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ABSTRACT 

 

Impact and spreading of a compound viscous droplet on a substrate are studied 

computationally using front-tracking method as a model for single cell epitaxy, a technology 

developed to create 2D and 3D tissues cell by cell by printing cell-encapsulating droplets on 

a substrate using ink-jet printing method. The success of cell printing depends on cell 

viability during the printing process. In the present model, the cell is modeled as a highly 

viscous Newtonian droplet encapsulated by a less viscous liquid. Simulations are performed 

for a range of dimensionless parameters to probe deformation and rate of deformation of the 

cell, which are hypothesized to be the major cause of cell damage. It is found that 

deformation of inner droplet increases: as Reynolds number increases; as the diameter ratio 

of encapsulating droplet to cell decreases; as the ratio of surface tensions of air-solution 

interface to solution-cell interface increases; as the viscosity ratio of cell to encapsulating 

droplet decreases; or as the equilibrium contact angle decreases. It is observed that 

maximum deformation has local minimum at Weber number We = 2. Thereafter, effects of 

cell deformation on viability are estimated using the experimental correlation based on the 

data obtained by compressing cells between parallel plates. These results provide insight for 

optimal parameter ranges for maximal cell viability during printing. Finally the cell is 

modeled as a non-Newtonian fluid while other phases are assumed to be Newtonian. 

Oldroyd-B fluid is selected to reflect the viscoelasticity of the cell and some preliminary 

results are presented. 

Keywords: Compound droplets, finite-difference/front-tracking, Oldroyd-B fluid 
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ÖZET 

 

Bu tezde, bir birleşik viskoz damlacığın düz bir zemine çarpma ve bu yüzeyde 

yayılması problemi, sonlu-farklar/arayüz-izleme metoduyla incelenmiştir. Bu yöntem, 

damlacık içerisine koyulan biyolojik hücrenin ink-jet yazıcı teknolojisi ile bir yüzeye 

yazılmasıyla 2 ve 3 boyutlu dokuların oluşturulmasını sağlamaktadır. Yöntemin başarısı 

hücrenin yazım sırasında hayatta kalmasına bağlıdır. Bu ise sıvı ile kaplanmış hücrenin 

çarpma dinamiğinin derinlemesine anlaşılmasını gerektirir. Bu çalışma, damlacık içerisine 

koyulan biyolojik hücrenin düz bir katı yüzeye yazılmasını sayısal olarak modellemenin ilk 

adımı mahiyetindedir. Hücre, hücreyi çevreleyen akışkan ve dış ortam Newtonsal akışkanlar 

olarak modellenmiştir. Hücrenin yaşamasının hücre deformasyonu ve deformasyon oranına 

bağlı olduğu varsayılmıştır. Boyutsuz sayıların hücreyi temsil eden iç damlacığın 

deformasyonu ve deformasyon hızı üzerindeki etkilerini incelemek üzere simülasyonlar 

gerçekleştirilmiştir. Đçteki damlacık üzerindeki deformasyon; Reynolds sayısındaki artış, 

dıştaki damlacığın hücrenin yarıçapına oranındaki azalma, hava-dıştaki damlacık ve dıştaki 

damlacık-hücre arayüzlerindeki yüzey gerilmeleri oranındaki artış, hücre viskozitesinin 

dıştaki damlacığın viskozitesine oranındaki düşüş, dıştaki damlacığın zemin ile yaptığı statik 

kontak açısındaki azalma durumlarda artış göstermektedir. Ayrıca maksimum deformasyonun 

Weber sayısının 2 değeri civarında minimum olduğu gözlenmiştir. Hücrenin yaşama olasılığı 

paralel plakalar arasında hücrelerin sıkıştırılması ile elde edilen korelasyon kullanılarak 

hesaplanmıştır. Elde edilen sonuçlar, doku oluşturma sürecinde hücrenin yaşayabilirliği için 

optimal değerlerin öngörülmesini kolaylaştırmaktadır. Son bölümde ise, hücre Newtonsal 

olmayan bir akışkan olarak modellenerek hücrenin viskoelastik yapısı temsil edilmiştir. Bu 

durumda, hücre için Oldroyd-B Newtonsal olmayan akışkanı kullanılırken, hücreyi kaplayan 

damlacık ve dış ortam Newtonsal akışkanlar olarak modellenmiştir. 

Anahtar Kelimeler: Birleşik damlacık, sonlu-farklar/arayüz-izleme, Oldroyd-B akışkanı 
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Chapter 1

INTRODUCTION

Impingement of a micro-droplet on a �at surface has important applications in engi-

neering such as surface coating, spray cooling, DNA microarrays, and ink-jet printing [1].

The impact and spreading of a homogenous one-component (simple) liquid droplet on a �at

surface have been studied extensively in the literature from theoretical [2, 3, 4, 5], compu-

tational [6, 7, 8, 9, 10] and experimental [4, 11, 12, 13] points of view. In spite of a growing

interest in generation and manipulation of multi-component (compound) droplets mainly

driven by micro�uidic applications [14, 15, 16] in recent years, to the best of our knowledge,

no work has been done on the impingement of a compound droplet on a solid surface except

for the experimental study of Chen et al. [15]. They formed compound droplets consisting of

water as the inner droplet and diesel oil as the encapsulating �uid and studied the residence

time of a compound droplet impinging on a hot surface to understand the heat transfer

process in spray combustion [15]. The impingement of a compound droplet is of fundamen-

tal importance in �uid mechanics. Here, we draw inspiration from the recent experimental

cell printing studies where live cell encapsulating droplets are patterned onto biomaterial

coated substrates to engineer 3D tissue constructs [17, 18, 19, 20, 21], or to cryopreserve

cells [18, 22, 23]. The current droplet generation technologies make it possible to generate

monodispersed droplets on demand with speci�ed size such that the droplets can encapsu-

late only single to few cells and deposit them with spatial control on a substrate [18]. This

suggests that it would be useful to model the process computationally to predict optimal

conditions enhancing cell viability.

Fundamental studies of the dynamics of compound droplets have been done relatively

recently compared to the simple droplets [24] and there are still fundamental questions

that need to be addressed [14, 25]. Compound droplets have found important applica-

tions in targeted drug delivery [26, 27], food industry [28], waste water management [29]
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and micro�uidics [14]. Fluid mechanics of compound droplets have been studied in vari-

ous geometries and �ow conditions. Johnson and Sadhal [24] reviewed the translation of

compound droplets in quiescent �ow. Stone and Leal [30] studied the breakup of double

emulsion droplets in extensional �ows. Bazhlekov et al. [31] examined the unsteady mo-

tion and deformation of compound droplets rising in an otherwise quiescent �uid due to

buoyancy using a �nite element method. Smith et al. [25] investigated the deformation and

breakup of an encapsulated droplet in shear �ow using a level-set method and produced

a range of morphologies caused by the interaction between the core and outer interfaces.

They presented a phase diagram showing the morphologies obtained for a range of capil-

lary numbers and core interfacial tensions. Kawano et al. [32] studied deformations of thin

liquid spherical shells in liquid-liquid-gas system both experimentally and computationally.

In recent years, the �eld has been mainly driven by a growing range of applications in

micro�uidics. Utada et al. [14] developed a micro capillary device that generates double

emulsions at speci�ed sizes and numbers. This capillary device forms monodisperse double

emulsions in one step. Zhou et al. [33] computationally studied the formation of compound

drops in �ow-focusing devices and found that compound drops are formed only in a narrow

window of �ow and rheological parameters.

