
A TABU SEARCH ALGORITHM FOR ORDER ACCEPTANCE

AND SCHEDULING PROBLEM

by

Bahriye Cesaret

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koç University

July, 2010

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Bahriye Cesaret

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Ceyda Oğuz (Advisor)

Assist. Prof. F. Sibel Salman (Advisor)

Assist. Prof. Onur Kaya

Assist. Prof. Deniz Aksen

Assist. Prof. Kerem Bülbül

Date:

to my family...

iii

ABSTRACT

In this thesis, we consider a make-to-order production system, where limited production

capacity and order delivery requirements necessitate selective acceptance among incoming

orders. In the considered system, each accepted order that is completed and delivered to the

customer before its quoted due date brings a revenue to the manufacturer. Late delivery

of an order incurs tardiness costs and therefore causes a decrease in the revenue that is

proportional to its tardiness. If an order cannot be completed before its deadline, then it

brings no revenue. It is possible to reject an order and this incurs no additional penalty

cost. Accepted orders should be scheduled after their corresponding release times on a single

machine. A sequence-dependent setup time elapses between the processing of each order.

Since revenue from an accepted order is a function of its completion time and processing

of an order may delay the subsequent orders beyond their due dates, order acceptance

and scheduling decisions should be taken jointly. In order to maximize the total revenue,

the manufacturer has to determine which orders to accept and how to schedule them.

For this NP-hard combinatorial optimization problem, we propose a new heuristic solution

approach. Namely, we develop a tabu search algorithm which is supported with an effective

probabilistic local search and diversification mechanism. We analyze the performance of

the tabu search algorithm on an extensive set of test instances with up to 100 orders and

compare it with two heuristics from the literature. In the comparison, we report optimality

gaps which are calculated with respect to upper bounds generated from a mixed integer

programming formulation. The results of our computational study show that the tabu

search algorithm gives near optimal solutions that are significantly better compared to

the solutions given by the two heuristics. Furthermore, the run time of the tabu search

algorithm is very small, even for 100 orders. The success of the proposed heuristic largely

depends on its capability to incorporate in its search the acceptance and scheduling decisions

simultaneously, and to provide effective diversification mechanisms.

iv

ÖZET

Bu tezde, sipariş teslim zamanlarının ve kısıtlı üretim kapasitesinin gelen siparişlerin

seçilerek kabul edilmesini gerektirdiği, bir siparişe dayalı üretim sistemi ele alınmıştır. Ele

alınan sistemde, kabul edilen ve teslim zamanından önce tamamlanıp, müşteriye teslim

edilen her sipariş üreticiye kazanç sağlar. Geç teslim edilen siparişler teslim gecikmesi

ile orantılı olarak kazançta bir düşüş yaratırken, termin zamanından önce tamamlana-

mayan işler kazanç getirmez. Herhangi bir siparişin reddedilmesi mümkündür ve hiçbir

ek maliyet getirmez. Kabul edilen siparişler tek makine üzerinde, serbest bırakılma zaman-

larından sonra olacak şekilde çizelgelenebilirler ve siparişler arasında sıraya bağlı hazırlık

süreleri vardır. Kabul edilen siparişin kazancı, o siparişin tamamlanma zamanının bir

fonksiyonu olduğu ve bir siparişin işlenmesi sonraki siparişlerin gecikmesine neden ola-

bileceği için sipariş kabul etme ve çizelgeleme kararları birlikte ele alınmalıdır. Elde edilen

kazancı enbüyüklemek için, üretici hangi siparişleri kabul edeceğini ve bu siparişleri hangi

sırada işleyeceğini belirlemelidir. Bu NP-zor eniyileme problemi için, etkili olasılıksal yerel

arama ve çeşitlendirme mekanizmaları ile desteklenmiş bir tabu arama algoritması önerdik.

Önerilen algoritmanın performansı, çeşitli parametre değerleri ile rassal olarak oluşturulmuş,

çok sayıda örnek problem ile çözülerek incelenmiştir. Ayrıca bu algoritma, literatürde

var olan iki ayrı sezgisel yöntem ile kıyaslanmıştır. Karşılaştırmalarda performans ölçütü

olarak çözümlerin kazançlarının en yüksek kazançtan ne kadar uzak olduğu ele alınmıştır.

Karışık tamsayılı programlama kullanılarak en yüksek kazanç için bir üst sınır elde edilmiş

ve bu üst sınıra dayanarak hesaplanmış ortalama optimalite aralığı verilmiştir. Yaptığımız

hesaplamalı deneylerin sonuçlarına göre, tabu arama algortiması amaç fonksiyonu açısından

test edilen örneklerde kıyasladığımız diğer iki sezgisel yöntemden çok daha iyi sonuçlar

vermiştir. Buna karşın, tabu arama algortimasının çalışma zamanı 100 adet sipariş verildiği

örnekler için bile oldukça kısadır. Önerilen sezgisel yöntemin başarısı, büyük ölçüde, arama

sürecine sipariş kabul etme ve çizelgeleme kararlarını birlikte dahil edebilmesine ve etkili

çeşitlendirme mekanizmaları kullanmasına bağlıdır.

v

ACKNOWLEDGMENTS

First I would like to thank my supervisors Assoc. Prof. Ceyda Oğuz and Assist. Prof.

F. Sibel Salman for their hard work and guidance throughout this entire thesis process

and for believing in my abilities. They provided a great source of inspiration and valuable

suggestions during my thesis studies.

I would like to thank Assist. Prof. Onur Kaya, Assist. Prof. Deniz Aksen and Assist.

Prof. Kerem Bülbül for taking part in my thesis committee, for critical reading of this thesis

and for their valuable suggestions and comments.

I would like to acknowledge financial support from TUBITAK during my master thesis.

I am grateful to Tarık Kobalas and Bekir Yenilmez for their help in computer program-

ming issues which made my computational studies smoother.

I would like to express my appreciation to my friends, Burcu Inci, Eylem Yalçınkaya,

Nalan Lom, Serkan Kara, Ibrahim Aşkar, Alper Şahin, Onur Çoban, Bahtiyar Yıldırım,

Aydın Akay, Habip Tiryaki and again Tarık Kobalas for their support and unforgettable

friendships.

I would like to thank my friends Yeliz Akça and Selin Özdinç for their valuable friendships

during my master study at Koç University.

And special thanks to Güliz Akkaymak and Hilal Şen for their warm, enjoyable, pleasant

friendships and thanks again for them not merely being homemates.

Last but not the least, I thank my parents Selbiye and Hikmet, my sister Sibel and

her husband Coşkun, for their never-ending love and support in all my efforts. To them I

dedicate this thesis.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Nomenclature xi

Chapter 1: Introduction 1

Chapter 2: Literature Survey 4

2.1 Pure Sequencing Problems . 4

2.1.1 Total Tardiness and Total Weighted Tardiness Problems 5

2.2 Selection and Sequencing Problems . 13

2.2.1 Scheduling with Rejections . 13

2.2.2 Order Acceptance and Scheduling Problems 15

2.3 Related Tabu Search Algorithms . 20

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 22

3.1 Problem Definition . 22

3.2 MILP Formulation for the OAS Problem . 23

3.3 The Computational Complexity of the Problem 25

Chapter 4: A Heuristic Solution Approach 26

4.1 Tabu Search . 26

4.2 Proposed TS Algorithm . 27

4.2.1 Solution Representation . 27

4.2.2 Initial Solution . 27

4.2.3 Move Operator and Neighborhood Definition 29

4.2.4 Tabu List and Tabu Tenure . 30

vii

4.2.5 Aspiration and Termination Criteria 30

4.2.6 Local Search Procedure . 30

Chapter 5: Computational Studies 34

5.1 Data Generation . 34

5.2 Parameter Settings for the TS Algorithm . 35

5.3 Results of the Computational Experiments 39

5.3.1 Computational Platform . 39

5.3.2 Benchmarks . 39

5.3.3 Upper Bounds . 44

5.3.4 Performance Measures . 44

5.4 Analysis of the Results . 52

Chapter 6: Conclusions and Future Research Directions 58

6.1 Conclusions . 58

6.2 Future Research . 59

6.2.1 Strengthening Upper Bounds . 59

6.2.2 Exact Method Development . 60

Bibliography 61

Appendix 73

Vita 73

viii

LIST OF TABLES

5.1 Preliminary test results for tabu tenure values where τ=0.3 and R=0.5 36

5.2 Preliminary test results for improvement threshold value where τ=0.3 and

R=0.5 . 37

5.3 Preliminary test results for number of drop-add-insert operations where τ=0.3

and R=0.5 . 38

5.4 Performance of MILP, m-ATCS, ISFAN and the TS algorithm for n=10 . . . 46

5.5 Performance of MILP, m-ATCS, ISFAN and the TS algorithm for n=15 . . . 47

5.6 Performance of MILP, m-ATCS, ISFAN and the TS algorithm for n=20 . . . 48

5.7 Performance of MILP, m-ATCS, ISFAN and the TS algorithm for n=25 . . . 49

5.8 Performance of MILP, m-ATCS, ISFAN and the TS algorithm for n=50 . . . 50

5.9 Performance of MILP, m-ATCS, ISFAN and the TS algorithm for n=100 . . 51

5.10 Average % deviations of TS heuristic from UBLPV I , UBMILP and UB where

n=25 and τ = 0.9 . 55

5.11 Number of rejected and tardy orders of m-ATCS, ISFAN and TS heuristics

for n=25 with τ = 0.1 and τ = 0.9, and for n=50 with τ = 0.9 57

ix

LIST OF FIGURES

3.1 Revenue function for an accepted order . 23

4.1 Flowchart of the TS algorithm . 33

5.1 Convergence of the TS algorithm for an instance with 50 orders, τ = 0.3 and

R = 0.7 . 39

x

NOMENCLATURE

ACO Ant Colony Optimization

ATC Apparent Tardiness Costs

ATCS Apparent Tardiness Costs with Setups

DPSO Discrete Particle Swarm Optimization

DSKP Dynamic Stochastic Knapsack Problem

EDD Earliest Due Date

GA Genetic Algorithm

GRASP Greedy Randomized Adaptive Search Procedure

ISFAN Iterative Sequence First - Accept Next Algorithm

LP Linear Programming

LR Lagrangean Relaxation

m-ATCS Modified Apparent Tardiness Costs with Setups Heuristic

MILP Mixed Integer Linear Programming

MTO Make-to-order

OAS Order Acceptance and Scheduling

PCTSP Prize Collecting Traveling Salesman Problem

RLR1 Revenue-Load-Ratio1

RLR2 Revenue-Load-Ratio2

SA Simulated Annealing

TS Tabu Search

TSP Travelling Salesman Problem

UB Best Upper Bound

UBLPV I Upper Bound obtained by LP Relaxation of MILP with Valid Inequalities

UBMILP MILP Upper Bound at Termination

xi

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

In make-to-order (MTO) production systems, production decisions are initiated by cus-

tomer orders. Hence, inventory holding and obsolescence costs can be kept at minimum.

Moreover, the MTO approach provides the flexibility of either offering a greater variety of

products or making products that are unique to the customers. On the other hand, fast

response to production orders and the pressure to meet customer demand on time are im-

portant issues in MTO production systems. When customers called tight due dates and

cannot tolerate late deliveries, it becomes critical for the MTO manufacturer to selectively

accept and schedule customer orders.

In a make-to-order production system, simultaneous order acceptance and scheduling

decisions arise when limited production capacity and tight delivery requirements necessitate

selecting orders to maximize total revenues. Accepting orders without considering their

impact on capacity may create an overload at certain time periods, that may in turn delay

completion of other orders and thus incur penalty costs or a reduction in revenues from

other orders. In some cases, this may also cause customer dissatisfaction that leads to

loss of revenue in the long run, especially in competitive industries. These circumstances

necessitate the acceptance decisions to be made not on an individual order-basis, but by

considering the set of orders to be processed and their scheduling at the same time. To

be able to use the production capacity more efficiently and maintain customer satisfaction,

the manufacturer should determine which orders to accept and how to schedule them to

maximize the total revenue.

In some manufacturing settings, such as a custom made furniture shop or printing

and painting operations, having sequence-dependent setup times is an important factor in

scheduling. In this thesis, we consider an order acceptance and scheduling problem in a single

machine environment where the orders are processed without preemption and a sequence-

Chapter 1: Introduction 2

dependent setup time is incurred between processing of every two consecutive orders. When

a customer places an order, a due date and a deadline are quoted. A set of orders is available

with the following data: release dates, processing times, sequence-dependent setup times,

due dates, deadlines, revenues and weights. Knowing this information in advance at the

beginning of planning horizon, the manufacturer must select a subset of incoming orders

and schedule these accepted orders to generate maximum total revenue. The revenue from

an order depends on the following situations. If an order is accepted and completed before

its due date, the pre-specified revenue is generated. If it is completed after its due date but

before the deadline, it incurs a reduced revenue due to tardiness. On the other hand, an

order completed after the deadline results in zero revenue. Hence, rejecting such orders, by

considering the scheduling aspect a priori, leads to better utilization of the capacity. In the

rest of this thesis, we refer to this problem as the Order Acceptance and Scheduling (OAS)

problem, as in [80].

The OAS problem arises in different MTO production systems and was first introduced

in [80]. A motivating example of a printing and laminating company that works on MTO

principle and faces the OAS problem is given in that study. The production process of

this company includes printing, lamination, slitting and packaging operations. The printing

process requires different setup times depending on the orders. The required setup time of an

order also changes depending on the predecessor of the order. Because fixing raw materials

and apparatus related to the order differs from one order to another the setup time depends

on the order as well as the predecessor of this order. Since, the company cannot handle

simultaneous acceptance/rejection and scheduling decisions efficiently, it faces difficulties in

meeting the customer due dates.

The OAS problem also arises in logistics systems which require customized services.

In this setting, the distance between customers can be viewed as sequence-dependent setup

time and each customer may require the service within a time window. The customer prefers

to be served until a specified date. In case this is not possible, the customer also accepts

to be served until a final quoted date, i.e. a deadline. However, after the preferred date,

customer satisfaction begins to decrease and therefore he only accepts to pay for a reduced

amount. Furthermore, he refuses to pay after the final quoted date. The service provider

has to select which customers to serve based on the revenue he will get and the available

Chapter 1: Introduction 3

capacity. The service provider completes a tour by sequencing the selected customer visits.

Hereby, the service provider also faces the OAS problem.

The contribution of this study is two-folds. Firstly, we develop a tabu search (TS)

heuristic that performs significantly better in terms of both solution quality and run time

compared to existing heuristics in the literature. The novel characteristics of this solution

approach can be summarized as follows. The TS algorithm uses a representation that

holds information about both the acceptance/rejection status and the processing sequence

of the orders, which enables the algorithm to make the acceptance and scheduling decisions

simultaneously rather than sequentially. This, together with a new neighborhood definition

and the use of memory, facilitates searching the solution space much more effectively. TS

also uses a local search procedure intelligently by compound moves. One compound move

includes iterative drop, add and insertion operators utilizing problem specific knowledge.

The local search procedure also serves to diversify probabilistically. Secondly, we provide a

wide range of instances by changing the values of problem parameters such as due date range

and tardiness factor. The proposed TS algorithm shows consistently superior performance

over different types of instances that could be encountered in practice. Therefore, TS can

also be suggested as a robust algorithm for the OAS problem.

The organization of the thesis is as follows. In Chapter 2, we review studies related to the

OAS problem and point out their differences from the OAS problem. In this chapter, we also

review the related studies which implemented TS as a solution method for their problems.

In Chapter 3, we define the OAS problem formally and give some insights on computational

complexity. We also provide the mixed integer linear programming (MILP) formulation of

the problem which was developed in [80] for the sake of completeness. We describe the

proposed heuristic algorithm in Chapter 4. We give the details of data generation and

results of computational studies in Chapter 5. In this chapter, we also discuss the difficulty

of the test instances, analyze the upper bounds and the number of rejected and tardy orders.

Finally in Chapter 6, we give concluding remarks and future research directions.

Chapter 2: Literature Survey 4

Chapter 2

LITERATURE SURVEY

In the scheduling literature, researchers mainly focus on constructing a schedule for a

given set of orders to optimize a particular criterion. These types of scheduling problems can

be called pure sequencing problems, since only the sequencing of given orders is considered

in the problems. On the other hand, when a subset among incoming orders should be

selected and the orders should be sequenced, we can classify these problems as selection

and sequencing problems. In this chapter, we examine both pure sequencing problems and

selection and sequencing problems whose objectives and settings are close to ours.

2.1 Pure Sequencing Problems

The usual approach in scheduling literature is to schedule n orders in a specific machine

environment while trying to optimize some established optimality criterion. In pure se-

quencing problems, the decision of accepting or rejecting an order is not conceived, that is,

all orders must be accepted and scheduled on some machines. Widely studied optimality

criteria of pure sequencing problems include minimizing the makespan, the total comple-

tion times, the number of early/tardy orders, the setup times/setup costs, the maximum

lateness, the total earliness and the total tardiness /total weighted tardiness or sometimes

maximizing profits. Some of the most widely studied criteria are related to order tardiness.

In today’s competitive business conditions, meeting customer due dates, namely on time

delivery, is designated as the most important requirement for retaining customers [?]. Late

delivery of the orders leads to dissatisfaction of the customer and therefore may cause a

reduced revenue and furthermore may result in loss of the customer for the manufacturer

in the long term. These are among important reasons why tardiness based objectives are

one of the most studied cases. On the other hand, finding optimal solutions for tardiness

based objectives are known to be very difficult [77].

Two important and very closely related subtypes of pure sequencing problems addressing

Chapter 2: Literature Survey 5

the tardiness issue are total tardiness and total weighted tardiness problems which are widely

studied in the literature. These problems are mostly studied in static order arrival cases.

In static order arrival case, all the orders are available at time zero, may either be released

at time zero or at a known release date for processing. Moreover, all order parameters

are attainable in advance for the decision maker at the beginning of the planning horizon.

Researchers also discuss dynamic order arrival cases where the orders arrive randomly over

time and the parameters of the orders are not attainable before the arrival. Static order

arrival cases are also referred to as off-line scheduling whereas dynamic order arrival cases

are referred to as on-line scheduling in the literature. Since our study falls into the static

order arrival case, we do not cover the dynamic order arrival cases for pure sequencing

problems.

2.1.1 Total Tardiness and Total Weighted Tardiness Problems

We can simply state the total tardiness problem as follows: n orders, each with a given

processing time and a due date, should be processed without preemption. If an order is

completed after its due date, it becomes tardy and the amount by which the completion

time exceeds the due date is its tardiness. The objective is to determine a schedule that

minimizes the total tardiness of the orders. In terms of the tardiness criterion, the early

completion of the orders is neither rewarded nor penalized; whereas, the late completion of

the orders brings an associated delay penalty. In the total weighted tardiness problem, the

only difference is that there are positive weights associated with the tardiness of the orders

and accordingly the objective is to determine the optimal schedule that minimizes the total

weighted tardiness. The weights act as priority indicators for the orders. The higher the

weights the more important the orders, implying that the manufacturer does not want these

orders to be late compared to the others.

Sen et al. [92] give a complete survey about weighted and unweighted tardiness schedul-

ing problems. They survey multi-machine environments as well as single machine environ-

ments. Most of the techniques in the literature which aim to solve the scheduling problems

are focused on single machine environments. Because in practice, all the machine envi-

ronments can be reduced to a single machine environment by assuming that there is a

bottleneck machine in the production system. Since this bottleneck machine will restrict

Chapter 2: Literature Survey 6

the production system to its maximum capacity, scheduling of the bottleneck machine in

multiple machine shops is equivalent to solving the single machine case. Once the basic

single machine case is studied, it may be possible to extend the results to other machine

environments. In this study, we also consider the single machine case. Therefore, the type

of machine environment we review in this survey for pure sequencing problems is restricted

to a single machine environment.

McNaughton [74] completed one of the earliest studies addressing the tardiness criterion

in 1959. He gives a formulation for deferral cost associated with scheduling problems [74].

Shild and Fredman [94] generalized Mc Naughton’s results and showed how to solve this

problem to optimality in certain special cases which are quite restrictive. Lawler introduced

a dynamic programming formulation to solve the same problem to optimality for small

number of orders [64]. However, the total tardiness problem as stated above was first defined

in Emmons’ study [36] in the late sixties. In fact, the total tardiness problem defined by

Emmons [36] is a special case of Mc Naughton’s more general scheduling problem [74]. In his

study [36], Emmons points out some relationships among processing times and due dates.

This approach has also been adopted by other researchers, however Emmons is the first who

utilizes these relationships and can reduce the size of the problems considerably. Later on,

Rinnooy Kan et al. [54] and Fisher [39] make some slight extensions to Emmons’ results

[36]. Baker and Schrage [11] propose a technique which combines Emmons’ results [36] with

a dynamic programming scheme. This combined technique has a superior performance to

Rinnooy Kan et al.’s technique [54]. However, Baker and Schrage’s [11] method is dominated

in terms of computation time by Lawler’s method [66] which is also a dynamic programming

method.

