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ABSTRACT

In this thesis, we propose an audiovisual framework for analysis of dance performances

towards music-driven dance motion synthesis. The proposed framework first aims to ex-

tract elementary recurrent music and dance motion patterns. Then the analyses of the

correlations between the elementary music and dance motion patterns are used to construct

many-to-many statistical mappings from music to dance motions. These many-to-many

mappings are then used for music-driven dance choreography synthesis and personalized

dance performance animations. Based on this audiovisual framework, we first present a sys-

tem that deals primarily with the unsupervised correlation analysis of elementary recurrent

music and dance motion patterns. Later we present a second system that considers both

analysis and synthesis parts of the proposed framework in a rather simplified context where

a dance performance is assumed to have only a single dance motion pattern which is to be

synchronized with the musical beat. Finally, we present a complete system for modeling,

analysis, and synthesis of audiovisual dance performances that handles more complex and

realistic scenarios. The third system automatically synthesizes a variety of synchronized

dance performances that perceptually match the emotions and contents of the accompa-

nying music; as if they were arranged by a choreographer. Experimental results for each

system demonstrate that the proposed framework is able to extract and utilize from au-

diovisual correlations between music and dance motion patterns for synthesis of compelling

music-driven dance performances.
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ÖZETÇE

Bu tez çalışmasında müzikle sürülen dans hareketi sentezi için çeşitli dans performansları-

nı inceleyen işitsel-görsel bir çatı yapısı önerilmektedir. Önerilen çatı yapısı öncelikle yine-

lenen temel dans ve müzik örüntülerini çıkarmayı hedefler. Daha sonra çıkarılan dans ve

müzik örüntüleri arasındaki ilintiler incelenerek müzikten dans hareketlerine giden çoktan

çoğa bağıntılar oluşturulur. Bu bağıntılar ise müzikle sürülen dans koreografisi sentezinde ve

kişiye özgü dans performansı animasyonu oluşturulmasında kullanılır. Bu çatı yapısını baz

alarak ilk önce yinelenen temel dans ve müzik örüntülerinin güdümsüz çıkarımı ve ilinti anal-

izini ele alan bir sistem sunmaktayız. Daha sonra ikinci bir sistemle önerilen çatı yapısının

hem analiz hem de sentez kısımlarını görece basit bir senaryoda, dans performanslarının

bir müzik için bir dans figüründen oluştuğu durumda, ele almaktayız. Son olarak, daha

karmaşık bir senaryo için gerekli modelleme, analiz ve sentezi topyekün yapabilecek tam

donanımlı bir sistem sunmaktayız. Bu sistem verilen müziğin içeriğine ve yapısına uy-

gun alternatif dans koreografilerini otomatik olarak sentezlemektedir. Her bir sistem için

deneysel sonuçlar göstermiştir ki; önerilen çatı yapısı müzik ve dans hareket örüntülerini be-

lirlemede, belirlenen örüntüler arasında bağıntı modelleri oluşturmada, oluşturulan bağıntı

modelleri ile müziğe uygun dans hareketleri sentezlemede başarılıdır.

v



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Prof. A. Murat Tekalp for being a

great influence both in this research and personally with his incredible dedication, interest

and advice. I also would like to thank my co-advisor Assoc. Prof. Yücel Yemez for providing
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the last ten years of my life at Koç University and for providing me the morale support that

helped me in hard days of my research.

This thesis has been supported by The Scientific and Technological Research Council
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Unimodal signal processing has reached high levels of sophistication to extract informa-

tion individually from several modalities. However, we are still far away from the point

where we exhaust all the information available in a modality. That is, valuable new infor-

mation may appear when we put modalities together to seek for the hidden joint correlation

between them. Even though it is in its infancy at the moment, multimodal signal processing

is likely to play a significant role in computer vision research as multimodal environments

are being introduced into several areas of this research.

Multimodality, or the reliance on more than one semiotic1 channel for conveying com-

municative content, is inherent in the face-to-face communication in everyday interaction.

People draw on a range of visual, verbal, paralinguistic, and other cues to make sense of

each other. This ability to combine impressions from different senses enables humans to

extract information from and understand complex environments. Similar examples can be

seen in most human-computer interaction systems where speech, facial expression, gestures,

tactile, etc., play a key role in establishing communicative interfaces. Multimodality pro-

vides us with the possibility and, in some cases, ease of digesting more information than

a unimodal channel could provide in a human computer interaction. Therefore, the study

of multimodal signal processing, analysis, and understanding deals with the challenge of

handling several sources of information at the same time. While each of these modalities

have been separately modeled at high levels of sophistication, multimodal modeling is still

in its infancy.

Multimodal signal processing benefits from integrating different signals which are phys-

1Semiotics, also called semiotic studies or semiology, is the study of sign processes (semiosis), or significa-
tion and communication, signs and symbols, both individually and grouped into sign systems. It includes
the study of how meaning is constructed and understood.
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ically of different nature for exploring the underlying mutual relationship to learn and to

present the uttermost information available to them in various contexts. Hence, multi-

modality is, in some ways, a reinforcement that offsets the weaknesses or insufficiencies

of one modality by the strengths of another modality. This idea is the driving motive in

most of the man-machine, brain-machine, and human-computer interfaces. For example,

a framework based on joint analysis and modeling of brain signals and muscle movements

enables monkeys to consciously control the movement of a robot arm in real time, using

only signals from their brains and visual feedback on a video screen. This can be considered

as an important step towards rehabilitation of people with brain and spinal cord damage

from stroke, disease or trauma [1]. On the other hand, a technique that uses image process-

ing capabilities in lip reading can be used to recognize undeterministic phones in speech

recognition, or can be employed in speech-driven lip animation [2]. Further studying the

relations between speech and facial gestures can lead to more realistic speech-driven talking

face animations [3, 4]. Joint analysis of voice and face uncovers important clues that help

improve the emotion recognition performance [5]. Combining tactile, i.e., haptics, with vi-

sual information creates the necessary grounds not only for several medical applications [6]

but also for artwork such as haptic sculpturing [7]. Yet another example can be multimodal

biometrics where a combination of different biometric recognition techniques is used in or-

der to provide more-than-average security by integrating the evidence presented by multiple

sources of information [8].

1.1 Scope

The goal of this research is to investigate methods to combine and fuse different modes of

information for applications in human-computer interaction (HCI) with particular focus on

visual and auditive modalities. Modeling the correlation between musical audio and body

motion patterns is the main motive in this thesis. For this purpose, a multimodal framework

is devised to analyze, learn and synthesize audiovisual data in particular for human body

motions in the context of dance performances accompanied by music. The joint correlation

model can be perceived as a mapping between music and dance motion patterns. This

mapping, for instance, can be used to predict dance motion patterns from music patterns.
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In that case, music-driven dance motion animation emerges as one of the several interesting

multimodal signal processing applications on which there exists little work in the literature.

Human body motion can have many purposes: To go from one place to another, humans

walk or run. On the other hand, some body motions express emotions. Dancing is a special

type of body motion that has some predefined structure; as well as emotional aspects.

Analysis of gestures in dance with the purpose of uncovering the conveyed emotions has been

undertaken in recent studies [9]. There are several challenges involved in audio-driven human

body motion analysis and synthesis: First, there does not exist a well-established set of

elementary audio and motion patterns, unlike phonemes and visemes in speech articulation.

Secondly, body motion patterns are person dependent and open to interpretation, and may

exhibit variations in time even for the same person. Thirdly, audio and body motion are

not physiologically coupled and the synchronicity in between them may exhibit variations.

Moreover, motion patterns may span time intervals of different lengths with respect to its

audio counterparts. The recent work by Sargin et al. address the challenges similar to those

mentioned above in the context of prosody-driven head gesture synthesis in [10].

Dancing to music is an artistic skill and dancing with rhythm and gestures that matches

the rhythm and content of the accompanying music requires experience up to some level.

Professional dance performances, therefore, rely on a priori design of dance motions, i.e.,

choreographies. Choreography is the art of arranging dance movements for performance.

Choreographers tailor the sequences of body movements to music in order to embody or

express ideas and emotions in the form of a dance performance. Therefore, dance is closely

bound to music in its structural course, artistic expression, and interpretation. Specifically,

the rhythm and intensity of body movements in a dance performance are in synchrony with

those of the music, and hence, the metric orders in the course of music and dance structure

coincide, as Reynolds states in [11]. In order to successfully establish the contextual bond

as well as the structural synchrony between dance motions and the accompanying music,

choreographers tend to thoughtfully design dance motion sequence for a new piece of music

by utilizing from the repertoire of choreographies that have been carefully planed in the past

for similar musical pieces. Based on this common practice of choreographers, our ultimate

goal in this thesis is to build a framework for automatic creation of dance performances

in synchrony with the accompanying music; as if they were arranged by a choreographer,
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through learning many-to-many statistical mappings from music to dance. Specifically,

our final framework aims at automatic design of alternative dance choregoraphies that are

coherent and compelling to audience. It is important to note at this point that the term

choreography is generally used in the sense of spatial formation (circle, line, square, couples,

etc.), of plastic aspects of movement (types of steps, gestures, posture, grasps, etc.), and of

progression in space (floor patterns). However, in this thesis, we use the term choreography

solely in the sense of composition, i.e., the arrangement of the dance motion sequence.

The organization of this dissertation is as follows. The multimodal signal analysis frame-

work is explained in Chapter 2. Chapter 3 outlines music and dance motion feature ex-

traction involved in several tasks throughout the thesis. Chapter 4 analyzes basically the

correlations between elementary music and dance motion patterns. Chapter 5 elaborates

more on the implementation of the overall audiovisual analysis-synthesis framework in the

a simplified dance performance context and presents preliminary results for music-driven

dance motion synthesis. Chapter 6 eventually describes the complete implementation of the

proposed multimodal music-driven dance performance synthesis framework. Experimental

results are presented at the end of each chapter. Discussions are provided in Chapter 7.

1.2 Related Work

Automatic dance analysis, annotation and synthesis have been studied extensively in the

literature with emphasis on human body motion analysis/synthesis and dance music analysis

whereas there is relatively little work on the open problem of music-driven automatic dance

animation as we address in this thesis.

For human body motion analysis/synthesis problem, Bregler et al. [12] describes a body

motion recognition approach that incorporates low-level probabilistic constraints extracted

from image sequences of articulated gestures into high-level manifold and HMM-based rep-

resentations. In order to synthesize data-driven body motion, Arikan and Forsyth [13], and

Kovar et al. [14] propose motion graphs, representing allowable transitions between poses,

to identify a sequence of smoothly transiting motion segments. Brand and Hertzmann [15]

studies motion “style” transfer problem which involves intensive motion feature analysis

and learning motion patterns from a highly varied set of motion capture sequences using
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HMMs. In a recent study, Min et al. [16] presents a generative human motion model for

synthesis of personalized human motion styles by constructing a multilinear motion model

that provides explicit parameterized representation of human motion in terms of “style”

and “identity” factors.

Dance music analysis, in general, includes beat and tempo tracking, measure analysis,

and rhythm and melody detection. In [17], Gao and Lee propose an adaptive learning

approach to analyze music tempo and beat based on maximum a posteriori (MAP) esti-

mation. Ellis describes a dynamic programming solution for beat tracking by finding the

best-scoring set of beat times that reflect the estimated global tempo of music [18]. An

extensive evaluation of audio beat tracking and music tempo extraction algorithms, which

were included in MIREX’06, can be found in [19]. There are also some recent studies on the

open problem of automatic musical meter detection [20, 21]. In the last decade, chromatic

scale features have become popular in musical audio analysis; especially in music informa-

tion retrieval, since introduced by Fujishima [22]. Lee and Slaney [23] describe a method for

automatic chord recognition from audio using HMMs with supervised learning over chroma

features. Ellis and Poliner [24] propose a cross-correlation based cover song identification

system with chroma features and dynamic programming beat tracking. Recently, Kim et

al. [25] calculate the second order statistics to form dynamic chroma feature vectors in

modeling harmony structures for classical music opus identification.

One of the early dance notation systems, known as Labanotation, defines a data format

to record human dance figures with graphical symbols that provides a detailed sequence

of changes in human posture during a dance figure [26]. In [27], Li et al. segment body

motions into textons, each of which was modeled by a linear dynamic system, to synthesize

human body motion in a manner statistically similar to the original motion capture data

by considering the likelihood of switching from one texton to the next. In [28], Ruiz and

Vachon perform analysis of dance figures in a chain of simple steps using HMMs to perform

automatic recognition of basic movements in the contemporary dance.

Most of the studies in the context of multimodal music and dance analysis towards dance

motion synthesis focuses solely on the synchronization aspect of the problem between an

existing animation and a piece of music. Cardle et al. [29] implement a system for syn-

chronizing motion to music by locally modifying motions using perceptual music cues. Lee
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and Lee [30] employ dynamic programming to synchronize animation with its background

music by changing the timing of both the music and the motion via time-scaling the music

and time-warping the motion. Kim et. al. [31] and Alankus et al. [32] use transition

graphs to synthesize new motion sequences from motion capture data using the results of

motion rhythm analysis. Since all these methods consider only musical rhythm, they are

most suitable for aligning dance motion with beats in a musical piece. In general, they

lack multimodal correlation analysis of dance motion and music. Hence, they can hardly

synthesize expressive dance motion.

