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Koç University

July, 2010
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ABSTRACT

In this study, different ambulance dispatching policies are tested by a simulation model

for the post-disaster ambulance dispatching problem. After an expected earthquake in

Istanbul, many people would be trapped under the collapsed buildings. While the rescue

efforts continue, a massive number of patients would need to be transported from the affected

areas to the hospitals by ambulances. Consequently, ambulances would be overwhelmed

by the transportation requests. Our objective is to assess the performance of different

ambulance dispatching policies, by simulating the ambulance dispatching operations in seven

districts of Istanbul and their neighborhoods. There are two performance criteria. The first

one is the overall average response time. Response time is divided into two. First one is the

elapsed time from the rescue of the patient till the arrival of the patient to the emergency unit

at a hospital (RTH), while the second one considers the time between rescue of the patient

and leaving time of emergency department of the patient (RTT ). The second criterion is the

overall average service level. It is also divided into two based on reaching to hospital (SL1),

and transferring the patient out of the emergency department (SL2). The rescue times

of the patients, their first-treatment durations and travel times are represented as random

variables. Real road data is used for setting the distances between neighborhoods and

neighborhood isolation risks are also considered while establishing travel times. The tested

ambulance dispatching policies are first-called-first-served (FCFS), shortest-distance-first

(SDF), and most-critical-patients-first (MCPF). SDF dispatching policy works by assigning

the ambulances to the nearest patients based on expected travel times. MCPF policy

initially sorts people based on one of the three injury types, and assigns the ambulance to the

nearest patient if there is a tie from the injury types. In the base case, we run the simulation
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model assuming the availability of real-time information. The results show that SDF policy

performs the best in terms of average service time but has problems with fairness. We

analyze several what-if scenarios to investigate the effects of periodic information update,

decreased travel times and inclusion of hospital emergency treatment times in separate

cases. Our results indicate that intensive communication between ambulance drivers and

hospital emergency coordinators is necessary to improve performance. Also, there is a

need for additional ambulances to ensure effective transportation of victims to the hospitals

and it is shown that average service times are highly sensitive to the balance between

number of patients and number of ambulances. Moreover, opening temporary emergency

hospitals in some neighborhoods would serve as a beneficial strategy increasing fairness

among neighborhoods.



ÖZET

Bu çalışmada, felaket sonrası ambulans yönlendirme problemi için benzetim yolu ile

farklı ambulans yönlendirme stratejileri test edilmiştir. Beklenen İstanbul depremi son-

rası binlerce insanın yıkılan binaların altında kalacağı tahmin edilmektedir. Kurtarma

çalışmaları devam ederken yaralıların büyük kısmının ambulanslar ile deprem bölgesinden

hastanelere taşınması gerekeceği ön görülmektedir. Buna bağlı olarak çoğu yerde ambu-

lans ihtiyacı çok yüksek seviyelere çıkacaktır. Bizim amacımız, İstanbul’un yedi ilçe ve

onların mahallelerinde ambulans yönlendirme operasyonu benzetimi ile farklı ambulans

yönlendirme stratejilerinin performansını değerlendirmektir. İki adet performans kıstası

mevcuttur. Birincisi ortalama servis süresidir. Servis süresi iki tip olarak ele alınmıst ır.

Birincisi, bir yaralının kurtarılışından ambulans ile birlikte hastanenin acil servis birimine

varışına kadar geçen süre iken (RTH), ikincisi yaralının kurtarılışından hastane acil servisin-

den ayrılmasına kadar geçen süreyi kapsar (RTT ). İkinci kıstas ise servis oranıdır. Bu

kıstas da ikiye ayrılmıştır. Birincisi hastaneye ulaşma durumu ile ilgili iken (SL1), diğeri

ise acil servisten ayrılma süresini baz almaktadır (SL2). Yaralıların kurtarılış süreleri,

ilk yardım süreci ve yolculuk süresi rasgele değişkenler olarak ele alınmıştır. Mahalleler

arasındaki mesafeyi görmek için gerçek yol bilgisi kullanılırken mahalle izole olma risk-

leri de yolculuk süresini belirlemek için göz önünde bulundurulmuştur. Test edilmiş am-

bulans yönlendirme stratejileri şu şekildedir: İlk-çağrıya-ilk-hizmet (FCFS), en-yakına-en-

önce-hizmet (SDF) ve kritik-yaralıya-hizmet-önceliği (MCPF). SDF yönlendirme strate-

jisi ambulansı beklenen yol süresine göre en yakın yaralılara yönlendirme esası ile çalışır.

MCPF stratejisi, triaj işlemi ile üç yara derecesinden en ağır yara derecesine sahip olan

yaralıya en yakın ambulansı gönderir. Bu çalışmanın esasında benzetim modelini gerçek za-
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manlı bilgi akışını varsayarak çalıştırmaktayız. Sonuçlar SDF stratejisinin ortalama servis

süresi açısından en iyi yöntem olduğunu göstermekle beraber adaletli olma konusunda prob-

lemler gözlenmiştir. Periyodik bilgi güncellemelerinin, azalan yolculuk süresinin ve has-

tane acil yardım bakım sürelerinin sürece dahil edilişinin etkilerini araştırmak için ayrı

ayrı vakalarda birçok “ya öyle olursa” senaryosu inceledik. Vardığımız sonuç, ambulans

şoförleri ile hastane acil yardım koordinatörlerinin yoğun iletişimde olmalarının performansı

artırmak için kaçınılmaz olduğunu göstermektedir. Aynı zamanda mağdurların hastanelere

etkin ulaşımını sağlamak için ilave ambulanslara ihtiyaç duyulmaktadır ve ortalama servis

süresinin de yaralı-ambulans sayısının dengesinden son derece etkilendiği ortaya çıkmıştır.

Bunun dışında, mahalleler arasında adil hizmet dağılımını sağlamak adına yararlı bir strateji

de bazı mahallelerde geçici acil yardım hastaneleri kurmak olacaktır.
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Chapter 1

INTRODUCTION

Istanbul, a metropolitan city with approximately thirteen million inhabitants, is under

the impending threat of a catastrophic earthquake. In the aftermath of such an event, thou-

sands of injured people would be seeking medical assistance. A massive number of patients

need to be transported from casualty locations to hospitals by the ambulances. Patient

transportation in daily emergency situations is a widely studied problem. Particularly, the

initial deployment and dispatching of ambulances have been addressed extensively in the

literature. In every day emergencies, since the number of injuries is not so high, patients are

typically served in first-called-first-served order. However, in a mass casualty incident such

as an earthquake, the sudden surge in demand that overwhelms the emergency response

capacity complicates the problem.

A disaster is a perceived tragedy, being either a natural calamity or a man-made catastro-

phe. Disaster management activities can be considered in the four categories of mitigation,

preparedness, response, and recovery [4]. In particular, emergency response is critical since

the lives of many people depend on providing quick and effective services. Transportation

of patients to medical facilities is a post-disaster response activity, for which pre-disaster

preparedness increases its effectiveness. There are many uncertainties when preparing for

a disaster. In the case of an earthquake, some of these uncertainties are: the Richter scale

of the earthquake, the number of injuries occur in each neighborhood, road and traffic con-

ditions, the outcome of the rescue efforts that generate the patient arrival stream, etc. In

spite of the criticality of preparedness and planning, studies that incorporate the related

uncertainties into the disaster response activities are few in number.
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In this thesis, our objective is to assess the expected performance of the current med-

ical emergency response system in response to a expected major earthquake in Istanbul.

Specifically, our aim is to evaluate several ambulance dispatching strategies. In addition to

assessing the ’sufficiency’ of the current resources and response strategies, we are interested

in evaluating various improvement options such as increasing the number of available am-

bulance units and establishing temporary emergency units to respond to the needs of the

earthquake victims.

We use two performance criteria in evaluating system performance. The first one is

related to overall effectiveness of the response system and is measured by the average rescue

to hospital time and average rescue to transfer time (transfer out of the emergency depart-

ment in the hospital). Rescue-to-hospital-time (RTH) spans the time from the time that

the patient was rescued until the arrival of the patient to a hospital with an ambulance while

Rescue-to-transfer-time (RTT ). The second criterion is service level. It is the measurement

of percentage of patients served in five days. Service level performance criterion is divided

into two categories which are SL1 and SL2 based on patient’s reaching to hospital time

and transfer out of the emergenceny department respectively.

We simulate the transportation of patients after an expected earthquake in seven districts

of Istanbul that have higher earthquake damage risk. The studied districts are Bahçelievler,

Güngören, Zeytinburnu, Bağcılar, Esenler, Bayrampaşa and Bakırköy. These districts have

a total of 99 neighborhoods. These areas form an almost-convex region and are also highly

vulnerable to the expected earthquake. We have assumed a closed system, which means

that the resources of the studied seven districts can not be used by outer areas and the

demand of the studied areas can only be served by the supply in this area.

Due to the high number of injuries, the ambulance service system is expected to be

overwhelmed after the disaster. The services would be impeded by adverse road and traffic

conditions. It is likely that some roads will suffer traffic congestion. Further, some roads

may be partially or totally damaged, or may be blocked by collapsed buildings. Dispatching

policies other than FCFS may be necessary in this extra-ordinary environment. We aim to
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capture the post-disaster conditions realistically by using previous earthquake risk analysis

and actual road data, and incorporate them into the policies. Therefore, we have offered

two alternative policies which are shortest-distance-first (SDF) and most-critical-patient-

first (MCPF). In SDF policy, an ambulance is assigned to the patient whose location is

nearest based on the expected travel times to the ambulance location. In MCPF policy,

ambulances are assigned to the patients based on the severity of patients’ injuries and more

critically injured patients are served first.

The data set of the simulation model for the seven districts is based on the JICA report

[3], master thesis of Sezer Gül [1] and ArcGIS Istanbul road map [2]. The JICA report is

prepared by the Japanese International Cooperation Agency for Istanbul Metropolitan Mu-

nicipality. In this report, most likely earthquake scenarios have been identified and damage

estimates are given. We use the ’ratio of heavily damaged buildings for each neighborhood’

from the JICA report to estimate the number of injuries of neighborhoods; and the ’isolation

probabilities for each neighborhood’ from the JICA report to estimate the average travel

time between neighborhoods. The time interval that is studied in this simulation spans the

five days after the disaster strikes.