All of the previous studies on this problem until Lawler [65] were focused on designing fast

enumerative algorithms to solve the problem to optimality. Lawler is the first researcher who

investigated the complexity of the problem. In his study [65], although Lawler proves that

the total weighted tardiness problem is NP-hard in the strong sense, he leaves the complexity

of the total tardiness problem unresolved. In 1990, Du and Leung proved that single machine

total tardiness problem when preemption is not allowed is NP-hard in the ordinary sense

[34]. This proof is also extended to the preemptive case based on McNaughton’s study [74]

in which he proves that the tardiness of the problem is not decreased when preemption

Chapter 2: Literature Survey 7

is allowed. Although the classical single machine total tardiness problem is NP-hard, in

some cases by utilizing some particular set of settings suggested by Koulamas [60] some

polynomially solvable problems can be obtained. More recently, Koulamas [59] surveys the

related literature for the total tardiness problems under different machine environments and

provides an integrated framework for the problem.

Single Machine Total Weighted Tardiness Problems

Most of the studies related to single machine total tardiness problems have been extended to

those with weighted tardiness [92]. An excellent survey of papers on the weighted tardiness

problem until 1990 can be found in Abdul-Razaq and van Wassenhove [1]. Sen et al.

[92] provide a more recent review of studies on both weighted and unweighted tardiness

problems. Only some of the noteworthy studies among those and a few more recent ones

which are closely related to our study, are reviewed below. All of the papers below studies

static, single stage and single machine total weighted tardiness problems.

Lawler [65] considers the total weighted tardiness problem as well as the total tardiness

problem. He gives a pseudo-polynomial time algorithm to solve the unweighted tardiness

case to optimality, which also provides a basis for a fully polynomial time approximation

scheme for the problem. Rinnooy Kan et al. [54] extend the Emmons’ results [36] to the

weighted tardiness case. Potts and van Wassenhove [84] develop a branch and bound algo-

rithm for the problem. They introduce a new relaxation of the problem and obtain lower

bounds using a Lagrangian Relaxation (LR) approach in which they use a multiplier adjust-

ment method for updating the Lagrange multipliers instead of the well known subgradient

optimization technique. This replacement leads to an extremely fast bound calculation.

By combining this LR approach and the branch and bound algorithm, they find optimal

solutions to problems with up to 50-orders. Bigras et al. [62] and Tanaka et al. [99] develop

a time-indexed formulation for the single machine total weighted tardiness problem. Bigras

et al. [62] suggest a temporal decomposition for the column generation algorithm. They

also benefit from branching strategies and dominance rules for solving the problem to opti-

mality. The resulting branch and bound algorithm performs quite well. Tanaka et al. [99]

present a Successive Sublimation Dynamic Programming method by which they were able

to solve instances with up to 300 jobs for the same problem. This algorithm outperforms the

Chapter 2: Literature Survey 8

existing algorithms proposed for the single machine total weighted tardiness problem and

the single machine total weighted earliness-tardiness problem without machine idle time.

Recently Pessoa et al. [83] focus on both single and identical parallel machine envi-

ronments of total weighted tardiness problem. They have suggested an arc-time-indexed

formulation which is shown to be stronger than the time-indexed formulation and describe

techniques that can solve instances with up to 100 jobs for the single machine case.

Since exact algorithms such as those studied by Potts and van Wassenhove [84] assure

optimality but are computationally inefficient when the number of orders is large, heuristic

methods and dispatching rules gained much popularity. Scheduling heuristics can provide

good quality solutions in a reasonable time and can be broadly classified as constructive and

improvement heuristics. Usually constructive heuristics obtain a feasible solution quickly

but the solution quality is inferior; on the other hand, improvement heuristics yield better

solutions at the expense of increased computational time.

Vepsalainen and Morton [104] propose an efficient constructive heuristic which they call

the apparent tardiness costs (ATC) for the single machine total weighted tardiness problem

with order-specific due dates and delay penalties. The ATC rule uses a dynamic, time-

dependent dispatching rule and a look ahead parameter whose value is interrelated with

the number of competing critical orders. Holsenback et al. [48] develop an improvement

heuristic for the problem. Potts and van Wassenhove [85] propose several heuristics and

dispatching rules. Subsequently, Crauwels [31] extends this work [85] by giving a thorough

comparison of single and multi-start versions of different heuristics. In this study [31],

Crauwels also defines a new solution representation which includes a binary encoding scheme

and gives a heuristic to decode these binary solutions into actual sequences. Additionally,

a Greedy Randomized Adaptive Search Procedure (GRASP) algorithm is also proposed for

the problem by Gupta and Smith [47].

The iterated dynasearch algorithm introduced by Congram et al. [30] has been rec-

ognized to perform very well in the literature. This algorithm is a local search technique

which allows a series of moves at each iteration unlike traditional only-a-single-move-allowing

techniques. The most important feature of this algorithm is the capability to search the

exponential size neighborhood in polynomial time. Later, Grosso et al. [44] improve the

iterated dynasearch algorithm by adopting the generalized pairwise interchange operators

Chapter 2: Literature Survey 9

instead of a series of independent interchange moves in [30]. Angel and Bampis further

extend [30] by developing a multi-start local search algorithm.

In a very recent study, for the same problem Wang and Tang [112] develop a popula-

tion based variable neighborhood search technique which combines path-relinking, variable

depth search and tabu search to improve the search intensification and uses a population of

solutions to improve the search diversification. In another recent study, Altunc and Keha [7]

proposed an interval-indexed formulation which can be solved much faster than the reduced

time-interval formulation and they reduce size of an integer programming model by fixing

some binary variables at zero.

Setup Times

In practical applications, there exists some unavoidable and non-negligible amount of

time before beginning to process an order or between processing of two orders which is

called setup time. A setup time is roughly, an amount of time required for an order and/or

a machine to be ready for processing. The importance of considering setup times has

been underlined in many studies. One of these studies belongs to Panwalkar et al. [81].

According to this study, nearly 75% of the managers indicated they face sequence-dependent

setup times at least in some operations in their production system.

In the literature, the single machine total weighted tardiness problem is also studied

with setup times which are either dependent or independent of the sequence. The sequence

independent setup time is only affected by the order processed, however the sequence de-

pendent setup time is affected both by the order processed and the immediate predecessor

of this order. Most researchers have assumed that setup times are either negligible or could

be added to the processing times which is the sequence independent case.

Potts and van Wassenhove [84] develop a branch-and-bound algorithm for the single

machine total weighted tardiness problem with sequence independent setup times. Aktürk

and Özdemir [3, 4], Chu [25] and Vepsalainen and Morton [104] also adopt the sequence

independent setup time assumption in their studies. However, in our study we consider the

sequence-dependent setup case, therefore we examine this type of problems further in this

chapter.

Sequence-dependent Setup Times

In some cases, depending on the production characteristics, the sequence-dependent

Chapter 2: Literature Survey 10

setup times are indispensable. Making a sequence independent setup time assumption

may cause good optimization models to turn out to be very poor models when applied

to sequence dependent setup time problems [72]. Additionally, Wortman [108] emphasizes

the entailment of the sequence-dependent setup consideration while trying to manage a

manufacturing capacity effectively. Since the total weighted tardiness problem is known to

be NP-hard and sequence-dependent setup times act as a further complicating property,

the single machine total weighted tardiness problem with sequence-dependent setup times

is also NP-hard. Rubin and Ragatz [90] examine how the total tardiness scheduling on a

single machine gets more difficult when the sequence-dependent setups are added.

As usual, the first attempt to solve the single machine total weighted tardiness problem

with sequence-dependent setup times is also a branch and bound algorithm developed by

Rinnooy Kan et al. [54]. Lee et al. [68] proposed the best known constructive heuristic for

the single machine total weighted tardiness problem in the presence of sequence-dependent

setup times. They suggest a priority rule by adapting the idea of Vepsalainen and Morton

[104] for the sequence-dependent case which then they called ATC with setups (ATCS).

ATCS is a very time efficient dispatching rule that produces high quality solutions and is

designed for problems having the tardiness objective. This rule calculates a priority index

among unscheduled orders which takes into account both the slack and setup times to select

the next order to be sequenced and it then performs a local search to increase the quality

of the solution. They also present a simulated annealing (SA) heuristic which selects a

neighborhood solution randomly with a high acceptance probability. Cicirello [29] devel-

ops five different improvement-type heuristics: the limited discrepancy search (LDS), the

heuristic-biased stochastic sampling (HBSS), the value-biased stochastic sampling (VBSS),

the value-biased stochastic sampling seeded hillclimber (VBSS-HS), and a SA approach to

schedule orders in a sequence-dependent environment.

Many metaheuristics are also proposed for the problem. Armentano and Mazzini [10]

develop a genetic algorithm (GA) to minimize total tardiness on one machine where the

sequence-dependent setup times exist and compared the results of this GA with MILP

formulation solved by CPLEX software for small-sized problems and with the ATCS results

for large-sized problems. According to their results, GA outperforms ATCS heuristic for

all test problems. A memetic algorithm which reduces the neighborhood and structures

Chapter 2: Literature Survey 11

the population hierarchically is proposed by Franca et al. [40] for the single machine total

weighted tardiness problem including setups. Tan et al. [98] present a comparison of the

methods of branch-and-bound, genetic search, random-start pairwise interchange, and SA,

for the same problem. Lin and Ying [71] develop a SA approach with an insertion search, a

GA approach with a greedy local search, TS approach with an insertion tabu list to solve the

problem whose best result are compared with Cicirello’s best known ones [29]. The authors

report that all three algorithms improved the previous best known results. Gagne et al.

[41], Agniholfi and Paolucci [8] and Liao and Juan [70] use ant colony optimization (ACO)

methods in their studies. Gagne et al. [41] describe an efficient ACO algorithm which uses a

look-ahead aspect in selection of the upcoming order for the single machine total tardiness

problem with sequence-dependent setup times. Additionally, a discrete particle swarm

optimization (DPSO) algorithm with excellent results is also presented by Anghinolfi and

Paolucci [9]. Bozejko [18] proposes a parallel path relinking method and Valante and Alves

[103] present a beam search for the same problem. Cicirello [28] develops a GA algorithm

for the problem applying a new variation of the well-known order crossover (OX) which

they call nonwrapping order crossover (NWOX) operator. The proposed GA algorithm

performs well for the problem by providing an improvement in the best known results for

the benchmarks proposed by Cicirello given in [27]. And finally, in their study Tasgetiren et

al. [100] present a discrete differential evolution algorithm for the problem. They introduce

newly designed speed up methods by inserting orders into the algorithm more easily which

is their novel contribution to the literature. They verify the effectiveness of their algorithm

by comparing their results with [8] and [9] and improve the best known solutions known in

the literature so far for the benchmarks they used. An excellent survey of scheduling with

a setup consideration can be found in Allahverdi et al. [5, 6] and in Yang and Liao [115].

Arbitrary Release Dates

Deterministic scheduling with release dates and due dates has received considerable

attention throughout the years. Although finding studies with unequal release dates asso-

ciated with other optimality criteria in different machine shops is easier in the literature,

limited studies exist concerning the single machine total weighted tardiness problem with

arbitrary release dates. Most of the studies which have been done on the single machine total

weighted tardiness problem consider equal release dates among all orders such as the study

Chapter 2: Literature Survey 12

of Koulamas [59]. In another study [61], Koulamas investigates the effect of introducing

nonzero release dates.

One of the earliest studies assuming unequal release dates is given by Rinnooy Kan et

al. [53]. He shows that the total tardiness problem with unequal release dates is NP-hard.

Lawler [65] proves that the total weighted tardiness problem is strongly NP-hard, hence

the unequal release dates problem with total weighted tardiness objective is also strongly

NP-hard.

There has been no exact algorithm for the single machine total weighted tardiness prob-

lem with release dates until Aktürk and Özdemir’s study [3]. They develop a branch and

bound algorithm for the problem. Furthermore, they present a set of dominance properties

for the problem which can be utilized in any exact approach. This is the first study [3]

in the literature which considers the weighted tardiness and unequal release date problems

simultaneously on a single machine. They solved up to 150-orders sized problems in this

study.

Sequence-dependent Setup Times and Arbitrary Release Dates

Finally, we want to focus on the papers which aim to solve the problem of minimizing

the single machine total weighted tardiness problem considering unequal release dates and

sequence-dependent setup times simultaneously. This problem is still a special case of our

problem, since we consider order acceptance decisions additionally.

Sun et al. [97] considered the problem in the late nineties with a slightly different ob-

jective function which minimizes the total weighted squared tardiness. A TS approach,

a SA approach, the earliest due date (EDD) and ATCS dispatching rules, and a fourway

swap local search methods are compared with a LR approach. The proposed LR method

outperforms all of the other methods except SA, and dominates the SA approach in terms

of computation time and has a comparable solution quality with SA. Chang et al. [20]

propose a heuristic algorithm with the complexity of O(n3). To see how effective the pro-

posed method works, they also formulated a mathematical programming model with logical

constraints. According to their computational results, the proposed heuristic method can

handle this problem efficiently.

Chapter 2: Literature Survey 13

2.2 Selection and Sequencing Problems

As we stated in Section 2.1, traditional scheduling problems assume all orders must be

accepted and therefore do not address the accept/reject decisions for the orders. However,

in real-world scenarios, this may not hold. The manufacturer or scheduler might have the

option of rejecting some orders, due to limited resources. An order accept/reject decision

implies selecting a subset of the available orders when processing all orders exceeds current

capacity. The manufacturer has to first decide which orders to select for processing and

then decide in which sequence to process these selected orders which can be referred to

as a selection and sequencing problem. Here, the order selection aspect provides a clear

distinction from the pure sequencing problems found in the traditional scheduling literature.

We can examine this group under two subgroups: scheduling with rejections and schedul-

ing with order acceptance. Since little prior research exists on these problems, we do not

restrict these papers as we do for pure sequencing problems. We examine them under

different objectives as well as different settings.

2.2.1 Scheduling with Rejections

In this class of problems, there is a set of independent orders that are generally character-

ized by their processing times and rejection penalties. The manufacturer has the option of

rejecting some of the orders, in which case it must pay for each rejected order. An order can

be either rejected or scheduled on one of the processors. The manufacturer pays the corre-

sponding rejection penalties in the former case and pays the makespan of the constructed

schedule in the latter case. The idea of scheduling with rejection is not so old and little prior

research exists related to this type of problems. The problem is studied both in on-line and

off-line settings. In an on-line setting, when the orders arrive, the information about the

orders becomes known and the manufacturer has to decide whether to accept or reject the

current order without any knowledge of the future system. However, in the off-line version,

order arrivals are static and all the order data are known a priori. The manufacturer has

to decide which orders to reject at the beginning of the planning horizon.

Bartal et al. [15] are the first researchers who considered rejection penalties in machine

scheduling. They consider both on-line and off-line versions of the problem on identical

parallel machines where preemption is not allowed. For the off-line problem, they suggest a

Chapter 2: Literature Survey 14

fully polynomial-time approximation scheme for fixed m and a polynomial-time approxima-

tion scheme for arbitrary m, where m represents the number of identical parallel machines.

After that, the machine scheduling with rejection gained an increasing attention. Assum-

ing preemption is allowed, which means orders may be arbitrarily interrupted and resumed

later, Seiden [91] gives a better algorithm than Bartal et al. [15] for the on-line version

of the problem. Hoogeven et al. [49] study the off-line version of the problem again in a

multi-processor environment as in [15, 91]. They consider the problem where preemption is

allowed.

Lu et al. [73] extend the problem with release dates in an unbounded parallel batch

machine environment. In this study, the processing time of the batch is determined by the

order which has the longest processing time in that batch. They show that minimizing the

makespan on a single machine with release dates and rejections is NP-hard and develop a

pseudo-polynomial-time algorithm and a fully polynomial-time approximation scheme for

this problem. In all four studies above, the objective is to minimize the makespan of the

accepted orders plus the total rejection penalties.

Engels et al. [37] address only the off-line setting in a single machine environment and,

differing from previous studies mentioned above, they focus on minimizing the weighted

sum of completion times plus the penalties of the rejected orders rather than the sum of the

makespan plus the penalties of the rejected orders. They illustrate several techniques which

show how to reduce a scheduling problem with rejection to a problem without rejection.

The on-line version of the problem in [37] is studied by Epstein et al. [38], in which each

order has a unit processing time. The objective function of both studies is to minimize the

sum of the total completion time of the scheduled orders and the sum of the penalties of

the rejected orders.

Sengupta [93] considers the objective function of minimizing the maximum lateness/tardiness

of the scheduled orders plus the total rejection penalty of the rejected orders. They show

that without considering the rejection decision the problems are polynomially solvable by

using the EDD rule. However, with inclusion of the rejection option the problem turns out

to be NP-complete. For the problem, they propose dynamic programming based pseudo-

polynomial time algorithms and also develop a fully polynomial time approximation scheme.

Dosa and He [33] add the machine costs to the scheduling problem with rejection. In

Chapter 2: Literature Survey 15

this problem setting, initially there is no machine and for each newly purchased machine

there is associated machine cost that has to be paid. When a new order arrives, there are

three cases that can occur. First, the order can be rejected by paying its penalty, second

the order can be processed non-preemptively on an existing machine by contributing to the

machine load and third, the order can be processed on a newly purchased machine. Here,

the aim is to minimize the sum of the makespan, the machine purchasing cost, and the total

rejection penalty.

Cheng and Sun [23], consider several single machine off-line scheduling problems with

rejection and deteoriating orders under the objectives of minimizing the makespan, the total

weighted completion time and the maximum lateness/tardiness plus the total penalty of the

rejected orders. In this study, they prove that all these problems are NP-hard, and to solve

them they develop dynamic programming based algorithms. Zhang et al. [116] focused

on minimizing the sum of the makespan of the accepted orders and the total rejection

penalty of the rejected orders on a single machine environment where release dates and

rejection decision exist. They prove that the problem is NP-hard in the ordinary sense and

propose two pseudo-polynomial-time algorithms, a 2-approximation algorithm and a fully

polynomial-time approximation scheme for the problem.

2.2.2 Order Acceptance and Scheduling Problems

In the second type of selection and sequencing problems, which we can call order accep-

tance and scheduling problems, only accepted items contribute to the objective function,

whereas in scheduling with rejections types both accepted and rejected orders are consid-

ered in objective function. Although there exists no penalty for the rejected orders, the

set of accepted orders must be scheduled at some cost in scheduling with order acceptance

problems. The order acceptance and scheduling problem is studied with deterministic order

arrivals in most of the cases.

Deterministic Order Arrival Cases

Order acceptance with lateness penalty, which is known to be NP-hard, is studied by Slotnick

and Morton [96], Ghosh [42], and later Lewis and Slotnick [69]. The problem with the

tardiness penalty instead of the lateness penalty is studied by Slotnick and Morton [95]

Chapter 2: Literature Survey 16

and Rom and Slotnick [88]. Slotnick and Morton [96], address static order arrivals with

given deterministic processing times, due dates, profits and a customer weight. Ghosh [42]

reconsiders the order selection problem introduced by Slotnick and Morton [96] and proves

that the order acceptance problem with a lateness penalty is NP-hard in the ordinary sense.

Lewis and Slotnick [69] focus on a multi-period deterministic version of the problem which

is studied by Slotnick and Morton [96] in a one-period setting. The studies of Slotnick

and Morton [95] and Rom and Slotnick [88] are extensions of Slotnick and Morton’s work

[96] with tardiness instead of lateness as the time related penalty. All of these works

study an order acceptance and scheduling problem in a single machine environment without

preemption. And in all these studies, the objective is to maximize the total profit same with

our study, which is defined as sum of revenues minus total weighted tardiness.

Charnsirisakskul et al. [21] address the order selection and scheduling decisions in a

preemptive single machine environment. In this study demand is deterministic, setup costs

are negligible and customer orders differ in their arrival times. Completing orders after

due-dates generate a penalty cost, while producing before due dates generates a holding

cost. Charnsirisakskul et al. [22], add a pricing decision to the problem. In both studies the

objective is to maximize the manufacturer’s profit defined as revenue minus manufacturing,

holding and tardiness costs.

Apart from these studies, Gupta [46] considers simultaneous selection and sequencing

of projects among a certain number of projects in such a way that the total net present

value is maximized. Chuzhoy et al. [26] consider the order interval selection problem both

in single and multiple machine environments. They try to schedule as many orders as

possible between their release dates and deadlines without preemption. Yang and Geunes

[114] address a single machine scheduling problem with acceptance decisions, tardiness costs

and controllable processing times. A recent study, again with deterministic order arrivals,

is given by Talla Nobibbon et al. [78]. They study the order acceptance and scheduling

problem in a single machine environment where the orders are characterized by known

processing times, delivery dates, revenues and weight. Finally, Oğuz et al. [80] study a

generalization of Talla Nobibbon et al.’s problem [78] including release dates, deadlines

and sequence-dependent setup times, which represents the same problem settings and the

same objective function as our study. They introduce a mixed integer linear programming

Chapter 2: Literature Survey 17

(MILP) formulation for the problem and propose a SA based heuristic algorithm to solve the

problem. They also modify the ATSC rule for their problem and call it modified ATCS (m-

ATCS). According to their results, they solved problems up to 50 orders with their proposed

heuristic algorithm and can solve much larger problems using the m-ATCS constructive rule.