Modeling cells as simple Newtonian droplet is not new and has been widely used to

study blood cells [34, 35, 36, 37]. In these models, the cell is represented by a Newtonian

droplet whose viscosity is much higher than that of ambient �uid. The Newtonian models

involve oversimpli�cation as they ignore the complicated internal structure of the cells and

lump the e¤ects of the internal structure into the apparent viscosity usually measured by

the micropipet aspiration technique [38, 39]. A compound droplet has been proposed by

Kan et al. [40] as a model for leukocyte deformation in an imposed extensional �ow and by

Marella and Udaykumar [41] as a model for leukocyte deformability in micropipet aspiration

and recovery phases. In these models, the inner droplet represents the nucleus of the cell

while the encapsulating droplet represents the cytoplasm. Kan et al. [40] treated both

the nucleus and cytoplasm as Newtonian �uids with di¤erent material properties. Marella

and Udaykumar [41] improved this model using a power-law shear thinning �uid for the

cytoplasm and an elastic membrane with non-linear stress-strain curve for the cortical layer.

To the best of our knowledge, only computational modeling of the cell-encapsulating
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droplet printing has been performed by Wang et. al. [42] using a smoothed particle hy-

drodynamics (SPH) method. They assumed that the receiving substrate is coated by the

same liquid as that encapsulating the cell. Therefore, the �uid mechanical problem they

considered is fundamentally di¤erent from that which we study here.

In the present work, the impact and spreading of a compound droplet are studied com-

putationally using a front-tracking/�nite-di¤erence method [43] as a model for the cell-

encapsulating droplet printing on a �at solid substrate. In the present model, the cell,

the encapsulating liquid and surrounding air are �rst assumed to be Newtonian �uids with

di¤erent material and interfacial properties. This is called all-Newtonian model. In this

model, the inner droplet is composed of a highly viscous Newtonian �uid representing the

cell. This is, of course, an oversimpli�cation, as the cell is not a Newtonian droplet. How-

ever, we use this rather simple model to facilitate extensive simulations. It is assumed that

the cell-encapsulating droplet partially wets the substrate while the inner droplet is non-

wetting. Note that, as far as the computational method is concerned, there is no di¢ culty

to allow the inner droplet to wet the substrate but we simply postulate that the cell does

not wet or stick to the substrate. The present front-tracking method developed by Unverdi

and Tryggvason [44] has been recently extended to treat the moving contact lines and suc-

cessfully applied to model the impact and spreading of a simple droplet by Muradoglu and

Tasoglu [45]. In this method, the stress singularity at the contact line is removed by mov-

ing the contact line such that the contact angle is equivalent to the dynamic contact angle

that is computed at every time step using the correlation given by Kistler [46]. Finally the

compound droplet model is extended to treat the biological cell as a non-Newtonian �uid.

The Oldroyd-B �uid is selected to re�ect the viscoelastic behavior of the biological cell and

some preliminary results are presented at the end of the thesis. However, a detailed study

of non-Newtonian or microstructured models is deferred to future work.

To enable commercial implementation of the cell printing technology in the health care

industry, approaches need to minimize the cell damage occurring during impact/collision

with the receiving substrate. It is known that cell viability is strongly correlated with cell

deformation [47]. Lower levels of cell deformation is more likely to enhance survival during

the collision. We also hypothesize that the rate of cell deformation is also important in cell

viability. Therefore, the goal here is to identify the conditions that yield the smallest cell
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deformation and deformation rate. For this purpose, e¤ects of relevant non-dimensional

numbers such as the Reynolds number, the Weber number, the viscosity ratio, the surface

tension ratio, the diameter ratio and the equilibrium contact angle on the cell deformation

and deformation rate are investigated. The cell viability is related to the cell deforma-

tion using the experimental data obtained from the compression of cells by two parallel

plates [47].

The paper is organized as follows: The mathematical formulation and numerical model

are described and results are presented for the Newtonian model in the next chapter. In

Chapter 3, we represent conclusions for. Finally, the non-Newtonian �uid model is intro-

duced and some preliminary results are presented in Appendix A.
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Chapter 2

NEWTONIAN FLUID MODEL

2.1 Formulation and Numerical Method

The �ow equations are described here in the context of the �nite-di¤erence/front-tracking

(FD/FT) method. The �uid motion is assumed to be governed by the incompressible Navier-

Stokes equations. We solve for the �ow inside and outside the droplets in all three phases.

Following Unverdi and Tryggvason [44], a single set of governing equations can be written

for the entire computational domain, provided that the jumps in material properties such

as density and viscosity are correctly accounted for, and surface tension is included. In an

axisymmetric coordinate system, the Navier-Stokes equations in conservative form are given

by
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where u and v are the velocity components in the radial and axial directions, p is the

pressure, g is the gravitational acceleration, and � and � are the discontinuous density and

viscosity �elds, respectively. The e¤ect of surface tension is included as a body force shown

in the last term on the right hand side, where � is the surface tension, � is twice the mean

curvature, and n is a unit vector normal to the interface. The surface tension acts only on

the interface as indicated by the three-dimensional delta function � whose arguments x and

xf are the point at which the equation is evaluated and a point at the interface, respectively.

The Navier-Stokes equations are supplemented by the incompressibility condition

1

r
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@r
+
@v

@z
= 0:



Chapter 2: Newtonian Fluid Model 6

We also assume that the material properties remain constant following a �uid particle, i.e.,

D�=Dt = 0 and D�=Dt = 0, where D=Dt is the material derivative. The density and

viscosity vary discontinuously across the interfaces and are given by

� =

8<: �dI(r; z; t) + �o(1� I(r; z; t)) If I(r; z; t) � 1:0

�c(I(r; z; t)� 1) + �d(2� I(r; z; t)) Otherwise

� =

8<: �dI(r; z; t) + �o(1� I(r; z; t)) If I(r; z; t) � 1:0

�c(I(r; z; t)� 1) + �d(2� I(r; z; t)) Otherwise
(2.2)

where the subscripts �c", �d" and �o" denote properties of the inner droplet, encapsulating

droplet and the ambient �uid, respectively, and I(r; z; t) is the indicator function de�ned as

I(r; z; t) =

8>>><>>>:
2 in inner droplet,

1 in outer droplet,

0 in bulk �uid.

The numerical method is based on the front-tracking/�nite-di¤erence method developed

by Unverdi and Tryggvason [44]. In this method, a separate Lagrangian grid is used to

track the droplet-droplet and droplet-ambient �uid interface. The Lagrangian grid consists

of linked marker points (the front) that move with the local �ow velocity that is interpolated

from the stationary Eulerian grid as sketched in Fig. 2.1. The piece of the Lagrangian grid

between two marker points is called a front element. The Lagrangian grid is used to �nd

the surface tension, which is then distributed onto Eulerian grid points near the interface

using Peskin�s cosine distribution function [48], and added to the momentum equations as

body forces as described by Tryggvason et al. [43]. At each time step, the indicator function

is computed and is used to set the �uid properties inside and outside the droplets. To do

this, unit magnitude jumps are distributed in a conservative manner on the Eulerian grid

points near the interfaces using the Peskin�s cosine distribution function [48] and are then

integrated to compute the indicator function everywhere. The computation of the indicator

function requires solution of a separable Poisson equation and yields a smooth transition of

the indicator function across the interface. The �uid properties are then set as a function of

the indicator function according to Eq. (2.2). The Lagrangian grid is restructured at every

time step. This is done by deleting the front elements that are smaller than a speci�ed lower

limit and by splitting the front elements that are larger than a speci�ed upper limit, in the
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same way as described by Tryggvason et al. [43]. This maintains the front element size to be

nearly uniform and comparable to the Eulerian grid size. Restructuring the Lagrangian grid

is crucial because it avoids unresolved wiggles due to small elements and lack of resolution

due to large elements. The details of the front-tracking method can be found in Unverdi

and Tryggvason [44] and Tryggvason et al. [43].

