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ABSTRACT

This paper analyzes exchange stability for the roommate problem under the restriction

that the rooms are in a scarce supply. While the central axioms in matching problems

are Gale-Shapley stability (Gale and Shapley, 1962) and Pareto optimality, recently a new

property, exchange stability is proposed. We demonstrate that the set of exchange stable

solutions, which can be empty, is a subset of Pareto optimal solutions. We also prove an

impossibility result that there is no well-defined solution which coincides with the set of

exchange stable matchings whenever it is non-empty and satisfies consistency. Moreover,

we show that Gale-Shapley stability and exchange stability are independent concepts, thus,

algorithms to find Gale-Shapley stable solutions cannot be used for identifying exchange

stable solutions. In addition, a necessary condition for a matching to satisfy both Gale-

Shapley stability and exchange stability is found for the marriage problem, which is a

special case of the roommate problem.

Keywords: Matching Problems, Roommate Problem, Marriage Problem, Stability, Ex-

change Stability, Consistency.



ÖZET

Bu makalede takas istikrarı, oda kısıtı bulunan oda arkadaşı problemleri için ince-

lenmektedir. Takas istikrarı, Gale ve Shapley (1962) tarafından tanımlanan istikrar ve

Morrill (2007) tarafindan önerilen Pareto optimum ile kıyaslandıǧında problemin çözümü

için daha uygun bir özellik olduǧu görülmektedir. Bu makalede takas istikrarını saǧlayan

eşleşmelerin kümesinin boş küme olabileceǧi gösterilmiştir. Ayrıca bu kümenin Pareto

optimum eşleşmelerinin kümesinin alt kümesi olduǧu kanıtlanmıştır. Kanıtlanan önemli

sonuçlardan biri ise takas istikrarı ve tutarlılık hakkında bir imkansızlık sonucudur. Buna

göre takas istikrarını saḡlayan eşleşmelerin kümesinin boş küme olmadıḡı durumlarda bu

küme ile örtüşen ve aynı zamanda tutarlı bir çözüm yoktur. Bunun yanısıra Gale-Shapley

istikrarı ve takas istikrarının baǧımsız olduǧu kanıtlanmıştır. Bu durum Gale-Shapley is-

tikrarını saǧlayan eşleşmelerin bulunmasi için kullanılan algoritmaların takas istikrarını

saǧlayan çözümleri bulmada kullanılamayacaǧını vurgular. Ayrıca, oda arkadaşı problemi-

nin özel bir durumu olan evlilik problemi için bir eşleşmenin hem Gale-Shapley istikrarını

ve takas istikrarını saǧlaması için gerekli koşullar belirtilmiştir.

Anahtar Kelimeler: Eşleşme Problemleri, Oda Arkadaşı Problemi, Evlilik Problemi,

İstikrar, Takas İstikrarı, Tutarlılık.
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1 Introduction

Lionel Robbins (1945) defines economics as “the science which studies human behavior as

a relationship between ends and scarce means which have alternative uses”. In this regard,

matching theory, which deals with the problems of allocation, matching and exchange of

resources or objects, is one of the central fields of study in economics.

There are various lines of interest in matching theory, few of which we would like to

illustrate. One of the main problems of matching theory is the allocation or exchange of

indivisible objects or resources among a group of people. Assigning houses or rooms to

residents, jobs to workers, or transplant organs to patients can be enumerated as examples

of this class of problems. There are also two-sided matching problems. These problems

involve markets with two sides such as matching men with women, workers with firms,

students with schools (Sönmez and Ünver, 2008). Another matching problem and which

this paper primarily deals with is related to matchings in one-sided markets. Assigning a set

of agents within themselves in pairs, triples, or in groups pertains to one-sided matching.

For example, a well known one-sided matching problem is the roommate problem, in which

n agents are assigned into rooms in pairs.

The matching literature on one-sided and two-sided matching is pioneered by the re-

search of Gale and Shapley (1962). They introduced both two-sided problems, i.e., the

marriage and the college admission problems and one-sided problem, i.e., the roommate

problem1. In their work, they proposed stability2 as the central axiom for both of these

problems. They also proved that there is always at least one GS-stable matching for the

two sided matching problem through a simple iterative algorithm known as the deferred

1The marriage problem and two-sided matching, and the roommate problem and one-sided matching are
terms used interchangeably throughout the research.

2Henceforth stability will be referred to as GS-stability.
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acceptance algorithm.3 On the other hand, for the one-sided matching problem, they pro-

vided an example where a GS-stable matching does not exist.

Let’s first consider the one-sided matching problem. In the roommate problem, a match-

ing is the assignment of a group of agents into the rooms in pairs. According to Gale and

Shapley’s definition, a matching is GS-stable if there is no blocking pair, a pair of agents

who prefer to be matched together to their current matches. What is remarkable about

this definition is that if two agents want to be matched together, then they can become

roommates. If there exists a blocking pair in a prescribed assignment, they can leave their

existing roommates and become roommates as moving into a new room together, so the

pair violates stability.

In order to evaluate whether a given roommate problem has a GS-stable solution, Irving

(1985) proposed an algorithm that would find a stable matching if there is one or would

report that none exists. Later, Tan (1991) specified the necessary and sufficient conditions

for the existence of a stable matching for the roommate problem, namely, the non-existence

of any odd party. 4 Therefore, we can identify whether a given roommate problem has a

GS-stable solution. If there exists a GS-stable matching, then, according to the studies of

Roth and Vande Vate (1990), Chung (2000) and Diamantoudi et al (2004), starting with an

unstable matching, there is a random path to stability, namely, allowing randomly chosen

blocking pairs to match converges to a GS-stable matching with probability one. This

result is of importance because even if there is no centralized decision making system, the

roommate market will eventually reach a GS-stable solution.

