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ABSTRACT 

 

This thesis investigates the problem of super-resolution (resolution enhancement) in 

multi-view 3D video. 

 

Although the super-resolution problem has been widely studied for monocular video, 

work on 3D super-resolution of stereo/multi-view video is rather new. Given recent 

advances in depth-based stereo/multi-view video representations and compression formats, 

this thesis proposes a depth-guided super-resolution method for multi-view 3D videos. 

 

Since sub-pixel registration of multiple views is crucial in achieving super-resolution, we 

employ a parametric registration approach based on affine motion of approximately planar 

image patches rather than traditional pixel-based stereo matching. The segmentation of 

planar image patches and their affine registration is guided by depth layer maps. 

 

We also conduct subjective visual evaluation tests of super-resolution in 3D on different 

stereoscopic displays. 
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ÖZET 

 

Bu tez 3 Boyutlu (3B) videolar üzerinde çözünürlük iyileştirme problemini inceler. 

 

Çözünürlük iyileştirme problemi monoküler videolar üzerinde daha önce genişçe 

incelenmiş olsa da stereo/çoklu-görüş videolar üzerinde 3B çözünürlük artırımı ile ilgili 

çalışmalar oldukça yenidir. Bu tez, derinlik tabanlı stereo/çoklu-görüş video temsil ve 

sıkıştırma formatlarındaki son gelişmeleri dikkate alarak çoklu-görüş 3B videolar için 

derinlik yardımlı bir çözünürlük artırma yöntemi önermektedir. 

 

Çözünürlük iyileştirmenin gerçekleştirilebilmesinde çoklu görüşlerin piksel-altı 

hassasiyette hizalanmasının kritik olması nedeniyle geleneksel piksel tabanlı stereo 

eşleştirme yerine kabaca düzlemsel görüntü parçalarının ilgin hareketine dayalı bir 

parametrik hizalama yaklaşımı kullanıyoruz. Düzlemsel görüntü parçalarının bölütlenmesi 

ve ilgin hizalanmaları derinlik katmanı haritalarıyla yönlendiriliyor. 

 

Bunun yanı sıra, 3 Boyutta çözünürlük iyileştirmenin değişik stereoskopik ekranlar 

üzerinde öznel değerlendirme testlerini de yürüttük.
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Chapter 1 

 

INTRODUCTION 

 

 

1.1 Motivation 

There is growing interest in 3D video formats and services, including 3DTV and 3D 

mobile video. 3D video formats can be classified as frame-based, including side-by-side 

and sequential formats, and depth-based including video-plus-depth and multi-view-plus-

multi-depth formats. There are several applications where super-resolution (SR) of stereo 

and multi-view videos is of interest. For example, in the side-by-side transmission format, 

right and left views are subsampled horizontally by a factor of 2 and composited together in 

order to utilize the present infrastructure. The composite frames are then split into right and 

left views which are horizontally upsampled at the receiver. SR methods can be employed 

during upsampling to prevent loss of resolution. Another application is the display of 

standard definition multi-view-plus-multi-depth videos on high-definition 3D displays. 

SR has been widely studied to obtain high-resolution (HR) frames from a set of low-

resolution (LR) images or monocular video. A typical SR method involves two essential 
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steps:  i) sub-pixel accurate registration of low-resolution images/frames on a common HR 

grid and ii) reconstruction of the HR image using an estimate of the point spread function 

(PSF) of the LR imaging model. The quality of the resulting HR images strongly depends 

on the accuracy of the sub-pixel registration and proper estimation of the PSF which relates 

LR observed pixels to the unknown HR frame. Block-based search or optical-flow based 

motion estimation are not preferred in SR methods since they are not accurate and stable 

enough. Parametric motion models, such as affine and perspective models, can achieve the 

desired sub-pixel accuracy. However, in sequentially recorded images or frames of a 

monocular video, accurate sub-pixel registration is exceedingly difficult to achieve since 

local motion of objects in the scene can be too complex to model by a small number of 

parameters. Combined motion estimation and segmentation methods using multiple 

parametric motions have been proposed [1; 2]. 

In a multi-camera setup, assuming the cameras are well synchronized, the scene is 

virtually static and disparity among different views is due to different camera positions. 

Parametric models are well suited to model disparity in case of planar scenes, but they fail 

to model the parallax due to depth variations, if applied to the whole frame. It is possible to 

represent the scene as a collection of approximately planar layers, where each layer can be 

registered by a different parametric model. Depth image segmentation can be used to aid 

layering. Layered disparity registration approaches have been previously proposed for 

image based rendering, stereo reconstruction and view interpolation [3; 4; 5]. Image patch 
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similarity across views is exploited in the context of image denoising [6]. We note that 

depth images can be recorded by time-of-flight cameras or estimated by stereo matching 

methods. 

Although it is desirable to have a shallow focus (small depth of field blurring the 

background and focusing on the subject) is mostly preferred in conventional 2D 

cinematography, it is avoided in 3D stereo filmmaking since it gives an effect of 

individually floating foreground object on a blurry background. Such an effect is generally 

found annoying by the audience. By using separate PSF for different depth layers, it is 

possible to widen the depth of field and the SR reconstruction provides a desirable effect of 

sharp 3D images. 

 

1.2 Problem Formulation 

In this work, POCS based SR is applied to the multi-view 3D video sequences having 

depth-maps to produce a pair of stereo SR images in a higher resolution than the input 

images. Figure 1 shows a general overview of the whole process. 
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The aim of the Multi-view Image Registration step is to map the LR pixels from 

different views at the same time instance onto reference Left and Right views. Sub-pixel 

accuracy of the registration is a requirement for this step. 

In the Multi-view Super-Resolution step we use POCS method to enhance the 

resolutions of the stereo pair. 

A realistic evaluation of the 3D super-resolution requires human inspection since the 

effect of enhancement should be considered in 3D perception. We conduct subjective tests 

to evaluate the performance of the 3D super-resolution.  