Figure 2.1: Schematic illustration of the computational setup:

The no-slip boundary condition yields a stress singularity near the contact line. There-

fore it requires special treatment. The treatment of the contact line is essentially the same

as that of Muradoglu and Tasoglu [45] so it is brie�y summarized here for the compound

droplet case. In the framework of the front-tracking method, the drop interface must be

connected to the solid wall explicitly when the droplet approaches su¢ ciently close to the

wall because the interface is tracked explicitly by marker points. For this purpose, we

assume that the drop interface connects to the wall when the distance between the drop

interface and solid wall is less than a prespeci�ed threshold value hth as shown in Fig. 2.2.

To achieve this, the interface is continuously monitored during the simulation and the �rst

front element crossing the threshold line is detected. Subsequently, this element is connected

to the solid wall such that the contact angle between the wall and droplet is equal to the

apparent contact angle �D. In the present work, the apparent contact angle is speci�ed

dynamically using Kistler�s correlation [12, 46] that relates the apparent contact angle to

the capillary number de�ned as Cacl = �dVcl=� where Vcl is the speed of the contact line.
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Because Kistler�s correlation is valid for small capillary numbers, following Muradoglu and

Tasoglu [45], it is slightly modi�ed as follows:

�Di = fHo�
�
Caclm + f

�1
Ho�(�e)

�
; (2.3)

where f�1Ho� is the inverse of the Ho¤man�s function fHo� de�ned as

fHo�(x) = arccos

(
1� 2 tanh

"
5:16

�
x

1 + 1:31x0:99

�0:706#)
: (2.4)

Figure 2.2: Schematic illustration of the computational setup for slip contact line method:

In Eq. (2.4), �e is the equilibrium (static) contact angle and Caclm is de�ned as Caclm =

min(Camax; Cacl) where Camax is the cut-o¤ capillary number introduced to avoid too

large or too small values of the apparent contact angle. The apparent contact angle is then

determined in the advancing and receding phases as

�D =

8<: �Di if Vcl � 0 (advancing)

2�e � �Di if Vcl < 0 (receding).
(2.5)

Following Muradoglu and Tasoglu [45], the contact line velocity is speci�ed as the velocity

of the point where the droplet interface crosses the threshold. This de�nition is found to be

very robust. Once the apparent contact angle is determined, the front element crossing the
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threshold line is connected to the solid wall as follows: First, the distance between the front

element that is to be connected and the wall is predicted assuming that the front element

connects to the wall linearly. If this distance is smaller than a prespeci�ed threshold length,

hth, then the front element is connected to wall by �tting a cubic curve and imposing the

dynamic contact angle as sketched in Fig. 2.2. Otherwise the front element is connected

to the wall using a linear function and again imposing the dynamic contact angle on the

wall. The threshold length is typically taken as hth = 2�x where �x is the Eulerian grid

size. Note that we need three points for a cubic �t because one condition is imposed by

the apparent contact angle. For this purpose, the �rst point is selected as the marker

point on the front element crossing the interface and the other two are selected such that

the distance between the selected marker points is approximately equal to the distance

between the �rst marker point and the wall. Typical marker points used in cubic �t are

schematically shown in Fig. 2.2 as large dots. After the front element on the threshold line

is connected to the solid wall, the interface is restructured in a similar way as described by

Tryggvason et al. [43]. In addition to specifying the contact angle dynamically as explained

above, the dynamic contact angle is also used to compute the curvature at the center of the

front element adjacent to the solid wall. Following Tryggvason et al. [43], the curvature is

computed at the center of each front element and is approximated as a di¤erence between

the tangent vectors at the end points of the element. The tangent vectors are computed

by �tting a cubic polynomial for the internal front elements. In the case of contact line,

one marker point of the front element adjacent to the solid wall is placed on the wall so it

requires a special treatment. The tangent at this marker point is simply set to the tangent

of the dynamic contact angle given by Eq. (2.5). This procedure is found to be very robust

and accurate. The details of the implementation of this slip contact method can be found

in Muradoglu and Tasoglu [45].

The governing equations are solved in their dimensional forms, and the results are ex-

pressed in terms of relevant dimensionless quantities. Let L and U be appropriately de�ned

length and velocity scales, respectively, and T = L=U be the time scale. Then the relevant

dimensionless numbers can be summarized as

Re =
�dUL
�d

; We =
�dU2L
�o

;
do
di
;

�o
�i
;

�c
�d
;

�d
�o
; �e; (2.6)
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where Re is the Reynolds number, We is the Weber number, and di and do are the

diameters of inner and outer droplets, respectively. The surface tension coe¢ cients of the

droplet-droplet interface, and droplet-ambient �uid interface are denoted by �i and �o,

respectively.

2.2 Results and Discussion

2.2.1 Validation

The numerical method is �rst validated in this section. To the best of our knowledge, there

is no experimental or computational study about the impact and spreading of a compound

droplet on a substrate that we can use for validation of the present numerical method. The

accuracy and convergence of the present numerical method have been recently demonstrated

by Muradoglu and Tasoglu [45] for a simple droplet. Therefore, a comprehensive validation

is not repeated here. Instead, emphasis is placed on the validation of the numerical method

for the compound droplet case.

We �rst consider the relaxation of a compound viscous droplet from a spherical initial

condition to its �nal equilibrium shape. For this test, a concentric spherical compound

droplet of the inner radius Ri and the outer radius Ro is initialized near the solid surface

as shown in the inset of Fig. 2.3 and is allowed to spread until its �nal static shape is

reached for various values of the E�otv�os number (Eo = (�d � �o)gR2o=�o) that represents

the ratio of gravitational and surface tension forces. The inner and the encapsulating

droplet densities are equal and larger than the surrounding �uid. The viscosities of the

inner and encapsulating droplets are also set equal although viscosity does not have any

e¤ect on the �nal static shape of the droplet. Note that this test case becomes equivalent

to the simple droplet case studied by Muradoglu and Tasoglu [45] when the ratio of surface

tension coe¢ cients is large, i.e., �o=�i � 1. The static shape of the droplet generally

depends on the equilibrium contact angle �e, the E�otv�os number and the ratio of surface

tension coe¢ cients. In the limit of vanishing E�otv�os numbers, i.e., Eo� 1, the equilibrium

shape of the droplet is determined by the surface tension force and the encapsulating droplet

takes a shape of spherical cap with the maximum height of the droplet, Ho, given by [45]

Ho = Ro(1� cos �e)
�

4

2 + cos3 �e � 3 cos �e

�1=3
: (2.7)
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On the other hand, when Eo� 1 and �o=�i � 1, the compound droplet becomes equivalent

to the corresponding simple droplet and the shape of the droplet is controlled mainly by the

competition between the gravitational and surface tension forces and, the maximum height

of the droplet is proportional to the capillary length [45], i.e.,

H1 =
2Ho cos(�e=2)p

Eo
; (2.8)

whereHo is given by Eq. (2.7). Computations are performed for this test case and the results

are compared with the asymptotic solutions given by Eqs. (2.7) and (2.8). For this purpose,

the equilibrium contact angle is set to �e = 93o and the dynamic angle is used at the contact

line. Focus here is placed on the static shape of the droplet. The computational domain

extends 6.5 drop radii both in the axial and radial directions, and is resolved by a 256�256

uniform Cartesian grid. Figure 2.3 shows the normalized static droplet height as a function

of E�otv�os number for the ratio of surface tension coe¢ cients together with the steady shapes

of droplet in the range of Eo = 0:01 and 64. It is clearly seen that the computed normalized

droplet height agrees well with the asymptotic solutions given by Eq. (2.7) and Eq. (2.8) for

Eo � 1 and Eo � 1, respectively, when �i=�o � 1. For instance, the di¤erence between

the the asymptotic solution and computational result is less than 0.2% for Eo = 0:01 and

10% for Eo = 64, respectively. We also note that the di¤erence between the asymptotic

solution and computational results decreases monotonically as E�otv�os number increases.

