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and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:
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ABSTRACT

In this thesis we will study minimal surfaces and the Plateau problem. We will first
give the proof of Douglas solution to Plateau problem. Then we will study the paper
of Meeks and Yau in which they prove the embeddedness of the solution to the Plateau
problem under some conditions. We will give the proofs of most of the theorems in
detail.

Minimal surfaces received their name according to the property to minimize area
for prescribed boundary values. Minimal surface theory is a branch of differential
geometry which studies problems related to minimal surfaces. The basic problem that
leads to minimal surface theory is the Plateau problem. The Plateau problem asks the
existence of an area minimizing disk for a given simple closed curve in a manifold M.
The existence was proven in 1930, by Douglas.

After the existence is proven, the regularity was also shown. In the following years,
the question of embeddedness of the solution has been studied. It is not necessarily true
that for any Jordan curve, any area minimizing surface is embedded. So under what
conditions the solution to Plateau problem is embedded was an interesting question.
In their paper Meeks and Yau proved that if the Jordan curve is on the boundary
of a convex manifold and is contractible, then the solution is embedded. They used
topological techniques to solve the problem.
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ÖZET

Bu tezde minimal yüzeyleri ve Plateau problemini çalışacaḡız. İlk olarak Dou-
glas’ın Plateau problemine çözümünü vereceḡiz. Daha sonra Meeks ve Yau’nun bazı
şartlar altında Plateau probleminin çözümünün gömülü olduḡunu ispatladıkları maka-
leyi çalışacaḡız. Teoremlerin bir çoḡunun ispatını ayrıntılı bir şekilde vereceḡiz.

Minimal yüzeyler, adını verilen sınır deḡerine sahip alanı minimize etme özelliḡinden
alır. Minimal yüzeyler teorisi, diferansiyel geometrinin minimal yüzeyler ile ilgili prob-
lemleri çalışan bir koludur. Minimal yüzeyler teorisine yol açan ana problem Plateau
problemidir. Plateau problemi verilen sınır deḡerleri için en küçük alanlı diskin var
olup olmadıḡını sorar. Bu diskin varlıḡı 1930 yılında Douglas tarafından ispatlandı.

Bu diskin varlıḡı ispatlandıktan sonra düzgünlüḡü, yani çatallı olmadıḡı gösterildi.
Takip eden yıllarda, bu çözümün gömülü olup olmadıḡı çalışıldı . Herhangi bir Jordan
eḡrisi için en küçük alanlı herhangi bir disk gömülü olmak zorunda deḡildir. Öyleyse
hangi şartlar altında gömülü olduḡu ilginç bir soruydu. Meeks ve Yau makalelerinde
eḡer dışbükey bir manifoldun kenarındaki Jordan eḡrisi büzülebilirse, çözümün gömülü
olduḡunu kanıtladılar. Problemi çözmek için topolojik teknikler kullandılar.
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NOMENCLATURE

D◦ interior of D
∆f Laplacian of a function f
∇f gradient of a function f
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1. INTRODUCTION

Minimal surface theory is a branch of differential geometry. The main problem of
minimal surface theory is the Plateau problem.

The Classical Plateau problem:Given a Jordan curve γ in a three dimensional
space does there exist a minimal disk f : D → R3 of least area with f(∂D) = γ ?

The existence of a minimal surface with a given boundary, was first asked by La-
grange in 1760. It was called as Plateau problem after Plateau had considered the
problem for soap films. There are other versions of the Plateau problem. Considering
a surface or an orientable surface which has minimal area among all surfaces with a
given boundary are other types of the Plateau problem. The existence and regularity
issues for these types of Plateau problem are parts of geometric measure theory. For
the details see [7]. We will consider only the Plateau problem for disks in this thesis.

In 1930, Douglas and Rado independently solved the Plateau problem for disks.
Douglas used new techniques for the solution of the problem. He was awarded the
Fields medal in 1936.