 

 

Multi-view 

Image Registration 

(Chapter 2) 

Multi-view Super-

Resolution 

(Chapter 3)  
LEFT 

RIGHT 

 
LEFT 

RIGHT 

Visual Quality 

Evaluation of 3D 

Super-resolution 

(Chapter 4) 

Figure 1: Overview of the System 
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1.3 Contribution 

In this thesis, we propose a depth-image-guided, layered multi-view registration 

approach together with the Projection onto Convex Sets (POCS) framework in order to 

achieve multi-view SR. The output can be monocular, stereo or multi-view HR images or 

video. We also performed perceptual quality evaluation tests to compare SR stereo images 

with linearly interpolated stereo images. The main contributions of this paper are: i) a 

depth-guided multi-view image registration method, ii) evaluation of 3D SR results in two 

different 3D displays. 

 

The thesis is organized as follows: The method for depth-guided registration of image 

patches from multiple views is described in Section 2. Section 3 describes a POCS based 

SR reconstruction method. Section 4 discusses perceptual evaluation of SR in 3D. 

Experimental results are presented in Section 5. Finally, Section 6 draws some conclusions. 
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Chapter 2 

 

MULTI-VIEW IMAGE REGISTRATION 

 

 

2.1 Introduction 

Image registration is the process of overlaying two or more images (image regions) of 

the same scene on a common coordinate system. It is an essential step in multi-frame image 

restoration where information from multiple frames is combined. It is also a very important 

step in the solution of the SR problem. 

Although there are some SR techniques proposed where the registration is done 

simultaneously with the SR enhancement [7; 8], image registration is mostly a separate 

initial step in the whole process. In these simultaneous methods the registration parameters 

(mostly shifts and rotation) are incorporated in the optimization process. The results of 

simultaneous registration and enhancement can be promising since the registration is done 

considering the enhancing resolutions and the two processes are inter-dependant. Such a 

perspective, however, is more suitable for stochastic SR methods and on images with single 

global motion. A simultaneous registration is inefficient for pixel-based POCS framework. 
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Image registration is the separate first step in our super-resolution method as well 

(Figure 1). The overall aim of this step is to register all the LR pixels onto a common grid 

in HR. Since the destination image is not available in HR at the registration step, the 

motion estimation is done at the LR level and the motion is expanded by the magnification 

factor 𝐾. 

Registration is the most critical step in multi-frame super-resolution. This is because the 

extra information needed to reconstruct high frequencies is contained in the sub-pixel 

displacements between the images. Such a sub-pixel displacement corresponds to a 

displacement in the sampling lattice; hence the unknown original signal is sampled and 

observed in a new way. Displacements with full pixel lengths on the other hand, provide no 

new information and have no use for super-resolution purposes. 

This essential role of sub-pixel displacements imposes a limitation to the registration 

method to be used in super-resolution: Registration must be sub-pixel accurate. 

The second requirement is on the robustness of the registration algorithm. Misregistered 

pixels introduce unacceptable artifacts to the resulting image and make the super-resolution 

infeasible. 

Throughout this thesis the term motion estimation is used to refer to the same process of 

estimating the correspondence between the pixels on the source and the destination images. 

Since the images to be registered are the different camera views taken at the same time 
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instance, the registration problem can also be stated as the stereo-matching problem as 

commonly used in computer vision.  

Yet, in literature motion estimation usually refers to finding the motion of individual 

pixels in consecutive video frames, whereas the common stereo-matching algorithms deal 

with establishing one-to-one pixel relationships between the pixels from the left and right 

views. 

Stereo vision is commonly used in computer vision and multi-view scene reconstruction 

context. Capel et al. [9] applies the computer vision techniques to the SR problem. As a 

general framework, some easily detectable feature points are matched for the left and right 

views, and these correspondences are fed to a model fitting algorithm such as RANSAC to 

estimate a Homography Matrix that is in accordance with the most of the feature 

correspondences by omitting outliers. Such a Homography Matrix defines a projective 

transformation between the left and right views. This transformation can then be refined 

using a search-based dense matching algorithm to find the actual pixel-by-pixel mappings 

[10]. With the additional knowledge of the intrinsic camera calibration parameters such as 

the focal length and lens distortions, it is also possible to map the 2D pixels to 3D scene 

locations. 

Although such a 3D-vision framework seems to solve the multi-view registration 

problem of super-resolution, it is unnecessarily complex and still suboptimal in satisfying 

our sub-pixel registration requirements.  
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We instead propose a video processing based solution without dealing with the 3D 

scene geometry or epipolar geometry. We instead employ common and more standardized 

motion estimation and video processing algorithms and we consider the problem as a 2D 

warping and 2D reconstruction process. Our registration method requires no calibration at 

all, and is in accordance with the multi-view-plus-multi-depth format. 

Another common way of motion estimation in video sequences is using block-matching 

methods, where the pixel blocks are searched and registered separately on the target image. 

However, the aperture problem is apparent here and the matches can be ambiguous (i.e. 

many similar blocks are possible on the target image). Such an ambiguity may not be a 

problem when the motion estimation is used for coding purposes; however, it is definitely 

unacceptable in SR reconstruction. Besides its sub-pixel accuracy is limited and is 

dependent on an interpolation operation. 

Although Baker and Kanade [11] have combined the optical-flow algorithm 

simultaneously into SR reconstruction, using optical-flow in SR is found infeasible by 

other authors [12]. 

These block or pixel based methods are more suitable when there are non-rigid motions 

(e.g. changing face expressions). In our multi-view setup, all the images are taken at the 

same time instance and all the motions to be estimated are rigid even if there are non-rigid 

motions in the time axis. 
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2.2 Patch-based Motion Estimation Using Depth Segmentation 

This section addresses mapping individual LR pixels onto a reference HR grid. This 

reference HR grid is the upsampled version of the LR view to be super-resolved. All the 

LR images are registered to the reference LR view. The patch-based registration parameters 

are used to synthesize pixel mapping from each LR pixel to the reference image, and these 

mappings are expanded by the magnification factor K to map onto the reference HR grid. 

Each LR pixel is associated with an indicator in the verification map, indicating the 

reliability of its mapping. 

 We propose to employ the depth image as a constraint to register similar patches in 

multi-view images with sub-pixel accuracy. We assume that the depth images are available 

[13]. Actually, the depth information is considered as a part of the video format. 