For the intermediate values of E�otv�os number, the transition between a spherical cap and

a puddle shape occurs. However, the numerical solution deviates signi�cantly from the

asymptotic solution for large E�otv�os numbers as �i=�o increases since the inner droplet

resists the gravitational forces and causes a bump as shown in Fig. 2.3.
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Figure 2.3: The normalized static droplet height versus E�otv�os number in the range Eo =

0:01 and Eo = 64. Solid and dashed lines denote the analytical solutions for the limiting

cases of Eo << 1 and Eo >> 1, respectively. The inset shows the initial conditions for the

droplet relaxation test.

Dynamics of the contact line is of fundamental importance for accurate simulation of

impact and spreading of compound droplet. The treatment of contact line is essentially the

same as that of Muradoglu and Tasoglu [45] and it has been extensively discussed for simple

droplet case. Because there is no experimental or computational study about compound

droplet spreading, the treatment of contact line is tested here for a simple droplet case

studied experimentally by Sikalo et al. [12]. Only one set of results is shown here for com-

pleteness in Fig. 2.4. Detailed discussion of simple droplet case is conducted by Muradoglu

and Tasoglu [45]. In this test case, the impact and spreading of simple glycerin droplet

on a �at wax substrate is considered. The surrounding medium is air. The equilibrium

contact angle is set to �e = 93o. Simulations are performed for three impact velocities as

summarized in Table 2.1. As can be seen in Fig. 2.4, there is a good agreement between

the computational and experimental results, i.e., the di¤erence between the computational

results and the experimental data is less than 10%. Considering the uncertainties in the

experimental data and in the correlation used for dynamic contact angle, Fig. 2.4 indicates

the accurate treatment of the contact line.
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Figure 2.4 Time evolution of the spread factor of simple glycerin droplet spreading on the

wax substrate.

Table 2.1: List of cases used for validation.

Cases Liquid Wall Impact velocity We Re �e

(m/s)

1 Glycerin Wax 4.1 802 106 93o

2 Glycerin Wax 1.41 93 36 93o

3 Glycerin Wax 1.04 51 27 93o

The �nal validation test deals with buoyancy-driven motion of compound droplet studied

experimentally by Mori [49] and computationally using a �nite element method by Bazhlekov

et al. [31]. As shown in Fig. 2.5a, an initially concentric gas-liquid compound droplet

(the inner phase is a gas) rises due to buoyancy in an in�nite domain. In addition to the

dimensionless hydrodynamic parameters given by Eq. (2.6), the problem also depends on the

E�otv�os number de�ned here as Eo = gL2�o=�o. Following Bazhlekov et al. [31], the length

and velocity scales are de�ned here as L = Ro (where Ro = do=2) and U = 2R2o�og=9�o.

Then the time scale is given by T = L=U . The �ow is assumed to be axisymmetric. The

computational domain extends 5 and 15 droplet radii in the radial and axial directions,
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respectively, and is resolved by 256 � 768 uniform Cartesian grid. The computational

results are �rst compared with the experimental data of Mori [49] in Fig. 2.5b. For this

case, the dimensionless parameters are set to Re = 0:016; Eo = 2:11; �d=�o = 1:29; �d=�o =

0:84; �i=�o = 3:64; di=do = 0:87. As can be seen in Fig. 2.5b, there is a good agreement

between the experimental and computational droplet shapes. We next compare the present

computational results with the �nite element simulations of Bazhlekov et al. [31]. For

this purpose, the computations are performed for the non-dimensional parameters of Re =

1:25; Eo = 180; �d=�o = 1:11; �d=�o = 0:5; �i=�o = 10; di=do = 0:75. The droplet shapes are

plotted in Fig. 2.6 at times t� = 0; 1:4; 2:4 and 3:5 together with the results of Bazhlekov et

al. [31]. This �gure shows that there is a qualitatively good agreement between the present

results and �nite element simulations. The results are then quanti�ed in Fig. 2.7 where the

normalized velocities of the top and bottom points of the compound droplet are plotted as

a function of dimensionless time. The velocity of top point is slightly overpredicted by the

present method, but there is overall good agreement with the �nite element simulations.

Note that Kawano et al. [50] reported small-amplitute oscillations of encapsulated liquid

interfaces especially just after the compound droplet is generated at the tip of injection

nozzle. We have not observed any such oscillations of encapsulated drop interfaces for the

cases studied in this section probably due to the fact that the droplet production period

is not considered and focus is placed on the steady motion in the present study. We also

note that neither Mori [49] nor Bazhlekov et al. [31] reported any oscillatory behavior of

encapsulating drop interfaces.

g
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Figure 2.5: (a) The sketch for buoyancy driven compound droplet. (b) Comparison of

the compound drop shapes obtained computationally by the present method (right) and

experimentally by Mori (1978) (left). The dimensionless parameters are Re = 0:016; Eo =

2:11; �d=�o = 1:29; �d=�o = 0:84; �i=�o = 3:64; di=do = 0:87.

Figure 2.6: Shape evolution of compound droplet at times t� = 0; 1:4; 2:4; 3:5 for Re =

1:25; Eo = 180; �d=�o = 1:11; �d=�o = 0:5; �i=�o = 10; di=do = 0:75. The present results

(solid lines on the right side) are compared with those of Bazhlekov et al. (1995) (dashed

lines on the left side).
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Figure 2.7: The velocities of the top and bottom points of the compound drop at Re =

1:25; Eo = 180; �d=�o = 1:11; �d=�o = 0:5; �i=�o = 10; di=do = 0:75. The present results

(solid lines) are compared with the results of Bazhlekov et al. (1995) (dashed lines).

2.2.2 Impact and Spreading of a Compound Droplet

After validating the numerical method in the previous section, we now present simulations

of compound droplet spreading on a �at substrate. The computational setup is sketched in

Fig. 2.1. Computational domain extends approximately 6 outer drop radii in radial direction

and 3 drop radii in axial direction and it is resolved by 512 � 256 uniform Cartesian grid

in all the results presented in this section unless speci�ed otherwise. An extensive grid

convergence study of the present numerical method has been performed by Muradoglu and

Tasoglu [45] for a simple droplet case. Therefore, such a study is not repeated here. However,

grid convergence is checked for all the results presented, and we ensured that the solutions

are grid independent, i.e., the spatial error is below 5%.

