated using the Duffing map. Note that although the sample function
is completely predictable from the governing dynamical equations using only the last two
samples, it exhibits rather erratic behavior, and is in fact known to exhibit chaotic behavior
for this set of coefficients. We also plot the corresponding attractor for the Duffing map in
Fig. 3.4 showing its highly nonlinear nature. The desired signal x[t] is then corrupted by an
additive noise N[t] with standard deviation 0.05. In Fig 3.5, we plot the accumulated and
normalized MSE of different algorithms averaged over 200 random iterations of {z[t]}:>1
and {N[t]}+>1. In this figure, the context-tree based algorithms use a context-tree of depth-
6, a = 1 and first order sequential linear predictors in each node. In Fig. 3.5, we have
the CRNNP algorithm from Fig. 3.2 “alg”; the sequential algorithm corresponding to the
finest partition (discussed in Remark 2) on this tree “finest”; the context-tree algorithm that
trains on the clean signal {z[t]}+>1, however, still uses Y[t — 1] as the regressor “clean alg”.
Since at each time the introduced algorithm requires O(7) computations, we also simulate a
7th order linear least squares algorithm using {Y[t—1],...,Y[t—7]} as its input regressor [4]
“RLS”. Note that this RLS algorithm provides significantly worse performance since it tries
to approximate the nonlinear terms in the Duffing map by linear combinations. In order

to model the nonlinear terms in the Duffing Map, we also implement a 4th order linear
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Figure 3.3: A sample function of the Duffing map

least squares algorithm using {Y[t — 1], (Y[t — 1]),..., (Y[t — 1])*} as the input regressor
“NRLS”. We observe in these simulations that the “alg” algorithm is able to outperform
the “finest” algorithm in the initial samples since the finest partition needs to learn all the
affine models used in the leaves. CRNNP is able to exploit the smaller sub-trees (or coarser
models) which have less parameters to train, hence it provides better performance in the
start of the simulations against all algorithms. As the data length grows, when the *“”finest”
algorithm has enough data to train on, both algorithms provide similar performance. The
performance of CRNNP trained on noisy samples is nearly the same as the performance of
the “clean alg” algorithm, i.e., the curves are nearly the same. This result was expected as
shown in the proof of the introduced algorithm. For these chaotic signals, the introduced
CRNNP algorithm outperforms all other algorithms that also use only the noise-corrupted

samples.

3.4 Conclusion

In this chapter, we introduced a novel randomized sequential prediction algorithm (CRNNP)
that only uses noise-corrupted past samples of a deterministic desired signal to predict the
clean desired signal. This algorithm is shown to achieve asymptotically the performance of

the best piecewise affine model that can both select the best partition of the space of past
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regressor (from a doubly exponential number of possible partitions) and the affine model
parameters based on the clean desired signal. We demonstrated the performance of the
introduced CRNNP algorithm when it is used to predict chaotic signals generated using the

Duffing map.
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Duffing map

Figure 3.4: The attractor of the Duffing map
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Chapter 4

CONCLUSIONS

In this thesis, we handle linear adaptive filtering and nonlinear adaptive prediction
tasks. Novel adaptive algorithms for these tasks are presented throughout the sections of
this thesis. Chapter 2 deals with the linear adaptive filtering task and proposes two new
algorithms. Chapter 3 is dedicated to the nonlinear adaptive prediction task.

Proportionate update idea of [1] leads us to develop the Proportionate Normalized
Least Mean Fourth (PNLMF') and Krylov-Proportionate Normalized Least Mean Fourth
(KPNLMF) algorithms. PNLMF is built up in the same way [2] produces LMF from LMS.
We implement Krylov subspace projection technique to develop the KPNLMF' algorithm.
KPNLMF is similar to KPNLMS in [3] except that our KPNLMF algorithm minimizes
the mean fourth error. KPNLMF exploits the fact that projecting an unknown potentially
dispersive system to a Krylov subspace yields a sparse system. This fact is proven in Sub-
section 2.2.3 of Chapter 2. Obtaining a sparse system whatever the input system is, enables
us to employ the PNLMF algorithm which is derived previously.

