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ABSTRACT

In this thesis we study a single-period, single-item inventory (newsvendor) problem. We

analyze the opportunities of �nancial hedging to mitigate inventory risks when the demand

and/or supply processes are correlated with the price of a �nancial asset. The risk or

uncertainty in a classical newsvendor model is often generated by random demand. This

randomness forces decision makers to determine their managing policies while facing risk.

If the demand exceeds or falls short of expectations, the decision maker will face a short-

age or a loss. However, apart from the uncertainty of demand we also incorporate supply

uncertainty as a source of randomness. Supply uncertainty implies that the quantity re-

ceived is not equal to the quantity ordered due to problems encountered during production

or transportation. The combined randomness of demand and supply enhances the level of

uncertainty, thus leading to an increased risk for the manager. Apart from the uncertainty

levels, the majority of the literature on common inventory models are based upon two im-

portant assumptions. Primarily, a risk-neutral setting for the decision maker. Secondarily,

independence of the demand and supply from any kind of �nancial instrument. So, the

decision problem is often formulated as the minimization or maximization of the expected

cost or pro�t. Then, the optimal inventory management policy is determined by solving the

resulting optimization problem. Besides supply and demand there are other forms of risk

as well such as interest rate, currency risk, catastrophe, etc.. Hence, we provide a general

framework of decision making in a risky environment by categorizing our model under three

di¤erent approaches. In the �rst one, we analyze the conventional newsvendor model with

shortage cost. This model is extended by adding di¤erent types of supply uncertainty, while

the assumption of independence between demand and market still holds. In the second one,

we use �nancial instruments like options, bonds, futures, etc. to hedge the risks associated
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with the revenue or the cash �ow by assuming perfect correlation between demand/supply

and the market. The manager or the decision maker now has to determine the optimal

portfolio of these hedging instruments as well as the optimal ordering quantity. For the last

approach, we characterize a setting for hedging the risk when there is partial correlation

between demand/supply and the market. In such a scenario, forming a replicating portfolio

will not be possible since there is no perfect correlation. So instead, a minimum variance

type approach is used.



ÖZETÇE

Envanter, tedarik zincirinin her halkas¬nda s¬kl¬kla kullan¬lmaktad¬r. Dolay¬s¬yla endüstri

mühendisli¼gi ve i̧sletme yönetiminde en çok ele al¬nan konulardan biridir. Envanter mod-

ellerinde talep ve arz dengesi çok önemlidir. Ancak bu faktörlerin rassal olmas¬sebebiyle

karar yönetimi güçlükler içermektedir. Rassall¬k beraberinde risk getirir ve do¼gal olarak

karar veren ki̧siler, kararlar¬n¬bu riskli ortam içerisinde vermek durumundad¬rlar. Talebin

beklenenden az ya da çok olmas¬ürünün elde kalmas¬na, yahut arz¬n karş¬lanamamas¬na yol

açacakt¬r. Sonuç olarakda nakit ak¬̧s¬ile maliyet ve kararlar etkilenecektir. Talep ve arz-

daki bu rassall¬k karar veren ki̧si riske karş¬duyars¬z (risk-neutral) olmad¬¼g¬sürece göz ard¬

edilemez. Dolay¬s¬yla envanter problemi sadece maliyet veya karlar¬n beklenen de¼gerinin

enazlanmas¬veya ençoklanmas¬olmaktan ç¬kar. Bu gerçek �nansal modellerde iyice ortaya

ç¬kmaktad¬r. Böyle modellerde riski kontrol alt¬nda tutabilmek için çeşitli yöntemlerin ve

�nansal ürünlerin kullan¬ld¬¼g¬bilinmektedir.

Bu tezde tek dönem ve tek ürün içeren envanter (newsvendor) modelleri incelenmektedir.

Amaç bu tip modellere �nansal perspektiften bakarak arz ve talepten do¼gan rassall¬¼g¬ risk

yönetim politikalar¬oluşturarak, kontrol alt¬nda tutmakt¬r. Araşt¬rmada üç yaklaş¬m kul-

lan¬lm¬̧st¬r. Birincisinde karar verenlerin riske karş¬duyars¬z olduklar¬düşünülüp arz¬n rassal

oldu¼gu durumlar incelenecektir. ·Ikincisinde karar verenin riske karş¬duyarl¬oldu¼gunu kabul

edip elde edilecek gelirin veya nakit ak¬̧s¬n¬n taş¬d¬¼g¬riski azaltmak amac¬ile vadeli i̧slemler

ve türev ürünler kullan¬lacakt¬r. Rassall¬¼g¬meydana getiren talep veya arz gibi de¼gerlerin

�nansal marketteki çeşitli ürünlerle korelasyonu oldu¼gu bilinmektedir. Bu korelasyon kul-

lan¬larak oluşturulacak olan portföyde al¬nan pozisyon, dönem sonu nakit ak¬̧s¬n¬n riskini

azaltabilir. Bu yaklaş¬mda karar veren ki̧si sipari̧s miktarlar¬n¬n yan¬nda portföy pozisy-

onunu da dikkate alacakt¬r. Üçüncü olarakda talep ve arz gibi rassallar¬n �nansal ürünlerle
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olan korelasyonunun mükemmel olmad¬¼g¬ durumlar incelenecektir. Ancak, korelasyonun

mükemmel olmamas¬nakit ak¬̧s¬n¬n �nansal ürünler kullan¬larak portföye çevrilmesini en-

gellemektedir. Dolay¬sla ikinci bölümde kulland¬¼g¬m¬z metodlar geçersiz kalmaktad¬r. Bu

sebepten dolay¬ sapmay¬enazlama olarak adland¬r¬lan başka bir yöntem kullan¬lacakt¬r. Bu

yöntem iki aşamadan oluşmaktad¬r. Öncelikle, karar veren sabit bir sipari̧s miktar¬için en

uygun portföyü bulacakt¬r. Daha sonra, bu portföy kullan¬larak beklenen kar ençoklanacak-

t¬r.
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Chapter 1

INTRODUCTION

Every business, whether it is a retailer, manufacturer or a simple o¢ ce, has some form

of inventory that someone has to keep track of. There are always items and products that

must be ordered periodically for the continuation of the business. These items need to

be managed e¢ ciently or else, the business will lose money. To avoid such undesirable

situations companies pay a lot of attention to inventory and its management. In a nut

shell, inventory management can be referred to as the planned course of action against

random consumption of the items, products, goods, etc. The scope of inventory management

stretches from physical holding, lead times, holding costs, replenishments, defective goods to

pricing, quality control and inventory visibility. Hence, inventory models can be regarded as

one of the most widely studied topics in industrial engineering and operations management.

Due to the uncertain nature of the environment, these models are known to have a complex

structure.

Risk exposure refers to the undesirable outcome of a random prospect. In conventional

newsvendor models, the random prospect is typically called demand and is modeled by an

exogenous probability distribution. Randomness forces decision makers to determine their

managing policies while facing a risk. If the demand exceeds or falls short of expectations,

the decision makers will face shortage or loss. Moreover, the uncertainty of demand is not

necessarily the only source of randomness. In fact in recent years, many studies emphasized

models with supply uncertainty as well. Supply uncertainty implies that the quantity re-

ceived is not equal to the quantity ordered due to problems encountered during production

or transportation. The combined randomness of demand and supply enhances the level of
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uncertainty, thus leading to an increased risk for the manager.

Apart from the uncertainty levels, the majority of the literature on common inventory

models are based upon two important assumptions. Primarily, a risk-neutral setting for

the decision maker. This implies that the decision maker is completely indi¤erent to the

risk involved in an investment and is only concerned about expected return. The second

assumption, a more indirect but equally important one, is the independence of the demand

and supply from any kind of �nancial instrument. So, the decision problem is often for-

mulated as the minimization or maximization of the cost or pro�t based on the decision

maker�s experience of the past and expectations of the future. Then, the optimal inventory

management policy is determined by solving the resulting optimization problem. Evidently,

not all inventory managers are risk-neutral and this fact takes an important role in describ-

ing the risk attitude of investors in �nancial models. In fact, many planners are willing to

trade lower expected pro�t for downside protection against possible losses. In other words

they tend to be risk averse. Furthermore, in most business practices it is possible to �nd

a correlation between the random parameters and the �nancial market. Disregarding such

correlations could lead to arbitrage opportunities for careful eyes.

Besides supply and demand there are other risks as well such as interest rate, currency

risk, etc.. According to a research conducted by International Swaps and Derivatives As-

sociation in August 2003, world�s top 500 companies hedge most of their interest rate and

currency risk, but only little of their commodity and equity risk. That�s why there were

more than $221.3 bn losses incurred from 1984 to 2004 due to unexpected catastrophic

events. Recalling the terrible disaster Katrina, one of the �ve deadliest hurricanes in United

States in 2005, almost everybody lost a lot; however, some traders who bet on oil prices,

exchange rates or SP500 made considerable pro�ts. This extreme example illustrates the

correlation between the �nancial market and a stochastic event. In our context, we con-

sider stochastic events related to demand and supply uncertainty. Hence, by exploiting the

correlation between demand/supply and the �nancial market one can hedge some portion

of the risks associated with the random event. Nevertheless, conventional inventory models

aren�t able to provide methods to use such correlation and thus, meet the needs of risk-
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averse planners. Therefore, in this thesis, we study the opportunities of �nancial hedging

to mitigate inventory risks when the demand and/or supply processes are correlated with

the price of a �nancial asset. We start by providing important and related works that have

been done until today in Chapter 2. We group them under four headings; satis�cing prob-

ability maximization, utility functions, value at risk and random supply. In this thesis, we

propose an e¤ective framework of �nancial hedging that allows a manager to exploit various

�nancial securities for mitigation of inventory carrying risks. Then, we determine optimal

inventory and risk management policies by focusing on single-period newsvendor model. In

order to provide a general setting we categorize our newsvendor model under three di¤erent

approaches. In the �rst one, Chapter 3, we analyze the conventional newsvendor model with

shortage cost. The model is extended by adding di¤erent models of supply uncertainty, but

the assumption of independence between demand and market still holds. However, it is

known that the demand or supply for the product is often correlated with some �nancial

assets or economic indices. Therefore, one can manage the risks involved in an inventory

model by taking positions in the futures or derivatives markets for such instruments. In

the second one, Chapter 4, we use �nancial instruments like options, bonds, futures, etc.

to hedge the risks associated with the revenue or the cash �ow. At this point we continue

our analysis by making the assumption of perfect correlation between demand/supply and

the market. The manager or the decision maker now has to determine the optimal port-

folio of these hedging instruments as well as the optimal ordering quantity. The process

of �nding an optimal portfolio entails the calculation of replicating portfolio. We utilize

representations of di¤erence of convex (DC) functions to generate the replicating portfolio.

For the last approach, Chapter 5, we generate a framework of decision making for hedg-

ing the risk when there is partial correlation between demand/supply and the market. In

such a scenario, forming a replicating portfolio will not be possible since there is no perfect

correlation. So instead, a minimum variance type approach is introduced where we �rst

determine the best possible hedged cash �ow in terms of variance and then maximize the

expected hedged cash �ow by choosing the order quantity. Chapter 6 illustrates the results

of our study and concludes the paper with directions to future research.
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Our approach which combines inventory management and �nancial hedging is not com-

monly used in industrial engineering and operations management. Hence, we believe that

our research in inventory management using risk management tools will constitute a novel

and interesting project that also has practical implications. But one should note that, hedg-

ing obviously requires the presence of uncertainty and its standard objective is to reduce

risk, not to make money.
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Chapter 2

LITERATURE REVIEW

In the literature there are a lot of studies related to inventory management problems,

speci�cally newsvendor models due to the fact that such models are the basic building blocks

of many multi-period dynamic inventory, capacity-planning, and contract design problems

(see the excellent textbook by Zipkin [47] for details). However, the majority of these stud-

ies are focused on risk-neutral decision makers who are concerned about expected pro�t or

cost criteria. Although using expected values is very helpful in situations involving di¤erent

uncertainties, it models decision makers to behave risk-neutrally, which in reality, is not

true. That�s why models with risk-neutrality assumptions have limited viability in prac-

tice. In recent years, the risk-averse behavior of the decision maker is addressed implicitly

through other criteria such as satis�cing probability maximization, utility functions, Value-

at-Risk (VaR) (A technique which uses the statistical analysis of historical market trends

and volatilities to estimate the likelihood that a given portfolio�s losses will exceed a certain

amount) and other risk measures.

Apart from the risk attitude of the decision maker, another concern for the newsvendor

problem is the supplier�s replenishment power. Generally the source of randomness in a

newsvendor model is demand, yet in real life there is also supply uncertainty as well. We

now discuss some of the literature in these areas.

2.1 Satis�cing Probability Maximization

Satis�cing probability maximization refers to probability of achieving a certain level of

pro�t. These types of models are best suited for practices in which the dis-utility resulting

from not achieving a certain level of pro�t is much larger than the rewards of over-achieving
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it. Lau [24] examines this issue by solving the satis�cing probability maximization problem

for a single-product model with shortage and salvage costs. Sankasubramanian and Ku-

maraswamy [39] also address the same problem for single-period inventory models. Then,

Lau and Lau [23] use the some methodology for two-product newsvendor models, which is

extended by Li et al. [26] and [27] for two-product newsvendor models for uniformly and

exponentially distributed demands. Additionally single-period models are analyzed as mul-

tiple criteria maximization by Parlar and Weng [36] in order to �nd tradeo¤ with satis�cing

probability maximization. Their work also concludes that the optimal order quantity of

satis�cing probability maximization is less than the optimal order quantity for expected

pro�t maximization in the conventional newsvendor problem.

2.2 Utility Functions

Starting with Lau [24], the utility function approach is commonly used for modelling the

risk in inventory management. The conventional objective function is maximizing the ex-

pected utility of the decision maker. The structure of the utility function may vary, but

usually exponential, quadratic and power functions can be seen in the literature. Lau [24],

analyzes this issue for a single-period model where the utility function of the decision maker

is quadratic, in other words, the mean-variance approach. Bouakiz and Sobel [5] use ex-

ponential functions for multi-period models and they conclude that a base-stock policy is

optimal. Eeckhoudt et al. [12], examine the e¤ects of risk aversion in single period problem

by analyzing the changes in various price and cost parameters using piecewise-linear, kinked

payo¤ function and exponential utility function. By comparing and contrasting the optimal

ordering quantity for conventional newsvendor problem with the utility maximization prob-

lem and with di¤erent risk attitudes, Schweitzer and Cachon [40] investigate the decision

bias when the demand is deterministic. The paper concludes that optimal ordering quan-

tities are smaller than ordering quantities maximizing the expected pro�t for high-pro�t

products and the opposite for low-pro�t products (a product is a high-pro�t product if the

optimal shortage probability is below 0.5).
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Among all the literature on inventory models, few worked on controlling the inventory

risk through borrowing and trading in �nancial markets. Anvari [4], is one of the early

papers written on this subject. According to the paper, the capital asset pricing model is

used to solve the single-period newsvendor model with no setup costs by investing some

portion of capital in inventory and other on �nancial assets. The resulting optimal policy

is characterized and compared with the classical expected utility maximization structure.

