
NEW ADAPTIVE ALGORITHMS FOR LINEAR FILTERING AND

NONLINEAR PREDICTION

by

Yasin Yılmaz

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical & Computer Engineering

Koç University

July, 2010
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Assoc. Prof. Metin Türkay

Date:



To my family

iii



ABSTRACT

In this thesis, we consider two adaptive filtering tasks: Linear Adaptive Filtering and

Nonlinear Adaptive Prediction. We handle system identification and sequential (online)

nonlinear prediction problems for these tasks respectively. 3 novel adaptive algorithms (2

in linear filtering and 1 in nonlinear prediction) are presented in this thesis.

For linear adaptive filtering, Least Mean Squares (LMS) is a fundamental, simple yet

not fast enough converging algorithm. Proportionate update idea that is proposed by Dut-

tweiler in [1] achieves a significant development in the convergence speed of LMS for sparse

systems. We develop the Proportionate Normalized Least Mean Fourth (PNLMF) algo-

rithm by minimizing mean fourth error (MFE) in the same way as [2] produces the Least

Mean Fourth (LMF) algorithm from LMS. Yukawa’s implementation of a Krylov subspace

projection technique into the problem extends the use of proportionate update idea to non-

sparse systems. We exploit the same Krylov subspace projection technique and introduce

the Krylov-Proportionate Normalized Least Mean Fourth (KPNLMF) algorithm by again

minimizing MFE. The Krylov-Proportionate Normalized Least Mean Squares (KPNLMS)

algorithm minimizes mean square error (MSE) and our introduced KPNLMF algorithm is

the MFE counterpart of KPNLMS. We observe the same relation between KPNLMS and

KPNLMF as the one between LMS and LMF that is presented in [2]. Simulations show

that KPNLMF attains a much lower mismatch (filter weight error power) than KPNLMS

when the system noise has a probability density function among certain types that are of

practical importance. It is also shown in the simulations that KPNLMF converges faster

than the Normalized LMF (NLMF) algorithm. Another contribution of this thesis is that

the steady-state MSE analysis is performed both for KPNLMS and KPNLMF. They are

both shown theoretically to converge to the desired solution according to the steady-state

MSE criterion.

In the second main part of the thesis, we deal with the sequential nonlinear prediction of

an arbitrary, deterministic and bounded signal from its noise-corrupted past samples under
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square error loss. We present a novel randomized sequential prediction algorithm and name

it Competitive Randomized Noisy Nonlinear Predictor (CRNNP). The main contribution of

this thesis in this topic is that the CRNNP algorithm achieves a high prediction performance

under additive noise. Since our CRNNP algorithm works for an arbitrary deterministic

signal, we introduce a competitive framework in order to define a meaningful performance

measure. CRNNP works in a competition class of algorithms that hypothetically work

in parallel. We show that CRNNP achieves the performance of the best algorithm that

can both select the best partition of the past observations space and the affine model

parameters based on the desired clean signal in hindsight. The competition class is the

class of certain nonlinear models, i.e. piecewise affine models represented on a context-tree.

So, we employ a context-tree structure to model the nonlinearity that exists in the problem.

The CRNNP algorithm serves for sequential decision problem and it makes its decision by

choosing a strategy from several number of strategies at each time in a randomized fashion.

Randomization weights are determined according to the prediction performances of the

strategies.



ÖZETÇE

Bu tezde iki uyarlanır süzgeçleme işini ele alıyoruz: Doğrusal Uyarlanır Süzgeçleme

ve Doğrusal Olmayan Uyarlanır Öngörü. Bu işleri sırasıyla sistem tanımlama ve ardışık

doğrusal olmayan öngörü problemleri üzerinde düşünüyoruz. Bu tezde 3 adet yeni uyarlanır

algoritma (2 adet doğrusal süzgeçleme için ve 1 adet doğrusal olmayan öngörü için) sunuluyor.

Doğrusal süzgeçlemede, LMS (Least Mean Squares) algoritması temel bir algoritma olup

basit bir çalışma prensibi vardır ancak yeterince hızlı yakınsama yapmaz. [1]’de Duttweiler

tarafından önerilen orantılı güncelleme fikri LMS algoritmasının yakınsama hızında seyreltik

sistemler için önemli bir gelişme sağlar. Biz bu tezde [2]’nin LMS algoritmasından LMF

(Least Mean Fourth) algoritmasını ürettiği yolu takip edip hatanın dördüncü kuvvetinin or-

talamasını küçülterek PNLMF (Proportionate Normalized LMF) algoritmasını üretiyoruz.

Yukawa’nın [3]’de probleme bir Krylov altuzayı izdüşüm tekniğini dahil etmesi orantılı

güncelleme fikrini syreltik olmayan ayırgan sistemler için de kullanılabilir hale geitrir. Bu

tezde, aynı Krylov altuzay izdüşüm tekniğini kullanıp yine hatanın dördüncü kuvvetinin

ortalamasını küçülterek KPNLMF (Krylov-Proportionate NLMF) algoritmasını sunuyoruz.

Burda, [2]’deki LMS ile LMF arasındaki ilişkinin aynısını KPNLMS ile KPNLMF arasında

da gözlemliyoruz. Benzetimler, KPNLMF algoritmasının tatbiki önem içeren farklı olasılık

yoğunluk fonksiyonlarına sahip gürültüler altında KPNLMS algoritmasından daha iyi çalıştığını

gösteriyor. Benzetimlerde ayrıca KPNLMF algoritmasının başarımının NLMF algoritmasının

başarımından üstün olduğu gösteriliyor. Bu tezin bir diğer katkısı KPNLMS ve KPNLMF

algoritmaları için yatışkın durum ortalama karesel hata analizi gerçekleştirmesi. İki algo-

ritmanın da kuramsal olarak yatışkın durum ortalama karesel hata kıstasına göre istenilen

sonuca yakınsama yaptıkları kanıtlanıyor.

Tezin ikinci kısmında herhangi bir sınırlı, gerçek değerli ve belirlenimci sinyalin gürültüyle

bozulmuş geçmiş örneklerinden karesel hata kayıp fonksiyonuyla ardışık doğrusal olmayan

öngörülmesi ele alınıyor. CRNNP adında yeni bir rasgeleleştirilmiş ardışık öngörücü algo-

ritma sunuyoruz. Bu tezin bu konudaki ana katkısı toplanır gürültü altında yüksek öngörü
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başarımına ulaşmasıdır. CRNNP algoritması herhangi bir belirlenimci sinyalle çalışabildiği

için anlamlı bir başarım ölçüsü tanımlamak adına yarışmacı bir çerçeve sunuyoruz. CRNNP,

içindeki algoritmalar varsayımsal olarak paralel çalışan bir yarışma sınıfında işlem görüyor.

CRNNP ulaşılmak istenen temiz sinayli kullanarak hem geçmiş gözlem uzayındaki en iyi

bölümlemeyi hem de ilgin model parametrelerini seçebilen, yarışma sınıfındaki en iyi algorit-

manın başarımına erişiyor. Yarışma sınıfı, bir bağlam ağacı yapısında temsil edilen parçalı

ilgin modellerdir. Bu yüzden problemin doğasında varolan doğrusal olmamayı modellemek

için bağlam ağacı yapısı kullanıyoruz. CRNNP algoritması ardışık karar verme problemine

hizmet ediyor ve kararlarını her zaman belli sayıdaki yöntemden birini rasgeleleştirilmiş bir

şekilde seçerek veriyor. Rasgeleleştirme ağırlıkları yöntemlerin öngörü başarımına dayalı

olarak belirleniyor.
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Chapter 1

INTRODUCTION

Filtering, in general, means applying a device which can be a piece of physical hardware

or software to a set of noisy data in order to extract information about a quantity of interest.

The noise may arise from different sources like noisy sensors, a communication channel,

etc. Under any circumstances, filtering may help us to perform three basic information-

processing tasks [4]:

• Filtering: Extraction of information about a quantity of interest at time t by using

data measured up to and including time t.

• Smoothing: Data measured after time t can be used to obtain information about the

quantity of interest at time t. So, there is a delay in producing the result of interest

in the case of smoothing.

• Prediction: Forecasting side of information processing is present here. The goal of

prediction is to derive information about a future value of the quantity of interest at

some time like t + τ , where τ > 0, by exploiting data measured up to and including

time t.

If the output quantity of the filter is a linear function of the observations applied to the

filter input, then the filter is said to be linear. Otherwise, it is nonlinear. In this thesis, two

of the above tasks are studied. Novel algorithms for linear filtering and nonlinear prediction

are proposed and detailed explanations are supplied in the following chapters.

From the statistical viewpoint to the solution of the linear filtering problem, certain sta-

tistical parameters such as mean and correlation functions of the useful signal and unwanted

additive noise are assumed to be available. The goal is to minimize the effects of noise at

the filter output according to some statistical criterion. Minimizing the mean-square value
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of the error signal, which is defined as difference between some desired response and the

actual filter output, is a useful and common approach. The resulting solution for stationary

inputs is known as the Wiener filter which is optimum in the mean-square sense. When

dealing with situations in which nonstationarity exists, the optimum filter has to assume a

time-varying form. Kalman filter exhibits a highly successful solution to this more difficult

problem [5].

The statistics of the data to be processed are required for the design of the Wiener

filter. However, for most real-world applications the statistics of the input data are not

attainable. An efficient method to overcome this problem is to use an adaptive filter. An

adaptive filter is a device that is self-designing in that it relies for its operation on a re-

cursive algorithm. The algorithm starts from some predetermined set of initial conditions.

These initial conditions express whatever we know about the environment. If working in a

stationary environment, the algorithm converges to the optimum Wiener solution in some

statistical sense after successive iterations. In a nonstationary environment, the algorithm

offers a tracking capability. So, it can track time variations in the statistics of the input

data, provided that the variations are slow enough.

In the analysis of linear adaptive filters, the following factors are commonly considered:

• Rate of convergence: In response to the stationary inputs, it is defined as the number

of iterations required for the algorithm to converge to the optimum Wiener solution in

the mean-square sense. An algorithm with a fast rate of convergence adapts rapidly

to a stationary environment of unknown statistics.

• Misadjustment: It provides a quantitative measure of the amount by which the final

value of the mean-squared error, averaged over an ensemble of adaptive filters, deviates

from the minimum mean-squared error that is produced by the Wiener filter.

• Tracking: An adaptive algorithm is required to track the statistical variations in the

environment when operating in a nonstationary environment.

• Computational requirements: Here, the issues of concern include the number of opera-

tions required to make one complete iteration of the algorithm, the size of the memory

locations required to store the data and the program, and the investment required to
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program the algorithm on a computer. However, we basically deal with computational

complexity in this thesis.

• Robustness: Disturbances with small energy should only result in small estimation

errors. The disturbances may arise from a variety of internal or external factors.

In this thesis, we analyze our novel linear adaptive filtering algorithms in terms of the

first four factors listed above. These factors, in their own ways, enter into the design of

nonlinear adaptive filters. Nevertheless, we no longer have a well-defined frame of reference

in the form of a Wiener filter. Rather, we talk about rate of convergence by looking at

convergence curves and computational complexity of the algorithm.

1.1 Linear Adaptive Filtering

There is no unique solution to the linear adaptive filtering problem. Rather, we have

some tools represented by a variety of adaptive algorithms, each of which offers desirable

features of its own. Firstly, the user of adaptive filters should understand the capabilities

and limitations of various adaptive filtering algorithms. Then, this understanding should

be used in the selection of the appropriate algorithm for the application at hand.

Basically, we may identify two different approaches, namely stochastic gradient approach

and least-squares estimation, for deriving recursive algorithms for the operation of linear

adaptive filters [4].

Stochastic gradient approach uses the mean-squared error as the cost function for

the case of stationary inputs. The dependence of the mean-squared error on the unknown

filter coefficients may be viewed to be in the form of a multidimensional paraboloid with

a uniquely defined minimum point. We refer to this paraboloid as the error-performance

surface. The filter coefficients corresponding to the minimum point of the surface define

the optimum Wiener solution. We proceed in a two-stage manner in order to develop a

recursive algorithm for updating the filter coefficients of the adaptive filter. We first use the

method of steepest descent, a well-known optimization technique, to modify the system of

Wiener-Hopf equations (i.e., the matrix equation defining the optimum Wiener solution).

This modification requires the use of a gradient vector. The value of a gradient vector

depends on two parameters: the correlation matrix of the inputs in the filter, and the cross-
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correlation vector between the desired response and the same inputs. In general, these two

parameters are not available to us, that is why we use adaptive filtering algorithms instead

of using the optimum Wiener filter. So, to derive an estimate for the gradient vector,

we next use instantaneous values for these correlations. The resulting algorithm is widely

known as the least-mean-square (LMS) algorithm. The essence of the LMS algorithm can

be described in words as follows for the case of a transversal filter operating on real-valued

data:



updated value of

filter coefficient

vector


 =




old value of

filter coefficient

vector


+




learning-

rate

parameter





 input

vector





 error

signal




where the error signal is defined as the difference between some desired response and the

actual filter response. Although, the LMS is simple, it is capable of achieving satisfactory

performance under the right conditions. Its major limitations are a relatively slow rate

of convergence and a sensitivity to variations in the condition number of the correlation

matrix of the input vector. Within a nonstationary environment, the orientation of the

error-performance surface varies continuously with time. In this case, the LMS algorithm

has the additional task of continually tracking the bottom of the error-performance surface

as long as the input data vary slowly compared to the learning rate of the LMS algorithm.

The LMS algorithm was devised by Widrow and Hoff in 1959 during their study of

a pattern recognition scheme. The LMS algorithm is closely related to the concept of

stochastic approximation developed by Robbins and Monro (1951) in statistics for solving

certain sequential parameter estimation problems. The primary difference between them is

that the LMS algorithm uses a fixed learning-rate parameter to update each filter coefficient,

whereas in stochastic approximation methods the learning-rate parameter is made inversely

proportional to time t or to a power of t. Gradient adaptive lattice (GAL) algorithm is

another stochastic gradient algorithm that is closely related to the LMS algorithm (Griffiths,

1977,1978). The difference between them is structural in that the GAL algorithm is lattice-

based, whereas the LMS algorithm uses a transversal filter. In 1981, Zames introduced the

H∞ norm (or minimax criterion) as a robust index of performance for solving problems

in estimation and control. In this context, it is particularly noteworthy that Hassibi et al.