The remainder of this thesis is organized as follows. In Chapter 2, a brief description of

the previous studies that are related to emergency medical transportation, disaster patient

transportation, dispatching and deployment decisions and emergency vehicle simulation are

given. In Chapter 3, the data set preparation, model assumptions and methodology are

presented. In Chapter 4, the results are presented. We test different dispatching policies

under varying parameters and realistic conditions, and system improvement options are

tested by adding temporary emergency hospitals and new ambulances to the emergency

service system. In the end, Chapter 5 gives a summary with concluding remarks.
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Chapter 2

LITERATURE REVIEW

Some accidents or unexpected events occur and someone may get injured or many peo-

ple demand periodic controls and both of which require an ambulance in order to get to

the hospital. In that case, the deployment of ambulances and dispatching of them is not a

trivial problem because in general, ambulances are not overwhelmed by the requests. There-

fore, FCFS policy is implemented in daily life by assigning the closest idle ambulance to

the earliest request. However, in the case of a post-disaster situation, dispatching problem

becomes very complicated. In catastrophic disasters, ambulances are not enough to answer

all the requests by FCFS manner due to heavy load of patients. Consequently, there are

many studies about daily life emergency dispatching problem while there are limited num-

ber of studies for post-disaster cases. One of the latest medical review papers is written by

Brandeau et al. [5]. In their review, the authors examined a large section of best practice

guidelines for diverse models used in health sector responses to disasters. They have catego-

rized the related literature based on disaster, modeling methodology, geographical setting,

and purpose of study. This review paper is useful to understand the different approaches

in disaster management. The authors concluded that the models should address real-time

situations, be designed for maximum usability, and must have good model reporting. In

our study, we try to use this review’s fundamental conclusions.

2.1 Emergency management strategies for non-disaster cases

In the literature, there are many studies on everyday emergency medical services. One of

the related papers to our work Haghani et al.[6]. In their paper, the authors concentrate

on developing an optimization model for flexible dispatching strategies that take advantage
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of real-time traffic information. They formulated their problem as an integer programming

problem, and a simulation experiment is conducted in order to provide a conceptual design of

a real-time EMS system. In the simulation, alternative assignment strategies were analyzed

to test the performance of this model under various circumstances, namely, different accident

occurrence rates, route change strategies and dynamic travel times. Two of their studied

ambulance dispatching policies are the same with our dispatching policies which are FCFS

and nearest origin assignment policy. The name of the second policy is SDF policy in our

study. Their model does not include post-disaster situation but includes useful insights on

emergency vehicle dispatching. In our case, no real-time traffic information is present so

direct application of their model to our problem is not feasible.

Andersson and Varbrand [7] is one of the latest papers on emergency response. The

authors describe the development of decision support tools for automatic ambulance dis-

patching and dynamic ambulance relocation. They explain the ambulance dispatching prob-

lem as choosing which ambulance to send to a patient. The authors develop an algorithm

based on priorities of the calls, and try to establish a decision support tool based on this

algorithm in order to minimize waiting times of the patients. The first part of this work

is directly related to our paper but their algorithm is not suitable to implement in large

scale incidents. Their second contribution is the dynamic ambulance relocation problem,

which occurs in the operational control of ambulances. The authors try to evaluate the set

of ambulance station locations. Their claim is that, not all ambulance calls are urgent, and

non-urgent transportations can be ordered several days in advance, making it possible to

perform some sort of transportation planning. They perform computational tests using a

simulation model to show that the tools are beneficial in reducing the waiting periods for

the patients.

Maxwell et al.[8] claim that the increasing availability of geographic information sys-

tems and the increasing affordability of computing power have created ideal conditions

for bringing real-time ambulance redeployment approaches to productive implementation.

Therefore, they present an approximate dynamic programming approach for making real-
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time ambulance redeployment decisions in an emergency medical service system. Their

main decision is where idle ambulances should be redeployed so as to maximize the number

of calls reached within a delay threshold. They formulate a dynamic program that involves

a high-dimensional and uncountable state space, and the difficulty arising from those factors

are overcome by approximations to the value function that are parameterized by a small

number of parameters.

2.2 Emergency management strategies for disaster cases

The studies mentioned above are not related to the disaster cases. For a disaster situation,

there has been quite a number of studies on casualty transportation by medical emergency

services. The previous work of this thesis is also related to post-disaster disaster patient

transportation problem and is performed by the thesis of Sezer Gül [1]. In Gül’s thesis,

dynamic integer programming model is performed for the post-disaster patient transporta-

tion problem is performed, and the results present the locations and the capacities of post

disaster temporary emergency hospitals which are going to be opened after the expected

earthquake in Istanbul. Besides, decision of patients’ transportation to hospitals is per-

formed dynamically. The capacities of emergency units and the locations of ambulances are

updated continuously.

In their paper, Haghani and Oh [9] have addressed the issue of a multi-commodity,

multi-modal network problem with time windows for post-disaster operations. Basically,

the authors deal with determining the detailed routing and scheduling of the available

transportation modes, delivery schedules of the various commodities at their destinations,

and the load plans for each of the transportation modes. They have developed two heuristic

algorithms, one of which deals with utilizing an inherent network structure of the problem

with a set of side constraints and the other solves the problem with an interactive fix-and-run

heuristic. Fiedrich et al. [10] consider the overall logistics problem after a disaster. Their

main goal is to minimize the total number of fatalities. The authors offer a dynamic opti-

mization model called ALLOCATE for this problem. This model classifies the operational
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areas as SAR (search and rescue), stabilizing and immediate rehabilitation. Moreover, they

also classify depots, hospitals and crossroads. Their model is influenced by several factors

like survival rate for trapped victims, probability of secondary disasters, survival rate of

rescued persons without medical treatment, transportation time and time to complete the

work. The authors do not offer an exact method, but propose different heuristics to solve

the model, and they claim that simulated annealing is the best.

Barbarosoglu and Arda [11] also developed a multi-commodity, multi-modal network

flow formulation to describe the flow of material over an urban transportation network.

Essentially, their paper proposes a two-stage stochastic programming model to plan the

transportation of vital first-aid commodities to disaster-affected areas during emergency

response. The authors address the problem of planning the transportation of vital first-aid

commodities and emergency personnel to the disaster-affected areas by developing a generic

modeling framework. Due to the uncertainty character of a post-earthquake situation, they

treated this problem as a stochastic problem where randomness arises not only from demand

but also from supply and route capacity perspectives as well.

Yi and Kumar [12] used a heuristic model to solve the post-disaster transportation prob-

lem with Ant Colony Optimization Algorithm. The authors combined the transportation

of patients and supplies. Depending on the service rates, some hospitals have long queues.

Gong et al. [13] describe the concept of ‘data fusion‘ as the science of efficiently orga-

nizing and interpreting massive amounts of data. The authors use this concept as a core

to develop a dispatching and routing method for emergency vehicles in a disaster environ-

ment. In their model, they consider the patient priority, cluster information and distance

as the influencing factors. The information of casualties and the road status is reported by

sensors while the information on each patient is composed of his/her location and injury

class. Casualties are classified into three priority categories of severe, moderate and mild

injuries. Information on each link (road) is composed of its level of damage and the prob-

ability associated with it. In addition, the authors also consider the waiting time at the

hospital. Gong and Batta [14] consider ambulance allocation and reallocation models for a
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post-disaster relief operation. The authors use a deterministic model for a disaster strike

to allocate the ambulances to each cluster initially. The problem differs from Gong’s PhD

thesis [15] by adjusting a set of ambulances serve only one cluster until the cluster no longer

exists which means that the ambulances must serve all the patients in that cluster till the

end. The authors also study the problem of reallocating ambulances between clusters as

the disaster evolves.

2.3 Triage

Triage is the process of prioritizing patients based on the severity of their condition. This

rations patient treatment efficiently when resources are insufficient for all to be treated im-

mediately. Jenkins et al. [16] indicate that mass-casualty triage is developed as a wartime

necessity at first and later, it has become a civilian tool. They indicate that, several triage

tools have been developed, however evidence to support the use of one triage algorithm

over another is limited. The reason is that no studies evaluated existing mass-casualty

triage algorithms regarding ease of use, reliability, and validity when biological, chemical,

or radiological agents are introduced. The purpose of their paper is to explain the devel-

opment of mass-casualty triage and those algorithms that have been developed for civilian

populations. Moreover, they review those algorithms based on reliability and validity and

discuss the need for empirically derived and validated algorithms. This paper is relevant to

our work because one of our dispatching policies (MCPF) depends on field triage so that

ambulances could be assigned for the more critically injured patients.

2.4 Other related topics

Although coverage problems are not directly related to emergency vehicle dispatching prob-

lems, some papers are useful to get some insight. One of them is written by Batta and

Mannur [17] who propose a criterion for coverage that is suitable for two kinds of appli-

cations: (i) location of fire trucks in a geographical area in which some demands require
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multiple fire trucks, and (ii) location of ambulances in an environment in which large de-

mand leads to unavailability of the most desired response unit. The authors claim that their

models were explicitly designed to address different coverage requirements for demands, de-

pending on how many units are required to respond to a demand. Consequently, they

classify priority issues for the critical demands that have stricter coverage requirements.

Several review papers exist in the emergency management literature. One of these is

written by Simpson and Hancock [18]. In their paper, they review the operational research

foundation in emergency response, and they highlight that most of the studies are based

on well-structured problems of emergency services. However, on the other side, most of

the emergency response area is not well-structured. Therefore, emergency response requires

the management of disorganization while operations research traditionally focused on the

management of organization. The authors note that the emergency response could be a

growth area for the next fifty years.