Gaur and Seshadri [16], another pioneer paper on this subject, use SP500 index to construct

static hedging strategies using both mean-variance and utility-maximization frameworks.

They establish a �nancial hedging approach when facing stochastic demand. They also

put forward that SP500 index has high correlation with the demand process as long as the

products have discretionary demand. For a single-period problem, in which there is a linear

dependence between demand uncertainty with the market, they derive the hedged-cash �ow

for a perfectly-correlated arbitrage-free complete market; showing that it is possible to make

riskless pro�ts from non-�nancial operations of a �rm by using �nancial instruments. But

since perfect correlation is not completely realistic in practice, they extend their framework

to �t partially-correlated markets using expected utility-maximization. An important aspect

they pointed out is, the risk of inventory carrying can be replicated as a �nancial portfolio

by using simple instruments like bonds, futures and options. According to their research,

a risk-averse decision maker orders more inventory when hedging is applied. Caldantey

and Hough [6] extend the hedging methods for continuous-time models. Their paper views

the non-�nancial operations and facilities of a corporation, as assets in the corporation�s

portfolio; thus, turning the problem into a �nancial hedging problem in incomplete markets.

By dynamically hedging the pro�ts of a corporation, when these pro�ts are correlated with

returns in the �nancial markets, they propose a framework for modelling the operations of a

non-�nancial corporation that also trades in the �nancial markets. A solution for the more

general problem of simultaneously optimizing over both the operating and hedging policies

of the corporation is provided. A more recent paper, Chu et al. [9] examines a continuously

reviewed inventory model with uncertain demand by developing a continuously reviewed

inventory model and a mean-variance criterion. Then, a �nancial hedging approach is
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established for hedging the inventory carrying risks. To our knowledge, these are the only

papers that research hedging the risk through establishing a �nancial portfolio.

There are also other papers examining the control of risk with various other approaches.

For example, Agrawal and Seshadri [1] consider a single-period inventory model in which a

risk-averse retailer faces uncertain customer demand and makes a purchasing-order-quantity

and a selling-price decision with the objective of maximizing expected utility facing uncer-

tain customer demand. This problem is in many ways similar to the classic newsvendor

problem, except the distribution of demand being a function of the selling price, which

is determined by the retailer and the objective being utility maximization. Two separate

approaches are considered in which price a¤ects the distribution of demand. In the �rst

model, the change in price a¤ects the scale of the distribution and in the second model, the

change in price only a¤ects the location of the distribution. A methodology is presented by

reducing two decision variables problem to a single variable problem. The results are then

compared with a risk-neutral setting. According to the results, the �rst model will charge

a higher price and order less; whereas, in the second model a risk-averse retailer will charge

a lower price. Ding et al. [10], on the other hand, study the integrated operational and

�nancial hedging of currency exchange rate risk using a mean-variance utility function to

model the �rm�s risk aversion in decision making when there are multiple products and sup-

pliers. They purpose a model within a two-stage decision framework; the �rst stage being

the �nancial hedging for the exchange rate risk and the second stage being the production

allocation for operational hedging. They show that the �rm�s �nancial hedging strategy is

closely related to the �rm�s operational strategy. According to their paper the use, or lack of

use, of �nancial hedges can alter global supply chain�s structural choices, such as the desired

location and number of production facilities to be employed to meet global demand. An ex-

tension of risk-averse, singe-item, multi-period inventory model is analyzed, with objective

function being a coherent risk measure, by Ahmed et al. [2]. Their model also extends to

in�nite-horizon including �xed ordering costs. A recent paper, Wang et al. [45], also ana-

lyze the relationship between a risk-averse newsvendor�s optimal order quantity and selling

price. They conclude that for bounded decreasing absolute risk aversion utility functions,
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a risk-averse newsvendor tends to order less as selling price gets larger than a threshold

value. A di¤erent approach, loss-aversion, is used to characterize the outcomes of the bias

in decision making process by Wang and Webster [44]. They use a kinked piecewise-linear

loss-aversion utility function to study the single-period newsvendor model. They �nd that

a loss-averse newsvendor will order less than the risk-neutral newsvendor when facing low

shortage cost and vice versa. The contributions of this paper to literature are the quanti�-

cation of the newsvendor bias with loss-averse structure, and the in�uence of loss-aversion

to supply chain ine¢ ciency. Following this work, Wu et al. [46] also study the risk-averse

newsvendor model under mean-variance objective function with stockout cost. But instead

of the loss-averse model, they use the mean-variance trade-o¤ and analyzed the e¤ects of

stockout cost. An explicit form of the variance of the pro�t function is derived and shown

that the variance of the pro�t function is no longer a monotone increasing function. Fur-

thermore, under the assumption that the demand function follows the power distribution,

the set of optimal ordering quantities are found. Based on the results, they show that with

stockout the risk-averse newsboy doesn�t order less than the risk-neutral as long as a power

distribution is used for the demand. Chen et al. [8] propose a framework for incorporating

risk aversion in multi-period inventory models as well as multi-period models that coordi-

nate inventory and pricing strategies. In each case, a characterization of the optimal policy

for various measures of risk is provided. In particular, they show that the structure of the

optimal policy for a decision maker with exponential utility functions is almost identical to

the structure of the optimal risk-neutral inventory (and pricing) policies. These structural

results are extended to models in which the decision maker has access to a complete or

partially complete �nancial market.

2.3 Value-at-Risk

Other approaches for controlling the risk involves VaR and conditional VaR (CVaR) analy-

ses. VaR is widely used in �nancial mathematics and �nancial risk management as a measure

of the risk of loss on a speci�c portfolio of �nancial assets. For a given portfolio, proba-
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bility and time horizon, VaR is de�ned as a threshold value such that the probability that

the mark-to-market loss on the portfolio over the given time horizon exceeds this value

(assuming normal markets and no trading in the portfolio) is the given probability level.

Furthermore VaR can also be regarded as the maximum potential change in value of a

portfolio of �nancial instruments over a de�ned horizon. CVaR on the other hand, de�nes

the conditional expected loss exceeding VaR. In other words, CVaR accounts for the risk

beyond the VaR value. For detailed reviews about the VaR models see Simons [42], Jorion

[21], and Jorion and Dowd [11].

Tapiero [43] analyzes an asymmetric valuation between ex-ante expected cost above an

appropriate target cost and the expected costs below that same target level. An explanation

for the VaR criterion is provided when it is used as a tool for VaR e¢ ciency design. This

approach is used in a single-period stochastic inventory problem. Some of their ideas are

also extended to multi-period problems as well. By using VaR criteria, Gan et al. [15],

examine the inventory coordination problem between retailer and supplier. They incorpo-

rate VaR concept to newsvendor model with a downside risk constraint. Ozler et al. [31]

study single-period problem with downside risk constaints while utilizing VaR for a multi-

product newsvendor model. They derive the exact distribution function for the two-product

newsvendor problem and develop an approximation method for the pro�t distribution of the

multi-product case. Additionally, a mathematical programming approach is implemented

to determine the solution of the newsvendor problem with a VaR constraint.

Rockafellar and Uryasev [38] derive fundamental properties of CVaR, as a measure of

risk with signi�cant advantages over VaR for loss distributions in �nance that can involve

discreetness. Gotoh and Takano [18] examine a single-period newsvendor model under CVaR

criteria maximization problem. However, none of these works considered reducing risk via

�nancial instruments.

2.4 Random Supply
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Demand in inventory models is not the only the source of uncertainty. The process of

determining an optimal ordering policy and actual replenishment from the suppliers involves

lots of uncertainties as well. During suppliers production or the procurement phase, planned

or unplanned events (such as maintenance, machine failures, problems, shortage of input

materials, reprocessing, economical changes, trend shifts, disasters, managerial changes etc.)

may occur. Due to these unforeseen events, from the retailer�s point of view, the amount

received could be di¤erent from the amount ordered. Furthermore, problems still continue to

occur even after the production is �nished due to transportation issues, accidents, scrapped

goods, depreciation, etc.. Thus, in reality all of these random events contribute to a general

supply uncertainty. And this randomness constitutes a di¤erent type of risk for the decision

makers. In history there are a lot of tragic examples concerning losses made due to this

supply risk. For example, according to Norrman and Jansson [30], Ericsson lost $400 m

because of a �re occurred in one of its suppliers developing radio-frequency chips in 2001.

The abundance of such examples encouraged the development of sparse literature on random

supply models. The earliest model of a random supply in inventory model with random

demand was developed by Karlin [22]. This is followed by Shih [41], Noori and Keller [29] and

Lee and Yano [25], among many others. Karlin [22] assumes that the only decision available

is whether to order, and that if an order is placed, a random quantity is delivered. It is

also shown that if the inventory holding and shortage cost functions are convex increasing,

then there is a single critical initial on-hand inventory below which an order should be

placed, otherwise it is optimal not to order. Shih [41] assumes that inventory holding and

shortage costs are linear and that the distribution of the fraction defective is invariant

with the production level. The optimal production/order quantity can be found using a

variant of the newsvendor model. Noori and Keller [29] extend Shih�s study by providing

closed form solutions for the optimal order quantity for uniform and exponential demand

distributions and for various distributions of the quantity received. Gerchak et al. [17]

obtain the same result for the pro�t maximization objective by assuming continuous demand

and yield, and they consider a model with initial stock. According to their work, there is

a critical level of initial stock above which no order will be placed, and this level is the



Chapter 2: Literature Review

12

same as the certain yield case. They also show that when initial stock is below that critical

level, the expected yield corresponding to the amount ordered will in general not be simply

equal to the di¤erence. Henig and Gerchak [20] discuss single and multi-period models

with more general assumptions about the random replenishment distribution and the cost

structure. They prove that for a single-period model there exists an optimal order point that

is independent of replenishment randomness. A substantial amount of research e¤ort (for

example, Parlar and Berkin [33], Parlar and Wang [35], Anupindi and Akella [3], Gupta [19],

Parlar and Perry [34], Parlar [32], etc.) has been taken to model the supplier uncertainty

phenomenon. Based on all the literature, it is possible to enumerate representations of

supply randomness in three groups: Random capacity, random yield and binomial models.

For the sake of better understanding, let y be the amount ordered and Q (y) be the amount

received from ordering y units.

� Random Capacity: In random capacity models, the supplier has a replenishment

power which is a random variable, represented by K. In other words, the supplier

has a random upper bound of units that are available to ship. This random capacity

model can be represented as

Q (y) = min fK; yg . (2.1)

When an order is placed for y units, the suppliers will ship y if the total amount

of on hand inventory they poses, K, is greater than y. Or else, they will send all

the inventory they poses, which is K. Furthermore, this random capacity K may

have some degree of correlation with demand. For example, Erdem and Özekici [13]

consider a periodically reviewed single-item inventory model in a random environment

where the yield is random due to the random capacity. By analyzing this problem in

single, multiple and in�nite horizons they show that a base-stock policy is optimal.

� Random Yield: In random yield models, it is assumed that the amount ordered could

be di¤erent from the amount received so that only a fraction enters the stockpile. The
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randomness in this case is represented by a random variable U . The random yield

model can be written as

Q (y) = yU . (2.2)

When an order is placed for y units, the amount received will be Uy. For example

Henig and Gerchak [20] considers a random availability model and show that a non-

order-up-to policy is optimal.

� Binomial: In reality some of the goods ordered may be damaged, scrapped or lost.

Binomial models are used to represent these kinds of uncertainties. Let p be the

probability of successfully delivering a single order and q = 1� p be the probability of

not being able to deliver a single order successfully. This randomness can be modeled

so that the random supply has the binomial distribution

P fQ (y) = xg =
�
y

x

�
pxqy�x

for x = 0; 1; 2; � � � ; y. We will not analyze binomial models.

In this thesis, we generate a framework of decision making in a risk sensitive environment

by examining a single-period newsvendor problem. Our work is closely related to Gaur and

Seshadri [16] in the sense that we also examine static-hedging decisions to a single-period

newsvendor, with risk-averse decision makers facing uncertainty. And we also analyze the

use of �nancial securities to manage the inventory carrying risk. However, we extend their

work by using non-linear functions to represent the dependence between the demand and the

market. Furthermore we also incorporate di¤erent models of random supply models into the

hedging framework. As in Gaur and Seshadri [16], in order to characterize hedging decision

we analyze cases with di¤erent levels of correlation between supply/demand and the market;

no correlation, perfect correlation and partial correlation. However, another major di¤erence

of our thesis is in the partially correlation case. Instead of using a utility maximization

approach, we utilize the minimium-variance approach. This is a two step approach which

starts by �nding an optimal portfolio for reducing the risk and then maximizing the pro�t

by choosing the order quantity using the optimal portfolio.
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Chapter 3

NEWSVENDOR PROBLEM WITH RANDOM SUPPLY

In this chapter we �rst summarize some of the existing results of newsvendor problem

in Section (3.1). Then, through Sections (3.2)-(3.4), we present new contributions, by

extending this problem, by adding random supply models where demand and supply has

some joint probability distribution.

3.1 Standard Newsvendor Problem

The newsvendor problem is a well-known single-item, single-period inventory problem in

which the decision maker (or newsboy) has to decide on how much to order. The replenish-

ment decision is critical because if he orders too many, purchase cost will be unnecessarily

high; on the contrary, there will be a missed opportunity for additional pro�t if he orders

too few. In daily life, it is very common to encounter examples of newsvendor models,

that�s the foremost reason why these models are studied extensively. In standard models

there is a continuos non-negative stochastic demand D with a known distribution function

FD (x) = P fD � xg that has a density fD (x). From this point on, we assume that all

marginal and joint distributions have continuous probability distribution functions. More-

over we suppose that there is a �xed sales price p, a �xed purchase cost c, a �xed shortage

penalty h and a �xed salvage value s which satis�es p > c > s > 0 and h > c. The aim of

the newsboy is maximizing the expected cash �ow by choosing an ordering quantity y, or

max
y
E [CF (D; y)] (3.1)
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where CF (D; y) is the random cash �ow and it can be written as

CF (D; y) = �cy + pmin fD; yg+ smax fy �D; 0g � hmax fD � y; 0g

= �cy + sy + p+min fD; yg � smin fD; yg+ hmin fy;Dg � hD

= (s� c) y + (p+ h� s)min fD; yg � hD (3.2)

so that

E [CF (D; y)] = (s� c) y + (p+ h� s)E [min fD; yg]� hE [D] .

Note that for any random variable X with a continuously di¤erentiable probability density

function f , we can write

E [min fX; yg] =
Z y

0
xf(x)dx+ y

Z 1

y
f(x)dx

and one can easily show that

dE [min fX; yg]
dy

= P fX > yg . (3.3)

In our analysis, we will use (3.3) repeatedly. Particularly, in order to solve (3.1), we take

the derivative with respect to y and set it equal to 0 where X is D. Hence, we obtain

d

dy
E [CF (D; y)] = (s� c) + (p+ h� s) (1� P fD > yg) = 0.