In minimal surface theory the terms minimal surface and area minimizing surface
are frequently used. A surface is minimal if and only if it has mean curvature zero
everywhere. A surface is area minimizing in a class of surfaces if it has least area
among all maps in that class. An area minimizing surface is minimal but the converse
is not true. Minimal surfaces are critical points for the area functional. While area
minimizing surfaces are the global minima for the area functional. Given a Jordan curve
γ in a three dimensional space, the question of whether there is a function from the
disk into that space with boundary γ that realizes the infimum of such functions is, as
mentioned above, called the Plateau problem. After Douglas [6] solved the problem in
the affirmative way in 1930, interior and boundary regularity, and also embeddedness of
the Douglas solution deserved special interest. In 1948, Morrey [17] solved the Plateau
problem for the homogeneously regular Riemannian manifolds. When it comes to
regularity (nonexistence of branch points) questions, Morrey also showed that when
the manifold is real analytic then the map is also real analytic, and when the manifold
is regular then the map has interior regularity. In 1970, Osserman [21] proved that
it has no interior true branch points. If a surface has no interior true branch point
then it must be an immersed surface in the interior. Afterwards, in 1973, Gulliver
[9] proved that it has in fact no interior false branch points. This means that any
parametrization of the disk has no interior branch points. Moreover, Osserman and
Gulliver showed that the Morrey solution is an immersion in the interior for the three
dimensional manifold.

For the boundary regularity of the Douglas and Morrey solution there are some
results. In 1951, Lewy [13] proved that when the manifold M and the Jordan curve
γ is real analytic then any minimal surface with boundary γ is real analytic up to
the boundary. Moroever, it follows from the 1970 work of Hildebrandt and Heinz [12]
that for smooth and regular Jordan curve γ in a general Riemannian manifold, any
minimal surface with boundary γ is smooth and regular up to the boundary. For
minimal surface with smooth boundary in R3, Nitsche [20] in 1969, showed that there
are finitely many boundary branch points.
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Another interesting question is the embeddedness of the solution of the Plateau
problem. Almgren and Thurston [1] constructed an unknotted Jordan curve which
does not bound any embedded minimal disk. So it was seen that when the curve is
embedded it does not necessarily follow that it bounds an embedded area minimizing
disk. Some advances has been made related to the question of for which curves are
the area minimizing disks embedded. Rado [22] proved that if the Jordan curve has a
one to one and convex projection onto the plane, then the Douglas solution is unique,
embedded minimal disk which is a graph over the plane. An extremal Jordan curve
means that it lies on the boundary of its convex hull. Gulliver and Spruck [10] showed
that when the Jordan curve is extremal and has total curvature less than or equal to
4π, Douglas solution is again embedded. Dehn [5] has a lemma which states that in
a three dimensional manifold, a homotopically trivial Jordan curve on the boundary
of the manifold bounds an embedded disk. Whitehead and Shapiro [23] gave a proof
of Dehn’s Lemma in which they use partial covering space arguments. Meeks and
Yau [16] proved the generalized Dehn’s lemma in which they use arguments similar to
the arguments of Whitehead and Shapiro [23] in determining the singularities of the
Douglas-Morrey solution of the Plateau problem. They prove the following theorem:

Theorem 1.0.1. If a Jordan curve γ on the boundary of a three dimensional convex
manifold is homotopically trivial, then every Morrey solution to the Plateau problem
for γ is embedded.

Dehn’s lemma says that when the Jordan curve is homotopically trivial, then it
bounds an embedded disk. But it does not guarantee that this disk is area minimizing.
But the above theorem says that any area minimizing disk is embedded. So it says
more.

In this thesis, we will basically focus on the proof of the above theorem. We will
follow Meeks and Yau [16].

1.1. Synopsis.

Section 2: In this section a brief introduction and some basic concepts related to
the minimal surface theory will be given. The main references for this section
are the book by Colding Minicozzi [4], the notes by Grosse- Brauckmann [8]
and the paper by Meeks and Perez [15].