(1996) have shown that the LMS algorithm is indeed optimal under the H∞ criterion [6].
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Thus, for the first time, theoretical evidence was presented for the robust performance of

the LMS algorithm.

Least-squares estimation is the second approach to the development of linear adaptive

filtering algorithms. It is based on the method of least squares. Here, we minimize a cost

function that is defined as the sum of weighted error squares. Recursive least-squares (RLS)

estimation is the most popular way to formulate the method of least-squares. The RLS

estimation may be viewed as a special case of Kalman filtering. A distinguishing feature

of the Kalman filtering is the notion of state, which provides a measure of all the inputs

applied to the filter up to a specific instant of time. So, we may describe in words the

recursion that the Kalman filtering has as follows:



updated value

of the

state


 =




old value

of the

state


 +


 Kalman

gain





 innovation

vector




where the innovation vector represents new information put into the filtering process at the

time of the computation. There is indeed one-to-one correspondence between the Kalman

variables and RLS variables [5]. This correspondence means that we can use the vast

literature on Kalman filters for the design of linear adaptive filters based on recursive least-

squares estimation. We may classify the RLS family of linear adaptive filtering algorithms

into three distinct categories: Standard RLS algorithm, Square-root RLS algorithms, Fast

RLS algorithms. This classification depends on the approach taken. However, we will not

go into the details of these different approaches to the RLS algorithm since our attention is

on the LMS family of linear adaptive filtering algorithms.

The original paper on the standard RLS algorithm belongs to Plackett (1950). On the

other hand, it must be said that many other investigators have derived and rederived the

RLS algorithm. In 1974, Godard used Kalman filter theory to derive a variant of the

RLS algorithm, which is also referred to in the literature as the Godard algorithm. Then,

Sayed and Kailath (1994) published published an enlightening paper, in which the exact

relationship between the RLS algorithm and Kalman filter theory was described for the first

time [7]. Therefore, this publication of Sayed et al. presented the groundwork for how to

exploit the vast literature on Kalman filters for solving linear adaptive filtering problems.



Chapter 1: Introduction 6

1.2 Nonlinear Adaptive Prediction

Linear prediction and linear predictive models have long been central themes within the

signal processing literature [8]. More recently, nonlinear models based on piecewise linear [9]

and locally linear [10] approximations have gained significant attention. Nonlinear adaptive

prediction is a task that is carried out by a nonlinear adaptive filter. A nonlinear filter is a

signal processing device whose output is not a linear function of its input as we described

earlier. According to Haykin [4], there are fundamentally two types of nonlinear adaptive

filters, namely Volterra-based nonlinear adaptive filters and neural networks.

The first type of nonlinear adaptive filters mentioned here relies on the use of a Volterra

series that provides an attractive method for describing the input-output relationship of

nonlinear device with a memory. This special form of series derives its name from Vito

Volterra who studied it first in 1880 as a generalization of the Taylor series of a function.

Norbert Wiener was the first to use the Volterra series to model the input-output relationship

of a nonlinear system in 1958. Schetzen’s book discusses the Volterra series in detail [11].

In 1989, Rayner and Lynch also studied nonlinear adaptive filter based on Volterra series

[12], [13].

An artificial neural network or a neural network as it is commonly called, is a collection

of a large number of interconnected nonlinear processing units called neurons. In other

words, the nonlinearity is distributed throughout the network. The way the human brain

performs its operations motivated the development of neural networks. [14] is an example

of the usage of neural networks for nonlinear adaptive prediction.

In addition to the Haykin’s classification, tree-structured nonlinear prediction can be

seen as the third type of nonlinear adaptive filters. [9] is an example paper which stud-

ies tree-structured nonlinear adaptive prediction. Kozat et al. uses piecewise linearity via

context trees to model the nonlinearity for the nonlinear prediction problem [15]. In the

computational learning theory literature, the related problem of prediction as well as the

best pruning of a decision tree has been considered in which data structures and algorithms

similar to context trees have been used [16], [17], [18]. Our new nonlinear prediction algo-

rithm is also a member of the third type. We exploit piecewise linear models to do nonlinear

prediction under additive noise.
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1.3 Contributions

The contributions of this thesis are in two different topics. We propose in total 3 novel

adaptive algorithms: 2 for linear filtering and 1 for nonlinear prediction.

Contributions to linear filtering:

• 2 new fast-converging algorithms in the Least-Mean-Fourth (LMF) family of algo-

rithms

• Superior performance in uniformly, sine wave type and square wave type distributed

system noise cases

• Steady-state MSE analysis for the Krylov-Proportionate NLMS and the Krylov-Proportionate

NLMF algorithms.

Contributions to nonlinear prediction:

• A novel sequential nonlinear predictor that makes no stochastic assumptions and that

works for sequential decision problems

• High prediction performance under additive noise

1.4 Outline

We present here an outline of the thesis. In Chapter 2, two novel adaptive algorithms

namely, Proportionate Normalized Least-Mean-Fourth (PNLMF) and Krylov-proportionate

Normalized Least-Mean-Fourth (KPNLMF) algorithms for linear filtering problem are in-

troduced. Derivation of the introduced algorithms, steady-state mean square error (MSE)

analysis for the algorithms and the simulation results are provided in the sections of the

Chapter 2.

Chapter 3 concentrates on the nonlinear prediction problem and it suggests another

adaptive algorithm, namely Competitive Randomized Noisy Nonlinear Predictor (CRNNP)

in a competitive framework. Its sections point out the algorithm description and the simu-

lation results.

Finally, Chapter 4 summarizes the work that has been done and refer to the possible

future directions.
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1.5 Notation

In this thesis, all vectors are column vectors represented by boldface lowercase letters.

Matrices are represented with boldface capital letters. We reserve letters that are not

boldface to random variables. Time index appears as an argument within brackets, e.g.

d[t]. For a time-invariant vector x, x(i) is the ith entry of the vector. For a vector with

time index x[t], x[t](i) is the ith entry. For a random variable x (or vector x), E [x] (or

E [x]) is the expectation. (·)T is the transpose operation, ‖ · ‖ is the l2-norm and | · | is the

absolute value.
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Chapter 2

LINEAR ADAPTIVE FILTERING TECHNIQUES BASED ON

KRYLOV SUBSPACE PROJECTION METHOD

In this chapter, we introduce two novel linear adaptive filtering algorithms and inves-

tigate their performances for the system identification task. System identification task is

chosen for the clearness of the problem statement. The first algorithm we introduce is

the proportionate normalized least-mean-fourth (PNLMF) algorithm. While developing

the PNLMF algorithm, we are inspired by the proportionate normalized least-mean-square

(PNLMS) algorithm presented by Duttweiler in [1]. The PNLMF algorithm is the mean

fourth error version of the PNLMS algorithm. The PNLMS algorithm has been proposed

for the identification of sparse systems. It is known to exhibit faster convergence than the

standard NLMS in certain setups [1]. We derive the PNLMF algorithm from the PNLMS

algorithm in the same way as to obtain the LMF algorithm from the LMS algorithm. We

note that for the derivation of the PNLMF algorithm, the improved PNLMS (IPNLMS)

algorithm [19] is going to be used instead of the direct PNLMS algorithm of [1].

The second algorithm presented in this chapter is the Krylov-proportionate normalized

least-mean-fourth (KPNLMF) algorithm. Here, Krylov subspace projection technique is

incorporated within the framework of the PNLMF algorithm. The Krylov-proportionate

normalized least-mean-square (KPNLMS) algorithm introduced in [3] extends the use of

the PNLMS algorithm to the identification of dispersive systems by benefiting from the

Krylov subspace projection technique. The KPNLMF algorithm inherits the advantageous

features of KPNLMS for dispersive systems [3]. In addition, the KPNLMF algorithm is

shown to outperform the KPNLMS algorithm in certain setups. An early version of this

work was presented at a conference [20].

Steady-state performances of both KPNLMS and KPNLMF are analyzed in terms of

MSE criterion in Section 2.3. We deal with stochastic signals, i.e., our input, output signals

and noise in the system are modeled as stochastic signals and in realistic applications the
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statistics of the input and output signals are not known exactly. Therefore, we approximate

the method of steepest descent [4] which employs deterministic gradient method by using

stochastic gradient algorithms. All adaptive algorithms discussed in this chapter (LMF,

NLMS, NLMF, PNLMS, IPNLMS, PNLMF, KPNLMS, KPNLMF) are members of the

family of stochastic gradient algorithms as they are derived from the Least Mean Squares

(LMS) algorithm which is the most popular member of the stochastic gradient family [4].

In our stochastic gradient assumptions, exact covariance and cross-correlation quantities

are replaced by instantaneous estimates resulting in gradient noise. As a consequence,

stochastic gradient algorithms perform worse than the original steepest descent method.

However, the degradation in the performance of LMS is not significant when a suitable

step-size is used [4]. Since our adaptive algorithms studied in this chapter are children of

LMS, we also expect an insignificant degradation in their performances. Results of Section

2.3 coincide with what we expect here. KPNLMS and KPNLMF are shown to have small

excess MSEs proving that their performances are very similar to the performance of the

original steepest descent algorithm.

The system identification problem is studied throughout the chapter. We particularly

investigate system identification framework since signal processing problems like noise can-

celing, echo canceling and channel equalization share the same system setup with system

identification. In this framework, an unknown system is modeled adaptively by minimizing

a certain statistical measure of the error between the output of the system to be identified

and the output of the model system. We emphasize that although minimizing the mean

square error (MSE) is the most widely known and used technique because of its tractability

and simple analysis, there are other ways to minimize the estimation error. Expected value

of the fourth power of the error is a popular alternative to minimize in linear adaptive filter-

ing. Modified steepest descent algorithm for the mean fourth error case is studied and the

least mean forth (LMF) algorithm is proposed as an adaptive filtering technique in [2]. The

PNLMF and KPNLMF algorithms are derived starting from the LMF algorithm in Section

2.2. In Section 2.3, steady-state MSE analysis of KPNLMS and KPNLMF are carried out.

Section 2.4 contains the simulation results for the sample cases, followed by the conclusion

in Section 2.5.
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System to be
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[t]
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algorithm
e[t]

Σ

v[t]

+

+

Model system, 
(w[t] )

d̂

Figure 2.1: Block diagram of system identification

2.1 System Description

We consider the system identification task presented in Fig. 2.1. In this figure, x[t] ∈ Rm

is the input regressor with zero mean and covariance matrix R = E
[
x[t]x[t]T

]
. With this

input regressor, the output of the desired unknown system is given by

d[t] = wT
o x[t] + v[t], t ∈ N, (2.1)

where w0 ∈ Rm is the coefficient vector of the unknown system to be identified. Here, v[t]

is the i.i.d. noise with zero mean and variance σ2
v . We assume that the input regressor

and the noise signal are uncorrelated. The input regressor x[t] and the output signal d[t]

are available to estimate the filter coefficients of the unknown system. Given the input

regressor, the estimate of the desired signal is given by

d̂[t] = w[t]T x[t], t ∈ N, (2.2)

where w[t] = [w[t](1), w[t](2), ...,w[t](m)]T is the adaptive weight vector to estimate wo.

In this framework, our aim is to minimize a specific statistical measure of the error

between the desired signal d[t] and the estimate produced by an adaptive algorithm d̂[t],
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i.e., e[t] = d[t]− d̂[t]. In this chapter, we minimize the mean fourth power of the estimation

error. The mean square error (MSE) and the mean fourth error (MFE) are given by

MSE = E
[
e[t]2

]
(2.3)

MFE = E
[
e[t]4

]
,

respectively. Given this setup, in the next section we introduce two different adaptive

algorithms that are constructed based on the MFE criteria using proportionate update idea

and Krylov subspace projections.

Here, R = E
[
x[t]x[t]T

]
is the autocorrelation matrix of the input regressor x[t] and

p = E [d[t]x[t]] is the cross-correlation vector between the input regressor x[t] and the

output d[t] at time t. Both R and p, which are statistical measures of the input and

the output, can be thought as known parameters for the exactness of the algorithm while

developing it. Otherwise, they can be approximated at the beginning of the algorithm. We

assume they are known beforehand for the sake of simplicity in the next section. The fact

that we really do not know exact R and p is considered in Section 2.4 while simulating the

algorithms.

2.2 Proposed Adaptive Filtering Algorithm

In this section, we first derive the update procedure for the filter coefficients of the PNLMF

algorithm inspired from the IPNLMS algorithm. Then, Krylov subspace projection tech-

nique is incorporated within the PNLMF algorithm framework to yield the KPNLMF al-

gorithm. We note that this order of constructing the corresponding algorithms is for the

clarity of the presentation. This order of derivation is also the chronological order of the

already developed algorithms following [1, 3]. However, the logical flow of the proposed al-

gorithms are in the reverse direction. The unknown system is thought to be projected onto

the Krylov subspace in order to attain sparseness, then the PNLMF algorithm is applied to

the resulting system. A better intuition is tried to be given in the following subsections.

2.2.1 Derivation of the PNLMF algorithm

The standard LMS algorithm updates the filter coefficients as

w[t + 1] = w[t] + µe[t]x[t], (2.4)
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where e[t]x[t] approximates the gradient ∇w[t]E
[
e[t]2

]
. Here, µ is the step size of the

update, usually constrained to be 0 < µ < 2
mE[x[t]2]

, where m is the filter length. The

normalized LMS (NLMS) algorithm is introduced in order to alleviate the dependence of

the standard LMS algorithm on the statistics of the input data. The NLMS algorithm uses

the update equation

w[t + 1] = w[t] + µe[t]
x[t]

‖x[t]‖2 + ε
, (2.5)

where ε is a small regularization factor. In [2], instead of using the approximate gradient of

E
[
e[t]2

]
, the approximate gradient of E

[
e[t]4

]
is used to construct the update for the LMF

algorithm as

w[t + 1] = w[t] + 2µe[t]3x[t], (2.6)

where µ is the same step size as in the LMS algorithm. Following this, the NLMF algorithm

readily turns out to be

w[t + 1] = w[t] + 2µe[t]3
x[t]

‖x[t]‖2 + ε
(2.7)

as stated in [21]. We emphasize that using the fourth power of the error signal in the update,

the LMF algorithm is shown to yield faster convergence in the start of the adaptation.