Depth-map generation is considered as an error prone task. The depth values can be 

inaccurate and noisy. In our method, however, the precise accuracy of the depth images is 

not essential since we use depth images only to guide layering. The depth-maps are used to 

segment images into image patches having approximately planar motion under stereo 

camera transformations. 

 Our approach for registration is to model each image frame (viewpoint) as a collection 

of L layers each composed of multiple patches, and to assign a different parametric motion 

model to each image patch. A typical multi-camera setup has a linear or a curved 

arrangement, and our approach can provide an accurate and reliable motion model for most 
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image regions. Since the POCS framework, used in SR reconstruction, allows us to project 

onto only LR pixels that are accurately registered, the registration method does not need to 

perfectly register all pixels. 

Image layers, that are approximately planar, are extracted by a segmentation of the 

depth images. The binary mask 𝐼𝑀
𝑛,𝑙

 indicating layer l of frame n is defined as: 

 
𝐼𝑀
𝑛,𝑙 𝑖, 𝑗 =  

1, 𝑇𝑛,𝑙 ≤ 𝐼𝐷
𝑛 𝑖, 𝑗 ≤ 𝑇𝑛,𝑙+1

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒,
 

  

  
(1) 

where 𝐼𝐷
𝑛  is the depth image and 𝑇𝑛,𝑙  and 𝑇𝑛,𝑙+1 are upper and lower depth threshold 

values for layer l of image n. These threshold values are set considering abrupt depth 

changes at the object boundaries and the number of required pixels for stable registration. 

Since a single affine model may not provide a perfect fit to a whole image layer due to 

small depth variations, we propose using a piecewise affine model within each layer, where 

we further divide layers into R sub-regions, called patches, and fit different affine models 

to each of these patches. Figure 2 shows image patches generated by using L=11 depth 

levels and R=3 horizontal sub-regions. Here, only simple horizontal sub-divisions are 

found sufficient since dominant camera motion for this dataset is horizontal. 
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Figure 2 - Image patches: Each image patch segment is indicated with a different 

color/intensity 

Affine registration parameters from each one of these image patches to the reference 

frame are estimated by providing patch masks 𝐼𝑀
𝑛,𝑙,𝑟

 (𝑟 ∈ 𝑅) as input image supports to the 

Motion2D registration algorithm [14]. Motion2D is a M-estimator based parametric 

registration library that can operate on hierarchical manner. 

The parametric registration algorithm iteratively fits a parametric motion model to 

provide motion vectors per pixel in the most general form of: 

 

 
𝑢(𝑥, 𝑦)
𝑣(𝑥, 𝑦)

 =  
𝑐1
𝑐2

 +  
𝑎1 𝑎2

𝑎3 𝑎4
 .  

𝑥
𝑦 +  

𝑞1 𝑞2 𝑞3

𝑞4 𝑞5 𝑞6
 .  

𝑥2

𝑥𝑦

𝑦2

 , (2) 
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where 𝑥 and 𝑦 are the pixel coordinates on the source LR image; 𝑢 𝑥, 𝑦  and 𝑦 𝑥, 𝑦  are 

the horizontal and vertical components of the motion vector at the point  𝑥, 𝑦 ; 𝑐1 and 𝑐2 

are the horizontal and vertical translations, 𝑎𝑖  are linear transformation parameters 

correspond to rotation and shear motions; and 𝑞𝑖  are the quadratic parameters representing 

the linearization of the perspective motions. 

This 12-parameter motion model represents a wide range of transformations. However 

the quadratic q parameters are found to be zero in our practical experiments and we found 

it sufficient to concentrate on the 6 parameter affine model. 

Mappings from each LR pixel onto the HR grid are synthesized from these parameters. 

The difference between the LR pixel value on the source image and the value of the 

pixel at its mapped coordinate provides a confidence weight about the correctness of that 

pixel registration: 

 𝐼𝑊
𝑛 (𝑥, 𝑦) = 𝐼𝑟𝑒𝑓  𝑥 + 𝑢 𝑥, 𝑦 , 𝑦 + 𝑣(𝑥, 𝑦) − 𝐼𝑛 𝑥, 𝑦 + 𝜁𝑛  (3) 

where 𝜁𝑛  is the global intensity change between the 𝐼𝑟𝑒𝑓 (reference LR image) and 𝐼𝑛  (n
th

 

LR image) as computed by the Motion2D algorithm.  

We construct a verification map 𝑉𝑛  for n
th

 LR image using these registration weights 

along with depth and reconstruction cues such that: 

 

𝑉𝑛 𝑥, 𝑦 =  

0, 𝐼𝑊
𝑛  𝑥, 𝑦 <  𝑇𝑤                                                              

0, |𝐼𝐷
𝑟𝑒𝑓

 𝑥 + 𝑢 𝑥, 𝑦 , 𝑦 + 𝑣 𝑥, 𝑦  − 𝐼𝐷
𝑛 𝑥, 𝑦 | < 𝑇𝐷

1, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

   (4) 
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In these equations 𝑇𝑤  is the weights threshold and 𝑇𝐷 is the depth threshold. 𝑉𝑛(𝑥, 𝑦) is 

also set to zero during the POCS iterations when the residue at LR pixel (𝑥, 𝑦) is larger 

than a predefined reconstruction threshold 𝑇𝑅 . 

Registration of an image patch is illustrated in Figure 3. 

 

 

Figure 3 - Registration of a single image patch onto the reference image: (a) unregistered 

(b) registered with the motion parameters of the global layer estimation (i.e. R=3) (c) 

refined registration with motion estimation at the image patch (R=3)  
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Note that restricting the target image support to the pixels only with similar depth 

values as the input patch is also possible (Figure 4). In this way it is possible to further 

guide the registration of the image patch using depth-maps. 