Dynamic Order Arrival Cases

The dynamic order arrival case of the order acceptance and scheduling problem has also

been studied under different settings and with different objectives. Some of the studies

considering dynamic order arrival cases are given below.

Wester et al. [106] study order acceptance and scheduling strategies in a single machine

production environment where customer orders arrive randomly. In this study there are

setup times due to batching of orders with the same type and due dates but a deadline is

not specified for an order, thus tardy orders are rejected. In Akkan et al. [2] each order

comes with a required due date and an earliest release time; preemption is not allowed. The

objective function is to minimize the present-value of the cost of rejecting orders and the

inventory holding cost due to early completion. De et al. [32] examine a single machine

scheduling problem without preemption and with random processing times and deadlines.

Ten Kate [101], concentrates on order acceptance in a single resource case with deterministic

processing times. Balakrishnan et al. [12] aim to maximize overall profit of the firms

by selectively rejecting some of the orders for lower products. Wu and Chen [109, 110]

propose a model for justifying the acceptance of rush orders. They focus on the objective of

minimizing the cost instead of profit maximizing. In Guerrero and Kern’s study [45], there

is an assemble to order environment and the quantity of the product needed, the earliest

due date and the latest due date of each order is specifies by the customer.

Kingsman [56] studies a capacity oriented order acceptance problem with stochastic order

arrivals in a job shop environment. Each order quotes either a price or a delivery lead time

or both and the objective is to process the orders so as to meet the promised delivery dates.

Roundy et al. [89] solve an order acceptance problem in a job shop environment rather than

a popular single machine problem. The incoming orders, if accepted, are inserted into the

current schedule by forming production batches. The objective is to minimize setup and

holding costs, due to the batch-sizing decision. Raaymakers et al. [86, 87] and Ivanescu et

Chapter 2: Literature Survey 18

al. [50, 51], study batch manufacturing where Raaymakers et al. [86, 87] with deterministic

processing times and Ivanescu et al. [50, 51] with stochastic processing times. Ebben et al.

[35] examine some approaches to combine the order acceptance and the resource capacity

loading in a job shop environment with stochastic processing times.

Kleywegt and Papastavrou [57, 58] address the case that customer orders arrive dy-

namically over time. Papastavrou et al. [82] study the dynamic stochastic version of the

knapsack problem (DSKP). In this problem setting, the items arrive over time, the rewards

and/or sizes are unknown before arrival and they do not consider holding costs while they

are studying the problem in a finite horizon. Kleywegt and Papastavrou [57] study the

continuous-time version of the DSKP with holding costs. They consider both the finite and

infinite horizon cases and in this study all items have the same size; in other words, all

demands require the same amount of resource. In [58], Kleywegt and Papastavrou extend

the results to the case where demands require random amounts of resources. A holding cost

that depends on the amount of resources allocated is incurred until the process is stopped.

The aim is to decide which demands to be accepted in order to maximize expected profit.

Acceptance Decisions

We can also classify the literature based on how acceptance decisions are made. In

Roundy et al. [89] the acceptance decision is made for each order based on the feasibility of

the current schedule. Accepting the order may require rescheduling. However in study [2],

the orders are accepted only if they are completed before their due dates and if inserting

them is possible without changing the current schedule for already accepted orders. A

workload control system is also widely used in the literature as an acceptance decision. In

that case, the acceptance decision takes into account the available sufficient capacity in order

to complete a set of orders before their due dates. In studies [106, 101, 86, 87, 50, 51, 35],

the order acceptance decision is based on the total workload of the set of already accepted

orders. Similarly, in Guerrero and Kern [45], accept/reject decisions should consider levels

of finished goods and work in process (WIP) inventories as well.

In the remaining studies, a set of orders are available at the time of the decision making

and simultaneous acceptance and scheduling decisions are made for all orders. This is also

the approach we take in this thesis.

Solution Methods

Chapter 2: Literature Survey 19

These studies can further be analyzed according to the solution methods. Different math-

ematical programming models have been proposed for the order acceptance and scheduling

problems. Charnsirisakskul et al. [21] suggest a time-indexed MILP formulation for their

preemptive problem. Roundy et al. [89] develop a discrete time integer programming for-

mulation, Wu and Chen propose a MILP formulation [109] and propose multiple objective

programming [110] for their associated problems.

The majority of researchers propose both exact and heuristic methods in their studies;

therefore, we do not prefer to categorize these studies under exact and heuristic approaches.

Instead, we prefer to summarize the solution methods of the papers.

Slotnick and Morton [96] provide a branch and bound algorithm together with a beam-

search heuristic and a myopic heuristic for the single machine problem without preemption.

Later Ghosh [42] gives two pseudo-polynomial time algorithms and a fully polynomial time

approximation scheme. Slotnick and Morton [95] extend their previous study [96] and

provide similar algorithms. Lewis and Slotnick [69] propose exact dynamic programming

algorithm with several myopic heuristics. Rom and Slotnick [88] develop a genetic algorithm

for the same problem and compare it with the myopic heuristic given in [95]. Talla Nobibbon

et al. [78] develop two branch-and-bound algorithms to solve small sized instances and six

different heuristics to solve large sized instances. Oğuz et al. [80] propose a SA approach for

their problem to solve small sized instances and they modify the ATCS rule using problem

characteristics to solve large sized instances.

In his study [2], Akkan develops heuristic methods for his problem and Yang and Ge-

unes [114] propose a two-phase heuristic procedure for their problem. Differing from these

studies, De et al. [32] propose dynamic programming techniques. They also develop a

fully-polynomial time approximation scheme and conduct simulation experiments to see

how order characteristics are related to the order selection procedure. Gupta et al. [46] also

provide a dynamic programming approach for solving their problem.

Other approaches to the order acceptance problem include simulation techniques studied

by [101, 102, 106, 35, 50, 51] and decision theory studied by [12, 13, 14].

Chapter 2: Literature Survey 20

2.3 Related Tabu Search Algorithms

TS has been successfully implemented for different kinds of scheduling problems. Since

we propose a TS algorithm in this study, we find it beneficial to provide a summary of the

studies which are related to our problem and in which a TS algorithm has been implemented

as a solution procedure.

A TS algorithm using a hybrid neighborhood consisting of both swap and insertion moves

is implemented for a single machine scheduling problem with the objective of minimizing

the setup costs plus the delay penalties by Laguna et al. [63]. James and Buchanan [52]

focus on early/tardy scheduling on single machine and developed advanced TS strategies to

solve the problem. However, the problems with different release dates as well as due dates

and sequence-dependent set up times are sparsely considered in the literature. Nowicki

and Zdrzalka [79] develop a tabu search approach for minimizing the maximum weighted

lateness and total weighted tardiness in single machine scheduling problem with batch and

order setups. They adopt insertion as the move operator. In [17] and [16] Bilge et al. propose

a deterministic TS algorithm with hybrid neighborhood and dynamic tenure structures. In

[17], they consider minimizing total tardiness in a parallel machine environment where orders

have different arrival times and sequence-dependent setup times. In [16], they examine a

single machine case and take into account the weights associated with tardiness; however,

they do not consider different arrival and sequence-dependent setup times anymore. In both

studies, they investigate candidate list strategies to restrict the neighborhood. According to

the results they reported both the quality of the results and the computation time obtained

under candidate list strategies are superior to the case when no candidate list strategy is

employed.

Wan and Yen [105] focus on minimizing the weighted earliness and tardiness on a single

machine where orders have distinct due windows. To obtain final order sequences, they

propose a TS heuristic with an optimal timing algorithm. They use adjacent pairwise inter-

change as the move operator to construct the neighborhood and employ a multi-start proce-

dure with several different initial solutions to escape from the local minima. They employ a

fixed size of circular tabu list and set the termination criterion predetermined number of non-

improving iterations. Another TS algorithm designed for multi-mode resource-constrained

project scheduling with the schedule-dependent setup times problem where the aim is to

Chapter 2: Literature Survey 21

minimize the project duration is implemented by Mika et al. [75].

Choobineh et al. [24] employ a multi-objective TS for single machine scheduling prob-

lem with sequence-dependent setup times. This heuristic keeps independent parallel tabu

lists associated with each objective and employs a swap move with a maximum allowable

distance. The idea of this move distance is to narrow the neighborhood by allowing to

swap only the orders which have a smaller distance than the maximum allowable distance.

Bozejko et al. [19] propose a TS algorithm with specific neighborhood and compound move

techniques for single machine total weighted tardiness problem. In compound move tech-

niques, they perform swap and insert operators simultaneously in the same iteration. They

keep cyclic tabu list with dynamic length. They examine the order blocks in their study

which enable the solution space to restrict and to reduce the size of the neighborhood.

Xu et al. [111] develop a two-layer-structured algorithm based on a TS for the single

machine scheduling problem with arbitrary release and due dates where the processing times

are controllable. Their objective is to minimize total resource consumption while meeting

the due dates. In their algorithm they adopt a branch and bound algorithm to construct

their initial solution. They only consider insert moves to construct their neighborhoods.

They implement a constant sized tabu-list which was activated only after an improvement

was not achieved for a number of iterations. They set a predetermined number of iterations

as a termination condition.

Woodruff and Spearman [107] are the only researchers who develop a TS algorithm for

an order acceptance problem, to the best of our knowledge. The main differences of their

problem are the existence of family setups and the objective function that includes holding

and setup costs rather than tardiness.

To the best of our knowledge, the proposed method in this study is the first TS algorithm

proposed for the OAS problem in the literature.

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 22

Chapter 3

ORDER ACCEPTANCE AND SCHEDULING (OAS) PROBLEM

In this thesis, we focus on a MTO system where the production process is initiated by

the customer. We consider deterministic order arrival case implying at the beginning of

planning process different order characteristics specified by the customer are available for

the manufacturer to realize the production process. In this problem setting, we assume that

the machine can process one order at a time and no machine break downs occur. Preemption

of the orders is not allowed and as the feature of MTO system no inventory is carried for

incoming orders. Furthermore, no holding cost incurs for finished orders implying the early

delivery is not penalized. However, late delivery of the orders results in tardiness penalties.

3.1 Problem Definition

The OAS problem is defined formally as follows. In a single machine environment where

the production capacity is limited, a set of incoming orders is available at time zero. Each

incoming order i is identified with a release date, ri, a processing time, pi, a due date, di, a

deadline, d̄i, a maximum revenue, ei, a weight (tardiness penalty), wi, and a sequence-

dependent setup time, sji, incurred when order j immediately precedes order i in the

processing sequence. The setup times are not symmetric which implies that sij 6= sji is

possible.

In this problem setting, the manufacturer neither pays a cost nor gains a revenue from the

rejected order. As can be seen in Figure 3.1, the revenue that can be gained from an accepted

order depends on the following situations. Since sum of release date and processing time of

an order i represents the earliest possible completion time for this order, no revenue can be

gained until this time. The manufacturer gains the maximum revenue, ei, if the tardiness

of order i is zero. However, if the order is tardy, the revenue to be gained from this order,

Revenuei, decreases linearly with its tardiness, Ti. The manufacturer may complete order i

until its deadline d̄i, but for each time unit beyond its due date di, a tardiness penalty cost

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 23

Figure 3.1: Revenue function for an accepted order

of wi is incurred. No revenue can be gained from order i if its completion time exceeds its

deadline, d̄i, and the revenue of order i equals to zero at its deadline. To ensure this, we set

wi to ei/(d̄i-di) for each order i. Tardiness of order i is Ti = max{0, Ci − di} where Ci is the

completion time of order i. Then revenue from order i is Revenuei = ei Ii −wi Ti. Here, Ii

is an indicator that equals to 1 if order i is accepted, and 0 otherwise. Our aim is to find the

optimal set of accepted orders and their schedule that maximize the manufacturer’s total

revenue, expressed as
n∑

i=1
Revenuei.

3.2 MILP Formulation for the OAS Problem

We present the MILP formulation that was developed in Oguz et al. [80] below for the sake

of completeness since the performance of the heuristics is compared to the upper bounds

generated using MILP formulation.

In the MILP formulation, two sets of binary decision variables are defined. Ii equals

to 1 if order i is accepted, and 0 otherwise, and yij equals to 1 if order i precedes order

j immediately, and 0, otherwise. To represent sequence-dependent setup times accurately

two dummy orders, order 0 and order n + 1 are defined. Order 0 is assigned to the first

position and order n+ 1 is assigned to the last position. These dummy orders are available

at time zero, with r0, rn+1, p0, pn+1, d0, d̄0, e0 and en+1 being 0; dn+1 and d̄n+1 being equal

to the maximum deadline among all orders. The model is given below.

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 24

MILP:

max
n∑

i=1

Ri

s.t. (3.1)
n+1∑

j=1,j 6=i

yij = Ii ∀i = 0, ..., n (3.2)

n∑
j=0,j 6=i

yji = Ii ∀i = 1, ..., n+ 1 (3.3)

Ci + (sij + pj)× yij + d̄i × (yij − 1) ≤ Cj ∀i = 0, ..., n, ∀j = 1, ..., n+ 1, i 6= j (3.4)

(rj + pj)× Ij + sij × yij ≤ Cj ∀i = 0, ..., n, ∀j = 1, ..., n+ 1, i 6= j (3.5)

Ti ≥ Ci − di ∀i = 0, ..., n+ 1 (3.6)

Ci ≤ d̄i × Ii ∀i = 0, ..., n+ 1 (3.7)

Ti ≤ (d̄i − di)× Ii ∀i = 0, ..., n+ 1 (3.8)

Ti ≥ 0 ∀i = 0, ..., n+ 1 (3.9)

Ri ≤ ei × Ii − Ti × wi ∀i = 1, ..., n (3.10)

Ri ≥ 0 ∀i = 1, ..., n (3.11)

C0 = 0, Cn+1 = max
i=1,...,n

{d̄i}, ∀i = 1, ..., n (3.12)

I0 = 1, In+1 = 1 (3.13)

Ii ∈ {0, 1}, yij ∈ {0, 1} ∀i = 1, ..., n (3.14)

Constraint (3.2) and (3.3) together enforce that if an order is accepted, there is one

preceding and one succeeding order. Constraint (3.4) enforces that if order i is followed

by order j, then Cj should be at least Ci plus the setup time between i and j and the

processing time of order j. If order i is not followed by order j, then the constraint states

that Ci is at most its deadline plus a nonnegative term. Constraint (3.5) ensures that if

order j is accepted, Cj should be at least its release time plus its processing time, and if

order j is preceded by order i, the setup time between i and j is also added. In the case that

order j is not accepted, the constraint reduces to Cj ≥ 0. Constraints (3.6)-(3.9) calculate

the tardiness of each order. Constraint (3.7) ensures that any order completed after the

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 25

deadline will not be accepted. Constraints (3.10) and (3.11) compute the revenue gained

when order i is accepted and incurs a tardiness of Ti. Constraint (3.12) sets the completion

times of the dummy orders and Constraint (3.13) states that dummy orders are accepted.

Constraint (3.14) defines the binary variables.

3.3 The Computational Complexity of the Problem

The OAS problem is the generalization of many well-known scheduling problems such as

single machine total weighted tardiness problems with sequence-dependent setup times,

order acceptance problem with weighted tardiness objective and prize collecting traveling

salesman problem (PCTSP) with time windows. The reduction of the OAS problem to

these subproblems is given in [113]. Since one of its subproblems which is single machine

total tardiness problem is known to be NP-hard [34], the OAS problem is also NP-hard.

Solving the OAS problem even for very small values of n is very troublesome. As n

increases, the solution space of the OAS problem also increases rapidly. The solution space

including both feasible and infeasible solutions can be calculated as follows. Assume that

there exist n incoming orders from which the manufacturer is required to select. The selec-

tion of i orders among n generates C(n, i) solutions and for this selected subset sequencing

of these i orders generates i! solutions. Hence, the solution space has
n∑

i=1
C(n, i)×i! solutions

which implies an exact algorithm will be very time consuming to find the optimal solutions.

Due to this computational difficulty, we develop a heuristic algorithm as described in

the next section to find near optimal solutions in a reasonable amount of time.

Chapter 4: A Heuristic Solution Approach 26

Chapter 4

A HEURISTIC SOLUTION APPROACH

As we stated in Section 3.3, the OAS problem is strongly NP-hard. In fact, an exact

algorithm cannot solve the problem even for very small values of n in reasonable time limits.

This reason inspires us to develop a heuristic algorithm which can produce high-quality

solutions in a reasonable amount of time.

The travelling salesman problem (TSP) displays similar characteristics with the OAS

problem due to sequence-dependent setup times. Since TS is known to be successful for

solving the TSP compared to other metaheuristics, we choose to develop a TS algorithm

for solving the OAS problem. Furthermore, the OAS problem which has same problem

settings in thesis is only studied in [80] so far. In this study, a simulated annealing (SA)

based heuristic which is called Iterative Sequence First-Accept Next Algorithm (ISFAN) is

proposed to solve the problem. This implies that there is no TS method applied to this

problem so far. These are the reasons why we choose TS heuristic as a solution procedure

in this thesis.

4.1 Tabu Search

TS, which is originally proposed by Glover [43], is known to perform quite well for scheduling

and routing problems. The general idea of TS can be summarized as follows. TS starts

with an initial feasible solution and tries to improve it iteratively. It keeps the recently

visited solutions in tabu list and forbids to move toward them to avoid cycling. Therefore,

the solutions that can be reachable from the current solution is restricted to those which

are not belong to tabu list and these solutions are referred to the allowed set. In TS, all

neighborhood solutions are evaluated and then the best solution from the allowed set is

chosen as the new current solution at each iteration. Then, this solution is added to tabu

list and one of the solutions that were already in the tabu list is removed according to a

Chapter 4: A Heuristic Solution Approach 27

determined rule. The algorithm stops when a termination condition is met.

In rest of this chapter, we propose an efficient TS heuristic to solve the OAS problem

which enables to make the acceptance and scheduling decisions simultaneously.

4.2 Proposed TS Algorithm

For solving the OAS problem, we develop a TS algorithm which is supported with prob-

abilistic local search after each iteration. The success of TS in studies [17, 105, 24, 19]

motivated us to develop a TS algorithm for the OAS problem. However, we observed that

the TS algorithm cannot search the solution space efficiently when acceptance and sequenc-

ing decisions have to be made simultaneously. Hence, we incorporated a probabilistic local

search into TS algorithm to complement its strengths. The pseudocode of the algorithm is

provided on next page.

In the following subsections, we describe each element of the TS algorithm in detail.

4.2.1 Solution Representation

We represent a solution by a vector in which the ith entry indicates the position of order

i in the sequence. If order i is not accepted, the corresponding entry is set to zero. As an

example, the representation of a solution with orders i = 1, . . . , 10 is [1 0 5 0 0 0 2 4 3 0].

This representation indicates that orders 2, 4, 5, 6, 10 are rejected.

The 1st order is processed in the first position, the 3rd order in the fifth position, the 7th

order in the second position, the 8th order in the fourth position and the 9th order in the

third position; hence, the order processing sequence is 1− 7− 9− 8− 3. This representation

keeps both the acceptance and the sequencing decisions efficiently as it uses a vector of size

n, where n is the number of orders.

4.2.2 Initial Solution

TS starts with an initial feasible solution and tries to improve it iteratively. For the OAS

problem, we use a greedy rule to construct the initial solution s0. The rule takes revenues,

processing times and setup times into account. It requires the calculation of the following

Revenue-load ratio (RLR) for each order: RLR1i = ei/(pi + saverage,i), where saverage,i =

(s0,i + s1,i + ...+ sn,i)/(n+ 1).

Chapter 4: A Heuristic Solution Approach 28

Notation

s0: the initial solution

s: the current solution

s∗: the best known solution,

fs: revenue of s,

N(s): the neighborhood of s,

N̄(s), the admissible (non-tabu or allowed by aspiration) subset of N(s).

siter: the best solution ∈ N̄(s)

Algorithm 1 TS algorithm
Require: ri, pi, sij , di, d̄i, ei, wi, n
1: Set f(s∗) = 0, TabuTenure = k. . k depends on n
2: Generate s0.
3: s← s0.
4: while termination criterion is not met do
5: Construct N(s) . TS PART begins
6: Find siter ∈ N̄(s)
7: s← siter

8: Update the TabuList
9: Update s∗ and f(s∗). . TS PART ends

10: for m:1 to dn/6e do . LOCAL SEARCH PART begins
11: Select the order that gives minimum RLR2 (see p.31) to be dropped from s
12: Find reject (rejected orders array) for s
13: while size of reject > 0 do
14: Calculate RLR1 for each order i ∈ reject
15: Construct cumulative probabilities for all orders proportional to their RLR1
16: Find the order to be inserted from reject randomly
17: Set l = 1
18: for l ≤ n do
19: Insert selected order to lth position
20: Reject orders with zero revenue
21: Set inserted solution as sinserted

22: if f(sinserted) ≥ 0.998f(siter) then
23: s← sinserted and set l = n
24: else
25: l++
26: end if
27: end for
28: Delete the order selected for insertion from reject
29: end while
30: end for . LOCAL SEARCH PART ends
31: end while

Chapter 4: A Heuristic Solution Approach 29

We sort the orders with respect to the defined ratio, starting from the highest, to give

priority to orders that potentially generate a higher revenue and take a small amount of

time to process. After sorting the orders, we calculate the profit of the sequence while

making a feasibility check simultaneously. We begin to calculate Revenuei for each order

i, if Revenuei results with positive revenue (Revenuei > 0), we keep the sequence of order

i, however, if it results with negative revenue (Revenuei < 0) we delete order i from its

position and reschedule the orders coming after this order. When we reach end of the

sequence, implying that all the orders in current sequence have positive revenues and the

sequence is feasible, we obtain the feasible initial solution for the TS algorithm.