Another line of research in one-sided matching theory is the characterization of GS-

stable matchings. One of the key properties in the characterization of the solutions, espe-

3Detailed explanation of the algorithm will be given in the third section.
4For a roommate problem with strict preferences, odd party is defined as a subset of agents (a1, ..., aK)

such that K ≥ 3 is odd and ak+1 �ak
ak−1 �ak

ak for all k ∈ {1, ...,K}.
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cially for the problems with dynamic populations, is consistency. To understand consis-

tency, suppose that for a given roommate problem a solution is applied and a GS-stable

matching is prescribed. After an assignment is made for given a roommate problem, some

agents, which can be in pairs or singles, leave the market with their roommates and the

remaining agents decide to apply the same solution to the restricted problem. The solution

is said to be inconsistent if it prescribes a matching that is not GS-stable. Ozkal-Sanver

(2008), and Klaus and Nichifor (2009) analyze consistency for the roommate problem in

order to characterize GS-stable solutions. Yet, they both establish an impossibility result

stating that there is no solution that satisfies consistency and coincides with the set of GS-

stable solutions whenever there exists a GS-stable matching.

This research mainly focuses on a special situation where another source of scarcity is

imposed into the roommate problem. Suppose that there are n agents and n/2 rooms so

that the rooms are in scarce supply. For this case, the stability concept defined above does

not apply. To understand this, consider that there exists a blocking pair for a matching,

namely, there are two agents in two different rooms who prefer each other to their current

roommates. They want to be matched with each other but they cannot move into a new

room together since all rooms are occupied. Therefore, the existence of a blocking pair

may not violate stability if there exists room scarcity.

On the other hand, think of a case in which there are two agents in two different rooms

such that each of them prefers other’s roommate to his current match for a given roommate

assignment with room scarcity. So, they can be better off by exchanging their rooms and

roommates. This situation motivates the introduction of a new stability notion when there

is scarcity of rooms.

This modified problem was studied by Morrill (2007) too. Morrill also realized that

Gale and Shapley’s stability concept ignores the physical constraint and therefore, he claimed
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that this stability concept is too restrictive. Another axiom is Pareto Optimality as a proper

solution concept for the modified roommate problem. A matching is defined to be Pareto

optimal if any change to make any agent better off would make at least one agent worse

off. However, this research shows that Pareto Optimality is not a proper solution concept

for the modified problem.

Another property was introduced by Alcalde (1995). Alcalde stated that each allocation

in one-sided matching markets gives property rights to the agents. Therefore, given an

initial allocation, third parties may be affected by the actions of any pair of agents. Since

the classical notion of stability introduced by Gale and Shapley (1962) does not take into

consideration of such cases, Alcalde suggested exchange stability as a complement stability

concept to the problem.

Alcalde explained exchange stability as follows. Given a roommate problem, suppose

each matching, once achieved, endows agents with property rights. Therefore, after an ini-

tial allocation is made, roommates become “endowments” of each other. So, considering

the roommate problem as a class of exchange markets, agents can be better off by exchang-

ing their endowments. A matching is exchange stable if there exists no such exchanges

made by any group of agents.

Cechlárová (2002) investigated the complexity of the problem of deciding whether an

exchange stable matching exists for a given preference profile. She proved that the prob-

lem is nondeterministic polynomial complete (NP-complete).5 In addition, Cechlárová and

Manlove (2005) proved that the problem of deciding whether an exchange stable matching

exists for a given marriage or roommate problem is NP-complete. They also studied the

5NP-completeness is a complexity class of decision problems for which answers can be checked for cor-
rectness by an algorithm in polynomial time. Solving time of a NP-complete problem increases exponentially
with an increase in the problem size. A supposed solution to a NP-complete problem is easy to verify for
correctness, but it is unknown if there is a significantly faster way to solve the problem than to try every single
possible subset.
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computational complexity of the problem of deciding whether there exists a stable match-

ing that is also exchange stable and found that the problem is NP-complete for a roommate

market. Moreover, Irving (2008) studied stable matching problems with exchange restric-

tions. His main contribution is that the problem of deciding whether there exists a stable

matching with an additional property that no two men would prefer to exchange partners

for a marriage market is NP-complete.

In this work we analyze exchange stability for the modified roommate problem and

compare GS-stability and exchange stability in various aspects. Our main results show that

the set of exchange stable matchings may be empty and this set, if it is non-empty, is a

subset of the set of Pareto Optimal matchings. Moreover, we prove an impossibility result

that there exists no solution which corresponds to the set of exchange stable matchings

whenever it is non-empty and satisfies consistency. We also adduce that GS-stability and

exchange stability are independent concepts. In addition, unlike GS-stable solutions, the

set of agents may not be same for each of the exchange stable matching and there may be

no random paths to exchange stability. Moreover, we introduce a necessary condition for

achieving both the classical stability concept and exchange stability.

The remainder of this paper is organized as follows. Section 2 is devoted to the room-

mate problem. It begins with an introduction of the problem and discusses the stability

concepts mentioned above. The main results are presented in this section. Section 3 is

about marriage problem. After the introduction of the marriage problem, the necessary

conditions for obtaining a solution that satisfies both GS-stability and exchange stability

will be specified. Section 4 concludes the paper and discusses the further possible research.
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2 The Roommate Problem Revisited

This section analyzes exchange stability for the roommate problem with scarcity of rooms.

We begin with a formal definition of both the classical roommate problem and the problem

with room scarcity. Then we discuss GS-stability, Pareto optimality and exchange stability.

Later, the results about exchange stability are presented.

The roommate problem is about matching a set of agents among themselves in pairs

or singletons so that the pairs share a room. Each agent has a preference ordering over all

of the other agents and the prospect of remaining single. Formally, the roommate problem

(Gale and Shapley, 1962) is a pair (A,P ) where A is a finite set of agents and P is the

preference profile of the agents in A. For each agent a ∈ A, preferences over all other

agents, P (a), are strict, complete and transitive. A solution to a roommate problem is

called a matching, a partition of A in pairs and singletons.