Shiratori et. al. propose in [33] a technique to synthesize dance motion that is percep-

tually matched to music by using a mapping based on the rhythmic similarities between

music and motion segments for synchronizing the animation with the song. Even though

this approach is very similar to ours, their mapping is based on calculating deterministic

distance metrics between motion features and music features while our mapping is based

on statistical learning of recurring music and dance motion patterns.

Sauer and Yang design in [34] a music-driven character animation tool which extracts

a set of features such as the beat and dynamics (louds and softs) of the music to build an

animation from a dictionary of pre-built dance movements specified by the user through

a script file. This tool requires programming several dance primitives in advance and its

synthesis scheme is user-oriented. However, our final framework automatically synthesizes

alternative dance choreographies that are coherent and compelling to audience.

Kim et al. [35] investigate the correlations between musical and motion features by

designing a matching process to consider the correspondence of relative changes in both

musical and motion feature spaces. They introduce similarity matrices to match the amount

of relative changes in both feature spaces and use correlation coefficients to measure the

strength of the correlation between each pair of the musical and motion features. Even

though Kim et al. emphasize matching the progression of musical and motion patterns like

we do, they lack to represent in their method the diversity of dance performance by finding

only the optimal dance motion sequence for a particular musical piece.
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1.3 Overview and Contributions

In this thesis, several audiovisual dance performance analysis-synthesis frameworks are de-

signed to model the correlation between music and dance that will be exploited for predicting

dance motion from music. Details are presented in respective chapters as briefly described

in sequel.

Chapter 2 explains the general structure and main modules of the designed multimodal

signal processing framework. This framework is designed for analyzing two modalities, i.e.,

auditive and visual modalities, to “learn” a mapping between them which will then be used

to estimate and synthesize visual modality from auditive modality. The framework consists

of two main blocks: analysis and synthesis. Analysis block is based on a two-stage strategy.

In the first stage, input modalities are investigated in a unimodal sense to determine and

model the elementary units, or building blocks, of the modalities. This operation corre-

sponds to temporal segmentation and modeling of the low level feature streams of each

modality to determine the recurrent elementary patterns that exist in each modality. In the

second stage, the correlation between the elementary units of each modality is modeled as

a mapping which can be used for estimation and synthesis of visual modality from auditive

modality.

Chapter 3 outlines the necessary tools and techniques for extracting several different

music and dance motion features that are used throughout the thesis. For musical audio

analysis, we extract static features such as beat frequency as well as dynamic features such as

mel-frequency cepstral coefficients (MFCCs) and chroma-scale cepstral coefficients (CSCCs).

On the other hand, two types of dance motion features are extracted: 3D joint displacements

and 3D joint angles. It is crucial to note that both sets of dance motion features entail an

optical motion capture system for obtaining the optical motion capture data that basically

represents the 3D dance motion trajectory of the dancer. The multicamera motion capture

system built for this purpose is also explained in this chapter.

Chapters 4, 5 and 6 present applications of the multimodal signal processing framework

proposed in Chapter 2 in the context of dance performances, where gestures and 3D move-

ments of a dancer are mainly driven by musical piece and characterized by repetition of a

set of dance figures. Several scenarios are examined in adaptation of the general framework
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proposed in Chapter 2 to different applications that impose different application specific

constraints to the general framework. Therefore, Chapters 4, 5 and 6 provide with appli-

cation specific versions of the block diagram drawn for the general framework in Figure 2.1

in Chapter 2.

Chapter 4 addresses the problem of multiview audiovisual analysis of dance figures

to create a correlation model between body motion and music by unsupervised temporal

segmentation of the recurrent elementary music and body motion patterns. This scenario

assumes no prior information about the content of the audiovisual data and tries to automat-

ically segment the modalities in order to build a correlation model between the modalities.

Synthesis task is not considered in this scenario.

Chapter 5, on the other hand, considers an automatic analysis-synthesis scheme for

music-driven dance animation based on supervised modeling of music and dance figures.

This scenario is built upon a rather simplified setting, where a dance performance is assumed

to have repetitions of only a single dance figure. The main focus of this scenario is to examine

the synthesis problem of dance figures in synchrony with input audio.

Chapter 6 requires dealing with the complete framework for modeling, analysis, anno-

tation and synthesis of multimodal dance performances, which can handle more complex

and realistic scenarios with respect to the first two scenarios. In this scenario, we analyze

correlations between music features and dance figure labels on some training dance videos in

order to construct many-to-many statistical mappings from music measures (segments) to

dance figures towards generating music-driven personalized dance performance animations.

The major contribution of this thesis is a multimodal signal processing framework for

modeling, analysis, annotation and synthesis of different modalities, which

• handles the feature level analysis and synthesis of dance performances,

• attempts to create statistical models for one-to-many, many-to-many mappings be-

tween different modalities,

• describes techniques for automatic synthesis of one modality from the other one,

• provides several applications to animation and motion picture industry.
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In addition, a list of minor contributions, which are necessary in fulfilling major contribu-

tions, can be given as,

• marker-based multicamera motion capture,

• chroma-scale cepstral coefficients,

• musical measure clustering.
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Chapter 2

MULTIMODAL SIGNAL ANALYSIS AND SYNTHESIS

FRAMEWORK

This chapter presents a general framework for analysis of multimodal signals, finding a

mapping between the modalities and synthesis of one modality driven by the other modality.

The framework is based on a two-stage method for joint analysis of the recurrent temporal

unimodal patterns. Figure 2.1 describes the main blocks of the proposed multimodal signal

analysis framework. The analysis method is used to “learn” correlations between the two

modalities. The resulting mapping model is then employed to synthesize a sequence of

unimodal patterns for one of the modalities using the learnings while the other modality

serves as the driving input to the synthesis module.

The proposed framework is described up to a level that is detailed enough for general

purpose modeling of any correlated (but not known or modeled, yet) modalities. Specific

constraints can be imposed and necessary arrangements can be made according to the

properties of the modalities under investigation. Since the scope of this thesis is confined

to modeling the correlation between auditive and visual modalities in different scenarios,

application specific constraints and arrangements will be introduced in the related chapters

of the thesis. The details of the sub-blocks, given in Figure 2.1, are described in the following

sections.

2.1 Unimodal Signal Analysis

In the first stage, unimodal analysis of the modalities includes two tasks: feature extraction

and labeling/annotation. Then, hidden Markov model (HMM) based supervised/unsupervised

temporal segmentation of modalities is employed independently to determine and learn the

elementary recurrent patterns in both modalities.

One can consider a supervised approach for unimodal analysis of signals as long as

there is information such as the knowledge of the elementary units that define the recurrent
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Figure 2.1: A general description of the proposed multimodal signal processing framework.

patterns in the modalities, which are also easy to manually segment and label. Then,

supervised analysis will basically maximize the utilization of available information. In this

case, an appropriate set of features will be used to train HMMs according to the known

elementary unit labels.

The HMMs used for supervised modeling, in general, has a single branch left-to-right

structure as shown in Figure 2.2. Even though the given HMM structure is simple, there

are some design parameters that must be chosen according to the context of the problem.

For instance, the number of states in an HMM structure, the number of Gaussian functions

in a state that models the input parameters, or the type of the covariance matrix (whether

diagonal or full) that models the relation within the feature set must be determined carefully

to attain a successful model. Once necessary adjustments are accomplished, one HMM for

each label is trained over the training data and the performance is measured by recognition

rate of the trained models over the test data.

When there is not much information about the elementary units of the modalities, i.e.,
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Figure 2.2: A simple left-to-right HMM structure with N states in between the start and

end states.

labels or annotation scheme is not available, unsupervised analysis/segmentation comes into

play to make sense of the available information to infer useful results that are not readily

available. In other words, each modality has to be automatically segmented into its mean-

ingful recurrent elementary patterns. In this case, individual feature streams corresponding

to each modality are used to train separate parallel HMM structures, which provide proba-

bilistic models for temporal recurrent patterns in respective modalities. Then, the segments

corresponding to these patterns are detected and labeled automatically over the training

data.

The parallel HMM structure used for unsupervised temporal segmentation has M paral-

lel left-to-right branches and each branch is composed of N states as shown in Figure 2.3. In

addition to the design parameters listed for single branch left-to-right HMM structure, the

number of branches, in other terms, the number of temporal patterns must be determined

prior to training of the parallel HMM structure.

2.2 Multimodal Signal Analysis and Learning via Correlation Modeling

In the second stage, correlations between the elementary recurrent patterns of the modali-

ties is jointly analyzed to extract the recurrent co-occurring patterns. This joint correlation

model can be based on simple but efficient analysis such as the co-occurrence matrix ob-

tained from the co-occurring multimodal events; or, on a thorough analysis which uses

multi-stream HMMs to determine a multimodal mapping model.

The multimodal analysis of the modalities by the use of multi-stream HMM structures

is similar to the use of parallel HMM structures in unimodal analysis of the modalities

explained in Section 2.1, except in this case, the input to the HMM structure is a multi-
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Figure 2.3: A parallel left-to-right HMM structure with M branches and N states at each

branch.

stream discrete observation sequence. Therefore, the parallel HMM structure in Figure 2.3

is used with discrete multi-stream HMM branches for this task. In multi-stream HMMs,

all streams share the same state transition structure however emission probabilities are

determined independently for each stream.

It is important to note that if a multi-stream HMM structure is directly employed for

joint analysis of the modalities over their individual feature streams, as commonly used for

event detection [36], instead of the proposed two-stage analysis, the resulting joint feature

segments would not necessarily correspond to independent meaningful elementary patterns

for the modalities.

In either case, the resulting joint model stores the correlation between the two modalities.

Specifically, this model “learns” the mapping between the elementary units of the modalities

which enables us to infer one of the modality from the other.
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2.3 Multimodal Signal Synthesis

In the synthesis stage, the multimodal mapping model is used to predict a sequence of

elementary patterns for one of the modalities according to the elementary pattern sequence

computed for the other modality. The set of parameters corresponding to the estimated

sequence of elementary patterns are then synthesized using the HMMs obtained at the

unimodal signal analysis stage and finally animated on an appropriate model.

Synthesis task requires a unimodal analysis of the input modality as suggested by Fig-

ure 2.1. The purpose of this initial step is to compute the sequence of elementary patterns

for the test data of the input modality. Then, the computed sequence is used in conjunc-

tion with the learned multimodal mapping model to determine a sequence of elementary

patterns for the output modality. The output, at this stage, is the list of labels that rep-

resent each of the elementary pattern that belongs to the output modality. However, it is

further possible to compute the corresponding parameters (features) if the HMM related to

each label is previously trained or somehow available. Once the parameters are generated,

they can be used to animate an appropriate model to visualize the output of the synthesis.

Visualization of the synthesis results plays an important role in subjective evaluation of the

proposed framework.

2.4 Summary

In this chapter, we presented a general framework that performs temporal unimodal/multimodal

signal analysis to learn elementary recurrent patterns, finds mappings between learned pat-

terns of each modality, and synthesize patterns of one modality driven by the other modality.

We described the basics of the proposed framework up to a level that is detailed enough

for general purpose modeling of any correlated (but not known or modeled, yet) modalities.

Specific constraints will be imposed and necessary arrangements will be made according to

the properties of the modalities under investigation in the following chapters.
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Chapter 3

AUDIOVISUAL FEATURE EXTRACTION

Modeling of temporal elementary recurrent music and dance motion patterns entails

extraction of informative audio and video features. The quality of features extracted from

each modality strongly effects the pattern modeling quality. Hence, the type of features

to be used in modeling elementary recurrent music and dance motion patterns must be

chosen carefully according to the problem statement. In this thesis, we extract dynamic

music and dance motion features to account for the temporal statistics of the input music

and dance motion as well as static music and dance motion features to tackle with the

synchronization problem of the two modalities. For this purpose, we extract chroma- and

mel-scale cepstral coefficients as dynamic music features whereas we extract 3D joint angles

and displacements as dynamic dance motion features. On the other hand, musical beat

frequency and measure detection is used as static music features. Before we elaborate on

the details of several different music and dance motion feature extraction tasks, we will

focus on multicamera motion capture system used in the audiovisual feature extraction. It

is an integral part of dance motion feature extraction and the accuracy of motion capture

process determines the quality of dance motion features. Therefore, an extensive analysis

of the multicamera motion capture system is first provided in Section 3.1. Then, dance

motion feature extraction and music feature extraction tasks are explained in Sections 3.2

and 3.3, respectively. Summary of the chapter is presented in Section 3.4.

3.1 Multicamera Motion Capture

Optical motion capture systems have continuously been evolving and there already exist

various techniques and approaches in the literature, that can be distinguished mainly based

on whether they make use of markers (active or passive), or fully rely on image features, and

the type of motion analysis they employ (model-based or not). Aggarwal and Cai review

the research progress on human motion analysis in [37] in detail and Gavrila provides an
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in-depth survey in [38].

Marker-based systems rely on the contrast of the markers with the background to capture

their motion. One can use active capture systems, such as LED markers that pulse in

synchronization with the cameras’ digital shutters, or passive systems, such as using strongly

retro-reflective markers along with an illumination source co-located with each camera.