4.2.3 Move Operator and Neighborhood Definition

The move operators within TS algorithms developed for similar problems [17, 105, 24, 19,

107] are swap and insertion. These operators are preferred due to their efficiency. Therefore,

we generate the neighborhood of the current solution, s, by swapping two entries of the

solution vector. This seemingly simple pairwise exchange move allows us to change both

the set of accepted orders and their sequence, while keeping the number of accepted orders

the same.

For example, applying this operator to solution [1 0 5 0 0 0 2 4 3 0], whose processing

sequence is 1−7−9−8−3, the neighborhood of the solution includes the following solutions

obtained by swapping the first entry with the others: [0 1 5 0 0 0 2 4 3 0], [5 0 1 0 0 0 2

4 3 0], [0 0 5 1 0 0 2 4 3 0], [0 0 5 0 1 0 2 4 3 0], [0 0 5 0 0 1 2 4 3 0], [2 0 5 0 0 0 1 4 3

0], [4 0 5 0 0 0 2 1 3 0], [3 0 5 0 0 0 2 4 1 0], [0 0 5 0 0 0 2 4 3 1]. The first neighboring

solution, which is obtained by swapping the first and the second entries, corresponds to

the processing sequence 2 − 7 − 9 − 8 − 3. In this case, order 1 is rejected and order 2 is

accepted in its position, thus the set of accepted orders changes. On the other hand, the

second solution is obtained by swapping the first and the third entries and it corresponds

to the processing sequence 3− 7− 9− 8− 1. As it can be seen, the set of accepted orders is

the same but the sequence has changed. For both of the solutions, the number of accepted

orders remains same. Since exchanging the two entries that have the value of zero will result

in same solution as current one and can cause the algorithm to cycling, we do not exchange

if both of the entries that will be swapped in the current solution are zero. As a result, the

Chapter 4: A Heuristic Solution Approach 30

complete neighborhood of a given solution consists of at most n (n− 1)/2 solutions.

We note that when we swap two orders, the completion time, hence the tardiness and

the revenue of each order starting from the first swapped order will be affected due to release

dates, sequence dependent setup times and deadlines. If any of the orders in new sequence

attain zero revenue, they should be rejected to assure the feasibility. Thus, the number of

accepted orders may decrease in this way. We handle this concern with a local search after

a TS iteration as explained in Section 4.2.6.

4.2.4 Tabu List and Tabu Tenure

In TS, the tabu list (TabuList) keeps the most recent moves to avoid cycling while searching

for a new solution. The tabu tenure parameter, i.e. size of the tabu list, helps to avoid cycling

but also affects the search. As the tabu tenure increases, more moves will be restricted and

the algorithm will explore a smaller neighborhood. In our implementation, the tabu list is

formed with the k most recently performed swaps, where k is the tabu tenure (TabuTenure).

In the tabu list, the swapped pairs are kept so that the same orders are not swapped again

during the tabu tenure. For example, when the current solution is [2 0 5 0 0 0 1 4 3 0] and

the best solution found in the neighborhood is [1 0 5 0 0 0 2 4 3 0], then the swap of the

entries corresponding to order pairs (1,7) and (7,1) will be tabu during the tabu tenure.

4.2.5 Aspiration and Termination Criteria

In our implementation we used classical aspiration criterion. The classical aspiration cri-

terion indicates that if the revenue of a tabu solution is better than the revenue of the

best-known solution so far, this solution is accepted even though it is in the tabu list. We

set the termination criterion as 50 iterations without an improvement in objective function.

4.2.6 Local Search Procedure

After each TS iteration, we also apply local search around the best TS solution. The reason

why we apply a local search is that, as a consequence of our move operator the number

of accepted orders remains same when moving from one solution to another. And when

we reach the next solution, we are required to calculate its revenue and make a feasibility

check which may cause the number of accepted orders in this solution to decrease. If the

Chapter 4: A Heuristic Solution Approach 31

iterations proceed this way, the algorithm is likely to converge to a poor local optimum.

To remedy this, after each TS iteration, we perform a local search starting from the best

solution obtained in the neighborhood by applying iterative drop-add-insert operations.

Drop operation: To be able to add orders with larger revenue, we first drop an order

that brings low revenue and consumes a large amount of time to process. More specifically,

we drop the order which has the minimum value of RLR2i = ei/(pi + sji), where order

j is the immediate predecessor of order i in the current sequence. Note that, RLR2 is a

modified version of RLR1. Since we know the required sji value for order i, we use this

term instead of saverage,i.

Add operation: We try to add each of rejected orders to the current sequence itera-

tively. To select the order to be added first, we use the original revenue-load ratio (RLR1)

to generate a probability distribution for the rejected orders similar to roulette wheel se-

lection [76]. Briefly, we construct cumulative probabilities using RLR1 of orders. Then,

we generate a random number and by checking in which interval this random number fits

we decide which rejected order to add first. Note that we try to add each of the rejected

orders but in which sequence these rejected orders will be added is an important decision

for the algorithm. By applying the idea of roulette wheel selection, we assign a probability

to each rejected order i that is proportional to its RLR1i so that orders with higher RLR1

are more likely to be selected. This allows us to bring in some randomness in the algorithm,

providing a diversification mechanism.

Insert operation: Once the order to be added is selected, in which position to insert

this order is decided as follows. We try each position from the beginning of the order

processing sequence and calculate the new revenue. Since this move may result in deleting

one or more orders to maintain the feasibility of the solution, we introduce a threshold value

(improvement threshold) for accepting inferior solutions similar to the acceptance idea of

simulated annealing. That is, we insert the order at the current position if this generates a

feasible sequence with a total revenue at least 0.998 times the revenue of the best solution

in the neighborhood, siter, and we do not consider the remaining positions. Otherwise, we

continue with the next position until the end of the sequence. After the insertion operation

of one rejected order is finished (it is also possible that a rejected order cannot be inserted

into the sequence), we continue with the selection of the next rejected order which will be

Chapter 4: A Heuristic Solution Approach 32

added. This procedure is repeated until all rejected orders are considered for the addition

operation.

This results in a compound move in which one drop move is followed by multiple add-

insertion moves and each such move may necessitate dropping some orders to maintain

feasibility. We note that this provides another diversification mechanism for our algorithm.

We repeat the compound drop-add-insert move dn/6e times based on our preliminary tests.

The iterative application of the compound move allows us to accept a profitable order,

which was formerly rejected due to infeasibility, at a new position. After the local search,

the algorithm returns back to the next TS iteration.

The flow chart of the TS algorithm is given in Figure 4.1.

Chapter 4: A Heuristic Solution Approach 33

Figure 4.1: Flowchart of the TS algorithm

Chapter 5: Computational Studies 34

Chapter 5

COMPUTATIONAL STUDIES

In this chapter, we conducted computational experiments to analyze the performance of

the TS algorithm. In Section 5.1 and 5.2, we describe how the test instances are generated

and how the parameters of the TS algorithm are set, respectively. In Section 5.3, we give

the results of our computational experiments and discuss these results in detail in Section

5.4.

5.1 Data Generation

In order to test the performance of the TS algorithm, we generated new test instances. There

is data set generated for the OAS problem in [80], however this test bed was somewhat easier,

especially for large sized instances. Therefore,we generated new test instances in varying

parameter values and problem sizes. In the new data set, the tardiness factor τ and the due

date range R take five different values: 0.1, 0.3, 0.5, 0.7, 0.9 as in [84]. For each combination

of τ and R, 10 problem instances are generated. Hence, the number of test instances for

each problem size, n, is 10× 25 = 250, which sums up to 1500 instances for six different n

values; n = 10, 15, 20, 25, 50, 100.

A discrete uniform distribution is used to generate the following parameters: processing

times and revenues from the interval [0,20]; setup times from [1,10]; release dates from

[0, τ pT], where pT is the total processing time of all orders, as in Aktürk and Özdemir [3].

Due dates are generated as di = ri + max
j=0,1,...,n

sji + max{slack, pi}, where slack is drawn

from a discrete uniform distribution in the interval [pT (1−τ−R/2), pT (1−τ+R/2)] similar

to the study by Potts and van Wassenhove [84]. Deadlines are generated from the formula

d̄i = di + Rpi, as in Charnsirisakskul et al. [21]. All data parameters except the weights

are integer numbers and the weights are calculated as wi = ei/(d̄i − di) to ensure that the

revenue gained from an order drops 0 at its deadline.

Chapter 5: Computational Studies 35

5.2 Parameter Settings for the TS Algorithm

In order to obtain the best performance of the TS algorithm, we performed preliminary tests

to set the parameters of the algorithm. We used one special case of test instances selected

randomly, where τ=0.3 and R=0.5 for all n values in preliminary tests. These parameters

are: tabu tenure, improvement threshold, number of iterations of drop-add-insert operations

in the local search procedure and termination criterion.

Tabu tenure: One of the most important parameters of the TS is tabu tenure which

helps to avoid cycling but also affects the search. As the tabu tenure increases, a smaller

neighborhood will be explored. On the other hand, the smaller the tabu tenure, the easier

the algorithm to cycling. To decide the best value of tabu tenure, we examined the effect

of four different tabu list sizes for every n value. We tested the following values of tabu

tenure.

Tabu tenure = 3, 4, 5, 7 for n=10

Tabu tenure = 5, 8, 10, 15 for n=15

Tabu tenure = 7, 10, 12, 20 for n=20

Tabu tenure = 7, 9, 13, 25 for n=25

Tabu tenure = 7, 17, 25, 35 for n=50

Tabu tenure = 7, 34, 50, 75 for n=100

The affect of different tabu tenures can be seen in Table 5.1. In this table and in Tables

5.2, 5.3 the values presented are the run times and the objective values of the solutions

output by the TS algorithm, averaged over 10 instances of the selected case, where τ=0.3

and R=0.5 and the bold values in all these tables show our selected parameter values.

According to the results in Table 5.1, the best performance was achieved when the tabu

tenure is d2n/3e and the TabuTenure was set accordingly. This implies k is equal to 7 for

10 orders, 10 for 15 orders, 13 for 20 orders, 17 for 25 orders, 34 for 50 orders and 67 for

100 orders.

Improvement threshold : As mentioned in 4.2.6, we introduce a threshold value for ac-

cepting inferior solutions in the local search procedure similar to the acceptance idea of

simulated annealing. We introduce an improvement threshold value because we first imple-

ment the drop operation and then try to add a rejected order. Since drop operation cause

the revenue of the solution to drops concurrently, we necessitate to allow the acceptance of

Chapter 5: Computational Studies 36

Table 5.1: Preliminary test results for tabu tenure values where τ=0.3 and R=0.5

n Tabu tenure TS Time TS Result

10 3 0.00 103.90
4 0.00 104.04
5 0.00 104.04
7 0.00 104.20

15 5 0.00 162.94
8 0.00 163.30
10 0.00 163.57
15 0.00 163.04

20 7 0.00 219.59
10 0.00 219.96
13 0.01 220.03
20 0.01 219.62

25 7 0.01 256.67
13 0.01 255.92
17 0.01 256.06
25 0.01 255.97

50 7 0.19 536.60
17 0.17 539.70
25 0.18 537.30
34 0.18 540.63

100 7 13.85 1067.10
34 14.84 1068.50
67 16.07 1072.10
75 15.04 1069.00

some inferior solutions.

We examined six different values, 0.990, 0.995, 0.996, 0.997, 0.998, 0.999, to set the

improvement threshold value. According to the results given in Table 5.2, we set the im-

provement threshold value to 0.998.

Chapter 5: Computational Studies 37

Table 5.2: Preliminary test results for improvement threshold value where τ=0.3 and R=0.5

n improvement threshold TS Time TS Result

10 0.990 0.00 105.40
0.995 0.00 104.20
0.996 0.00 104.20
0.997 0.00 104.20
0.998 0.00 104.20
0.999 0.00 104.20

15 0.990 0.00 162.93
0.995 0.00 163.50
0.996 0.00 163.77
0.997 0.00 163.57
0.998 0.00 163.74
0.999 0.00 163.68

20 0.990 0.00 219.52
0.995 0.01 220.47
0.996 0.00 220.03
0.997 0.01 220.17
0.998 0.00 220.71
0.999 0.00 220.05

25 0.990 0.02 257.84
0.995 0.01 254.90
0.996 0.01 256.64
0.997 0.01 257.60
0.998 0.07 255.90
0.999 0.08 257.20

50 0.990 1.15 538.50
0.995 1.26 540.14
0.996 1.15 538.50
0.997 1.14 540.68
0.998 1.15 537.00
0.999 1.15 536.60

100 0.990 17.08 1070.40
0.995 13.07 1067.30
0.996 16.08 1070.00
0.997 17.08 1070.00
0.998 16.18 1070.40
0.999 17.08 1065.80

Number of iterations of drop-add-insert operations in local search procedure: We ex-

plained in 4.2.6, we apply a compound move in which one drop move is followed by multiple

add-insertion moves iteratively in local search. The iterative application of compound move

allows a profitable order, which was formerly rejected due to infeasibility caused by adding

an order, to schedule at a new position.

We tested three values, dn/6e, dn/5e and dn/4e for determining how many times to

apply the compound move. The results given in Table 5.3 suggest that the best value is

Chapter 5: Computational Studies 38

dn/6e, therefore we set the number of iterations of drop-add-insert operations to this value.

Table 5.3: Preliminary test results for number of drop-add-insert operations where τ=0.3
and R=0.5

n # of drop-add-insert operations TS Time TS Result

10 n/4 0.00 104.20
n/5 0.00 104.20
n/6 0.00 104.30

15 n/4 0.00 163.28
n/5 0.00 163.67
n/6 0.00 164.00

20 n/4 0.01 220.14
n/5 0.01 220.17
n/6 0.01 218.40

25 n/4 0.01 256.70
n/5 0.01 256.50
n/6 0.01 257.80

50 n/4 1.13 538.50
n/5 1.14 540.68
n/6 1.14 536.92

100 n/4 17.08 1072.20
n/5 17.08 1070.00
n/6 17.08 1072.30

Termination criterion: Our termination criterion is to stop after a number of non-

improving iterations. After testing 30, 50 and 100 as the number of non-improving iterations,

the convergence behavior of the algorithm suggested using 50 non-improving iterations. An

example to the convergence of the TS algorithm for an instance with 50 orders is given in

Figure 5.1.

Chapter 5: Computational Studies 39

Figure 5.1: Convergence of the TS algorithm for an instance with 50 orders, τ = 0.3 and
R = 0.7

5.3 Results of the Computational Experiments

In this section, we explain how we conducted our computational experiments and how the

results in Tables 5.4-5.9 are obtained. We analyze the obtained results in Section 5.4 in

detail.

5.3.1 Computational Platform

All of the runs throughout these computational experiments are performed on a workstation

with an Intel Xeon processor, 3.00 GHz speed, and 4GB of RAM. The TS algorithm was

coded in C. For MILP runs and LP Relaxation runs, we solved test instances with ILOG

CPLEX 11.2 and set a time limit of 3600 seconds for all MILP runs.

5.3.2 Benchmarks

To compare the performance of the TS algorithm, we used three benchmarks which are

explained as follows.

m-ATCS : In the literature, Apparent Tardiness Cost (ATC) rule has been shown to be

effective to construct a sequence for the total weighted tardiness scheduling problem [55].

Lee et al. [67] modified this rule to incorporate sequence-dependent setup times, named it

Apparent Tardiness Cost with Setups (ATCS) and showed its effectiveness even for large

Chapter 5: Computational Studies 40

sized problems. Oguz et al. [80] adapted ATCS rule for the OAS problem and refer to

it as m-ATCS. The m-ATCS heuristic is the modified version of the ATCS priority index
wi
pi

exp(max(di−pi−tcurrent,0)
k1p̄) exp(−spreviousOrder,i

k2s̄) by setting k1 = k2 = 1 and wi = ei. In this

rule, p̄ and s̄ represent the average processing time and the average setup time, respectively.

Instead of the weight term in the ATCS rule, the revenue term ei is used in the m-ATCS

rule since the aim of the OAS problem is to maximize the total revenue of the manufacturer.

Hence, m-ATCS heuristic uses ei
pi

exp(max(di−pi−tcurrent,0)
p̄) exp(−spreviousOrder,i

s̄) priority in-

dex to select the next order to schedule. After forming a sequence, orders with zero revenue

are rejected until all accepted orders generate positive revenue. Similar to results of [67],

m-ATCS was shown to be effective for large instances of OAS in [80] and has the advantage

of very short run times. Hence, we selected m-ATCS as one of the benchmark heuristics.

The details of the m-ATCS heuristic is given below.

Chapter 5: Computational Studies 41

Algorithm 2 m-ATCS algorithm
Require: ri, pi, sij , di, d̄i, ei, wi, n
1: Set tcurrent = 0, profit = 0, sch = {}, unsch = {}.

. sch: scheduled orders at time tcurrent.
. unsch: unscheduled orders at time tcurrent.

2: Calculate paverage = (
∑n

i=1 pi)/n.
3: Calculate saverage = (

∑n
i=1

∑n
j=1 sij)/(n+ 1)2.

4: sch← order 0, unsch← all incoming orders.
5: while unsch is not empty do
6: for each j ∈ unsch do
7: Calculate

PIj = (ej/pj)× e−(max(dj−pj−tcurrent,0)/paverage) × e(−sij/saverage).
. PI: m-ATCS priority index

8: end for
9: Set j∗ ← order with the highest PI ratio.

10: Calculate tcur = max(tcurrent, rj∗) + sij∗ + pj∗

. tcur: completion time of order j∗

11: if tcur ≤ dj∗ then . untardy order with max revenue
12: Set profit = profit+ ej∗

13: Set tcurrent = tcur

14: Remove j∗ from unsch
15: Add sch← j∗ and set i← j∗

16: else if tcur ≤ d̄j∗ then . tardy order with reduced revenue
17: Set profit = profit+ ej∗ − wj∗ × (tcur − dj∗)
18: Set tcurrent = tcur

19: Remove j∗ from unsch
20: Add sch← j∗ and set i← j∗

21: else . order completed after its deadline
22: Remove j∗ from unsch
23: tcurrent = tcurrent

24: end if
25: end while

ISFAN Heuristic: ISFAN algorithm starts with a possibly infeasible initial solution in

which all orders are accepted. Given a solution, the algorithm iterates between two main

steps: order acceptance and sequencing. At the order acceptance step, it employs a priority

rule similar to RLR1 in which the average setup time is replaced with minimum setup time.

Thus, ISFAN uses (ei/(pi + smin,i)) ratio for deciding which orders to keep in the sequence.

At the sequencing step, ISFAN applies simulated annealing with exchange moves to find

the best sequence for the current accepted order set. After a number of iterations, ISFAN

terminates with a local search step. In the local search, an order insertion move is applied

to add each rejected order back to the sequence, if possible. Next, an order exchange move

Chapter 5: Computational Studies 42

is applied to swap each rejected order with an accepted one. In both of these moves, the

solution with the best improvement is kept.

ISFAN algorithm handles the order acceptance and scheduling decisions separately

whereas our proposed TS algorithm considers these two decisions simultaneously. The

second approach provides much better results as it can be observed from the Tables 5.4-5.9

and the analysis of these tables in Section 5.4. The pseudocode of the ISFAN algorithm is

provided below.