We next incorporate the proportional update rule [19] into the NLMF framework. The

motivation behind the IPNLMS algorithm is to update each filter coefficient individually

with different step sizes. Each filter coefficient is updated according to the absolute value of

the current filter coefficient in a proportional manner, where the name proportional stems

from. In this sense, by using an update proportional to the absolute value of the current

filter coefficients, the IPNLMS algorithm distinguishes between frequently used, rarely used

or unused coefficients and updates them separately as follows:

w[t + 1] = w[t] + µe[t]
G[t]x[t]

x[t]T G[t]x[t] + ε
(2.8)

G[t] = diag(φ[t](1), φ[t](2), ...,φ[t](m))

φ[t](k) = (1− γ)
1
m

+ γ
|w[t](k)|

‖w[t]‖1 + χ
, t ∈ N, k ∈ [1, ...,m],

where γ is the proportionality factor and χ is a small regularization constant [19]. This idea

of using a proportional update is applied to the NLMF algorithm following the IPNLMS al-

gorithm. For the PNLMF algorithm, the matrix multiplying the individual filter coefficients,
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i.e., G[t], remains unchanged while only the first equation in (2.8) is changed to:

w[t + 1] = w[t] + 2µe[t]3
G[t]x[t]

x[t]T G[t]x[t] + ε
. (2.9)

In the next subsection, we extend the PNMLF algorithm using Krylov subspaces.

2.2.2 Projection over Krylov subspace

It has been shown in [19] through simulations that the IPNLMS algorithm achieves su-

perior performance than the NLMS algorithm in the system identification task when the

underlying unknown channel is sparse. We project the unknown system, which is poten-

tially dispersive, to the Krylov subspace to get benefit of the nice feature of the IPNLMS

algorithm upon sparse systems. In [3], the author demonstrates that projecting the impulse

response of the unknown system into the Krylov subspace yields a sparse representation if

the input regressor is nearly white, i.e., E
[
x[t]x[t]T

] ≈ I. To be more precise, if the auto-

correlation matrix R = E
[
x[t]x[t]T

]
of the input regressor x[t] has clustered eigenvalues or

the autocorrelation matrix has a condition number close to one, then any unknown system

will have a sparse representation at the new Krylov subspace coordinates. In case the input

is not white, a preconditioning process can be applied to the input regressor before applying

the algorithm. We explain in the next subsection how projecting an unknown system to the

Krylov subspace yields a sparse system in a different and more illustrative way than that

of [3]. Some preconditioning methods are also described in the next subsection.

Since we work at the new Krylov subspace coordinates where our unknown system has

a sparse structure, the PNLMF algorithm is altered to work in the new coordinates. This

algorithm will be called the Krylov PNLMF (KPNLMF) and has the update

w[t + 1] = w[t] + 2µe[t]3
QG[t]QT x[t]

x[t]T QG[t]QT x[t] + ε
(2.10)

where the orthogonal matrix Q represents the Krylov subspace coordinates. The columns

of the matrix Q form a set of orthonormal basis vectors for the Krylov subspace which is

spanned by the Krylov vectors

p, Rp, R2p, ..., Rm−1p. (2.11)

The orthogonal matrix Q is formed by orthonormalizing the Krylov vectors in (2.11). This

orthonormalization process can be performed via Arnoldi’s method. Arnoldi’s method is an
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effective way of orthonormalizing Krylov vectors since it does not generate Krylov vectors

explicitly. The explicit generation of Krylov vectors is an ill-conditioned numerical oper-

ation. The well known Gram-Schmidt method does not help here as it first generates the

Krylov vectors and then orthonormalizes them. We form Q once in the whole process of the

algorithm. So, it does not bring much computational burden. Note that since we now work

in the space spanned by the columns of Q, the step size scaling matrix, G[t] is updated

accordingly. Defining the projected weight vector ẃ[t] = QT w[t], the new scaling matrix is

defined as:

G[t] = diag(φ[t](1), φ[t](2), ...,φ[t](m))

φ[t](k) = (1− γ)
1
m

+ γ
|ẃ[t](k)|

‖ẃ[t]‖1 + χ
, t ∈ N, k ∈ [1, ...,m], (2.12)

Obtaining full G[t]m×m and forming QG[t]QT with full Qm×m at every iteration is computa-

tionally expensive by using the formula for G[t] in (2.12). This iteration has a computational

complexity of O(m2). However, fortunately we succeed to attain linear computational com-

plexity per iteration. Before showing how we achieve the linear computational complexity,

it will be beneficial to define new matrices Ω[t]
4
= QG[t]QT , Qm×λ

λ as the first λ(¿ m)

columns of Q and Gλ[t]λ×λ = diag(φ[t](1), ...,φ[t](λ)). So, Q = [Qm×λ
λ Q

m×(m−λ)
m−λ ] and

(2.10) becomes

w[t + 1] = w[t] + 2µe[t]3
Ω[t]x[t]

x[t]TΩ[t]x[t] + ε
. (2.13)

Assigning a pre-specified small constant value to the remaining (m−λ)φ[t](k) values does not

affect the convergence speed significantly since they correspond to the rarely used coefficients

of the weight vector. So, if we assign a small constant value, ψ to the remaining (m−λ)φ[t](k)

values, the scaling matrix G[t] becomes

G̃[t] = diag(φ[t](1), ...,φ[t](λ), ψ, ..., ψ) (2.14)

If we look at the computation of the part Ω[t]x[t] in (2.13) replacing G[t] with the new
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scaling matrix G̃[t], we see that

Ω̃[t]x[t] = [Qλ Qm−λ]


 Gλ[t] 0

0 ψI





 QT

λ

QT
m−λ


x[t]

= [QλGλ[t] ψQm−λ]


 QT

λ x[t]

QT
m−λx[t]




= [QλGλ[t]QT
λ x[t]]m×1 + [ψQm−λQT

m−λx[t]]m×1

= QλGλ[t]QT
λ x[t]− ψQλQT

λ x[t] + ψQλQT
λ x[t] + ψQm−λQT

m−λx[t]

= Qλ(Gλ[t]QT
λ x[t]− ψQT

λ x[t]) + ψ (QλQT
λ + Qm−λQT

m−λ)︸ ︷︷ ︸
I

x[t]

= Qλ(Gλ[t]QT
λ x[t]− ψQT

λ x[t]) + ψx[t] (2.15)

Note that Qm−λ is not used anywhere except in the computations of φ[t](k) values. In

(2.12), we need to compute ẃ[t] = QT w[t]. However, only first λ entries of ẃ[t] are needed

since only first λ components of φ[t](k) are computed in our simplified algorithm. Subvector

ẃλ[t] can be updated as follows.

ẃλ[t + 1] = ẃλ[t] + 2µe[t]3
Gλ[t]QT

λ x[t]
x[t]T Ω̃[t]x[t] + ε

. (2.16)

So, we do not need Qm−λ anywhere. By computing only first λ components of φ[t](k) values

used in matrix G̃[t] and first λ columns of the orthogonal matrix Q we can attain linear

computational complexity per iteration as showed in [3]. Then, we use the following formula

in order to update filter coefficients in KPNLMF.

w[t + 1] = w[t] + 2µe[t]3
Ω̃[t]x[t]

x[t]T Ω̃[t]x[t] + ε
(2.17)

Here, computation of Ω̃[t]x[t] is given in (2.15), Qλ is formed by orthonormalizing first λ

Krylov vectors via Arnoldi’s method, Gλ[t] = diag(φ[t](1), ...,φ[t](λ)) and ψ is a constant.

2.2.3 Sparsity obtained by Krylov subspace projection technique

In this subsection, we try to see how sparsity is obtained as a result of Krylov subspace pro-

jection technique. We consider solving the linear Wiener-Hopf equation, Rw = p by using

the Generalized Conjugate Residual (GCR) method which is a Krylov subspace technique.

Since the autocorrelation matrix, R is symmetrical, the subspace spanned by the Krylov
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vectors equals to the subspace spanned by the residuals in the algorithm as shown next in

2.18.

span{p,Rp, ...,Rm−1p} = span{r0, r1, ..., rm−1} (2.18)

where m is the filter length, i.e. length of the filter coefficient vector w. Residuals have the

following properties:

r0 = p (2.19)

rk = r0 −
k−1∑

i=1

αiRri (2.20)

since at each iteration system is projected to the next Krylov vector. So, residual decreases

gradually. Then,

wk = ξk(R)p (2.21)

where ξk(R) is the kth order polynomial which minimizes ‖rk+1‖2.

rk+1 = p−Rwk (2.22)

= p−Rξk(R)p (2.23)

= (I −Rξk(R))p (2.24)

= γk+1(R)p (2.25)

Here, γk+1(R) is the k+1th order polynomial which minimizes ‖rk+1‖2 subject to γk+1(0) =

1.

‖rk+1‖ ≤ ‖γk+1(R)‖‖p‖ (2.26)
‖rk+1‖
‖p‖ ≤ ‖γk+1(R)‖ (2.27)

Noting that p = r0 we get an upper bound for the percentage of the residual that is left

after kth iteration in 2.27. So, we continue investigating this upper bound polynomial. If

R = V ΛV −1,
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then

‖γk+1(R)‖ = ‖V γk+1(Λ)V −1‖ (2.28)

≤ ‖V ‖‖V −1‖︸ ︷︷ ︸
cond(V )

‖γk+1(Λ)‖ (2.29)

≤ cond(V )

∥∥∥∥∥∥∥∥∥∥∥∥




γk+1(λ1)

.

.

γk+1(λm)




∥∥∥∥∥∥∥∥∥∥∥∥

. (2.30)

Here, V is the eigenvector matrix and Λ is the eigenvalue matrix of R. 2.28 follows from

the spectral mapping theorem which states that

spectrum(f(R)) = f(spectrum(R)) (2.31)

because

RR = V ΛV −1V ΛV −1 = V Λ2V −1

Rn = V ΛnV −1

f(R) = a0V V −1 + a1V ΛV −1 + ... + anV ΛnV −1

= V (a0I + a1Λ + ... + anΛn) V −1

= V f(Λ)V −1. (2.32)

cond(V ) is the conditional number of V . In our case because R is symmetrical, V has

orthonormal columns (cond(V ) = 1) and R has real eigenvalues. Actually λi ≥ 0 since R

is positive semi-definite.

Now, we know that the upper bound for the residual after kth iteration is

‖γk(R)‖ ≤ cond(V )max
i
|γk(λi)|

≤ max
i
|γk(λi)| (2.33)

So, we try to minimize the maximum response of the γ function to the eigenvalues of R.

γk is any kth order polynomial such that γk(0) = 1. So, our task turns into fitting a

polynomial γk at each iteration (k:iteration number) to the eigenvalues λi, i = 1, ...,m of

the autocorrelation matrix R that are on the positive real axis. Fig. 2.2 illustrates this

polynomial fitting task.
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* = eigenvals(R)

- = 5th order poly
- - = 8th order poly

Figure 2.2: Polynomial fitting of GCR. GCR fits a higher order polynomial to the eigenvalues
of R in order to minimize the maximum response to the eigenvalues.

It is obviously easy to fit a low order polynomial to clustered eigenvalues. In case that

cond(R) = λmax
λmin

≈ 1, eigenvalues are very close to each other on the real positive axis which

means again that a low order polynomial can easily fit them. Therefore, for either cases

in a few iterations a good approximation to w can be obtained since residual will be small

with a small upper bound as a result of good polynomial fit. If R has clustered eigenvalues

or has condition number close to 1, then the representation in the new Krylov coordinates

ẃ = QT w of the system impulse response w is sparse because only first few columns of

Q are enough to have a good approximation, i.e. in a few iteration of Krylov subspace

projection residual becomes sufficiently small and a good approximation is obtained.

In case that R has neither clustered eigenvalues nor condition number close to 1, one

can use a preconditioner to whiten the input regressor x[t]. Preconditioning helps R to

have clustered eigenvalues. Some methods for preconditioning are provided next. For more

preconditioning techniques, see [22] and [23].
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If R is a diagonal matrix,

R =




1

2

.

.

.

N




then R has N distinct eigenvalues and we need a preconditioner for R to have clustered

eigenvalues. Using a preconditioner,

P =




1
1
2

.

.

.

1
N




(2.34)

we have the equation PRw = Pp where PR = I has all eigenvalues equal to 1. For R being

a diagonally dominant matrix, we can implement a similar procedure for preconditioning.

Let R = D + Rnd where D is the diagonal part and Rnd is the nondiagonal part. Rnd has

very small entries compared to diagonal entries. Applying D−1 as the preconditioner we

get
(
D−1R

)
w =

(
I + D−1Rnd

)
w = D−1p

Using the inverse of the diagonal part as the preconditioner usually improves the convergence

and the inverse of a diagonal is cheap to compute. Diagonal and diagonally dominant cases

are demonstrated in Figures 2.3 and 2.4.

One should choose a preconditioner P such that

• R̃ ≈ R

• R̃ is easy to invert or factor

• P = R̃
−1
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Figure 2.3: R is diagonal and has 3 distinct eigenvalues. At most 3 iterations a polynomial
is fitted perfectly to the eigenvalues and residual becomes zero.

Let R ≈ LU . Then, by using this approximate LU factorization as preconditioner we get,

(
(LU)−1R

)
w = (LU)−1p (2.35)

If we apply a right preconditioner, we should find first w̄, then w in RPw̄ = p ⇒ w = Pw̄

2.3 Steady-State MSE Analysis

This section proceeds with the same order as in [24]. First, an energy conservation relation is

derived. Then, a variance relation is developed from that energy conservation relation since

we are interested in evaluating the steady-state variance of the estimation error. Afterwards,

excess MSE expressions at steady- state are found for KPNLMS and KPNLMF. Full matrix

representations of Ω, Q and G are used for clarity since MSE performances of the algorithms

are not affected by the simplification made to attain linear computational complexity.