Several parameter initialization strategies can be adopted to ease and to guide the patch 

registration. These strategies make sense since the chosen parametric registration method is 

designed to be operated for small motions. The multi-view geometry, on the contrary, 

causes to large displacements in nature. Although the registration algorithm tries to 

overcome this problem by operating in hierarchical (i.e. image pyramids based, multi- 

resolution) manner, we may improve the registration performance by firstly estimating a 

global motion for the layer, and then committing refining estimations at all its R sub-

regions (i.e. image patches at that depth layer). We can also compare the registration 

weights of these layer global and local image-patch registrations at pixel level to determine 

the best motion parameters per LR pixel. 

If the camera calibration parameters are available, they can also be used as initial 

guesses for the registration. To do this, we compute the affine parameters for each of the 

image patches using the calibration matrices and feed these affine parameters to the 

registration algorithm as initial estimates. This approach gives better results than 

registering pixels using only the calibration matrices. This better performance is expected 

considering that the depth images are noisy in general. 
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Figure 4 – Registration with destination support: (a) unregistered patch, (b) destination support, (c) registered 
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To compute the affine parameters from the calibration matrices we assumed three 

points representing the whole patch, mapped them onto the target frame using the known 

calibration matrices and found the affine transformation in between. The x and y 

coordinates of these three points are around the center of mass of the depth image patch 

and their depth is the average depth value of the image patch (Figure 5). 

 

 

Figure 5: Affine motion of a layer patch derived from calibration parameters 

 

 

 

 

 

: From 

: To 
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Chapter 3 

 

MULTI-VIEW SUPER-RESOLUTION 

 

 

3.1 Introduction 

Super-resolution is the process of increasing the spatial resolution of a given image. It 

differs from ordinary image zooming or interpolation techniques in the way that it recovers 

the high frequency components existing in the original scene but disappeared during the 

imaging process.  

When it is put in this way it is evident that the super-resolution is an ill-posed problem. 

A low resolution image does not provide the necessary information for high frequency 

recovery on its own. SR algorithms are broadly divided into two main groups according to 

their solution to this problem: (i) Learning based SR algorithms and (ii) Reconstruction 

based SR algorithms. 

Learning-based methods [15] attack the problem with machine learning solutions. In a 

typical application of this method, a training dataset of high-resolution image patches and 

their low-resolution counterparts is used. Given a low-resolution input image, 

corresponding high-resolution image patches are estimated for each LR pixel and are 
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combined together to obtain a super-resolved output image in HR. Such an approach is 

feasible only when the content of the images are either known (known scene) or are limited 

with a certain class of input images (e.g. face images, text etc.) 

Reconstruction-based methods, on the other hand, can be applied for a general set of 

input images and the SR algorithm used in this thesis is of this kind. Reconstruction-based 

super-resolution techniques have their roots in Sampling Theory and in the well studied 

field of Image Restoration. 

In a general image restoration problem, the input image to be restored is treated as the 

output of an image formation/degradation system, where the input of the system is the real 

scene or a hypothetical unknown HR image. The problem, then, reduces to modeling the 

degrading image formation process. We call this model as the Observation Model (see 

Section 3.2 for the discussion of the Observation Model used in our work). The restoration 

is achieved by applying the inverted degrading system (𝑊+) to the observed image. This 

kind of procedures are used extensively for many applications including blur and noise 

removal. 

For the super-resolution problem, however, the problem is ill-posed by nature. An LR 

image can be obtained by sub-sampling infinitely many different HR images and 𝑊 is 

highly underdetermined. This property of the process makes single image super-resolution 

an infeasible option for reconstruction-based approach. 
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Instead of using a single LR image, a series of LR images of the same scene are used in 

almost all reconstruction-based super-resolution methods. By this way, it is possible to 

make use of the information exposed by the sub-pixel displaced multiple observations of 

the same LR pixel. This observation is the key idea behind the reconstruction-based super-

resolution. 

An early super-resolution technique [16] illustrates this concept and summarizes the 

steps of the SR reconstruction process as:  

(i) Image Registration (covered in Chapter 2) 

(ii) Interpolation 

(iii) Restoration 

These steps can be separately or simultaneously handled. 

Elaborating on this framework many super-resolution algorithms are proposed over the 

last two decades. The basic differences among these algorithms are mainly in their way to 

regularize and solve the system of linear equations: 

 𝑦 = 𝑊𝑥 (5) 

Probabilistic methods such as ML (Maximum Likelihood), MAP (Maximum a 

Posteriori) [17] and MRF (Markov Random Fields) concentrate on the regularization and 

iteratively solution of this system of linear equations.  
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Set theoretical methods including POCS (Projections onto Convex Sets), IBP (Iterative 

Back-Projections) and Landweber Iterations on the other hand converge to a solution in the 

solution set in an iterative manner by pixel operations. 

The super-resolution method proposed in this thesis is using the POCS framework as its 

main super-resolution algorithm. Section 3.3 discusses POCS and the proposed super-

resolution approach in more details. 

 

3.1.1 Observation Model 

Determining the observation model is an essential part of many image reconstruction 

applications including super-resolution. This model defines the relationship between the 

degraded observed signal and the desired one. 

In SR purposes we are interested in modeling the degradations such as the optical blur, 

motion blur, sensor noise sub-sampling and aliasing. 

In many SR methods, LR images are considered as the warped, blurred, sub-sampled 

versions of the HR image, with additional noise. 

Figure 6 shows a block diagram that is consistent with our method, with 𝑀𝑖  being 

matrices representing the warping, B is the blur matrix and D is the decimation matrix. 

Although slightly different observation models are proposed for different super-

resolution algorithms in the literature, most of them can be reduced into the form: 
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 𝑦 = 𝑊𝑥 + 𝑛, (6) 

𝑥 and 𝑦 being the vectors formed by the lexicographically ordered pixel values of 𝑓 and 𝑔, 

respectively. 

 

Figure 6 – Block diagram of the Observation Model 

 

This form implies that the observed LR pixels are formed by the weighted sum of some 

of the HR pixels in the desired HR image. Establishing this relationship between the 

desired HR pixels and their observations in LR is the most challenging part in the super-

resolution process and is inclined to have a high degree of errors since it is itself an 

estimation process involving blur identification and motion estimation. 
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Once this relationship is established, the system can be regularized and be solved using 

traditional numerical methods. In this work, however, we use the POCS approach to let the 

algorithm iteratively converge to the solution and an explicit construction of 𝑊 matrix is 

not needed. Instead, we treat each observed LR pixel separately and find the corresponding 

HR pixels to be linearly combined. The theory is that, the LR observation should be 

simulated using these HR pixels, with an error related to the noise process. 