These methods however can not acquire and capture the shape and texture properties of

the subject, which could also give supplementary information about location of feature

points. Hence, [39] proposes a motion capture algorithm based on the use of simple color-

markers, aiming at a visually guided and more controllable 3D animation system. On the

other hand, in [40], a vision-based full-body estimation and interaction system that uses a

marker-less method is presented. It first extracts 2D blob features, and then estimates the

3D full-body parameters. Ricquebourg and Bouthemy in [41] develop a method to track

the apparent contours of a moving articulated structure, avoiding the use of 3D models.

There exist a number of marker-based commercial systems as evaluated in [42, 43] for

human motion capture but most of them rely on a high number of cameras to avoid occlu-

sions, high frame rates or expensive hardware. In this work, we describe a low-cost method

for multicamera marker-based body motion capture, that is accurate enough to train our

analysis-synthesis system. Our method tracks the 3D positions of the joints of the body

based on the markers’ 2D projections on each camera’s image plane. The proposed motion

capture technique is based on 3D tracking of the markers attached to the person’s body

in the scene without need for an explicit 3D model (see Figure 3.1). We make use of the

multistereo correspondence information from multiple cameras to obtain 3D positions of

the markers. This provides us with a set of 3D point locations over time that expresses

the alignment of the markers in 3D world. We employ Kalman filtering for smoothing out

the observations and predicting the next target locations of the points in that point cloud

in a similar fashion explained in [44]. This method also allows users to intervene into the

tracking process, and therefore, has the benefit of producing accurate tracking results by

letting users correct errors manually during the tracking process. However, the tracking

process itself may become lengthy and cumbersome.
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Figure 3.1: An example scene captured by the multicamera system available at Koç Uni-

versity. Markers are attached at or around the joints of the dancer’s body.

3.1.1 Initialization

For a given frame in the video sequence, a set of N images are obtained from the N cameras.

Each camera is modeled using a pinhole camera model based on perspective projection.

Accurate calibration information is available. In order to estimate the 2D positions of the

markers attached to the body of the dancer in the set of N images for a given frame, the

original images are processed in the YCrCb color space which gives flexibility over intensity

variations in the frames of a video as well as among the videos captured by the cameras

from different views. In order to learn the chrominance information of the marker color,

markers on the dancer are manually labeled in the first frame for all camera views. We

assume that the distributions of Cr and Cb channel intensity values belonging to marker

regions are Gaussian. Thus, we calculate the mean, µ, and the covariance, Σ, over each

marker region (a pixel neighborhood around the labeled point), where µ = [µCr, µCb]T and

Σ = (c− µ)(c− µ)T , c being [cCr, cCb]T . Then, a threshold in the Mahalanobis sense with

(µ,Σ) is applied to all images in order to detect marker locations. The number of detected

markers in every image may vary due to occlusions. However, tracking information and

redundancy among views allow us to overcome this problem.
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3.1.2 3D Joint Position Tracking

The motion capture process in this case involves retrieving the body configuration in terms

of its defining parameters, namely Pt = {p0, . . . ,pM−1}t, from the multiple video streams

at a given time t. This set of parameters consists of the 3D positions of the markers located

about the articulation points. The 3D position of each marker at each frame is determined

via triangulation based on the observed 2D projections of the markers on each camera’s

image plane.

Let M be the number of markers on the dancer and W be the set of search windows,

where W = {w1,w2, . . . ,wM} such that each window wm is centered around the location,

[xm, ym]T , of the corresponding marker. The set W is used to track markers over frames.

Thus the center of each search window, wm, is initialized as the point manually labeled in

the first frame and specifies the current position of the marker.

To track the marker positions through the incoming frames, we use the Mahalanobis

distance from c to (µ,Σ) where c is a vector containing Cr and Cb channel intensity values

[cCr, cCb]T of a point xn ∈ wm. Let X = {x1,x2, . . . ,xL} be the set of candidate pixels

for which the chrominance distance is less than a certain threshold. If the number of these

candidate pixels, L, is larger than a predefined value, then we label that marker as visible

in the current camera view and update its position as the mean of the points in X for the

current camera view. The same process is repeated for all marker points in all camera views.

Hence, we have the visibility information of each marker from each camera, and for those

that are visible, we have the list of 2D positions of the markers on that specific camera

image plane.

Once we scan the current scene from all cameras and obtain the visibility information

for all markers, we start calculating the 3D positions of the markers by back-projecting

the set of 2D points which are visible in respective cameras, using triangulation method.

Theoretically, it is sufficient to see a marker at least from two cameras to be able to compute

its position in 3D world. If a marker is not visible at least from two cameras, then its current

3D position is estimated from the information in the previous frame.

The 3D positions of markers are tracked over frames by Kalman filtering where the filter

states correspond to 3D position and velocity of each marker. The list of 3D points obtained
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Figure 3.2: Block diagram of the proposed 3D joint positions tracking system.

by back-projection of visible 2D points in respective camera image planes constitutes the

observations for this filter. This filtering operation has two purposes:

• to smooth out the measurements for marker locations in the current frame,

• to estimate the location of each marker in the next frame and to update the positioning

of each search window, wm, on the corresponding image plane accordingly.

Fig. 3.2 summarizes the overall system for tracking 3D joint positions. Having updated

the list of 3D joint positions for the current frame and estimated the location of the search

windows for the next frame, we move on to the next frame and search the marker positions

within the new search windows. This algorithm is repeated for the whole video. An instance

of the 3D joint positions tracking process is shown in Fig. 3.3.
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Figure 3.3: An example scene from the 3D joint positions tracking process. Red pixel

regions in the red search windows represent the marker candidate pixels for the current

frame. Green dots are the 2D projections of the 3D marker positions for the previous

frame.

3.2 Extraction of Dance Motion Features

The motion capture process involves tracking a number of markers attached to the dancer’s

body as observed from multiple cameras and extraction of the corresponding motion fea-

tures. Fig. 3.1 demonstrates our setting for this scenario. Markers in each video frame are

tracked making use of their chrominance information. The 3D position of each marker at

each frame is then determined via triangulation based on the observed projections of the

markers on each camera’s image plane. Therefore, the output of motion capture is a long

list of 3D positions of each marker at each video frame. We consider two of the several ways

of utilizing this output. In one way, we calculate 3D local displacements of each joint with

respect to torso frame. In the other way, we compute the 3D joint angles at each frame from

the global positions of the markers. The former set does not exactly create independent

features whereas the latter set does. However, it is easier to algebraically calculate the

3D joint displacements than to calculate the 3D joint angles from 3D joint positions. On

the other hand, most of the 3D character animations rely on joint angles rather than joint

displacements.
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3.2.1 3D Joint Displacements

3D joint displacements are extracted from 3D position vectors obtained by the proposed

motion capture system. The displacement vectors are calculated relative to the reference

frame after subtracting the rotational and translational motions which can be represented as

a transformation matrix for the body as a whole. This transformation matrix is calculated

using the torso which is composed of four points located on the hips, chest and back of

the dancer. Points are defined in homogeneous coordinates such as pi = [xi yi zi 1]T . The

transformation matrix is calculated relative to the first video frame. Let M1 = [p1
1 p1

2 p1
2 p1

3]

be 4× 4 invertible matrix composed of initial locations of each torso joint. The locations of

these points in the nth frame can be given in a similar matrix format, Mn = [pn
1 pn

2 pn
2 pn

3 ].

The 4 transformation matrix Mn
p at nth frame is calculated as Mn

p = (Mn−m)(M1−m)−1

where m is the mean of the points located on hips and shoulders in the first frame. Each

initial point in the first frame is projected to the current frame by multiplying with the

transformation matrix Mn
p , and features are calculated as the differences of original point

coordinates and the projected initial points, i.e., fd
n = Mn

p × pn
i − p1

i where pn
i and p1

i are

the locations of ith point in nth and initial frames, respectively. We also include the first

and second differences of fd
n

∆fd
n = (1/2)fd

n+1 + fd
n − (1/2)fd

n−1 (3.1)

∆2fd
n = (1/2)∆fd

n+1 + ∆fd
n − (1/2)∆fd

n−1 (3.2)

to construct the desired dynamic 3D joint displacement feature vectors

f̂d
n = [fd

n
T

∆fd
n

T
∆2fd

n
T
]
T
. (3.3)

3.2.2 3D Joint Angles

In order to calculate 3D joint angles from 3D joint positions, we use a specialized commercial

software package [45]. Our purpose is to fit a pre-designed 3D human body model to the

set of 3D joint positions and let the aforementioned software calculate the desired set of 3D

joint angles. The process of fitting a 3D human body model to the given set of 3D joint

positions is outlined in Figure 3.4-(a). Usually, the process starts by manually fitting the

character (actor) to a well-defined pose (ideally, a T-pose) to estimate dimensions at the
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motion capture stage. Our original motion capture data did not include a T-pose, but we

were still able to obtain acceptable results by using a similar pose selected from one of the

output sequences. In order to determine how the motion capture data is to be interpreted,

it is necessary to assign markers to actor cells. The set of assignments we have chosen to

employ is depicted in Figure 3.4-(b), where the circles represent the cells. Some cells required

more than one marker to behave properly during the animation. Once the body posture

parameters, i.e., 3D joint positions, are successfully imported as motion capture data, we

can extract the corresponding set of 3D joint Euler angles fd
n for nth motion frame from the

model easily. However, angular features are generally discontinuous at boundary values due

to their 2π-periodic nature and this situation causes a problem in training statistical models

to capture the temporal dynamics of a sequence of angular features. Therefore, instead of

using the static set of Euler angles fd
n, we just use their first and second differences as

∆fd
n = (1/2)fd

n+1 + fd
n − (1/2)fd

n−1 (3.4)

∆2fd
n = (1/2)∆fd

n+1 + ∆fd
n − (1/2)∆fd

n−1 (3.5)

to form the set of dynamic 3D joint angle feature vectors

f̂d
n = [∆fd

n
T

∆2fd
n

T
]
T
. (3.6)

3.3 Extraction of Audio Features

One can consider the act of dancing as the natural response of the body to the rhythm of the

music. Therefore, MFCCs are good choices for representing the music features since they

perceive the sound as the human auditory system, which eventually shapes the movements

of the body while dancing. Besides the MFCCs, chroma scale coefficients are also utilized

to analyze the content of musical signals. On the other hand, it is crucial to note that

among various features that characterize a musical audio signal, such as tonality, harmony

or melody; tempo and measure are the ones that primarily drive and synchronize the dancing

act. Hence, beat and measure analysis is also included in the audio feature extraction task.
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(a) (b)

Figure 3.4: (a) Outline of the computation of 3D joint angles from motion data (b) Marker

assignments

3.3.1 Mel-Frequency Cepstral Coefficients (MFCC)

In audio processing, the mel-frequency cepstrum (MFC) is a representation of the short-term

power spectrum of an audio, based on a linear cosine transform of a log power spectrum on a

nonlinear mel scale of frequency. Mel-frequency cepstral coefficients (MFCCs) are basically

coefficients that collectively make up an MFC. The difference between the cepstrum and

the mel-frequency cepstrum is that in the MFC, the frequency bands are equally spaced on

the mel scale, which approximates the human auditory perception system. This frequency

warping can allow for better representation of sound, for example, in speech recognition and

audio compression. We shall explain the stey-by-step computation of MFCC in this section.

1. Pre-emphasis: The speech signal s(n) is sent to a high-pass filter:

s2(n) = s(n)− as(n− 1) (3.7)

where s2(n) is the output signal and the value of a is usually between 0.9 and 1.0.

The z-transform of the filter is

H(z) = 1− az−1 (3.8)
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The goal of pre-emphasis is to compensate the high-frequency part that was suppressed

during the sound production mechanism of humans. Moreover, it can also amplify the

importance of high-frequency formants.

2. Frame Blocking: The input audio signal is segmented into frames of 20 ∼ 30 ms with

optional overlap of 1/3 ∼ 1/2 of the audio frame size. Usually the frame size (in terms

of sample points) is equal power of two in order to facilitate the use of fast Fourier

transform (FFT). If this is not the case, we need to do zero padding to the nearest

length of power of two. If the sample rate is 16 kHz and the frame size is 320 sample

points, then the frame duration is 320/16000 = 0.02 sec = 20 ms. Additional, if the

overlap is 160 points, then the frame rate is 16000/(320-160) = 100 frames per second.

3. Hamming Windowing: Each audio frame has to be multiplied with a hamming window

in order to keep the continuity of the first and the last points in the frame (to be

detailed in the next step). If the signal in a frame is denoted by s(n), n = 0, . . . , N−1,

then the signal after Hamming windowing is s(n) ∗w(n), where w(n) is the Hamming

window defined by:

w(n, a) = (1− α)− α cos(2πn/(N − 1)), 0 ≤ n ≤ N − 1 (3.9)

Different values of α corresponds to different curves for the Hamming windows and is

typically set to 0.46.

4. Fast Fourier Transform (FFT): Spectral analysis shows that different timbres in audio

signals corresponds to different energy distribution over frequencies. Therefore we

usually perform FFT to obtain the magnitude frequency response of each frame. When

we perform FFT on a frame, we assume that the signal within a frame is periodic,

and continuous when wrapping around. If this is not the case, we can still perform

FFT but the discontinuity at the frame’s first and last points is likely to introduce

undesirable effects in the frequency response. To deal with this problem, we have two

strategies:

• Multiply each frame by a Hamming window to increase its continuity at the first

and last points.
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• Take a frame of a variable size such that it always contains a integer multiple

number of the fundamental periods of the speech signal.