2.3.1 Energy Conservation Relation

w̃[t] = w̃[t− 1]− µΩ[t]x[t]g [e[t]] (2.36)
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Figure 2.4: (a)Eigenvalues of R are clustered around 3 points and in 3 iterations a small
residual is achieved without preconditioning. (b)By using the inverse of the diagonal part
as the preconditioner, we can achieve a small residual in only one iteration.

where w̃[t] = w0 −w[t] is the weight-error vector, 0 < µ < 2, Ω[t] = QG[t]QT and

g [e[t]] =
e[t]

‖x[t]‖2
Ω[t]

+ ε

=
ea[t] + v[t]
‖x[t]‖2

Ω[t]
+ ε

(2.37)

for KPNLMS

g [e[t]] =
2e[t]3

‖x[t]‖2
Ω[t]

+ ε

=
2(ea[t] + v[t])3

‖x[t]‖2
Ω[t]

+ ε
(2.38)

for KPNLMF Here, e[t] = ea[t] + v[t] is the total error composed of the estimation error

ea[t] and the i.i.d. noise v[t] with zero mean and variance σ2
v . If we multiply (2.36) by x[t]T

from left, we get

ep[t] = ea[t]− µ‖x[t]‖2
Ω[t]

g [e[t]] (2.39)

Here, ep[t] = x[t]T w̃[t] and ea[t] = x[t]T w̃[t − 1] are the aposteriori and apriori estimation

errors respectively. Then, from (2.39)

g [e[t]] =
ea[t]− ep[t]
µ‖x[t]‖2

Ω[t]

(2.40)
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Substitute (2.40) in (2.36).

w̃[t] = w̃[t− 1]− µΩ[t]x[t]
ea[t]− ep[t]
µ‖x[t]‖2

Ω[t]

w̃[t] + µ
Ω[t]x[t]

µ‖x[t]‖2
Ω[t]

ea[t] = w̃[t− 1] + µ
Ω[t]x[t]

µ‖x[t]‖2
Ω[t]

ep[t]

w̃[t] +
Ω[t]x[t]
‖x[t]‖2

Ω[t]

ea[t] = w̃[t− 1] +
Ω[t]x[t]
‖x[t]‖2

Ω[t]

ep[t] (2.41)

Next, we equate the squared weighted norms of both sides of (2.41) using Ω[t]−1 as weighting

matrix.

[w̃[t] + µ̄[t]Ω[t]x[t]ea[t]]
T Ω[t]−1 [w̃[t] + µ̄[t]Ω[t]x[t]ea[t]] = (2.42)

[w̃[t− 1] + µ̄[t]Ω[t]x[t]ep[t]]TΩ[t]−1[w̃[t− 1] + µ̄[t]Ω[t]x[t]ep[t]]

Here, µ̄ is defined as,

µ̄[t]
4
=





1
‖x[t]‖2Ω[t]

if x[t] 6= 0

0 otherwise

Noting that ΩT = Ω = QGQT since G is a diagonal matrix, (2.42) becomes,

‖w̃[t]‖2
Ω[t]−1 + µ̄[t]w̃[t]TΩ[t]−1Ω[t]x[t]ea[t] + (2.43)

µ̄[t]x[t]TΩ[t]Ω[t]−1ea[t]w̃[t] + µ̄[t]2x[t]TΩ[t]ea[t]Ω[t]−1Ω[t]x[t]ea[t] =

‖w̃[t− 1]‖2
Ω[t]−1 + µ̄[t]w̃[t− 1]TΩ[t]−1Ω[t]x[t]ep[t] +

µ̄[t]x[t]TΩ[t]Ω[t]−1ep[t]w̃[t− 1] + µ̄[t]2x[t]TΩ[t]ep[t]Ω[t]−1Ω[t]x[t]ep[t]

Substituting ep[t] = x[t]T w̃[t] and ea[t] = x[t]T w̃[t− 1] we get,

‖w̃[t]‖2
Ω[t]−1 + µ̄[t]〈w̃[t], w̃[t− 1]〉Rx[t]

+ µ̄[t]ea[t]ep[t] + µ̄[t]2‖x[t]‖2
Ω[t]

|ea[t]|2 =

‖w̃[t− 1]‖2
Ω[t]−1 + µ̄[t]〈w̃[t], w̃[t− 1]〉Rx[t]

+ µ̄[t]ea[t]ep[t] + µ̄[t]2‖x[t]‖2
Ω[t]

|ep[t]|2 (2.44)

Here, 〈·, ·〉 is the inner product operator, Rx[t] is the covariance matrix of the input regressor

which is used as weighting matrix for the inner product. Common terms on both side are

canceled and since

µ̄[t]2‖x[t]‖2
Ω[t]

=
‖x[t]‖2

Ω[t]

‖x[t]‖4
Ω[t]
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equation (2.44) reduces to

‖w̃[t]‖2
Ω[t]−1 + µ̄[t]|ea[t]|2 = ‖w̃[t− 1]‖2

Ω[t]−1 + µ̄[t]|ep[t]|2. (2.45)

Equation (2.45) states the Energy Conservation Relation.

2.3.2 Variance Relation

Steady-state filter operation, [24]:

E [w̃[t]] = E [w̃[t− 1]] = s as t →∞ (usually s = 0) (2.46)

E
[
w̃[t]w̃[t]T

]
= E

[
w̃[t− 1]w̃[t− 1]T

]
= Rw̃[t] as t →∞ (2.47)

(Rw̃[t]:covariance matrix of the weight error vector)

E
[‖w̃[t]‖2

]
= E

[‖w̃[t− 1]‖2
]

= Tr(Rw̃[t]) as t →∞ (2.48)

In our case,

E
[
‖w̃[t]‖2

Ω[t]−1

]
= E

[
w̃[t]TΩ[t]−1w̃[t]

]
(2.49)

E
[
‖w̃[t− 1]‖2

Ω[t]−1

]
= E

[
w̃[t− 1]TΩ[t]−1w̃[t− 1]

]
. (2.50)

If we define ŵ[t]
4
= QT w̃[t], then (2.49) and (2.50) become

E
[
‖w̃[t]‖2

Ω[t]−1

]
= E


w̃[t]T Q︸ ︷︷ ︸

ŵ[t]T

G[t]−1 QT w̃[t]︸ ︷︷ ︸
ŵ[t]




= E
[
ŵ[t]T G[t]−1ŵ[t]

]

= Tr(Rŵ[t]G[t]−1) (2.51)

E
[
‖w̃[t− 1]‖2

Ω[t]−1

]
= E

[
ŵ[t− 1]T G[t]−1ŵ[t− 1]

]

= Tr(Rŵ[t−1]G[t]−1). (2.52)

We know that G[t] is a diagonal matrix, so G[t]−1 is also a diagonal matrix. Next, we show

that Rŵ[t] = Rŵ[t−1].

Rŵ[t] = E
[
ŵ[t]ŵ[t]T

]

= QT E
[
w̃[t]w̃[t]T

]
Q

= QT Rw̃[t]Q (2.53)

Rŵ[t−1] = QT E
[
w̃[t− 1]w̃[t− 1]T

]
Q

= QT Rw̃[t]Q (2.54)
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(2.53) and (2.54) follow from the fact that E
[
w̃[t]w̃[t]T

]
= E

[
w̃[t− 1]w̃[t− 1]T

]
= Rw̃[t]

in (2.47). In (2.53) and (2.54), it is shown that Rŵ[t] = Rŵ[t−1]. So, from (2.51) and (2.52)

we can conclude that

E
[
‖w̃[t]‖2

Ω[t]−1

]
= E

[
‖w̃[t− 1]‖2

Ω[t]−1

]
= Tr(Rŵ[t]G[t]−1) (2.55)

Energy conservation relation:

Returning to energy conservation relation we remember from (2.45) that

‖w̃[t]‖2
Ω[t]−1 + µ̄[t]|ea[t]|2 = ‖w̃[t− 1]‖2

Ω[t]−1 + µ̄[t]|ep[t]|2

and from (2.55) we know that E
[
‖w̃[t]‖2

Ω[t]−1

]
= E

[
‖w̃[t− 1]‖2

Ω[t]−1

]
. Therefore, taking

expectation of both sides our energy conservation relation turns into

E
[
µ̄[t]|ea[t]|2

]
= E

[
µ̄[t]|ep[t]|2

]
(2.56)

Using the fact that ep[t] = ea[t]− µ‖x[t]‖2
Ω[t]

g[e[t]] in (2.39) we get

E
[
µ̄[t]|ea[t]|2

]
= E

[
µ̄[t]|ea[t]− µ‖x[t]‖2

Ω[t]
g[e[t]]|2

]
(2.57)

If we expand the inside of the expectation on the right hand side of (2.57), we get

µ̄[t]|ea[t]|2 + µ2µ̄[t]‖x[t]‖4
Ω[t]

|g|2 − µµ̄[t]‖x[t]‖2
Ω[t]

ea[t]g∗ − µµ̄[t]‖x[t]‖2
Ω[t]

ea[t]∗g. (2.58)

The argument of g[e[t]] is not written while developing equations for clarity. We know that

µ̄[t]‖x[t]‖2
Ω[t]

= 1 for all x[t] except the trivial case x[t] = 0 for which the product is zero.

So,

E
[
µ̄[t]‖x[t]‖4

Ω[t]
|g|2

]
= E

[
‖x[t]‖2

Ω[t]
|g|2

]
(2.59)

E
[
µ̄[t]‖x[t]‖2

Ω[t]
ea[t]g

]
= E [ea[t]g] (2.60)

Next, we substitute (2.59) and (2.60) in (2.58) and continue with (2.57).

E
[
µ̄[t]|ea[t]|2

]
= E

[
µ̄[t]|ea[t]|2

]
+ µ2E

[
‖x[t]‖2

Ω[t]
|g|2

]
− µE [ea[t]g∗]− µE [ea[t]∗g]

E
[
µ̄[t]|ea[t]|2

]
terms on each side cancel each other and we get,

µE
[
‖x[t]‖2

Ω[t]
|g|2

]
= E [ea[t]g∗ + ea[t]∗g] as t →∞

µE
[
‖x[t]‖2

Ω[t]
|g|2

]
= 2Re{E [ea[t]∗g]} as t →∞ (2.61)

µE
[
‖x[t]‖2

Ω[t]
g2

]
= 2E [ea[t]g] as t →∞ (2.62)

(2.61) and (2.62) represent the Variance Relation for complex-valued and real-valued

data respectively.
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2.3.3 MSE of KPNLMS

For KPNLMS,

g[e[t]] =
ea[t] + v[t]
‖x[t]‖2

Ω[t]
+ ε

(2.63)

Define a new variable µ̂[t]
4
= 1

‖x[t]‖2Ω[t]
+ε

and substitute(2.63) in the variance relation (2.61).

µE
[
µ̂[t]2‖x[t]‖2

Ω[t]
|ea[t] + v[t]|2

]
= 2Re{E [µ̂[t]ea[t]∗(ea[t] + v[t])]} (2.64)

Separation Principle, [24]:

At steady-state, ‖x[t]‖2
Ω[t]

is independent of ea[t].

Lemma, [24]:

v[t] is independent of ea[t], x[t] and w[j], w̃[j] where j < t (e.g., j = t− 1).

So, expectations including cross terms of ea[t] and v[t] are separated and since v[t] is zero

mean they are canceled.

µE
[
µ̂[t]2‖x[t]‖2

Ω[t]
|ea[t]|2

]
+ µσ2

vE
[
µ̂[t]2‖x[t]‖2

Ω[t]

]
= 2E

[
µ̂[t]|ea[t]|2

]
(2.65)

where σ2
v = E

[|v[t]|2] = Jmin. µ̂ is a function of ‖x[t]‖2
Ω[t]

and if we apply separation

principle, (2.65) reduces to

µE
[
µ̂[t]2‖x[t]‖2

Ω[t]

]
E

[|ea[t]|2
]
+ µσ2

vE
[
µ̂[t]2‖x[t]‖2

Ω[t]

]
= 2E [µ̂[t]] E

[|ea[t]|2
]

(2.66)

Define new variables,

αx[t]
4
= E

[
µ̂[t]2‖x[t]‖2

Ω[t]

]
, ηx[t]

4
= E [µ̂[t]]

Then, (2.66) becomes

(2ηx[t] − µαx[t])E
[|ea[t]|2

]
= µσ2

vαx[t] t →∞

limt→∞E
[|ea[t]|2

]
= ξKPNLMS =

µσ2
vαx[t]

2ηx[t] − µαx[t]
(2.67)

(2.67) is the Excess MSE of KPNLMS. We can simplify (2.67) by assuming that ε is

sufficiently small, ε ≈ 0, which is usually the case. Using this assumption in two different



Chapter 2: Linear Adaptive Filtering Techniques Based on Krylov Subspace Projection Method 27

places we can approximate the excess MSE of KPNLMS in two different ways.

First approximation:

Effect of ε can be ignored in the definitions of αx[t] and ηx[t] (µ̂[t] ≈ 1
‖x[t]‖2Ω[t]

).

αx[t] = E
[
µ̂[t]2‖x[t]‖2

Ω[t]

]
, ηx[t] = E [µ̂[t]]

= E

[
1

‖x[t]‖4
Ω[t]

‖x[t]‖2
Ω[t]

]
, ηx[t] = E

[
1

‖x[t]‖2
Ω[t]

]

αx[t] = ηx[t] = E

[
1

‖x[t]‖2
Ω[t]

]
(2.68)

Accordingly (2.67) reduces to,

ξKPNLMS =
µσ2

vαx[t]

(2− µ)αx[t]

ξKPNLMS =
µσ2

v

2− µ
(when ε is small) (2.69)

(2.69) is the first approximation to the excess MSE of KPNLMS.

Second approximation:

Use ε ≈ 0 in (2.65) before applying the separation principle (µ̂[t] ≈ 1
‖x[t]‖2Ω[t]

).