Image registration step provides the necessary motion parameters to map individual LR 

Figure 7 – LR pixel generation from HR grid using PSF  

𝒇  

g0 g2 g1 g3 
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pixels onto the common HR grid on the reference view. Since the estimated motion is a 

parametric motion, this mapped point has a non-integer coordinate on the reference HR 

grid. We accept this point as the origin of the PSF and we obtain the 2D discrete PSF 

coefficients by sampling the continuous PSF generating function at integer locations of the 

HR grid (HR sampling lattice). (see Figure 7) 

In our work, this PSF generating function is the 2D Gaussian function, which is a 

suitable choice to model the blurring and downsampling effect. Since the function is 

circularly symmetric translational and rotational camera motions it preserves its shape.  

 

3.1.2 Overview of the POCS Algorithm 

POCS (Projections onto Constraint Sets) is a set theoretical optimization method that 

has various applications in image processing. This method forms the core of the SR 

reconstruction algorithm. 

POCS method is firstly adapted to the solution of super-resolution problem by [18]. 

Patti et al. extends the method to cover a more complete model of image formation 

accounting noise and various LSV blurs including the blurring due to non-zero aperture-

time [19]. 

POCS method restricts the solution with convex constraint sets 𝐶𝑖  and iteratively 

converges to a solution in the intersection set 𝐶𝑠 =  𝐶𝑖∀𝑖  . 

In POCS SR reconstruction each LR pixel defines a reconstruction constraint set: 
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 𝐶𝑥,𝑦;𝑛 =  𝑓 𝑘, 𝑙 :  𝑟𝑛
 𝑓 

 𝑥, 𝑦  ≤ 𝛿0  (7) 

where 𝛿0 is a confidence bound mostly chosen to be related with the noise process. The 

residue 𝑟𝑛
 𝑓 

 can be defined as: 

 

𝑟𝑛
 𝑓 

 𝑥, 𝑦 = 𝑔𝑖 𝑥, 𝑦 −   𝑓 𝑘, 𝑙 𝑕𝑝𝑠𝑓  𝑥, 𝑦; 𝑘, 𝑙 .

𝑁−1

𝑙=0

𝑁−1

𝑘=0

 (8) 

The projection operator 𝑃 projects the current estimate 𝑓 to the constraint set so that the 

estimate becomes consistent with the constraint:  

𝑃𝑥,𝑦;𝑛 𝑓 =

 
  
 

  
 𝑓 𝑘, 𝑙 +

𝑟𝑖
𝑓 𝑥, 𝑦 − 𝛿0

  𝑕𝑛
2 𝑥, 𝑦; 𝑜, 𝑝 𝑝𝑜

𝑕𝑝𝑠𝑓  𝑥, 𝑦; 𝑘, 𝑙 𝑖𝑓 𝑟𝑛
 𝑓 

(𝑥, 𝑦) > 𝛿0

𝑓 𝑘, 𝑙 𝑖𝑓 − 𝛿0 > 𝑟𝑛
 𝑓 

(𝑥, 𝑦) > 𝛿0 

𝑓 𝑘, 𝑙 +
𝑟𝑛

𝑓 𝑥, 𝑦 + 𝛿0

  𝑕𝑛
2 𝑥, 𝑦; 𝑜, 𝑝 𝑝𝑜

𝑕𝑝𝑠𝑓  𝑥, 𝑦; 𝑘, 𝑙 𝑖𝑓 𝑟𝑛
 𝑓 

(𝑥, 𝑦) < −𝛿0

         (9) 

Since POCS method is slow in convergence we use a simplified version of the 

projection operator: 

 
𝑃𝑥,𝑦;𝑛 𝑓 =  

𝑓 𝑘, 𝑙 + 𝑟𝑖
𝑓 𝑥, 𝑦 . 𝑕𝑝𝑠𝑓  𝑥, 𝑦; 𝑘, 𝑙 𝑖𝑓 𝑉 𝑥, 𝑦 = 1

𝑓 𝑘, 𝑙                                                  𝑖𝑓 𝑉 𝑥, 𝑦 = 0 
   

(10) 

The solution is achieved by successively project onto different constraint sets until 

convergence is achieved. 

The advantage of the POCS method is at its flexible control on the by pixel basis. It 

allows effective integration of various data such as region of interests, segmentation maps, 

validity maps or space-varying blur functions and space varying motion segments. The 
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most important advantage is that its low memory requirement since keeping huge matrices 

is not needed in contrast of the other methods. 

 

3.2 Super-resolution Image Reconstruction from Multiple Views 

This chapter discusses reconstruction of a pair of HR left and right views from N views 

taken at the same time instance. The number of required views depends on the amount of 

magnification to be achieved. Typically, more than 𝑁 = 2𝐾  views are required to achieve 

KxK resolution increase. We employ the POCS method for SR reconstruction. The main 

advantage of the POCS method is its flexibility in using independent constraint sets at each 

pixel; hence, its ease of adaptation to accuracy of patch registration. 

We use each LR observation pixel as a constraint as long as we can find a valid motion 

between this pixel and the target SR frame. Each valid constraint pixel should be able to be 

simulated from the estimated target SR image. This simulated value is the linear 

combination of the HR pixels around the location where the LR pixel is mapped on the 

target SR frame. Coefficients of this linear combination are also known as the PSF (Point 

Spread Function). 

The SR algorithm simultaneously simulates LR pixels and back-projects the residual 

(difference between the simulated and observed value of the LR pixel value) onto the target 

frame using the same PSF. LR pixels with simulation errors (residuals) larger than a given 

threshold value are omitted since they are accepted as unable to be simulated with the 
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estimated registration values. This check is useful to detect most of the registration errors 

and to omit pixels belonging to covered regions. 