The second strategy encounters difficulty in practice since the identification of the

fundamental period is not a trivial problem. Moreover, unvoiced sounds do not have

a fundamental period at all. Consequently, we usually adopt the first strategy to

multiply the frame by a Hamming window before performing FFT.

5. Triangular Bandpass Filters: We multiple the magnitude frequency response by a set

of 20 triangular bandpass filters to get the log energy of each triangular bandpass

filter. The positions of these filters are equally spaced along the Mel-frequency, which

is related to the common linear frequency f by the following equation:

mel(f) = 1125 ln(1 + f/700) (3.10)

Mel-frequency is proportional to the logarithm of the linear frequency, reflecting sim-

ilar effects in the human’s subjective aural perception.

6. Discrete Cosine Transform (DCT): In this step, we apply DCT on the 20 log energy Ek

obtained from the triangular bandpass filters to have L mel-scale cepstral coefficients

according to the following formula.

Cm =
N∑

k=1

cos [m (k − 0.5) π/N ] Ek, m = 1, 2, . . . , L (3.11)

where N is the number of triangular bandpass filters, L is the number of mel-scale cep-

stral coefficients that form the coefficient vector fm
n , which denotes the static MFCCs

for the nth musical audio frame. Usually we set N = 20 and L = 12. Since we have

performed FFT, DCT transforms the frequency domain into a time-like domain called

quefrency domain. The obtained features are similar to cepstrum, thus it is referred

to as the mel-scale cepstral coefficients, or MFCC. For better performance, we add

the log energy and perform delta operation, as explained in the next two steps.

7. Log Energy: The energy within a frame is also an important feature that can be easily

obtained. Hence we usually add the log energy as the 13th feature to MFCC.
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8. Delta Cepstrum: It is also advantageous to have the first and second time derivatives

of the resulting coefficient vector fm
n , using the following regression formulas:

∆fm
n =

∑2
r=−2 rfm

n+r∑2
r=−2 r2

(3.12)

∆2fm
n =

∑2
r=−2 r∆fm

n+r∑2
r=−2 r2

(3.13)

We finally form the dynamic musical audio feature vector

f̂m
n = [fm

n
T ∆fm

n
T ∆2fm

n
T ]

T
(3.14)

that also includes the first and second time derivatives.

3.3.2 Chroma-Scale Cepstral Coefficients (CSCC)

Unlike speech, music consists of a sequence of tones whose frequencies are already defined.

Moreover, musical melody is a rhythmical succession of single tones in different patterns.

Besides MFCCs, we extract chroma-based features that can be better used for modeling the

melodic pattern in a measure segment with tone related features using temporal statistical

models, HMMs. In order to represent musical scale, we project the entire spectrum onto 12

bins corresponding to the 12 distinct semi-tones of the musical octave. Theoretically, the

frequency of the k-th note in the n-th octave is calculated as

fn
k = f0

0 2n+k/12 (3.15)

where f0
0 = 16.35 Hz, the pitch of the C0 note, and n, k ∈ Z, 0 ≤ k ≤ 11, based on Shepard’s

helix model [47]. In this study, we extract chroma features of 60 semi-tones for 4 ≤ n ≤ 8

(over 5 octaves from the C4 note to the B8 note).

Rather than performing a short-time power spectrum analysis that has been commonly

used for chroma feature extraction in [24] and [25], we prefer melscale analysis of musical

audio signal for chroma feature extraction due to the logarithmic nature of the semi-tone

frequencies. We extract chroma features by following an approach which is very similar to

the MFCC calculation, explained in previous section. The difference is in how we choose the

triangular overlapping windows while calculating the chromatic scale cepstral coefficients

(CSCC) from the magnitude spectrum of DFT of the audio signal. We basically center
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Figure 3.5: Triangular overlapping windows centered at the locations of semi-tone frequen-

cies at different octaves during chroma features extraction.

the triangular weight windows at the locations of semi-tone frequencies at different octaves,

given by equation (3.15) for 0 ≤ k ≤ 11 and 4 ≤ n ≤ 8, as shown in Figure 3.5. Then,

we take log-average of the harmonics of the calculated semi-tone coefficients, that gives us

the 12 CSCC features fm
n , representing the energy of each tone extracted from the musical

audio frame n. We also compute the first and second time derivatives of these 12 CSCC

features using the following regression formulas in equations (3.12) and (3.13) to form the

dynamic music feature vector in equation (3.14).

3.3.3 Beat, Tempo and Measure

We estimate the tempo in terms of beats per minute (BPM) using the algorithms suggested

in [48, 49]. Tempo estimation involves three basic tasks: onset detection, periodicity estima-

tion and beat location estimation. Onset detection aims to point out where musical notes

start, and tempo is established by the periodicity of the detected onsets. Beat location is

computed directly from periodicity estimation.

First, onsets are detected based on the spectral energy flux of the input audio signal,

that signifies one of the most salient features. Onset detection is determining, since beat

tends to occur at onsets. Next, the periodicity is estimated from the detected onsets using

an autocorrelation based method. Once the periodicity is determined, the tempo can be

calculated in terms of BPM. Finally, beat locations are estimated by generating an artificial

pulse train with the estimated periodicity and by cross-correlating it with the onset sequence.

Maximum values of this function marks the starting of a beat location. See Figure 3.6 for

an example of this process.
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Figure 3.6: Beat detection example: time waveform, spectrogram and spectral energy flux

of a sample 4-second music segment computed with 50% overlap analysis window.

Measure estimation gives an inference about the number of beats existing in between a

measure in musical excerpt. Different rhythmic audio patterns are assumed to exist in each

musical measure. More importantly, measure boundaries in general match the boundaries

of dance figures.

3.4 Summary

This chapter introduced different sets of dynamic and static music and dance motion fea-

tures that are used throughout this thesis. Specifically, we extracted chroma- and mel-scale

cepstral coefficients as dynamic music features whereas we extract 3D joint angles and dis-

placements as dynamic dance motion features. On the other hand, musical beat frequency

and measure detection is used as static music features. In the following chapters, we will

attack at the problem of multimodal dance motion analysis-synthesis from different per-

spectives. Each time, we will choose from different choices of feature types introduced in

this chapter.
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Chapter 4

UNSUPERVISED CORRELATION ANALYSIS OF MUSIC AND

DANCE MOTION PATTERNS

Automatic dance analysis, annotation and synthesis have been studied extensively in

the literature with emphasis on human body motion analysis-synthesis and dance music

analysis. However, the correlation between the recurrent elementary dance motion and

music patterns has attracted little attention. This chapter describes our first attempt to

realize partially the multimodal framework explained in Chapter 2. That is, we will focus

solely on the correlations between automatically extracted music and dance motion patterns

[50, 51], using only the multimodal signal analysis part of the overall multimodal signal

processing framework described in Chapter 2. We use 3D joint displacements (explained in

Section 3.2.1) as our motion features and MFCC features (explained in Section 3.3.1) as our

music features. In the multimodal analysis, we first perform an HMM based unsupervised

temporal segmentation of the music and dance motion features to determine the recurrent

elementary music and dance motion patterns. Then, we investigate the correlations between

the resulting dance motion and music patterns to create a model that can be used towards

estimation and synthesis of realistic music-driven dance animation. Section 4.1 describes

the unsupervised temporal segmentation scheme and Section 4.2 outlines the multimodal

correlation analysis approach. Experiments and results are demonstrated in Section 4.3.

Section 4.4 summarizes the chapter.

4.1 Unsupervised Temporal Segmentation

We follow the basic approach introduced in Section 2.1 for unimodal unsupervised temporal

segmentation of musical audio and dance motion into their meaningful elementary recurrent

patterns. That is, we train a separate parallel HMM structure for each feature stream

corresponding to each modality. The HMM structure Λ has M parallel branches and N

states as displayed in Figure 2.3. The parallel HMM Λ is composed of M parallel left-to-right
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HMMs, {λ1, λ2, . . . , λM}, where each λm is composed of N states, {sm,1, sm,2, . . . , sm,N}.
The state transition matrix Aλm of each λm is associated with a sub-diagonal matrix of AΛ.

The feature stream is a sequence of feature vectors, F = {f1, f2, . . . , fT }, where ft denotes

the generic feature vector at frame t. Unsupervised temporal segmentation using HMM

model Λ yields L number of segments ε = {ε1, ε2, . . . , εL}. The lth temporal segment is

associated with the following sequence of feature vectors,

εl = {ftl , ftl+1, . . . , ftl+1−1} l = 1, 2, . . . , L (4.1)

where ft1 is the first feature vector f1 and ftL+1−1 is the last feature vector fT . The segmen-

tation of the feature stream is performed using Viterbi decoding to maximize the probability

of model match, which is the probability of feature sequence F given the trained parallel

HMM Λ,

P(F|Λ) = max
tl,ml

L∏

l=1

P({ftl , ftl+1, . . . , ftl+1−1}|λml
)

= max
εl,ml

L∏

l=1

P(εl|λml
) (4.2)

where εl is the lth temporal segment, which is modeled by the mt-th branch of the parallel

HMM Λ. One can show that λml
is the best match for the feature sequence εl, that is,

ml = argmax
m

P(εl|λm). (4.3)

Since the temporal segment εl from frame tl to (tl+1 − 1) is associated with segment label

ml, we define the sequence of frame labels based on this association as,

`t = ml for t = tl, tl + 1, . . . , tl+1 − 1 (4.4)

where `t is the label of the tth frame and we have a label sequence ` = {`1, `2, . . . , `T }
corresponding to the feature sequence F. The first stage analysis extracts the frame label

sequences `d and `m given the dance motion and musical audio feature streams Fd and Fm,

respectively.

The parallel HMM structure has two important parameters to set before the training

of the model Λ. The first parameter is the number of states in each branch, N . It should

be selected by considering the average duration of temporal patterns. N is selected to be
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NΛd
= 10, assuming minimum motion pattern duration is 1

3 sec (10 frames). On the other

hand, the number of temporal patterns for musical audio is set to NΛm = 5 states in each

branch of the musical audio HMM model Λm to model musical audio patterns.

The second parameter is the number of temporal patterns with the notation M . In order

to find an optimum value for M , two fitness measures are checked where the first fitness

measure, α, is the probability of model match and the second, β, is the average statistical

separation between two similar temporal patterns. The value determined for M would be

helpful for modeling the dance motion patterns. Therefore, the total number of temporal

patterns, M , can be selected in the vicinity of the intersection of the normalized α and β

measures. The definitions for these two measures are given below in equations.

α =
1
T

log(P(F|Λ)) (4.5)

β =
1
T

L∑

l=1

log(
P(εl|λml

)
P(εl|λm∗

l
)
) (4.6)

where λm∗
l

is the second best match for the temporal segment εl, that is given as,

m∗
l = argmax

∀m6=ml

P(εl|λm) (4.7)

4.2 Multimodal Correlation Analysis

The first stage analysis defines elementary recurrent dance motion patterns for separate

body parts using unsupervised temporal clustering over individual feature streams. The

dance motion feature streams Fb are used to train HMM structure Λd that captures re-

current dance motion patterns εd. Musical audio feature streams Fm are similarly used

to train HMM structure Λm to capture recurrent musical audio patterns εm. For ease of

notation, we use a generic notation to represent the HMM structure which is identical for

dance motion and musical audio streams.

In the second stage, we perform a joint analysis of dance motion-musical audio patterns

and extract recurrent co-occurring patterns. This joint correlation analysis will be based

on the co-occurrence matrix obtained from the co-occurring dance motion-musical audio

events.
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(a) (b)

Figure 4.1: Results of iterative approach for selection of the branch number,M , for (a) video

and (b) audio.

4.3 Experiments and Results

Our training dataset includes multiview video recordings of only one dance performance,

zeybek, with a duration of approximately 5 minutes. We take into account two different

cases to analyze the dance motion events.

The first case considers the dance motion as a whole and models the movements of all

parts of the body with a single HMM. That is, there are exactly two parallel HMMs to be

trained: one for dance motion patterns and the other for musical audio patterns. Figure 4.1

shows that M = 5 maximizes α and β measures jointly. Hence, the parallel HMM models

for dance motion and musical audio pattern analysis consist of 5 branches each.

Table 4.1 demonstrates the co-occurrence relation between the dance motion and musical

audio patterns obtained as a result of our first stage analysis. Each row in the table displays

the co-occurrence percentages of different musical audio patterns with dance motion patterns

over the whole video. According to this co-occurrence matrix, the dance motion pattern

Ve is the most repetitive one in our audiovisual data. Nevertheless, when we look at the

co-occurrence relation of the first musical audio pattern, i.e. Aa, we see that it is also highly

correlated with the dance motion patterns Va. On the other hand, Aa never co-occurs with

the dance motion patterns Vc and Vd.

The second case treats the whole dance motion as a union of motion of separate body

parts, such as motion of right leg, motion of left arm, etc., and train models for each body

part separately to determine the recurrent dance motion patterns in the first stage where
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Table 4.1: Co-occurrence matrix for dance motion-musical audio events.