µE

[
1

‖x[t]‖4
Ω[t]

‖x[t]‖2
Ω[t]

|ea[t]|2
]

+ µσ2
vE

[
1

‖x[t]‖4
Ω[t]

‖x[t]‖2
Ω[t]

]
= 2E

[
1

‖x[t]‖2
Ω[t]

|ea[t]|2
]

µE

[
|ea[t]|2
‖x[t]‖2

Ω[t]

]
+ µσ2

vE

[
1

‖x[t]‖2
Ω[t]

]
= 2E

[
|ea[t]|2
‖x[t]‖2

Ω[t]

]
(2.70)

Then, implement the following steady-state approximation instead of separation principle

in (2.70).

E

[
|ea[t]|2
‖x[t]‖2

Ω[t]

]
≈ E

[|ea[t]|2
]

E
[
‖x[t]‖2

Ω[t]

] =
E

[|ea[t]|2
]

Tr(Rx̂[t]G[t])
as t →∞ (2.71)

x̂[t] = QT x[t]

2− µ

Tr(Rx̂[t]G[t])
E

[|ea[t]|2
]

= µσ2
vE

[
1

‖x[t]‖2
Ω[t]

]

ξKPNLMS =
µσ2

v

2− µ
Tr(Rx̂[t]G[t])E

[
1

‖x[t]‖2
Ω[t]

]
(2.72)

(when ε is small)
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(2.72) is the second approximation to the excess MSE of KPNLMS. In (2.71), E
[
‖x[t]‖2

Ω[t]

]
=

E
[
x[t]T QG[t]QT x[t]

]
= E

[
x̂[t]T G[t]x̂[t]

]
= Tr(Rx̂[t]G[t]).

Both approximations resulted small numbers for the excess MSE of KPNLMS meaning

that the KPNLMS algorithm converges to the desired filter coefficients.

2.3.4 MSE of KPNLMF/KPNLMMN

For KPNLMMN (Krylov Proportionate Normalized Least Mean Mixed Norm),

g[e[t]] =
e[t]

[
δ + (1− δ)2|e[t]|2]

‖x[t]‖2
Ω[t]

+ ε
(2.73)

KPNLMMN is a generic algorithm in which both KPNLMS and KPNLMF are included as

special cases. δ arranges the ratio of the usages of KPNLMS and KPNLMF. Larger δ is,

KPNLMMN is more like KPNLMS and smaller δ is, it is more like KPNLMF. KPNLMF

is the specific case of KPNLMMN where δ = 0 and also δ = 1 yields KPNLMS. So we

will continue the derivation for the general case KPNLMMN and afterwards the result for

KPNLMF will be obtained easily. We can also check the result we found for the excess MSE

of KPNLMS in the previous part when we reach the result for KPNLMMN.

g[e[t]] for KPNLMF is given by the equation,

g[e[t]] =
2[ea[t] + v[t]]3

‖x[t]‖2
Ω[t]

+ ε
(2.74)

where ea[t] + v[t] = e[t].

Real-valued Data

Define δ̄
4
= 1 − δ. Write (2.73) again by using the new variable δ̄ and µ̂[t]. Time index, t

will be ignored while developing equations for the sake of clarity.

g(e) = µ̂δ(ea + v) + µ̂2δ̄(ea + v)(e2
a + v2 + 2eav) (2.75)

In order to use the variance relation stated in (2.62) first we compute E[eag(e)]. The

argument of g(e) will be dropped again for the sake of clarity. From (2.75),

E[eag] = (δ + 6δ̄σ2
v) E

[
µ̂e2

a

]
+ 2δ̄ E

[
µ̂e4

a

]
(2.76)
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since ea and v are independent. We ignore the third and higher order powers of ea since

the estimation error ea[t] becomes small in steady-state.

E[eag] ≈ (δ + 6δ̄σ2
v) E

[
µ̂e2

a

]
= b E

[
µ̂e2

a

]
(2.77)

where we defined a new variable

b
4
= (δ + 6δ̄σ2

v). (2.78)

Next, we compute E
[
‖x‖2

Ωg2
]
. Start by finding g2.

g2 = µ̂2δ2e2 + µ̂24δ̄2e6 + 4µ̂2δδ̄e4 (2.79)

e2 = e2
a + 2eav + v2 (2.80)

e4 = e4
a + 6e2

av
2 + 4e3

av + 4eav
3 + v4 (2.81)

e6 = e6
a + 6e5

av + 6eav
5 + 15e4

av
2 + 15e2

av
4 + 20e3

av
3 + v6 (2.82)

We do the following tasks: substitute (2.80),(2.81) and (2.82) in (2.79); multiply (2.79) by

‖x‖2
Ω from left; take the expectation of both sides; use the fact that v is independent of

both x and ea; ignore third and higher order terms in ea. The result is,

E
[
‖x‖2

Ωg2
]
≈ a E

[
‖x‖2

Ωµ̂2
]

+ c E
[
µ̂2‖x‖2

Ωe2
a

]
+ (2.83)

16δδ̄ E
[
µ̂2‖x‖2

Ωea

]
E[v3] + 24δ̄2E

[
‖x‖2

Ωea

]
E[v5]

where

a
4
= δ2σ2

v + 4δδ̄τ4
v + 4δ̄2τ6

v (2.84)

c
4
= δ2 + 24δδ̄σ2

v + 60δ̄2τ4
v (2.85)

We defined τ4
v
4
= E

[|v4|] and τ6
v
4
= E

[|v6|]. Remembering that αx = E
[
‖x‖2

Ωµ̂2
]
, and

combining (2.77) and (2.83) we obtain the variance relation for KPNLMMN.

2b E
[
µ̂e2

a

]
= µaαx + µc E

[
µ̂2‖x‖2

Ωe2
a

]
+ 16µδδ̄ E

[
µ̂2‖x‖2

Ωea

]
τ3
v + 24µδ̄2 E

[
‖x‖2

Ωea

]
τ5
v

(2.86)

as t →∞. We can simplify (2.86) in two ways depending on the step-size µ.

Sufficiently small µ:

Small step-size yields small E
[|ea|2

]
in steady-state and consequently small ea. So, the last
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three terms on the right hand side of the equation (2.86) can be neglected. As a result,

E
[
µ̂e2

a

]
=

µaαx
2b

(2.87)

If we apply separation principle,

E[µ̂]︸︷︷︸
ηx

E
[
e2
a

]
=

µaαx
2b

E
[
e2
a

]
= ξKPNLMMN =

µaαx
2bηx

(2.88)

Small ε provides that αx = ηx and accordingly we have,

ξKPNLMMN =
µa

2b
(2.89)

For KPNLMF, δ = 0 and this leads to a = 4τ6
v from (2.84), b = 6σ2

v from (2.78). So,

ξKPNLMF =
µτ6

v

3σ2
v

(2.90)

For sufficiently small µ, ε and applying separation principle we get the excess MSE formula

for KPNLMF in (2.90).

For KPNLMS, δ = 1 and accordingly a = σ2
v , b = 1. So,

ξKPNLMS =
µσ2

v

2
(2.91)

The result found here for KPNLMS is similar to the one in (2.69). In (2.69), there is an

extra −µ at the denominator. Actually, the result in (2.91) is the same result with the

assumption of small µ. If µ ¿ 2, then it can be neglected. So, two results for the excess

MSE of KPNLMS are consistent.

Large µ:

If we apply the separation principle, terms including τ3
v and τ5

v in (2.86) are zero since ea

has zero mean. Then, (2.86) turns into

2bηx E
[
e2
a

]
= µaαx + µcαx E

[
e2
a

]

ξKPNLMMN =
µaαx

2bηx − µcαx

ξKPNLMMN =
µa

2b− µc
(small ε (αx = ηx)) (2.92)



Chapter 2: Linear Adaptive Filtering Techniques Based on Krylov Subspace Projection Method 31

For KPNLMF, c = 60τ4
v from (2.85) and this results in,

ξKPNLMF =
µτ6

v

3σ2
v − 15µτ4

v

(2.93)

In case of large µ, small ε and separation principle applied we have the excess MSE formula

for KPNLMF given in (2.93). Excess MSE for KPNLMF, ξKPNLMF in both cases is a

small number which depends on the step-size µ and the statistics of the noise v. Latter

excess MSE (valid when step-size is large) is a little larger than the former one (valid when

step-size is small) as expected.

In order to compare the result for KPNLMS (δ = 1) with the previously obtained one in

(2.69) we substitute a = σ2
v , b = 1 and c = 1in (2.92). The result is

ξKPNLMS =
µσ2

v

2− µ
(2.94)

which is same as the one in (2.69) as expected because we do not make small µ assumption

here.

Complex-valued Data

g = µ̂δe + 2µ̂δ̄e|e|2 (2.95)

= µ̂δ(ea + v) + 2µ̂δ̄(ea + v)(ea + v)(e∗a + v∗) (2.96)

e∗ag = δµ̂|ea|2 + δµ̂e∗av + 2δ̄µ̂(|ea|2 + e∗av)(|ea|2 + eav
∗ + ve∗a + |v|2) (2.97)

E[e∗ag] = δ E
[
µ̂|ea|2

]
+ δ E[µ̂e∗a] E[v]︸︷︷︸

0

+2δ̄{E [
µ̂|ea|4

]
+ E

[
µ̂|ea|2ea

]
E[v∗]︸ ︷︷ ︸

0

+

E
[
µ̂|ea|2e∗a

]
E[v]︸︷︷︸

0

+E
[
µ̂|ea|2

]
σ2

v + E
[
µ̂|ea|2e∗a

]
E[v]︸︷︷︸

0

+E
[
µ̂|ea|2

]
σ2

v +

E
[
µ̂(e∗a)

2
]

E
[
v2

]
︸ ︷︷ ︸

0

+E[µ̂e∗a] σ2
v E[v]︸︷︷︸

0

} (2.98)

= (δ + 4δ̄σ2
v) E

[
µ̂|ea|2

]
+ 2δ̄ E

[
µ̂|ea|4

]
(2.99)

≈ (δ + 4δ̄σ2
v) E

[
µ̂|ea|2

]
(2.100)

≈ b́ E
[
µ̂|ea|2

]
(2.101)

From equations (2.98) to (2.101), we used the following features:

• v[t] is independent of x[t] and ea[t]
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• E[v] = E[v∗] = 0 and E
[|v|2] = σ2

v

• v[i] is assumed to be circular, i.e. E
[
v2

]
= 0

• third and higher order terms of ea are neglected since ea is small at steady-state

• a new variable is defined,

b́
4
= δ + 4δ̄σ2

v (2.102)

Following the same order as in the real-valued data subsection we proceed now by computing

E
[
‖x‖2

Ω|g|2
]

|g|2 = µ̂2δ2|e|2 + 4µ̂2δδ̄|e|4 + 4µ̂2δ̄2|e|6 (2.103)

|e|2 = |ea|2 + e∗a + eav
∗ + |v|2 (2.104)

|e|4 = |ea|4 + 4|ea|2|v|2 + 2|ea|2[eav
∗ + e∗av] + 2|v|2[eav

∗ + e∗av] + v2(e∗a)
2 +

(v∗)2e2
a + |v|4 (2.105)

|e|6 = |ea|6 + |v|6 + 3|ea|4[eav
∗ + e∗av] + 3|v|4[eav

∗ + e∗av] + |ea|2e∗av[3e∗av + 2eav
∗] +

|ea|2eav
∗[3eav

∗ + 2e∗av] + 5|v|2|ea|4 + 5|ea|2|v|4 + |v|2e∗av[3e∗av + 2eav
∗] +

|v|2eav
∗[3eav

∗ + 2e∗av] + 9|v|2|ea|2[eav
∗ + e∗av] + (e∗a)

3v3 + e3
a(v

∗)3 (2.106)

Substitute (2.104),(2.105) and (2.106) in (2.103) and use the same features listed while

computing E[e∗ag].

E
[
‖x‖2

Ω|g|2
]
≈ á E

[
µ̂2‖x‖2

Ω

]
+ ć E

[
µ̂2‖x‖2

Ω|ea|2
]

+ 8δδ̄ E
[
‖x‖2

Ω|v|2(eav
∗ + e∗av)

]
+

12δ̄2 E
[
‖x‖2

Ω|v|4(eav
∗ + e∗av)

]
(2.107)

á = δ2σ2
v + 4δδ̄τ4

v + 4δ̄τ6
v (2.108)

ć = δ2 + 16δδ̄σ2
v + 36δ̄2τ4

v (2.109)

We are now ready to utilize the variance relation in (2.61) by combining (2.101) and (2.107).

2b́ E
[
µ̂|ea|2

]
= µáαx + µć E

[
µ̂2‖x‖2

Ω|ea|2
]

+ 8µδδ̄ E
[
‖x‖2

Ω|v|2(eav
∗ + e∗av)

]
+

12µδ̄2 E
[
‖x‖2

Ω|v|4(eav
∗ + e∗av)

]
(2.110)

We will again investigate two conditions on the step-size µ.

Sufficiently small µ:
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We can ignore again last three terms in (2.110) because they contain ea, which is small at

steady-state when µ is small.

E
[
µ̂|ea|2

]
=

µáαx

2b́
(2.111)

ξKPNLMMN =
µáαx

2b́ηx
(separation principle) (2.112)

ξKPNLMMN =
µá

2b́
(small ε (αx = ηx)) (2.113)

ξKPNLMF =
µ

2
4τ6

v

4σ2
v

=
µτ6

v

2σ2
v

(2.114)

For KPNLMF, δ = 0 and this leads to á = 4τ6
v from (2.108), b́ = 4σ2

v from (2.102) used in

(2.114).

For KPNLMS, δ = 1 and consequently á = σ2
v , b́ = 1. So,

ξKPNLMS =
µσ2

v

2
(2.115)

which is the expected result with the assumption of small µ. This confirms our unified

investigation of excess MSE for KPNLMS in real-valued and complex-valued data. We see

here that real-valued and complex-valued data gives the same excess MSE expression for

KPNLMS.

Large µ:

Last two terms in (2.110) cancel because they result zero like in real-valued data subsection.

We assume small ε and use separation principle.