Algorithm 3 ISFAN algorithm

Step 1. Read the input data

Step 2. Set the control parameters:

2.1. Initial temperature (Tmax)

2.2. Set Tcurrent = Tmax

Step 3. Set the parameters:

3.1. Total revenue=0;

3.2. best revenue=0;

Step 4. Construct the initial solution (not necessarily feasible)

4.1. Sequence the orders in descending order of slacktimej = d̄j−rj−(minsetupj+

pj);

4.2. Calculate the completion time Cj , the tardiness Tj and the gained revenue Rj

for each j

4.3. Count the number of orders violating their deadlines dj

4.4. Calculate the best revenue: best revenue=
∑
j
Rj

Step 5. While number of violating orders > 0 do the following:

5.1. Perform the following SA-based loop ITER times:

5.1.1. Generate two different random integers a1 and a2 between 1 and n (n is the

number of available orders)

5.1.2. Exchange the orders having the indices as a1 and a2

5.1.3. Calculate Cj ’s, Tj ’s and Rj ’s and the number of violating orders in this new

sequence

5.1.4. Calculate the total revenue: total revenue=
∑
j
Rj

5.1.4.1. If (Total revenue > best revenue), accept the new sequence,

Chapter 5: Computational Studies 43

best revenue=Total revenue

5.1.4.2. If (Total revenue ≤ best revenue),

5.1.4.2.1. Calculate the probability of accepting, pr=exp(-(-Total revenue+best

revenue)/Tcurrent)

5.1.4.2.2. Select uniformly distributed random number m, from the interval

(0,1)

5.1.4.2.2.1. If m < pr, accept the sequence, best revenue=Total revenue

5.1.4.2.2.2. If m ≥ pr reject the new sequence, and continue with the former

best sequence

5.1.4.3. Return to Step (5.1.1)

5.1.5. Update the current temperature by using the selected cooling function

5.1.6. Calculate the revenue-load ratio ratioj = ej/(pj +minsetupj) for violating

orders

5.1.6. Reject the order having the smallest revenue-load ratio

5.1.7. Return to Step (4.2) with the new sequence

5.2. If the number of violating orders=0, i.e., a feasible solution is obtained, perform

the following for ITER1 times:

5.2.1. Generate two different random integers a1 and a2 between 1 and n (n is

the number of available orders)

5.2.2. Exchange the orders having the indices a1 and a2

5.2.3. Calculate Cj ’s, Tj ’s and Rj ’s and newrevenue for this new sequence

newrevenue =
∑
j
Rj

5.2.3.1. If (new sequence is feasible) and (newrevenue > best revenue):

5.2.3.1.1. best sequence=new sequence

5.2.3.1.2. best revenue= newrevenue

5.2.3.2. Else, preserve the current best sequence

MILP : To see how an exact method performs on test instances, we also decided to

compare the results obtained with MILP formulation that was given in 3.2. Therefore, we

report the best feasible solution found by the CPLEX solver within 3600 seconds time limit

as the MILP solution and compare the MILP results with TS algorithm.

Chapter 5: Computational Studies 44

The solutions obtained by MILP, m-ATCS, ISFAN and TS are compared in terms of the

solution quality, number of optimal solutions obtained and run time in Tables 5.4-5.9.

5.3.3 Upper Bounds

Since, solving test instances to optimality is impossible for large-sized problems we used

an upper bound, UB, to measure the quality of the solutions obtained by benchmarks

explained in 5.3.2. The UB is obtained as the best of the following two bounds. The first

one, UBMILP , is generated by solving MILP with a time limit of 3600 seconds and keeping

the best upper bound obtained. The second one, UBLPV I , is generated by solving the LP

relaxation of MILP strengthened with the valid inequalities given below which are proposed

in [80].

Cn+1 ≤ max
i=1,...,n

d̄i; (5.1)

Cn+1 ≥ min
i=1,...,n

ri +
∑
i∈O

[(pi +minsetupi)× Ii]; (5.2)

Ci ≥ (ri +minsetupi + pi)× Ii, ∀i = 1, . . . , n; (5.3)

where minsetupi = min
j=1,...,n

sji.

5.3.4 Performance Measures

Percentage Deviations: We use the percentage deviation of the objective function values,

objective, obtained by each benchmark from the UB as one of the performance measures.

1
n
×

n∑
i=0

UB − objective
UB

(5.4)

The solutions obtained by MILP, m-ATCS, ISFAN and TS are compared in terms of

the maximum, average and minimum percentage deviation from UB and the results are

reported in Tables 5.4-5.9.

Run Times: Another important performance measure is average run time, thus we report

the average run times of MILP, ISFAN and TS in CPU seconds, except for m-ATCS which

takes less than a second for all test instances, in Tables 5.4-5.9.

Chapter 5: Computational Studies 45

Number of optimal solutions:The number of optimal solutions out of 10 instances of

each type is also recorded as an auxiliary measure. We note that the percentage deviation

is a better indicator for a company that faces the OAS problem due to time concerns in

obtaining optimal solutions.

Chapter 5: Computational Studies 46

T
ab

le
5.

4:
P

er
fo

rm
an

ce
of

M
IL

P,
m

-A
T

C
S,

IS
FA

N
an

d
th

e
T

S
al

go
ri

th
m

fo
r
n

=
10

%
D

ev
ia

ti
o
n
s

fr
o
m
U
B

n
=

1
0

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
#

o
f
o
p
ti

m
a
l
so

lu
ti

o
n
s

R
u
n

T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
M

IL
P

IS
F
A

N
T

S

0
.1

0
.1

0
%

0
%

0
%

2
5
%

9
%

0
%

1
0
%

3
%

0
%

3
%

1
%

0
%

1
0

1
6

6
1
1
2
3
.9

0
2
2
.9

3
0
.0

0
0
.3

0
%

0
%

0
%

1
9
%

9
%

2
%

9
%

3
%

0
%

3
%

1
%

0
%

1
0

0
3

5
1
1
1
9
.9

0
2
1
.3

2
0
.0

0
0
.5

6
%

1
%

0
%

2
7
%

9
%

0
%

8
%

3
%

0
%

8
%

1
%

0
%

9
1

4
8

1
0
3
7
.2

0
1
6
.3

5
0
.0

0
0
.7

0
%

0
%

0
%

2
3
%

1
0
%

0
%

1
0
%

3
%

0
%

3
%

0
%

0
%

1
0

1
6

8
4
3
5
.0

0
1
2
.6

9
0
.0

1
0
.9

0
%

0
%

0
%

2
1
%

8
%

0
%

0
%

0
%

0
%

1
%

0
%

0
%

1
0

1
9

7
2
8
9
.6

3
1
0
.6

3
0
.0

0
0
.3

0
.1

0
%

0
%

0
%

1
9
%

1
0
%

0
%

1
2
%

4
%

0
%

2
%

0
%

0
%

1
0

1
2

9
4
6
6
.2

0
2
8
.9

0
0
.0

0
0
.3

0
%

0
%

0
%

3
3
%

1
4
%

0
%

1
0
%

2
%

0
%

2
%

1
%

0
%

1
0

1
6

6
3
7
2
.4

0
2
8
.1

2
0
.0

0
0
.5

0
%

0
%

0
%

4
0
%

1
6
%

0
%

1
9
%

7
%

0
%

0
%

0
%

0
%

1
0

1
2

6
2
5
7
.3

0
2
4
.2

4
0
.0

1
0
.7

0
%

0
%

0
%

3
6
%

1
2
%

1
%

1
6
%

6
%

0
%

2
%

1
%

0
%

1
0

0
1

6
3
1
0
.3

0
1
9
.7

1
0
.0

0
0
.9

0
%

0
%

0
%

4
2
%

2
1
%

5
%

2
9
%

6
%

0
%

0
%

0
%

0
%

1
0

0
5

4
1
1
8
.2

0
1
6
.8

4
0
.0

0
0
.5

0
.1

0
%

0
%

0
%

2
4
%

1
4
%

4
%

2
0
%

9
%

0
%

6
%

1
%

0
%

1
0

0
3

9
2
2
.1

0
3
3
.3

3
0
.0

0
0
.3

0
%

0
%

0
%

3
4
%

1
4
%

0
%

2
0
%

5
%

0
%

5
%

1
%

0
%

1
0

0
4

8
5
2
.6

0
3
2
.4

8
0
.0

0
0
.5

0
%

0
%

0
%

2
3
%

1
5
%

3
%

9
%

3
%

0
%

0
%

0
%

0
%

1
0

0
4

9
1
3
.9

0
3
0
.9

9
0
.0

0
0
.7

0
%

0
%

0
%

4
0
%

1
6
%

1
%

3
2
%

6
%

0
%

2
%

0
%

0
%

1
0

0
4

4
2
4
.3

0
2
7
.2

7
0
.0

0
0
.9

0
%

0
%

0
%

3
5
%

1
5
%

1
%

2
8
%

6
%

0
%

2
%

0
%

0
%

1
0

0
3

7
2
6
.7

0
2
3
.8

5
0
.0

0
0
.7

0
.1

0
%

0
%

0
%

3
4
%

1
4
%

0
%

2
3
%

6
%

0
%

4
%

0
%

0
%

1
0

1
4

9
1
.3

0
4
2
.1

0
0
.0

0
0
.3

0
%

0
%

0
%

2
7
%

1
4
%

0
%

2
3
%

7
%

0
%

0
%

0
%

0
%

1
0

2
5

1
0

1
.5

0
4
2
.6

7
0
.0

0
0
.5

0
%

0
%

0
%

4
9
%

2
4
%

4
%

1
2
%

4
%

0
%

1
%

0
%

0
%

1
0

0
3

9
1
.6

0
3
7
.3

7
0
.0

0
0
.7

1
%

0
%

0
%

2
6
%

1
3
%

0
%

1
9
%

8
%

0
%

0
%

0
%

0
%

1
0

1
1

8
1
.7

0
3
8
.7

1
0
.0

0
0
.9

0
%

0
%

0
%

3
6
%

2
0
%

9
%

1
9
%

6
%

0
%

4
%

0
%

0
%

1
0

0
1

6
1
.9

0
2
8
.3

1
0
.0

0
0
.9

0
.1

0
%

0
%

0
%

1
7
%

8
%

0
%

1
1
%

2
%

0
%

0
%

0
%

0
%

1
0

3
7

1
0

1
.0

0
5
9
.8

8
0
.0

0
0
.3

0
%

0
%

0
%

2
9
%

1
1
%

0
%

1
8
%

7
%

0
%

0
%

0
%

0
%

1
0

2
2

9
1
.0

0
5
4
.9

7
0
.0

0
0
.5

0
%

0
%

0
%

2
2
%

9
%

0
%

2
7
%

8
%

0
%

0
%

0
%

0
%

1
0

3
5

8
1
.0

0
4
6
.3

7
0
.0

0
0
.7

0
%

0
%

0
%

3
4
%

1
5
%

6
%

3
9
%

1
1
%

0
%

0
%

0
%

0
%

1
0

0
1

9
1
.0

0
4
5
.5

3
0
.0

0
0
.9

0
%

0
%

0
%

4
0
%

1
9
%

2
%

2
7
%

6
%

0
%

0
%

0
%

0
%

1
0

0
2

8
1
.0

0
4
3
.4

5
0
.0

0

A
v
g
.

0
%

0
%

0
%

3
0
%

1
4
%

2
%

1
8
%

5
%

0
%

2
%

0
%

0
%

-
-

-
-

2
2
7
.3

1
3
1
.5

6
0
.0

0

Chapter 5: Computational Studies 47

T
ab

le
5.

5:
P

er
fo

rm
an

ce
of

M
IL

P,
m

-A
T

C
S,

IS
FA

N
an

d
th

e
T

S
al

go
ri

th
m

fo
r
n

=
15

%
D

ev
ia

ti
o
n
s

fr
o
m
U
B

n
=

1
5

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
#

o
f
o
p
ti

m
a
l
so

lu
ti

o
n
s

R
u
n

T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
M

IL
P

IS
F
A

N
T

S

0
.1

0
.1

1
3
%

8
%

1
%

1
7
%

1
0
%

4
%

1
5
%

8
%

1
%

4
%

3
%

1
%

0
0

0
0

3
6
0
0
.0

0
3
7
.6

7
0
.0

4
0
.3

1
7
%

7
%

1
%

2
3
%

1
6
%

8
%

1
2
%

6
%

2
%

8
%

3
%

0
%

0
0

0
1

3
6
0
0
.0

0
3
1
.2

6
0
.0

1
0
.5

1
0
%

6
%

1
%

1
8
%

1
1
%

4
%

8
%

4
%

2
%

4
%

2
%

0
%

0
0

0
1

3
6
0
0
.0

0
2
5
.4

7
0
.0

1
0
.7

2
1
%

7
%

1
%

2
9
%

1
1
%

3
%

9
%

4
%

0
%

4
%

2
%

0
%

0
0

1
1

3
6
0
0
.0

0
2
3
.0

2
0
.0

1
0
.9

1
5
%

6
%

0
%

2
8
%

1
0
%

0
%

1
1
%

5
%

0
%

6
%

1
%

0
%

1
1

3
4

3
2
4
1
.7

0
1
9
.6

2
0
.0

1
0
.3

0
.1

1
3
%

1
0
%

4
%

2
4
%

1
5
%

7
%

8
%

6
%

3
%

8
%

4
%

3
%

0
0

0
0

3
6
0
0
.0

0
4
4
.6

4
0
.0

1
0
.3

2
2
%

1
1
%

4
%

4
1
%

1
9
%

6
%

1
9
%

9
%

4
%

1
1
%

5
%

2
%

0
0

0
0

3
6
0
0
.0

0
4
1
.2

5
0
.0

1
0
.5

2
2
%

1
1
%

4
%

2
9
%

1
9
%

9
%

1
2
%

7
%

5
%

8
%

5
%

1
%

0
0

0
0

3
6
0
0
.0

0
3
4
.5

0
0
.0

1
0
.7

2
0
%

1
1
%

3
%

3
6
%

2
0
%

6
%

3
4
%

1
1
%

3
%

8
%

4
%

2
%

0
0

0
0

3
6
0
0
.0

0
3
2
.6

1
0
.0

1
0
.9

1
6
%

9
%

0
%

3
1
%

1
8
%

3
%

1
3
%

6
%

0
%

7
%

4
%

0
%

1
0

1
2

3
4
4
4
.5

0
3
0
.3

2
0
.0

1
0
.5

0
.1

1
8
%

1
2
%

2
%

2
7
%

2
0
%

1
2
%

1
9
%

1
1
%

2
%

1
3
%

7
%

2
%

0
0

0
0

3
6
0
0
.0

0
5
5
.1

8
0
.0

1
0
.3

1
5
%

1
1
%

7
%

3
3
%

2
2
%

8
%

1
8
%

1
0
%

4
%

1
4
%

8
%

4
%

0
0

0
0

3
6
0
0
.0

0
5
1
.6

1
0
.0

1
0
.5

2
6
%

1
5
%

7
%

3
5
%

2
6
%

1
0
%

2
0
%

1
2
%

4
%

1
5
%

9
%

6
%

0
0

0
0

3
6
0
0
.0

0
4
5
.5

7
0
.0

1
0
.7

1
2
%

7
%

0
%

4
4
%

2
6
%

1
1
%

2
5
%

9
%

4
%

1
1
%

6
%

1
%

0
0

0
0

3
6
0
0
.0

0
3
9
.8

5
0
.0

1
0
.9

1
8
%

7
%

0
%

4
0
%

2
1
%

7
%

2
1
%

8
%

0
%

1
8
%

6
%

0
%

1
0

1
1

3
3
6
9
.8

0
4
1
.7

4
0
.0

1
0
.7

0
.1

0
%

0
%

0
%

2
6
%

1
5
%

0
%

7
%

3
%

0
%

4
%

1
%

0
%

1
0

1
1

7
8
3
.9

0
5
5
.7

4
0
.0

1
0
.3

0
%

0
%

0
%

3
0
%

1
4
%

0
%

5
%

3
%

0
%

3
%

1
%

0
%

1
0

1
1

7
8
8
.6

0
5
8
.0

6
0
.0

1
0
.5

0
%

0
%

0
%

4
4
%

2
0
%

1
2
%

1
2
%

4
%

0
%

2
%

0
%

0
%

1
0

0
1

7
1
0
1
.3

0
5
9
.8

5
0
.0

1
0
.7

8
%

1
%

0
%

3
3
%

1
9
%

8
%

2
0
%

7
%

0
%

8
%

2
%

0
%

9
0

2
3

8
8
3
.9

0
6
4
.4

5
0
.0

1
0
.9

0
%

0
%

0
%

2
9
%

1
7
%

6
%

1
6
%

7
%

0
%

0
%

0
%

0
%

1
0

0
1

9
2
8
8
.5

0
5
3
.1

3
0
.0

1
0
.9

0
.1

0
%

0
%

0
%

2
7
%

1
0
%

0
%

1
4
%

4
%

0
%

3
%

0
%

0
%

1
0

1
5

9
1
.0

0
1
1
6
.4

9
0
.0

1
0
.3

0
%

0
%

0
%

3
5
%

1
7
%

8
%

1
0
%

4
%

0
%

5
%

0
%

0
%

1
0

0
3

9
1
.0

0
8
7
.9

6
0
.0

1
0
.5

0
%

0
%

0
%

2
4
%

1
7
%

2
%

1
2
%

4
%

0
%

0
%

0
%

0
%

1
0

0
4

1
0

6
.1

0
7
4
.9

7
0
.0

1
0
.7

0
%

0
%

0
%

2
5
%

1
6
%

3
%

3
3
%

9
%

0
%

0
%

0
%

0
%

1
0

0
2

1
0

4
.4

0
6
9
.8

1
0
.0

1
0
.9

0
%

0
%

0
%

3
9
%

2
1
%

3
%

2
8
%

9
%

0
%

0
%

0
%

0
%

1
0

0
2

1
0

1
2
.4

0
6
9
.2

3
0
.0

1

A
v
g
.

1
1
%

6
%

1
%

3
1
%

1
7
%

6
%

1
6
%

7
%

1
%

7
%

3
%

1
%

-
-

-
-

2
1
8
9
.0

8
5
0
.5

6
0
.0

1

Chapter 5: Computational Studies 48

T
ab

le
5.

6:
P

er
fo

rm
an

ce
of

M
IL

P,
m

-A
T

C
S,

IS
FA

N
an

d
th

e
T

S
al

go
ri

th
m

fo
r
n

=
20

%
D

ev
ia

ti
o
n
s

fr
o
m
U
B

n
=

2
0

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
#

o
f
o
p
ti

m
a
l
so

lu
ti

o
n
s

R
u
n

T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
M

IL
P

IS
F
A

N
T

S

0
.1

0
.1

1
9
%

1
1
%

6
%

1
7
%

1
1
%

6
%

1
0
%

7
%

2
%

5
%

3
%

1
%

0
0

0
0

3
6
0
0
.0

0
5
6
.8

7
0
.1

0
0
.3

1
9
%

1
2
%

2
%

3
0
%

1
7
%

5
%

1
3
%

9
%

3
%

5
%

3
%

1
%

0
0

0
0

3
6
0
0
.0

0
5
4
.0

7
0
.0

4
0
.5

2
2
%

1
0
%

3
%

2
3
%

1
7
%

4
%

8
%

5
%

1
%

3
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
4
0
.7

3
0
.0

3
0
.7

2
3
%

1
1
%

0
%

2
3
%

1
2
%

6
%

1
0
%

5
%

0
%

2
%

1
%

0
%

1
0

0
5

3
4
1
5
.5

0
3
5
.1

6
0
.0

4
0
.9

1
5
%

7
%

1
%

2
4
%

1
0
%

0
%

1
7
%

6
%

0
%

4
%

1
%

0
%

0
2

1
3

3
6
0
0
.0

0
3
2
.2

2
0
.0

3
0
.3

0
.1

2
9
%

1
8
%

7
%

2
8
%

2
0
%

9
%

1
8
%

1
1
%

7
%

8
%

5
%

2
%

0
0

0
0

3
6
0
0
.0

0
6
9
.4

4
0
.0

3
0
.3

2
1
%

1
4
%

4
%

2
7
%

2
0
%

1
2
%

1
5
%

9
%

5
%

6
%

5
%

3
%

0
0

0
0

3
6
0
0
.0

0
6
3
.6

5
0
.0

4
0
.5

2
5
%

1
6
%

7
%

2
6
%

1
7
%

9
%

1
2
%

8
%

5
%

8
%

5
%

2
%

0
0

0
0

3
6
0
0
.0

0
5
9
.1

0
0
.0

3
0
.7

2
5
%

1
2
%

5
%

3
1
%

1
7
%

5
%

1
2
%

7
%

2
%

7
%

3
%

1
%

0
0

0
0

3
6
0
0
.0

0
5
5
.6

2
0
.0

4
0
.9

2
0
%

1
0
%

2
%

2
8
%

1
8
%

5
%

1
3
%

7
%

1
%

5
%

2
%

0
%

0
0

0
2

3
4
4
4
.5

0
5
3
.0

7
0
.0

4
0
.5

0
.1

3
0
%

1
3
%

6
%

2
6
%

2
0
%

1
2
%

1
3
%

1
0
%

7
%

8
%

6
%

4
%

0
0

0
0

3
6
0
0
.0

0
7
9
.6

9
0
.0

3
0
.3

2
6
%

1
7
%

7
%

6
3
%

2
6
%

1
1
%

1
8
%

1
2
%

5
%

9
%

6
%

3
%

0
0

0
0

3
6
0
0
.0

0
7
7
.9

1
0
.0

7
0
.5

2
3
%

1
6
%

9
%

3
7
%

2
7
%

1
9
%

1
7
%

1
3
%

9
%

1
0
%

7
%

3
%

0
0

0
0

3
6
0
0
.0

0
7
5
.7

2
0
.0

4
0
.7

2
7
%

1
4
%

8
%

3
5
%

2
3
%

1
3
%

1
7
%

1
2
%

7
%

1
1
%

5
%

1
%

0
0

0
0

3
6
0
0
.0

0
7
0
.4

2
0
.0

3
0
.9

2
1
%

1
2
%

5
%

3
8
%

2
6
%

1
0
%

2
3
%

1
4
%

5
%

1
1
%

6
%

0
%

0
0

0
1

3
6
0
0
.0

0
7
3
.1

0
0
.0

5
0
.7

0
.1

2
6
%

1
2
%

6
%

3
0
%

2
2
%

1
7
%

2
0
%

1
4
%

8
%

1
5
%

1
0
%

5
%

0
0

0
0

3
6
0
0
.0

0
9
2
.5

3
0
.0

5
0
.3

1
4
%

1
0
%

6
%

3
3
%

2
4
%

1
0
%

1
8
%

1
3
%

1
0
%

1
4
%

9
%

6
%

0
0

0
0

3
6
0
0
.0

0
9
7
.4

7
0
.0

4
0
.5

2
7
%

1
0
%

0
%

4
7
%

3
5
%

1
9
%

2
4
%

1
4
%

5
%

2
0
%

9
%

0
%

2
0

0
2

3
0
4
8
.2

0
1
0
5
.5

0
0
.0

4
0
.7

2
0
%

8
%

0
%

4
0
%

2
5
%

9
%

2
4
%

1
3
%

0
%

1
2
%

7
%

0
%

3
0

1
3

2
9
5
4
.4

0
1
0
0
.0

7
0
.0

7
0
.9

1
7
%

1
0
%

0
%

4
4
%

2
9
%

7
%

3
4
%

1
7
%

8
%

1
3
%

8
%

0
%

1
0

0
1

3
2
4
2
.8

0
1
0
4
.1

9
0
.0

4
0
.9

0
.1

0
%

0
%

0
%

1
8
%

1
0
%

1
%

8
%

4
%

0
%

1
%

0
%

0
%

1
0

0
3

0
1
.7

0
1
3
8
.6

6
0
.0

6
0
.3

0
%

0
%

0
%

2
6
%

1
5
%

7
%

2
4
%

7
%

0
%

1
%

0
%

0
%

1
0

0
1

8
8
.7

0
1
4
4
.2

2
0
.0

3
0
.5

0
%

0
%

0
%

4
3
%

2
0
%

8
%

2
4
%

8
%

1
%

2
%

0
%

0
%

1
0

0
0

8
8
0
.1

0
1
2
7
.9

4
0
.0

3
0
.7

0
%

0
%

0
%

4
6
%

2
1
%

1
1
%

1
3
%

6
%

0
%

1
%

0
%

0
%

1
0

0
3

8
1
1
4
.0

0
1
1
9
.6

6
0
.0

3
0
.9

1
3
%

1
%

0
%

3
9
%

2
7
%

1
2
%

1
8
%

1
2
%

0
%

1
3
%

2
%

0
%

9
0

1
6

4
6
7
.0

0
1
1
8
.0

1
0
.0

3

A
v
g
.