It is also possible to use the depth information in order to further check the validity of 

this relationship between the LR and HR pixels. Ideally an LR observation pixel should be 

simulated from HR pixels with similar depth values when it belongs to a non-boundary 

region of a smooth surface. Although using such a constraint requires exact and reliable 

depth maps at HR level, we used a simple depth check at the LR level. 

PSF Estimation: 

The PSF 𝑕𝑝𝑠𝑓  determines the relationship between the HR pixels and the LR pixels. 

The effect of the sensor geometry, focus blur and relative motion along with the sub-

sampling operation can be modeled as a convolution operation with a linear shift variant 

PSF [19]. Using a parametric function reduces the problem to parameter estimation. Two-

dimensional Gaussian is a good choice to model the PSF. We considered only a space-

invariant blur caused by the imaging optics. Since all low resolution images are taken at the 

same time instance, motion blur between the frames is no longer needed to be accounted. 

Two-dimensional Gaussian kernel is determined by two parameters: standard deviation 

𝜎𝑝𝑠𝑓  and the kernel support 𝐾𝑝𝑠𝑓 . Among these two parameters 𝜎𝑝𝑠𝑓  determines the main 

characteristic of the function and has the primary importance. Once the 𝜎𝑝𝑠𝑓  parameter is 

determined 𝐾𝑝𝑠𝑓  can be set to an appropriate value such that the effect of truncation is 

minimal. Otherwise, truncating the Gaussian function may introduce zero crossings in its 
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Fourier transform which would result in ringing artifacts in the SR images. Figure 8 shows 

some PSF and their frequency responses to illustrate this concept. 

To find good values of the parameters we generate a series of 𝑕𝑝𝑠𝑓  kernels using 𝜎𝑝𝑠𝑓  

and 𝐾𝑝𝑠𝑓  values varying over a given range. The basic assumption is that the resulting 

image will be the most plausible when the POCS algorithm is run with the correct 

parameters. 

During the experiments we observed that using a too small 𝜎𝑝𝑠𝑓  has a negative effect of 

damaging the edges by visible mis-registered pixels. Using a too large 𝜎𝑝𝑠𝑓  on the other 

hand deforms and blurs the image by the exaggerating ringing artifacts. The results were 

still acceptable over a range of 𝜎𝑝𝑠𝑓  values which implies that the precise selection of the 

parameters is not critical. Actual SR results for various PSF parameters are presented in 

Chapter 5. 
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(a)

(b) 

(c) 



 

 

Chapter 3: Multi-View Super-Resolution    30 

(d) 

(d) (e)

(f) 

Figure 8 – Various 2D Gaussian PSFs: (a) 𝐾𝑝𝑠𝑓 = 7, 𝜎𝑝𝑠𝑓 = 0.1,  𝑏  𝐾𝑝𝑠𝑓 =

7, 𝜎𝑝𝑠𝑓 = 1.3,  𝑐 𝐾𝑝𝑠𝑓 = 7, 𝜎𝑝𝑠𝑓 = 1.5,  𝑑 𝐾𝑝𝑠𝑓 = 7, 𝜎𝑝𝑠𝑓 = 2.1,  𝑒 𝐾𝑝𝑠𝑓 =

9, 𝜎𝑝𝑠𝑓 = 2.1,  𝑓 𝐾𝑝𝑠𝑓 = 11, 𝜎𝑝𝑠𝑓 = 2.1. 
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Extension to Temporal SR: 

In our method the super-resolution is achieved using different camera views at the same 

time instance, which means that the additional information from consecutive video frames 

can still be utilized. We can propose that using a reconstruction-based super-resolution 

algorithm is more suitable for making use of the multi-view information, whereas the 

temporal axis is more suitable for a learning based super-resolution approach. As for POCS 

framework, a super-resolved video frame can be used as the initial estimate for the super-

resolution of the next frame, after warped using block-based inter-frame motion estimation. 

Note that such a warping does not require sub-pixel accuracy in contrast to the approach of 

fusing consecutive video frames. The effect of adding such a variation to the POCS 

reconstruction will be a decrease in the convergence time. 

For a learning based or Bayesian (i.e. MAP or MRF) super-resolution framework, on 

the other hand, the previous SR frames can be used to determine the scene specific priors. 

It is also possible to directly map the LR pixels from the adjacent time instances. For an 

8-camera system, 24 frames of the same scene are available in only ±1 shutter-period time 

range. Such an amount of redundant data is suitable for a 4 by 4 SR magnification. 
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Chapter 4 

 

VISUAL QUALITY EVALUATION OF 3D SUPER-RESOLUTION 

4.1 Introduction 

Quality evaluation of 3 dimensionally perceived images are a relatively new task and 

works on this subject are limited. There is no standardized way of measuring the quality of 

a 3D image and the relations between the visual quality the quantitative metrics are still 

obscure. The consequence of this observation is that the true performance of the SR in 3D 

requires subjective evaluation. 

In this chapter of the thesis, we describe our method of subjectively measuring the 

effect of super-resolution on 3D video. 

 

4.2 Visual Quality Evaluation of 3D Super-Resolution 

We conducted two subjective tests for analyzing the performance of the super-

resolution on two different 3D displays to investigate the effect of the display type, using 

Double-Stimulus Continuous Quality-Scale (DSCQS) method [20]. 8 assessors are selected 

for the tests. The first setup consist of a pair of Sharp MB-70X projectors, a silver dielectric 

screen, polarized filter glasses and a PC to drive the projectors. The second 3D display is a 

Sharp AL3DU laptop that uses parallax barrier. 
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The assessors are expected to grade test images generated with the proposed super-

resolution method, in comparison with the interpolated (for Set 1 results) or original (for 

Set 2 results) pairs. Before grading, each test image and its original (or interpolated) 

version are displayed twice in a random order. 

The grades are then evaluated and converted to a standardized test score so that the 

different algorithms can be compared. 