Definition 1. Let (A,P ) be a roommate problem. A matching µ is a function from the set

of agents onto itself of order two, i.e., µ : A→ A such that for all a ∈ A, µ(µ(a)) = a.

Gale and Shapley (1962) proposed stability as the solution concept for the problem.

The formal definition is as follows.

Definition 2. Agents a1 and a2 form a blocking pair to a matching µ if µ(a1) 6= a2 and

a1 �a2 µ(a2) and a2 �a1 µ(a1). A matching is GS-stable if there exists no blocking pair.

A roommate problem is solvable if the set of GS-stable matchings is non-empty. Gale

and Shapley (1962) showed that a GS-stable matching may not exist for a roommate prob-

lem. They presented a roommate problem which is not solvable. The following exam-

ple is similar to their counter example. Consider a roommate problem with three agents:

a1, a2, a3 with P (a1) = a2, a3;P (a2) = a3, a1;P (a3) = a1, a2. Each agent prefers being
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matched to remaining single. Therefore, if all of the agents remain single then any two of

the agents form a blocking pair. Thus, at least one pair should be formed. However, if that

is the case, then the remaining agent is the most preferable roommate for one of the other

two agents, so, they form a blocking pair.

Regarding the same example, now let’s turn our attention to a case in which the rooms

are in scarce supply. Suppose, there is only one room to allocate. When the room is

allocated to a pair, say a1 and a2, it is known that the remaining single agent, a3, and one

of the matched agents, for this case a2, will form a blocking pair. However, since the other

agent, a1, occupies the room, a2 and a3 cannot be matched. Therefore, even though the

blocking pair violates GS-stability, this violation is vacuous when the rooms are scarce.

Yet, the problem and the stability notion are different when there exists scarcity of rooms

or, as Alcalde (1995) stated, in case of property rights.

The roommate problem with room scarcity, the modified roommate problem, was in-

troduced by Morrill. It was an extension of Gale and Shapley’s version. The problem

involves assigning n agents into m rooms in pairs according to agents’ strict, complete and

transitive preferences. Thus, we could define the modified roommate problem with a triple

(A,P,m), where A is the set of agents, P is the set of preference lists, and m is the number

of rooms. We know that the traditional solution concept is GS-stability; however, as it is

shown above, GS-stability might be too strong in the case of scarcity of rooms. Morrill

suggested Pareto optimality as the central axiom for the modified roommate problem.

Definition 3. A matching µ is inefficient if there exists a different matching µ′ such that

µ′(a) �a µ(a) for all a ∈ A and

µ′(a) �a µ(a) for some a ∈ A.
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A matching is Pareto optimal if it is not inefficient.

A matching is Pareto optimal if any attempt to make any agent to better off would

make someone worse off. The previous example with three agents may serve as a guide to

understand why Morrill suggested Pareto optimality instead of GS-stability for the modified

roommate problem. For each of the matching with one pair and one singleton, there is

always one blocking pair. However, the blocking pair cannot be matched without having

the will of the other agent. The agent would not vacate the room voluntarily because leaving

the room and being single makes him worse off. Therefore, the blocking pair cannot be

matched without making the other agent worse off. The following example motivates the

introduction of a new stability notion where there is scarcity of rooms.

Example 1. Let (A,P,m) be a modified roommate problem with four agents and two rooms

and the preferences of the agents are as follows:

P (1) = 2, 3, 4

P (2) = 3, 4, 1

P (3) = 4, 1, 2

P (4) = 1, 2, 3

There are three different candidate matchings:

µ =
1− 2

3− 4
, µ′ =

1− 4

2− 3
, µ′′ =

1− 3

2− 4
.

The matching µ is a Pareto optimal Agent2 prefers 3 to 1, and agent 4 prefers 1 to 3,

i.e. 3 �2 1 = µ(2) and 1 �4 3 = µ(4). On the other hand, µ matches 1 with 2 and 3 with

4. So, 2 and 4 can be better off by changing their rooms. If that is the case, µ′ is reached.

µ′ is also Pareto optimal. Note that agent 1 prefers 2 to 4, and agent 3 prefers 4 to 2, i.e.

2 �1 4 = µ(1) and 4 �3 2 = µ(3). As µ′ matches 1 with 4 and 2 with 3, 1 and 3 can be

better off by exchanging their rooms. After this exchange, µ is reached again.
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The matching µ′′ is also Pareto optimal. It matches all agents with the second most

preferred mates. There is no blocking pair, so µ′′ is GS-stable matching. Also, there exists

no group of agents who wants to exchange their rooms (or mates). For example, agent 1

prefers 2 to his mate in µ′′, 3. However, agent 2’s mate in µ, 4, prefers to be matched with

1 instead of his mate, 2. Therefore, agent 1 cannot change his room to be better off. The

situation is similar for all agents.

The idea of blocking of a matching via exchanging mates is introduced by Alcalde

(1995).

Definition 4. R = (a1, a2, ..., ar) is an exchange-blocking ring with length r to a matching

µ if µ(a2) �a1 µ(a1), µ(a3) �a2 µ(a2), ..., µ(ar) �ar−1 µ(ar−1), µ(a1) �ar µ(ar), and

µ(an) 6= am for all n,m ∈ {1, 2, ..., r} where r ≥ 2. A matching µ is exchange stable if

there is no exchange-blocking ring.

It is known that there are problems with a solution, for example, there is an exchange

stable matching for the modified roommate problem given in Example 1. However, an

exchange stable matching may not exist for a modified roommate problem.

Proposition 2.1. An exchange stable matching may not exist for a modified roommate

problem, (A,P,m).

Proof. Let the preferences of the agents of a modified roommate problem with four agents

and two rooms be given by:

P (1) = 2, 3, 4

P (2) = 3, 4, 1

P (3) = 4, 1, 2

P (4) = 1, 3, 2
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There are three different matchings:

µ =
1− 2

3− 4
, µ′ =

1− 4

2− 3
, µ′′ =

1− 3

2− 4
.