2b́ E
[
µ̂|ea|2

]
= µáαx + µć E

[
µ̂2‖x‖2

Ω|ea|2
]

(2.116)

2b́ηx E
[|ea|2

]
= µáαx + µćαx E

[|ea|2
]

(separation principle) (2.117)

E
[|ea|2

]
=

µáαx

2b́ηx − µćαx
(2.118)

ξKPNLMMN =
µá

2b́− µć
(small ε (αx = ηx)) (2.119)

ξKPNLMF =
4µτ6

v

8σ2
v − 36µτ4

v

(ć = 36τ4
v for KPNLMF) (2.120)

ξKPNLMF =
µτ6

v

2σ2
v − 9µτ4

v

(2.121)
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Both small µ and large µ produced a small excess MSE for KPNLMF. Large µ results in

slightly larger excess MSE as expected.

The results in real-valued data (2.90),(2.93) and complex-valued data (2.114),(2.121)

prove that the KPNLMF algorithm converges to the desired solution with a small excess

MSE.

ć = 1 for KPNLMS (δ = 1). Hence, ξKPNLMS = µσ2
v

2−µ approving the result in (2.69).

2.4 Simulation Results

This section contains numerical examples. Performance of the KPNLMF algorithm is com-

pared to the performances of KPNLMS and NLMF algorithms in the following subsections.

2.4.1 KPNLMS-KPNLMF

In this subsection, we compare the performances of the KPNLMS and the KPNLMF algo-

rithms. In [2], Walach and Widrow studied the LMF algorithm and compared the perfor-

mance of the LMF algorithms to the performance of the LMS algorithm. Since we work

with the Krylov-variants of the LMS and the LMF algorithms, we can expect the same com-

parison results with the ones in [2]. Our Krylov-proportionate LMS and LMF algorithms

implement LMS and LMF like in [2], but the normalized versions in the Krylov subspace

coordinates. Walach and Widrow looked at the performances of the LMS and the LMF

algorithms at different noise contexts. Probability density functions (PDFs) of the investi-

gated noise types are depicted in Fig. 2.5. Gaussian, uniform, sinusoidal and square wave

probability densities are chosen because of their practical importance.

Here, we define a parameter α = MLMS
MLMF

to measure the ratio between the mismatches of

LMS and LMF where MLMS is the mismatch of LMS and MLMF is the one of LMF. Table

2.1 shows the α values in 4 different noisy environments [2].

Gaussian Uniform Sine Wave Square Wave

α 0.6 2.3 3.6 9

Table 2.1: Values of the mismatch ratio between LMS and LMF, α = MLMS
MLMF

under different
noise types
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Figure 2.5: PDFs of the investigated noise types. (a)Gaussian density, (b)Uniform density,
(c)Sinusoidal density, (d)Square wave density

According to the Table 2.1, KPNLMF should have a mismatch value which is 10log109 ≈
9.5 dB less than the mismatch of KPNLMS under square wave type noise (v[t] = ±a) for

the same speed of convergence since we expect the same results for α with our Krylov-

proportionate LMS and LMF algorithms. Similarly, under uniformly distributed noise

MLMF (dB) ≈ MLMS(dB)−3.6dB and under sine wave type noise MLMF (dB) ≈ MLMS(dB)−
5.6dB. However, under Gaussian type noise MLMF (dB) ≈ MLMS(dB) + 2.2dB which

means KPNLMS performs better than KPNLMF under Gaussian noise. On the other

hand, KPNLMF beats KPNLMS considerably in terms of weight error power (mismatch)

when the system noise has one of the distributions among uniform, sinusoidal and square

wave. Our simulation results depicted in Fig. 2.6 through Fig. 2.9 agree this statement.

The examples in [2] are implemented here. In Fig. 2.6 through 2.9, we try to estimate

the system with an impulse response given by wT = [0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1]

where m = 9. A random input signal which is white and of unit power is used. Step sizes

µKPNLMS = 1.8 × 10−3 and µKPNLMF = 0.3 × 10−5 are used to yield the same speed of
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convergence. For parameters that only belong to our Krylov-proportionate algorithms, we

use λ = 2, γ = 0.5 in our experiments. ε = 0.0001. Weight error powers, i.e. mismatches,

are averaged over 200 independent trials. The experiments are carried out in low SNR

conditions. Gaussian and uniform noises are simulated as white random processes of power

100. Sinusoidal noise is generated according to the model v[t] = a cos(wt) where a = 10
√

2

and w = π/4. Square wave noise is randomly modeled as v[t] = ±10. Weight error powers

are delineated after averaging over periods that are 25 iterations-long.
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Figure 2.6: Mismatch graphs for Gaussian noise case. (a)Log scale graph. At steady-state,
MKPNLMS ≈ −8.1dB and MKPNLMF ≈ −5.9dB. So, MKPNLMF ≈ MKPNLMS + 2.2dB
which is a perfect match with the theoretical result obtained in [2]. (b)Linear scale graph.

Our experimental results are in a good harmony with the theoretical ones that are

obtained in [2]. We provide the log scale graphs in Fig. 2.6 through 2.9 to illustrate this

strong consistency. We also provide linear scale graphs for all types of noisy environments

studied here to show that mismatch values are in steady-state.

2.4.2 NLMF-KPNLMF

System to be identified has a random dispersive impulse response with length m where

m = 50 in the comparison between the NLMF and KPNLMF algorithms. Elements of the

impulse response vector sum up to 1. Here, λ = 4 (¿ m = 50) and 200 independent trials
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Figure 2.7: Mismatch graphs for uniform noise case. (a)Log scale graph. At steady-state,
MKPNLMS ≈ −7.9dB and MKPNLMF ≈ −11.5dB. So, MKPNLMF ≈ MKPNLMS − 3.6dB
which is a perfect match with the theoretical result obtained in [2]. (b)Linear scale graph.

are performed with uniformly distributed, zero mean noise process and white inputs. We

set signal-to-noise ratio, SNR = 10 log10
E[x[t]2]
E[v[t]2]

≈ 22dB. The mean square error and the

system mismatch (normalized weight error power) averaged over 200 trials are plotted as

performance measures. The figures are in dB scale. As the regularization constant, we use

ε = 0.0001 for all algorithms.

Fig. 2.10 compares the KPNLMF and the NLMF algorithms in terms of the MSE.

The KPNLMF algorithm surpasses the NLMF algorithm in terms of the MSE performance.

Two methods are also compared in the system mismatch setup and again the KPNLMF

algorithm yields considerably superior performance with respect to the NLMF algorithm.

The system mismatch performances for both algorithms are shown in Fig. 2.11. KPNLMF

enjoys the superior performance related to the sparse structure of the unknown impulse

response as a result of the Krylov projection technique.

2.5 Conclusion

The proportionate and Krylov-proportionate normalized least mean fourth algorithms are

proposed in this chapter. It is shown through simulations that the KPNLMF algorithm
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Figure 2.8: Mismatch graphs for sine wave noise case. (a)Log scale graph. At steady-state,
MKPNLMS ≈ −6.4dB and MKPNLMF ≈ −12dB. So, MKPNLMF ≈ MKPNLMS − 5.6dB
which is a perfect match with the theoretical result obtained in [2]. (b)Linear scale graph.

outperforms the NLMF algorithm in convergence while having only linear computational

complexity. The KPNLMF algorithm performs better than the NLMF algorithm since it

benefits from both the sparse structure of the Krylov-projected unknown system and the

proportional update technique. The system mismatch performance of KPNLMF is also

compared to the performance of KPNLMS in several types of noisy environments that have

practical importance. Although the KPNLMF algorithm is similar with the KPNLMS,

simulation results demonstrated that the KPNLMF algorithm attains smaller amounts of

weight error power, i.e. mismatch, in case the system noise has a probability distribution

among uniform, sinusoidal and square wave distributions. KPNLMF achieves this superior

performance against KPNLMS when they converge at the same speed. For the Gaussian

noise case KPNLMS has smaller mismatch values than KPNLMF.

Steady-state MSE performances of KPNLMS and KPNLMF are investigated and excess

MSE of both algorithms are found to be small. We showed that both algorithms converge

to the desired solution according to the steady-state MSE criterion.
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Figure 2.9: Mismatch graphs for uniform noise case. (a)Log scale graph. At steady-state,
MKPNLMS ≈ −8dB and MKPNLMF ≈ −17.5dB. So, MKPNLMF ≈ MKPNLMS − 9.5dB
which is a perfect match with the theoretical result obtained in [2]. (b)Linear scale graph.
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Figure 2.10: MSE comparison between NLMF and KPNLMF
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Figure 2.11: System mismatch comparison between NLMF and KPNLMF
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Chapter 3

COMPETITIVE NONLINEAR ADAPTIVE PREDICTION UNDER

ADDITIVE NOISE

In this chapter, we consider sequential (online) nonlinear prediction of an arbitrary,

deterministic and bounded signal from its noise-corrupted past samples under square error

loss and we propose a novel algorithm called Competitive Randomized Noisy Nonlinear

Predictor (CRNNP).

In the next section, the system that is studied throughout the chapter is described and

the frameworks in which the described system is handled are explained. Later in Section

3.2, we first summarize the notion of context-trees. We then introduce CRNNP which is a

randomized predictor constructed using context-trees, competes against all piecewise affine

models defined on the context-tree and requires a computational complexity only linear in

the depth of the context-tree per prediction. Simulations are performed to illustrate the

performance of the introduced algorithm using chaotic signals. We finally conclude the

chapter in Section 3.4.

3.1 System Description

In this fundamental signal processing problem [25], a bounded deterministic signal {x[t]}t≥1,

|x[t]| ≤ bx, x[t] ∈ R, 0 < bx < ∞ is observed through an additive noise channel, Y [t] =

x[t] + N [t], where {N [t]}t≥1 is an i.i.d., bounded noise process with variance σ2
n such that

|N [t]| ≤ bn, N [t] ∈ R, 0 < bn < ∞ with probability 1. Hence, |Y [t]| ≤ by, by
4
= bx + bn with

probability 1. Then, the underlying signal x[t] is predicted using the noise-corrupted past

samples {Y [1], . . . , Y [t− 1]} at each time t.

We emphasize that although we desire to predict the underlying signal {x[t]}t≥1 and the

performance measure including the loss function is defined with respect to {x[t]}t≥1, the

desired clean signal {x[t]}t≥1 is not available for prediction or training. In this sense, this

noisy framework differs from common classical adaptive signal processing approaches [4],
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where the desired clean signal, certain statistics or past samples are usually available for

training or constructing predictions. This noisy framework is explained in the following

subsection.

In this chapter, we refrain from making stochastic assumptions on the desired signal

{x[t]}t≥1 and require uniformly good performance for any deterministic signal {x[t]}t≥1. If

the desired signal x[t] and the noise N [t] are random processes, conditional mean E
[
x[t]|yt−1

1

]
,

yt−1
1

4
= {y[1], ..., y[t − 1]} is the optimal predictor of x[t] that minimizes the mean-square

error (MSE) between the desired signal and the prediction [4]. Since we make no such

stochastic assumptions on the desired signal, we introduce a competitive framework, which

is detailed in Subsection 3.1.2, in order to define a meaningful performance measure.

Another framework we consider in this chapter is the one where the underlying compe-

tition class is the class of certain nonlinear models, i.e., piecewise affine models represented

on a context-tree. Although we discuss only affine models, as shown in the next section, one

can assign arbitrary predictors (or regressors) to each region. The affine models are specifi-

cally used to yield smoothly varying arbitrary nonlinear models. This nonlinear framework

which is based on context-tree structure is represented in Subsection 3.1.3.

Randomized selection framework is the last framework that is employed in this thesis.

Sequential decision problem is the subject that is handled in this framework. A decision

should be made among several choices in this problem. Our algorithm works in a randomized

fashion and it uses randomization weights to select one of the possible choices as the output.

Subsection 3.1.4 is dedicated to this framework.

To this end, we introduce a novel randomized prediction algorithm, CRNNP based on

context-trees that uses only the past noisy samples of a desired signal and has computa-

tional complexity only linear in the depth of the context-tree per prediction. Without ever

observing the desired clean signal, this algorithm will achieve the performance of the best

piecewise affine predictor that can both choose its partition of the past observations space

(from a class of a doubly exponential number of possible partitions) and tune the parameters

of the affine models for these piecewise regions using the clean desired signal. We consider

the square error loss function, however, our results can be generalized to several different

loss functions, such as those considered in [26].
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3.1.1 Noisy Framework

The framework in which additive noise exists on an individual deterministic sequence is

introduced in [27] for binary prediction. The results in [27] are extended to the filtering

problem in [28]. We are inspired by [27] and [28] to extend the results presented in [29], [30]

and [15] to the noise-corrupted nonlinear prediction problem. This work is the nonlinear

version of the noise-corrupted prediction problem in [25]. Context-tree structure is used to

incorporate the nonlinearity. [31] also deals with the same problem.

3.1.2 Competitive Framework

This competitive approach has extensive roots in machine learning [32], [33], [34], adaptive

signal processing [15] and information theory [35], [36] literature. Much of these works

build on the Hannan’s influential work on prediction of individual sequences [37]. Such

competitive framework for sequential prediction of deterministic sequences was examined

in [26] and [29] against a finite number of predictors, in [38] against the class of fixed-order

linear models, and finally in [30] and [15] against switching linear and certain nonlinear

models. However, in these past approaches [26], [38], [30] and [15] there is no consideration

for noise, i.e. the desired clean signal is available.