1
8
%

1
0
%

3
%

3
3
%

2
0
%

9
%

1
7
%

1
0
%

4
%

8
%

4
%

1
%

-
-

-
-

2
8
3
1
.0

7
8
1
.8

0
0
.0

4

Chapter 5: Computational Studies 49

T
ab

le
5.

7:
P

er
fo

rm
an

ce
of

M
IL

P,
m

-A
T

C
S,

IS
FA

N
an

d
th

e
T

S
al

go
ri

th
m

fo
r
n

=
25

%
D

ev
ia

ti
o
n
s

fr
o
m
U
B

n
=

2
5

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
#

o
f
o
p
ti

m
a
l
so

lu
ti

o
n
s

R
u
n

T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
M

IL
P

IS
F
A

N
T

S

0
.1

0
.1

1
9
%

1
2
%

8
%

2
0
%

1
4
%

9
%

1
2
%

8
%

4
%

6
%

4
%

1
%

0
0

0
0

3
6
0
0
.0

0
8
3
,6

2
0
.0

8
0
.3

2
3
%

1
3
%

6
%

3
2
%

1
6
%

6
%

1
1
%

7
%

3
%

6
%

3
%

2
%

0
0

0
0

3
6
0
0
.0

0
6
5
.3

7
0
.0

6
0
.5

9
%

7
%

5
%

2
1
%

1
2
%

3
%

1
1
%

7
%

3
%

4
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
6
1
.4

5
0
.0

6
0
.7

1
1
%

5
%

1
%

2
3
%

1
3
%

5
%

9
%

5
%

2
%

4
%

1
%

0
%

0
0

0
4

3
6
0
0
.0

0
5
3
.9

7
0
.0

6
0
.9

1
0
%

4
%

1
%

2
4
%

8
%

2
%

1
0
%

6
%

1
%

2
%

1
%

0
%

0
0

0
4

3
6
0
0
.0

0
5
6
.6

9
0
.0

5
0
.3

0
.1

2
4
%

1
5
%

9
%

2
9
%

1
9
%

1
3
%

1
2
%

9
%

5
%

5
%

4
%

2
%

0
0

0
0

3
6
0
0
.0

0
9
3
.2

3
0
.1

0
0
.3

2
0
%

1
1
%

7
%

2
4
%

1
8
%

7
%

1
2
%

1
0
%

7
%

7
%

5
%

3
%

0
0

0
0

3
6
0
0
.0

0
8
9
.7

1
0
.0

9
0
.5

8
%

5
%

2
%

2
6
%

1
8
%

1
0
%

1
0
%

7
%

5
%

6
%

3
%

2
%

0
0

0
0

3
6
0
0
.0

0
8
0
.7

6
0
.0

8
0
.7

9
%

5
%

1
%

3
2
%

1
7
%

8
%

2
4
%

1
1
%

6
%

6
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
7
8
.5

4
0
.0

8
0
.9

2
7
%

1
8
%

1
1
%

2
7
%

1
6
%

6
%

1
8
%

9
%

5
%

4
%

2
%

0
%

0
0

0
2

3
6
0
0
.0

0
7
9
.3

5
0
.0

7
0
.5

0
.1

1
7
%

1
0
%

6
%

2
9
%

1
9
%

1
2
%

1
4
%

1
1

%
7
%

7
%

6
%

3
%

0
0

0
0

3
6
0
0
.0

0
1
1
0
.8

4
0
.0

7
0
.3

1
3
%

9
%

4
%

2
9
%

2
1
%

1
1
%

1
7
%

1
1
%

6
%

9
%

5
%

3
%

0
0

0
0

3
6
0
0
.0

0
1
0
9
.0

9
0
.0

8
0
.5

1
7
%

1
0
%

3
%

3
0
%

2
0
%

8
%

2
0
%

1
3
%

8
%

8
%

5
%

2
%

0
0

0
0

3
6
0
0
.0

0
1
1
0
.3

0
0
.0

9
0
.7

1
3
%

8
%

2
%

3
8
%

2
6
%

1
7
%

1
7
%

1
3
%

7
%

1
1
%

6
%

2
%

0
0

0
0

3
6
0
0
.0

0
1
2
1
.0

2
0
.0

8
0
.9

4
2
%

2
0
%

6
%

4
9
%

2
8
%

1
6
%

2
5
%

1
5
%

6
%

7
%

4
%

1
%

0
0

0
0

3
6
0
0
.0

0
1
0
9
.7

4
0
.0

8
0
.7

0
.1

1
9
%

1
0
%

2
%

2
6
%

2
0
%

1
2
%

2
7
%

1
8
%

1
0
%

1
8
%

9
%

3
%

0
0

0
0

3
6
0
0
.0

0
1
4
2
.0

9
0
.0

6
0
.3

1
7
%

1
2
%

8
%

3
3
%

2
6
%

1
8
%

2
3
%

1
7
%

9
%

1
4
%

1
0
%

7
%

0
0

0
0

3
6
0
0
.0

0
1
4
1
.3

6
0
.0

8
0
.5

2
1
%

1
3
%

7
%

4
3
%

3
3
%

2
6
%

2
6
%

1
9
%

1
3
%

1
5
%

1
2
%

7
%

0
0

0
0

3
6
0
0
.0

0
1
4
3
.5

7
0
.0

8
0
.7

1
5
%

9
%

2
%

4
0
%

2
9
%

1
5
%

2
1
%

1
5
%

9
%

1
4
%

8
%

2
%

0
0

0
0

3
6
0
0
.0

0
1
4
0
.4

5
0
.0

7
0
.9

1
7
%

1
0
%

0
%

5
3
%

2
9
%

8
%

2
4
%

1
7
%

1
0
%

1
5
%

1
0
%

3
%

0
0

0
0

3
6
0
0
.0

0
1
5
2
.1

1
0
.0

8
0
.9

0
.1

0
%

0
%

0
%

2
0
%

1
2
%

4
%

2
5
%

8
%

0
%

6
%

1
%

0
%

1
0

0
1

5
5
.4

1
1
8
8
.9

9
0
.0

6
0
.3

0
%

0
%

0
%

2
2
%

1
7
%

1
0
%

8
%

5
%

1
%

0
%

0
%

0
%

1
0

0
0

8
8
.3

0
1
8
7
.4

5
0
.0

6
0
.5

1
2
%

3
%

0
%

4
5
%

2
7
%

1
4
%

4
4
%

1
2
%

1
%

1
2
%

4
%

0
%

6
0

0
3

1
4
5
2
.6

1
1
7
6
.5

0
0
.0

7
0
.7

2
2
%

7
%

0
%

4
5
%

2
9
%

1
7
%

3
1
%

1
3
%

0
%

2
5
%

8
%

0
%

6
0

1
4

1
4
4
6
.3

5
1
7
7
.6

6
0
.0

8
0
.9

2
1
%

6
%

0
%

5
8
%

3
0
%

2
0
%

3
2
%

1
3
%

2
%

2
2
%

7
%

0
%

4
0

0
4

2
1
7
6
.1

8
1
6
9
.4

1
0
.0

9

A
v
g
.

1
6
%

9
%

4
%

3
3
%

2
1
%

1
1
%

1
9
%

1
1
%

5
%

9
%

5
%

2
%

-
-

-
-

3
0
8
3
.5

5
1
1
6
.9

3
0
.0

7

Chapter 5: Computational Studies 50

T
ab

le
5.

8:
P

er
fo

rm
an

ce
of

M
IL

P,
m

-A
T

C
S,

IS
FA

N
an

d
th

e
T

S
al

go
ri

th
m

fo
r
n

=
50

%
D

ev
ia

ti
o
n
s

fr
o
m
U
B

n
=

5
0

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
#

o
f
o
p
ti

m
a
l
so

lu
ti

o
n
s

R
u
n

T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
M

IL
P

IS
F
A

N
T

S

0
.1

0
.1

8
1
%

2
4
%

9
%

2
0
%

1
5
%

9
%

1
2
%

8
%

6
%

3
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
2
6
4
.3

8
1
.1

9
0
.3

2
2
%

1
6
%

7
%

1
8
%

1
5
%

9
%

1
2
%

9
%

7
%

4
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
2
5
0
.1

6
0
.9

8
0
.5

2
5
%

1
7
%

1
1
%

1
9
%

1
3
%

6
%

1
0
%

8
%

5
%

2
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
2
3
8
.3

3
0
.8

9
0
.7

1
8
%

1
3
%

9
%

2
4
%

1
4
%

7
%

2
2
%

9
%

4
%

1
6
%

3
%

0
%

0
0

0
1

3
6
0
0
.0

0
2
2
0
.6

8
0
.5

8
0
.9

2
7
%

1
0
%

2
%

1
0
%

4
%

1
%

1
1
%

7
%

4
%

2
%

1
%

0
%

0
0

0
2

3
6
0
0
.0

0
2
8
8
.6

7
0
.4

6
0
.3

0
.1

3
3
%

2
4
%

1
3
%

2
4
%

1
6
%

1
1
%

1
3
%

1
1
%

8
%

3
%

3
%

2
%

0
0

0
0

3
6
0
0
.0

0
3
3
8
.0

6
1
.6

1
0
.3

4
8
%

2
8
%

1
8
%

3
0
%

2
0
%

1
1
%

1
5
%

1
2
%

9
%

5
%

4
%

3
%

0
0

0
0

3
6
0
0
.0

0
3
4
3
.9

0
1
.4

9
0
.5

3
3
%

2
4
%

1
8
%

3
3
%

1
8
%

9
%

1
5
%

1
1
%

8
%

5
%

3
%

1
%

0
0

0
0

3
6
0
0
.0

0
3
2
8
.4

7
1
.1

6
0
.7

2
6
%

2
0
%

1
3
%

2
4
%

1
4
%

5
%

1
8
%

1
1
%

7
%

3
%

1
%

0
%

0
0

0
1

3
6
0
0
.0

0
3
4
6
.7

8
0
.8

5
0
.9

3
4
%

2
1
%

1
3
%

2
6
%

1
7
%

3
%

1
1
%

9
%

8
%

3
%

1
%

0
%

0
0

0
0

3
6
0
0
.0

0
3
4
5
.5

4
0
.6

8
0
.5

0
.1

3
1
%

2
8
%

1
9
%

2
7
%

2
0
%

1
3
%

1
9
%

1
4
%

1
0
%

5
%

4
%

3
%

0
0

0
0

3
6
0
0
.0

0
4
3
0
.8

0
1
.3

6
0
.3

8
6
%

4
2
%

2
5
%

3
0
%

2
5
%

1
8
%

2
0
%

1
6
%

1
1
%

8
%

6
%

3
%

0
0

0
0

3
6
0
0
.0

0
4
4
8
.2

0
1
.1

8
0
.5

4
4
%

3
1
%

1
7
%

3
4
%

2
5
%

1
5
%

2
1
%

1
6
%

7
%

8
%

4
%

2
%

0
0

0
0

3
6
0
0
.0

0
4
3
8
.7

1
1
.3

5
0
.7

3
8
%

2
1
%

1
0
%

3
1
%

2
4
%

1
2
%

1
8
%

1
5
%

9
%

5
%

3
%

2
%

0
0

0
0

3
6
0
0
.0

0
4
7
1
.1

0
1
.2

2
0
.9

2
2
%

1
8
%

8
%

3
5
%

2
7
%

1
7
%

1
9
%

1
5
%

6
%

6
%

4
%

2
%

0
0

0
0

3
6
0
0
.0

0
4
9
5
.4

1
1
.1

6
0
.7

0
.1

2
5
%

2
1
%

1
3
%

3
0
%

2
2
%

1
7
%

2
1
%

1
6
%

1
2
%

9
%

7
%

4
%

0
0

0
0

3
6
0
0
.0

0
5
6
1
.7

5
1
.4

4
0
.3

2
3
%

1
8
%

1
1
%

3
3
%

2
4
%

1
6
%

2
0
%

1
6
%

1
1
%

1
1
%

7
%

4
%

0
0

0
0

3
6
0
0
.0

0
5
6
5
.5

4
1
.5

2
0
.5

5
2
%

2
9
%

1
3
%

4
6
%

3
3
%

2
3
%

2
2
%

1
9
%

1
4
%

1
3
%

9
%

7
%

0
0

0
0

3
6
0
0
.0

0
5
8
2
.5

2
1
.5

9
0
.7

2
8
%

2
1
%

9
%

3
5
%

3
1
%

2
4
%

2
9
%

1
9
%

1
2
%

1
8
%

9
%

2
%

0
0

0
0

3
6
0
0
.0

0
6
0
9
.6

7
1
.2

7
0
.9

2
6
%

1
9
%

1
4
%

4
1
%

2
9
%

1
9
%

2
8
%

2
1
%

1
7
%

1
8
%

1
1
%

6
%

0
0

0
0

3
6
0
0
.0

0
6
1
7
.6

3
1
.1

5
0
.9

0
.1

1
8
%

1
4
%

8
%

3
0
%

2
4
%

1
7
%

2
2
%

1
7
%

1
2
%

1
8
%

1
3
%

8
%

0
0

0
0

3
6
0
0
.0

0
6
8
4
.7

5
1
.2

5
0
.3

2
2
%

1
6
%

1
1
%

4
2
%

3
2
%

2
1
%

2
8
%

2
3
%

1
8
%

2
3
%

1
7
%

1
3
%

0
0

0
0

3
6
0
0
.0

0
6
8
6
.8

9
1
.2

6
0
.5

2
1
%

1
5
%

5
%

4
5
%

3
9
%

3
3
%

2
6
%

2
1
%

1
8
%

2
3
%

1
7
%

1
0
%

0
0

0
0

3
6
0
0
.0

0
6
7
2
.1

9
1
.4

2
0
.7

2
5
%

1
7
%

9
%

4
6
%

3
7
%

2
6
%

7
2
%

2
7
%

1
7
%

2
1
%

1
6
%

1
1
%

0
0

0
0

3
6
0
0
.0

0
7
8
0
.2

5
1
.4

3
0
.9

3
0
%

2
1
%

1
4
%

4
4
%

3
6
%

2
4
%

2
9
%

2
2
%

1
6
%

1
9
%

1
6
%

1
1
%

0
0

0
0

3
6
0
0
.0

0
6
7
3
.7

2
1
.3

7

A
v
g
.

3
4
%

2
1
%

1
2
%

3
1
%

2
3
%

1
5
%

2
1
%

1
5
%

1
0
%

1
0
%

7
%

5
%

-
-

-
-

3
6
0
0
.0

0
4
6
7
.3

6
1
.1

9

Chapter 5: Computational Studies 51

T
ab

le
5.

9:
P

er
fo

rm
an

ce
of

M
IL

P,
m

-A
T

C
S,

IS
FA

N
an

d
th

e
T

S
al

go
ri

th
m

fo
r
n

=
10

0

%
D

ev
ia

ti
o
n
s

fr
o
m
U
B

n
=

1
0
0

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
#

o
f
o
p
ti

m
a
l
so

lu
ti

o
n
s

R
u
n

T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
IL

P
m

-A
T

C
S

IS
F
A

N
T

S
M

IL
P

IS
F
A

N
T

S

0
.1

0
.1

5
6
%

4
4
%

3
7
%

1
9
%

1
5
%

9
%

1
3
%

9
%

8
%

3
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
6
8
2
.8

2
1
6
.7

6
0
.3

8
8
%

5
1
%

4
2
%

2
0
%

1
7
%

1
1
%

1
0
%

9
%

7
%

3
%

2
%

2
%

0
0

0
0

3
6
0
0
.0

0
6
6
6
.8

1
1
7
.2

6
0
.5

6
0
%

5
1
%

4
3
%

1
9
%

1
4
%

1
1
%

1
1
%

9
%

6
%

3
%

1
%

0
%

0
0

0
0

3
6
0
0
.0

0
6
9
0
.5

0
1
0
.8

7
0
.7

6
0
%

5
4
%

4
6
%

1
6
%

1
1
%

5
%

1
2
%

9
%

6
%

1
%

0
%

0
%

0
0

0
1

3
6
0
0
.0

0
7
0
1
.3

0
6
.2

1
0
.9

7
0
%

6
0

%
3
8
%

1
1
%

6
%

0
%

1
6
%

1
2
%

8
%

1
%

0
%

0
%

0
0

0
4

3
6
0
0
.0

0
7
4
4
.6

0
3
.5

3
0
.3

0
.1

6
8
%

6
2
%

5
2
%

2
4
%

1
9
%

1
5
%

1
3
%

1
2
%

1
0
%

4
%

3
%

1
%

0
0

0
0

3
6
0
0
.0

0
9
4
1
,0

3
2
2
.3

7
0
.3

7
5
%

6
4
%

5
2
%

2
3
%

1
8
%

1
5
%

1
7
%

1
3
%

1
1
%

5
%

3
%

2
%

0
0

0
0

3
6
0
0
.0

0
9
6
4
.5

8
2
0
.1

0
0
.5

7
6
%

6
6
%

5
6
%

2
1
%

1
8
%

1
4
%

1
7
%

1
4
%

1
0
%

4
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
9
8
8
.5

0
1
6
.7

7
0
.7

8
4
%

7
3
%

6
3
%

3
2
%

2
0
%

1
5
%

1
5
%

1
4
%

1
2
%

3
%

2
%

0
%

0
0

0
0

3
6
0
0
.0

0
1
0
2
8
.5

2
9
.4

8
0
.9

8
2
%

6
6
%

4
7
%

1
8
%

1
5
%

1
0
%

1
7
%

1
3
%

9
%

2
%

1
%

0
%

0
0

0
0

3
6
0
0
.0

0
1
0
2
0
.2

3
7
.5

8
0
.5

0
.1

8
7
%

7
7
%

7
1
%

2
4
%

2
2
%

1
7
%

1
8
%

1
6
%

1
2
%

5
%

4
%

2
%

0
0

0
0

3
6
0
0
.0

0
1
2
4
3
.2

5
2
5
.9

6
0
.3

8
6
%

6
1
%

4
7
%

2
8
%

2
3
%

1
7
%

1
8
%

1
5
%

1
2
%

6
%

4
%

3
%

0
0

0
0

3
6
0
0
.0

0
1
2
8
8
.5

8
2
8
.8

7
0
.5

8
8
%

7
0
%

5
6
%

3
1
%

2
4
%

2
0
%

1
9
%

1
7
%

1
4
%

5
%

4
%

3
%

0
0

0
0

3
6
0
0
.0

0
1
3
0
5
.3

3
2
0
.5

6
0
.7

9
2
%

7
1
%

5
5
%

3
4
%

2
3
%

1
0
%

2
1
%

1
7
%

1
3
%

4
%

3
%

2
%

0
0

0
0

3
6
0
0
.0

0
1
3
8
5
.1

2
1
5
.5

7
0
.9

1
0
0
%

6
6
%

4
8
%

3
6
%

2
4
%

1
5
%

2
4
%

1
8
%

1
2
%

5
%

2
%

1
%

0
0

0
0

3
6
0
0
.0

0
1
4
1
9
.7

7
1
2
.1

5
0
.7

0
.1

8
6
%

6
7
%

4
9
%

2
8
%

2
2
%

1
7
%

1
9
%

1
7
%

1
3
%

6
%

5
%

3
%

0
0

0
0

3
6
0
0
.0

0
1
6
4
6
.3

0
3
3
.6

0
0
.3

6
6
%

5
7
%

4
5
%

3
4
%

2
4
%

1
8
%

2
1
%

1
7
%

1
3
%

1
1
%

7
%

4
%

0
0

0
0

3
6
0
0
.0

0
1
6
5
9
.3

3
2
6
.6

2
0
.5

6
5
%

5
5
%

4
6
%

3
7
%

2
6
%

2
0
%

2
4
%

1
8
%

1
4
%

1
3
%

6
%

4
%

0
0

0
0

3
6
0
0
.0

0
1
6
6
0
.4

0
2
2
.3

0
0
.7

7
6
%

6
0
%

4
2
%

3
8
%

3
1
%

2
2
%

2
3
%

1
9
%

1
6
%

1
3
%

7
%

3
%

0
0

0
0

3
6
0
0
.0

0
1
6
9
0
.4

1
2
6
.3

6
0
.9

6
4
%

5
3
%

3
9
%

3
7
%

3
1
%

2
3
%

2
4
%

1
8
%

1
5
%

1
3
%

8
%

5
%

0
0

0
0

3
6
0
0
.0

0
1
6
5
7
.4

1
1
7
.8

4
0
.9

0
.1

4
8
%

3
7
%

3
1
%

2
5
%

2
2
%

1
8
%

2
0
%

1
7
%

1
4
%

1
2
%

9
%

7
%

0
0

0
0

3
6
0
0
.0

0
1
6
4
3
.6

3
2
9
.4

6
0
.3

5
0
%

4
0
%

2
8
%

3
6
%

3
1
%

2
5
%

2
6
%

2
0
%

1
6
%

2
3
%

1
5
%

9
%

0
0

0
0

3
6
0
0
.0

0
1
8
0
7
.6

0
2
6
.3

2
0
.5

5
4
%

3
8
%

2
3
%

3
9
%

3
3
%

2
5
%

2
5
%

2
1
%

1
9
%

1
8
%

1
6
%

1
3
%

0
0

0
0

3
6
0
0
.0

0
1
8
0
2
.0

9
2
1
.5

1
0
.7

4
8
%

3
8
%

2
7
%

4
0
%

3
6
%

2
6
%

2
4
%

2
1
%

1
5
%

2
0
%

1
6
%

1
1
%

0
0

0
0

3
6
0
0
.0

0
1
7
9
8
.9

6
2
2
.7

0
0
.9

3
9
%

3
5
%

2
7
%

4
0
%

3
5
%

2
8
%

2
8
%

2
1
%

1
3
%

2
2
%

1
6
%

1
2
%

0
0

0
0

3
6
0
0
.0

0
1
7
6
5
.1

0
1
7
.4

8

A
v
g
.