Va Vb Vc Vd Ve

Aa 40.43 8.51 0.00 0.00 51.06

Ab 5.49 12.09 13.19 6.59 62.63

Ac 10.99 2.20 0.00 4.95 81.86

Ad 0.00 2.94 0.00 2.94 94.12

Ae 22.22 8.55 28.21 4.27 36.75

the analysis process for musical audio remains the same as previous scenario.

Figure 4.2 shows the plots obtained for α and β measures of different body segments.

For video, M is set as 3 which is in the vicinity of the intersection of the normalized α and β

measures for separate dance motion patterns. Hence, our HMMs for dance motion pattern

analysis consist of 3 branches each. On the other hand, Figure 4.3 shows us that M = 6

jointly maximizes α and β measures for the analysis of musical audio data.

Table 4.2 demonstrates the co-occurrence percentages between the left arm and the

right arm motion patterns obtained as a result of our first stage analysis. Each row in the

table displays the co-occurrence rates of different left arm motion patterns with right arm

motion patterns over the whole video. According to this co-occurrence matrix, the left arm

motion pattern La, Lb and Lc highly co-occurs with Ra, Rb and Rc, respectively. The dance

figures related with both arm are labeled with same labels for similar figures where label

a represents raising the arms up and then lowering them down, b occurs as holding the

arms above the shoulder and c is observed as swinging arms forward and backward below

shoulder.

Table 4.3 demonstrates the co-occurrence percentages between the left leg and right leg

motion patterns obtained as a result of our first stage analysis. Similarly we can see that

left and right arm are highly correlated and labels for similar figures are the same. Label
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(a) (b)

(c) (d)

Figure 4.2: Results of iterative approach for selection of M for the dance motion patterns,

upper left graphics is for for left leg and the upper right positioned graphics for right leg,

left below graphics represents α and β measure for left arm and the graphics located right

below represents for right arm.

a represents the act of standing at the same place with little bumps of legs, b occurs as

pulling the legs up with big steps and c is observed as walking slowly. We can see from

Table 4.4 that left leg and left arm has highly correlated patterns that co-occurs frequently.

Nevertheless, we observe in Table 4.5 that right leg and right arm has highly correlated

patterns that co-occurs frequently.

As a result of second stage analysis we investigated the correlation between dance motion
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Figure 4.3: Results of iterative approach for selection of M for the musical audio data.

patterns and musical audio patterns. Table 4.6 gives the co-occurrence percentages of right

leg and musical audio data patterns. Some motion patterns are highly correlated with

musical audio patterns for instance RArmc highly co-occurs with musical audio pattern Aa

where Af is co-occurred with a small percentages with the same pattern.

4.4 Summary

Results of our analysis indicate that certain motion patterns are highly correlated with the

musical audio channel. The co-occurrence tables tell us that arms are jointly correlated,

legs are jointly correlated and arms and legs are correlated jointly, as well. The temporal

patterns of correlated visual motion and audio should prove useful for synthetic agents

and/or robots to learn dance figures from musical audio.
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Table 4.2: Co-occurrence matrix for Left Arm-Right Arm events in percentages.

LArma LArmb LArmc

RArma 95.65 0 4.35

RArmb 0 100 0

RArmc 16.67 8.33 75

Table 4.3: Co-occurrence matrix for Left Leg-Right Leg events in percentages.

LLega LLegb LLegc

RLega 100 0 0

RLegb 0 100 0

RLegc 0 0 100

Table 4.4: Co-occurrence matrix for Left Arm-Left Leg events in percentages.

LLega LLegb LLegc

LArma 94.6 2.7 2.7

LArmb 0 100 0

LArmc 0 0 100
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Table 4.5: Co-occurrence matrix for Right Arm-Right Leg events in percentages.

RLega RLegb RLegc

RArma 93.33 3.335 3.335

RArmb 0 100 0

RArmc 0 0 100

Table 4.6: Co-occurrence matrix for Left-Arm and musical audio patterns in percentages.

Aa Ab Ac Ad Ae Af

RArma 10.64 25.53 19.86 12.06 9.22 26.69

RArmb 21.13 19.01 24.29 11.97 6.69 16.90

RArmc 38.71 10.11 2.81 4.93 8.45 0.35
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Chapter 5

SUPERVISED AUDIOVISUAL ANALYSIS OF DANCE

PERFORMANCES TOWARDS MUSIC-DRIVEN DANCE MOTION

SYNTHESIS

This chapter describes our second attempt to realize the overall multimodal framework

explained in Chapter 2, this time in its entirety. The automatic music-driven dance anima-

tion scheme is based on supervised modeling of music and dance motions [52, 53]. In this

scheme, we consider a simplified dance scenario, where a dance performance is assumed to

have only a single dance motion pattern, i.e., a dance figure, which is to be synchronized

with the musical beat. Each dance figure in the training database is modeled in a supervised

manner with a set of left-to-right HMM structures (see Figure 2.2) and the associated beat

frequency. In the synthesis phase, an audio signal of unknown musical type is first classified,

within a time interval, into one of the genres that have been learned in the analysis phase,

based on MFCCs. The motion parameters of the corresponding dance figures are then

synthesized via the trained HMM structures in synchrony with the audio signal based on

the estimated tempo information. Finally, the generated motion parameters, i.e., 3D joint

displacements, are animated along with the musical audio. The particular block diagram

for the proposed scheme is depicted in Figure 5.1 and comprises three modules: multimodal

analysis (training), audio-driven body motion synthesis and animation. The block diagram

in Figure 5.1 is basically an extended and detailed version of the general multimodal frame-

work presented in Figure 2.1 in Chapter 2. Section 5.1 outlines the dance motion and music

analysis tasks, whereas music-driven dance motion synthesis is presented in Section 5.2.

Experiments and results are demonstrated in Section 5.3. Finally, Section 5.4 summarizes

the chapter.
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Figure 5.1: Block diagram of the supervised analysis-synthesis system.

5.1 Multimodal Dance Performance Analysis

5.1.1 Dance Motion Analysis

In the analysis block, multiview video sequences are analyzed in order to capture the time-

varying posture of the dancer’s body while audio is processed to extract beat information.

The multiview videos are manually segmented into semantic recurring motion patterns: the

dance figures. The corresponding body posture parameters are then used to train a set of

HMMs, each of them modeling a different dance figure.

Human body motion analysis is tackled through HMMs. Dance motion is addressed by

analyzing patterns that are repeated sequentially by the dancer and a set of HMMs is trained

separately for each dance figure. Data employed to train the HMMs are the normalized 3D

joint displacements which are extracted as explained in Section 3.2.1. For each figure, two

sub-HMMs are defined to better capture the dynamics behavior of the upper and lower part

of the body. The HMM modeling the upper part of the body addresses the arms movement

(described by the (x, y, z) positions of the six landmarks placed in shoulders, elbows and

wrists) while the other HMMs accounts for the legs (described by the (x, y, z) position for

the six landmarks placed in hips, knees and ankles) (Figure 5.2).

To start evaluating the performance of the system presented in this report, a simple

HMM is adopted. Typically, dance figures always contain a very concrete sequence of move-
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Figure 5.2: Markers positions (10 to 15 for lower body, 2 to 7 for upper body).

ments hence a left-right HMM structure is employed (Figure 2.2). Each of the parameters

is represented by a single Gaussian function and one full covariance matrix is computed

for each state. This rather simple scheme leads to satisfactory results hence no further

complexity is added to the simple.

5.1.2 Audio Analysis

Since the audio and video sequences are synchronized, each repetition of a dance figure

determines a time segment from which the beat frequency associated with the figure can be

estimated. Analyzing the results from labeling of the dance figures in the video frames, we

simply counted the number of beats per figure to estimate the beat frequency. We perform

beat extraction task as explained in Section 3.3.3. We use this information during the

synthesis to determine the beginning and ending frames of a dance figure.

5.2 Music-Driven Dance Motion Synthesis

The goal of the synthesis block, depicted in Figure 5.1, is to generate the corresponding

body posture parameters synchronized with a test musical audio signal. The given musical

audio signal is first classified, within a time interval, into one of the genres that have been
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learned in the analysis part. For genre classification, we rely on MFCCs and employ the

HMM-based classification technique described in [54]. The classified audio tracks are then

analyzed to extract the beat and tempo information via the method explained in Section

3.3.3. The genre of the audio track determines the dance figure to be synthesized (recall

that in the current scenario we are looking if there is only one single figure associated with

each genre) whereas the beat locations and the tempo information determine the duration

and location of the figure. We note that the beat frequency for the same dance figure may

vary within a musical audio signal or from one piece to another.

5.2.1 Audio Classification

This part is a simple music genre classification problem. We have two types of music

audio files where one is salsa and the other is belly dance. We use supervised HMMs and

the MFCCs to discriminate between the input musical pieces. Use of MFCCs as the only

musical audio feature set is sufficient for the classification problem, since we have only two

kinds of audio files. For the extraction of parameters and classification steps, we use HTK

toolkit [55].

Using the HMMs generated in the analysis step we first classify the input music audio files

as salsa or belly dance as depicted in Figure 5.3, below. Then, we estimate the beat signal

for the detected music audio file following the steps onset detection, periodicity estimation

and beat location. Next, we identify the beat segmentation times in the music audio and

determine the duration (in terms of frame numbers) of figures to be performed during the

animation. Precalculated beats per frame information that we got in the analysis section is

used for this purpose. For example, for salsa, each figure corresponds to a time segment of

eight beats, so by multiplying the start and end time of the each segment with the number of

frames per second (30 in our case), we simply get the beginning and ending frame numbers

for salsa dance figures.

5.2.2 Body Motion Parameter Generation

Once we have the list of durations and types of consecutive dance figures in a file, we can use

that file to generate the appropriate values for the animation parameters according to the
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Figure 5.3: Audio processing steps in the synthesis part.

mean and standard deviation values of the corresponding HMM states. This file basically

determines how much time each dance figure takes in the sequence. This helps us to allocate

exactly the necessary amount of time to perform each dance figure.

Having the state sequences and the observation probabilities that are modeled as Gaussian

distributions, the body posture parameters are generated along the state sequences associ-

ated with the corresponding Gaussian distribution at each state. The dance figure bound-

aries are overlapped and averaged in order to generate smoother figure-to-figure transitions.

Finally, the generated body posture parameters are smoothed using median filtering fol-

lowed by a Gaussian low-pass filter to remove motion jerkiness within a state and in the

transition from one state to another.

It is crucial to note that the use of HMMs for dance figure synthesis provides us with

the ability of introducing random variations in the synthesized body motion patterns for

each dance figure. These variations make the synthesis results look more natural due to

the fact that humans perform slightly varying dance figures at different times for the same
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musical piece. Another important thing is that the use of HMMs for synthesis enables us

to generate dance figures with varying durations in accordance with the beat information

of the given musical audio signal.

5.2.3 Animation

We have designed a stick figure animation tool to visualize the output of the analysis-

synthesis system. The stick figure animation is developed as an OpenGL based console

application that is capable of animating a given set of point coordinates in 3D. The applica-

tion can generate an animation of moving vertices without connecting them to each other.

When the hierarchical connectivity information of the input point coordinates is available,

the program generates the stick figure representation by connecting the neighboring ver-

tices with edges. It also provides basic functionalities such as rotation, zooming in/out and

panning the stick figure on the screen as well as capturing a single frame as an image or a

sequence of frames as a video file. Despite depending on a simple idea, this tool proves to

be useful when one wants to observe the success of the analysis-synthesis process, quickly

and easily.

5.3 Experiments and Results

Our training dataset includes multiview video recordings of two dance performances, one for

salsa and one for belly, each with a duration of approximately 5 minutes. The performances

are recorded synchronously from 6 cameras at 30 fps. Each video recording consists of one

single dance figure repeated successively during the whole performance.

For motion analysis, we manually label the start and end frames of each dance figure

throughout the entire dance recordings. Recall that we have used 2 HMMs for training the

3D joint positions. These HMM models of each dance figure are trained in a supervised

manner with the body posture parameters captured from the manually labeled segments.

In order to determine the optimal number of states for each of the HMMs, we train each

HMM with different number of states (varying from 2 to 19). By computing the average

logarithmic probability of the model match for each value, we examine the progression of

the learning process and the accuracy of the trained model. The evolution of this parameter
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Figure 5.4: Evolution of the logarithmic probability of the model match with varying number

of states for the 4 HMM structures in the case of 3D joint positions (two for salsa on the

left and two for belly on the right).

for the totality of the 4 HMM structures that we trained is displayed in Fig. 5.4. We observe

that the optimal number of states is related to the complexity of the dance figure. In the

case of the salsa figure, which is more complicated than the belly, the optimal numbers

are greater than those for the belly figure. To determine the optimal number of states,

we basically search for the peak in the plot, or the point where the plots start to saturate

since we also want to keep the number of states, and hence the model complexity, as low as

possible.

In order to verify that the posture parameters are correctly modeled with the resulting

HMMs, in Fig. 5.5 and Fig. 5.6, we compare, for some of the parameters, the evolution of the

means of their Gaussian distributions over the HMM states with the evolution of the same

parameters through the realizations of the corresponding dance figures in the training data

set. The shapes of the evolution are clearly observed to be similar, even for the parameters

which show significant variations from one realization to another in the training set and are

thus difficult to model.