In the experimental study of Demirci and Mostaseno [18], the diameters of the encap-

sulating droplet and the cell are do = 37�m and di = 13�m (RAJI cell), respectively

(do=di = 2:85). The cells are encapsulated in the 8:5% sucrose and 0:3% dextrose solution

with density �d = 1030 kg/m3 and viscosity of �d = 1:27 � 10�3. In the simulations, the

material properties of the solution encapsulating the cell are set to its physical values. The
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density of the inner cell is set equal to that of the encapsulating droplet due to large amount

of water content of the cell. There is no known exact value for the viscosity of RAJI cell,

or for any cell in general, owing to its microstructered composition, but it can be assumed

to be a highly viscous �uid. The viscosity of cell is taken here as an order of magnitude

larger than that of the encapsulating droplet mainly due to numerical purposes in spite of

the fact that actual apparent viscosity of the cell is much higher. For the same reason,

the density of the surrounding air is also set to �o = 51:5 kg/m3 that is about 40 times

larger than its physical value. The material properties used in the simulations are summa-

rized in Table 2.2 for all three phases. Surface tension at the air-solution interface and the

solution-cell interface are 0:07622 and 0:00003 N=m, respectively (�o=�i = 2541). Note that

the surface tension at the air-solution interface is based on the experimental data provided

by Hoorfar et al. [51]. We assume that the solution remains homogeneous throughout so

that the surface tension at the air-solution interface is constant. Based on the experimental

data and considerations for numerical stability and convergence, we choose the set of the

dimensionless numbers We = 0:5, Re = 30, do=di = 2:85, �o=�i = 2541, �c=�d = 10,

�d=�o = 40, �c=�d = 1, �d=�o = 20 and �e = 90� as the base case. Then, we study the

e¤ects of each non-dimensional number by systematically varying its value while keeping

the other parameters the same as the base case. Note that the density and viscosity ratios

between the encapsulating liquid and air are an order of magnitude larger in the experi-

ment. However, it is found that a further increase in the property ratios does not e¤ect

the computational results signi�cantly (not shown here). The compound droplet is initially

located close to the wall, and initiated with a uniform (impact) velocity directed toward

the wall. The equilibrium contact angle is chosen as 90� unless stated otherwise. Note that

this static contact angle is much larger than the value in the experimental study, i.e., the

static contact angle in the experimental work is about 10�. We choose a larger contact

angle because it is computationally expensive to resolve the thin liquid layer close to the

solid surface for small contact angles. We �rst present the simulations for the base case.

Figure 2.8 shows snapshots of the collision taken at times t� = 0:000269, 0:0541, 0:135,

0:216, 0:270, 0:514, 1:027 and 3:843. In this �gure, pressure contours are plotted on the left

side, and pressure distribution on the cell surface is plotted on the right side of the droplet

images. For the same parameters, velocity vectors (left side) and shear stress contours
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Table 2.2: Density and viscosity values of three phases

Fluids Density (kg=m3) Viscosity (Pas)

Surrounding �uid 51.5 3.175e-05

Solution encapsulating the cell 1030 1.270e-03

RAJI cell 1030 1.270e-02

(right side) are plotted in Fig. 2.9. Shear stress reaches its peak value near the contact line

at the beginning of collision and it consistently decreases while the compound droplet is

spreading. Even at the beginning of droplet impact, the magnitude of the shear stress is

nearly half of the maximum pressure. It is observed that the maximum shear stress occurs

at the solution-air interface since all �uid particles within the compound droplet initially

have the same velocity while the air is initially quiescent, and thus the velocity gradient is

larger at the solution-air interface rather than at the cell-solution interface. Negative shear

stress occurs in the vicinity of the contact line where both velocity and pressure gradients

are extremely large and there is a stagnation-point like �ow �eld. It is emphasized here

that it is very likely that the numerical error is also large near the contact line due to large

pressure and velocity gradients. The location of maximum pressure changes during the

di¤erent phases of the collision process. For example, pressure increases near the contact

line during the initial impact and spreading period; also just prior to recoil, the maximum

pressure is located near the triple point. However, the pressure maximum starts to shift

towards the distal point from the wall, where it remains until the recoil phase.
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Figure 2.8: Evolution of compound droplet impacting on a �at surface ([left half] pressure

contours and [right half] pressure distribution on the surface of the cell). Time evolves from

left to right and from top to bottom, and the snapshots are taken at times t� = 0:000269,

0:0541, 0:1351, 0:2162, 0:2703, 0:5135, 1:0270 and 3:8432. (We = 0:5, Re = 30, do=di = 2:85,

�o=�i = 2541, �c=�d = 10).
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Figure 2.9: Evolution of compound droplet impacting on a �at surface ([left half] velocity

vectors and [right half] shear contours). Time evolves from left to right and from top to

bottom, and the snapshots are taken at times t� = 0:000269, 0:0541, 0:1351, 0:2162, 0:2703,

0:5135, 1:0270 and 3:8432. (We = 0:5, Re = 30, do=di = 2:85, �o=�i = 2541, �c=�d = 10).
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Next, we investigate the consequences of variation of the governing dimensionless para-

meters. In keeping with our emphasis on the inner droplet, we shall de�ne a gross deforma-

tion measure as:

D =
Wb �Hb
Wb +Hb

;

where Wb and Hb are the maximum droplet dimensions in the radial and axial directions,

respectively. Note that, t�� (in Figs. 3.8, 3.10, 3.12, 3.14, 3.16, 3.18) is obtained by sub-

tracting the time period between droplet initiation and attachment to the wall from the

total elapsed time t, and nondimensinalized again with T .

The Reynolds number plays a role in the extent of spreading and in the dynamic contact

angle, as shown in Fig. 2.10. A relative increase in inertial e¤ects leads to a more powerful

collision and subsequent cycling between spread and recoil (see Re = 45), although all

simulations with di¤erent Reynolds number converge to the same equilibrium extent of

spread. Slowness in spreading for small Re values can also be observed from the evolution

of dynamic contact angle, in Fig. 2.10b. The deformation and rate of deformation of the

cell are plotted as a function of dimensionless time for Re = 15, 20, 30, 40 and 45 in

Fig. 2.11. It is observed that peak cell deformation and rate of deformation increase as

Reynolds number increases. Note that cell deformation continues to decrease, even as the

cell-encapsulating droplet reaches a steady spread, e.g., at t� = 4:0 for Re = 30 in Fig. 3.6.

The simulation is stopped around t� = 4 to limit computational expense. Of course, we

expect cell deformation to have vanished at steady state.
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Figure 2.10: (a) Spread factor and (b) dynamic contact angle versus non-dimensional time

for Re = 15, 20, 30, 40 and 45. (We = 0:5, do=di = 2:85, �o=�i = 2541, �c=�d = 10).
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Figure 2.11: Deformation versus non-dimensional time for Re = 15, 20, 30, 40 and 45.

(We = 0:5, do=di = 2:85, �o=�i = 2541, �c=�d = 10).

Next, we examine the e¤ects of the Weber number by varying the Weber number between

0:25 and 10 while keeping the other parameters �xed as in the base case. The results are

plotted in Fig. 2.12 for the extent of spread and the dynamic contact angle. As can be

seen from this �gure, there is a change in trend around We = 2. Maximum spread initially

decreases as Weber number increases. Thereafter, it starts to increase with increasing

Weber number in a similar way as also observed by Muradoglu and Tasoglu [45] for the
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simple droplet spreading in the range We = 10 to 1080. Another observation is that the

encapsulating droplet reaches equilibrium conditions faster as Weber number decreases.

Deformation and rate of deformation of the cell are plotted in Fig. 2.13 as a function of

dimensionless time for We = 0:25, 0:5, 1:0, 2:0, 5:0 and 10:0. A similar trend is also

observed in the deformation: it �rst decreases with We until We = 2, and then it increases

with increasing Weber number. On the other hand, the maximum rate of deformation

consistently decreases as We increases.
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Figure 2.12: (a) Spread factor and (b) dynamic contact angle versus non-dimensional time

for We = 0:25, 0:5, 1:0, 2:0, 5:0 and 10:0. (Re = 30, do=di = 2:85, �o=�i = 2541, �c=�d =

10).
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Figure 2.13: (a) Deformation and (b) rate of deformation versus non-dimensional time for

We = 0:25, 0:5, 1:0, 2:0, 5:0 and 10:0. (Re = 30, do=di = 2:85, �o=�i = 2541, �c=�d = 10).
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It is desirable that the droplet size is su¢ ciently small so that it contains only a single

cell but it is large enough to provide su¢ cient protection during the collision. The current

printing technologies allow us to control the droplet size precisely within terms of microns.