The matching µ matches 1 with 2 and 3 with 4. But, agent 2 prefers 3 to his mate in µ,

1, and agent 4 prefers 1 to his mate, 3, i.e. 3 �2 1 = µ(2) and 1 �4 3 = µ(4). So, agent 2

and 4 can be better off by exchanging their rooms and roommates as a result of which µ′ is

reached. On the other hand, agent 1 and 3 are worse off due to this exchange. They were

matched with the most preferred mates in µ. Thus, they form a coalition to exchange their

rooms, as a result the matching µ is achieved. So, neither µ nor µ′ is exchange stable. The

matching µ′′ matches 1 with 3 and 2 with 4. But, agent 1 prefers 2 to his mate in µ′′, 3,

and agent 4 prefers 3 to his mate, 2, i.e. 2 �1 3 = µ(1) and 3 �4 2 = µ(4). Therefore, 1

and 4 form an exchange-blocking ring and so µ′′ is not exchange stable. Hence, there is no

exchange stable matching for this problem.

The arguments so far imply that GS-stability and exchange stability are actually differ-

ent notions. In fact, they are independent concepts. This claim is proved in the following

proposition.

Proposition 2.2. The set of matchings that satisfy GS-stability and the set of matchings

that satisfy exchange stability for a given roommate problem are independent.

Proof. Consider a problem with four agents and two rooms, and let the preferences of the

agents be given by:

P (1) = 4, 2, 3

P (2) = 1, 3, 4

P (3) = 4, 1, 2

P (4) = 1, 3, 2
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The matching µ =
1− 2

3− 4
is exchange stable, since there is no exchange-blocking

ring. However, since 4 �1 µ(1) and 1 �4 µ(4), agent 1 and 4 forms a blocking pair for

GS-stability.

On the other hand, consider a problem with six agents and three rooms, and let the

preferences of agents over other agents be given by:

P (1) = 4, 2, 5, 3, 6

P (2) = 1, 5, 3, 4, 6

P (3) = 6, 4, 2, 1, 5

P (4) = 3, 1, 6, 2, 5

P (5) = 2, 6, 1, 3, 4

P (6) = 5, 3, 4, 2, 1

The matching µ =

1− 2

3− 4

5− 6

satisfies GS-stability. Nevertheless, agents 1, 3 and 5 form

an exchange-blocking ring, since 4 �1 2 = µ(1), 6 �3 4 = µ(3) and 2 �5 6 = µ(5).

Therefore, the matching µ is GS-stable but not exchange stable. Therefore, GS-stability

and exchange stability are independent.

The solutions to the classical roommate problem, the GS-stable matchings, also satisfy

Pareto optimality. A simple proof can be found in Morrill’s (2007) paper. As, we have

shown in Example 1, Pareto optimality does not imply exchange stability. However, as we

prove next, exchange stability implies Pareto optimality.

Proposition 2.3. For a given roommate problem, if a matching is exchange stable, then it

is Pareto optimal.
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Proof. The contrapositive of the statement will be proven, i.e. if µ is not Pareto efficient,

then µ is not exchange stable.

Suppose µ is not Pareto efficient. Then, this means that there exists a matching µ′ such

that

µ′(a) �a µ(a) for all a ∈ A and

µ′(a) �a µ(a) for some a ∈ A.

Now, let a1 be such that µ′(a1) 6= µ(a1). We know that there exists such a1 since µ′(a) �a
µ(a) for some a ∈ A. Therefore, µ′(a1) �a1 µ(a1). Let µ′(a1) = b1 and µ(b1) = a2. Since

µ′(a1) = b1, µ′(a2) 6= µ(a2) = b1. µ′ is Pareto improvement, hence µ′(a2) �a2 µ(a2). Let

µ′(a2) = b2 and µ(b2) = a3. Since µ′(a2) = b2, µ′(a3) 6= µ(a3) = b2. If a3 = a1, then an

exchange-blocking ring with r = 2 is found. If a3 6= a1, since µ is Pareto improvement,

µ′(a3) �a3 µ(a3). Let µ′(a3) = b3 and µ(b3) = a4. If a4 = a2 or a4 = a1, the process

identifies an exchange blocking ring with r = 2 or r = 3 respectively. Otherwise, continue

the process. If ai = ak where k < i− 1, an exchange-blocking ring with r = i− k+ 1 and

R = (ak, ak + 1, ..., ai). If ai 6= ak, then continue the process with ai+1 and bi. Since A is

finite, the process will eventually terminate and identify an exchange-blocking ring.

We have established that exchange stable matchings are also Pareto optimal. Similarly,

our next result is an attempt to characterize the set of exchange stable solutions and tries

to answer the following question: “Let (A,P ) be a roommate problem with an exchange

stable solution µ. Suppose a group of agents leaves with their matched roommates. Would

the restriction of µ to the remaining agents be exchange stable?” The answer is “not neces-

sarily” since there is no solution which coincides with the set of exchange stable matchings

whenever it is non-empty and satisfies consistency.
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A similar impossibility result about the set of GS-stable matchings and consistency is

proved by Ozkal-Sanver (2008), and by Klaus and Nichifor (2009) independently. Ozkal-

Sanver (2008) tries to characterize the set of GS-stable solutions for the class of one-sided

matching problems regardless of the problem is solvable or not. Klaus and Nichifor (2009),

on the other hand, analyze various desirable properties of solutions of the class of solvable

roommate problems. Yet they share an impossibility result on the class of all one-sided

assignment problems, there exists no solution satisfies consistency and coincides with the

set of GS-stable matchings whenever the set is non-empty.

Let (A,P) denote the set of all roommate problems and M(A) denote the set of all

matchings for the set of agents, A. A solution ϕ is a correspondence that associates each

problem (A,P ) with a non-empty subset of M(A). Given a roommate problem (A,P )

and a subset of agents A′ ⊂ A, a new problem on A′ with preferences restricted to agents

in A′ is defined as a reduced problem of (A,P ) with respect to A′. Formally; the reduced

problem of (A,P ) with respect to A′ is (A′, P |A′) ∈ (A,P) for all (A,P ) ∈ (A,P) and all

A′ ⊂ A.