The KPNLMF algorithm is investigated for the system identification problem and sim-
ulation results are provided in the Section 2.4 of the Chapter 2. Performance of KPNLMF
is compared to the performances of NLMF and KPNLMS. It is shown that KPNLMF con-
verges faster than NLMF both in mean-square-error sense and system mismatch, i.e. weight
error power, sense. Faster convergence of KPNLMF when compared to NLMF is due to the
Krylov subspace projection technique that is involved in the KPNLMF algorithm. KPNLMF
is also shown to have superior performance than KPNLMS in certain practical cases where
the noise probability distribution is one of the probability density functions (pdf) among
uniform distribution, sine wave distribution and square wave distribution. KPNLMF has
a system mismatch value that is much smaller than that of KPNLMS in these cases when
they both converge at the same speed. However, KPNLMS performs better than KPNLMF

if the noise has a Gaussian pdf.
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Another contribution of this thesis is the steady-state Mean Square Error (MSE) analysis
that are carried out for KPNLMS and KPNLMF. They are both shown to converge to the
desired solution with sufficiently small excess MSEs.

We consider sequential nonlinear prediction of a real-valued, bounded and determinis-
tic signal from its noise-corrupted past samples in Chapter 3. We introduce a randomized
algorithm, which is called Competitive Randomized Noisy Nonlinear Predictor (CRNNP),
based on context-trees in a competitive framework. The CRNNP algorithm works in a
framework that is combination of four different frameworks. The main contribution of
CRNNP is that it produces high prediction performance under additive noise, so it includes
a noisy framework. Secondly, since the CRNNP algorithm is for all bounded, real-valued
and deterministic signals, we define a competitive framework to measure its quality of per-
formance. We incorporate a competitive framework because we do not make any stochastic
assumptions over the input signals. Thirdly, CRNNP involves a nonlinear framework which
is based on context-trees. Context-trees are used to build piecewise affine predictors to
model the nonlinearity. And lastly, our algorithm uses a randomized selection framework.
The CRNNP algorithm needs this randomized selection framework as it serves for the kind
of problems that need to choose a strategy from several number of strategies at each time.
Those kind of problems are named sequential decision problems and we follow a randomized
way to deal with such kind of problems. Randomization weights are used to make a decision
at each time.

The CRNNP algorithm performs in the combination of these four frameworks and it
is shown to beat all other algorithms that perform under the same conditions. CRNNP
has a performance that is nearly the same as the one of the algorithm working on the
clean signal. This algorithm working on the clean signal assumes the desired clean input
signal is available, i.e. assumes no additive noise in the channel. Our algorithm achieves
nearly the same performance without any increase in the computational complexity. The
computational complexity of CRNNP is linear in the depth of the context-tree used per
prediction. The proposed CRNNP algorithm is tested with chaotic signals that are created
via Duffing map in Section 3.3 of Chapter 3.

It is also proven in Section 3.2 of Chapter 3 that without ever observing the desired

clean signal, the CRNNP algorithm achieves the performance of the best piecewise affine
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predictor that can both choose its partition of the past observations space (from a class of
a doubly exponential number of possible partitions) and tune the parameters of the affine

models for these piecewise regions using the clean desired signal.

4.1 Future Work

Some possible directions for the future research in the fields that are studied in this thesis

are pointed here.

e Direct usage of Krylov subspace techniques in linear adaptive filtering can be investi-
gated. Both the KPNLMF algorithm in this thesis and the KPNLMS algorithm in [3]
exploit the Krylov subspace projection technique in order to make the unknown input
system sparse. However, if we can proceed in such a direct way that a Krylov subspace
technique is used to solve the Wiener-Hopf equation, then a much faster converging
linear adaptive filtering algorithm can be obtained. The way the LMS and the LMF
algorithms employ to converge to the optimal solution are named Richardson iteration
in numerical methods literature. There are mainly two groups of iterative methods
for solving a system of linear equations and Richardson iteration is member of the
stationary iterative methods group. The other group for solving a system of linear
equations is the Krylov subspace methods. The proportionate update idea for the
sparse systems that is presented first time in [1] is an improvement on the Richard-
son iteration. KPNLMS and KPNLMF extend this improvement to the non-sparse
systems, but they are still members of the stationary iterative methods group. De-
veloping an efficient algorithm which is a member of the Krylov subspace methods
for the solution of the Wiener-Hopf equation has a great chance to outperform the

present linear adaptive filtering algorithms.

e Exploiting context-graphs instead of context-trees to model the nonlinearity may im-
prove the prediction performance of the CRNNP algorithm. Context-graphs are a
generalization of context-trees and the usage of them for the universal prediction task
is demonstrated in [43]. Context-graphs mitigate the limitations of the context-trees
on the modeling power of the class of models by allowing a more general graphical

structure. If we use a context-graph instead of a context-tree to model the nonlin-
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earity that is present at the problem, we may end up with an algorithm that is more

powerful in terms of modeling than CRNNP introduced in this thesis.
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