The second order condition is trivially satis�ed since

d2E [CF (D; y)]

dy2
= � (p+ h� s) fD(dy) � 0

and the objective function is concave. Recall that the randomness in (3.2) is generated

by D only and the newsboy makes replenishment decisions based on his expectations of

CF (D; y). Then, the optimal order quantity y� satis�es

P fD � y�g = p+ h� c
p+ h� s = p̂. (3.4)

Note that (3.4) is the optimality condition and p̂ denotes the critical ratio which clearly

satis�es 0 � p̂ � 1. The solution is unique if P fD � yg is strictly increasing in y.
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This characterizes the optimal order quantity decision when the source of uncertainty is

only the demand. However in reality, there are many di¤erent forms of randomness, each

contributing to a collective uncertainty. One of these is the randomness is in the supply.

Due to the economical changes, trends, shifts, disasters, governmental changes, etc. the

supplier�s ability to supply could change as well as the customers demand. So, one must

also consider these changes in supplier�s behavior. In Section (2.4), we summarized supply

uncertainty in three categories. In the following sections, starting with random capacity

models, we�ll analyze the newsvendor problem when supply is also a part of the collective

uncertainty

3.2 Random Capacity

This section deals with the e¤ects of the supply uncertainty when it is caused by random

capacity (see Section (2.4) for more details). In order to model the variability in the ca-

pacity, we de�ne a random variable K as the available capacity to ship. This amount K

determines the maximum number of units that the supplier can ship. It can be bigger or

smaller then the replenishment order y. Thus we model the random supply representing

the relation between supplier and the order as Q (y) = min fK; yg. In short, when we

order y; we will receive Q (y). Let P fK � zg = FK (z) > 0 for all z, denote the distri-

bution function of K. Also suppose that D and K have some joint distribution function

P fK � z;D � xg = FKD (z; x). Moreover, let FKjx (z) = P fK � z j D = xg represent the

conditional distribution function of K given D = x.

Note that CF (D; y) in (3.1) becomes the new cash �ow CF (D;K; y) since there is a

new random component in the function. Therefore, (3.2) should be modi�ed to include the

random capacity condition. The payo¤ function or the cash �ow can now be represented

as,

CF (D;K; y) = (s� c)min fK; yg+ (p+ h� s)min fD;K; yg � hD. (3.5)

Then the objective function becomes

E [CF (D;K; y)] = (s� c)E [min fK; yg] + (p+ h� s)E [min fD;K; yg]� hE [D] .
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Note that for any random variable X and Z with continuously di¤erentiable probability

density functions fX and fZ , we can write

E [min fX;Z; yg] =

Z 1

0
fZ (dz)

 Z minfz;yg

0
xfXjz (x) dx+min fz; yg

Z 1

minfz;yg
fXjz (x) dx

!

=

(R z
0 xfXjz (x) dx+ z

R1
z fXjz (x) dx z � yR y

0 xfXjz (x) dx+ y
R1
y fXjz (x) dx z > y

)
where fXjz (x) is the conditional density of X give fZ = zg. One can also show that

dE [min fX;Z; yg]
dy

=

(
0 z � yR1
y FXjz (x) dx z > y

)
=

Z 1

y
fZ (dz)

Z 1

y
fXjz (x) dx

= P fX > y;Z > yg . (3.6)

We will also use (3.6) repeatedly in our analysis. Particularly, in order to obtain �rst order

optimality condition we need to take the derivative with respect to y and set it equal to

0. Using (3.3) and (3.6) where X represents D and Z denotes K we obtain the optimality

condition as

dE [CF (D;K; y)]

dy
= (s� c)P fK > yg+ (p+ h� s)P fD > y;K > yg = 0 (3.7)

which can also be written written as

g (y) = P fK > yg ((s� c) + (p+ h� s)P fD > y j K > yg) = 0. (3.8)

Since by our assumption P fK > yg > 0 for all y, (3.8) can be written as

(s� c) + (p+ h� s)P fD > y j K > yg = 0.

Rearranging the terms, we obtain the optimality condition

1� P fD > y j K > yg = 1� c� s
p+ h� s

which �nally yields

P fD � y� j K > y�g = p+ h� c
p+ h� s = p̂. (3.9)

Note that we obtained the same critical ratio on the right-hand side of (3.4). However

we have a di¤erent probability on the left-hand side of (3.9). For further analysis, let
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h (y) = P fD � y j K > yg denote this probability. The existence and uniqueness of a

solution of (3.9) depends on the structure of h (y). If h (0) � p̂ � h (1) and h (y) is

strictly increasing in y, then there is a unique optimal solution y� that satis�es (3.9). In

case h (0) � p̂ we have y� = 0, and if h (1) � p̂ we have y� = 1. From this point on

we assume that h (0) � p̂ � h (1) is always true without loss of generality. Moreover,

the objective function is not necessarily concave, so we need to check the second order

condition for optimality. Assuming h (y) is an increasing function in y, the objective function

becomes a pseudo concave function. In (3.8), s � c < 0 and p + h � s > 0; hence, since

P fD > y j K > yg = 1�h (y) is decreasing in y, g (y) must be concave increasing on [0; y�]

where g (y�) = 0 or h (y�) = p̂. On (y�;1), g (y) must be negative and the objective

function is decreasing. Therefore, (3.9) is a necessary and su¢ cient condition of optimality.

Next, we analyze some special cases of random capacity models.

3.2.1 In�nite capacity

Intuitively when the supplier�s capacity is in�nite or always su¢ ciently large the model

should revert back to the standard model (3.4). In other words, K = 1 and K > y is a

always true for all y � 0. Hence, the optimality condition becomes

P fD � y� j K > y�g = P fD � y�g = p+ h� c
p+ h� s = p̂.

As our intuition suggested the capacity randomness became redundant and the model re-

verted back to (3.4).

3.2.2 No dependence between demand and capacity

If there is no dependence between K and D,

P fD � y j K > yg = P fD � yg .

Then the optimality condition (3.9) becomes

P fD � y�g = p+ h� c
p+ h� s = p̂.
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Again the model reverts back to (3.4).

3.2.3 Perfect dependence between demand and capacity

When it is assumed that the dependence between random variables are perfect, then for

some deterministic function A, K = A (D) and P fA (D) � zg = FK (z). Assuming A is an

increasing, di¤erentiable function that has an inverse, (3.9) becomes

P fD � y j K > yg = P fD � y j A (D) > yg

= P
�
D � y j D > A�1 (y)

	
=

P
�
D � y;D > A�1 (y)

	
P fD > A�1 (y)g .

Moreover, (3.7) becomes

dE [CF (D;K; y)]

dy
= (s� c) (1� FK (y))

+ (p+ h� s)
Z 1

y
FD (dx)P fA (D) > y j D = xg

= (s� c) (1� FK (y)) + (p+ h� s)
Z 1

y
FD (dx) 1fx>A�1(y)g

= (s� c)P fA (D) > yg+ (p+ h� s)
Z 1

minfy;A�1(y)g
FD (dx)

= (s� c)P
�
D > A�1 (y)

	
+ (p+ h� s)P

�
D > min

�
y;A�1 (y)

		
.

From here, it is possible to analyze the following two cases.

� Case 1: A (y) � y for all y. This implies that min
�
y;A�1 (y)

	
= y and

dE [CF (D;K; y)]

dy
= ((s� c) + (p+ h� s))P

�
D > A�1 (y)

	
= (p+ h� c)P

�
D > A�1 (y)

	
> 0.

Since the objective function has positive slope, y� =1.
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� Case 2: A (y) > y for all y. This implies that min
�
y;A�1 (y)

	
= A�1 (y) and

dE [CF (D;K; y)]

dy
= (s� c)P

�
D > A�1 (y)

	
+ (p+ h� s)P fD > yg

= (s� c)P fK > yg+ (p+ h� s)P fK > A (y)g

= (s� c) (1� FK (y)) + (p+ h� s) (1� FK (A (y)))

and the optimality condition is obtained by setting this equal to 0, so that

(s� c) + (p+ h� s) 1� FK (A (y))
1� FK (y)

= 0 (3.10)

since 1� FK (A (y)) > 0, we can now write

1� 1� FK (A (y))
1� FK (y)

= 1� c� s
p+ h� s

Thus, we �nally get the optimally condition as

FK (A (y
�))� FK (y�)

1� FK (y�)
=
p+ h� c
p+ h� s = p̂. (3.11)

In order to comment on the existence and uniqueness of a solution, we analyze

g (y) =
1� FK (A (y))
1� FK (y)

from (3.10) and conclude that there is indeed a unique optimal solution under the

assumption that A0 (y) � 1. Then, to check the second order condition we take the

derivative of g with respect to y, and obtain

dE [g (y)]

dy
=

�A0 (y) fK (A (y)) (1� FK (y)) + [1� FK (A (y))] fK (y)
[1� FK (y)]2

=
1

1� FK (y)
�
rK (A (y)) (1� FK (A (y)))�A0 (y) fK (A (y))

�
(3.12)

where fK is the probability density function corresponding to FK and rK is the cor-

responding failure rate function de�ned as

rK (y) =
fK (y)

1� FK (y)
.
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From here, we show that

rK (A (y)) (1� FK (A (y)))�A0 (y) fK (A (y)) � 0

or

rK (A (y))�A0 (y) rK (A (y)) � 0

since 1 � 1� FK (x) � 0 is true for all x and rK (A (y)) � A0 (y) rK (A (y)) is true for

all y. This shows that g0 (y) � 0 implying that g (y) is decreasing. Therefore, we can

conclude that there exist an optimal y� satisfying (3.10) which can be characterized

as (3.11). Moreover, the structure of y� depends on the constant term p̂. If g (0) � p̂,

then y� = 0 and y� =1 if g (1) < p̂.

3.2.4 Perfect linear dependence

In this case, K = a+ bD and

FK (z) = P fa+ bD � zg = P fD � (z � a) =bg = FD ((z � a) =b) .

Moreover,

FDjz (y) = P fD � y j K = zg = P f(z � a) =b � yg = 1fz�a+byg.

Using the results in previous Section (3.1.3), we de�ne two di¤erent scenarios:

� Case 1: A (y) = a+ by � y for all y (a � 0, b � 1)

The results of previous Section (3.1.3) apply and y� =1

� Case 2: A (y) = a+ by � y for all y (a � 0, b � 1)

The results of previous Section (3.1.3) again apply, using (1� FK (y)) � (1� FK (a+ by))

and p+ h� c < p+ h� s. The optimality condition can be found as

(s� c) + (p+ h� s) 1� FK (a+ by)
1� FK (y)

= 0
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which leads to the characterization

FK (a+ by
�)� FK (y�)

1� FK (y�)
=
p+ h� c
p+ h� s = p̂. (3.13)

For the existence and uniqueness of the solution we analyze the structure of

g (y) =
1� FK (a+ by)
1� FK (y)

.

The derivative of g (y) with respect to y is

dg (y)

dy
=

1

1� FK (y)
(rK (a+ by) (1� FK (a+ by))� bfK (a+ by)) .

As shown in the previous section

rK (a+ by) (1� FK (a+ by))� bfK (a+ by) � 0

and g (y) is decreasing. So, there exists an optimal y� satisfying (3.13). If g (0) � p̂,

then y� = 0 and y� =1 if g (1) < p̂.

For the random capacity case we enumerated explicit solutions for general and all the

special cases. Based on these results, we conclude that it is possible to �nd a characterization

for y, equals a constant �critical ratio� p̂. Some of these characterizations requires certain

assumptions on the structure of the optimality conditions. In the next section we continue

to examine random supply models, but with di¤erent source of randomness.

3.3 Random Yield

Random capacity is not the only possible source of randomness in the context of supply un-

certainty. Another widely used setting is random yield. In these models it is assumed that

due to various factors such as defects, errors, transportation problems, etc., the amount

ordered will be di¤erent than the amount received. Let U � 0 be a random variable

representing the proportion of the ordered quantity that will be received in good condi-

tion. Then, in random yield models we have Q (y) = Uy where P fU � vg = FU (v). For
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generality, let us assume that U and D are not necessarily independent and have a joint

distribution FDU (x; v) = P fD � x;U � vg, and with a conditional distribution function

FDjv (x) = P fD � x j U = vg. If we rewrite our payo¤ function in (3.2) with these para-

meters, we get

CF (D;U; y) = (s� c)Uy + (p+ h� s)min fD;Uyg � hD. (3.14)

Hence the objective function becomes

E [CF (D;U; y)] = (s� c) yE [U ] + (p+ h� s)E [min fD;Uyg]� hE [D] . (3.15)

Note that for any random variable X and Z with continuously di¤erentiable probability

density functions fX and fZ , we can write

E [min fX;Zyg] =
Z 1

0
fZ (z) dz

�Z zy

0
xfXjz (x) dx+ zy

Z 1

zy
fXjz (x) dx

�
where fXjz (x) is the conditional density. One can show that

dE [min fX;Zyg]
dy

=

Z 1

0
zfZ (z) dz

Z 1

zy
fXjz (x) dx

= E
�
Z1fX>Zyg

�
. (3.16)

By using (3.16), we take the derivative of (3.15) and set it equal to zero. Hence, the

optimality condition is

(s� c)E [U ] + (p+ h� s)E
�
U1fD>Uyg

�
= 0

which can also be expressed as

(p+ h� c)E [U ] + (p+ h� s)E
�
U1fD�Uyg

�
= 0

by using the fact that 1fD>Uyg = 1� 1fD�Uyg. Finally, the optimality condition becomes

E
�
U1fD�Uy�g

�
E [U ]

=
p+ h� c
p+ h� s = p̂. (3.17)

Note that the objective function E [CF (D;U; y)] is concave since E
�
U1fD�Uy�g

�
is trivially

increasing in y and U � 0. Therefore, there is an optimal y� which satis�es (3.17) for some

0 � p̂ � 1, provided that the solution is not at the boundary. If this function is strictly

increasing, then this solution is unique.
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3.3.1 No dependence between demand and yield

If there is no dependence, than the optimality condition can be written as

E [UP fD � Uy� j Ug]
E [U ]

=
E [UFD (Uy

�)]

E [U ]
=
p+ h� c
p+ h� s = p̂.

The function on the left-hand side is increasing in terms of y. Therefore, there exists an

optimal solution y� which satis�es the optimality condition.

3.3.2 Perfect dependence between demand and yield

Suppose that there is perfect dependence so that U =W (D) for some non-negative function

W . We can then write the optimality condition (3.17) as

E
�
W (D) 1fD�W (D)y�g

�
E [W (D)]

=
p+ h� c
p+ h� s = p̂.

There exists at least one optimal solution since the function on the left-hand side is increasing

in y.

3.3.3 Perfect linear dependence

Now further suppose that U = W (D) = a + bD where a � 0 and b � 0. Then, (3.17)

becomes

E

�
(a+ bD) 1n

D� ay�
1�by�

o�
a+ bE [D]

=
p+ h� c
p+ h� s = p̂.