Definition 5. A solution ϕ satisfies consistency if for all (A,P ) ∈ (A,P) and all µ ∈

ϕ(A,P ), µ|A′ ∈ ϕ(A′ ∪ µ(A′), P |A′∪µ(A′)) for all proper subsets A′ ⊂ A.

Theorem 2.1. For the roommate problem, there is no well-defined solution ϕ that coincides

with the set of exchange stable solutions whenever it is non-empty and satisfies consistency.

Proof. Let ξ(A,P ) define the set of exchange stable matchings. Let ϕ be a solution for any

roommate problem (A,P ) ∈ (A,P) such that if ξ(A,P ) 6= ∅ then ϕ(A,P ) = ξ(A,P ) and

ϕ satisfies consistency.

The following example can be found in Ozkal-Sanver (2008). Let (A,P ) be a roommate

problem with five agents and the preference lists of the agents be as follows.
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P (1) = 3, 4, 5, 2

P (2) = 1, 5, 3, 4

P (3) = 4, 2, 1, 5

P (4) = 5, 3, 2, 1

P (5) = 2, 1, 4, 3

Define the set of single agents for a matching µ as Iµ = {ai ∈ A | µ(ai) = ai}.

Since |A| = 5, for any matching µ ∈ ϕ(A,P ), 1 ≤ |Iµ| ≤ 5. First, consider any µ ∈

ϕ(A,P ) such that 1 < |Iµ| ≤ 5. There exists some A′ = {ai, aj} ⊆ Iµ. Let (A′, P |A′)

be the reduced problem. Since ϕ(A′, P |A′) = µ′ = ξ(A′, P |A′) such that µ′(ai) = aj ,

µ|A′ /∈ ϕ(A′, P |A′). This contradicts with the consistency of ϕ.

Now, consider any µ ∈ ϕ(A,P ) such that |Iµ| = 1. The following table shows 15

different matchings with |Iµ| = 1. µ, A′, µ|A′ and ϕ(A′ ∪ µ(A′), P |A′∪µ(A′)) are shown

in the columns respectively. It can be observed from the table, for each µ ∈ ϕ(A,P )

with |Iµ| = 1, there exists a subset A′ such that µ|A′ /∈ ϕ(A′ ∪ µ(A′), P |A′∪µ(A′)). This

contradicts with the consistency of ϕ.
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µ A′ µ|A′ ϕ(A′ ∪ µ(A′), P |A′∪µ(A′))

{(1, 2), (3, 4), (5)} {3, 4, 5} {(3, 4), (5)} {(4, 5), (3)}

{(1, 3), (2, 4), (5)} {1, 3, 5} {(1, 3), (5)} {(1, 5), (3)}

{(1, 4), (2, 3), (5)} {1, 4, 5} {(1, 4), (5)} {(1, 5), (4)}

{(1, 2), (3, 5), (4)} {3, 4, 5} {(3, 5), (4)} {(4, 5), (3)}

{(1, 3), (2, 5), (4)} {2, 4, 5} {(2, 5), (4)} {(4, 5), (2)}

{(1, 5), (2, 3), (4)} {2, 3, 4} {(2, 3), (4)} {(3, 4), (2)}

{(1, 2), (4, 5), (3)} {1, 2, 3} {(1, 2), (3)} {(2, 3), (1)}

{(1, 4), (2, 5), (3)} {1, 3, 4} {(1, 4), (3)} {(3, 4), (1)}

{(1, 5), (2, 4), (3)} {2, 3, 4} {(2, 4), (3)} {(3, 4), (2)}

{(1, 3), (4, 5), (2)} {1, 2, 3} {(1, 3), (2)} {(2, 3), (1)}

{(1, 4), (3, 5), (2)} {2, 3, 5} {(3, 5), (2)} {(2, 3), (5)}

{(1, 5), (3, 4), (2)} {1, 2, 5} {(1, 5), (2)} {(1, 2), (5)}

{(2, 3), (4, 5), (1)} {1, 4, 5} {(4, 5), (1)} {(1, 5), (4)}

{(2, 4), (3, 5), (1)} {1, 2, 4} {(2, 4), (1)} {(1, 2), (4)}

{(2, 5), (3, 4), (1)} {1, 2, 5} {(2, 5), (1)} {(1, 2), (5)}

Before continuing to the next result, we need to underscore the following issue for

the variable population problems: A roommate problem with at least one exchange stable

matchings can be extended to a new problem with no exchange stable matching by an intro-

duction of new agents to the original problem. This can be seen from the previous example

given in the proof of the impossibility result. There are exchange stable assignments for the

three agent problem, yet there is no exchange stable matchings for the roommate problem

with five agents. Thus, we can conclude that a roommate problem with no exchange stable

assignment may have reduced problems with an exchange stable matching.
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The roommate problem is about matching agents in pairs or singletons. If the set of GS-

stable matchings is non-empty, then the singletons are the same for all GS-stable matchings.

This result is presented in Proposition 2.4. The single agents are the ones who want to be

alone or the ones that nobody wants to be matched with. However, circumstances are dif-

ferent in the case of scarcity of rooms and property rights. An agent may be compelled to

be matched by his less preferred agent if all rooms are assigned and there is no other room

available. Therefore, the singles may be different for each of the exchange stable match-

ings. This claim is given in Proposition 2.5. The following lemma is used for Proposition

2.4.

Lemma 2.1. Decomposition Lemma for the Roommate Problem. Let µ and µ′ be GS-

stable matchings in a roommate problem (A,P ), and all preferences are strict. Let A(µ)

be the set of agents who prefer µ to µ′, and let A(µ′) be the set of agents who prefer µ′ to

µ. Then µ and µ′ map A(µ) onto A(µ′).