 For further information on the test setup and the evaluation procedure, please refer to 

[21].
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Chapter 5 

 

RESULTS 

 

5.1 Introduction 

We conducted our experiments on the Breakdancing sequence [22]. This sequence 

contains 8 camera views with depth maps generated by a stereo matching algorithm. The 

cameras are arranged along a slightly curved line (Figure 9) so the inter-camera 

transformations are mainly translational with a small amount of rotation. Such camera 

arrangements are common for multi-viewpoint 3D video contents since they imitate the 

viewpoints of the audience in front of a 3D screen and provide the parallax effect which is 

essential for 3D perception. All the cameras are static and the camera calibration matrices 

are also available. We use the 8 views from a single time instance (third frame in the 

sequence) to reconstruct a pair of super-resolved images. We chose the 4th camera as the 

left view and the 3rd camera as the right view of the stereo pair. 

In Section 5.2 we present some results regarding the performance of the multi-view 

image registration methods described in Chapter 2. Section 5.3 is on the evaluation of the 

multi-view super-resolution. Quantitative evaluation results are given in Section 5.3.1 and 

the subjective results obtained using the test procedure described in Chapter 4 are provided 

in Section 5.3.2. 
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Figure 9 – Camera Arrangements: (a) Top-view, (b) Actual camera locations and the 

3D point cloud representation of the scene from a perspective view 

 

5.2 Results of Multi-view Image Registration 

Although the ground-truth motion is not available, the performance of the proposed 

image registration method can be evaluated with the help of the registration weights 𝐼𝑊
𝑛  and 

the verification map 𝑉𝑛 . 

Depth Planes 

LEFT RIGHT 
(a) 

(b) 
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The first particular solution we are interested in is the effect of using piecewise affine 

motion model based on depth segmentations instead of using a global motion model. 

Method a and c are not having layers and both are among the poorest performing methods. 

Figure 12-(a) also shows the registration weights 𝐼𝑊
0 , which is significantly worse than the 

registration weights we obtained in any other method.  

Our second investigation is on the effect of using sub-regions to further divide the depth 

segments. From the results and the observations on the registration of individual patches 

(see Figure 3) we can conclude that the estimation at the sub-regions has a positive effect. 

An optimal subdivision number R, however, cannot be decided since unexpected 

registration errors are always possible. It is definite on the other hand that increasing R 

number lengthening the total motion estimation time and the image patches become more 

likely to be registered incorrectly as their sizes decrease.   

Method L R Model Initialization Global+Subregion

a 1 1 affine - Subregion

b 11 1 translation - Global+Subregion

c 1 3 affine - Subregion

d 11 3 translation - Subregion

e 11 3 affine calibration-init, subregion-init Subregion

f 11 1 affine - Subregion

g 11 3 translation - Global+Subregion

h 11 3 affine subregion-init Subregion

j 11 3 affine - Subregion

k 11 3 affine - Global+Subregion

l 11 3 affine subregion-init Global+Subregion

Table 1 – Parameters for the different registration results  



Chapter 5: Results     37 

 

 

a b c d e f g h j k l

Avg. 75.423 78.315 78.643 79.444 81.272 82.451 82.796 83.31 83.828 86.572 87.016
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Figure 10 - Registration Performance
(using Registration Weights)

a b c d e f g h j k l
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Figure 11 - Registration Performance
(after Reconstruction)
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(a) 

(b) 
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(c) 

(d) 

Figure 12 – Registration Weights: (a) for method a, (b) for method j, (c) for method 

k, (d) for method l. 
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5.3 Evaluation Results of Super-resolution 

Two experiments are performed. In Set 1, LR images are generated artificially from the 

original HR views by filtering with a known 𝑕𝑝𝑠𝑓  and subsampling by the factor of 2. 

Super-resolved images are then generated using the known 𝑕𝑝𝑠𝑓 . In Set 2, images in the 

Breakdancing are directly used as LR inputs and 𝑕𝑝𝑠𝑓  parameters are estimated using the 

method stated previously. The best parameters are chosen to be 𝐾𝑝𝑠𝑓 = 13 and 𝜎𝑝𝑠𝑓 = 2.2. 

 

5.3.1 Quantitative Evaluation Results of Super-resolution 

We use Peak Signal to Noise Ratio (PSNR) as the quantitative measure. We also 

provide 2D DFTs (Discrete Fourier Transforms) of the interpolated and super-resolved 

images to illustrate the improvement of the high-frequency content in the frequency 

domain. 

 The PSNR values for interpolated and super-resolved pairs, computed for Set 1 results, 

are presented in Table 2. It is observed that the PSNR of interpolated images are higher for 

both views, since artifacts and noise introduced by the multi-view super-resolution process 

negatively affects PSNR. In 3D viewing, however, artifacts in individual views become 

less observable and the overall enhancement in resolution is better perceived. We also note 

that super-resolved images are constructed from 8 views, and may contain some high-

frequency components that are not contained in the original reference frame. These 

considerations motivate us to conduct 3D subjective evaluation of the resulting images. 



Chapter 5: Results     41 

 Left View Right View 

Bicubic Interpolation 37.897 38.867 

Super-resolution 36.020 36.195 

Table 2: Quantitative Evaluation Results for Set 1 

 

A second option for the quantitative evaluation is to consider the results in the 

frequency domain. Since the aim of the super-resolution is to reconstruct high-frequency 

content, it is reasonable to inspect the results in frequency domain to assess the 

effectiveness of the super-resolution operation. Figure 13 shows the left view Set 1 results 

in the DFT domain. For the DFT result of the super-resolved image we see that the 

frequency contents are widened to higher frequencies those are missing for the interpolated 

ones. However, as in the PSNR results, the left and right views are treated separately and 

the effect of 3D perception is ignored in these quantitative results as well. 