Queueing models are important tools in determining patient waiting time in the disaster

area. One of the oldest papers for modeling emergency dispatching queuing models is

written by Larson [19], who proposed the hypercube queuing model that has since become

an important tool for planning emergency service systems. This model is related to our

model since it considers urban environments in which servers travel to serve clients. In

[19] exact solution for the queuing model for multiple (at most 15) servers. Some of the

performance measures are mean response times, workloads of each servers, and fraction

of dispatches of each server to each region. Following on this initial work, Larson [20]

proposed an approximate hypercube model. This paper offers an approximate procedure

for computing some performance measures for urban emergency service systems. This model

is also applicable for more than fifteen servers and it is very useful for ambulance deployment

and redeployment problems.
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2.5 Contributions of this study

Our study is a continuous-time simulation of post-disaster patient transportation by am-

bulances in seven districts of Istanbul. Our objective is to assess the performance of dif-

ferent ambulance dispatching policies, by simulating the ambulance dispatching operations

in seven districts of Istanbul and their neighborhoods. Specifically, our aim is to evaluate

several ambulance dispatching strategies. We have observed that it is essential to teach

triage to rescue teams and military units, also intensive communication between ambulance

dispatchers or drivers and hospital coordinators is necessary. In addition to assessing the

’sufficiency’ of the current resources and response strategies, we are interested in evaluating

various improvement options such as increasing the number of available ambulance units

and establishing temporary emergency units to respond to the needs of the earthquake

victims.
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Chapter 3

ASSUMPTIONS, DATA GENERATION AND METHODOLOGY

The post-disaster ambulance dispatching problem is subject to a setting with many

stochastic elements. Moreover, the problem is inherently large scale and requires the con-

sideration of a high number of states and actions dynamically. Hence it is very difficult to

find optimal dispatching policies using analytical methods. For this reason, we utilize sim-

ulation as a powerful tool to imitate the real environment and understand the interactions

among stochastic elements in this large-scale problem under several dispatching policies.

3.1 Notations, definitions, performance criteria

We use the following notation and definitions to evaluate system performance.

R=Number of replications (set to 10 in our experiments).

N=Number of neighborhoods (It is 99 for the 7 districts of Istanbul).

K=Number of injury types (There are 3 injury types).

N(j, r)=Denotes the number of patients originating from neighborhood j in replication

r, where j ∈ {1, 2, . . . , N}, r ∈ {1, 2, . . . , R}.

P (r)=
∑N

j=1 N(j, r), where j ∈ {1, 2, . . . , N}, r ∈ {1, 2, . . . , R}.

RTH(i, r)=Denotes the rescue-to-hospital time, that is the length of the time interval

starting from the time when patient i is rescued until the arrival of patient i to a hospital

with an ambulance in replication r, where i ∈ {1, 2, . . . , P (r)}, r ∈ {1, 2, . . . , R}.

RTH(i, j, k, r)=Denotes the rescue-to-hospital time, that is the length of the time in-

terval starting from the time when patient i with injury type k in neighborhood j is res-

cued until the arrival of patient i to a hospital with an ambulance in replication r, where

i ∈ {1, 2, . . . , P (r)}, j ∈ {1, 2, . . . , N}, k ∈ {1, 2, . . . ,K}, r ∈ {1, 2, . . . , R}.
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RTH(r)=Average RTH in replication r, where r ∈ {1, 2, . . . , R}.

That is (
∑P (r)

i=1 RTH(i, r)/P (r))

RTH=Average RTH over all replications. That is (
∑R

r=1 RTH(r)/R)

RTH(j, r)=Average RTH of neighborhood j in replication r, where j ∈ {1, 2, . . . , N},

r ∈ {1, 2, . . . , R}. That is (
∑N(j,r)

i=1 RTH(i, r)/N(j, r))

RTH(j)=Average RTH of neighborhood j over all replications, where j ∈ {1, 2, . . . , N}.

That is (
∑R

r=1 RTH(j, r)/R)

We further define the following to account for the service time in the hospital in addition

to RTT.

RTT (i, r)=Denotes the time interval starting from the time when patient i is res-

cued until the departure of patient i from an emergency service in a hospital, where

i ∈ {1, 2, . . . , P (r)}., r ∈ {1, 2, . . . , R}.

RTT (i, j, k, r)=Denotes the time interval starting from the time when patient i is rescued

until the departure of patient i, who has an injury type k and originated from neighborhood

j, from an emergency service in a hospital in replication r, where i ∈ {1, 2, . . . , P (r)}.,

j ∈ {1, 2, . . . , N}., k ∈ {1, 2, . . . ,K}., r ∈ {1, 2, . . . , R}.

RTT (r)=Average RTT in replication r, where r ∈ {1, 2, . . . , R}.

That is (
∑P (r)

i=1 RTT (i, r)/P (r))

RTT=Average RTT over all replications. That is (
∑R

r=1 RTT (r)/R)

RTT (j, r)=Average RTT of neighborhood j in replication r, where j ∈ {1, 2, . . . , N}.,

r ∈ {1, 2, . . . , R}.. That is (
∑N(j,r)

i=1 RTT (i, r)/N(j, r))

RTT (j)=Average RTT of neighborhood j over all replications, where j ∈ {1, 2, . . . , N}.

That is (
∑R

r=1 RTT (j, r)/R)

The first performance criterion while comparing the dispatching policies is RTH. In the

case of adding emergency service times in hospitals to the simulation, RTT becomes the

first performance criterion.

The second performance criterion is service level (SL). It is the measurement of percent-

age of patients served in five days. Service level performance criterion is divided into two
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categories which are SL1 and SL2 based on patient’s reaching to hospital time and transfer

out of the emergenceny department respectively. The service level is taken based on total

simulation time, which is five days. Also service levels based on one to ten hours are also

estimated. Below are the general notations for service levels, but all those notations are

actually represented as SL1 or SL2 instead of SL only.

SL(r)=Denotes the service level of all patients in replication r, where r ∈ {1, 2, . . . , R}.

SL=Average service level of all patients for all replications.

SL(k, r)=Denotes the service level of patients with injury type k, where k ∈ {1, 2, . . . ,K}.,

r ∈ {1, 2, . . . , R}.

SL(k)=Average service level of all patients with injury type k for all replications, where

k ∈ {1, 2, . . . ,K}..

SL(j, r)=Denotes the service level of patients in neighborhood j in replication r, where

j ∈ {1, 2, . . . , N}., r ∈ {1, 2, . . . , R}.

SL(j)=Average service level of all patients in neighborhood j for all replications, where

j ∈ {1, 2, . . . , N}..

SL(j, k, r)=Denotes the service level of patients in neighborhood j with injury type k

in replication r, where j ∈ {1, 2, . . . , N}., k ∈ {1, 2, . . . ,K}., r ∈ {1, 2, . . . , R}.

SL(j, k)=Average service level of all patients in neighborhood j with injury type k,

where j ∈ {1, 2, . . . , N}., k ∈ {1, 2, . . . ,K}.

3.2 The centralized emergency dispatching system

In a post-disaster situation, it is crucial to have a centralized system that controls all

dispatching decisions of ambulances. Lack of a centralized system will create disorganization

and reduce efficiency while dispatching ambulances; therefore it will increase waiting times of

the victims and reduce their chances for survival. In the simulation, we have assumed that a

centralized emergency dispatching system exists, and hence, all calls requesting ambulances

must be made to the central response unit. In Istanbul case, this central response unit is

Disaster Coordination Center (AKOM).
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3.3 Continuous-time simulation and total time of the simulation

The simulation model is implemented as a continuous-time simulation. Time increments of

one minute is considered. There are two reasons for choosing continuous-time simulation

instead of discrete-event simulation. The first one is that there are thousands of ambulance

request calls and ambulance decisions to carry the patients to the hospitals that need to be

simulated. In a moderate instance of this simulation, the number of these discrete events

becomes almost 100,000. The second reason is that, a minute is quite a small and adequate

amount of time to make quick decisions after a disaster. The total run time of the simulation

is five days. The reason is that; it is nearly impossible for a patient to survive more than

five days after the disaster. In this simulation, it is assumed that the patient rescue process

stops after 88 hours. Although the arrival of a new patient stops, some patients may not

be carried to a hospital immediately by an ambulance due to the fact that the number of

patients overwhelms the number of ambulances.

3.4 The patient arrival process and the estimated number of patients through-

out the neighborhoods

In the rescue efforts, people are rescued one by one, or in batches of several people. We

assume that rescuers request ambulance(s) by calling the central response unit (AKOM).

AKOM must decide which ambulance to send to which patient.

The number of patients that may occur from all 99 neighborhoods depends on the pop-

ulation as well as the amount of destruction in these neighborhoods. The populations are

based on the 2009 population data of ESRI Company. The exact percentage of destruction

can not be known in advance of the earthquake, but Japanese International Cooperation

Agency (JICA) prepared a report for the expected percentage of destruction in each neigh-

borhood [3]. In our study, JICA report is the primary source for estimating the expected

number of patients for each neighborhood. The expected number of patients requesting

ambulances for each neighborhood is assumed as the size of the population of the neigh-
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borhood times one fifth of the upper limit of expected ratio of heavily damaged buildings.

The reason of using one fifth of the upper limit is due to the JICA report [3]. In JICA

report, expected casualty numbers of districts are given but expected number of casualties

for neighborhoods data is not present. Therefore, we need to adjust the total number of

expected casualties for each district to the expected casualty number of JICA report while

generating data. It is observed that one fifth of the upper limits of expected ratio of the

heavily damaged buildings times the population of neighborhood is a 95 percent fit. The

results of this estimation is listed in Table 4.

Figure 3.1: Populations of the seven studied districts taken from [2]

The arrival of a patient means that an ambulance request is made by a call to AKOM.
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Figure 3.2: Ratio of heavily damaged building [3]

There might be batch arrivals because more than one ambulance might be requested in

the same call. We assume that the call arrivals can be modeled as a Poisson process, and

hence, the interarrival times are exponentially distributed. The rates of the exponential

distributions vary for different neighborhoods, due to the different population sizes, different

expected ratios of heavily damaged buildings. The rates of the exponential distributions

that govern the arrivals of ambulance requests for each neighborhood become inputs to the

simulation. It is assumed that, all patients are located in their neighborhoods’ centers.