Proof. Suppose a ∈ A(µ′). Then µ′(a) �a µ(a) �a a, so µ′(a) 6= a. Now, let b = µ′(a).

Then we cannot have µ′(b) �b µ(b) because if that is the case, then (a, b) would be a

blocking pair for µ. Therefore, since preferences are strict, b ∈ A(µ). Thus, µ′(A(µ′)) ⊆

A(µ).

Similarly, if b ∈ A(µ), then µ(b) �b µ′(b) �b b. This implies that µ(b) 6= b. Now let

c = µ(b). Then we cannot have µ(c) �c µ′(c) because it that is the case, then (b, c) would

be a blocking pair for µ′. Since preferences are strict, c ∈ A(µ′). Therefore µ(A(µ)) ⊆

A(µ′).

Since µ and µ′ are one-to-one and A(µ) and A(µ′) are finite, µ and µ′ map A(µ) onto

A(µ′).

Proposition 2.4. For a roommate problem with (A,P ), the set of agents who are single is

the same for all GS-stable matchings if the problem has at least one solution.
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Proof. If there is only one solution to the problem, then the conclusion follows trivially.

If there are multiple solutions, then let µ and µ′ be different stable matchings. Suppose

a is matched under µ′ but not under µ, i.e. µ(a) = a. Since all preferences are strict,

a ∈ A(µ′). By Lemma 2.1, µ maps A(µ) onto A(µ′). This means a is also matched under

µ which contradicts with a being single in µ.

Remark. A marriage problem is a special case of a roommate problem (A,P ) where the

set of agents A is the union of two disjoint sets, women (W ) and men (M), and each agent

in W prefers being single to being matched with any agent in W and, similarly, any agent

in M prefers remaining single to being matched with any agent in M . Since the roommate

problem is a generalization of the marriage problem, Lemma 2.1 and Proposition 2.4 also

hold for the marriage problem. These results will be used in the Marriage Problem section.

Proposition 2.5. For a roommate problem, (A,P,m), the agents that remain as singles

may not be same for all exchange stable matchings.

Proof. Let (A,P,m) a roommate problem with five agents and three rooms. Let the pref-

erences of the agents be given by:

P (1) = 2, 3, 4, 5

P (2) = 1, 5, 4, 3

P (3) = 1, 4, 5, 2

P (4) = 1, 2, 3, 5

P (5) = 2, 3, 1, 4

Now, consider the matchings

µ =

1− 2

3− 4

5

and µ′ =

1− 3

2− 5

4

.



2 THE ROOMMATE PROBLEM REVISITED 18

The rooms are allocated to two pairs and a single agent. There is no exchange-blocking

coalition for both of the matchings. Therefore, each of them is exchange stable; however,

the single agents in each matching are different.

Another distinction between GS-stability and exchange stability is about random paths

to stability. Diamantoudi et al. (2004) generalized the results about random paths to sta-

bility of Roth and Vande Vate (1990) and Chung (2000) under strict preferences. They

proved that for all roommate problems with strict preferences, if a problem is solvable,

i.e. a GS-stable matching exists, then there exists a random path to GS-stability for any

unstable matching. This means that, for any unstable matching, there is a finite sequence

of consecutive blocking pairs leading to a GS-stable matching if at least one GS-stable

matching exists. Therefore, starting from any unstable matching, the process of allowing

a randomly chosen blocking pair to match converges to a GS-stable matching with proba-

bility one. This result is crucial because it implies that the decentralized decision making

process always leads to a GS-stable matching if the problem has a GS-stable solution.

However, unfortunately, this property does not hold for exchange stability. Even if it is

known that there exists an exchange stable matching, there is no guarantee that the process

of allowing a randomly chosen exchange-blocking ring to exchange their room leads to

an exchange stable solution for any exchange-unstable matching. It should be emphasized

that if an exchange-blocking coalition is formed and all coalition members’ roommates are

worse off due to this exchange, then the roommates always have a chance to reverse this

situation by forming a coalition to exchange their rooms. Formally, let R = (a1, a2, ..., ar)

be an exchange-blocking ring for a matching µ and µ(ai) = bi for all i ∈ {1, 2, ..., r}. So,

µ(ai+1) = bi+1 �ai
µ(ai) = bi for all i ∈ {1, 2, ..., r}. Let µ′ be the matching achieved after

allowing the exchange-blocking ring to exchange their rooms. Thus, µ′(ai) = bi+1. As-
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sume, for all i ∈ {1, 2, ..., r}, bi’s are worse off due to this exchange, i.e., µ(bi) �bi µ′(bi).

Since µ(bi) = ai = µ′(bi+1) for all i ∈ {1, 2, ..., r}, µ′(bi+1) �bi µ′(bi) holds for all

i ∈ {1, 2, ..., r}. Therefore, R′ = (b1, b2, ..., br) is an exchange-blocking ring for µ′ and

if exchange is allowed for R′, then µ is reached. Since there may be no random path to

exchange stability even if there exists an exchange stable matching, the initial matching be-

comes very important to reach an equilibrium for the modified roommate problem and the

decentralized decision making process can not be utilized if the aim is to reach an exchange

stable matching. Depending on the initial matching, a roommate problem can be stuck in

a disequilibrium situation although there exists an exchange stable solution. The following

proposition summarizes the above observations.

Proposition 2.6. For any roommate problem, there may be no random paths to exchange

stability even if there exists an exchange stable matching.

Proof. We will provide a counterexample. Recall Example 1. This is a four agents and two

rooms problem with the following preference lists of the agents:

P (1) = 2, 3, 4

P (2) = 3, 4, 1

P (3) = 4, 1, 2

P (4) = 1, 2, 3

We know that there exists an exchange stable matching µ′′ =
1− 3

2− 4
. If µ′′ is the

initial matching, then equilibrium is achieved automatically.