7
1
%

5
7
%

4
4
%

2
8
%

2
2
%

1
6
%

1
9
%

1
5
%

1
2
%

8
%

6
%

4
%

-
-

-
-

3
6
0
0
.0

0
1
2
8
8
.0

9
1
9
.1

3

Chapter 5: Computational Studies 52

5.4 Analysis of the Results

The results presented in Tables 5.4 - 5.9 suggest that the TS algorithm is both efficient and

effective for all problem sizes and types tested. The detailed analysis is as follows.

Comparison of the TS algorithm with MILP

Throughout the tables, we observe that n = 10 is the only case where MILP can solve

all 250 but 1 instances to optimality. Although TS finds the optimal solution in 188 out

of 250 instances in Table 5.4, it gives 0% deviation on the average, as it outputs solutions

whose revenues are uniformly very close to optimal values. This performance is achieved

with a run time of less than a second in all instances, whereas MILP runs in 228 seconds

on the average and reaches the limit of one hour in one of the instances.

From Table 5.5, we see that the TS algorithm finds 91 optimal solutions out of 250

instances whereas MILP finds the optimal solution in 102 out of 250 instances. MILP gives

6% deviation on the average, the TS algorithm gives only 3% deviation on the average.

Although MILP finds more optimal solutions than TS, it gives a higher percentage deviation

than TS. This shows that TS algorithm find near-optimal solutions for most of the instances

whereas MILP finds optimal solutions for some instances and far-optimal solutions for the

rest of the instances. The average run time of MILP increases to 2189 seconds while the

TS algorithm runs in still less than a second in all test instances for n = 15.

When the problem size increases to 20, the TS algorithm still outperforms MILP in

terms of percentage deviation. The TS algorithm finds the optimal solution in 51 out of 250

instances and gives 4% deviation on the average. In contrast, the MILP finds the optimal

solution in 55 out of 250 instances but gives 10% deviation on the average. It is notable that

that the number of optimal solutions obtained by TS catching up the MILP as n increases

and the average percentage deviation of MILP increases much faster than that of TS. The

average run time of MILP increases to 2831 seconds while the TS algorithm runs in less

than a second in all test instances.

For n = 25, the TS algorithm still runs in less than a second for all test instances whereas

the run time of MILP increases to 3084 seconds on the average. TS finds 34 optimal solutions

out of 250 instances whereas MILP finds the optimal solution in 36 out of 250 instances.

MILP gives 9% deviation on the average, the TS algorithm gives only 5% deviation on the

average.

Chapter 5: Computational Studies 53

When there is 50 incoming orders, although MILP cannot find any optimal solutions

out of 250 instances, TS achieves to find the optimal solution in 4 out of 250 instances and

gives 6% deviation on the average whereas MILP gives 23% deviation on the average. The

average run time of MILP increases to 3600 seconds since the algorithm could not achieve

to solve any of the instances while the TS algorithm runs in less than two seconds on the

average.

From Table 5.9, we see that the TS algorithm finds 5 optimal solutions out of 250

instances whereas MILP still cannot find any optimal solution out of 250 instances. MILP

gives 22% deviation on the average, the TS algorithm gives only 6% deviation on the average.

The average run time of MILP is again 3600 seconds while the TS algorithm runs less than

twenty second on the average.

We observe from Table 5.5 that MILP has difficulty in solving instances with τ =

0.1, 0.3, 0.5 for n = 15. MILP faces difficulties in solving instances with τ = 0.7 in addition

to 0.1, 0.3 and 0.5 when n = 20, 25 (see Tables 5.6-5.7) and can not solve any of the instances

when n = 50, 100 (see Tables 5.8-5.9). These results suggest that the problem is getting

fairly easier for higher τ values and therefore becomes less time consuming for the exact

algorithm. We discuss the difficulty of test instances in fortcoming subsections.

The results presented above indicate that the TS algorithm is competitive with the

MILP for n = 10, and outperforms the MILP results when n equals 15, 20, 25, 50 and 100.

Run times presented in Tables 5.4-5.9 further support the efficiency of the TS algorithm.

Comparison of the TS algorithm with m-ATCS and ISFAN

We see from Tables 5.4-5.9 that the TS algorithm outperforms m-ATCS and ISFAN

heuristics in terms of solution quality and in terms of number of optimal solutions obtained

out of 10 instances in all instances. While TS algorithm dominates the ISFAN heuristic

in terms of run times for all problem types and sizes, m-ATCS heuristic runs less than a

second for all test instances as a property of constructive heuristic.

m-ATCS gives 14% and ISFAN 5% deviations on the average whereas TS achieves 0%

deviation on the average when problem size equals to 10. For n = 15, m-ATCS and ISFAN

give 17% and 7% deviations on the average respectively and are dominated by TS which

gives 3% deviation on the average. As n increases to 20, the percentage deviation of the

m-ATCS also increases to 20. ISFAN gives 10% deviation and TS gives only 4% deviation

Chapter 5: Computational Studies 54

on the average. Respectively, m-ATCS, ISFAN and TS give 21%, 11% and 5% deviations

on the average for n = 25, 23%, 15% and 6% deviations on the average for n = 50 and

finally 22%, 15% and 6% deviations on the average for n = 100.

As n changes, the average performances of m-ATCS and ISFAN range from 14% to 23%

and 5% to 15%, respectively, while that of the TS algorithm ranges from 0% to 6%. These

ranges indicate that our TS algorithm is robust and has a smaller variation in solution

quality comparing to other heuristic methods. Since the run time of the TS algorithm is

less than 20 seconds on the average even for n = 100, we can conclude that the TS algorithm

is a viable solution procedure for practical situations.

Effect of parameters τ and R on test instances

By definition, the parameter τ indicates due date tightness while the parameter R de-

termines the due date range. In addition, τ determines the range of the release dates and

R dictates the tightness of deadlines with respect to due dates.

As τ gets larger, the interval on which the release dates were drawn also gets larger. In

other words, the orders are released on a wider time interval. At the same time, the values

of slack get smaller. Hence, as τ increases, we obtain orders released at different time points

with small slack values. This results in rejection of more orders, which in turn implies the

reduction of the size of the solution space. Consequently, the optimal solution can be found

in a short time as can be seen in Tables 5.4-5.7.

Given a τ value, the difference between the deadline and the due date increases, as R

increases, which allows more time to complete a tardy order. Furthermore, the range of

slack increases, while the release dates are generated in a constant interval. However, these

data characteristics do not suggest any distinctive patterns on problem hardness.

Analysis of the upper bounds

As we mention in Section 5.3.3, we calculated two different upper bounds which are

UBMILP and UBLPV I , refer minimum of these two bounds to UB and used it to measure

the solution quality of the benchmarks. We observed that UBLPV I is more effective for

τ=0.1, 0.3, 0.5, whereas UBMILP becomes more effective for τ=0.7, 0.9. The reasons of

why UBMILP can found better bounds for smaller τ values and UBLPV I can found better

bounds for large τ values can be explained as follows. We mention that the problems get

easier for MILP when τ increases, therefore UBMILP can found better bounds and even

Chapter 5: Computational Studies 55

optimal solutions for most of the cases of larger τ values. On the other hand, the valid

inequality in Equation 5.2, which is the main effective valid inequality among Equations

5.1-5.3, accumulates the processing times and minimum setup times of the accepted orders.

For small values of τ , we obtain closely released orders which have closer slack times. When

we schedule the orders the idle time for a machine can not arise in most of the cases,

therefore summing the processing and minimum setup times of all accepted orders can help

to improve the upper bound for smaller τ values. Whereas, for larger τ values we obtain

orders released on wider time interval which have smaller slack times, therefore in some

cases, the machine can be idle and can wait for the next order to be released to continue

the production process. Hereby, only summing the processing times and setup times of

accepted orders can not help for larger τ values to improve the UB. As can be seen from

Tables 5.4-5.7, in most of the cases we obtain the highest gap when τ=0.5 and 0.7. Because

these are the cases which cannot benefited neither from UBMILP nor from UBLPV I .

It is notable that when n = 50, 100, which are the cases that MILP can not solve any

of the instances to optimality and therefore UB cannot benefited from UBMILP anymore,

the highest percentage deviations was obtained in case of τ = 0.9. We can infer that these

higher percentage deviations are the results of poor upper bounds. In order to reinforce

this inference, we compare the percentage deviation of TS calculated with respect to these

two upper bounds for the instances with n = 25 and τ = 0.9. The results are summarized

in Table 5.10.

Table 5.10: Average % deviations of TS heuristic from UBLPV I , UBMILP and UB where
n=25 and τ = 0.9

Dev. of TS from UBLPV I Dev. of TS from UBMILP Dev. of TS from UB

n τ R Max Average Min Max Average Min Max Average Min

25 0.9 0.1 27% 20% 11% 6% 1% 0% 6% 1% 0%
0.3 28% 22% 17% 0% 0% 0% 0% 0% 0%
0.5 24% 17% 11% 12% 4% 0% 12% 4% 0%
0.7 26% 21% 13% 25% 8% 0% 25% 8% 0%
0.9 27% 19% 11% 22% 7% 0% 22% 7% 0%

Average 26% 20% 13% 13% 4% 0% 13% 4% 0%

We can see that for this case, the average percentage deviation of the TS algorithm drops

to 4% from 20% when the UB is benefited from UBMILP . Therefore the results in Table

Chapter 5: Computational Studies 56

5.10 asserts that the UB is weak where it can not benefited any of UBMILP and UBLPV I .

This also verifies that the TS algorithm performs well.

Comparison of the number of accepted and tardy orders among solution

methods: In order to understand the structure of the solutions generated by the compared

heuristics, we analyzed the number of rejected and tardy orders and present the results in

Table 5.11 for only several contrasting cases.

We notice that both the m-ATCS and ISFAN heuristics reject more orders and accepts

more tardy orders than the TS algorithm over all instances. This can be attributed to the

constructive nature of the m-ATCS heuristic and the separately consideration of acceptance

and rejection decisions in ISFAN heuristic. In contrast, the TS algorithm considers accep-

tance and scheduling decisions simultaneously, hence rejects the tardy orders if there are

more profitable orders. As a consequence, the TS algorithm can achieve both rejecting less

orders and accepting less tardy orders compared to other heuristics.

When we analyze the number of rejected orders for different cases in Table 5.11, we

see that for constant τ value as n increases, more orders are rejected but the results do

not suggest any distinctive pattern on tardy orders. On the other hand, significantly more

orders are rejected and also more tardy orders are accepted as τ increases for a constant

value of n.

The latter one also helps to explain why UB gets weaker for higher τ values. Note that

the LP relaxation solution accepts most of the orders since it relaxes the capacity constraint.

As a result, the upper bound gets weaker when the number of orders to be rejected is high

due to the overload at certain time intervals.

Chapter 5: Computational Studies 57

T
ab

le
5.

11
:

N
um

be
r

of
re

je
ct

ed
an

d
ta

rd
y

or
de

rs
of

m
-A

T
C

S,
IS

FA
N

an
d

T
S

he
ur

is
ti

cs
fo

r
n

=
25

w
it

h
τ

=
0.

1
an

d
τ

=
0.

9,
an

d
fo

r
n

=
50

w
it

h
τ

=
0.

9

#
o
f
re

je
ct

ed
o
rd

er
s

#
o
f
ta

rd
y

o
rd

er
s

m
-A

T
C

S
IS

F
A

N
T

S
m

-A
T

C
S

IS
F
A

N
T

S

n
τ

R
M

a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

2
5

0
.1

0
.1

8
6

5
7

6
5

6
4

3
0

0
0

0
0

0
0

0
0

0
.3

6
5

4
4

4
3

4
3

2
3

1
0

4
1

0
0

0
0

0
.5

7
4

2
4

3
2

3
2

1
2

1
0

1
0

0
0

0
0

0
.7

5
3

2
4

3
1

3
1

0
3

2
0

4
1

0
0

0
0

0
.9

5
2

0
4

2
1

2
1

0
3

2
0

3
1

0
2

0
0

A
v
er

a
g
e

6
4

3
5

4
2

4
2

1
2

1
0

2
1

0
0

0
0

2
5

0
.9

0
.1

1
2

1
0

7
1
2

1
0

8
1
0

9
7

2
1

0
1

0
0

1
0

0
0
.3

1
4

1
0

8
1
2

1
0

6
1
1

9
6

4
2

1
3

1
0

2
1

0
0
.5

1
2

1
0

8
1
5

9
7

1
0

8
6

5
3

1
2

1
0

1
1

0
0
.7

1
2

1
1

9
1
2

9
7

1
0

8
6

6
3

0
3

1
0

2
1

0
0
.9

1
4

9
6

1
2

8
5

9
6

5
7

5
3

4
2

1
3

1
0

A
v
er

a
g
e

1
3

1
0

8
1
3

9
7

1
0

8
6

5
3

1
3

1
0

2
1

0

5
0

0
.9

0
.1

1
9

1
6

1
3

1
9

1
7

1
5

1
6

1
3

1
0

2
1

0
0

0
0

0
0

0
0
.3

2
4

2
0

1
6

2
2

1
9

1
6

1
7

1
5

1
3

7
4

0
2

1
0

0
0

0
0
.5

2
3

2
0

1
4

1
9

1
7

1
4

1
6

1
3

1
0

6
5

4
2

1
0

0
0

0
0
.7

2
1

1
9

1
6

3
9

1
8

1
4

1
5

1
2

1
1

1
0

7
4

3
1

0
0

0
0

0
.9

2
3

1
7

1
3

2
0

1
6

1
3

1
4

1
2

1
0

1
4

1
0

4
7

2
0

0
0

0

A
v
er

a
g
e

2
2

1
8

1
4

2
4

2
0

1
4

1
6

1
3

1
1

8
5

2
3

1
0

0
0

0

Chapter 6: Conclusions and Future Research Directions 58

Chapter 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

6.1 Conclusions

In this thesis, we consider an order acceptance and scheduling problem on a single machine.

The differentiating aspects of the problem are the sequence-dependent setup times, release

dates, due dates and deadlines regarding orders and inclusion of tardiness while computing

the revenue in the objective function. The OAS problem is strongly NP-hard.

We provide a competitive improvement heuristic for the order acceptance and scheduling

problem (OAS) in a single machine environment. The proposed improvement heuristic is a

tabu search algorithm which is supported with a probabilistic local search procedure after

each iteration. We provide a new data set for the OAS problem that can be used in further

studies. In this data set, we used parameters such as the tardiness factor and the due date

range to obtain different types of instances resulting in varying difficulty.

We compare the performance of the TS algorithm with that of two heuristic algorithms,

namely m-ATCS and ISFAN, as well as with the solutions found by a mixed integer pro-

gramming formulation. Since optimal solutions cannot be obtained for large instances, we

used upper bounds based on the mixed integer programming formulation to measure the

quality of the solutions. Our computational study shows that the TS algorithm gives sig-

nificantly better solutions compared to other solution procedures in terms of revenue in

all instances. Furthermore, the run time of the TS algorithm is very small even for large

instances.

The success of the TS algorithm may be attributed to the following factors. First,

the problem representation makes it possible to consider both acceptance and sequencing

decisions simultaneously in a compact form and to create a wider neighborhood by efficient

move operators. As a result, the solution space can be searched extensively without heavy

computational effort. The seemingly simple pairwise exchange move of the TS algorithm

allows us to change both the set of accepted orders and their sequence, while keeping the

Chapter 6: Conclusions and Future Research Directions 59

number of accepted orders the same. We note that when we swap two orders, the completion

time, hence the tardiness and the revenue of each order starting from the first swapped

order will be affected due to release dates, sequence-dependent setup times and deadlines.

Therefore, a feasibility check is required after each modification to the current solution.

Second, the local search procedure involves a compound move in which one drop operation

is followed by multiple add and insert operations. Each such move may necessitate deletion

of some orders to maintain feasibility and this in turn adds diversification. Applying the

compound move iteratively allows accepting a profitable order, which was formerly rejected

due to infeasibility, at a new position. While both ISFAN and TS utilize a local improvement

procedure at the end of the algorithm, TS guides the search more intelligently by compound

moves. In spite of this complexity, TS runs very fast while obtaining much better results

in terms of solution quality. Therefore, the proposed algorithm provides a viable solution

method for real life problems. As a note, our efforts in developing dominance properties

and new valid inequalities for the formulation did not result in stronger bounds confirming

the computational complexity of the problem.

6.2 Future Research

As mentioned in previous section, we develop an efficient TS algorithm to solve the OAS

problem.

6.2.1 Strengthening Upper Bounds

In Section 5.4, we indicated that the upper bounds which we tested the performance of the

TS algorithm are weak for some cases. Therefore, the upper bounds may be strengthened

as a further study. One approach for strengthening the upper bounds may be proposing

a position based model formulation for the OAS problem. Solving the relaxation of new

model or solving the test instances within 3600 seconds time limit with new model might

be results in better upper bounds. Strengthening the existing MILP model with new valid

inequalities may be another approach for improving the upper bounds.

Chapter 6: Conclusions and Future Research Directions 60

6.2.2 Exact Method Development

A branch and bound algorithm might be developed for the OAS problem. Although we

stated that the OAS problem is strongly NP-hard, thus an exact algorithm may be very

time consuming for solving the problem, a well developed branch and bound algorithm

can be promising for solving larger instances to optimality and may even promising for

improving the upper bounds.

Bibliography 61

BIBLIOGRAPHY

[1] T.S. Abdul-Razaq and L.N. van Wassenhove. A survey of algorithms for the single-

machine total weighted tardiness scheduling problem. Discrete Applied Mathematics,

26:235–253, 1990.

[2] C. Akkan. Finite-capacity scheduling-based planning for revenue-based capacity man-

agement. European Journal of Operational Research, 100:170–179, 1997.

[3] M.S. Aktürk and D. Özdemir. An exact approach to minimizing total weighted tar-

diness with release dates. IIE Transactions, 32:1091–1101, 2000.

[4] M.S. Aktürk and D. Özdemir. A new dominance rule to minimize total weighted tardi-

ness with unequal release dates. European Journal of Operational Research, 135:394–

412, 2001.

[5] A. Allahverdi, J.N.D. Gupta, and T. Aldowaisan. A review of scheduling research

involving setup considerations. Omega, International Journal of Management Science,

27:219–239, 1999.