Therefore it is important to examine the e¤ects of the relative droplet size on the viability

of the cell. For this purpose, simulations are performed for various values of diameter ratio

in the range do=di = 1:5 to 3:5 while keeping the other parameters the same as those in the

base case. Figure 2.14 shows the extent of spread and the dynamic contact angle for various

values of the diameter ratio as a function of dimensionless time. Although the dynamics

look similar for di¤erent values of do=di, an increase in do=di leads to a slightly stronger

spread and recoil. Deformation and rate of deformation of cell are plotted as a function of

dimensionless time for do=di = 1:5, 2:0, 2:5, 2:85, 3:0 and 3:5 in Fig. 2.15. It is observed

that both deformation and rate of deformation increase as the ratio of encapsulating droplet

diameter to cell diameter decreases.
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Figure 2.14: (a) Spread factor and (b) dynamic contact angle versus non-dimensional time

for do=di = 1:5, 2:0, 2:5, 2:85, 3:0 and 3:5. (We = 0:5, Re = 30, �o=�i = 2541, �c=�d = 10).
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Figure 2.15: Deformation and rate of deformation versus non-dimensional time for do=di =

1:5, 2:0, 2:5, 2:85, 3:0 and 3:5. (We = 0:5, Re = 30, �o=�i = 2541, �c=�d = 10).

The surface tension is another important parameter in terms of characterizing dynamics

of outer droplet, which may e¤ect cell deformation during the printing process. Simulations

are performed for the surface tension ratios �o=�i = 10, 20, 50, 500, 2541 and 5000 while

keeping the other parameters the same as those in the base case to investigate the e¤ects

of the surface tension on the cell viability. The time evolutions of the spread factor and the

dynamic contact angle are plotted in Fig. 2.16. It is interesting to observe that the ratio

of surface tension �o=�i does not have a signi�cant in�uence on the spread rate and the

dynamic contact angle. The deformation and rate of deformation of cell are also plotted

Fig. 2.17 as a function of dimensionless time for �o=�i = 10, 20, 50, 500, 2541 and 5000. It is

found that cell deformation and rate of deformation increase as the ratio of surface tension

at the air-solution interface to that of the solution-cell interface increases. In contrast, the
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cell relaxes to its spherical shape faster for smaller values of �o=�i.
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Figure 2.16 (a) Spread factor and (b) dynamic contact angle versus non-dimensional time

for �o=�i = 10, 20, 50, 500, 2541 and 5000. (We = 0:5, Re = 30, do=di = 2:85, �c=�d = 10).
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Figure 2.17: Deformation and rate of deformation versus non-dimensional time for �o=�i =

10, 20, 50, 500, 2541 and 5000. (We = 0:5, Re = 30, do=di = 2:85, �c=�d = 10)

Current cell printing techniques used in tissue engineering and bio-preservation encapsu-

late cells in low viscosity solutions such as cell media as well as higher viscosity biomaterials

such as collagen and cryoprotectant agents. Therefore, we also investigated the consequences

of variation of the viscosity ratio between the cell and the cell-encapsulating droplet for the
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range �c=�d = 2, 5, 10, 20 and 40 with other parameters constant. In Fig. 2.18, the extent

of spread and the dynamic contact angle are plotted as a function of dimensionless time.

It is found that the viscosity ratio �c=�d does not have any signi�cant in�uence on the

spreading rate and the dynamic contact angle. Cell deformation and rate of deformation

are also plotted in Fig. 2.19 as a function of dimensionless time for �c=�d = 2, 5, 10, 20 and

40. It is observed that cell deformation and rate of deformation increase as viscosity ratio

of cell to that of encapsulating droplet decreases.
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Figure 2.18 (a) Spread factor and (b) dynamic contact angle versus non-dimensional time

for �c=�d = 2, 5, 10, 20 and 40. (We = 0:5, Re = 30, do=di = 2:85, �o=�i = 2541).
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Figure 2.19: Deformation and rate of deformation versus non-dimensional time for �c=�d =

2, 5, 10, 20 and 40. (We = 0:5, Re = 30, do=di = 2:85, �o=�i = 2541).

We �nally investigate the e¤ects of the equilibrium contact angle. For this purpose,

simulations are performed for �e = 30�, 45�, 60�, 75�, 90�, 105�, and 120� while the other

parameters are kept the same as those in the base case. Note that static contact angle

is dependent on the surface tensions of all involved phases according to Young�s equation.

However, the static contact angle can be changed without changing the surface tension

at air-liquid interface by simply using di¤erent materials (with di¤erent surface energy)

for the substrate. The extent of spread and the dynamic contact angle are plotted as a

function of dimensionless time in Fig. 2.20. As can be seen, droplets correctly relax to their

equilibrium contact angles as the equilibrium conditions are reached. Maximum extent of

spread increases as �e decreases. In Fig. 2.21, deformation and rate of deformation of cell

are plotted as a function of dimensionless time for �e = 30�, 45�, 60�, 75�, 90�, 105�, and

120�. It is found that cell deformation and rate of deformation increase as the equilibrium

contact angle decreases.
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Figure 2.20: (a) Spread factor and (b) dynamic contact angle versus non-dimensional time

for �e = 30�, 45�, 60�, 75�, 90�, 105�, and 120�. (We = 0:5, Re = 30, do=di = 2:85,

�o=�i = 2541, �c=�d = 10).
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Figure 2.21: Deformation and rate of deformation versus non-dimensional time for �e = 30�,

45�, 60�, 75�, 90�, 105�, and 120�. (We = 0:5, Re = 30, do=di = 2:85, �o=�i = 2541,

�c=�d = 10).

Thus far, the e¤ects of governing nondimensional numbers on the deformation and rate

of deformation of the cell have been investigated. Now, we attempt to estimate cell viability

during the impact and spreading processes by using the method suggested by Takamatsu et

al. [47]. This method is based on the experimental data obtained from the compression of

cells between parallel plates. The model assumes that cells deform symmetrically during the

motion of plates. Because the present simulations consistently indicate that the cells deform

quite symmetrically (see for instance, the evolution of cell interface plotted in Fig. 2.22), we

use this method to predict the viability of the cell during the printing process. Takamatsu

et al. [47] suggest that the viability of an individual cell (�) is given by

�(
) =

8>>><>>>:
1 for 
 < 
cr ��
,

1
2 �


�
cr
2�
 for 
cr ��
 � 
 � 
cr +�
,

0 for 
 > 
cr +�
,

(2.9)

where 
 = A=Ao with A and Ao being the surface areas of the deformed and undeformed

cells, respectively. Based on the curve �t to the experimental data, the other parameters in

Eq. (2.9) are speci�ed as 
cr = 1:5 and �
 = 0:4. The viability of the cells based on the
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present simulations are summarized in Table 2.3. Note that only one parameter is varied

in each row of Table 2.3 while all others are set the values in the base case. As can be seen

in this table, the cell viability rapidly decreases as �e and �c=�d decrease. Cell viabilities

are near or exceed 90% for the ranges of Re, We, do=di and �o=�i that we studied here.

Note that although the minimum static contact angle that we studied (30�) is still larger

than the value in the experimental study (10�), viability is decreased to an unacceptable

small value, i.e. 26%. However, as we mentioned before, �c=�d is set to 10 in varying �e

case and in other cases except the case in which �c=�d is varied. Given the fact that cell

viscosity is much higher than that of ambient �uid [34, 35, 36, 37] and higher �c=�d leads

to higher viability, a simple question arises: what is the combined e¤ect of higher �c=�d

and lower �e on viability? In this study, further computations are not performed because

required computational time is not reasonable with the present method. However, this study

provides initial insight of viability trends with respect to several governing nondimensional

numbers.