For the random yield case, due to the fact that the objective function (3.15) is concave,

we �nd simple and explicit characterizations for optimal ordering quantities for general

and special cases. Our results again suggest that, a characterization for y with a constant

critical ratio p̂ is easily obtained without extra assumptions. In the next chapter, we further

examine random supply models by combining capacity and yield uncertainties.
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3.4 Random Yield and Capacity

We�ve analyzed both yield and capacity models separately; however, in reality these two

uncertainties may coexist. Now suppose the supply uncertainty has two elements: capacity

and yield. Again, let U be a random variable representing the uncertainty in the yield and

K be the supplier�s random replenishment capacity. For generality lets again assume that

U , K and D have a joint distribution function FDKU (x; z; v) = P fD � x;K � z; U � vg

and conditional distribution functions

FKjv (z) = P fK � z j U = vg

and

FDjzv (x) = P fD � x j K = z; U = vg .

The supply uncertainty is modeled as Q (y) = U min fK; yg. Then, our cash �ow becomes

CF (D;K;U; y) = (s� c)U min fy;Kg+ (p+ h� s)min fD;U min fK; ygg � hD. (3.18)

Using the above cash �ow, the objective function can be written as

E [CF (D;K;U; y)] = (s� c)E [U min fy;Kg] + (p+ h� s)E [min fD;UK;Uyg]�hE [D] .

(3.19)

Note that for any random variable X, Z and V with continuously di¤erentiable probability

density functions fX , fZ and fV

E [min fX;ZV; V yg] =

Z 1

0
fV (v) dv

Z 1

0
fZjv (z) dz

Z vminfy;zg

0
xfXjvz (x) dx

+

Z 1

0
fV (v) dv

Z 1

0
fZjv (z) dzmin fy; zg

Z 1

vminfy;zg
fXjvz (x) dx

where fZjv (z) is the conditional density of Z given fV = vg, and fXjvz (x) is the conditional

density of X given fV = v; Z = zg. One can show that

dE [min fX;ZV; V yg]
dy

=

Z 1

0
vfV (v) dv

Z 1

y
fZjv (z) dz

Z 1

vy
fXjvz (x) dx

= E
�
V 1fZ>y;X>V yg

�
. (3.20)
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By using (3.16) and (3.20) we take the derivative of (3.19) and set it equal to zero. Hence,

the optimality condition is

dE [CF (D;K;U; y)]

dy
= (p+ h� s)E

�
U1fK>y;D>Uyg

�
+ (s� c)E

�
U1fK>yg

�
= 0

which can be written as

dE [CF (D;K;U; y)]

dy
= (s� c)E

�
U1fK>yg

�
+ (p+ h� s)E

�
U1fK>yg � U1fK>y;D�Uyg

�
= (p+ h� c)E

�
U1fK>yg

�
+ (p+ h� s)E

�
U1fK>y;D�Uyg

�
= 0.

Finally, the optimal order quanitity satis�es

E
�
U1fD�Uy�;K>y�g

�
E
�
U1fK>y�g

� =
p+ h� c
p+ h� s = p̂. (3.21)

The cash �ow function (3.18) is concave for UK > D and non-concave for UK < D.

Consequently, in order to de�ne a characterization for the optimal y we need to make some

assumptions. Assuming

g (y) =
E
�
U1fD�Uy;K>yg

�
E
�
U1fK>yg

�
is increasing, there exist at least one optimal y� for which (3.21) is satis�ed provided that

the optimal solution is not at the boundaries.

3.4.1 No dependence between demand, supply and capacity

When the random variables involved D, K and U are independent, (3.21) becomes

E [UP fD � Uy� j Ug]
E [U ]

=
E [UFD (Uy

�)]

E [U ]
=
p+ h� c
p+ h� s = p̂.

Interestingly, the model then reverts back to the random yield case.

3.4.2 Perfect dependence between demand, supply and capacity

In the case of perfect dependence, any knowledge about any of the three random variables

can be applied directly to the others. In other words, we can write all the random variables



Chapter 3: Newsvendor Problem with Random Supply

27

in terms of demand so that K = T (D), and U = J (D). By rewriting these functions with

respect to D, we get

E
�
U1fT (D)>y�;D�J(D)y�g

�
E
�
U1fT (D)>y�g

� =
p+ h� c
p+ h� s = p̂.

3.4.3 Perfect linear dependence

When the variables are linearly dependent, using the structure in Section (3.4.2), we rewrite

random variables in terms of linear functions as K = a1 + b1D, U = a2 + b2D. Assuming

a1 � 0, b1 � 0, a2 � 0 and b2 � 0, the optimality condition is

a2P
n
y��a1
b1

< D � y�a2
1�b2y�

o
+ b2E

�
D1n y��a1

b1
<D� y�a2

1�b2y�
o�

a2P
n
D > y��a1

b1

o
+ b2E

�
D1n

D>
y��a1
b1

o� =
p+ h� c
p+ h� s = p̂.

Models with random yield and capacity have non-concave objective functions. Therefore,

obtaining an explicit solution for the general problem is hard, if not impossible. Nevertheless,

we derive a complex characterization for the general problem and show the structure of the

optimal solution under certain assumptions. Moreover, we further analyzed some special

cases of random yield and capacity models to better understand the behavior of the optimal

solution.

We examined the behavior of the optimal policy for various types of supply uncertainty.

Up to this point our decision maker has been assumed to be risk-neutral; however, from

this point on we�ll examine the implications of having a risk-sensitive attitude and analyze

the framework of decision making with �nancial hedging opportunities.
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Chapter 4

NEWSVENDOR PROBLEM WITH PERFECT HEDGING

The pro�t (cash �ow) in a newsvendor problem is random due to the stochastic nature

of demand and supply. In Chapter 3, in order to deal with this stochasticity, we implicitly

made two important assumptions: (1) there is a risk neutral decision maker, and demand

and/or supply are not correlated with the �nancial market. The expected pro�t function

was calculated based on newsboy�s experience, by disregarding the negative or positive

deviations. Therefore, the only aim was maximizing the expected pro�t by choosing the

ordering quantity, without caring about the variance. Moreover, since there is no market

correlation, there can neither be a replicating portfolio nor a hedging opportunity. However

in real life there is a market, which makes the assumption of risk-neutrality unrealistic.

Evidence suggests that decision makers tend to care a lot about risk; especially the downside

potential (unexpected loss). That�s why corporations are forced to systematically manage

their risk.

In literature there are di¤erent methods of hedging which can be categorized into two

groups: Operational and �nancial. In operational hedging, as Mieghem [28] puts forward,

decisions makers try mitigating risk by counterbalancing actions in a processing network

that do not involve �nancial instruments. Utilizing �nancial instruments, in particular

futures, derivatives and options, for risk management is called �nancial hedging. Note that,

in this paper we are not concerned with operational hedging; thus, all the terms, ideas and

methods used are referred to as �nancial hedging from here on.

In this chapter, we de�ne a framework of decision making in a risk-sensitive environment

where the decision maker is risk-averse and there is a complete arbitrage free market along

with risk neutral probability measures. We characterize explicit solutions for two di¤erent

environments, where there is perfect correlation and where there is partial correlation be-
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tween the market and our random variables. Before continuing with the hedging strategies

and discuss its e¤ects on the order quantity and pro�t, we �rst take a look at a general

framework of decision making using instruments in hedging.

4.1 General Framework

Due to the stochastic nature of the environment decision makers face risky situations in

their process of decision making. These risks are caused by various reasons, such as weather,

economy, government, legislations and many more. Some of these variables can be predicted

and estimated; however, some of them can�t. In this chapter we present a general framework

for decision making in a risk sensitive environment. In real life decision makers decide on

multiple things correlated with each other. But for now lets assume that we have a single

decision variable y. Also, let the randomness in the environment we live be caused by only

one source of randomness X. Now suppose that they together form a random payo¤

ZT = g (X; y)

which will be received at time T . Thus, as a decision maker our job becomes optimizing the

payo¤ function. But since the payo¤ function is random, we optimize its expected value.

Then, the optimization problem for the risk-neutral decision maker becomes

max
y
E [g (X; y)] .

Let S be a �nancial variable that denotes the price of a tradable asset at time T . Suppose

further that there is a perfect deterministic relationship between random variable and the

�nancial variable S, so that X = G (S) for some function G. Let Hi (S; y) denote the payo¤

of derivative i on �nancial security S and suppose that there are n such derivatives in the

market. Then, there will be a perfect hedge provided that we can write

ZT = g (X; y) = g (G (S) ; y) =

nX
i=1

CiHi (S; y) (4.1)

where fC1; C2; � � � ; Cng denotes the unit of the derivative fH1;H2; � � � ;Hng used in the

replicating portfolio. Therefore the time 0 value of the payo¤ is
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Figure 4.1: Typical Payo¤ Function

Z0 =

nX
i=1

Cipi (S0; y)

where pi (S0; y) denotes the current market price of Hi when the current price of asset is

S0. It is possible �nd a replicating portfolio for complicated payo¤ functions.

For �xed y, let f (x) = g (G (x; y)). More generally, the function f can be represented

as in Figure 4.1. We suppose that the function f has m jumps at fx1; x2; � � � ; xmg with

magnitudes f�f1;�f2; � � � ;�fmg respectively. Moreover, f is twice di¤erentiable over each

interval (xi; xi+1) where the derivative f 0 (x) is a function of bounded variation.

As long as f : R+ ! R+ is as described in Figure 4.1, the cash �ow can be replicated

by taking positions in futures, digital claims, European calls and cash bonds. This follows

by noting that we can write

f (x) = f (0) +
mX
k=1

5 fk1fx�xkg + f
0
+ (0)x+

Z 1

0
(x� z)+ f 0 (dz) . (4.2)

The function (4.1) and (4.2) are identical. In fact, from a �nancial perspective, (4.2) is

a portfolio consisting of various �nancial instruments that replicates (4.1). The �rst term

represents the amount of bonds, the second term is for digital claims, the third term denotes

the number of futures and the last term depicts the position of European call options the

portfolio contains (for more details, see Protter [37]).
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4.2 Demand Perfectly Correlated with the Price of a Market Security

Each decision maker faces a certain amount of risk by investing in inventory. Risk can

basically be de�ned as the mismatch of demand and supply. Thus, decision makers are

forced to manage the risk in order to prevent unexpected loses. Up until now we only

focused on the correlation between demand and supply, completely neglecting the e¤ects of

the �nancial market. And since there was no market, there would be no replicating portfolio

as well. However if there is a market, disregarding it will lead to arbitrage opportunities.

In reality, it is possible to form portfolios that have correlation with demand and supply.

Via the help of such portfolios it will be possible for the decision makers to hedge the

risks of carrying inventory and shortage. In this chapter we assume risk-neutral probability

measures exists and contingent claims can be priced with these measures. Additionally, for

this chapter we suppose that demand and supply are perfectly correlated with the market.

4.2.1 Demand Uncertainty

In traditional newsvendor models the only uncertainty is generated by demand. In this

chapter we are going to assume this uncertainty can be perfectly replicated in the market,

because there is some deterministic function D such that D = D (S) where D is a twice

di¤erentiable increasing function with an inverse. In Chapter 3, we did not use discounting

or compounding while calculating the cash �ow since the rates are unclear and based on

decision maker preferences. However, in this chapter we will use the risk-free interest rate

r. Let S0 be the current price of the �nancial asset and S = ST be the price at time T .

In this setup, S0 = e�rTEQ [S] where EQ is the expectation under risk-neutral probability

measure (RNPM). Furthermore, recall that p is the selling price of each inventory, s is the

salvage value, cerT is the compounded cost of purchasing one unit of inventory and h is the

shortage penalty which satis�es p > cerT > s > 0 and h > cerT .

At time 0, the �rm invests money on inventory and pays ordering cost cerT y and its



Chapter 4: Newsvendor Problem with Perfect Hedging

32

time T value is

CF (y) = �cerT y.

At time T , as a result of the investment, the cash �ow becomes

CF (S; y) =
�
s� cerT

�
y + (p+ h� s)min fD (S) ; yg � hD (S) . (4.3)

We can now apply (4.2) for �nding a replicating portfolio and use it to hedge the risks

associated with the inventory model. It follows from (4.3) that for �xed y

f (0) =
�
s� cerT

�
y + (p+ h� s)min fD (0) ; yg � hD (0)

f 0 (0) = (p+ h� s)D0 (0) 1fy>D(0)g � hD0 (0)

f 0 (dz) = (p+ h� s)D00 (z) 1fD(z)<ygdz � (p+ h� s)D0 (z) 1fz=D�1(y)g � hD00 (z) dz.

Then the replicating portfolio can therefore be characterized as

f (S) =
��
s� cerT

�
y + (p+ h� s)min fD (0) ; yg � hD (0)

�
+
�
(p+ h� s)D0 (0) 1fy>D(0)g � hD0 (0)

�
S

�h
Z 1

0
max fS � z; 0gD00 (z) dz

+(p+ h� s)
Z D�1(y)

0
max fS � z; 0gD00 (z) dz (4.4)

� (p+ h� s)D0
�
D�1 (y)

�
max

�
S �D�1 (y) ; 0

	
.

Since f (S) = CF (S; y) for any y, we can replicate the cash �ow CF (S; y) by a portfolio

consisting of �
s� cerT

�
y + (p+ h� s)min fD (0) ; yg � hD (0)

cash bonds, (p+ h� s)D0 (0) 1fy>D(0)g � hD0 (0) in futures and

(p+ h� s)
"Z D�1(y)

0
max fS � z; 0gD00 (z) dz �D0

�
D�1 (y)

�
max fS � z; 0g

#

�h
Z 1

0
max fS � z; 0gD00 (z) dz

European call options. Now that we found the replicating portfolio we can price it using

risk-neutral probability measures to avoid arbitrage opportunities. We suppose that the
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risk-neutral or arbitrage probability measure is Q and PQ fS � xg = FS (x). The expected

hedged cash �ow at time T is

EQ [f (S)] =
��
s� cerT

�
y + (p+ h� s)min fD (0) ; yg � hD (0)

�
+
�
(p+ h� s)D0 (0) 1fy>D(0)g � hD0 (0)

�
S0e

rT

� (p+ h� s)D0
�
D�1 (y)

� Z 1

D�1(y)
FS (dx)

�
x�D�1 (y)

�
+(p+ h� s)

"Z D�1(y)

0
dz

Z 1

z
FS (dx) (x� z)D00 (z)

#

�h
Z 1

0
dz

Z 1

z
FS (dx) (x� z)D00 (z)

Similarly the cash �ow at time 0 can be found as

EQ [Z0] = e�rTEQ [f (S)] =
��
se�rT � c

�
y + e�rT ((p+ h� s)min fD (0) ; yg � hD (0))

�
+
�
(p+ h� s)D0 (0) 1fy>D(0)g � hD0 (0)

�
S0

�e�rT (p+ h� s)D0
�
D�1 (y)

� Z 1

D�1(y)

�
x�D�1 (y)

�
FS (dx)

+e�rT (p+ h� s)
"Z D�1(y)

0
dz

Z 1

z
(x� z)FS (dx)D00 (z)

#

�e�rTh
Z 1

0

Z 1

z
(x� z)D00 (z) dz

From here on we will characterize our pricing solutions using the expected hedged cash

�ow at time T . To simplify the analysis we will assume without the loss of generality that

y � D (0). Then,

dEQ [f (S)]

dy
=

�
s� cerT

�
� (p+ h� s)

D00
�
D�1 (y)

�
D0 (D�1 (y))

Z 1

D�1(y)
FS (dx)

�
x�D�1 (y)

�
+(p� s+ h)

D00
�
D�1 (y)

�
D0 (D�1 (y))

Z 1

D�1(y)
FS (dx)

�
x�D�1 (y)

�
� (p+ h� s)

Z 1

D�1(y)
FS (dx) ,
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and the optimality condition becomes

�
s� cerT

�
+ (p+ h� s)

Z 1

D�1(y)
FS (dx) = 0

which yields

PQ
�
S � D�1 (y�)

	
=
p+ h� cerT
p+ h� s = p̂. (4.5)

Note that the optimality condition is same as (3.4), the only di¤erence is the risk-neutral

probability measure Q and the fact that the cost c is compounded to time T . Hence, as long

as there is perfect correlation between market and demand, instead of pricing the replicating

portfolio we can utilize the corresponding characterizations in Chapter 3. In this case, (3.4)

is used to obtain y� with hedging by substituting D (S) with D we get

PQ fD (S) � y�g =
p+ h� cerT
p+ h� s = p̂.