3.5 The number, location and capacities of ambulances and hospitals

The ambulance and hospital numbers and their locations are taken from a previous study of

Gül [1]. In this study, the author listed all of the emergency medical units of the city, but we

used the data on seven studied districts in this work. There are a total of eighteen hospital

locations in the studied seven districts. These hospital locations are based on grouping

of some medical facilities. In their study, they group some of the close medical facilities

and hospitals and report as one hospital. Initially, ambulances are assumed to be in the
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hospitals. The capacity of an ambulance is assumed to be one. The capacities of hospital

emergency service units are also from Gül [1]. For the locations of hospitals and ambulances,

center of neighborhood assumption is used. Therefore, the distance between an ambulance

and a patient refers to the distance between the neighborhood of the ambulance and the

neighborhood of the patient. The data set for medical units is listed in Table 5 and the

locations are given in Figure 1.

3.6 The travel times between hospitals and neighborhoods

In this work, we have used a geographical software, ArcGIS, developed by ESRI. In this

software, the distances between each neighborhood and each hospital are calculated. The

distances do not directly determine the travel times between neighborhoods and hospitals.

The travel times depend on the average velocity on the roads. In the simulation model,

two different average velocities are tested, which are 25 km/h and 35 km/h. However, these

values are not final; they are actually decreased by the isolation risk probabilities that are

estimated in the JICA report for each neighborhood 2. Coefficients are used to increase

travel times. We have given coefficients to each neighborhood between 1 and 2 based on

isolation risk map of JICA report 2. For example, if a neighborhood’s 30 percent of its total

land has high risk of isolation, then the neighborhood’s coefficient is 1.3. If 60 percent of

the lands of the neighborhood has high risk of isolation, its coefficient is 1.6, and if all of

the neighborhood area has high risk of isolation, its coefficient is 2. Coefficients and initial

travel times between neighborhoods and hospitals are listed in Table 2. The results in this

Table must be multiplied by 6/25 for 25 km/h because the listed values are based on 6

km/h velocity. Depending on these coefficients, the average velocity of the ambulances can

be decreased by 10 percent to 75 percent, so the travel times can be increased up to 400

percent of the travel times found only from distances. A step-by-step example for finding

the travel time is as follows:

1) Calculate the distance between a neighborhood and a hospital (e.g., assume that the

result is 4.2 km).
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2) If the velocity is set to 25 km/h, then ideally, an ambulance must reach to the

destination in 0.17 h, which is equal to 10.08 min.

3) However, this is not the case because of the isolation risk probabilities. The road

blockages can either occur by ruins of buildings or traffic jam. From the JICA report, look

at the coefficient of that neighborhood in Tables 2 and 3 (assume that it is 1.6). Also look

at the coefficient of the ambulance’s neighborhood (assume that it is 1.2). The ambulance

must travel in both of the neighborhoods, therefore multiply both 1.6 ve 1.2 and take 1.92

as final coefficient.

4) For the final travel time, multiply 10.08 min and 1.92 in order to get the expected

travel time, which is equal to 19.35 min.

5) This final value is now input to the simulation as a mean travel time between the

specified neighborhood and hospital.

Travel times are normally distributed with means found by the described process above.

Mean travel times between all neighborhoods and hospitals are listed Tables 2 and 3. There

are two basic assumptions in this process. The first one is about step 3. In general, there

are other neighborhoods on the road direction between a hospital and a neighborhood.

But, the isolation risk probabilities of these intermediate neighborhoods are not taken into

consideration. The second assumption is that, if the normal distribution gives a travel time

less than 5 min, it is considered as a 5 min or if it gives a travel time more than 450 min,

than it is considered as 450 min.

3.7 Injury types

Triage could save many lives after a mass casualty incident. Jenkins et al. [16] indicate that

mass-casualty triage is developed as a wartime necessity at first and later it has become

a civilian tool. After the disaster, it is assumed that rescuers could classify the patients

into at least three categories. Therefore, our simulation model considers three injury types

of type 1, type 2 and type 3. While considering some of the policies in the simulation, it

is assumed that rescuers who save people and call ambulances are capable of categorizing
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the patients into these three types of injuries. Type 1 represents severe injuries, type 3

represents minor injuries and type 2 injuries are in the middle. In the simulation, an

ambulance is dispatched if an ambulance is requested for a patient. Generally, people do

not request an ambulance when there is a minor injury, however a vehicle is mandatory for

major injuries. Therefore, an ambulance is more likely to carry a patient with more severe

injury. The arrival probabilities of injury types that request ambulances are as follows: a)

Type 1 injury: 0.6, b) Type 2 injury: 0.3, c) Type 3 injury: 0.1. It is assumed that the

listed emergency service capacities of the hospitals are committed to the injuries that are

carried by the ambulances. This means that the patients that are carried by other vehicles

or patients that walk to the emergency services do not decrease the available capacity of

the listed emergency service capacities.

3.8 Ambulance minimum reassignment time in the hospital

Ambulances are kept busy as long as there are patients waiting for an ambulance. In such a

case, when an ambulance arrives to a hospital with a patient, it is immediately reassigned to

a new patient and is dispatched in the next minute. This means the time interval between

unloading the patient and reassignment of this ambulances is one minute. This process

could take a few minutes but since it is difficult to estimate this duration exactly, we made

this assumption.

3.9 Non-disaster related ambulance requests

On a regular day, some ambulances are requested and many stay idle. The closest ambulance

can be easily assigned to a request. However, after a disaster, ambulance call volume

increases dramatically. As a result, the regular ambulance requests take a small portion of

the ambulance request calls. Hence, they are ignored in the simulation.
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3.10 Ambulance dispatching policies and return policies

Three dispatching policies are considered. These are: First-called-first-served (FCFS),

shortest-distance-first (SDF), and most-critical-patient-first (MCPF).

FCFS policy assigns idle ambulances to patients based on the arrival times of the pa-

tients. The patient who requests an ambulance first is served first. Therefore, patients

are served in chronological order. Note that there could be a tie between patients in time

chronology when there is a batch arrival, but this creates a very negligible difference between

patients in the batch, may be a couple of minutes.

SDF policy assigns idle ambulances to patients who are in nearest neighborhoods based

on expected travel times. Therefore, patients who are closest to ambulances with this

expected travel times are served first. If there is a tie in distances, then patients are served

with FCFS policy. Note that, instead of distances, we use expected travel times, which are

adjusted with respect to isolation risk probabilities in the neighborhoods.

The third policy is MCPF. This policy assigns ambulances to patients based on the

severity of injury of the patients. There are three types of injuries in the simulation model.

Consequently, severe (type 1) injuries are served first. Then moderate (type 2) injuries has

priority over type 3 injuries. If there is a tie in the injury type of the patients, SDF policy

is applied. If there is a tie again, then FCFS policy is applied to these patients.

When an ambulance picks up a patient, this ambulance should be assigned to a hospital.

The decision of assigning an ambulance to a hospital is based on the return policy. For the

return policy, two options are considered. The first one is to carry the patient to a closest

hospital. This policy does not take into account the load at the hospitals and may create

long queues in some emergency service departments in hospitals. Therefore, we name this

return policy as non − communicating − return (NCR) policy. This policy is relevant

when communication between the ambulance dispatcher and hospital emergency services

can not take place. The second policy assumes that the ambulance dispatcher communicates

with the emergency service departments and learns their queue lengths. Depending on the
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number of injuries and injury types in the queue, the travel time is increased for that

hospital. Every severe, intermediate and light injury increases travel time by 60, 40 and 20

minutes, respectively, which are their respective mean treatment times in section. These

adjusted travel times are compared, and the hospital with the smallest travel time is selected.

We name this return policy a is communicating − return (CR) policy.

3.11 First-treatment operations in the disaster locations

First-treatment operations are carried out in the disaster locations by ambulance medical

units and this treatment is assumed to be exponentially distributed with mean of 10 minutes

for each neighborhood.

3.12 The treatment times in the emergency rooms in the hospitals

Emergency room simulation is not performed in this simulation. Emergency room simula-

tion requires steps like initial assessment, caring by a nurse, x-ray test etc., however in this

simulation, these steps are aggregated, where we assumed that treatment times for each

patient is exponentially distributed with a mean of 60 min for a severe injury, 40 min for an

intermediate injury, and 20 min for a light injury. After a patient is served in the emergency,

he or she gets out of the system. The simulation does not take into consideration of the

beds in the hospitals other than emergency service beds.

3.13 Arrival of ambulance requests over time

The arrivals of calls to the call center is assumed to be Poisson distributed. Therefore,

the interarrival times of calls are assumed to be exponentially distributed. The rates of

exponential distribution for each neighborhood depend on the neighborhoods’ populations

and the expected percentage of destruction for each neighborhood, given in the JICA report

[3]. In these calls, ambulances are requested. Especially in the first two days after the

disaster strikes, many injured people are rescued from collapsed buildings and sometimes
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more than one ambulance may be requested to the disaster area by the same call. The batch

request of ambulances is captured in the simulation through probability matrix in Table 1.

This matrix is prepared by the comments of experts and AKUT [21].

The first 3-4 days after an earthquake is critically important for saving lives. The

probability matrix that we used represents the changes in the arrival stream. This matrix

assigns probabilities to batch arrivals. The probability of batch arrivals change in every

two hours. Ambulance request calls are stationary, but by allowing batch arrivals, we

are capturing the increase and decrease in the arrival numbers in different times. Rescue

efforts are expected to reach their peak when soldiers and professional teams start to work

effectively to rescue people from the collapsed buildings. By the probability matrix, arrival

numbers could be at their highest values around 8 to 16 hours after disaster, especially after

the professionals and soldiers start to work. By the time passes, number of people rescued

in a unit time would eventually decrease, because the chances of survival of these people

are getting lower. After two days, our model allows some calls for zero ambulance requests,

that means these calls are not even made by the rescuers because nobody is rescued. In

this simulation, batch arrivals may only occur in the first two days and the arrival process

which means the rescuing of people under the collapsed buildings stops after about three

days, because chance of survival almost decrease to zero.