In this competitive framework, we have, say m sequential (online) prediction algorithms

as the competition class producing outputs {X̂k[t]}t≥1, k = 1, . . . , p, that “hypothetically”

work in parallel to predict the underlying signal {x[t]}t≥1. At each time t, each sequential

algorithm suffers the loss (x[t]− X̂k[t])2 (which is not available to us since {x[t]}t≥1 is not

observable). Our goal is then to find a sequential predictor that asymptotically achieves

the performance of even the best algorithm in this class uniformly for any deterministic,

bounded and arbitrary signal. Specifically, we seek a sequential predictor, say X̂[t], that

has access to only noisy past samples {Y [1], . . . , Y [t − 1]}, predictions of the constituent

algorithms {X̂k[1], . . . , X̂k[t]}, k = 1, . . . , p, never observes {x[t]}t≥1 and satisfies

lim
n→∞

1
n

E

[
n∑

t=1

(x[t]− X̂[t])2 −
n∑

t=1

(x[t]− X̂k[t])2
]

= 0, (3.1)

for all k and n when it is used to predict any {x[t]}t≥1. Here, the expectation is with respect

to the noise process and the randomization of the introduced algorithm.
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3.1.3 Context-tree Framework

As an example for the usage of context-tree structure, look at Fig. 3.1. We divide the space

of the most recent observation space [−by, by] (which Y [t− 1] belongs to) into four disjoint

regions ∆1, . . . ,∆4 such that [−by, by] =
⋃4

i=1 ∆i and assign each region an affine model

say (wiY [t − 1] + ci), wi, ci ∈ R, i = 1, . . . , 4. These assignments define a piecewise affine

predictor where the prediction at each time t is given by (wiY [t− 1] + ci) if Y [t− 1] ∈ ∆i.

For all wi, ci ∈ R, one can define similar piecewise affine predictors yielding a competition

class that has a continuum of predictors. Although one can approximate smoothly varying

nonlinear functions by increasing the number of regions and the number of past samples

used in prediction in this piecewise affine model, the boundaries of the piecewise regions are

fixed. To make the boundaries of the piecewise regions also a design parameter, we will use

the notion of context-trees to represent a doubly exponential number different partitions of

the past observations space in the next section.

3.1.4 Randomized Selection Framework

In this framework, we serve for certain signal processing problems where one is expected to

choose a particular strategy from a class of strategies at each time, instead of producing a

new outcome based on the outcomes of the constituent algorithms. A well-studied problem

that fits this framework is tracking a finite class of finite-delay scalar quantizers [39], [40].

The functional forms of the randomization weights of the introduced algorithm are sim-

ilar to the weights used in [15] to construct weighted predictions. However, note that the

algorithm of [15] trains on and uses the past observations of the clean desired signal {x[t]}t≥1,

which is unavailable here. Furthermore, we use these weights to define a randomized algo-

rithm instead of using convex combination ideas as in [15].

3.2 Algorithm Description

In this section, as an illustrative example for the notion of context-tree structure, we present

a binary context-tree to partition the space of only the most recent past observation, i.e.,

[−by, by] where Y [t − 1] belongs to. As shown in Fig. 3.1, a depth-D binary context-tree

(D = 2 in this figure) has 2D leaves and 2D+1 − 1 nodes. Each node on the context-tree, if
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Figure 3.1: (a) A binary context-tree that partitions [−by, by]. This tree has depth D = 2
with 4 leaves and 7 nodes. Each node is assigned a region as the union of the regions
assigned to its children. (b) The complete sub-trees along with the partitions they define.
A depth-D context-tree defines m ≈ 1.52D

such sub-trees or partitions.

it is not a leaf node, has two children: the left hand side child and the right hand side child.

We use this context-tree to define different partitions of [−by, by] as follows. We first assign

each leaf of the context-tree a different region of [−by, by] as seen in Fig. 3.1. Each node on

the context-tree is then assigned the region which is constructed as the union of the regions

assigned to its children. On this context-tree, one can define a doubly exponential number,

m ≈ 1.52D
[15], of different prunings or “complete” sub-trees. As an example, for a depth-2

context-tree, we provide 5 different sub-trees in Fig. 3.1. We call these sub-trees “complete”

since the union of the regions assigned to the leaves of a sub-tree (which are the nodes or the

leaves of the original context-tree) yields [−by, by]. Hence, a sub-tree along with the regions

assigned to its leaves defines a partition of [−by, by]. Given a depth-D binary context-tree,

we get a doubly exponential number m ≈ 1.52D
of such partitions, say Ωk, k = 1, . . . , m. For

each partition Ωk, we represent the constituent regions as Ωk
4
= {Λk,1, . . . ,Λk,Kk

} such that

[−by, by] =
⋃

i Λk,i, Kk is the number of the leaves in the partition and Λk,i are the regions

assigned to the leaves of the partition, e.g., for Ω2,we have Λ2,1 = ∆1 ∪∆2, Λ2,2 = ∆3 ∪∆4

and K2 = 2.

Suppose, given this context-tree, we assign each node ρ, ρ = 1, . . . , 2D+1−1, a sequential



Chapter 3: Competitive Nonlinear Adaptive Prediction Under Additive Noise 46

predictor X̂ρ[t] and define sequential predictors X̂Ωk
[t], k = 1, . . . , m, corresponding to each

partition Ωk as: X̂Ωk
[t] = X̂ρ[t] if Y [t− 1] ∈ Λk,j (for some j) and ∆ρ = Λk,j . We initially

define these m sequential predictors as our competition class. Later, by selecting X̂ρ[t]’s

as certain sequential affine predictors, we will demonstrate that our algorithm asymptoti-

cally achieves the performance of the best piecewise affine model which can tune both its

partitioning of the real line as well as the affine models in each region to {x[t]}t≥1.

To this end, we introduce the randomized algorithm, CRNNP in Fig. 3.2, i.e., X̂[t],

that is constructed using context-tree weighting method [41]. This randomized algorithm

hypothetically constructs all X̂Ωk
[t], k = 1, . . . , m, and run these in parallel. At each time

t, the final estimation X̂[t] selects one of the outputs X̂Ωk
[t] to repeat it as its prediction,

where the selection weights are calculated proportional to the performance of each X̂Ωk
[t]

on the past data. However, note that, although there are m different piecewise competing

algorithms, at each time t, each X̂Ωk
[t] is equal to one of the D + 1 node predictions that

Y [t − 1] belongs to. Hence, as shown in [15], at each time t, for the nodes that Y [t − 1]

belongs to (these nodes are stored in vector v in Fig. 3.2), all the weights assigned to

X̂Ωk
[t], k = 1, . . . , m can be merged using certain functions of node performance. These

functions are represented as Fρ[t] and Γρ[t] in Fig. 3.2, and updated recursively in (line

C), (line D) and (line E) in Fig. 3.2 with computational complexity only linear in depth

of the context-tree. At each time t, these functions that reflect the combined prediction

performance of that node on the past data are used to construct the probabilities η that

are used for randomization. The CRNNP algorithm introduced in Fig. 3.2 satisfies:

Theorem: Let Y [t]
4
= x[t]+N [t] represents the observation sequence such that {x[t]}t≥1

is the desired deterministic signal with |x[t]| ≤ bx and N [t] is i.i.d. with variance σ2
n,

|N [t]| ≤ bn, i.e., |Y [t]| ≤ by = bx + bn with probability 1. The sequential randomized

prediction algorithm presented in Fig. 3.2, which uses only the past noisy observations

{Y [1], . . . , Y [t− 1]}, {X̂ρ[1], . . . , X̂ρ[t]}, ρ = 1, . . . , 2D+1− 1 and never observes {x[t]}t≥1 or

prediction errors (x[t]− X̂[t]), (x[t]− X̂ρ[t]), achieves

1
n

E

[
n∑

t=1

(x[t]− X̂[t])2 −
n∑

t=1

(x[t]− X̂Ωk
[t])2

]
≤ O

(
2

D+1
2√
n

)
(3.2)

for all n and any partition Ωk, when it is applied to predict any {x[t]}t≥1. Here, the

expectation is with respect to the noise process and randomization.
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A Pseudo-code of the CRNNP Algorithm:

% Initialize

For ρ = 1, . . . , 2D+1 − 1: Fρ[0] = ε1, Γρ[0] = ε2, where ε1 and ε2 are small positive constants. (line A)

% Proceed

For t = 1, . . .

Find nodes such that Y [t− 1] ∈ ∆ρ and store them in the vector v starting from the top node to the leaf node.

% Form the prediction.

z(1)= 1/2.

For i = 2 : D + 1: z(i) = 1
2 F(v(i),s)[t− 1]z(i− 1) (line B)

(where (v(i), s) is the sibling node of v(i), i.e., they are the children of the same node).

Construct a weight vector η of size D + 1 as η(i) = (z(i)Γv(i)[t− 1])/
(

Fv(1)[t− 1]
)
.

Select randomly one of the entries of v by using the weights in η, i.e., v(i) is selected with probability η(i).

Set X̂[t] = X̂v(i)[t] if i is the selected entry.

% Update after observing Y [t]. All the other nodes remain the same.

For i = D + 1, . . . , 1,

Γv(i)[t] = Γv(i)[t− 1] exp(−a(Y [t]− X̂v(i)[t])
2) (line C)

If i == D + 1, then Fv(i)[t] = Γv(i)[t] (line D)

If i 6= D + 1, then Fv(i)[t] = 1
2 F(v(i),l)[t]F(v(i),r)[t] + 1

2Γv(i)[t]. (line E)

Update X̂v(i)[t + 1] from X̂v(i)[t]

Figure 3.2: A randomized sequential prediction algorithm using context-trees. Finding the
nodes that Y [t − 1] belongs to require O(D + 1) operations since one only needs to find
the leaf node that Y [t− 1] belongs and proceeds to the top. At each time t, the algorithm
combines and updates the parameters of only D + 1 node predictors with computational
complexity O(D + 1).

To get the upper bound in (3.2), we need to set a =
√

8 2D+1 ln 2/n in Fig. 3.2. Note

that although a is optimized over n, this need for a priori knowledge of n can be readily

surpassed by applying the algorithm over exponentially increasing segments of {Y [t]}t≥1. To

achieve the performance of the best affine model with the best partition, we assign each node

a special affine predictor studied in [25], which uses only the past samples {Y [1], . . . , Y [t−1]}
that belong to that node as X̂ρ[t]

4
= w̃ρ[t− 1]Y [t− 1] + c̃ρ[t− 1], where

[
w̃ρ[t] c̃ρ[t]

]T
= R−1[t− 1]p[t− 1], R[t− 1]

4
=

(
t∑

l=1

Y [l − 1]Y [l − 1]T sρ[l] + δI

)
(3.3)

and p[t − 1]
4
=

∑t−1
l=1 Y [l]Y [l − 1]sρ[l], where Y [l] =

[
Y [l] 1

]T
, sρ[l] is the indicator

variable for node ρ, i.e., sρ[l] = 1 if Y [l − 1] ∈ ∆ρ otherwise sρ[l] = 0. The affine predictor

in (3.3) is a least squares predictor that trains only on the observed data {Y [t]}t≥1 that

belongs to that node, i.e., that falls into the region ∆ρ. Note that the update in (3.3) can

be implemented with O(D) computations using the matrix inversion lemma [4]. For the

randomized predictor in Fig. 3.2 using these least squares predictors in each node, we have

the following result:
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Corollary: The sequential randomized prediction algorithm of Fig. 3.2, with the

affine predictors (3.3) at each node ρ that only depends on the past noisy observations

{Y [1], . . . , Y [t− 1]} and never observes {x[t]}t≥1, achieves

1
n

E

[
n∑

t=1

(x[t]− X̂[t])2 −
n∑

t=1

(x[t]− wk,dk[t]Y [t− 1] + ck,dk[t])
2

]
≤ O

(√
ln n

n

)
+O

(
2

D+1
2√
n

)

(3.4)

for all n, wk,j ∈ R, ck,j ∈ R, j = 1, . . . , Kk, for all partitions Ωk, when it is applied to

predict any {x[t]}t≥1. Here, dk[t] is the selection variable for partition Ωk such that if

Y [t− 1] ∈ Λk,j , dk[t] = j.

Note that one can use the binary context-tree to partition the space of {Y [t− 1], Y [t−
2], . . . , Y [t− r]} for some r or use dth order affine predictors in each node that use {Y [t−
1], . . . , Y [t− d]} as input regressor for some d. To use dth order regressors for affine predic-

tion, one needs to update only (3.3). To partition [−by, by]r, one needs to change the line in

Fig. 3.2 that explains how to find the leaf node that {Y [t− 1], . . . , Y [t− r]} belongs to. As

explained in the caption of Fig. 3.2, the randomized algorithm has O(D+1) computational

complexity at each time t since finding the nodes used for prediction as well as updating the

node predictors require only O(D + 1) additions and multiplications. The algorithm also

has O(2D+1) storage complexity to store weights and predictors corresponding to all nodes.

Remark 1: Note that the corollary holds for any wk,j ∈ R, ck,j ∈ R, i = 1, . . . , Kk, even

with the ones that are tuned by observing the whole {x[t]}t≥1 and {Y [t]}t≥1, in hindsight,

for all n, before we even start predicting {x[t]}t≥1. Hence, the algorithm of corollary asymp-

totically achieves the performance of the best piecewise affine predictor that can choose both

its partitions as well as the prediction coefficients for that partition based on {x[t]}t≥1 and

{Y [t]}t≥1 in hindsight.

Remark 2: We emphasize that the best piecewise model with the optimal weights tuned

using all {x[t]}t≥1 corresponds to the finest partition, i.e., the 5th partition shown in Fig.

3.1. Hence, at first sight, one is tempted to use the sequential predictor corresponding to the

finest partition, i.e., X̂Ω5 [t] in Fig. 3.1, with the sequential algorithms from (3.3). However,

note that this sequential predictor needs to learn the corresponding optimal weights in each

region sequentially, hence, it may not be the best sequential algorithm as shown in the

simulations section. Furthermore the bound in (3.4) holds for all partitions and the regret

of our algorithm with respect to the best piecewise affine model corresponding to the finest
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partition is the largest, however, still o(n).

Outline of the Proofs of the Theorem and the Corollary: For each sequential predictor

corresponding to a partition, we define a function of its prediction loss on {Y [t]}t≥1 as

FΩk
[n]

4
= exp

(
−a

∑n
t=1(Y [t]− X̂Ωk

[t])2
)
, a ∈ R+, at each time n, that only depends on

noisy observations. We further define a weighted sum of these functions

F [n] =
m∑

k=1

2−C(Ωk)FΩk
[n], (3.5)

where C(Ωk) are certain weights introduced in [41] satisfying
∑m

k=1 2−C(Ωk) = 1 and

C(Ωk) ≤ 2Kk − 1 ≤ 2 2D − 1. The weights C(Ωk) are introduced for proof purposes and

are not explicitly used in the final algorithm. Clearly, F [n] is as large as any 2−C(Ωk)FΩk
[n].