Figure 2.22: Evolution of compound droplet. (We = 0:5, Re = 30, do=di = 2:85, �o=�i =

2541, �c=�d = 10).
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Table 2.3: Viabilities of cells

Re 15 20 30 40 45

� 100:00 100:00 100:00 90:38 86:31

We 0:25 0:5 1 2 5 10

� 88:62 100:00 100:00 100:00 100:00 98:67

do=di 1:5 2:0 2:5 2:85 3:0 3:5

� 88:05 92:97 97:90 100:00 100:00 100:00

�o=�i 10 20 50 500 2541 5000

� 100:00 100:00 100:00 100:00 100:00 100:00

�c=�d 2 5 10 20 40

� 44:07 88:43 100:00 100:00 100:00

�e 30� 45� 60� 75� 90� 105� 120�

� 26:15 54:81 80:77 91:84 100:00 100:00 100:00
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Chapter 3

CONCLUSIONS

Impact and spreading of a compound droplet on a smooth �at surface are studied compu-

tationally using a �nite-di¤erence/front-tracking method in an axisymmetric setting. The

compound droplet is proposed as a model for printing of droplet-encapsulated biological

cells [17, 18]. The cell is modeled as a highly viscous Newtonian droplet that is encapsu-

lated by a less viscous Newtonian liquid. It is hypothesized that the cell viability is mainly

dependent on the cell deformation and its rate. Therefore the model is used to investigate

the optimal conditions that yield minimum deformation and deformation rate. The exper-

imental conditions of Demirci and Montesano [18] are taken as the base case and then the

e¤ects of nondimensional parameters on the cell viability are investigated by varying each

parameter at a time systematically while keeping the others the same as those in the base

case.

Since the numerical method has been already validated comprehensively for a simple

droplet impact and spreading on a �at surface, validation tests are performed here to assess

the performance of the method for compound droplet. For this purpose, it is �rst shown that

the compound droplet correctly relaxes to its equilibrium shape when it impacts and spreads

on a �at surface for a wide range of E�otv�os numbers. Then the treatment of the contact line

is validated against the experimental data for a simple glycerin droplet spreading on a wax

substrate. Finally, the numerical method is applied to simulate the buoyancy-driven motion

and deformation of compound droplet, and results are found to be in a good agreement with

the experimental data of Mori [49] and also with the �nite element simulations of Bazhlekov

et al. [31].

After validating the numerical method, computations are performed to examine the ef-

fects of the relevant dimensionless parameters on the dynamics of compound droplet impact

and spreading on a �at surface. It is found that maximum spreading of the cell-encapsulating

droplet increases as the Reynolds number (Re) increases. As Weber number (We) increases,
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maximum spread �rst decreases until We = 2, then it increases. The diameter ratio, the

viscosity of the cell and the surface tension at the solution-cell interface are found to have

no signi�cant in�uence on the spreading of the encapsulating droplet in the range we stud-

ied here. It is found that the maximum spreading and the equilibrium extent of spread

increase as the equilibrium contact angle decreases as expected. Deformation and rate of

deformation of the cell (inner droplet) increase as Reynolds number and surface tension

ratio of the air-solution interface to the solution-cell interface (�o=�i) increase. For smaller

�o=�i, the cell relaxes to its equilibrium shape faster. Deformation and rate of deformation

of the cell increases as diameter ratio of encapsulating droplet to cell (do=di) and viscosity

ratio of cell to encapsulating droplet (�c=�d) decreases. It is observed that there is a change

in the trend of the peak deformation for di¤erent Weber numbers. Maximum deformation

�rst decreases until We = 2, then it increases with increasing Weber number. On the other

hand, the peak rate of deformation consistently decreases as We increases. Finally, we

employ a relation to �t to experimental data of compression of cells between two parallel

plates [47] to estimate the e¤ects of cell deformation on viability. It is found that the cell

viability rapidly decreases as �e and �c=�d decrease. Cell viability is near or over 90% for

the ranges of Re, We, do=di and �o=�i that we studied in this paper. The cell viability is

found to decrease rapidly as the equilibrium contact angle decreases below 60�. This can

be partly attributed to low viscosity ratio (�c=�d = 10) in varying �e case.

The goal of this work was to develop a framework for investigating relative importance of

governing nondimensional numbers: Re,We, do=di, �o=�i, �c=�d, and �e on cell viability for

the problem of deposition of cell encapsulating droplets. The analysis pointed out along the

way that a number of parameters such as �c=�d and �e should be perturbed simultaneously.

In Appendix A, Oldroyd-B �uid model is used for the inner droplet in order to represent

memory or history e¤ects and viscoelastic nature of the biological cells. The constitutive

equations for the Oldroyd-B �uid model are solved together with the mass and momen-

tum conservation equations in axisymmetric frame using the front-tracking/�nite-di¤erence

method. An implicit method is used for the integration of the evolution equations of total

stress tensor in Oldroyd-B model and factorization approximation is used to accelerate the

solution at each time step. A few sample results are presented to show the consistency of

Oldroyd-B �uid model with the corresponding Newtonian �uid model.
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Appendix A

NON-NEWTONIAN FLUID MODEL

The biological cells are extremely complex and Newtonian models are not su¢ cient to

represent their complex structure. The main de�ciency of the Newtonian �uid model is

that it does not have any �memory", i.e., the shear stresses acting on the Newtonian �uid

are determined by the local rate of strain tensor. On the other hand, the biological cells

are known to have a strong memory and exhibit a viscoelastic like behavior. Therefore a

good model must be able to re�ect the memory or history e¤ects and viscoelastic behavior

of the biological cells. There are various types of non-Newtonian �uid models that attempt

to model the viscoelastic behavior of �uids including FENE-CR, Oldroyd-B, Maxwell and

Boger �uids that have been widely used in the literature [52, 53, 54, 55, 56, 57, 58]. Some

of these existing models contain up to eight independent parameters mainly related to the

chemical structure and viscoelasticity of the polymers. In this study, the Oldroyd-B �uid is

used to model the biological cell since it involves only two extra parameters, i.e., relaxation

time and polymeric viscosity, and it has been widely used as a model for various types of

biological cells. For instance, Zhou et al. [59] simulated transport of Neutrophil through

capillaries using Oldroyd-B model and investigated e¤ects of viscoelasticity in the process.

The motion and deformation of a single Oldroyd-B drop have been widely studied in

the literature. Toose et al. [57] employed a boundary-integral method to investigate the

e¤ects of viscoelasticity on drop dynamics. Yue et al. [56] used a level-set method and

studied the viscoelastic e¤ects on drop dynamics in simple shear �ows. Ramaswamy and

Leal [55] modeled the drop deformation in uniaxial �ow and Hooper et al. [53] employed an

implicit integration scheme to track drop motion in axisymmetric coordinates. Viscoelastic

drop/Newtonian matrix system was also modeled in three dimensions by Khismatullin et

al. [54] using the VOF-PROST algorithm. Aggarwal and Sarkar [58] employed a three

dimensional �nite-di¤erence/front-tracking method to investigate the deformation of an

Oldroyd-B or Newtonian drop in a viscoelastic �uid and concluded that the front-tracking
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is an e¤ective method to solve the constitutive equations of the Oldroyd-B �uid in the

context of interfacial �ows. The previous studies generally dealt with deformation of a

single non-Newtonian droplet in a simple shear or axisymmetric �ow. To the best of our

knowledge, only Toose et al. [60] modeled compound drop deformation under uniaxial

�ow. However, none of these studies investigated the impact and spreading of a viscoelastic

compound droplet on a substrate.