The musical audio signals are recorded at 16 kHz as 16 bit mono PCM wavefiles. The

signals are analyzed over a 25 ms Hamming window at every 10 ms. The set of 13 MFC

coefficients along with their first and second derivatives, adding up to a total of 39 features,
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Figure 5.5: For the salsa figure, variation of the means of three parameters over the HMM

states (plotted in red) and evolution of the same three parameters during four different

realizations sampled from the training video (plotted in blue).

forms the audio feature vector for the genre classification task. Using MFCCs as the only

audio feature set becomes sufficient for the classification problem in our case, since we have

only two types of musical audio, salsa and belly. On the other hand, we concluded that each

salsa figure corresponds to 8 beats in the salsa music audio file and each belly dance figure

corresponds to 3 beats in the belly dance music.

We have considered several animation scenarios for demonstration of our dancing avatar.

In the first scenario, we mix two audio tracks of different genres, salsa and belly, and use

this mixed track as the animation audio to show that the avatar can successfully recognize

the changing audio and synthesize the correct dance figures. In the second scenario, we

first slow down and then speed up the audio track to demonstrate that the avatar can
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Figure 5.6: For the belly figure, variation of the means of three parameters over the HMM

states (plotted in red) and evolution of the same three parameters during four different

realizations sampled from the training video (plotted in blue).

keep track of the changing beat information and adjust the speed of the dance move-

ments accordingly. In the final scenario, we take an arbitrary audio which is neither

salsa nor belly to see how the avatar adapts itself to a different genre that it has not

been trained for. We applied these three scenarios on analysis-synthesis results of the

3D joint positions parameter set. Demo videos of these scenarios are available online at

http://mvgl.ku.edu.tr/bodymotionanalysis/jmui/.

5.4 Summary

It is crucial to note that the use of HMMs for dance figure synthesis provides us with the

ability of introducing random variations in the synthesized body motion patterns for each
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dance figure. These variations make the synthesis results look more natural due to the fact

that humans perform slightly varying dance figures at different times for the same musical

piece. Another important thing is that the use of HMMs for synthesis enables us to generate

dance figures with varying durations in accordance with the beat and measure information

of the given musical audio signal.

Results of our analysis-synthesis study shows that our system can successfully recognize

the genre changes in a given audio track and synthesize the correct dance figures in a very

realistic manner. It can also keep track of the changing beat information and adjust the

speed of the dance movements accordingly.
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Chapter 6

LEARNING STATISTICAL MUSIC-TO-DANCE MAPPINGS FOR

CHOREOGRAPHY SYNTHESIS

In this chapter, a rather complete framework is proposed for modeling, analysis, annota-

tion and synthesis of multimodal dance performances, which can handle more complex and

realistic scenarios. The main objective is to automatically create a variety of synchronized

dance performances that perceptually match the emotions and contents of the accompany-

ing music; as if they were arranged by a choreographer. The proposed framework is based

on learning many-to-many statistical mappings from musical measures (music segments) to

dance figures (dance segments) towards generating plausible music-driven dance choreogra-

phies [56]. We assume that dance figures (dance segment boundaries) coincide with musical

measures (music segment boundaries). For each training video, figure segments are manu-

ally labeled by an expert to indicate the type of dance motion. Motion trajectory of each

dance figure is learned via hidden Markov model (HMM) based on 3D joint angles of the

dancer’s body for use in dance motion synthesis. Chroma features of each measure are used

for music analysis. We model temporal statistics of such chroma features corresponding to

each dance figure label to identify different harmonic (melodic) musical measure patterns

for that dance figure. We employ a modified Viterbi algorithm for statistical music-driven

choreography synthesis based on the correlations between dance figures and musical mea-

sures, as well as, the correlations between consecutive dance figures learned from the training

dance video. The motion parameters of the dance figures in the synthesized choreography

are then computed using the trained dance figure models. Finally, the generated motion

parameters are animated synchronously with the musical audio using a 3D character model.

6.1 System Overview and Feature Extraction

The overall framework, as depicted in Figure 6.1, comprises of three parts: analysis, syn-

thesis, and animation. The analysis part includes feature extraction and modeling modules
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besides the data preparation module. In the data preparation module, input music stream

is segmented by an expert into its units, i.e., musical measures. We use mt to denote the

measure segment at measure frame t. Measure segment boundaries are then used by the

expert to define the motion units, i.e., dance figures. We use dt to denote the dance figure

segment corresponding to measure at frame t. The expert also assigns each dance figure dt a

figure label lj to indicate the type of the dance motion. The collection of lj forms the set of

candidate dance figures, i.e., L = {lj |1 ≤ j ≤ N} where N is the number of distinct dance

figure labels that exist in the training audiovisual dance database. Feature extraction mod-

ules compute the dance motion features Fdt and music chroma features Fmt for each dt and

mt, respectively. The dance motion features Fdt are used to train a hidden Markov model

hd
j for each dance figure label lj in order to construct the set of dance figure models Hd.

On the other hand, music chroma features Fmt are used to train a hidden Markov model

hm
j for each dance figure label lj in order to create the set of musical measure models Hm.

Music chroma features Fmt are also used to cluster measure segments mt according to the

harmonic similarity between different measure segments. Based on these measure clusters,

we determine the group of dance figures that are accompanied by the musical measures with

similar harmonic content. We then create the exchangeable figures model X based on such

dance figure groups. In the meantime, the intrinsic dependencies of the dance figures lj are

captured by the choreography model C.
The synthesis part makes use of the three models; namely, X , C, and Hm, to determine

the output dance figure sequence r̃ (i.e., choreography), from music chroma features which

are extracted for a test input music. Here, r̃ = {r̃t}t=T
t=1 , where r̃t ∈ L and T is the num-

ber of musical measure segments. Specifically, the choreography synthesis module employs

a modified Viterbi algorithm to determine the sequence of dance figures r̃ subject to the

exchangeable figures model X and the choreography model C. Finally, body posture para-

meters corresponding to each dance figure in the synthesized choreography r̃ are generated

using the dance figure models Hd (obtained in the analysis part) to animate a 3D charac-

ter. The details about the multimodal dance figure analysis are presented in Section 6.2,

whereas the music-driven dance choreography synthesis is explained in detail in Section 6.3.

Section 6.4 presents the experiments and results; and finally, Section 6.5 outlines concluding

remarks for the proposed framework.
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Figure 6.1: Block diagram of the overall multimodal dance performance analysis-synthesis

framework.

6.1.1 Data Preparation

An audiovisual dance database can be pictured as a collection of measures and dance fig-

ures that are aligned in two parallel streams: music stream and dance stream. Figure 6.2

demonstrates a short excerpt from a musical piece as a collection of measures. In data

preparation, a dance expert segments the input music and video streams into their units,

i.e., measures mt and dance figures ft, respectively. Even though manual segmentation of

video into its units (i.e., dance figures) is often more intuitive than manual segmentation

of audio into its units (i.e., measures), we argue to do the opposite; that is, we perform

a musical beat analysis based segmentation of music and video. For this purpose, we first

make use of one of the recent automatic beat extraction algorithms proposed by Davies

and Plumbley in [57] to the help the expert easily locate the measure boundaries, based

on the extracted beat positions in a musical piece. Then, the expert checks the accuracy

of manually marked measure boundary locations by analyzing whether the corresponding

video segment is an acceptable dance figure, i.e., a meaningful compositional unit of dance.

The expert also assigns each one of the resulting dance figure segments a label lj to indicate

the type of the dance movement. We regard the resulting sequence of dance figure labels

lj as the original (reference) choreography, i.e., r = {rt}t=T
t=1 , where rt ∈ L and T is the
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Figure 6.2: A musical piece is a collection of measures each of which has a different combi-

nation of musical notes.

number of musical measure segments. Reader should note that segmentation of a musical

piece into its units (i.e., measures) is common to analysis and synthesis parts.

6.1.2 Music Features

We extract chroma features f̂m
n as explained in Section 3.3.2 to characterize the melodic or

harmonic content of music. Each Fmt , therefore, corresponds to the set of music feature

vectors f̂m
n that fall into the measure segment mt. Specifically, Fmt is a matrix of CSCC

feature values in the form

Fmt = [̂fm
1 f̂m

2 . . . f̂m
Nmt

], (6.1)

where Nmt is the number of audio frames in measure segment mt.

6.1.3 Dance Motion Features

We use the set of 3D joint angles extracted as explained in Section 3.2.2. We prefer joint

angles as our dance motion features due to their widespread usage in human body motion

analysis-synthesis and 3D character animation literature. We compute 60 angular values

associated with 25 key joints of the body as well as 6 values for the global rotation and

translation of the body, which leads to a dance motion feature vector f̂d
n of length 132 for

each dance motion frame n. Moreover, each Fdt is a collection of motion feature vectors f̂d
n

that fall into dance figure segment dt while training temporal models of motion trajectories

associated with each dance figure label lj . That is, Fdt is a matrix of body motion feature

values in the form

Fdt = [̂fd
1 f̂d

2 . . . f̂d
Ndt

], (6.2)
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where Ndt is the number of dance motion frames within dance motion segment dt. We also

calculate the mean trajectory for each dance figure label lj , namely µlj , by calculating for

each motion feature an average value over all instances (realizations) of the dance figures,

which are labeled as lj . These mean trajectories (µlj ) are required later in choreography

animation since each dance figure model hd
j capture only the temporal dynamics of the first

and second differences of the Euler angles of the key joints associated with the dance figure

label lj .

6.2 Multimodal Dance Performance Analysis

In this section, we provide a detailed description of each model used in the proposed chore-

ography analysis-synthesis framework. These models are: (i) Dance figure modelsHd, which

are used for parameter generation in choreography animation; (ii) Musical measure models

Hm, which capture the many-to-one mappings from musical measures to dance figures us-

ing HMMs; (iii) Choreography model C, which captures the intrinsic dependencies of dance

figures; and (iv) Exchangeable figures model X , which captures the one-to-many mapping

from musical measures to dance figures, and hence, represents the subjective nature of the

dance choreography with possibilities in the choice of dance figures and in their organiza-

tion. Reader should note that the last three models are represented in a single block as

“many-to-many measure-to-dance figure mapping models” in Figure 6.1.

6.2.1 Dance Figure Models (Hd)

The way a dancer performs a particular dance figure may exhibit variations in time in a

dance performance. Therefore, it is important to model temporal statistics of each dance

figure to capture the variations in the dance performance. Note that these models will also

capture the personalized dance figure patterns of a dancer. We use the set of motion features

Fdt to train an HMM hd
j for each dance figure label lj to capture the dynamic behavior of

the dancing body. Since a dance figure contains typically a well-defined sequence of body

movements, we employ a left-to-right HMM structure (i.e., aj
ik 6= 0 for k = i, i + 1 where

aj
ik is the transition probability from state qj

i to state qj
k in hd

j ) to model each dance figure.

Each motion parameter is represented by a single Gaussian function and one full covariance
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matrix is computed for each hd
j .

6.2.2 Musical Measure Models (Hm)

In a dance performance, musical measures that correspond to the same dance figure may

exhibit variations and are usually a collection of different melodic patterns. That is, different

melodic patterns can accompany the same dance figure, displaying a many-to-one mapping

relation from musical measures to dance figures. We capture this many-to-one mapping

by employing hidden Markov models (HMMs) to identify and model the melodic patterns

corresponding to each dance figure. Specifically, we train an HMM hm
j over the collection

of measures co-occurring with the dance figure lj . Here, musical measure features (i.e.,

chroma features) Fmt are the observations and the dance figure labels lj are the classes

of the trained HMMs. Hence, we train as many HMMs as the number of different dance

figures that exist in the dance performance. We define left-to-right HMM structures with

aj
ik 6= 0 for k = i, i+1, i+2 where aj

ik is the transition probability from state qj
i to state qj

k in

hm
j for training models for the collection of measures. The transitions from state qj

i to qj
i+2

account for the differences in measure durations. We use mixtures of Gaussians to model

each parameter in chroma-based music feature vector and one diagonal covariance matrix is

computed for each hm
j . Using mixtures of Gaussians enables us to capture in a single model

the different melodic patterns that correspond to a particular dance figure. We denote the

collection of musical measure models as Hm, i.e., Hm = {hm
j |1 ≤ j ≤ N}. Musical measure

models Hm provide us a tool to capture the many-to-one part of the many-to-many musical

measure to dance figure mapping problem.

6.2.3 Choreography Model (C)

Choreography model is built to capture the intrinsic dependencies of the dance figure se-

quences within the context of dance choreographies. Choreography model has two main

contributors: i) figure-to-figure transition probabilities, and ii) probability of observing a

musical measure feature sequence given a specific dance figure. The figure-to-figure tran-

sition probability density functions are modeled in n-gram language models, where the

probability of the dance figure lj at dt given the dance figure sequence i1, i2, ..., in−1 at dt−1,
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dt−2, . . ., dt−n+1, i.e., P (dt = lj |dt−1 = i1, . . . , dt−n+1 = in−1), defines the n-gram dance

language model. This model provides us a number of rules that specify the structure of

a dance choreography. For instance, a dance figure that never appears after a particular

sequence of n − 1 dance figures in the training video does not appear in the synthesized

choreography, either. We can also enforce a dance figure to always follow a particular se-

quence of n− 1 dance figures if it is also the case in the training video with the help of the

n-gram dance language model. The second contributor to the choreography model, i.e. the

probability of music feature sequence Fmt given a specific dance figure hm
j , P (Fmt |hm

j ), can

be computed with the musical measure models Hm.