There are two options considered for the arrival of calls. The first one is the instantaneous

call when a patient or a batch of patients is rescued. In this case, when some injured people

are rescued under the collapsed buildings, rescuers call the central call center in the same

minute. Therefore, the information flow becomes almost instantaneous. The second option

is periodic calls for every 15 minutes. The arrival process is still Poisson and still occurs

with the same dynamics of the first option, but this time the transfer of information to the

cental call center is delayed by at most 15 minutes.
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3.14 Organization of data

There are four important entities that record critical data in the simulation. These are

patient matrix and ambulance, hospital matrix, and bed matrix.

3.14.1 Patient matrix

Patient matrix records critical information for each patient. The number of the rows of

the patient matrix is equal to the number of patients which differs in every replication of

simulation. Each row carries information about a specific patient.

The number of columns is nine. The attributes of the patient matrix is as follows:

1) Patient ID: Each arrived patient is given a unique ID.

2) Patient Location ID: There are 99 neighborhoods considered in the simulation and

each patient may be living in any one of these neighborhoods. The center of neighborhood

assumption is considered for every casualty location.

3) Type of Injury: It is assumed that the rescuers who call for an ambulance request

may able to categorize severe, middle, and light injuries.

4) States of a Patient: The state of the patient changes throughout the time. The states

of a patient are listed as follows:

State 1: The patient arrives, and information comes to the central call center. Therefore

patient is waiting for an ambulance but no ambulance is assigned to the patient yet.

State 2: An available ambulance has been assigned to the patient but the ambulance

has not reached the patient yet.

State 3: The ambulance arrives to the patient, either is doing first treatment or is on

the way to a hospital.

State 4: The patient is now in a hospital emergency room, but emergency room is full,

therefore the patient is waiting in the queue.

State 5: The patient is now being served in a hospital emergency room (section 4.4).

State 6: The patient is out of the system. In this case, the patient is either healed or
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transferred to another department of a hospital.

5) Arrival Time: Arrival time depends on the Poisson arrival process and batch arrivals.

Since we generate exponential random variables to represent the interarrival times, the

arrival time can be generated as a continuous value (e.g., 156.54 mins). For the sake of

simplicity, we round these values to the upper integer. For example, the arrival time of

156.54 mins is treated as 157 mins.

6) Hospital ID: It records the hospital ID in which the patient is treated.

7) System Out Time: It records the minute in which patient is out of the emergency

room in a hospital.

8) Queuing in a Hospital: It records the waiting times of patients in a hospital. It could

also be zero if patient starts to be treated immediately after the disaster.

9) Treatment Time in Emergency in a Hospital: Required treatment time for each patient

is exponentially distributed with varying means, based on injury type.

3.14.2 Ambulance matrix

Ambulance matrix records critical information for each ambulance which is considered as

a unique element in simulation. The number of the rows of the ambulance matrix is equal

to the number of ambulances, which is assumed to be constant which is constant in the

simulation. Each row carries information about a specific ambulance. The number of

columns is nine. The attributes of the ambulance matrix is as follows:

1) State of the ambulance: The state of an ambulance changes throughout time. The

states are listed as follows:

State 1: Ambulance is idle in a hospital, and ready for assigning to a patient.

State 2: Ambulance is assigned to a patient and on the way to this patient.

State 3: Ambulance picked up the patient, first treatment starts in the disaster location,

and a decision must be made about which hospital should be the destination for this patient.

State 4: Ambulance is on the way to a hospital with a patient in it.

2) Hospital ID launched: It records hospital ID that the ambulance is launched. It is
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important for calculating the travel time to a patient.

3) Patient ID: It records the ID of the patient that the ambulance is assigned.

4) Patient Location ID: It records the neighborhood ID of the patient. It is important

for calculating the travel time to a patient.

5) Hospital ID Targeted: After a patient is picked up by the ambulance, a decision is

done to carry the patient to a hospital. The decided hospital is recorded in this attribute.

6) Launch Time: It records the dispatching time of the ambulance from a hospital.

7) Arrival Time to the Patient: It records the arrival time of the ambulance to a patient.

8) Arrival Time to the Emergency Service Department: It records the arrival time of

the ambulance to an emergency service department in a hospital.

9) Ambulance ID: Each ambulance has a unique ID.

3.14.3 Hospital matrix

Hospital matrix records critical information for each hospital. The number of the rows of

the hospital matrix is equal to number of hospitals. Each row carries information about a

specific hospital.

The number of columns is eight. The attributes of the hospital matrix is as follows:

1) State of the Hospital: Hospital is either full or there are empty beds.

2) Number of Beds in Emergency Service Department: The number of beds of an emer-

gency service department of the hospital is recorded in this attribute.

3) Number of Busy Beds: It records the number of beds that are busy.

4) Number of Empty beds: It records the number of beds that are idle.

5) Number of Severe Injuries in the Queue.

6) Number of Medium Injuries in the Queue.

7) Number of Light Injuries in the Queue.

When a bed becomes idle, the first decision is to choose the severely injured person, who

is waiting in the queue, in a first come first serve manner. If there is no severely injured

person in the queue, then a moderately injured person is chosen in a first come first serve
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manner. If there is no severely injured or moderately injured person in the queue, a lightly

injured person is chosen to be treated.

8) Hospital ID: Each Hospital has a unique ID.

3.14.4 Bed matrix

Bed matrix records critical information for each bed in each hospital emergency department.

The number of the rows of the bed matrix is equal to the number of total emergency

department beds. Each row carries information about a specific bed. The number of

columns is seven. The attributes of the bed matrix is as follows:

1) State of the Bed: The bed is either occupied or idle.

2) Hospital ID: Hospital ID that the bed is located.

3) Patient ID: It records the patient ID that is currently served by the bed.

4) Starting time: It records starting time of the treatment process.

5) End time: It records ending time of the treatment process.

6) Serving Duration: It records the required treatment time of this specific patient.

7) Bed ID: It records the unique ID of the bed.

3.15 Simulation State Changes

In this section, working principles of the simulation are explained within a unit time of

minute.

Processes are numbered.

In every minute:

time=t;

1) Check the patients that are in state 0.

If t is greater than the arrival time of a patient

Patient is arrived and requesting an ambulance. Switch the state of the patient to state

1.
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Repeat process 1 for the patients that are in state 0.

2) Check the patients that are in state 1.

If there is at least one patient in state 1, check the ambulances that are in state 1.

If there is at least one ambulance in state 1, assign a patient with an ambulance based

on dispatching policy. Now ambulance is on the way to the patient. Switch the states of

the ambulance and the patient to 2.

Repeat process 2 until either there are no idle ambulances left or there are no ambulance

request.

3) Check the ambulances that are in state 2

If arrival time to the patient is greater than t

Change the state of the ambulance to 3. Now ambulance is arrived to the patient location

and waiting for the decision to which hospital to target based on the return policy. Start

the first-treatment of patient in the disaster location.

Repeat process 3 for all the ambulances that are in state 2.

4) Check the ambulances that are in state 3

If first-treatment of the assigned patient finishes

Assign the ambulance to a hospital based on return policy. Now the ambulance is

carrying the patient to a hospital. Change ambulance state to state 4. Change patient state

to state 3.

Repeat process 4 for all the ambulances that are in state 3.

5) Check the number of ambulances that are in state 4.

If t is greater than arrival time to the emergency service department

Ambulance arrived to the emergency service department of a hospital and unload the

patient. Change the state of the patient to state 4, change the state of the ambulance to

state 1.

If empty beds in the emergency ¿ 0, the patient starts to be served immediately. Change

the bed state from state 1 to 2. Change the patient state from 4 to 5.

Else if empty beds in the emergency = 0, the patient enters the queue.
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Repeat process 5 for all the ambulances that are in state 4.

6) Check beds that are in state 2.

If t is greater than end time of serve

The patient is treated in the emergency service department and either transferred to

other departments in the hospital or the patient gets out of hospital. Change the state of

the patient to state 6. Change the state of the patient to state 1.

Repeat process 6 for all the beds that are in state 2.

The other attributes of the patient matrix, ambulance matrix, hospital matrix and bed

matrix are updated for each unit as the name of the attributes suggest.

3.16 Verification and validation

The simulation model is tested and verified by altering various parameters in several different

trials. The consistency is assured in each trial. For example, while new ambulances are

added to the emergency medical system in Section 4.6, consistency is assured and every

addition causes the RTH time to get lower. The expected earthquake for Istanbul is a

strong earthquake and in Istanbul, an earthquake with similar strength has happened in the

eighteenth century. From that time on, the population of the city has increased dramatically

and building types have changed. It is impossible to compare the expected earthquake with

the previous earthquakes. Moreover, the damage of an earthquake is different depending

on geological locations of the cities, thus it is not correct to validate this simulation with

an earthquake that has happened in another city. Therefore, validation can not be done

exactly. The best source for the expected damages is the JICA report [3], and we try to be

consistent with this report in our study for the validation. For arrival number validation,

JICA report has expected casualty numbers for the districts but not for the neighborhoods,

therefore we try to match casualty numbers with JICA report in the process defined in

Section 3.4.



Chapter 3: Assumptions, Data Generation and Methodology 29

3.17 Confidence intervals

Replication number is set to 100, which guarantees decreasing the confidence intervals and

standard deviations to a low level. 48 instances are tested depending on dispatching policies,

arrival amounts, information types, return policies and velocities. The determining mean is

the RTH for all patients. Standard deviation is calculated among replications. Confidence

intervals for both RTH and standard deviations are reported. Instance code is just a

code for differentiating the simulation runs which uses different parameters. Some of the

instances’ RTH, standard deviations and confidence intervals for RTH are as follows:

Table 3.1: Confidence intervals

It is observed that confidence intervals for 50 replications are already very small, thus

replicating the simulation for 50 times seems quiet enough to report the results.