Linear dependence between demand and market

If there is linear dependence we can replace demand with D (S) = a+bS, and (4.5) becomes

PQ

�
S � y� � a

b

�
=
p+ h� cerT
p+ h� s = p̂.

In random demand models we used the perfect correlation between the demand and

the market to replicate the random cash �ow. Then, we priced this cash �ow according to

RNPM and show that the structure of the optimal solution is the same as the optimal order

quantity without hedging (see Chapter 3).

4.2.2 Supply Uncertainty

We characterized optimal ordering policies when the only uncertainty was the random de-

mand using (4.2). Now we will investigate the decision making process when supply is also

random by analyzing random capacity and yield models, as we did in Chapter 3.
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Random Capacity

We now model the supply uncertainty as we did in Section (3.2). Recall that D = D (S),

similarly let K be perfectly correlated with the same �nancial instrument S, so that K =

K (S). Since both D (S) and K (S) have perfect dependence with the �nancial instrument

S, they also have perfect dependence among themselves. Suppose D (S) and K (S) are

increasing, twice di¤erentiable functions that have an inverse, then our payo¤ function can

be represented as

CF (S; y) =
�
s� cerT

�
min fK (S) ; yg � hD (S)

+ (p+ h� s)min fD (S) ;K (S) ; yg . (4.6)

The calculation of the replicating portfolio for the cash �ow above is quite involved

due to the fact that the objective function is non-concave. Thus, instead of pricing the

replicating portfolio we will use the solution in (3.9) to �nd the characterization of optimal

ordering quantity. Since the correlation between the �nancial asset, demand and supply is

perfect, we conclude that the optimal solution becomes

PQ
�
S � D�1 (y�) j S > K�1 (y�)

	
=
p+ h� cerT
p+ h� s . (4.7)

Note that by modifying (3.9), we implicitly made the assumption that demand and capac-

ity are perfectly correlated as well; however, in (3.9) this is not the case. Moreover this

transformation also requires the change of probability measure. In (4.7), risk-free measure

Q is utilized.

As stated before, �nding a general setting for the price of the replicating portfolio ex-

plicitly is quite involved. That�s why we examine this issue by considering three special

cases.
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� Case 1: K (x) > D (x) for all x � 0. One can show that

f (0) =
�
s� cerT

�
min fK (0) ; yg+ (p+ h� s)min fD (0) ; yg � hD (0)

f 0 (0) =
�
s� cerT

�
K0 (0) 1fK(0)<yg + (p+ h� s)D0 (0) 1fD(0)<yg � hD0 (0)

f 0 (dz) =
�
s� cerT

�
K00 (z) 1fK(z)<ygdz �

�
s� cerT

�
K0 (z) 1fz=K�1(y)g

+(p+ h� s)D00 (z) 1fD(z)<ygdz � (p+ h� s)D0 (z) 1fz=D�1(y)g

�hD00 (z) dz.

Then, the cash �ow becomes

f (S) =
�
s� cerT

�
min fK (0) ; yg+ (p+ h� s)min fD (0) ; yg � hD (0)

+
��
s� cerT

�
K0 (0) 1fK(0)<yg + (p+ h� s)D0 (0) 1fD(0)<yg � hD0 (0)

�
S

+
�
s� cerT

� Z K�1(y)

0
max fS � z; 0gK00 (z) dz

�
�
s� cerT

�
max

�
S �K�1 (y) ; 0

	
K0
�
K�1 (y)

�
+(p+ h� s)

Z D�1(y)

0
max fS � z; 0gD00 (z) dz

� (p+ h� s)max
�
S �D�1 (y) ; 0

	
D0
�
D�1 (y)

�
�h
Z 1

0
max fS � z; 0gD00 (z) dz.

By taking the expectation under risk-neutral probability measure Q, we get

EQ [f (S)] =
�
s� cerT

�
min fK (0) ; yg+ (p+ h� s)min fD (0) ; yg � hD (0)

+
��
s� cerT

�
K0 (0) 1fK(0)<yg + (p+ h� s)D0 (0) 1fD(0)<yg

�
S0e

rT

�hD0 (0)S0erT

+
�
s� cerT

� Z K�1(y)

0
dz

Z 1

z
FS (dx) (x� z)K00 (z)

�
�
s� cerT

�
K0
�
K�1 (y)

� Z 1

K�1(y)
FS (dx)

�
x�K�1 (y)

�
� (p+ h� s)D0

�
D�1 (y)

� Z 1

D�1(y)
FS (dx)

�
x�D�1 (y)

�
+(p+ h� s)

Z D�1(y)

0
dz

Z 1

z
FS (dx) (x� z)D00 (z)

�h
Z 1

0
dz

Z 1

z
FS (dx) (x� z)D00 (z) .
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Suppose that y > max fK (0) ; D (0)g, then by taking the derivative of the expected

cash �ow we get

dEQ [f (S)]

dy
=

�
s� cerT

� K00 �K�1 (y)�
K0 (K�1 (y))

Z 1

K�1(y)

�
x�K�1 (y)

�
FS (dx)

�
�
s� cerT

� K00 �K�1 (y)�
K0 (K�1 (y))

Z 1

K�1(y)

�
x�K�1 (y)

�
FS (dx)

+
�
s� cerT

� Z 1

K�1(y)
FS (dx) + (p+ h� s)

Z 1

D�1(y)
FS (dx)

+ (p+ h� s)
D00
�
D�1 (y)

�
D0 (D�1 (y))

Z 1

D�1(y)

�
x�D�1 (y)

�
FS (dx)

� (p+ h� s)
D00
�
D�1 (y)

�
D0 (D�1 (y))

Z 1

D�1(y)

�
x�D�1 (y)

�
FS (dx)

so that the optimality condition becomes

�
s� cerT

� Z 1

K�1(y)
FS (dx) + (p+ h� s)

Z 1

D�1(y)
FS (dx) = 0

which can be written as

�
s� cerT

�
PQ fK (S) > yg+ (p+ h� s)PQ fD (S) > yg = 0

Rewriting this equation yields the following optimality condition

PQ fK (S) > yg � PQ fD (S) > yg
PQ fK (S) > yg

=
p+ h� cerT
p+ h� s = p̂. (4.8)

Note that when K (x) > D (x) for all x,

PQ fD (S) � yg = PQ fD (S) � y j K (S) > ygPQ fK (S) > yg

+PQ fD (S) � y j K (S) � ygPQ fK (S) � yg

= PQ fD (S) � y j K (S) > ygPQ fK (S) > yg

+1� PQ fK (S) > yg

since PQ fD (S) � y j K (S) � yg = 1 and PQ fK (S) � yg = 1 � PQ fK (S) > yg.

Therefore,

PQ fD (S) � yg = PQ fK (S) > yg (PQ fD (S) � y j K (S) > yg � 1) + 1. (4.9)
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Using the fact that

PQ
�
S � D�1 (y) j S > K�1 (y)

	
=
PQ fD (S) � y;K (S) > yg

PQ fK (S) > yg

(4.9) becomes

PQ fD (S) � yg = 1 + PQ fD (S) � y;K (S) > yg � PQ fK (S) > yg .

Then, (4.8) becomes

PQ fK (S) > yg � 1 + PQ fD (S) � yg
PQ fK (S) > yg

=
PQ fD (S) � y;K (S) > yg

PQ fK (S) > yg

which can be written as

PQ fD (S) � y j K (S) > yg =
p+ h� cerT
p+ h� s = p̂. (4.10)

Recall that, (4.10) is equal to (4.7) since

PQ
�
S � D�1 (y) j S > K�1 (y)

	
=
PQ fD (S) � y;K (S) > yg

P fK (S) > yg .

This shows that the transformation we utilized above holds when K (x) > D (x) for

all x.

� Case 2: D (x) > K (x) for all x � 0. In this case,

f (0) =
�
s� cerT

�
min fK (0) ; yg+ (p+ h� s)min fK (0) ; yg � hD (0)

f 0 (0) =
�
s� cerT

�
K0 (0) 1fK(0)<yg + (p+ h� s)K0 (0) 1fK(0)<yg � hD0 (0)

f 0 (dz) =
�
s� cerT

�
K00 (z) 1fK(z)<ygdz �

�
s� cerT

�
K0 (z) 1fz=K�1(y)g

+(p+ h� s)K00 (z) 1fK(z)<ygdz � (p+ h� s)K0 (z) 1fz=K�1(y)g

�hD00 (z) dz.
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The replicating cash �ow is written as

f (S) =
�
p+ h� cerT

�
min fK (0) ; yg � hD (0)

+
��
p+ h� cerT

�
K0 (0) 1fK(0)<yg � hD0 (0)

�
S

+
�
p+ h� cerT

� Z K�1(y)

0
max fS � z; 0gK00 (z) dz

�
�
p+ h� cerT

�
max

�
S �K�1 (y) ; 0

	
K0
�
K�1 (y)

�
�h
Z 1

0
max fS � z; 0gD00 (z) dz.

The expected cash �ow is

EQ [f (S)] =
�
p+ h� cerT

�
min fK (0) ; yg � hD (0)

+
��
p+ h� cerT

�
K0 (0) 1fK(0)<yg � hD0 (0)

�
S0e

rT

�
�
p+ h� cerT

�
K0
�
K�1 (y)

� Z 1

K�1(y)

�
x�K�1 (y)

�
FS (dx)

+
�
p+ h� cerT

� Z K�1(y)

0

Z 1

z
(x� z)K00 (z)FS (dx) dz

�h
Z 1

0
max fS � z; 0gD00 (z) dz

Supposing K (0) � y, the optimality condition can be found by taking the derivative

of the expected cash �ow with respect to y, so that

dEQ [f (S)]

dy
=

�
p+ h� cerT

� K00K�1 (y)
K0 (K�1 (y))

Z 1

K�1(y)

�
x�K�1 (y)

�
FS (dx)

�
�
p+ h� cerT

� K00K�1 (y)
K0 (K�1 (y))

Z 1

K�1(y)

�
x�K�1 (y)

�
FS (dx)

+
�
p+ h� cerT

� Z 1

K�1(y)
FS (dx)

=
�
p+ h� cerT

� Z 1

K�1(y)
FS (dx)

=
�
p+ h� cerT

�
PQ fK (S) > yg . (4.11)

Since the derivative is always greater than 0, the optimal solution is y� = 1. Also,

note that when K (x) < D (x) for all x, the optimal solution is y� = 1 since (4.7)

gives

PQ fD (S) � y j K (S) > yg = 0
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for all y. Since characterizations in (4.7) and (4.11) leads to some conclusion, our

transformation again holds. Intuitively if the capacity is always less than the demand,

the logical action would be ordering very large quantities; because, it is a fact that all

the inventory on hand will be sold.

� Case 3: K (x) > D (x) for all �y > x � 0 and K (x) < D (x) for all �y < x when there is

a unique �y for which K (�y) = D (�y)

We�ve analyzed the case if functions K and D do not intercept. Now we will analyze

the case when these function have only one cross-section point �y. Recall that the

pro�t function is

CF (S; y) =
�
s� cerT

�
min fK (S) ; yg+ (p+ h� s)min fK (S) ;D (S) ; yg � hD (S) .

Following the same steps as in previous examples, we obtain

f (0) =
�
s� cerT

�
min fK (0) ; yg+ (p+ h� s)min fD (0) ; yg � hD (0)

f 0 (0) =
�
s� cerT

�
K0 (0) 1fK(0)<yg + (p+ h� s)D0 (0) 1fD(0)<yg � hD0 (0)

f 0 (dz) =
�
s� cerT

�
K00 (z) 1fK(z)<ygdz �

�
s� cerT

�
K0 (z) 1fK(z)=yg

+(p+ h� s)D00 (z) 1fz��y;D(z)�ygdz + (p+ h� s)K00 (z) 1fz>�y;K(z)�ygdz

� (p+ h� s)D0 (z) 1fz=�yg + (p+ h� s)K0 (z) 1fz=�yg

� (p+ h� s)D0 (z) 1fD(z)=ygdz � (p+ h� s)K0 (z) 1fK(z)=ygdz

�hD00 (z) dz
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Using (4.2), we characterize the replicating portfolio as

f (S) =
�
s� cerT

�
min fK (0) ; yg+ (p+ h� s)min fD (0) ; yg � hD (0)

+
��
s� cerT

�
K0 (0) 1fK(0)<yg + (p+ h� s)D0 (0) 1fD(0)<yg � hD0 (0)

�
S

+ (p+ h� s)max
�
S �K�1 (y) ; 0

	
K0
�
K�1 (y)

�
1fK(S)�y;S>�yg

�
�
s� cerT

�
max

�
S �K�1 (y) ; 0

	
K0
�
K�1 (y)

�
+ (p+ h� s)

Z minfD�1(y);�yg

0
max fS � z; 0gD00 (z) dz

� (p+ h� s)max
�
S �D�1 (y) ; 0

	
D0
�
D�1 (y)

�
1fD�1(y)�yg

+ (p+ h� s)
Z K�1(y)

�y
max fS � z; 0gK00 (z) dz1fK(S)�y;S>�yg

+ (p+ h� s)max fS � �y; 0gK0 (�y) 1fK(S)�y;S>�yg

� (p+ h� s)max fS � �y; 0gD0 (�y) 1fD�1(y)>yg

+
�
s� cerT

� Z K�1(y)

0
max fS � z; 0gK00 (z) dz

� h
Z 1

0
max fS � z; 0gD00 (z) dz.
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Then the objective function becomes

EQ [f (S)] =
�
s� cerT

�
min fK (0) ; yg+ (p+ h� s)min fD (0) ;K (0) ; yg � hD (0)

+
h�
s� cerT

�
K0 (0)fK(0)<yg + (p+ h� s)D

0 (0)fK(0)<yg � hD
0 (0)

i
S0e

rT

� (p+ h� s)
Z 1

D�1(y)
FS (dx)

�
x�D�1 (y)

�
D0
�
D�1 (y)

�
1fD�1(y)�yg

+ (p+ h� s)
Z 1

K�1(y)
FS (dx)

�
x�K�1 (y)

�
K0
�
K�1 (y)

�
1fK(S)�y;S>�yg

+
�
s� cerT

� Z K�1(y)

0
dz

Z 1

z
FS (dx) (x� z)K00 (z)

�
�
s� cerT

� Z 1

K�1(y)
FS (dx)

�
x�K�1 (y)

�
K0
�
K�1 (y)

�
+ (p+ h� s)

Z minfD�1(y)�yg

0
dz

Z 1

z
FS (dx) (x� z)D00 (z)

+ (p+ h� s)
Z K�1(y)

�y
dz

Z 1

z
FS (dx) (x� z)K00 (z) 1fK(S)�y;S>�yg

+ (p+ h� s)
Z 1

�y
FS (dx) (x� �y)K0 (�y) 1fK(S)�y;S>�yg

� (p+ h� s)
Z 1

�y
FS (dx) (x� �y)D0 (�y) 1fD�1(y)>yg

� h
Z 1

0

Z 1

z
FS (dx) (x� z)D00 (z) dz.