Now, consider the matching µ =
1− 2

3− 4
. It can be observed that the agents 2 and 4

form an exchange-blocking pair, since µ(4) = 3 �2 µ(2) = 1 and µ(2) = 1 �4 µ(4) = 3.

If 2 and 4 exchange their rooms, µ′ =
1− 4

2− 3
. is reached. Yet, as we stated earlier, 1 and
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3 form an exchange-blocking pair for µ′ since they are both worse off due to the previous

exchange. If 1 and 3 exchange their room, µ is reached again. However, we know that µ is

not exchange stable and this process will go on indefinitely.
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3 The Marriage Problem

This section specifies the necessary condition for achieving both GS-stability and exchange

stability for a given marriage problem.

A marriage market involves two distinct sets, men and women. Each agent has a pref-

erence ordering on the members of the opposite sex. More formally, we can define the

marriage problem as a triple (M,W,P ) where M is the set of men, W is the set of women

and P is the set of preference lists of the agents. For each agent, preferences over the agents

on the other side of the market and the prospect of remaining single, are strict, complete and

transitive. A matching, which is a set of man-woman pairs and the remaining singletons, is

a solution to the marriage problem. The formal definition is as follows.

Definition 6. Let (M,W,P ) be a marriage market. A matching µ is one-to-one corre-

spondence from the set of agents M ∪ W onto itself of order two such that if µ(m) 6= m

then µ(m) ∈ W and if µ(w) 6= w then µ(w) ∈M .

As it is stated earlier, Gale and Shapley (1962) proposed GS-stability as the solution

concept for the problem. They also proved that every marriage problem has a GS-stable

solution through a simple iterative algorithm known as the deferred acceptance algorithm.

Next, we define GS-stability for the marriage problem, then discuss the deferred acceptance

algorithm.

Definition 7. Let (M,W,P ) be a marriage market. For a given matching µ, a man m and

a woman w forms a blocking pair if µ(m) 6= w, and w �m µ(m) and m �w µ(w). A

matching µ is GS-stable if there is no blocking pairs.

The deferred acceptance algorithm proposed by Gale and Shapley (1962) assures the

existence of a GS-stable matching for the marriage problem. There are men and women
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proposing versions of the algorithm. The following procedure describes the men proposing

version. The women proposing version can be obtained by interchanging the roles of men

and women in the algorithm. The algorithm involves a sequence of proposals from men

to women. Each man proposes to his most preferred woman, namely, first woman in his

preference list. Each woman rejects the proposal if the man is unacceptable, i.e., she

prefers to be single rather being matched to this man, or if she receives more than one

proposals, she rejects all but her most preferred one among these men. All men with

accepted proposals are kept engaged. Any man who was rejected at the previous step

proposes to the next woman in his preference list. This procedure continues as long as there

is an acceptable woman to whom he has not proposed yet. Each woman rejects proposals

from any unacceptable men. If she is engaged and received one or more new proposals,

then she accepts her most preferred man among these. If no man is rejected in any step of

the procedure, then the algorithm stops. After the algorithm terminates, every man either

is engaged to a woman or rejected by all women in his preference list. The engaged pairs

is married, and women who do not get any acceptable proposals and men whose proposals

are all rejected remain single. At the end of the deferred acceptance algorithm with men

proposing, the matching µM is obtained.

Gale and Shapley (1962) proved that µM always exists and is GS-stable. In addition,

they proved that µM is M -optimal GS-stable matching, i.e., every man likes at least as

any other GS-stable matching. Roth and Sotomayor (1990) defined a man and a woman to

be achievable to each other for a given marriage market (M,W,P ) if they are matched at

some GS-stable matching. In the light of this definition, they concluded that µM matches

each man with his most preferred achievable woman. Similarly, µW is produced by the

deferred acceptance algorithm with women proposing. µW is W-optimal matching, that is,

every woman likes it as least as any other GS-stable matching. In addition, µW matches
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each woman with her most preferred achievable man.

The definition of exchange stability for the marriage problem is given next.

Definition 8. Let (M,W,P ) be a marriage market. For a given matching µ,R = (m1,m2, ...,mr)

is an exchange-blocking ring formed with men with length r if µ(m2) �m1 µ(m1),

µ(m3) �m2 µ(m2), ..., µ(mr) �mr−1 µ(mr−1), µ(m1) �mr µ(mr), and mk 6= mn for

all k, n ∈ {1, 2, ..., r} where r ≥ 2. Exchange blocking ring formed by women is defined

similarly. A matching µ is exchange stable if there is no exchange-blocking ring formed

by men or women.

Now, we are ready to give a necessary condition for a matching to satisfy both GS-

stability and exchange stability.

Proposition 3.1. For any marriage market with more than one GS-stable solution, there

is no GS-stable matching that is also exchange stable. If there exists only one GS-stable

solution for the marriage market, then it is the only candidate for satisfying both GS-

stability and exchange stability.

Proof. The aim of the proof is to show that there exists at least one exchange blocking

coalition for each of the GS-stable matching for marriage problems with more than one

solution.

Since more than one GS-stable matchings exists, we know that W -optimal and M -

optimal GS-stable matchings exist and are different from each other.

Consider any GS-stable matching, µ, that is different thanW -optimal GS-stable match-

ing, including M -optimal GS-stable matching. Since, µW is W -optimal matching, every

woman likes it at least as well as any other matching. Thus, for each woman w, either

µW (w) = µ(w) or µW (w)�w µ(w) holds. If the former holds, the mate of the woman, w, is

same for both of the GS-stable matchings or she can be single for all GS-stable matchings,
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i.e. her mate is herself for all GS-stable matchings. If the latter holds, w is matched with

a less preferred match under µ. Let A be the set of women for whom the latter inequality

hold. Given Proposition 2.4, the set of people who is single is the same for all GS-stable

matchings. Therefore, the set of agents can be decomposed into three groups: the sin-

gles, the people matched with the same mates in both of the matchings, and the remaining

agents, which consists of the set A and their mates. Thus, µW (A) = µ(A). Now, consider

any woman, say w1 from A. She is matched with her most achievable man in W -optimal

matching. However, since it is known that her mate in µW is not single in µ as a conse-

quence of Proposition 2.4, then he is matched another woman, say w2, in µ. That is, µ(w2)

= µW (w1) �w1 µ(w1). Thus, we can conclude that w2 is also an element of A, since she

is not matched with the same mate in µW . Therefore, there exists w3 such that µ(w3) =

µW (w2) �w2 µ(w2) holds. If w3 = w1, w1 and w2 forms an exchange blocking coalition.