This simulation is not a steady state simulation; rather it is a terminating simulation.

For example, arrival stream is continuously changing during the five days after the disaster

strikes.
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Chapter 4

PERFORMANCE EVALUATION OF DISPATCHING POLICIES BY

SIMULATION EXPERIMENTS

The current emergency medical system in seven districts (Bahçelievler, Güngören, Zeyt-

inburnu, Bağcılar, Esenler, Bayrampaşa and Bakırköy) of Istanbul contains 18 hospitals and

128 ambulances located in these hospitals as reported in [1]. We use two main performance

criteria while comparing the policies. First one is average response time to patients which

is estimated by average rescue-to-hospital time RTH (or average rescue-to-transfer time

RTH ). Second one is the service level (SL1 for RTH based service level, SL2 for RTT

based service level). Both performance criteria are also estimated for neighborhoods. The

tested ambulance dispatching policies are first-called-first-served (FCFS), shortest-distance-

first (SDF), and most-critical-patients-first (MCPF). In all sections, NCR policy is used as

a return policy, however in Section 4.4, the results of the CR policy is presented.

The simulation model runs under two main main assumptions. First, patients will wait

for the ambulances as long as it takes without being transported by any other vehicle.

Second, the dispacther does not reject any of the ambulance requests. As a result, it is

possible that a patient waits for several days to be picked up by an ambulance but most of

the patients will eventually be taken to a hospital. Therefore, the numbers are sometimes

very high compared to real-life case, but these results show the worst case situations and

implementation options.

This chapter is organized as follows. Section 4.1 explains the results for the real-time

information update case. The other sections provide comparisons with the results presented

in Section 4.1. Section 4.2 provides results of the periodic information update case. In

Section 4.3, the effects of changing mean travel times are investigated. In Section 4.4,
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communication between hospital emergency service coordinators and ambulance drivers

are taken into consideration (CR return policy is considered). Section 4.5 discusses the

consequences of adding temporary emergency hospitals (TEH) after the disaster. Section

4.6 illustrates the outcome of adding ambulances to the emergency system.

The simulation runs are performed via MATLAB R2008a software. The processor of

the computer is Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz, 6 GB RAM, 64 bit. One

run (50 replication) takes between 1 hour and 10 hours depending on the the load of the

parameters.

4.1 Real-time information update case

The underlying assumption in this case is the availability of real-time information on the

status of patients and ambulances including their locations. When a patient is rescued, this

information is conveyed to the dispatcher. In daily life, typically the FCFS policy is imple-

mented because ambulance requests are sparse. However, in a post-disaster environment,

ambulance units would be overwhelmed by the massive number of ambulance requests.

The RTH and RTT values of FCFS policy are so close (Table 4.1). But both of the

values are very high compared to other policies. The reason is that, ambulances could

sometimes travel a very long distance in order to serve the first-called patient in FCFS

policy. In Table 4.2, SL1 (service level based on RTH) and SL2 (service level based on

RTT ) values of each three dispatching policies are presented. FCFS policy results in 0.733

and 0.471 for overall SL1 and SL2 which are quite poor service levels compared to other

policies. On the other side, SDF policy results in better service time for both RTH and

RTT (4.1). But, it is noteworthy that there is a large gap between RTH and RTT . This gap

is caused by inefficient use of resources. By inefficient use of resources, we mean inefficient

assignment of ambulances to hospitals. Using return policy of NCR results in 100 percent

of the patients to be carried to the hospitals in five days, which is showed by SL1 value in

Table 4.2. Although the overall SL1 value is perfect for SDF policy, overall SL2 value is just

0.539. This indicates that, there are long queues in some hospital emergency departments
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and while in some hospitals, these departments remain idle due to NCR return policy. The

result of this situation is high RTT and low SL2.

MCPF policy can only be implemented when the rescue teams have the capability to

classify the injuries of the patients into three types. This policy results in 23.8 percent

higher RTH and 11.8 percent higher RTT than SDF policy (Table 4.1). Overall service

levels are similar between these two policies and both of them have perfect SL1 and MCPF

policy has 1.7 percent better overall SL2 than SDF policy with 0.548 (Table 4.2). This is

still not a good service level, but MCPF policy greatly reduces the served severely injured

patients’ RTH and RTT values which are 283 minutes and 1217.4 minutes (Table 4.1). The

direct result of this situation is the saving of severely injured people quicker than the other

patients which would be crucial in a post-disaster environment.

Table 4.1: RTH and RTT values of each three dispatching policies with NCR return policy

When we investigate the RTH(j) values for each neighborhood j under FCFS dispatch-

ing policy with NCR return policy, we obtain values ranging from 2400 to 2900 min for each

neighborhood in Figure 4.1. we see that FCFS policy results in very high values for a ma-

jority of the neighborhoods. Moreover, the SL1(j) value for each neighborhood j is around

0.73 for all neighborhoods except some of them. This indicates that FCFS dispatching

policy results in very poor service, given the current ambulance and hospital resources.

SDF policy results in better overall RTH and RTT values and service levels than FCFS
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Table 4.2: SL1 (service level based on RTH) and SL2 (service level based on RTT ) values
of each three dispatching policies with NCR return policy

Figure 4.1: FCFS dispatching policy with NCR return policy: RTH(j) and SL1(j) of
neighborhoods
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policy (Figure 4.2). However, when we compare neighborboods based on RTH, we see

that some neighborhoods have very large response times although SL1 is perfect for this

policy. This creates a social issue and the neighborhoods which are close to ambulances

becomes lucky while some other neighborhoods are very unlucky. This situation may be

overcome by adding additional emergency hospitals and ambulances to these neighborhoods

as investigated in Section 4.5 and Section 4.6. When we compare SL2(j) value for each

neighborhood j for SDF policy, we observe that while neighborhoods have 100 percent

service levels with either high or low RTT (j) values depending on their distance to hospitals,

some neighborhoods have service levels almost zero. For some neigborhoods, very few people

could be transferred out of emergency service because they wait in long queues in emergency

departments.

Figure 4.2: SDF dispatching policy with NCR return policy: RTH(j) of neighborhoods

Figure 4.4 shows the RTH(j) and RTT (j) of neighborhoods of MCPF policy. It is

observed that MCPF policy treats neighborhoods more fairly than SDF policy based on

RTH(j) values. On the other side, RTT (j) values of neighborhoods vary a lot. Some
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Figure 4.3: SDF dispatching policy with NCR return policy: RTT (j) and SL2(j) of neigh-
borhoods

neighborhoods have very low RTT (j) values which seems to be a very good result but it is

not the case. The neighborhoods which have smaller RTT (j) values have actually very poor

SL2(j) levels (Figure 4.5). Some patients are stuck in the queue and can not be served.

The reason of this situation is that, tie breaker of the MCPF policy is SDF policy. We also

implemented MCPF policy with FCFS policy as a tie breaker policy, but the results are

only 0.5 percent different than FCFS policy which are still quite bad so we did not publish

those results.

MCPF policy has a certain advantage over SDF policy by saving more severe injured

patients in shorter amount of time. This fact is illustrated for the neighborhoods in Figure

4.6. From Table 4.1, we know that SL1 is 1.000, which means that all the patients are carried

to hospitals in five days. Figure 4.6 shows that MCPF policy has very low service times

for type 1 injuries based on RTH(j) for each neighborhood j. The results of this policy

indicate that; if all rescue team members are educated for triage before earthquake, the

response to the overwhelming injuries could be a lot more effective by assigning ambulances
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Figure 4.4: MCPF dispatching policy with NCR return policy: RTH(j) and RTT (j) of
neighborhoods

Figure 4.5: MCPF dispatching policy with NCR return policy: RTT (j) and SL2(j) of
neighborhoods
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to the severe injuries first.

Figure 4.6: MCPF dispatching policy with NCR return policy: Comparison of RTT (j, k)
of neighborhoods

Figure 4.7 shows the SDF policy results (RTH(j) of each neighborhood j). The map

shows the average service times in neighborhoods of seven districts that are studied, accord-

ing to the legend. The darker colors indicate longer RTH(j) value for each neighborhood

j while lighter colors indicate smaller RTH(j) values. This map provides a better view to

see the neighborhoods that are served in shorter service times or longer service times.

4.2 Periodic information update case

In a post-disaster environment, real-time information update may not be possible due to

communication difficulties or organizational problems. Furthermore, coordinating the in-

formation flow with periodic updates to a disaster coordination center is more likely to be

implemented after a disaster instead of real-time information update. Therefore, in this

section, we assume that rescuers make the calls to request ambulances for the discovered
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Figure 4.7: Map view of RTH(j) values of neighborhoods under SDF policy



Chapter 4: Performance Evaluation of Dispatching Policies by Simulation Experiments 39

patients every 30 minutes, and request ambulances based on the number of arrivals during

the previous 30 minutes.

Again, FCFS is the worst policy for RTH and SDF policy is the best for RTH (Table

4.3). The results of the MCPF policy is slightly improved compared to real-time information

update because in 30 minutes, there is a chance that no type 1 injury will be left to serve and

there is a good chance that nearby type 2 or type 4 patients are served so that ambulances

travel less distance. Therefore, although the service times of RTH of overall, type 2 and

type 3 are improved, type 1 service level worsen slightly

Service levels of periodic information update case is almost identical with real-time

information update case (Table 4.4). Overall SL1 and SL2 values of periodic information

update case are 0.678 and 0.450 respectively while in real-time information update case,

these service levels are 0.733 and 0.471 respectively.

The results indicate that 30-min periodic information update does not differ too much

from real-time information update case. Therefore, implementing periodic information up-

date system is also effective in responding to ambulans request calls. Moreover, implement-

ing periodic information update is a lot more easier than implementing real-time information

update.

Table 4.3: Comparison of real-time information update and 30-min periodic information
update cases with RTH and RTT values of each three dispatching policies with NCR
return policy
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Table 4.4: Comparison of real-time information update and 30-min periodic information
update cases with SL1 and SL2 values of each three dispatching policies with NCR return
policy

4.3 The effects of increased velocity of ambulances

This section covers the effects of increased velocity of ambulances. This section analyzes

decreasing travel times by increasing velocities to account for more optimistic road condi-

tions.