Supposing that y � max fD (0) ;K (0)g, we can observe two di¤erent scenarios: (1)

min
�
D�1 (y) ; �y

	
= D�1 (y) and (2) min

�
D�1 (y) ; �y

	
= �y. If the �rst scenario is

true, in order to �nd the optimality condition we take the derivative with respect to

y, which yields

dEQ [f (S)]

dy
=

�
s� cerT

� Z 1

K�1(y)
FS (dx) + (p+ h� s)

Z 1

D�1(y)
FS (dx)

=
�
s� cerT

�
PQ fK (S) > yg+ (p+ h� s)PQ fD (S) > yg = 0.

The optimal solution can be characterized as

PQ fD (S) � y�g
PQ fK (S) > y�g

=
p+ h� cerT
p+ h� s . (4.12)

Note that min
�
D�1 (y) ; �y

	
= D�1 (y) implies that D�1 (y) > K�1 (y) which further
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implies that K (y) > D (y). Under these conditions

PQ fD (S) � yg = PQ fD (S) � y j K (S) � ygPQ fK (S) � yg

+PQ fD (S) � y j K (S) > ygPQ fK (S) > yg

= PQ fD (S) � y j K (S) > ygPQ fK (S) > yg

= PQ fD (S) � y;K (S) > yg .

Hence optimality condition in (4.12) can be rewritten as

PQ fD (S) � y�g
PQ fK (S) > y�g

=
PQ fD (S) � y�;K (S) > y�g

PQ fK (S) > y�g
= PQ fD (S) � y� j K (S) > y�g = p̂.

This solution shows that our transformation holds for this sub-case.

However, if the second scenario is true, meaning min
�
D�1 (y) ; �y

	
= �y, then the

optimal condition becomes

dEQ [f (S)]

dy
=

�
s� cerT

� Z 1

K�1(y)
FS (dx) + (p+ h� s)

Z 1

K�1(y)
FS (dx)

=
�
p+ h� cerT

�
PQ fK (S) > yg > 0

so that the optimal solution is y� = 1. Note that the characterization reverts back

to Case 2, meaning our transformation holds again.

Based on all these 3 cases that we considered our transformation checks out. It is also

possible to show the same results for more complex cases including functions with multiple

cross-section points, but we are not going to analyze them any further.

Random Yield

Apart from capacity model there are also other methods of modeling supply uncertainty;

one of which is the random yield model. In these types of models supply uncertainty is

generated by using a random variable U which represents the variability of the shipped

order quantity. U is assumed to have a correlation with �nancial stocks. In this chapter,

this correlation is perfect; thus, D = D (S) and U = U (S).
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Due to the uncertainty in supply when we order y units we would get Q (y) = Uy.

Furthermore, we suppose that D (S) is increasing and U (S) is decreasing and both are

twice di¤erentiable functions. The cash �ow becomes

CF (S; y) =
�
s� cerT

�
U (S) y + (p� s+ h)min fU (S) y;D (S)g . (4.13)

The cash �ow is a concave function in terms of y for all S. The expectation with respect

to S doesn�t change the concavity, therefore the derivative of the cash �ow is a decreasing

function. Moreover, let �y (y) be the point where U (S) y and D (S) intersects each other so

that U (�y (y)) = D (�y (y)). Then,

f (0) =
�
s� cerT

�
U (0) y + (p� s+ h)min fU (0) y;D (0)g � hD (0)

f 0 (0) =
�
s� cerT

�
yU 0 (0) + (p� s+ h) yU 0 (0) 1fU(0)y<D(0)g

+(p� s+ h)D0 (0) 1fU(0)y>D(0)g � hD0 (0)

f 0 (dz) =
�
s� cerT

�
yU 00 (z) dz + (p� s+ h) yU 00 (z) 1fU(z)y<D(z)gdz

+(p� s+ h)D00 (z) 1fU(z)y>D(z)gdz

+(p� s+ h)
�
D0 (�y (y))� yU 0 (�y (y))

�
� hD00 (z) dz.

The replicating portfolio becomes

f (S) =
�
s� cerT

�
U (0) y + (p+ h� s)min fU (0) y;D (0)g � hD (0)

+
�
s� cerT

�
yU 0 (0)S � hD0 (0)S

+(p+ h� s)
�
yU 0 (0) 1nU(0)<D(0)

y

o +D0 (0) 1nU(0)>D(0)
y

o�S
+
�
s� cerT

� Z 1

0
max fS � z; 0g yU 00 (z) dz

+(p+ h� s)max fS � �y (y) ; 0g
�
D0 (�y (y))� yU 0 (�y (y))

�
+(p+ h� s)

Z 1

0
max fS � z; 0g yU 00 (z) 1n

y<
D(z)
U(z)

odz (4.14)

+(p+ h� s)
Z 1

0
max fS � z; 0g yD00 (z) 1n

y>
D(z)
U(z)

odz.
Pricing (4.14) is hard, due to the complex structure of the replicating cash �ow. Instead

we utilize the perfect correlation to derive the pricing formulation using (3.17). Recall that
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the optimality condition of (3.17) is

E
�
U1fD�Uy�g

�
E [U ]

=
p+ h� c
p+ h� s .

Substituting D (S) and U (S) into the equation we obtain

EQ
�
U (S) 1fD(S)�U(S)y�g

�
EQ [U (S)]

=
p+ h� cerT
p+ h� s (4.15)

by noting that time is an issue in �nancial models we replace c with cerT .

As we depicted in Section (3.4), this function is an increasing function in terms of y.

Thus there exists an optimal solution so that the optimality condition holds. And since the

objective function is concave, the second order condition also holds. Again we manage to

obtain the same optimal y� characterization as in Section (3.4) but with zero risk.

Random Yield and Capacity

Random yield and capacity models often coexist, thus to be more realistic we are going

to combine the both models. Meaning, the supply uncertainty now has two elements,

capacity and variability. We are going to represent this new uncertainty as follows, Q (y) =

U (S)min fy;K (S)g, assuming P fD (S) < 0g = 0. Then, our cash �ow becomes

CF (S; y) =
�
s� cerT

�
U (S)min fy;K (S)g+ (p+ h� s)min fU (S)min fy;K (S)g ;D (S)g

�hD (S) .

Finding the replicating portfolio and its time zero value is involved. So, we modify the

optimal y characterization in (3.21) so that

EQ
�
U (S) 1fK(S)>y�;D(S)�U(S)y�g

�
EQ
�
U (S) 1fK(S)>y�g

� =
p+ h� cerT
p+ h� s (4.16)

Reaching useful results is not very easy since the optimality contion (4.16) is complex. The

complexity depends on the relation between demand, capacity and yield and the structure

of

g (y) =
EQ
�
U (S) 1fK(S)>y;D(S)�U(S)yg

�
EQ [U (S) 1]

.
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As y increases PQ fK (S) > yg will decrease, however, PQ fK (S) > y;D (S) � U (S) yg may

decrease or increase. If it increases, then, g (y) is an increasing function in terms of y

and there exists an optimal solution. If PQ fK (S) > y;D (S) � U (S) yg decreases; as y

increases, then the important issue becomes which one decreases faster, PQ fK (S) > yg or

PQ fK (S) > y;D (S) � U (S) yg. If PQ fK (S) > y;D (S) � U (S) yg decreases faster, then

again, g (y) is an increasing function in terms of y and there exists an optimal solution.
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Chapter 5

NEWSVENDOR PROBLEM WITH IMPERFECT HEDGING

In the previous chapter, we covered a decision making framework in an environment

with a complete arbitrage-free market where there is a perfect dependence between random

demand, supply and a �nancial product. This enabled us to obtain useful insights with

respect to the decision-making process but it is clear that the perfect dependence assumption

is not realistic. In reality, we would exploit an imperfect dependence structure between

the supply and demand processes and the �nancial market. This would prevent us from

obtaining a replicating portfolio, thus limiting our ability to reduce the variability of the

expected pro�t. The inexistence of such a portfolio implies that the realized pro�t will be

random, making the analysis more challenging.

Since a replication approach cannot be employed, other methods could be applied. A

general approach would be to maximize the expected utility of the portfolio as in Özekici and

Çanakoglu [7]. However, the general expected utility maximization problem is challenging

and falls outside the scope of this thesis. Instead, as done frequently in the literature,

we investigate trade-o¤s between the expected value and variance criteria. These methods

strive to achieve a trade-o¤ between the expected pro�t and the variance of the pro�t with

the underlying assumption that decision-makers prefer lower variance for the same level of

expected returns. Below we describe two alternative approaches to address the trade-o¤:

� Mean-Variance Hedging: The aim here is to choose a portfolio of �nancial securities

to maximize a weighted sum of the of expected cash �ow with the variance of the

cash �ow for a given order quantity y. Let X denote the vector of random variables

corresponding to demand and supply uncertainties, S be the price of a primary asset

in the market, fi (S) be the payo¤ of the ith derivative security, �i denote the amount
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from this security i, and CF (X; y) denote the unhedged cash �ow. Although we let S

denote the price of a single asset, our analysis actually holds as well when S is indeed

a vector representing the price of a number of primary assets in the market. The total

cash �ow is given by

CF� (X; S; y) = CF (X; y) +
X
i=1

�ifi (Si) .

To express the objective function, let � denote the relative weight of the variance

criterion. The mean-variance objective function can be written as

max
�
E [CF� (X; S; y)]� �V ar (CF� (X; S; y)) :

� Minimum Variance Hedging: The aim here is to minimize the variance of the hedged

cash �ow for di¤erent return levels by holding a portfolio of �nancial securities. This

could be viewed as a special case of the mean-variance criterion above as � becomes

large. The goal now is to �nd the optimal �i amounts to minimize the variance of

the total cash �ow for a given order quantity y. The optimization problem can be

rewritten as

min
�
V ar

 
CF (X; y) +

nX
i=1

�ifi (S)

!
. (5.1)

Once the optimal solution �� (y) is determined for any order quantity y, the decision

maker chooses the optimal order quantity by solving

max
y
E

"
CF (X; y) +

nX
i=1

��i (y) fi (S)

#
.

The minimum variance (min-var) criterion appears to be more analytically tractable

than the mean-variance criterion. Therefore, in the rest of the thesis, we focus on min-var

hedging models.

5.1 Minimum Variance Hedging
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In our context, decision makers select the order quantity y and the �nancial portfolio si-

multaneously. This makes the minimum variance (min-var) approach a two-step character-

ization method. First, the decision maker attempts to reduce the volatility of the returns

by investing in inventory and a portfolio consisting of di¤erent securities. After the optimal

amount of each security is calculated for a given ordering quantity, decision maker may aim

to either maximize the expected pro�t or to further minimize the variance by choosing the

ordering quantity. In the remainder of this chapter, we will concentrate on maximizing the

expected pro�t for the second step.

As before, we start the investigation with the case of random demand and no supply

uncertainty. Further, we �rst investigate the special case of a portfolio consisting of a single

security and later generalize it to the case of multiple securities. This analysis is later carried

out in the cases with supply uncertainty due to both random capacity and uncertain yield.

5.1.1 Random Demand

Let us suppose that the supply is certain and the randomness of the pro�t comes only from

demand. Recall that the hedged cash �ow in this situation is given by

CF� (D;S; y) =
�
s� cerT

�
y + (p+ h� s)min fD; yg � hD +

nX
i=1

�ifi (S) .

The objective is to solve the optimal portfolio determination problem given in (5.1). Next,

we explore the solution of this problem for a single security �rst and for multiple securities

later.

Hedging with only one �nancial security

There are many �nancial products available in the market and the decision maker may

keep multiple securities in his/her portfolio. Intuitively as the number of instrument types

invested in increases, the reduction in the variability will also increase. But for now let

us assume that the decision maker prefers to hedge the risks associated with inventory

operations, carrying only one type of instrument. Thus, the optimization problem becomes

min
�
V ar (CF (D; y) + �f (S)) .
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In the �rst step, we will use the objective function to obtain the optimal �� value for given

y. Then we will plug in the �� to �nd the optimal y�. The objective function can be written

as follows

V ar (CF (D; y) + �f (S)) = �2V ar (f (S)) + 2� (p+ h� s)Cov (f (S) ;min fD; yg)

�2�hCov (f (S) ; D) + V ar (CF (D; y)) . (5.2)

Di¤erentiating with respect to �; we obtain

@V ar (CF (D; y) + �f (S))

@�
= 2�V ar (f (S)) + 2 (p+ h� s)Cov (f (S) ;min fD; yg)

�2hCov (S;D) .

Di¤erentiating (5.2) for the second time in terms of � again

@2V ar (CF (D; y) + �f (S))

@�2
= 2V ar (f (S)) � 0

which shows that the variance of the total cash �ow is convex in �. Hence, to �nd the

optimal value of �, we use the �rst order condition,

�V ar (f (S)) + (p+ h� s)Cov (f (S) ;min fD; yg)� hCov (f (S) ; D) = 0.

This yields the following for the optimal hedging position � for a given y value

�� (y) =
� (p+ h� s)Cov (f (S) ;min fD; yg) + hCov (f (S) ; D)

V ar (S)
.

Moreover, by letting

�D (y) =
Cov (f (S) ;min fD; yg)

V ar (f (S))

one can also show that the derivative of � with respect to y is

�0D (y) =
Cov

�
f (S) ; 1fD>yg

�
V ar (f (S))

.

We can explicitly write the optimal hedging position as

�� (y) = � (p+ h� s)�D (y) + h�D (1) . (5.3)
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To make further progress, we need assumptions about the relationship between D and

S. To this end, let us employ the de�nition of �positive association�between two random

variables. According to Esary et al. [14] two random variables, such as D and S, are

positively associated if Cov (g (D) ; h (S)) � 0 is true for all pairs of non-decreasing func-

tions g and h. Moreover, they point out that this association becomes the strongest, when

Cov (g (D;S) ; h (D;S)) � 0 is true for all pairs of non-decreasing functions g and h. Vari-

ables having such a property are called positively associated (PA). Additionally, Esary et al.