We define our choreography model C as a discrete HMM by taking the dance language

model as a bigram model. The choreography model C = (A,B, π) can be described with the

following parameters:

1. T , the number of time frames (measure segments). For each time frame (measure), the

choreography synthesis process outputs exactly one dance figure label. Recall that we

denote the individual dance figures as dt and individual measures as mt for 1 ≤ t ≤ T .

2. N , the number of distinct dance figure labels, i.e., lj where 1 ≤ j ≤ N . Dance figure

labels are the physical output of the process being modeled.

3. A = {aij}, the dance figure transition probability distribution where

aij = P (dt = lj |dt−1 = li), 1 ≤ i, j ≤ N (6.3)

aij ≥ 0, 1 ≤ i, j ≤ N (6.4)
N∑

j=1

aij = 1, 1 ≤ i ≤ N (6.5)

4. B = {bt(j)}, the dance figure probability distribution for measure mt where

bt(j) = P (Fmt |hm
j ), 1 ≤ j ≤ N (6.6)

1 ≤ t ≤ T (6.7)

5. π = {πi}, the initial dance figure distribution where

πi = P (d1 = li), 1 ≤ i ≤ N (6.8)
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The choreography model C is the core of our choreography synthesis task and will be further

investigated in Section 6.3.1. Note that, dance choreography synthesis can be performed

based on Viterbi decoding on the choreography model C. Furthermore, the token-passing

algorithm [58] can be utilized for the choreography synthesis for higher order n-gram dance

language models.

6.2.4 Exchangeable Figures Model (X )

It is also possible in a dance performance that several distinct dance figures can be performed

equally well along with a particular musical measure pattern, exhibiting a one-to-many

mapping relation from musical measures to dance figures [11]. To capture this one-to-many

mapping relation from musical measures to dance figures via learning exchangeable figure

groups, we first compute the melodic similarity score sij between two different measure

segments mi and mj as the local match score obtained from dynamic time warping (DTW)

[59] of the chroma-based feature matrices Fmi and Fmj , corresponding to mi and mj ,

respectively, in the musical piece Sk. Then, based on the melodic similarity scores between

pairs of musical measure segments in Sk, we form an affinity matrix Yk =
(
yk

ij

)
i,j=1,...,N

where yk
ij = exp(−sij) if i 6= j, and yk

ii = 0. Finally, we apply the spectral clustering

algorithm described in [60] over Yk to cluster the measure segments in Sk. The spectral

clustering algorithm in [60] assumes the number of clusters is known a priori and employs

k-means clustering algorithm [61]. Since we do not know the number of clusters a priori, we

measure the “quality” of the partition in the resulting clusters using the internal indexes,

silhouettes [62], to determine the appropriate number of clusters. The silhouette value for

each point is a measure of how similar that point is to points in its own cluster compared to

points in other clusters, and ranges from -1 to +1. Averaging over all the silhouette values,

we compute the overall quality of the clustering for a range of cluster numbers and pick the

one that results in the highest silhouette.

We perform separate clustering for each musical piece Sk in order to increase the accuracy

of musical measure clustering since similar measure patterns are likely to occur in the same

musical piece rather than spread among different musical pieces. Once we obtain clusters of

measures in all musical pieces, we can then use all of the measure clusters in all musical pieces

to determine the exchangeable figures group Gj for each dance figure lj by collecting the
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dance figure labels that appear in the same cluster with lj . Based on the exchangeable figure

groups Gj , we define the exchangeable figures model xj as an indicator random variable:

xj(i) = I(li) =





1, if li ∈ Gj

0, otherwise
(6.9)

where Gj is the exchangeable figure group associated with the dance figure lj . The collection

of xj for all dance figure labels in L gives us the exchangeable figures model X .

The notion of exchangeable figures is the key to reflect the subjective nature of the

dance choreography with possibilities in the choice of dance figures and their organization

throughout the choreography estimation process. The use of exchangeable figures model

allows us to create a different artistic dance performance content each time we estimate a

dance choreography.

6.3 Music-Driven Dance Choreography Synthesis

In this section, we address music-driven choreography synthesis and animation using the

proposed multimodal dance figure models. The system takes music as input and produces

first a sequence of dance figure labels, and then, generates the corresponding sequence of

dance motion features, i.e., joint angle vectors, which are used to animate a 3D character

model.

6.3.1 Choreography Synthesis

We formulate the choreography synthesis problem as estimating a dance figure sequence

based on the choreography model C (described in Section 6.2.3). The lattice structure, say

M, of the discrete HMM that defines the choreography model C has the following properties:

• the vertical dimension represents the distinct dance figures labels,

• the horizontal dimension represents the time frames of music (i.e.,measures),

• vertices of the lattice are the acoustic scores associated with each dance figure label,

based on the musical measure models Hm, i.e., bt(j) = P (Fmt |hm
j ),
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Figure 6.3: Lattice structure M of the choreography model C.

• edges of the lattice are the figure-to-figure transition probabilities, based on the dance

language model A, i.e., aij = P (dt = lj |dt−1 = li).

Figure 6.3 visualizes the lattice structure M of the choreography model C.
At this point, the choreography synthesis problem can be seen as finding a path through

the lattice M. Therefore, assuming a uniform distribution for π, we employ a modified

Viterbi algorithm to traverse through the lattice M to estimate an output dance figure

sequence r̃ subject to the exchangeable figures model X by finding a path along M in three

different ways. In the first scenario, we follow the single best path along M, i.e., the label

sequence that has the maximum total likelihood.

Let φj(t) represent the partial likelihood score of performing the dance figure lj at frame

t along a single path that accounts for the highest partial likelihood from frame 1 to frame

t. This partial likelihood can be computed efficiently using the following recursion:

φj(t) = max
i
{φi(t− 1)aij}bt(j). (6.10)
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At frame t, each partial likelihood score φj(t − 1) is known for all dance figures lj , hence

(6.10) can be used to compute φj(t) thereby extending the partial paths by one time frame.

Since the direct computation of likelihoods leads to underflow, we use log-likelihoods and

rewrite the recursion in (6.10) as

φj(t) = max
i
{φi(t− 1) + log (aij)}+ log (bt(j)). (6.11)

We also define a structure ψj(t) to keep track of the argument which maximizes (6.11),

for each j and t, in order to retrieve the dance figure sequence. The overall algorithm for

finding the single best dance figure sequence can be summarized as follows:

1. Initialization:

φj(1) = b1(j), 1 ≤ j ≤ N

ψj(1) = 0, 1 ≤ j ≤ N

(6.12)

2. Recursion:

φj(t) = maxi{φi(t− 1) + log (aij)}+ log (bt(j)), 2 ≤ t ≤ T

1 ≤ j ≤ N

ψj(t) = argmaxi{φi(t− 1) + log (aij)}, 2 ≤ t ≤ T

1 ≤ j ≤ N

(6.13)

3. Termination:

Φ = maxi{φi(T )}

Ψ(T ) = argmaxi{φi(T )}
(6.14)

4. Path (dance figure sequence) backtracking:

Ψ(t) = ψΨ(t+1)(t + 1), t = T − 1, T − 2, . . . , 1 (6.15)
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Ψ(t) in (6.15) stores the resulting dance figure label sequence as the desired output choreog-

raphy r̃. The resulting dance choreography r̃ is expected to be unique in the first synthesis

scenario since the proposed algorithm finds the optimal path along the lattice M.

In the second synthesis scenario, we find a likely path along M in which we follow one

of the likely partial paths in lieu of following the partial path that has the highest partial

likelihood score at each time frame. For this purpose, we modify the algorithm described in

the first synthesis scenario for finding the single best path along M. Instead of picking the

maximum in (6.11), we pick a partial path (indexed as i∗) among the top two “candidate”

partial path transition scores (i.e., φi(t−1)+log (aij) over all i) by coin flipping to compute

φj(t). Updating also the recurrence relation for ψj(t) accordingly, the recursions in (6.11)

become:

φj(t) = φi∗(t− 1) + log (ai∗j) + log (bt(j)),

ψj(t) = i∗.

(6.16)

The second synthesis scenario is expected to yield different dance choreographies due to

sampling the distribution of partial path transition scores at each time frame, introducing

variation into the choreography synthesis process.

The third synthesis scenario, on the other hand, requires some additional work based

on the output of the first synthesis scenario for replacing each dance figure with a different

choice from its exchangeable figure group (including itself) according to the exchangeable

figures model X while also ensuring the optimality of the path (referred to as exchangeable

path). Specifically, we go over the output of the first synthesis scenario figure by figure; and

at each figure (i.e., time frame),

(i) we replace the figure with another one from its exchangeable figure group including

itself, according to the distribution of acoustic scores P (Fmt |hm
j ) of the dance figures

lj ∈ Gj ,

(ii) we update the rest of the figure sequence by determining a new single best path for

the remaining time frames using the Viterbi algorithm.

We repeat these two steps until we reach the end of the dance figure sequence. In contrast to

previous scenario, we constrain the collection of “candidate” dance figures that can replace



Chapter 6: Learning Statistical Music-to-Dance Mappings for Choreography Synthesis 60

a particular dance figure in the choreography, say lj , to those dance figures for which the

exchangeable figures model xj yields 1. It is possible to say that the third synthesis scenario

is based on a smarter strategy than the second synthesis scenario to introduce variation into

the choreography synthesis process.

Besides these three synthesis scenarios, we synthesize two more dance choreographies:

one using only the musical measure models Hm for identifying each measure segment in the

test musical piece with a dance figure label (which we refer to as only-acoustic choreogprahy),

and another one using only the n-gram figure-to-figure transition probabilities (which we

refer to as only-transition choreography). The only-acoustic choreography corresponds to a

synthesis scenario in which only the correlations between musical measures and dance figure

labels are considered (but the correlations between consecutive figures are ignored). This

is indeed the standard application of HMMs for musical measure identification. In contrast

to only-acoustic choreography, the only-transition choreography corresponds to a synthesis

scenario in which the dance figure for the next measure segment is predicted according to

the distribution of the bigram transition probabilities associated with the dance figure at

the present measure segment. The dance figure sequences resulting from these two scenarios

constitute reference choreographies that help us investigate the benefits of incorporating the

choreography model C and exchangeable figures model X into the choreography synthesis

process, and evaluate the quality of the output dance choreographies resulting from the first

three synthesis scenarios.

6.3.2 Character Animation

The synthesized choreography r̃, (i.e., {r̃t}t=T
t=1 ), specifies the label sequence of dance fig-

ures to be performed with each measure segment whose duration is known beforehand in

the proposed framework. Body posture parameters corresponding to each dance figure in

the synthesized choreography {r̃t}t=T
t=1 are then generated such that they fit to the statis-

tical dance figure models Hd, learned in the dance motion analysis part as explained in

Section 6.2.1.

To generate body posture parameters using the dance figure model hd
j for the dance

figure lj , we first determine the number of dance motion frames L required for the given

segment duration. Next, we distribute the required number of motion frames L among the
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states of the dance figure model hd
j according to the expected state occupancy duration:

oj
i =

1

1− aj
ii

, 1 ≤ i ≤ P (6.17)

where oj
i is the expected duration in state qj

i , aj
ii is the self-state-transition probability for

state qj
i (assuming aj

ii 6= 0), and P is the number of states in the HMM hd
j .

In order to avoid generation of noisy parameters, we first increase the time resolution of

the dance motion by oversampling the dance motion model. That is, we generate parameters

for a multiple of L, say KL where K is an integer scale factor, instead of L number of motion

frames. Then, we generate the body motion parameters along the states of hd
j according

to the distribution of KL motion frames to these states, using the corresponding Gaussian

distribution at each state. To reverse the effect of oversampling, we perform a downsampling

by K that eventually yields smoother state transitions, and hence, more realistic parameter

generation that avoid motion jerkiness.

As we mentioned in Section 6.1.3, the dance figure models hd
j are trained over the first

and second differences of the Euler angles of the joints. Thus, the generated parameters

are basically the first and second differences of the Euler angles of the joints. Therefore,

we need to simply sum the generated first differences with the mean trajectory associated

with the dance figure lj , i.e., µj , to obtain the final set of body posture parameters for lj .

Figure 6.4 depicts a synthesized trajectory against a sample trajectory from the database

and the mean trajectory besides the expected state duration boundaries and the state means

for one of the dance figures in the audiovisual dance database.

After repeating the described procedure for each dance figure in the synthesized choreog-

raphy, the body posture parameters at the dance figure boundaries are smoothed via cubic

interpolation within a ∆-neighborhood of each dance figure boundary in order to generate

smoother figure-to-figure transitions.

It is crucial to note that the use of HMMs for dance figure synthesis provides us with the

ability of introducing random variations in the synthesized body motion patterns for each

dance figure. These variations make the synthesis results look more natural due to the fact

that humans perform slightly varying dance figures at different times for the same musical

piece.
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Figure 6.4: A synthesized trajectory is compared with a sample trajectory from the database

and the mean trajectory as well as the expected state duration boundaries and the state

means; all associated with the same dance figure.