Section 3: This section gives Douglas solution to the Plateau problem. In this
part, the book of Colding and Minicozzi [4] and the notes of Grosse-Brauckmann
[8] are followed. It is convenient to consider an area minimizing sequence of
maps with boundary γ, which is a Jordan curve, and take the infimum of the
minimizing sequence. It will be observed that it is logical to minimize energy
rather than to minimize area and they give the same value when the map is
almost conformal. However the convergence of the energy minimizing sequence
does not follow directly, because the space of conformal maps on disk is a non-
compact space. When we compose some parametrization of a fixed disk with
these conformal maps we will get another parametrization of that disk. So
any fixed disk has too many parametrizations. Using three-point condition we
will get a smaller space which is compact and contains unique parametrization
for every disk. This will guarantee the convergence of the energy minimizing
sequence and the limit will be the solution of the Plateau problem.
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Section 4: The main reference for this section is the paper of Meeks and Yau
[16]. The main result in this paper is that, if a Jordan curve on the boundary
of a three dimensional convex manifold is null-homotopic then every solution
to Plateau problem is embedded.

Section 4.1: This section gives the proof of the theorem, which states that given
a Jordan curve on the boundary of a convex manifold, either the Plateau so-
lution for this curve stays completely on the boundary of the manifold or the
interior of the solution stays in the interior of M . The main reference for this
section is Section 1 of the paper of Meeks and Yau [16].

Section 4.2: This section gives the necessary theorems and lemmas that will be
useful in the remaining part of the thesis. The main reference for this section
is Section 2 of the paper of Meeks and Yau [16].

Section 4.3: In this section the embeddedness result is assumed to be true for
the real analytic case and the smooth case is proven depending on that hypoth-
esis. This will be done by reducing the smooth case to the real analytic case by
approximating a smooth metric by real analytic metrics. The main reference
for this section is the paper of Meeks and Yau [16] Section 3.

Section 4.4: The hypothesis assumed in section 4.3 is proven. That is, the em-
beddedness result is shown for the real analytic case. Considering a real analytic
Jordan curve and a real analytic manifold is more advantageous because the
map from the disk D into real analytic manifold M is real anaytic by Lewy and
it follows that it is simplicial with respect to some triangulations of D and M .
A simplicial regular neighborhood of the image is considered. Then covering
space techniques are used to reduce the problem to the case where there are
no triple self-intersection points. This is done by constructing a tower of two-
sheeted covering spaces of the simplicial neighborhoods. This process continues
up to a covering space such that when the original map is lifted to that space,
we get that the lifted Jordan curve stays at the boundary of that space, and
the boundary is a disjoint union of spheres. The lifted Jordan curve separate
the boundary component into two disks. A retraction from the space which is
at the top of the tower to the lifted disk is defined. Then, it is observed that
the areas of the retraction restricted to these two disks equal to the area of the
lifted disk. Unless this lifted disk is an embedding, this retraction restricted
to one of the disks has a folding curve. Since the lifted disk is the Douglas
solution for the Jordan curve, it must be embedded. By composing this map
with the projection map, we get the map sending the unit disk to the previ-
ous level of tower. Then one can get a surface with double self-intersections.
These self-intersections consist of a pair of identified simple closed curves. By
exchanging their areas we get another map of same area with the original map.
But this map also has a folding curve. This is a contradiction which shows that
this tower does not exist. Hence the original map is an embedding. The main
reference for this section is the paper of Meeks and Yau [16] Section 4.
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Section 4.5: The techniques used in section 4.4 are generalized to planar do-
mains and a similar theorem is given for planar domains when the three dimen-
sional manifold is orientable. The main reference for this section is the paper
of Meeks and Yau [16] Section 5.