[14] claims that PA also implies P fD > d j S = sg is a non-decreasing function of d for �xed

s. Therefore, assuming D and S are PA variables implies that Cov
�
f (S) ; 1fD>yg

�
> 0,

as long as both f (S) and 1fD>yg are non-decreasing functions of S and D. Hence, �D (y)

becomes an increasing function of y. Based on this we observe that �� (0) = h�D (1) > 0,

�� (1) = � (p+ h� s)�D (1) < 0 and as y increases �� (y) decreases. This means that a

lower amount of investment in the security is needed when the order quantity is higher.

Utilizing (5.3) we can start the second step. Depending on the manager�s decision, the

optimal hedging position �� (y) can be used to maximize pro�ts or to minimize variance.

Suppose the goal is to maximize the expected total pro�t, then our objective function

becomes

E [CF (D; y) + �� (y) f (S)] =
�
s� cerT

�
y + (p+ h� s)E [min fD; yg]

�hE [D] + �� (y)E [f (S)] .

By substituting optimal �� (y) into objective function we get

E [CF (D; y) + �� (y) f (S)] =
�
s� cerT

�
y + (p+ h� s)E [min fD; yg]� hE [D]

� ((p+ h� s)�D (y)� h�D (1))E [f (S)] . (5.4)

Recall that in (3.3) we pointed out that

dE [min fD; yg]
dy

= P fD > yg .

Hence, by di¤erentiating (5.4 with respect to y we obtain,

dE [CF (D; y) + �� (y) f (S)]

dy
=

�
s� cerT

�
+ (p+ h� s)P fD > yg

� (p+ h� s)�0D (y)E [f (S)] .
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And the optimality condition becomes

�
s� cerT

�
+ (p+ h� s) (1� P fD � yg)� �0D (y)E [f (S)] = 0.

By rewriting the optimality condition can be found as

P fD � y�g+ �0D (y�)E [f (S)] =
p+ h� cerT
p+ h� s = p̂. (5.5)

Recall that the right-hand side of (5.5), p̂, is the critical ratio. The left-hand side is a

probability plus a covariance term multiplied by a positive constant. Hence, the optimal

solution depends on the covariance term�s sign and shape, which makes the structure of

Cov
�
f (S) ; 1fD>yg

�
very important. First of all, as long as the covariance term is strictly

increasing there exists a unique optimal y�. Moreover, assuming f (S) is non-negative and

increasing,

� If Cov
�
f (S) ; 1fD>yg

�
> 0, the optimal order quantity with hedging will be smaller

than the optimal order quantity without hedging.

� If Cov
�
f (S) ; 1fD>yg

�
< 0, the optimal order quantity with hedging will be larger

than the optimal order quantity without hedging.

� If Cov
�
f (S) ; 1fD>yg

�
= 0, they will be equal.

Also note that the assumption of non-decreasing covariance in terms of y could be

relaxed. What we need is a non-decreasing left-hand side in terms of y in (5.5). Furthermore,

if there is no correlation between S andD, �D (y) will be zero; thus, the optimality condition

in (5.5) reverts back to classical newsvendor model (3.4).

Hedging with multiple �nancial securities

In general hedging is achieved by using multiple �nancial securities. Intuitively, as the num-

ber of securities increases, the variance of the expected return will decrease. The variance

of the cash �ow can be written as,
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V ar (CF� (D;S; y)) = V ar

 
CF (D; y) +

nX
i=1

�ifi (S)

!

=

nX
i=1

nX
j=1

�i�jCov (fi (S) ; fj (S))

+2
nX
i=1

�iCov (fi (S) ; CF (D; y))

+V ar (CF (D; y)) .

We can rewrite this equation in matrix notation as

V ar (CF� (D;S; y)) = �
TC�+ 2�T� (y) + V ar (CF (D; y)) (5.6)

where � = f�1; �2; � � � ; �ng is the column vector, �T is the transpose of �, C is the covari-

ance matrix with entries

Cij = Cov (fi (S) ; fj (S))

and

�i (y) = Cov (fi (Si) ; CF (D; y))

denotes the covariance between the �nancial securities and the cash �ow. By taking the

gradient with respect to � and setting it equal to 0, the optimal order quantities can be

characterized as

�� (y) = �C�1� (y) . (5.7)

The second order condition also checks out since the Hessian matrix of (5.6) is the covariance

matrix C which is positive semi-de�nite. Hence, the optimal hedging quantity can be used

to maximize the expected pro�t, the objective function is

E
h
CF (D; y) +�� (y)T f (S)

i
=

�
s� cerT

�
y + (p+ h� s)E [min fD; yg]

�hE [D]� � (y)TC�1E [f (S)]

where f (S) = ff1 (S) ; f2 (S) ; � � � ; fn (S)g denotes the column vector of derivative securities.

By taking the derivative with respect to y, we obtain the optimality condition�
s� cerT

�
+ (p+ h� s)P fD > yg � �0 (y)TC�1E [f (S)] = 0



Chapter 5: Newsvendor Problem with Imperfect Hedging

54

which can be simpli�ed to

P fD � yg+ �
0 (y)TC�1E [f (S)]

(p+ h� s) =
p+ h� cerT
p+ h� s = p̂. (5.8)

Here �0 (y) is the gradient vector obtained by setting

�0i (y) =
d�i (y)

dy
.

Recall that, as (3.3) pointed out,

dE [min fD; yg]
dy

= P fD > yg .

In (5.8), �i (y) = (p+ h� s)Cov (fi (S) ;min fD; yg)� hCov (fi (S) ; D), thus

�0i (y) = (p+ h� s)
@Cov (fi (S) ;min fy;Dg)

@y
= (p+ h� s)Cov

�
fi (S) ; 1fD>yg

�
.

Consequently,

�0 (y) = �̂ (y) (p+ h� s)

where �̂i (y) = Cov
�
fi (S) ; 1fD>yg

�
. Hence, the optimality condition can be rewritten as

P fD � y�g+ �̂ (y�)TC�1E [f (S)] = p+ h� cerT
p+ h� s = p̂.

The right-hand side of the optimality condition is the critical ratio. The left-hand side

consists up of a probability plus an addition term, �̂ (y)TC�1E [f (S)]; note that this term�s

sign and behavior is crucial. If it is non-decreasing and positive, then the optimal ordering

quantity will be smaller compared to unhedged optimal ordering quantity. If it is non-

decreasing and negative, then the optimal ordering quantity will be larger compared to

the unhedged optimal ordering quantity. Furthermore, if there is no correlation between S

and D, � (y) will be zero, thus, the optimality condition in (5.8) reverts back to classical

newsvendor model (3.4).

5.1.2 Random Capacity

By adding supply uncertainty into our model we further increase the variability of the pro�t

function. As usual, we de�ne K to be the capacity of the supplier. Thus, when we order
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y we will get Q (y) = min fy;Kg. Moreover this random variable K is assumed to have a

positive correlation with S. So, the objective function becomes

CF� (D;K; S; y) = CF (D;K; y) +�Tf (S) =
�
s� cerT

�
min fK; yg

+(p+ h� s)min fD;K; yg

�hD +
nX
i=1

�ifi (S) . (5.9)

Hedging with only one security

We assume that the decision maker is allowed to use only one �nancial instrument in the

market. Then, the objective function is

V ar (CF� (D;K; S; y)) = �2V ar (f (S)) + 2�Cov (f (S) ; CF (D;K; y))

+V ar (CF (D;K; y)) . (5.10)

We �nd the optimal � by taking the derivative and setting it equal to zero so that

@V ar (CF� (D;K; S; y))

@�
= 2�V ar (f (S)) + 2Cov (f (S) ; CF (D;K; y)) = 0 (5.11)

and the optimal solution is

�� (y) = �Cov (f (S) ; CF (D;K; y))
V ar (f (S))

=
hCov (f (S) ; D)�

�
s� cerT

�
Cov (f (S) ;min fK; yg)

V ar (f (S))

�(p+ h� s)Cov (f (S) ;min fD;K; yg)
V ar (f (S))

. (5.12)

Since
@2V ar (� (D;S;K; y))

@�2
= 2V ar (f (S)) � 0

the �rst order condition (5.11) is su¢ cient for optimality. Note that (5.12) can be simpli�ed

as

�� (y) = h�D (1)�
�
s� cerT

�
�K (y)� (p+ h� s)�D;K (y)
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where

�D (y) = Cov (f (S) ;min fD; yg)

�K (y) = Cov (f (S) ;min fK; yg)

�D;K (y) = Cov (f (S) ;min fD;K; yg) .

Thus, given the optimal hedging quantity, we can maximize the expected total pro�t by

plugging in � from (5.12) and obtain the objective function

E [CF�� (D;S;K; y)] =
�
s� cerT

�
(E [min fK; yg]� �K (y)E [f (S)])

+ (p+ h� s)
�
E [min fD;K; yg]� �D;K (y)E [f (S)]

�
�h (E [D]� �D (1)E [f (S)]) (5.13)

Recall that, in (3.3) and (3.6) we shown that

dE [min fK; yg]
dy

= P fK > yg

and
dE [min fD;K; yg]

dy
= P fD > y;K > yg .

Hence, the derivative of (5.13) with respect to y yields

dE [CF�� (D;S;K; y)]

dy
=

�
s� cerT

� �
P fK > yg � �0K (y)E [f (S)]

�
+(p+ h� s)P fD > y;K > yg

� (p+ h� s)�0D;K (y)E [f (S)] . (5.14)

By rewriting (5.14), the optimality condition becomes

P fD � y� j K > y�g+
��
s� cerT

�
�0K (y

�) + (p+ h� s)�0D;K (y�)
�
E [f (S)]

(p+ h� s)P fK > y�g =
p+ h� cerT
p+ h� s .

In this case the optimal y characterization shows resemblance to (3.9), or

P fD � y j K > yg = p̂

in the sense that we now have

P fD � y� j K > y�g+A (y�) = p̂



Chapter 5: Newsvendor Problem with Imperfect Hedging

57

where

A (y) =

��
s� cerT

�
�0K (y) + (p+ h� s)�0K (y)

�
E [f (S)]

(p+ h� s)P fK > yg

If A (y) is positive increasing, then the optimal solution satisfying this equation will be

smaller than the optimal order quantity without hedging. On the other hand, if it is negative

increasing, then the optimal solution satisfying this equation will be larger than the optimal

order quantity quantity without hedging. When the correlations between random variables

D, K and S is zero, �K (y) and �K (y) becomes zero, hence, the model reverts back to

random capacity model (3.9).

Hedging with multiple securities

If the decision maker wants to use multiple instruments for hedging, the objective function

becomes

V ar (CF� (D;K; S; y)) = �
TC�+ 2�T� (y) + V ar (CF (D;K; y))

where

�i (y) = Cov (fi (S) ; CF (D;K; y))

now denotes the covariance between the �nancial securities and the new cash �ow. By

taking the gradient with respect to � vector, the optimal hedging order quantities can be

characterized as follows

�� (y) = �C�1� (y) . (5.15)

Adding multiple instruments does not e¤ect the second order condition since the covariance

matrix is always positive semi-de�nite. Therefore, the optimal hedging quantity can be used

to maximize expected cash �ow, or the objective function is

E [CF�� (D;K; S; y)] =
�
s� cerT

�
E [min fK; yg]

+ (p+ h� s)E [min fD;min fK; ygg]

�hE [D]� � (y)TC�1E [f (S)] .
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By taking the derivative with respect to y we obtain the optimality condition

�
s� cerT

�
P fK > yg+ (p+ h� s)P fD > y;K > yg � �0 (y)TC�1E [f (S)] = 0

or �
s� cerT

�
+ (p+ h� s)P fD > y j K > yg � �

0 (y)TC�1E [f (S)]

P fK > yg = 0

where we used the function that

dE [min fK; yg]
dy

= P fK > yg

dE [min fD;K; yg]
dy

= P fD > y;K > yg .

The optimality condition which can be rewritten as

P fD � y� j K > y�g+ �0 (y�)TC�1E [f (S)]

(p+ h� s)P fK > y�g =
p+ h� cerT
p+ h� s = p̂. (5.16)

As in the previous case, this characterization shows resemblance to the random capacity

model. We have a probability plus an addition term

A (y) =
�0 (y)TC�1E [f (S)]

(p+ h� s)P fK > yg

on the left-hand side and critical ration on the right-hand side. If A (y) is a positive increas-

ing function, then the optimal ordering quantity satisfying (5.16) will be smaller than the

optimal order quantity without hedging and vice versa. Moreover, if the correlation between

random variables and the market is zero, the model reverts back to random capacity model

in Chapter 3.

5.1.3 Random Yield

In this chapter, we assume that the randomness of the supply comes from the yield. Let

U be a random variable which represents the variability in the supply so that Q (y) = Uy.

Moreover, U is assumed to have some degree of correlation with �nancial stocks. Then, the
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cash �ow becomes

CF� (D;U; S; y) = CF (D;U; y) +�Tf (S) =
�
s� cerT

�
Uy

+(p+ h� s)min fD;Uyg

�hD +
nX
i=1

�ifi (S) (5.17)

Hedging with only one security

When the use of only one instrument is permitted, the objective function can be written as

V ar (f� (D;U; S; y)) = V ar (CF (D;U; y) + �
�f (S))

We �nd the optimal �� by taking the derivative with respect to � and setting it equal to

zero, so that

@V ar (CF� (D;U; S; y))

@�
= 2�V ar (f (S)) + 2Cov (f (S) ; CF (D;K; y)) = 0

and the optimal solution is

� (y�) = �Cov (f (S) ; CF (D;U; y))
V ar (f (S))

or

�� = h�D (1)�
�
s� cerT

�
y�U � (p+ h� s)�D;U (y)

where

�D;U (y) =
Cov (f (S) ;min fD;Uyg)

V ar (f (S))

�D (y) =
Cov (f (S) ;min fD; yg)

V ar (f (S))

�U =
Cov (f (S) ; U)

V ar (f (S))
.

The �rst order optimality condition is su¢ cient since the second order condition

@2V ar (CF� (D;U; S; y))

@�2
= 2V ar (f (S)) � 0
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is satis�ed. Given the optimal hedging quantity, we can now maximize the expected total

pro�t over y, or

E [CF�� (D;U; S; y)] =
�
s� cerT

�
yE [U ] + (p+ h� s)E [min fD;Uyg]

�hE [D] + h�D (1)E [f (S)]�
�
s� cerT

�
y�UE [f (S)]

� (p+ h� s)�D;U (y)E [f (S)]

=
�
s� cerT

�
y (E [U ]� �UE [f (S)])� h (E [D]� �D (1)E [f (S)])

+ (p+ h� s)
�
E [min fD;Uyg]� �D;U (y)E [f (S)]

�
.