6.4 Experiments and Results

In this study, we investigate the Turkish folk dance, kasik1. Our audiovisual database is 36

minutes long and consists of 20 dance performances with 20 different musical pieces. There

are 31 different dance figures (i.e., N = 31) and a total of 1258 musical measure segments

(i.e., T = 1258).

Table 6.1 shows the distribution of dance figures to different musical pieces. Each entry

in the first column is a dance figure label lj and each entry in the first row is a musical piece

1Kasik means spoon in English. The dance is named so because the dancers clap spoons while dancing.
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Sk. Hence, multiple nonzero entries in a row shows that the same figure can be performed

with different melodic patterns whereas nonzero entries in a column shows that different

dance figures can be performed with the same melodic pattern. Therefore, Table 6.1 is a

means of evidence that there is a many-to-many mapping between dance figures and musical

measures.

Table 6.2, on the other hand, lists the exchangeable figure groups Gj for each dance figure

lj , obtained as explained in Section 6.2.4. For instance, dance figure l1 can be performed

in places where l2 is performed, or vice versa, and the change of places between these two

figures creates a different but still acceptable choreography according to our exchangeable

figures notion. The notion of exchangeable figures will also be useful in evaluating the

choreography synthesis output as we will explain later in this section.

We follow 5-fold cross-validation procedure for measure analysis task. We train musical

measure models using four fifth of the musical audio data in the analysis part and use these

musical measure models in the process of choreography estimation for the remaining one

fifth of the musical audio data in the synthesis part. We repeat this procedure five times,

each time using different parts of the musical audio data for training and testing. This way,

we synthesize a new dance choreography for the entire musical audio data.

6.4.1 Objective Evaluation Results

We define the following four assessment levels to evaluate each dance figure label r̃t in the

synthesized figure sequence r̃ compared to the respective figure label rt in the original dance

choreography r, assigned by the expert:

• L0 (Exact-match): r̃t is marked as L0 if r̃t matches rt.

• L1 (X-match): r̃t is marked as L1 if r̃t does not match rt, but it is in rt’s exchangeable

figure group Grt ; i.e., r̃t ∈ Grt .

• L2 (Song-match): r̃t is marked as L2 if r̃t neither matches rt nor is in Grt ; but, r̃t and

rt are performed with the same musical piece; i.e., {r̃t, rt} ∈ Sk.

• L3 (No-match): r̃t is marked as L3 if it is not marked as one of L0 through L2.
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Table 6.1: Distribution of the dance figures to musical pieces

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

l1 29

l2 34 5 13 11 32 43

l3 7 20 7 8 6

l4 19

l5 12 27 7 12 27 32 4 14

l6 7 4 4 11

l7 3 7

l8 4 7 3

l9 3 12 8 5

l10 9 20 2

l11 12 12

l12 4 2 4 5 4

l13 16

l14 3 11

l15 2 12

l16 17 24 14

l17 14

l18 8 18 20 12 47

l19 4 14 4

l20 12 8 3

l21 16 30 18

l22 10

l23 62

l24 41

l25 41

l26 19

l27 20

l28 10 5

l29 10

l30 1 1 1 8

l31 29 22 21 55 1 53
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Table 6.2: List of figures and their exchangeable figure groups.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20 l21 l22 l23 l24 l25 l26 l27 l28 l29 l30 l31

l2 l1 l6 l5 l1 l3 l1 l3 l2 l3 l2 l3 l11 l1 l1 l10 l6 l2 l6 l3 l2 l16 l11 l25 l24 l7 l10

l5 l5 l8 l18 l2 l8 l2 l6 l5 l6 l5 l6 l23 l2 l2 l22 l8 l3 l12 l6 l5 l28 l13 l12 l16

l7 l7 l10 l31 l4 l10 l14 l12 l11 l16 l9 l8 l5 l5 l28 l20 l4 l8 l9 l22

l14 l9 l12 l9 l12 l27 l17 l14 l28 l13 l19 l7 l9 l5 l12 l11

l15 l11 l18 l11 l17 l20 l15 l14 l20 l9 l11 l21 l17 l14

l14 l20 l14 l19 l21 l15 l27 l11 l14 l15

l15 l15 l20 l21 l15 l21 l18

l18 l18 l23 l21

l21 l21

Figure 6.5 displays all assessment levels in a single confusion matrix. We also associate

a penalty score ranging from 0 to 3 with the levels L0 through L3, respectively. Then,

we calculate an overall penalty score for measuring the “goodness” (coherence) of the re-

sulting dance choreography. According to this scheme, low penalty scores indicate good

choreography synthesis results. Recall that we estimate alternative choreographies in five

different ways, as explained in Section 6.3.1. Figure 6.6 compares the number of figures that

fall into each assessment level for all synthesis scenarios. The penalty scores for the only-

acoustic and only-transition choreographies are 1036 and 2602, respectively. The penalty

score for the likely path choreography is 1144, which is slightly higher than the penalty

score of the only-acoustic choreography whereas it decreases to 705 and 796 for the best

path and exchangeable path choreographies, respectively. Among all synthesis scenarios,

the best path synthesis scenario results in a choreography with the smallest penalty score as

expected. Introducing variations into the output dance choreography, the exchangeable path

synthesis scenario performs slightly worse than the best path synthesis scenario, however,

its penalty score is still much smaller than the penalty scores of the reference only-acoustic

and only-transition choreographies. We see that best path and exchangeable path scenar-

ios are successful at decreasing the number of dance figures that fall into L3 in reference

choreographies only-acoustic and only-transition.
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Figure 6.5: All assessment levels are put into a single confusion matrix. The empty entries

of this matrix correspond to assessment level L3.

Looking at Figure 6.6 from another point of view, we see that among all the assessment

levels, L0 through L2 are indicators of the diversity of alternative dance figure choreogra-

phies rather than being an indicator of error. L3, however, indicates an error in the dance

choreography synthesis process. In this context, we see that only∼49% of the only-transition

choreography and only ∼85% of the only-acoustic choreography fall into the first three as-
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Figure 6.6: The number of figures that fall into each assessment level for the proposed five

different synthesis scenarios.

sessment levels. On the other hand, using the mapping obtained by our framework increases

this ratio to ∼95% for both the best path and the exchangeable path synthesis scenarios.

The percentage drops to ∼90% for the likely path synthesis scenario, yet it is still a high

percentage of the entire dance sequence. This decrease is due to the fact that the second

scenario considers only the acoustic scores of the measure models rather than also using the

exchangeable figures model as a constraint on the choice of figures to replace one another.

6.4.2 Subjective Evaluation Results

Subjective A/B comparisons are performed using the music-driven dance performance ani-

mations to measure opinions on the coherence of the synthesized dance choreographies with

the accompanying music segment. The subjects are asked to indicate their preference of the

music-driven synthesized dance animation segments for an A/B test pair on a scale of (-2;

-1; 0; 1; 2), where the scale corresponds to strongly prefer A, prefer A, no preference, prefer
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Table 6.3: Distribution of A/B test pairs to the original and the synthesized choreographies
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Original 1 3 3 3 3
Best Path 1 3 3 3

Likely Path 1 3 3
Exchangeable Path 1 3

Only Transition 1

B, and strongly prefer B. We manually extracted 35 short segments from the audiovisual

database, where each segment is approximately 15 seconds. The distribution of these 35

dance performance animation segments to the original and the synthesized choreographies

is given in Table 6.3.

The subjective tests are performed over 17 subjects. The average preference scores for all

comparison sets are presented in Table 6.4. The subjective A/B comparisons suggest that it

is hard to differentiate between the proposed synthesis scenarios, i.e., the subjects have not

strongly preferred one scenario over the others. For instance, subjects have preferred the

likely path choreography over the original choreography, and the original choreography over

the exchangeable path choreography. However, subjects show no preference between likely

path and exchangeable path choreographies. The reason for this situation may be the selected

set of short test video segments. It is also possible to state that all the proposed synthesis

scenarios yield somewhat coherent choreographies that are appealing to the subjects.

The animation demo videos of the synthesized dance choreographies are available online

at http://mvgl.ku.edu.tr/bodymotionanalysis/pami10/. These demo videos are selected to

demonstrate comparatively the outputs of different choreography synthesis scenarios over

several excerpts taken from the database.
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Table 6.4: The subjective A/B pair comparison test results
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Original -0.3 -0.1 0.7 -0.6
Best Path 0.5 0.1 0.2

Likely Path 0.4 0.0
Exchangeable Path 0.1

Only Transition

6.5 Summary

In this chapter, we describe a novel framework for automatic creation of alternative music-

driven dance choreography synthesis and animation. For this purpose, we construct a many-

to-many mapping from musical measures to dance figures based on correlations between

dance figures and musical measures as well as correlations between successive dance figures,

in terms of figure-to-figure transition probabilities. We, then, use this mapping to synthesize

a music-driven sequence of dance figure labels via a constraint based dynamic programming

procedure. With the help of exchangeable figures notion, the proposed framework is able to

yield a variety of different dance figure sequences. These output sequences of dance figures

can be considered as alternative dance choreographies that is in synchrony with the driving

audio signal. To evaluate the synthesis results, we also devised an objective assessment

scheme that measures the “goodness” of a synthesized dance choreography with respect to

the reference choreography. To sum up, the proposed dance choreography analysis-synthesis

framework has the following contributions: (i) modeling of many-to-many mappings from

music to dance; (ii) automatic synthesis of alternative plausible dance choreographies via

exchangeable figures model; (iii) realistic dance animations that respect intra-figure varia-

tions; (iv) a system that values both the correlations between music and dance as well as

the correlations between consecutive dance figures; (v) an objective evaluation scheme for

an artistic content.
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Chapter 7

CONCLUSIONS

In this thesis, we proposed a novel framework for modeling, analysis, annotation and

synthesis of multimodal dance performances. Specifically, we focused on finding mappings,

which are in general many-to-many, between musical audio patterns and dance figure pat-

terns for music-driven dance motion animation. A number of applications of these frame-

works are also mentioned briefly at the end of this chapter. Our main contributions in

this work are: (i) modeling of many-to-many mappings from music to dance; (ii) automatic

synthesis of alternative plausible dance choreographies; (iii) realistic dance animations that

respect intra-figure variations; (iv) a system that values both the correlations between music

and dance as well as the correlations between consecutive dance figures; and (v) an objective

evaluation scheme for an artistic content.

The evolution of the overall framework points out to a very important fact: amount and

content of the audiovisual database is critical in developing a multimodal analysis-synthesis

framework, and determines the quality and performance of the overall system. We have

experienced this fact in several different parts of this thesis. We can discuss, one more time,

the steps we have taken in Chapters 4, 5 and 6 to see the reason behind this argument. We

initially had a limited database in Chapter 4 that allowed us to do only a primitive analysis

task. We enlarged our audiovisual database a little bit, but in a constrained manner (where

each dance performance included several repetitions of one dance figure). This way, in

Chapter 5, we were able to perform both analysis and synthesis tasks which meant taking

all the steps from the input to the desired output of the proposed multimodal framework.

However, since the database was too constrained, it was not possible to generalize the

results to more complex and realistic situations. For that reason, we tried to focus on a

more complex audiovisual database in Chapter 6 and obtained satisfactory results with a

complete multimodal analysis-synthesis framework in the end. Even the last database we

used was not enough to model higher-order n-gram statistics instead of bigram probabilities.
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The proposed framework currently requires expert input and tedious labeling to start

with the audiovisual feature extraction and modeling tasks. This labor intensive pre-

processing can be eliminated by introducing automatic measure/dance figure segmentation

capability into the framework. However, such automatic segmentation techniques are not

yet currently available in the literature and seems to remain as open research areas in the

near future. Using HMMs to model the dance motion trajectories for representing the vari-

ations among different realizations of a dance figure was enough for this particular study

because we mainly concentrated on synthesis of personalized dance performances. How-

ever, one can consider other methods such as “style machines” that will also represent the

stylistic variations associated with a dance figure. Even though we tested our framework

only on kasik folk dance database, we strongly believe that the proposed framework can be

successfully applied to other types of dance performances. We also believe that the pro-

posed framework can be easily modified to apply for other multimodal applications such as

speech-driven facial expression synthesis, etc.

In conclusion, the experimental results and demonstrations show that the proposed

framework is successful at creating plausible alternative dance choreographies and can be

used in several other application areas some of which is mentioned in the sequel. Dance

Evaluation: Synthesis of 3D dancing avatars for visual evaluation of synthesized chore-

ographies using the reference models learned from a professional performer. Dance Tutor:

A tool that automatically evaluates recorded dance performances of dance students using

a library of pre-built dance models and dance performance analyses. Cultural Heritage:

Folk dances are unfortunately becoming extinct as population ages in some nations. Learn-

ing the models of folk dances will help preservation of such cultural values by passing them

from generations to generations. Entertainment: Automatic synthesis of dance perfor-

mances from audio only for on-line games such as ‘Second Life’ and ‘3D Life’ and screen

savers or visualization effects for media applications on mobile devices such as iPhone, iPod,

and laptops.

The future research in the context of dance performance analysis-synthesis can be ex-

tended to handle more realistic choreography designs that also considers spatial formations,

plastic aspect of the dance motions and progression in space by making the necessary ad-

ditions and modifications to the final framework explained in Chapter 6.
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