If w3 6= w1, then w3 ∈ A and there exists w4 ∈ A such that µ(w4) = µW (w3) �w3 µ(w3)

holds. If w4 = w1, then w1, w2, w3 forms an exchange blocking coalition. If w4 6= w1, we

repeat the process. Since W is finite, A is also finite. Eventually, the process will identify

an exchange blocking coalition, formed by the women.

A similar argument holds for W -optimal GS-stable matching. However, in this case,

men form an exchange blocking coalition. Define the set,B, of the men who strictly prefers

M -optimal matching to W -optimal matching, µM to µW . Thus, µM(m) �m µW (m) for

all m ∈ B. Also, similar to the argument above, µM(B) = µW (B). Let m1 ∈ B.

Then, there exists m2 such that µW (m2) = µM(m1) �m1 µW (m1). Therefore, m2 ∈ B,

because he is matched with different mates in µM and µW . So, there exits m3 such that

µW (m3) = µM(m2) �m2 µW (m2). Thus, m3 is also an element of B. If m3 = m1, then

m1 and m2 forms an exchange blocking coalition. If m3 6= m1, then there exists m4 such

that µW (m4) = µM(m3) �m3 µW (m3). Thus, m4 ∈ B. If m4 = m1, then m1, m2 and
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m3 forms an exchange blocking coalition. If m4 6= m1, then the process is repeated. Since

M is finite, B is also finite. Eventually, the process will identify an exchange blocking

coalition, formed by the men.

The theorem above assures that there is no exchange stable solution that belongs to

the set of stable matchings if there are more than one GS-stable matching. Therefore, the

only candidate for an exchange stable solution among the GS-stable matchings is for the

problems with only one stable solution. For these markets, deferred acceptance algorithm

with men proposing and women proposing produce the same solution. Therefore, M -

optimal and W -optimal matchings are the same, i.e., µM = µW . This means that all men

and all women are matched with their most preferred achievable mates. However, this

does not ensure that the only GS-stable matching is also exchange stable. In the following

example, there is only one GS-stable matching which is not exchange stable.

Example 2. (Roth and Sotomayor, 1990) Let M = {m1,m2,m3} and W = {w1, w2, w3}

with preferences over the acceptable people given by:

P (m1) = w2, w1, w3 P (w1) = m1,m2,m3

P (m2) = w1, w2, w3 P (w2) = m3,m1,m2

P (m3) = w1, w2, w3 P (w3) = m1,m2,m3.

Then,

µM = µW =
w1 w2 w3

m1 m3 m2

.

However,

µ1 =
w1 w2 w3

m3 m1 m2

.

can be achieved by exchanging m1 and m3. m1 and m3 are better off by exchanging

their mates; whereas, w1 and w2 are worse off under µ1 compared to the µM and µW .
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Therefore, for this marriage problem, there is no GS-stable matching that is also exchange

stable. Nonetheless, there is an exchange stable matching for this problem, i.e.,

µ2 =
w1 w2 w3

m2 m3 m1

.

is exchange stable.

Proposition 3.1 and Example 2 adduce the incapability of the deferred acceptance al-

gorithm in identifying the exchange stable solutions even if there is only one GS-stable

solution for the problem.
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4 Conclusion and Further Discussion

The primary concern of this paper is the roommate problem under the restriction that the

rooms are in a scarce supply. Our findings suggest that the set of exchange stable solutions

may be empty for a given roommate problem with room scarcity. Moreover, the set of

exchange stable matchings is a subset of the set of Pareto optimal matchings.

Moreover, we establish an impossibility result that there is no solution which coincides

with the set of exchange stable matchings whenever there exists at least one exchange

stable matching and satisfies consistency. Moreover, we demonstrate with an example that

a roommate problem with an exchange stable solution can be extended to a roommate

problem with no exchange stable solution. This result is crucial for roommate problems

with variable population.

We also show that the concepts of GS-stability and exchange stability are independent

for a roommate problem. Therefore, disregarding scarce room supply and using Irving

(1985) and Tan’s (1991) algorithms for finding a solution for the roommate problem may

lead to a matching that is not exchange stable. Therefore, one of the possible lines of

further research can be on an algorithm that identifies an exchange stable solution, and on

the characterization of the necessary and sufficient conditions to have an exchange stable

solution for a given roommate problem.

In addition, for a given marriage problem, if the set of GS-stable matchings is a sin-

gleton, this matching is the only candidate for a matching that satisfies both GS-stability

and exchange stability. For marriage problems with more than one GS-stable solution,

it is impossible to obtain a solution that satisfy both GS-stability and exchange stability.

Therefore, it is important to decide on which stability notion is more appropriate for the

market.

One important distinction between GS-stability and exchange stability is the need for
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centralized decision making. Previous research shows that given a GS-unstable initial

matching, there is always a decentralized decision making process that lead to a GS-stable

solution. However, our research shows that this process may not be applicable for exchange

stability. Even if there is an exchange stable solution, a decentralized decision making pro-

cess may not result in achieving one.

On the other hand, if there is more than one exchange stable solutions, the social plan-

ner faces the problem of deciding among different solutions to implement. In GS-stable

matchings, the single agents are the ones who wants to be alone or who nobody wants to

be matched with. However, this result does not extend to exchange stable matchings, since

we prove that the single agents may be different in each of the exchange stable solutions.
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