In this study, we aim to investigate the impact and spreading of a compound droplet

with the inner droplet being an Oldroyd -B �uid on a �at surface as a model for the single

cell epitaxy. In particular, focus is placed on the deformation and rate of deformation of the

inner droplet during impingement of the compound droplet. The constitutive equations are

again solved in the entire computational domain using the front-tracking/�nite-di¤erence

method [43].

The Oldroyd-B Fluid Model

First, the constitutive equations are brie�y discussed in this section. The incompressible

mass and momentum equations can be written as [52]

r � u = 0; (A.1)

�

�
@u

@t
+ u �ru

�
= r � � + F; (A.2)

where, � is the total stress tensor given by

� = �pI+T+ �SS; (A.3)

where p is the pressure, T is the extra stress tensor, �s is the solvent viscosity and S =

ru+ruT is the rate of strain tensor. The last term in the momentum equation is the body

forces composed of the gravitational and surface tension forces. In the single cell epitaxy,

the gravitational forces are usually negligible compared to the other e¤ects. Therefore the

body force term F includes only surface tension forces and is given by

F =

Z
A
��n�(x� xf ); (A.4)

where � is the surface tension, � is twice the curvature, and n is unit vector normal to the

interface. The surface tension only acts on the interface as indicated by delta function �,
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whose arguments x and xf are the point at which the equation is evaluated and the point

at the interface, respectively.

For an Oldroyd-B �uid, the extra stress tensor T evolves by

�~T+T = �pS; (A.5)

where � is the relaxation time, �p is the polymeric viscosity and ~T is the upper convected

time derivative de�ned as

~T =
@T

@t
+ (u �r)T� (ru)T�T(ru)T: (A.6)

The material properties density (�), polymeric viscosity (�p), solvent viscosity (�s) and the

relaxation time (�) are smoothed using the indicator function as

� =

8<: �dI(r; z; t) + �o(1� I(r; z; t)) If I(r; z; t) � 1:0

�c(I(r; z; t)� 1) + �d(2� I(r; z; t)) Otherwise;

�p =

8<: �
pd
I(r; z; t) + �

po
(1� I(r; z; t)) If I(r; z; t) � 1:0

�
po
(I(r; z; t)� 1) + �

pd
(2� I(r; z; t)) Otherwise;

�s =

8<: �
sd
I(r; z; t) + �

so
(1� I(r; z; t)) If I(r; z; t) � 1:0

�
so
(I(r; z; t)� 1) + �

sd
(2� I(r; z; t)) Otherwise;

� =

8<: �dI(r; z; t) + �o(1� I(r; z; t)) If I(r; z; t) � 1:0

�c(I(r; z; t)� 1) + �d(2� I(r; z; t)) Otherwise;
(A.7)

where the subscripts �c", �d" and �o" denote properties of the inner droplet, encapsulating

droplet and the ambient �uid, respectively.

Numerical Method

The projection method is used to integrate the �ow equations. The semi-discretized

equations are �rst written as

�n+1un+1 � �nun
�t

= �rpn+1 �r � (�uu)n + (r �T)n + �s(r � S)n + Fn; (A.8)

r � un = r � un+1 = 0: (A.9)

Then, the momentum equation is decomposed as
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�n+1u� � �nun
�t

= �r � (�uu)n + (r �T)n + �s(r � S)n + Fn; (A.10)

�n+1un+1 � �n+1u�
�t

= �rpn+1; (A.11)

where u� represents the unprojected velocity �eld. The spatial derivatives are approximated

using central di¤erences on a staggered grid as was done for the Newtonian case. Taking

divergence of Eq. A.11 and using the incompressibility condition results in the Poisson

equation for the pressure �eld

r �
�
rp
�n+1

�
=

1

�t
r � u�; (A.12)

which is solved using a multigrid method as done in the Newtonian case. Then the projected

or corrected velocity �eld is computed as

un+1 = u� � �t

�n+1
rpn+1: (A.13)

The constitutive equation for the extra stress term Eq. A.5 is solved using a semi implicit

time integration scheme. Assuming that the �ow is axisymmetric, Eq. A.5 is discretized as,

�

�
Tn+1 �Tn

�t
+ (unr

@

@r
+ unz

@

@z
)Tn+1

�
+Tn+1 = A3; (A.14)

where

A3 = �
�
(ru)T+T

�
ruT

��n
+ �pS

n + �Tn; (A.15)

which requires inversion of a large sparse matrix. In order to reduce computational cost,

Eq. A.14 is factorized as

(�+�t)

�
I +

�

�+�t
unr�t

@

@r

��
I +

�

�+�t
unz�t

@

@z

�
Tn+1 = A3; (A.16)

which can be solved very e¢ ciently in two steps. In each step, a tri-diagonal system is solved

using the Thomas algorithm [61]. The components of the A3 corresponding to T11; T22 and

T12 are as follows,
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A311 = �t

�
2�

�
T11

@ur
@r

+ T12
@uz
@r

�
+ 2�p

@ur
@r

�
+ �T11

A322 = �t

�
2�

�
T12

@ur
@z

+ T22
@uz
@z

�
+ 2�p

@uz
@z

�
+ �T22

A312 = A321 = �t

�
�

�
T12

�
@ur
@r

+
@uz
@z

�
+ T11

@ur
@z

+ T22
@uz
@r

�
+ �p

�
@ur
@z

+
@uz
@r

��
+ �T12

The contact line is treated as described in Chapter 2 for the Newtonian case.

Preliminary Results

The numerical method has been implemented but not tested completely. Here a few

results are presented to show the consistency of the Oldroyd-B model with the corresponding

Newtonian model. For this purpose, the relaxation time and polymeric viscosity are set to

zero while the solvent viscosity is set to the viscosity in the Newtonian �uid. The material

properties of the phases are the same as shown in Table 1. The diameter of the encapsulating

droplet (do) and diameter of the cell (di) are again set to 37�m and 13�m (do=di = 2:85).

The computational domain extendes 6 drop radii in the radial direction and 3 drop radii in

the axial direction. Surface tension at the air-solution interface and the solution-cell interface

are 0:07622 and 0:00003 N=m, respectively (�o=�i = 2541). The governing dimensionless

numbers are, We = 0:5, Re = 30, do=di = 2:85, �o=�i = 2541, �c=�d = 10, and �e = 90
�.

Snapshots in Fig. A.1 show the Newtonian and Oldroyd-B solutions at times t� = 0:0670;

0:2690; 0:6725 and 1:3450. The computations are performed using a 256�130 grid resolution.

Solutions of two methods indicate that deformation on outer and inner drops show good

agreement as � = 0 and �p = 0 for all three phases.



Appendix A: Non-Newtonian Fluid Model 39

Figure A.1: Comparison of Oldroyd-B and Newtonian Codes for the Newtonian Case at

t� = 0:0670; 0:2690; 0:6725 and 1:3450: (Time evolves from left to right and from top to

bottom) (Left side of the plot represents solution with Oldroyd-B code, right side represents

Newtonian solution)

In Fig. A.2 the contact angle is plotted against the dimensionless time. This �gure

clearly shows the consistency between the Newtonian and non-Newtonian models in the

Newtonian limit.

The spread factor computed using the Newtonian and non-Newtonian models in the

Newtonian limit is plotted in Fig A.3. This �gure also con�rms the consistency.
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Figure A.2: Contact angle versus time for We = 0:5, Re = 30, do=di = 2:85, �o=�i =

2541, �c=�d = 10, and �e = 90
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Figure A.3: Spread factor vs time for We = 0:5, Re = 30, do=di = 2:85, �o=�i = 2541,

�c=�d = 10, and �e = 90
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Finally, deformation on inner droplet is plotted in Fig A.4. The Oldroyd-B and New-

tonian solutions collapse on the same curve showing the consistency.
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