Increasing maximum of expected average velocity from 25 km/h to 35 km/h has some

implications. When the isolation risks of neighborhoods are added to the travel times

calculations, the travel times become too high. One way to consider 25 km/h as a worst case

scenario. It is worthwhile to analyze a more optimistic scenario for comparison purposes.

The direct result of this policy is to increase minimum average velocity from 6.25 km/h to

8.75 km/h.

After an earthquake, many people will try to reach their relatives or evacuate the area.

Furthermore, some roads will be damaged or blocked. Therefore, traffic jam is expected

on some of the streets. Hence, it is very difficult to predict post-earthquake travel times.

We assume that travel times are random with exponential distribution. Considering that

people are willing to open a lane to an ambulance, most of the time, an ambulance’s average

velocity is higher than the speed of other vehicles in the traffic. This section analyzes the

what-if question of increasing ambulance velocity. The other conditions are identical with

Section 4.1.
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The results in Table 4.5 indicate that, 40 percent increase in average velocity causes

18.6, 40.4 and 44.3 percent improvement in FCFS, SDF and MCPF policies based on RTH.

For RTT , improvement becomes 16.0, 6.7 and 11.8 percent. Although the improvement in

SDF and MCPF policies for RTH is noticable, the improvement for RTT is not so high.

The reason could be the NCR return policy. In this return policy, it is inevitable to observe

long queues in some hospitals while others are underutilized.

Table 4.5: Comparison of 25 km/h and 35 km/h travel velocities of ambulances with RTH
and RTT values of each three dispatching policies with NCR return policy

Table 4.6: Comparison of 25 km/h and 35 km/h travel velocities of ambulances with SL1
and SL2 values of each three dispatching policies with NCR return policy
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4.4 The effects of communication on service times and service levels

In this section, the effects of communication between ambulance drivers and hospital coordi-

nators are tested via simulation model. It is not a part of this study to simulate the periods

inside hospital emergency service departments where patients go through different diagno-

sis and treatment procedures depending on conditions. Several studies including Duguay

and Chetouane [22] simulate the emergency service during daily operations, rather than a

mass casualty incident. This paper could be a reference point while integrating ambulance

dispatching and emergency service operations in the simulation. Carrying the patients to

the hospitals with shortest expected travel times (NCR) without taking into consideration

the current loads at the hospitals could lead to very long queues in some hospitals, while

others could be underutilized. In this study, a random total service duration is assumed for

hospital emergency bed service. The service times in the hospital emergency departments

are exponentially distributed with means 60, 40 and 20 minutes for are severe, moderate

and light injuries, respectively. We obtained the hospital emergency bed capacities from [1].

In this section, we consider the availability of communication between the dispatcher,

ambulance driver and hospital emergency service units. If the ambulance drivers’ can learn

the queue lengths in the hospitals, patients can be transported to nearby hospitals with less

queue length. Hence, we propose an ambulance return policy that utilizes this information.

When the dispatcher obtains information on the queue sizes in the emergency service

units in hospitals, drivers may be directed to the nearby hospitals with small queue lengths.

In the simulation model, the expected treatment times of the patients in the queues at the

hospitals are added to the expected travel times. Then the closest hospital with respect to

this adjusted duration is selected as the ambulance destination. This return policy is named

communicating − return (CR) policy.

Table 4.7 compares NCR and CR return policies with RTH and RTT values of each

three dispatching policies. We observe that overall RTH get worse dramatically, but overall

RTT values get worse slightly for SDF and MCPF policies. But when we compare service
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levels, although SL1 decreased from 1.000 to 0.867 and 0.804 for SDF and MCPF policy

respectively, SL2 values improve dramatically from 0.539 to 0.855 for SDF and from 0.548

to 0.795 for MCPF by using CR return policy Table 4.8 . By using this return policy,

ambulances spend more time after taking the patient from disaster location until reaching

to hospitals, but patients who arrive to hospitals do not wait in long queues in the emergency

departments, rather they are started to be served immediately or wait for a few minutes.

Moreover, the resources of hospital emergency departments are utilized more effectively

compared to NCR policy. It is also very important to notice that it is possible to save all

the severely injured people both by RTH or RTT measure by using MCPF policy. SL2

of type2 injuries are also increased. The outcome of implementing MCPF policy with CR

policy is that, type3 injures are almost ignored and only 0.7 percent of them are served.

SDF policy is still the best for overall RTH, RTT , SL1 and SL2 values by implementing

CR return policy. FCFS policy results are improved for CR return policy from NCR return

policy, but still the worst policy to be implemented. The results of Table 4.7 and Table 4.8

indicate that carrying the patients to the nearest hospitals without communication is not a

logical approach due to ineffective usage of hospital emergency departments and long queues.

Therefore, intensive communication between ambulance drivers and hospital coordinators

is necessary in a post-disaster environment.

Table 4.7: Real-time information update case: Comparison of NCR and CR return policies
with RTH and RTT values of each three dispatching policies

Figure 4.8 shows the results of implementing FCFS policy with CR return policy. It is
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Table 4.8: Real-time information update case: Comparison of NCR and CR return policies
with SL1 and SL2 values of each three dispatching policies

observed that overall RTH(j) and RTT (j) of each neighborhood j are close to each other,

but these response times are high. Service levels are also similar both with other and among

the neighborhoods. This policy can be seen as the most fair policy among neighborhoods,

however it is a bad policy with poor response times and poor service levels. Figure 4.9 shows

the outcome of implementing SDF policy with CR return policy. Service levels are perfect

some neighborhoods, however some of them has very poor service levels. Response times

vary between neighborhoods and some of them has average of more than 5000 minutes. The

standard deviation of average response times of neighborhoods is so high and this fact will

probably create a social problem if this policy is implemented after a disaster. Figure 4.10

displays the results of MCPF policy with CR return policy. In this figure, service levels of

neighborhoods range between 0.6 and 0.92. Overall average of 0.8 service level is a good

result and Table 4.7 indicates that all the severely injured people are served. Moreover,

average response times of the neighborhoods are not too different as it was in SDF policy

which satisfies social fairness better. This policy arises as a very good alternative to SDF

policy when using CR as a return policy.

Table 4.9 and Table 4.10 display the results of periodic information case with CR return

policy. They are very similar to Table 4.7 and Table 4.8. This indicates that using a

real-time information update system or 30-min periodic update system does not make a

noticable difference with CR or NCR return policies.



Chapter 4: Performance Evaluation of Dispatching Policies by Simulation Experiments 45

Figure 4.8: FCFS dispatching policy with CR return policy: RTH(j), RTT (j), SL1(j) and
SL2(j) of neighborhoods

Figure 4.9: SDF dispatching policy with CR return policy: RTH(j), RTT (j), SL1(j) and
SL2(j) of neighborhoods
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Figure 4.10: MCPF dispatching policy with CR return policy: RTH(j), RTT (j), SL1(j)
and SL2(j) of neighborhoods

Table 4.9: Periodic information update case: Comparison of NCR and CR return policies
with RTH and RTT values of each three dispatching policies
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Table 4.10: Periodic information update case: Comparison of NCR and CR return policies
with SL1 and SL2 values of each three dispatching policies

Table 4.11 and Table 4.12 display the results of the increased velocity case with CR

return policy. It is observed that overall RTH and RTT values does not differ too much

between 25 km/h or 35 km/h, but service levels change a lot. Especially the improvement

in type 2 service level by testing with 35 km/h in MCPF policy is dramatic. Some of

the average response times are increased with increased velocity in SDF and MCPF (tie-

breaker is SDF) because more patients are served even if these patients are far (all the

nearby patients to hospitals are served so ambulances are able to serve to longer distances).

Table 4.11: Increased velocity case: Comparison of NCR and CR return policies with RTH
and RTT values of each three dispatching policies

In Appendix, from Figure from 3 to Figure 8, hourly service levels of combinations of

FCFS, SDF, MCPF dispatching policies with NCR, CR return policies are given. Those

figures represent 5 hours and 10 hours service levels of type 1 injuries. For SDF and FCFS
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Table 4.12: Increased velocity case: Comparison of NCR and CR return policies with SL1
and SL2 values of each three dispatching policies

policy, type 2 and type 3 graphics are similar because there is no priority based on injury.

Overall, these six figures indicate the success of MCPF policy for severe injuries. It is

assumed that most of the patients require ambulances would be severe injury, therefore it

is more logical to implement MCPF policy after the expected earthquake. However, it is

important to teach triage to the rescue teams and military members. Hopefully, authorities

will notice the importance of teaching triage to rescue teams so that many lives could be

saved.

4.5 The effects of establishing temporary emergency hospitals after the disas-

ter

In a post-earthquake environment in Istanbul, it is expected to be inevitable that hospi-

tal emergency services would be overwhelmed by the incoming patients. Therefore, it is

essential to increase service capacity by positioning disaster environment temporary emer-

gency hospitals (TEH) in areas with poor expected response times and service levels. We

investigate system performance under different combinations of TEH locations to guide

preparedness decisions.

In this section, hospital emergency service queue lengths are not taken into consideration.

Moreover, social issue among neighborhoods is considered the maximum RTH(j) value

of neighborhoods. We aim to decrease both RTH and decrease maximum RTH(j) of
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neighborhoods by opening TEHs so that response times and maximum maximum RTh(j)

will be decreased and.

It was observed previously that SDF policy performs the best in terms of RTH, but it is

not a fair policy since some neighborhoods have very poor response times. In this section, we

identified ten candidate locations based on SDF policy results to open temporary emergency

hospitals. These candidates are the neighborhoods with the worst RTH values under SDF

policy.

Figure 4.11: Total enumeration results of adding two TEH units

Three cases are studied in this section. These are opening two TEHs, opening four

TEHs, opening six TEHs. Total enumeration is performed considering the ten candidates

for each case and the results are presented in Figures 4.11, 4.12, and 4.13.