 

   

 

 

             (a)             (b)           (c) 

 

Figure 13 – 2D DFT Results for Set 1: (a) original, (b) bicubic interpolation, (c) SR. 
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5.3.2 Subjective Evaluation Results of Super-resolution 

Portions from left-view SR images generated by three different image registration 

methods for Set 2 are shown in Figure 16. The grades given by the assessors are evaluated 

to compute overall test scores for each test image. Figures 14-15 and Tables 3-4 provide 

the test scores for each of the image sets. Lower test scores indicate a better perceived 

quality. The results are also depicted in line plots where the test scores are compared 

according to the 3D display types. The results show that SR images are consistently 

perceived better on both 3D displays. 
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Figure 14 – Set 1 Subjective Evaluation Results 

 

 

 

 

Polarized projection display 
  

Autostereoscopic display 
  

 
Test Score ±   ± 

Bicubic Interpolation 72 2.8 63.6 1.5 

Original Undistorted 29.1 5.2 44.5 9.7 

Super-resolved 26.8 5.8 44.6 7.7 

 

Table 3 – Set 1 Subjective Evaluation Results 
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Figure 15 – Set 2 Subjective Evaluation Results 

 

 

 

Polarized projection display 
  

Autostereoscopic display 
  

 
Test Score ±   ± 

Bicubic interpolation 63.6 1.50 54.5 1.7 

Super-resolved: 
proposed registration method 44.5 9.7 29 7.7 

Super-resolved: 
motion from calibration parameters 44.6 7.7 41.8 7.2 

 

Table 4 – Set 2 Subjective Evaluation Results 
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Figure 16 – Set 2 SR Results: (a) Bicubic interpolation (b) SR-proposed method 

without any parameter initialization, (c) SR-parameters initialized from calibration 

matrices (d) SR-by using motion from calibration  only. 

a b 

c d 
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5.4 Effect of Wrong PSF Parameters on the SR Results: 

We also investigated the effect of wrong PSF parameters and the sensitivity of the result 

to the accuracy of these parameters. 

To test that effect, the 8 views are down-sampled by a factor of 2 with the known 2D 

Gaussian PSF with parameters of 𝐾𝑝𝑠𝑓 = 7 and 𝜎𝑝𝑠𝑓 = 1.7 as in the previous case but this 

time the SR reconstruction is repeated using the PSFs with varying parameters. 

Small portions of the results are presented in Figure 17 for varying 𝜎𝑝𝑠𝑓  values and in 

Figure 18 for different 𝐾𝑝𝑠𝑓  values. 

Our first observation is that a too small estimation of the kernel support 𝐾𝑝𝑠𝑓  has 

unacceptable effects on the resulting SR images. This result is reasonable since truncating 

the Gaussian PSF at its high valued tails deforms the characteristics of the Gaussian 

function. 

Using too large 𝐾𝑝𝑠𝑓  has no observable effect on the result. This validates our strategy 

of firstly determining the correct 𝜎𝑝𝑠𝑓  and then setting the 𝐾𝑝𝑠𝑓  to a large enough value that 

avoids truncation of the Gaussian function. 

At the vicinity of the truncation, 𝜎𝑝𝑠𝑓  can be chosen more flexibly at a reasonable range 

without causing the disturbing artifacts. The effect of wrong 𝜎𝑝𝑠𝑓  is limited with a decrease 

in the SR performance and the results will have a reasonable amount of blur when 

compared with the SR results with the correct parameters. 
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Figure 17: Effect of σpsf parameter on SR; (a) Bi-cubic interpolation, (b) σpsf=1.1, (c) σpsf=1.3, 

(d) σpsf=1.7, (e) σpsf=2.1, (f) σpsf=2.3. 
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Figure 18: Effect of Kpsf parameter on SR; (a) Bi-cubic interpolation, (b) Kpsf=3, (c) Kpsf=5, 

(d) Kpsf=7, (e) Kpsf=9, (f) Kpsf=11. 
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Chapter 6 

 

CONCLUSIONS 

 

We propose a method for depth guided registration and super-resolution of multi-view 

video. We model the 3D scene as a collection of approximately planar image patches and 

registered these patches onto the reference HR grid using parametric models, which can 

provide sub-pixel accuracy. We tested our method on real data to generate super-resolved 

HR stereoscopic images. The results are evaluated by two methods: i) with ground truth (by 

first downsampling and then upsampling using the SR method), and ii) with no ground 

truth (by directly upsampling the actual images). The former is carried out by quantitative 

metrics and subjective tests, while the latter is done by subjective tests only. The results of 

subjective tests show successful SR of multi-view video has been achieved. 

We see that piecewise parametric motion estimation along with the depth maps provide 

a suitable facility to be used in 3D SR and related applications such as view interpolation. 

As a future application of the method, it is possible to construct a free viewpoint 

resolution enhanced 3D video sequence from a common linear multi-camera setup.  

Although it is not adequately investigated in this work, super-resolution using a more 

common 2-view-stereo setup seems possible with the inclusion of the next and previous 

video frames in the sequence. 
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POCS algorithm performs well for those applications without a processing time 

requirement. For real-time applications any faster SR algorithm may directly replace the 

POCS algorithm in the method. 

Piece-wise parametric motion models perform well in multi-view video even for a high 

accuracy demanding SR application. The multi-view image registration framework can 

have applications in other 3D video algorithms that require motion-compensation such as 

super-resolved view interpolation or inter-view 3D video coding. 

The technique can handle occlusion problems, correspondence problem and aperture 

problem. 

Resolution increase is definitely noticeable in 3D. The increase in the details and 

sharpness can easily be noticed and preferred by the human subjects. Although it is 

possible for any SR technique to introduce some degrading effects and artifacts due to 

registration errors (or the deficiency of the motion model), they are tend to be less 

perceived in 3D stereo images compared to 2D monocular images. This is due to the fact 

that the 3D perceived image composes of two images that are unlikely to share the same 

artifact and the artifacts are mostly a decrease in the details and can be easily compensated 

by the complementary view. 

No calibration or prior information is needed for the method. When such additional 

information is available, they can be embedded into the proposed framework. 
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Handling boundaries is still a problem. The method does most of its enhancement at the 

approximately planar image regions. Although the depth images provide a cue for the 

object boundaries, since they are given in LR and not fully accurate using them directly 

may cause further artifacts. 

Not all scene elements are suitable to be registered in high accuracy using the 

parametric motion models. Especially continuous edges along the depth direction can be 

problematic. Yet again, parametrically registered image patches can be an input of any 

refining motion estimation step. 

Layer by layer and depth dependent processing is possible. Camera blurs depend on the 

distance of the subject from the camera. Using this technique, different PSF parameters can 

be used in the reconstruction of individual layers. 
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