The derivative with respect to y yields

dE [CF�� (D;U; S; y)]

dy
=

�
s� cerT

�
(E [U ]� �UE [f (S)])

+ (p+ h� s)
�
E
�
U1fD>Uyg

�
� �0D;U (y)E [f (S)]

�
=

�
s� cerT

�
(E [U ]� �UE [f (S)])

+ (p+ h� s)
�
E [U ]� E

�
U1fD�Uyg

�
� �0D;U (y)E [f (S)]

�
=

�
p+ h� cerT

�
E [U ]�

�
s� cerT

�
�UE [f (S)]

� (p+ h� s)E
�
U1fD�Uyg

�
� �0D;U (y)E [f (S)] .

By setting it to zero the optimality condition can be written as

E
�
U1fD�Uy�g

�
E [U ]

+
�0D;U (y

�)E [f (S)] +
�
s� cerT

�
�UE [f (S)]

(p+ h� s)E [U ] =
p+ h� cerT
p+ h� s = p̂. (5.18)

Recall that the optimal solution resembles (3.17), or

E
�
U1fD�Uy�g

�
E [U ]

= p̂.

In (5.18) there is an extra term

A (y) =
�0D;U (y)E [f (S)] +

�
s� cerT

�
�UE [f (S)]

(p+ h� s)E [U ] ,

whose structure depends �0D;U (y) and �U . If A (y) is a positive increasing function, then

the optimal order quantity will be smaller than the optimal order quantity without hedging.

On the other hand if it is negative increasing then the optimal order quantity will be larger

than the optimal order quantity without hedging. Lastly if there is no correlation at all,

meaning A (y) = 0, the model reverts back to random yield case in Chapter 3.
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Hedging with multiple securities

When the decision maker is allowed to invest in many di¤erent securities, the objective

function becomes,

V ar (CF� (D;U; S; y)) = �
TC�+ 2�T� (y) + V ar (CF (D;U; y)) . (5.19)

where

�i (y) = Cov (fi (S) ; CF (D;U; y)) .

By taking the gradient with respect to �, the optimal hedging order quantities can again

be characterized as

�� (y) = �C�1� (y) (5.20)

and the second order condition is also satis�ed. The optimal hedging quantity can be used

to maximize the expected cash �ow, thus, the objective function is

E [CF�� (D;U; S; y)] =
�
s� cerT

�
E [U ] y + (p+ h� s)E [min fD;Uyg]

�hE [D]� � (y)TC�1E [f (S)] .

By taking the derivative with respect to y and setting it to zero, we obtain,

�
s� cerT

�
E [U ] + (p+ h� s)E

�
U1fD>Uyg

�
� �0 (y)TC�1E [f (S)] = 0

or �
p+ h� cerT

�
E [U ]� (p+ h� s)E

�
U1fD�Uyg

�
� �0 (y)TC�1E [f (S)] = 0.

Then, the optimality condition becomes

E
�
U1fD�Uy�g

�
E [U ]

+
�0 (y�)TC�1E [f (S)]

(p+ h� s)E [U ] =
p+ h� cerT
p+ h� s = p̂. (5.21)

The optimality condition above, provides a characterization for y� which is again similar

to random yield model in previous chapter. However, this characterization has an addition

term on the left-hand side, which is

A (y) =
�0 (y)TC�1E [f (S)]

(p+ h� s)E [U ] .
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If A (y) is positive and increasing, then the optimal order quantity will be smaller than the

optimal order quantity without hedging and vice versa. Moreover, if there is no correlation

between demand, supply and the market, A (y) becomes zero making the model equal to

random yield case in Chapter 3.

5.1.4 Random Yield and Random Capacity

In this chapter we are going to work on models with both random yield and random capacity.

Thus, when we order y we will get Q (y) = U min fy;Kg. Moreover, random variables K

and U assumed to have some degree of correlation with S. Then, the cash �ow becomes

CF� (D;K;U; S; y) = CF (D;K;U; y) +�Tf (S) =
�
s� cerT

�
U min fK; yg

+(p+ h� s)min fUy;UK;Dg

�hD +
nX
i=1

�ifi (S) (5.22)

Hedging with only one security

The objective function can be written as

V ar (CF� (D;K;U; S; y)) = �2V ar (f (S)) + 2�Cov (f (S) ; CF (D;K;U; y))

+V ar (CF (D;K;U; y))

We �nd the optimal � by taking the derivative with respect to � and setting it to 0, so

that the objective function is

2�V ar (f (S)) + 2Cov (f (S) ; CF (D;K;U; y)) = 0

and we obtain

�� (y) = �Cov (f (S) ; CF (D;K;U; y))
V ar (f (S))

= h�D (1)�
�
s� cerT

�
�K;U (y)� (p+ h� s)�D;K;U (y) (5.23)
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where

�D (y) =
Cov (f (S) ;min fD; yg)

V ar (f (S))

�K;U (y) =
Cov (f (S) ; U min fK; yg)

V ar (f (S))

�D;K;U (y) =
Cov (f (S) ;min fUy;UK;Dg)

V ar (f (S))
.

The �rst order condition is su¢ cient since the second order condition is satis�ed. Given the

optimal hedging quantity, we can maximize the expected total pro�t by plugging in �� (y),

so that the objective function is

E [CF�� (D;K;U; S; y)] =
�
s� cerT

�
E [U min fK; yg]

+ (p+ h� s)E [min fUy;UK;Dg]

�
�
s� cerT

�
�K;U (y)E [f (S)]

� (p+ h� s)�D;K;U (y)E [f (S)]

�h (E [D]� �D (1)E [f (S)]) (5.24)

Recall that, in (3.20) we show that

dE [min fUy;UK;Dg]
dy

= E
�
U1fD>Uy;K>yg

�
and the optimality condition is obtained by taking the derivative of (5.24) and setting this

equal to zero so that

(p+ h� s)E
�
U1fD>Uy;K>yg

�
� (p+ h� s)�0D;K;U (y)E [f (S)]

+
�
s� cerT

�
E
�
U1fK>yg

�
�
�
s� cerT

�
�0K;U (y)E [f (S)] = 0

which yields

E
�
U1fD>Uy�;K>y�g

�
E
�
U1fK>y�g

� �
�0D;K;U (y

�)E [f (S)]

E
�
U1fK>y�g

� �
�
s� cerT

�
�0K;U (y

�)E [f (S)]

(p+ h� s)E
�
U1fK>y�g

� = 1� p̂.

or

E
�
U1fD�Uy�;K>y�g

�
E
�
U1fK>y�g

� +
�0D;K;U (y

�)E [f (S)]

E
�
U1fK>y�g

� +

�
s� cerT

�
�0K;U (y

�)E [f (S)]

(p+ h� s)E
�
U1fK>y�g

� = p̂. (5.25)
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As in previous chapter, the optimal y characterization highly resembles models without

hedging. In (3.21), the optimality condition is

E
�
U1fD�Uy�;K>y�g

�
E
�
U1fK>y�g

� = p̂,

In (5.25) we have an additional term

A (y) =
�0D;K;U (y)E [f (S)]

E
�
U1fK>yg

� +

�
s� cerT

�
�0K;U (y)E [f (S)]

(p+ h� s)E
�
U1fK>yg

�
If A (y) is positive and increasing, then the optimal order quantity will be smaller than the

optimal order quantity without hedging and vice versa. Moreover, if there is no correlation

between demand, supply and the market, A (y) will be equal to zero, once again, the model

reverts to random yield case in Chapter 3.

Hedging with multiple securities

The objective function can be written as

V ar (CF� (D;K;U; S; y)) = �
TC�+ 2�T� (y) + V ar (CF (D;K;U; y))

where we now have

�i (y) = Cov (fi (S) ; CF (D;K;U; y))

denotes the covariance between the �nancial securities and the cash �ow. By taking the

gradient with respect to �, the optimal hedging order quantities can be characterized as

�� (y) = �C�1� (y) . (5.26)

The optimal hedging quantity can be used to maximize expected cash �ows. Then, the

objective function is

E
h
CF (D;K;U; y) +�� (y)T f (S)

i
=

�
s� cerT

�
E [U min fK; yg]

+ (p+ h� s)E [min fD;UK;Uyg]

�hE [D]� � (y)TC�1E [f (S)]
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By taking the derivative with respect to y, we obtain the optimality condition as

�
s� cerT

�
E
�
U1fK>yg

�
+ (p+ h� s)E

�
U1fD>Uy;K>yg

�
� �0 (y)TC�1E [f (S)] = 0

The optimality condition can be written as

�
s� cerT

�
E
�
U1fK>yg

�
+ (p+ h� s)

�
E
�
U1fK>yg

�
� E

�
U1fD�Uy;K>yg

��
��0 (y)TC�1E [f (S)] = 0

or

�
p+ h� cerT

�
E
�
U1fK>yg

�
� (p+ h� s)E

�
U1fD�Uy;K>yg

�
� �0 (y)TC�1E [f (S)] = 0.

Hence,

E
�
U1fD�Uy�;K>y�g

�
E
�
U1fK>y�g

� +
�0 (y�)TC�1E [f (S)]

(p+ h� s)E
�
U1fK>y�g

� = p+ h� cerT
p+ h� s = p̂. (5.27)

This optimal y characterization is similar to random yield and capacity model in previous

chapter. The only di¤erence is

A (y) =
�0 (y)TC�1E [f (S)]

(p+ h� s)E
�
U1fK>yg

� .
Again, if this term is positive and increasing, then the optimal order quantity will be smaller

than the optimal order quantity without hedging and vice versa. Moreover, if there is no

correlation between demand, supply and the market, A (y) will be equal to zero and the

model reverts to random yield case in Chapter 3.
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Chapter 6

CONCLUSIONS

In this thesis, we study a single-period, single-item inventory (newsvendor) problem. We

analyze the opportunities of �nancial hedging to mitigate inventory risks when the demand

and/or supply processes are correlated with the price of a �nancial asset. The risk or un-

certainties in our model is generated by random demand. Apart from the uncertainty of

demand, we also incorporate supply uncertainty as a source of randomness. The combined

randomness of demand and supply enhances the level of uncertainty, thus leading to an

increased risk for the manager. Hence, we provide a general framework of decision making

in a risky environment by categorizing our model under three di¤erent approaches. In the

�rst one, the conventional newsvendor model with shortage cost is analyzed. This model is

extended by adding di¤erent designs of supply uncertainty, while the assumption of inde-

pendence between demand and market still holds. In the second one �nancial instruments

like options, bonds, futures, etc. is used to hedge the risks associated with the revenue or

the cash �ow by assuming perfect correlation between demand/supply and the market. The

manager or the decision maker now has to determine the optimal portfolio of these hedging

instruments as well as the optimal ordering quantity. For the last approach, a setting for

hedging the risk is characterized when there is partial correlation between demand/supply

and the market. In such a scenario, forming a replicating portfolio will not be possible since

there is no perfect correlation. So instead, a minimum-variance type approach is introduced.

In the �rst part of the thesis the focus is on the classic newsvendor model. We analyze

three di¤erent types of supply uncertainty, random capacity, random yield and both. By

incorporating shortage costs we conclude that for random capacity case it is possible to

�nd a characterization for the optimal order quantity. The characterization is such that

the optimal probability of satisfying the demand is equal to a critical ratio. However, these
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characterizations require certain assumptions on the structure of the optimality conditions

which we discussed explicitly in Chapter 3. For random yield case we �nd simple and explicit

characterizations for the optimal ordering quantities, due to the fact that, the objective

function is concave. Our results again suggest that the characterization for the optimal

order quantity is similar. Models with random yield and capacity have non-concave objective

functions. Therefore, obtaining an explicit solution for the general problem is very hard, if

impossible. Nevertheless, we derive a complex characterization for the general problem and

show the structure of the optimal solution under certain assumptions. Moreover, we further

analyzed some special cases of random yield and capacity models to better understand the

behavior of the optimal solution.

For the second part, Chapter 4, we examine the implications of having a risk-sensitive

attitude and analyze the framework of decision making with hedging opportunities. Each

decision maker faces a certain amount of risk by investing in inventory. Thus, decision

makers are forced to manage the risk in order to prevent unexpected loses. An e¢ cient way

of controlling the risk is using market correlations. In reality, it is possible to form portfolios

that have correlation with demand and supply. Via the help of such portfolios it is possible

for the decision makers to hedge the risks of carrying inventory and shortage. Moreover, in

this part of the thesis it is assumed that risk-neutral probability measures exists, contingent

claims can be priced with these measures and demand/supply are perfectly correlated with

the market. The same line of reasoning is followed as in the �rst part. For random demand

models a replicating portfolio of random cash �ow is generated and priced using RNPM.

The structure of the optimal solution is same as the optimal order quantity without hedging.

For the random capacity, the calculation of the replicating portfolio of the cash �ow above

is quite involved since the objective function is non-concave. Thus, instead of pricing the

replicating portfolio, the previous solutions in the �rst part is modi�ed by exploiting the

perfect correlation. Furthermore, we prove this modi�cation is indeed correct for various

cases of capacity models. In random yield, the optimal solution for order quantity is obtained

explicitly. Reaching useful results is quite hard in combined yield and capacity models, but

under certain assumptions we provide some insights about the optimal characterization of
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order quantity. Bottom line in the second part of the thesis, a hedging framework is shown

to reduce the variance of the expected pro�t when it is possible to invest in a portfolio

perfectly correlated with random factors.

In the last part, the decision making framework in a risky environment is covered with a

complete arbitrage-free market where there is a partial correlation between random demand,

supply and a �nancial product. The inexistence of perfect correlation prevents us from

constructing a replicating portfolio, thus, limiting our ability to reduce the variability of

the pro�t. Moreover, the inexistence of such a portfolio implies that the realized pro�t will

remain random, making the analysis more challenging. Since a replication approach cannot

be employed, we utilize another method: Minimum-variance hedging. The aim here is to

minimize the variance of the hedged cash �ow for di¤erent return levels by holding a portfolio

of �nancial securities. Speci�cally, in our context, decision makers select the order quantity

and the �nancial portfolio simultaneously. This makes the minimum variance (min-var)

approach a two-step characterization method. First, the decision maker attempts to reduce

the volatility of the returns by investing in inventory and a portfolio consisting of di¤erent

securities. After the optimal amount of each asset is calculated for a given ordering quantity,

decision maker may aim to either maximize the expected pro�t or to further minimize the

variance by choosing the ordering quantity. The same line of reasoning is followed as in

parts 1 and 2. We derive the optimal ordering policy for random demand case for a portfolio

consisting of a single security and later generalize it to the case of multiple securities. This

analysis is later carried out in the cases with supply uncertainty due to both random capacity

and uncertain yield. Based on our results, as in previous parts, the optimal ordering policies

are always equal to the same critical ratio. However, in all of the cases we face a complex

covariance term whose structure depends on the relation between �nancial security and

random variables. The sign and shape of this covariance directly e¤ects the behavior of the

optimal solution.

Financial hedging is a vast concept, in our analysis we manage to cover some portion of

it. There are many suitable areas for extentions, such as, using utility functions for �nancial

hedging, further extending covariance analysis for partial correlation, making same analysis
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for multi-product, multi-period newsvendor with many suppliers, etc..
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