There are 465 combinations (45 for two TEHs, 210 for four TEHs, 210 for six TEHs)

tested by simulation. Simulating all of the combinations takes too long; therefore, they are

simulated with 10 replications instead of 50.

The results are presented for only SDF policy, since the objective of this section is to
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Figure 4.12: Total enumeration results of adding four TEH units

Figure 4.13: Total enumeration results of adding six TEH units
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compare the effects of additional TEHs; rather than comparing policies.

Selected TEH locations for three cases are:

Two TEHs: (Neighborhood numbers 30, 82) (Figure 1)

Four TEHs: (Neighborhood numbers 30, 52, 69, 83) (Figure 1)

Six TEHs: (Neighborhood numbers 26, 30, 44, 69, 82, 85) (Figure 1)

From Table 4.13 and Table 4.14, it is observed that NCR policy RTH values are highly

sensitive to additional TEH units but RTT values differ a little. However, SL2 improves

from 0.539 to 0.631 when 6 TEH units are opened. The effects of adding TEH units are

more visible when CR policy is used as a return policy. Overall service levels are improved

more than 11 percent by opening 6 TEH units and response times (RTH, RTT ) decrease

by more than 5 percent. Especially when we add 6 TEH units to the system, SL1 and SL2

become 0.980 and 0.964 which are very high and almost 1.000. SDF policy creates inbalance

between neighborhoods and the neighborhoods which has hospitals nearby become more

advantageous in receiving faster service. Therefore, standard deviation among the average

response times of the neighborhoods become also important when only dealing with SDF. It

is observed that, standard deviation among the neighborhoods is affected by the increasing

number of TEH units in terms of RTH, but it seems uneffected in terms of RTT when SDF

policy is used with NCR return policy. When CR return policy is used, standard deviation

seem to be more sensitive to additional TEH units than overall average response times.

Table 4.13: The effect of different number of additional hospitals on RTH and RTT by
using SDF dispatching policy with NCR or CR return policies
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Table 4.14: The effect of different number of additional hospitals on SL1 and SL2 by using
SDF dispatching policy with NCR or CR return policies

4.6 The effects of additional ambulances

The total number of ambulances taken from [1] is 128 in the simulation model. At the be-

ginning of the model runs, ambulances are located at the hospitals they belong to. However,

during the simulation runs, ambulance locations change dynamically. Since the simulation

period is long enough, we expect the effect of initial ambulance locations to phase out. In

order to see the effects of adding ambulances to different locations, we added five ambu-

lances to six neighborhoods in six distinct cases. The results are listed in Table 4.15. It is

observed that the difference in RTH of adding ambulances to different locations is less than

1 percent. Therefore, we increase ambulance capacity by adding them to random locations.

Table 4.15: RTH for six distinct cases when five ambulances are added to different locations

The results are very different from opening new TEH units. Table 4.16 indicates that

RTH is very sensitive to ambulance numbers. Consequently, additions to the ambulance

capacity as a pre-disaster preparedness approach provides direct benefits in reducing overall

RTH. Some vehicles might also be utilized instead of ambulances in case of need to im-

prove service performance. On the other side, despite the dramatic improvement on RTH,

only SDF policy with NCR return policy is tested with ambulance additions. Emergency

department capacity is not altered, therefore it is logical to expect that RTT values will
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not improve like RTH.

Table 4.16: Results of increasing ambulance numbers
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Figure 4.14: Addition of ambulances and its effects on RTH and standard deviation
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Chapter 5

CONCLUSION

In this thesis, we analyzed the post-earthquake ambulance dispatching problem for the

Istanbul case by a simulation model. Our objective was to assess the performance of different

ambulance dispatching policies, by simulating the ambulance dispatching operations in seven

districts of Istanbul and their neighborhoods. The studied seven districts are Bahçelievler,

Güngören, Zeytinburnu, Bağcılar, Esenler, Bayrampaşa and Bakırköy. These areas form an

almost convex region, therefore we assumed that the demand of the studied areas are only

served by the supply in the studied area and the supply does not serve to the outside of the

studied area. The basic assumption of the model is the centralized system assumption, that

enables coordination of the decisions centrally. Other important assumptions that affect the

results are the following. First, all the arrived patients must be carried by the ambulances

and patients will wait for the ambulances as long as it takes without being transported with

any other vehicle. Second, central system must not reject any of the ambulance requests

although the ambulance requests are many and idle ambulances are low, and central system

must assign an ambulance to the patient even if two or three days has passed. When the

treatment times and the capacities of the ambulances are added to the simulation, some

patients either can reach to hospital but can not be served in the emergency department

due to long queues or can not reach to hospital at all.

The simulation model updates information on a continuous-time basis with one minute

increment. A minute is a quite small time-increment to represent the events. There are

more than 100,000 events in the simulation but only a total of 7200 minutes. Therefore,

computational time decreases dramatically with the continuous-time approach opposed to

the discrete-event approach. Although the simulation runs for 7200 minutes (5 days), the
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arrival process stops after 88 hours. The reason is that the survival probability of a patient

under the collapsed buildings almost decreases to zero around 3 to 4 days after the earth-

quake. The simulation runs for five days cover and observe the service times of all patients

whose services are delayed. There are four critical matrices in the simulation which are

patient matrix, ambulance matrix, hospital matrix and bed matrix. The attributes in these

matrices are updated as explained in Sections 3.14 and 3.15.

The exact earthquake damage can not be known in advance of the earthquake, but

JICA prepared a report for the expected percentage of destruction in each neighborhood [3].

Neighborhood population data is taken from ArcGIS software, ESRI Company [2]. When we

combine the population data [2] with the expected percentage of heavily damaged buildings

data from the JICA Report [3], we calculate the expected number of injuries from each

neighborhoods and use this number to set the patient arrival rate for each neighborhood.

The arrival process is non-stationary. We keep the distribution of the interarrival times the

same but the non-stationarity of arrivals is captured through batch arrivals. Therefore, the

arrivals become the calls to the central call center requesting ambulances and sometimes

more than one ambulance could be requested or no ambulance is requested.

The ambulance and hospital numbers and their locations are taken from a previous study

of Gül [1]. The initial locations of ambulances are given in Figure 1. The travel times are

estimated based on real road data [2] and isolation risk taken from JICA report [3].

Three ambulance dispatching policies and two return policies are studied. The dis-

patching policies are: First-called-first-served (FCFS), shortest-distance-first (SDF), and

most-critical-patient-first (MCPF). In MCPF policy, we assume that rescuers can catego-

rize the injured people into three categories severe, moderate and light injury. Studied

return policies are: Non-communicating-return (NCR), which selects the closest hospital,

and communicating-return (CR), which selects the hospital that can provide service in

minimum expected time. These policies are explained in Section 3.10 in detail.

We use two basic performance criteria, which are response time (RTH or RTT ) and

service level (SL1 or SL2).
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We analyze several different cases. Real-time information case (Section 4.1) and periodic

information update case (Section 4.2) give similar results and in both cases, SDF policy gives

the best results for RTH but has poor performance especially in terms of fairness among

neighborhoods and individuals. By fairness, we mean unequal distribution of resources

among neighborhoods which are ambulances and emergency beds. On the other hand,

MCPF policy arises as a good alternative when comparing fairness results but comes with

a cost of increased RTH by 20 percent approximately. Average service levels are similar

in SDF and MCPF for NCR return policy, and in CR return policy, average service levels

of SDF policy is slightly better than MCPF policy. FCFS policy is generally used in daily

life, however the results indicate that it is a very poor dispatching policy both for response

times and service levels in the case of disasters.

In Section 4.3, a what-if questions is analyzed by considering increased velocity. Increas-

ing average expected ambulance velocity by 40 percent does not make noticable differences

for average response times. On the other side, average service level improvements with CR

return policy shows that traffic conditions highly affect the number of patients that are

served. Hence, we expect better system performance for average service levels instead of

average response times if road conditions are more favorable.

In Section 4.4, In this section, two types of return policies are compared which are NCR

and CR. The results indicate that the CR policy is more reliable and intensive commu-

nication between ambulance drivers and hospital coordinators is beneficial while assigning

ambulances to the hospitals. SDF policy and MCPF policy gives similar results for RTT

and service levels are also similar. Therefore it is more logical to adapt MCPF policy in

order to save severe injuries first.

Section 4.5 analyzes the case of opening TEHs. Opening 2, 4, and 6 TEHs are considered

and their locations are found by total enumeration from 10 candidate neighborhoods which

display poor RTH(j) for neighborhoods under the SDF policy. The results indicate that

although opening temporary emergency units decrease RTH dramatically but does not

affect RTT for NCR return policy, however it affects the results for CR return policy and
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standard deviation between the average response times of the neighborhoods. When 6 TEH

units are added, SDF policy almost serve everybody in 5 days.

Section 4.6 presents the results of adding new ambulance units to the medical system

and the results indicate that RTH is highly sensitive to the balance between number of

ambulances and number of patients.

Further analysis could be conducted by modeling the behavior of the patients, especially

in terms of how long they are willing to wait. For example, 3 hours have passed since the

patient call for an ambulance but no ambulance has been aasigned to this patient yet,

then the patient may go to a hospital by other means rather than ambulances. In such

a case, a new performance measure would be needed to indicate percentage of patients

served. Another case to consider the fact that the centralized system may reject some of

the ambulance requests due to heavy request load. Again, some patients would have to use

other means of transportation rather than ambulances in such a case.

An extension of this study is to model the emergency service department of a hospital

into the simulation. The results in Section 4.4 indicates that emergency treatment times

and emergency capacities must be considered in the simulation.

To conclude, we have assessed the performance of the current ambulance system in

Istanbul in a post-disaster environment by testing different policies with simulation. The two

performance criteria, which are rescue-to-hospital time (RTH) and fairness, are competing

with each other and it is the decision maker’s call to use which policy. Furthermore, addition

of ambulances and temporary emergency service units have been analyzed. Insights obtained

in this study may be useful in guiding preparedness and mitigation strategies.
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