[6] A. Allahverdi, C.T. Ng, T.C.E. Cheng, and M.Y. Kovalyov. A survey of schedul-

ing problems with setup times or costs. European Journal of Operations Research,

187:985–1032, 2008.

[7] A.B.C. Altunc and A.B. Keha. Interval-indexed formulation based heuristics for sin-

gle machine total weighted tardiness problem. Computers and Operations Research,

36:2122–2131, 2009.

[8] D. Anghinolfi and M.A. Paolucci. A new ant colony optimization approach for the

single machine total weighted tardiness scheduling problem. accepted for publication

on International Journal of Operations Research.

Bibliography 62

[9] D. Anghinolfi and M.A. Paolucci. A new discrete particle swarm optimization ap-

proach for the single machine total weighted tardiness scheduling problem with se-

quence dependent setup times. European Journal of Operational Research, 193:73–85,

2009.

[10] V.A Armanento and R.A. Mazzini. A genetic algorithm for scheduling on a single

machine set-up times and due dates. Production Planning and Control, 11(7):713–

720, 2000.

[11] K.R. Baker and L.R. Schrage. Finding an optimal sequence by dynamic program-

ming:an extension to precedence-related tasks. Operations Research, 26:111–120, 1978.

[12] N. Balakrishnan, J. Patterson, and V. Sridharan. Rationing capacity between two

product classes. Decision Sciences, 27(2):185–214, 1996.

[13] N. Balakrishnan, J. Patterson, and V. Sridharan. An experimental comparison of

capacity rationing models. International Journal of Production Research, 35(6):1639–

1649, 1997.

[14] N. Balakrishnan, J. Patterson, and V. Sridharan. Robustness of capacity rationing

policies. European Journal of Operational Research, 115:328–338, 1999.

[15] Y Bartal, S. Leonardi, A.M. Spaccamela, J. Sgall, and L. Stougie. Multi-processor

scheduling with rejection. SIAM Journal on Discrete Mathematics, 13:64–78, 2000.

[16] U. Bilge, F. Kirac, M. Kurtulan, and P. Pekgun. A tabu search algorithm for parallel

machine total tardiness problem. Computers and Operations Research, 31:397–414,

2003.

[17] U. Bilge, M. Kurtulan, and F. Kirac. A tabu search algorithm for single machine total

weighted tardiness problem. European Journal of Operational Research, 176:1423–

1435, 2007.

Bibliography 63

[18] W. Bozejko. Parallel path relinking method for the single machine total weighted tar-

diness problem with sequence-dependent setups. Journal of Intelligent Manufacturing,

doi 10.1007/s10845-009-0253-2, 2009.

[19] W. Bozejko, J. Grabowski, and M. Wodecki. Block approach-tabu search algorithm

for single machine total weighted tardiness problem. Computers and Industrial Engi-

neering, 50:1–14, 2006.

[20] T.Y. Chang, F.D. Chou, and C.E. Lee. A heuristic algorithm to minimize total

weighted tardiness on a single machine with release dates and sequence-dependent

setup times. Journal of Chinese Institute of Industrial Engineers, 21(3):289–300,

2004.

[21] K. Charnsirisakskul, P. Griffin, and P. Keskinocak. Order selection and scheduling

with leadtime flexibility. IIE Transactions, 36:697–707, 2004.

[22] K. Charnsirisakskul, P. Griffin, and P. Keskinocak. Pricing and scheduling decisions

with leadtime flexibility. European Journal of Operational Research, 171:153169, 2006.

[23] Y.S. Cheng and S.J. Sun. Scheduling linear deteriorating jobs with rejection on a

single machine. European Journal of Operational Research, 194:18–27, 2009.

[24] F.F. Choobineh, E. Mohebbi, and H. Khoo. A multi-objective tabu search for a single-

machine scheduling problem with sequence dependent setup times. European Journal

of Operational Research, 175:318–337, 2006.

[25] C. Chu. A branch and bound algorithm to minimize total tardiness with unequal

release dates. Naval Research Logistics, 39:265–283, 1992.

[26] J. Chuzsoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the job

interval selection problem and related scheduling problems. IEEE Symposium on

Foundations of Computer Science(FOCS), pages 348–356, 2001.

Bibliography 64

[27] V.A. Cicirello. Weighted tardiness scheduling with sequence-dependent setups: a

benchmark library. Technical Report, Intelligent Coordination and Logistics Labora-

tory, Robotics Institute, Carnegie Mellon University, USA, 2003.

[28] V.A. Cicirello. Non-wrapping order crossover: An order preserving crossover oper-

ator that respects absolute position. Proceeding of GECCO06 Conference, Seattle,

Washington, USA, pages 1125–1131, 2006.

[29] V.A. Cicirello and S.F. Smith. Enhancing stochastic search performance by value-

based randomization of heuristics. Journal of Heuristics, 11:5–34, 2005.

[30] R.K. Congram, C.N. Potts, and S.L. Van de Velde. An iterated dynasearch algorithm

for the single-machine total weighted tardiness scheduling problem. Informs Journal

on Computing, 14(1):52–67, 2002.

[31] H.A.J. Crauwels and C.N. Potts. Local search heuristic for the single machine total

weighted tardiness scheduling problem. INFORMS Journal on Computing, 10(3):341–

350, 1998.

[32] P. De, J.B. Ghosh, and C. Wells. Job selection and sequencing on a single machine in

a random environment. European Journal of Operational Research, 70:425–431, 1993.

[33] G. Dosa and Y. He. Scheduling with machine cost and rejection. Journal of Combi-

natorial Optimization, 12:337–350, 2006.

[34] J. Du and J.Y.T. Leung. Minimizing total tardiness on one machine is NP-hard.

Mathematics of Operations Research, 15(3):483–495, 1990.

[35] M.J.R. Ebben, E.W. Hans, and F.M. Olde Weghuis. Workload based order acceptance

in job shop environments. OR Spectrum, 27:107–122, 2005.

[36] H. Emmons. One-machine sequencing to minimize certain functions of job tardiness.

Operations Research, 17:701–715, 1969.

Bibliography 65

[37] D.W. Engels, D.R. Karger, S.G. Kolliopoulos, S. Sengupta, R.N. Uma, and J. Wein.

Techniques for scheduling with rejection. Journal of Algorithms, 49:175–191, 2003.

[38] L. Epstein, J. Noga, and G.J. Woeginger. On-line scheduling of unit time jobs with

rejection: Minimizing the total completion time. Operations Research Letters, 30:415–

420, 2002.

[39] M.L. Fisher. A dual problem for the one machine scheduling problem. Mathematics

Programming, 11:229–251, 1969.

[40] P.M. Franca, A. Mendes, and P.A. Moscato. A memetic algorithm for the total tardi-

ness single machine scheduling problem. European Journal of Operational Research,

132(1):224–242, 2001.

[41] C. Gagne, W. Price, and M. Gravel. Comparing an ACO algorithm with other heuris-

tics for the single machine scheduling problem with sequence-dependent setup times.

Journal of the Operational Research Society, 53:895–906, 2002.

[42] J.B. Ghosh. Job selection in a heavily loaded shop. Computers and Operations Re-

search, 24(2):141–145, 1997.

[43] F. Glover. Future paths for integer programming and links to artificial intelligence.

Computers and Operations Research, 13:533–543, 1986.

[44] A. Grosso, F. Della Croce, and R. Tadei. An enhanced dynasearch neighborhood for

the single-machine total weighted tardiness scheduling problem. Operations Research

Letters, 32:68–72, 2004.

[45] H.H. Guerrero and G.M. Kern. How to more effectively accept and refuse orders.

Production and Inventory Management Journal, 29(4):59–63, 1988.

[46] S.K. Gupta, J. Kyparisis, and C.M. Ip. Project selection and sequencing to maximize

net present value of the total return. Management Science, 38(5):751–752, 1992.

Bibliography 66

[47] S.R. Gupta and J.S. Smith. Algorithms for single machine total tardiness scheduling

with sequence dependent setups. European Journal of Operational Research, 175:722–

739, 2006.

[48] J.E. Holsenback, R.M. Russel, R.E. Markland, and P.R. Philipoom. An improved

heuristic for the single machine, weighted-tardiness problem. Omega, 27(4):485–495,

1999.

[49] H. Hoogeveen, M. Skutella, and G.J. Woeginger. Preemptive scheduling with rejection.

Mathematics Programming, 94:361–374, 2003.

[50] C. Ivanescu, J.C. Fransoo, and J.W.M. Bertrand. Makespan estimation and order

acceptance in batch process industries when processing times are uncertain. OR

Spectrum, 24:467–495, 2002.

[51] C. Ivanescu, J.C. Fransoo, and J.W.M. Bertrand. A hybrid policy for order acceptance

in batch process industries. OR Spectrum, 28:199–222, 2006.

[52] R.J.W. James and J.T. Buchanan. Performance enhancements to tabu search for the

early/tardy scheduling problem. European Journal of Operational Research, 106:254–

265, 1998.

[53] A.H.G. Rinnoy Kan. Machine scheduling problems: Classification, complexity and

computations. Nijhoff, The Hague, 1976.

[54] A.H.G. Rinnoy Kan, B.J. Lageweg, and J.K. Lenstra. Minimizing total cost in one-

machine scheduling. Operations Research, 23(5):908–927, 1975.

[55] S.Y. Kim, Y.H. Lee, and D. Agnihotri. A hybrid approach to sequencing jobs using

heuristic rules and neural networks. Production Planning Control, 6(4):445–454, 1995.

[56] B.G. Kingsman. Modelling input-output workload control for dynamic capacity plan-

ning in production planning systems. International Journal of Production Economics,

68:73–93, 2000.

Bibliography 67

[57] A.J. Kleywegt and J.D. Papastavrou. The dynamic and stochastic knapsack problem.

Operations Research, 46(1):17–35, 1998.

[58] A.J. Kleywegt and J.D. Papastavrou. The dynamic and stochastic knapsack problem

with random sized items. Operations Research, 49(1):26–41, 2001.

[59] C. Koulamas. The total tardiness problem: review and extensions. Operations Re-

search, 42:1025–1041, 1994.

[60] C. Koulamas. Polynomially solvable total tardiness problems: Review and extensions.

Omega, International Journal of Management Science, 25(2):235–239, 1997.

[61] C. Koulamas and G.J. Kyparisis. Single machine scheduling with release times, dead-

lines and tardiness objectives. European Journal of Operational Research, 133:447–

453, 2001.

[62] M. Gamache L.-P. Bigras and G. Savard. Time-indexed formulations and the total

weighted tardiness problem. INFORMS Journal on Computing, 20(1):133–142, 2008.

[63] M. Laguna, J.W. Barnes, and F. Glover. Tabu search methods for single machine

scheduling problem. Journal of Intelligent Mnufacturing, 2:63–74, 1991.

[64] E.L. Lawler. On scheduling problems with deferral costs. Management Science,

11:280–288, 1964.

[65] E.L. Lawler. A pseudo-polynomial algorithm for sequencing jobs to minimize total

tardiness. Annals of Discrete Mathematics, 1:331–342, 1977.

[66] E.L. Lawler. Efficient implementation of dynamic programming algorithms for se-

quencing problems. Report BW 106. Mathematisch Centrum, Amsterdam, 1979.

[67] Y.H. Lee, K. Bhaskaran, and M. Pinedo. A heuristic to minimize the total weighted

tardiness with sequence dependent setups. IIE Transactions, 29:45–52, 1997.

Bibliography 68

[68] Y.H. Lee and M. Pinedo. Scheduling jobs on parallel machines with sequence depen-

dent setup times. European Journal of Operational Research, 100:464–474, 1997.

[69] H.F. Lewis and S.A. Slotnick. Multi-period job selection: planning work loads to

maximize profit. Computers and Operations Research, 29:1081–1098, 2002.

[70] C.J. Liao and H.C Juan. An ant colony optimization for single machine tardiness

scheduling with sequence dependent setups. Computers and Operations Research,

34:1899–1909, 2007.

[71] S.W. Lin and K.C. Ying. Solving single-machine total weighted tardiness problems

with sequence-dependent setup times by meta-heuristics. Journal of Advanced Man-

ufacturing Technology, 34:1183–1190, 2007.

[72] A.G. Lockett and A.P. Muhlemann. Technical notes: A scheduling problem involving

sequence dependent changeover times. Operations Research, 20(4):895–902, 1972.

[73] L.F. Lu, L.Q. Zhang, and J.J. Yuan. The unbounded parallel batch machine scheduling

with release dates and rejection to minimize makespan. Theoretical Computer Science,

396:283–289, 2008.

[74] R. McNaughton. Scheduling with deadlines and loss functions. Management Science,

6:1–12, 1959.

[75] M. Mika, G. Waligora, and J. Weglarz. Tabu search for multi-mode resource-

constrained project scheduling with schedule-dependent setup times. European Jour-

nal of Operational Research, 187:1238–1250, 2008.

[76] M. Mitchell. An Intoduction to Genetic Algorithms. MIT Press, Cambridge, MA,

1996.

[77] A. Nagar, J. Haddock, and S. Heragu. Multiple and bicriteria scheduling: A literature

survey. European Journal of Operational Research, 81:88–104, 1995.

Bibliography 69

[78] F. Talla Nobibon, J. Herbots, and R. Leus. Order acceptance and scheduling in a

single-machine environment: exact and heuristic algorithms. Working paper KBI-

0903,K.U.Leuven., 2009.

[79] E. Nowicki and S. Zdrzalka. Single machine scheduling with major and minor setup

times: a tabu search approach. Journal of Operational Research Society, 47:1054–

1064, 1996.

[80] C. Oğuz, F. S. Salman, and Z. B. Yalcin. Order acceptance and scheduling decisions in

make-to-order systems. International Journal of Production Economics, 125(1):200–

211, 2010.

[81] S. Panwalkar, R. Dudek, and M. Smith. Symposium on the theory of scheduling and

its applications. Springer-Verlag, New York, pages 29–38, 1973.

[82] J.D. Papastavrou, S. Rajagopalan, and A.J. Kleywegt. The dynamic and stochastic

knapsack problem with deadlines. Management Science, 42(12):1706–1718, 1996.

[83] A. Pessoa, E. Uchoa, M. Poggi de Arago, and R. Rodrigues. Algorithms over arc-time

indexed formulations for single and parallel machine scheduling problems. Technical

Report RPEP Vol. 8 no. 8, Universidade Federal Fluminense, Engenharia de Produ-

cao, Niteroi, Brazil, 2008.

[84] C.N. Potts and L.N. van Wassenhove. A branch and bound algorithm for the total

weighted tardiness problem. Operations Research, 33(2):363–377, 1984.

[85] C.N. Potts and L.N. van Wassenhove. Single macine tardiness sequencing heuristics.

IIE Transactions, 23(4):346–354, 1991.

[86] W.H.M. Raaymakers, J.W.M. Bertrand, and J.C. Fransco. The performance of work-

load rules for order acceptance in batch chemical manufacturing. Journal of Intelligent

Manufacturing, 11:217–228, 2000.

Bibliography 70

[87] W.H.M. Raaymakers, J.W.M. Bertrand, and J.C. Fransco. Using aggregate estimation

models for order acceptance in a decentralized production control structure for batch

chemical manufacturing. IIE Transactions, 32:989–998, 2000.

[88] W. Rom and S.A. Slotnick. Order acceptance using genetic algorithms. Computers

and Operations Research, 36:1758–1767, 2009.

[89] R. Roundry, D. Chen, P. Chen, and M. Cakanyildirim. Capacity-driven acceptance

of customer orders for a multi-stage batch manufacturing system: Models and algor-

tihms. IIE Transactions, 37:1093–1105, 2005.

[90] P.A. Rubin and G.L. Ragatz. Scheduling in a sequence dependent setup environment

with genetic search. Computers and Operations Research, 22(1):85–99, 1995.

[91] S. Seiden. Preemptive multiprocessor scheduling with rejection. Theoretical Computer

Science, 262:437–458, 2001.

[92] T. Sen, J.M. Sulek, and P. Dileepan. Static scheduling research to minimize weighted

and unweighted tardiness: a state-of-the-art survey. International Journal of Produc-

tion Economics, 83:1–12, 2003.

[93] S. Sengupta. Algorithms and approximation schemes for minimum lateness/tardiness

scheduling with rejection. Lecture Notes in Computer Science, 2748:79–90, 2003.

[94] L. Shild and K.R. Fredman. On scheduling tasks with associated linear loss functions.

Management Science, 7:280–285, 1961.

[95] S.A. Slotnick and T. E. Morton. Order acceptance with weighted tardiness. Computers

and Operations Research, 34(10):3029–3042, 2007.

[96] S.A. Slotnick and T.E. Morton. Selecting jobs for a heavily loaded shop with lateness

penalties. Computers and Operations Research, 23(2):131–140, 1996.

Bibliography 71

[97] X. Sun, J.S. Nobble, and C.M Klein. Single machine scheduling with sequence depen-

dent setup to minimize total weighted squared tardiness. IIE Transactions, 31(2):113–

124, 1999.

[98] K.C. Tan, R. Narasimhan, P.A. Rubin, and G.L. Ragatz. A comparison of four

methods for minimizing total tardiness on a single processor with sequence dependent

setup times. Omega, 28(3):313–326, 2000.

[99] S. Tanaka, S. Fujikuma, and A. Mituhiko. An exact algorithm for single-machine

scheduling without machine idle time. Journal of Scheduling, 12(6):575–593, 2009.

[100] M.F. Tasgetiren, Q.K. Pan, and Y.C. Liang. A discrete differential evolution algorithm

for the single machine total weighted tardiness problem with sequence dependent setup

times. Computers and Operations Research, 36:1900–1915, 2009.

[101] H.A. ten Kate. Towards a better understanding of order acceptance. International

Journal of Production Economics, 37:139–152, 1994.

[102] H.A. ten Kate. Order acceptance and production control. Ph.D. thesis, University of

Groningen, 1995.

[103] J.M.S. Valante and R.A.F.S. Alves. Beam search algorithms for the single machine

total weighted tardiness scheduling problem with sequence-dependent setups. Com-

puters and Operations Research, 35:2388–2405, 2008.

[104] A.P.J. Vepsalainen and T.E. Morton. Priority rules for job shops with weighted

tardiness costs. Management Science, 33(8):1035–1047, 1987.

[105] G. Wan and B.P.C. Yen. Tabu search for single machine scheduling with distinct due

windows and weighted earliness/tardiness penalties. European Journal of Operational

Research, 142:271–281, 2002.

[106] W. Wester, J. Wijngaard, and M. Zijm. Order acceptance strategies in a production-

to-order environment with setup times and due-dates. International Journal of Pro-

duction Research, 30:1313–1326, 1992.

Bibliography 72

[107] D.L. Woodruff and M.L. Spearman. Sequencing and batching for two classes of jobs

with deadlines and setup times. Production and Operations Mangement, 1(1):87–102,

1992.

[108] D.B. Wortman. Managing capacity: getting the most from your company’s assets.

Industrial Engineering, 24(2):47–49, 1992.

[109] M.C. Wu and S.Y. Chen. A cost model for justifying the acceptance of rush orders.

International Journal of Production Research, 34:1963–1974, 1996.

[110] M.C. Wu and S.Y. Chen. A multiple criteria decision-making model for justifying the

acceptance of rush orders. Production Planning and Control, 8:753–761, 1997.

[111] K. Xu, Z. Feng, and K. Jun. A tabu search algorithm for scheduling jobs with con-

trollable processing times on a single machine to meet due dates. Computers and

Operations Research, doi:10.1016/j.cor.2009.11.012, 2010.

[112] X.Wang and L. Tang. A popultion-based variable neighborhood search for the sin-

gle machine total weighted tardiness problem. Computers and Operations Research,

36:2105–2110, 2009.

[113] Z. Bilgintürk Yalcin. Order selection and scheduling decisions in make-to-order sys-

tems. M.Sc. thesis, Koc University.

[114] B. Yang and J. Geunes. A single resource scheduling problem with job-selection

flexibility, tardiness costs and controllable processing times. Computers and Industrial

Engineering, 53(2):420–432, 2007.

[115] W.H. Yang and C.J. Liao. Survey of scheduling involving setup times. International

Journal of Systems Science, 30(2):143–155, 1999.

[116] L. Zhang, L. Lu, and J. Yuan. Single machine scheduling with release dates and

rejections. European Journal of Operational Research, 198:975–978, 2009.

Vita 73

VITA

Bahriye Cesaret was born in Haskova, Bulgaria on April 20, 1985. She graduated from

Lüleburgaz Anatolian High School in 2003. She received his B.Sc. degree in Industrial

Engineering from Istanbul Technical University, Istanbul, in 2008. Same year, she joined

the M.Sc. program in Industrial Engineering at Koç University and from September 2008 to

August 2010, she worked as a teaching and research assistant at Koç University, Turkey. She

has recently produced papers for the conferences PMS (Tours, France), YAEM (Istanbul,

Turkey) and EURO XXIV (Lisbon, Portugal) in 2010 and submitted the results of this

thesis to Computers andOperations Research which is under the second revision. Next year,

she will be a Ph.D. candidate at School of Management of University of Texas at Dallas.