Our initial goal is to show that for some randomized predictor, say X̂[t], FX̂ [n] is as large as

F [n], i.e., the performance of X̂[t] for predicting {Y [t]}t≥1 is as good as any X̂Ωk
[t]. We will

then use this predictor for prediction of {x[t]}t≥1. To accomplish the first step, we observe

that F [n] =
∏n

t=1(F [t]/F [t − 1]) by telescoping (F [0] = 1). However for each term in this

product, we have

F [t]
F [t− 1]

=
m∑

k=1

2−C(Ωk)FΩk
[t− 1]

F [t− 1]
exp

(
−a(Y [t]− X̂Ωk

[t])2
)

≤ exp
{
−aE

[
(Y [t]− X̂Ωk

[t])2
]

+
a2

8

}
, (3.6)

where the expectation in the last inequality is with respect to the probabilities
2−C(Ωk)FΩk

[t−1]

F [t−1]

and the inequality follows from Hoeffding’s inequality [42]. Hence, if we construct a random-

ized predictor, say X̂[t], that outputs X̂Ωk
[t] as its prediction with probability

2−C(Ωk)FΩk
[t−1]

F [t−1]

at each time t, then by (3.6), the accumulated loss of this algorithm will satisfy

lnFΩk
[n]− C(Ωk) ln 2 = −a

n∑

t=1

(Y [t]− X̂Ωk
[t])2 − C(Ωk) ln 2

≤ ln F [n]

≤ −a

n∑

t=1

E[(Y [t]− X̂[t])2] +
na2

8
(3.7)

for all k. Since C(Ωk) < 2D+1, setting a =
√

8 2D+1 ln 2/n, yields an upper bound
√

n2D+1 ln 2/8 on the accumulated loss of X̂[t]. This upper bound yields the upper bound in

the theorem after normalization with n. Hence the randomized predictor X̂[t] is the desired

predictor if the goal was to predict {Y [t]}t≥1. However, even in this case, this randomized
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predictor X̂[t], at each time t, needs to calculate and update a doubly exponential number,

i.e., m, of predictions, which is clearly an impossible feat even for modest m. However, note

that, in X̂[t], at each time t, only D + 1 node predictions X̂ρ[t] that Y [t− 1] belongs to are

used such that all the weights with same node predictions can be merged. It can be shown

as in [15] that if one defines certain functions of performance for each node as Fρ[t], Γρ[t]

which are initialized in (line A) and updated in (line C), (line D) and (line E) of Fig. 3.2,

then the corresponding F [t] can be written as

F [t] =
D+1∑

i=1

z(i) exp


−a

t∑

j=1

[
(Y [j]− X̂v(i)[j])

2sv(i)[j]
]

 , (3.8)

where v is the vector of nodes that Y [t−1] belongs to, the recursion for z is given in (line B)

of Fig. 3.2 and v(i) is the ith entry of the vector v. Hence X̂[t] is defined as the randomized

predictor using probabilities

η(i)
4
=

∑D+1
i=1 z(i) exp

(
−c

∑t−1
j=1

[
(Y [j]− X̂v(i)[j])2sv(i)[j]

])

F [t− 1]
. (3.9)

Note that all these performance bounds are with respect to the prediction of {Y [t]}t≥1 not

with respect to the prediction of the desired signal {x[t]}t≥1. However, we observe that

E[(Y [t]− X̂Ωk
[t])2] = E[(x[t] + N [t]− X̂Ωk

[t])2]

= E[(x[t]− X̂Ωk
[t])2] + σ2

n (3.10)

and

E[(Y [t]− X̂[t])2] = E[(x[t] + N [t]− X̂[t])2]

= E[(x[t]− X̂[t])2] + σ2
n, (3.11)

since N [t] is i.i.d. and independent from both X̂Ωk
[t] and X̂[t]. Note that X̂Ωk

[t] and X̂[t]

are sequential and do not use Y [t]. Hence, using these equations yields the result in (3.2).

This concludes the proof of the theorem. 2

To get the corollary, it has been shown in [25] that the affine predictor X̂ρ[t] in (3.3)

achieves

E

[
n∑

t=1

(x[t]− X̂ρ[t])2sρ[t]−
n∑

t=1

(x[t]− wY [t− 1]− c)2sρ[t]

]
≤ 2 ln(nρ) + O(1) (3.12)
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for all w, c ∈ R and n, where nρ is the number of times node ρ is used in prediction, i.e.,

Y [t − 1] ∈ ∆ρ. Applying this result to any X̂Ωk
[t] that uses these affine predictors in each

node yields,

E

[
n∑

t=1

(x[t]− X̂Ωk
[t])2 −

n∑

t=1

(x[t]− wY [t− 1]− c)2
]
≤ 2 ln(n) + O(1) (3.13)

after maximization over nρ’s. Combining this bound with (3.2) and selecting an appropriate

value for a yields the result in the corollary. This completes the outline of the proof of the

corollary. 2

3.3 Simulation Results

In this section, we illustrate the performance of the introduced algorithm, CRNNP, when it

is used to predict noise-corrupted chaotic signals generated using the Duffing map described

by x[t] = c1x[t−2]+c2x[t−1]− (x[t−1])3. The Duffing map demonstrates chaotic behavior

when c1 = −0.2 and c2 = 2.75. For these values of c1 and c2, we plot in Fig 3.3, a

sample function generated using the Duffing map. Note that although the sample function

is completely predictable from the governing dynamical equations using only the last two

samples, it exhibits rather erratic behavior, and is in fact known to exhibit chaotic behavior

for this set of coefficients. We also plot the corresponding attractor for the Duffing map in

Fig. 3.4 showing its highly nonlinear nature. The desired signal x[t] is then corrupted by an

additive noise N [t] with standard deviation 0.05. In Fig 3.5, we plot the accumulated and

normalized MSE of different algorithms averaged over 200 random iterations of {x[t]}t≥1

and {N [t]}t≥1. In this figure, the context-tree based algorithms use a context-tree of depth-

6, a = 1 and first order sequential linear predictors in each node. In Fig. 3.5, we have

the CRNNP algorithm from Fig. 3.2 “alg”; the sequential algorithm corresponding to the

finest partition (discussed in Remark 2) on this tree “finest”; the context-tree algorithm that

trains on the clean signal {x[t]}t≥1, however, still uses Y [t− 1] as the regressor “clean alg”.

Since at each time the introduced algorithm requires O(7) computations, we also simulate a

7th order linear least squares algorithm using {Y [t−1], . . . , Y [t−7]} as its input regressor [4]

“RLS”. Note that this RLS algorithm provides significantly worse performance since it tries

to approximate the nonlinear terms in the Duffing map by linear combinations. In order

to model the nonlinear terms in the Duffing Map, we also implement a 4th order linear
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least squares algorithm using {Y [t − 1], (Y [t − 1])2, . . . , (Y [t − 1])4} as the input regressor

“NRLS”. We observe in these simulations that the “alg” algorithm is able to outperform

the “finest” algorithm in the initial samples since the finest partition needs to learn all the

affine models used in the leaves. CRNNP is able to exploit the smaller sub-trees (or coarser

models) which have less parameters to train, hence it provides better performance in the

start of the simulations against all algorithms. As the data length grows, when the “”finest”

algorithm has enough data to train on, both algorithms provide similar performance. The

performance of CRNNP trained on noisy samples is nearly the same as the performance of

the “clean alg” algorithm, i.e., the curves are nearly the same. This result was expected as

shown in the proof of the introduced algorithm. For these chaotic signals, the introduced

CRNNP algorithm outperforms all other algorithms that also use only the noise-corrupted

samples.

3.4 Conclusion

In this chapter, we introduced a novel randomized sequential prediction algorithm (CRNNP)

that only uses noise-corrupted past samples of a deterministic desired signal to predict the

clean desired signal. This algorithm is shown to achieve asymptotically the performance of

the best piecewise affine model that can both select the best partition of the space of past
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regressor (from a doubly exponential number of possible partitions) and the affine model

parameters based on the clean desired signal. We demonstrated the performance of the

introduced CRNNP algorithm when it is used to predict chaotic signals generated using the

Duffing map.
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Chapter 4

CONCLUSIONS

In this thesis, we handle linear adaptive filtering and nonlinear adaptive prediction

tasks. Novel adaptive algorithms for these tasks are presented throughout the sections of

this thesis. Chapter 2 deals with the linear adaptive filtering task and proposes two new

algorithms. Chapter 3 is dedicated to the nonlinear adaptive prediction task.

Proportionate update idea of [1] leads us to develop the Proportionate Normalized

Least Mean Fourth (PNLMF) and Krylov-Proportionate Normalized Least Mean Fourth

(KPNLMF) algorithms. PNLMF is built up in the same way [2] produces LMF from LMS.

We implement Krylov subspace projection technique to develop the KPNLMF algorithm.

KPNLMF is similar to KPNLMS in [3] except that our KPNLMF algorithm minimizes

the mean fourth error. KPNLMF exploits the fact that projecting an unknown potentially

dispersive system to a Krylov subspace yields a sparse system. This fact is proven in Sub-

section 2.2.3 of Chapter 2. Obtaining a sparse system whatever the input system is, enables

us to employ the PNLMF algorithm which is derived previously.

The KPNLMF algorithm is investigated for the system identification problem and sim-

ulation results are provided in the Section 2.4 of the Chapter 2. Performance of KPNLMF

is compared to the performances of NLMF and KPNLMS. It is shown that KPNLMF con-

verges faster than NLMF both in mean-square-error sense and system mismatch, i.e. weight

error power, sense. Faster convergence of KPNLMF when compared to NLMF is due to the

Krylov subspace projection technique that is involved in the KPNLMF algorithm. KPNLMF

is also shown to have superior performance than KPNLMS in certain practical cases where

the noise probability distribution is one of the probability density functions (pdf) among

uniform distribution, sine wave distribution and square wave distribution. KPNLMF has

a system mismatch value that is much smaller than that of KPNLMS in these cases when

they both converge at the same speed. However, KPNLMS performs better than KPNLMF

if the noise has a Gaussian pdf.
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Another contribution of this thesis is the steady-state Mean Square Error (MSE) analysis

that are carried out for KPNLMS and KPNLMF. They are both shown to converge to the

desired solution with sufficiently small excess MSEs.

We consider sequential nonlinear prediction of a real-valued, bounded and determinis-

tic signal from its noise-corrupted past samples in Chapter 3. We introduce a randomized

algorithm, which is called Competitive Randomized Noisy Nonlinear Predictor (CRNNP),

based on context-trees in a competitive framework. The CRNNP algorithm works in a

framework that is combination of four different frameworks. The main contribution of

CRNNP is that it produces high prediction performance under additive noise, so it includes

a noisy framework. Secondly, since the CRNNP algorithm is for all bounded, real-valued

and deterministic signals, we define a competitive framework to measure its quality of per-

formance. We incorporate a competitive framework because we do not make any stochastic

assumptions over the input signals. Thirdly, CRNNP involves a nonlinear framework which

is based on context-trees. Context-trees are used to build piecewise affine predictors to

model the nonlinearity. And lastly, our algorithm uses a randomized selection framework.

The CRNNP algorithm needs this randomized selection framework as it serves for the kind

of problems that need to choose a strategy from several number of strategies at each time.

Those kind of problems are named sequential decision problems and we follow a randomized

way to deal with such kind of problems. Randomization weights are used to make a decision

at each time.

The CRNNP algorithm performs in the combination of these four frameworks and it

is shown to beat all other algorithms that perform under the same conditions. CRNNP

has a performance that is nearly the same as the one of the algorithm working on the

clean signal. This algorithm working on the clean signal assumes the desired clean input

signal is available, i.e. assumes no additive noise in the channel. Our algorithm achieves

nearly the same performance without any increase in the computational complexity. The

computational complexity of CRNNP is linear in the depth of the context-tree used per

prediction. The proposed CRNNP algorithm is tested with chaotic signals that are created

via Duffing map in Section 3.3 of Chapter 3.

It is also proven in Section 3.2 of Chapter 3 that without ever observing the desired

clean signal, the CRNNP algorithm achieves the performance of the best piecewise affine
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predictor that can both choose its partition of the past observations space (from a class of

a doubly exponential number of possible partitions) and tune the parameters of the affine

models for these piecewise regions using the clean desired signal.

4.1 Future Work

Some possible directions for the future research in the fields that are studied in this thesis

are pointed here.

• Direct usage of Krylov subspace techniques in linear adaptive filtering can be investi-

gated. Both the KPNLMF algorithm in this thesis and the KPNLMS algorithm in [3]

exploit the Krylov subspace projection technique in order to make the unknown input

system sparse. However, if we can proceed in such a direct way that a Krylov subspace

technique is used to solve the Wiener-Hopf equation, then a much faster converging

linear adaptive filtering algorithm can be obtained. The way the LMS and the LMF

algorithms employ to converge to the optimal solution are named Richardson iteration

in numerical methods literature. There are mainly two groups of iterative methods

for solving a system of linear equations and Richardson iteration is member of the

stationary iterative methods group. The other group for solving a system of linear

equations is the Krylov subspace methods. The proportionate update idea for the

sparse systems that is presented first time in [1] is an improvement on the Richard-

son iteration. KPNLMS and KPNLMF extend this improvement to the non-sparse

systems, but they are still members of the stationary iterative methods group. De-

veloping an efficient algorithm which is a member of the Krylov subspace methods

for the solution of the Wiener-Hopf equation has a great chance to outperform the

present linear adaptive filtering algorithms.

• Exploiting context-graphs instead of context-trees to model the nonlinearity may im-

prove the prediction performance of the CRNNP algorithm. Context-graphs are a

generalization of context-trees and the usage of them for the universal prediction task

is demonstrated in [43]. Context-graphs mitigate the limitations of the context-trees

on the modeling power of the class of models by allowing a more general graphical

structure. If we use a context-graph instead of a context-tree to model the nonlin-
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earity that is present at the problem, we may end up with an algorithm that is more

powerful in terms of modeling than CRNNP introduced in this thesis.
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