Section 4.: In this section, it is proven that in a convex three dimensional man-
ifold any two Morrey solutions either represents the same disk or intersect only
at the boundary. This can be done by using cut and paste arguments. The
main reference for this section is the paper of Meeks and Yau [16] Section 6.
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2. PRELIMINARIES

In this section we we will give information related to the minimal surfaces. This
section is based on the notes of Grosse-Brauckmann [8] and the paper [15] of Meeks
and Perez.

Definition 2.0.1. If f : U → Rm is a parametrized surface, and p ∈ U , the first
fundamental form is the bilinear form on TpU

gp(X, Y ) = 〈dfp(X), dfp(Y )〉.

With respect to the standard basis e1, .., en, the matrix notation for the first funda-
mental form is given by

gij = gp(ei, ej) = 〈fxi , fxj〉.

Definition 2.0.2. Let f : U → Rn+1 be a parametrized hypersurface. A continuous
and differentable map N : U → Sn with 〈N(p), dfp(X)〉 = 0 for all X ∈ Rn is called
the Gauss map or normal mapping.

For n = 2, the normal map is given by

N =
fx × fy
|fx × fy|

.

Definition 2.0.3. The bilinear form on Rn

b(X, Y ) = 〈N, d2f(X, Y )〉
is called the second fundamental form.

With respect to the standard basis e1, .., en, the matrix notation for the second
fundamental form is given by

bij = b(ei, ej) = −〈Nxi , fxj〉 = 〈N, fxixj〉.

Definition 2.0.4. The mean curvature of a surface is given by H = 1
n
trace(g−1b)

where g is the matrix of the first fundamental form and b is the matrix of the second
fundamental form of that surface.

We will give equivalent definitions of minimal surfaces.

Theorem 2.0.5. The following definitions of the minimal surfaces are equivalent.

Definition 2.0.6. A surface is minimal if and only if its mean curvature vanishes
identically.

Definition 2.0.7. A surface is minimal if and only if it can be expressed locally as
the graph of the solution of the quasilinear, second order, elliptic partial differential
equation

(1) (1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx = 0

Definition 2.0.8. Let X = (x1, x2, x3) : M → R3 be an isometric immersion of a
Riemannian surface M into R3. X is said to be minimal if xi is a harmonic function
on M for each i.
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Definition 2.0.9. A surface is minimal if and only if every point has a neighborhood
with least area relative to its boundary.

We will give the proof of some of the equivalences.

(2.0.6) ⇔ (2.0.7)
After rotation, any regular surface M ⊂ R3 can be expressed locally as a graph of a

function u = u(x, y). So it is enough to show that any minimal graph satisfies equation
(1). Let u : Ω ⊂ R2 → R be a C2 function. Then the upward pointing unit normal is

N =
(1, 0, ux)× (0, 1, uy)

|(1, 0, ux)× (0, 1, uy)|
=

(−ux,−uy, 1)√
1 + |∇u|2

(2)

and the mean curvature is

H =
1

n
trace(g−1b) =

∑
ij

1

n
gijbij =

1

2detg
(g22b11 − 2g12b12 + g11b22)(3)

where

g =

(
1 + u2

x uxuy
uyux 1 + u2

y

)
.

Then

g−1 =
1

1 + u2
x + u2

y

(
1 + u2

y −uxuy
−uyux 1 + u2

x

)

and b is given by

b =
1

1 + |∇u|2

(
uxx uxy
uyx uyy

)
so we have

H =
1

2(1 + |∇u|2)

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy√
1 + |∇u|2

if and only if

2H(1 + |∇u|2)3/2 = (1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy

So the result follows.

(2.0.6) ⇔ (2.0.8)
Let H be the mean curvature function of X and let N : M → S2 be the normal

(Gaussian) map. Then we have the vector-valued formula ∆X = 2HN . Clearly the
converse is also true. So the result follows. ( This result will be proven explicitly in
the following theorem.)

Definition 2.0.10. A parametrization f : U ⊂ R2 → R3 of a surface is conformal if

〈fx, fy〉 = 0 and |fx| = |fy| = λ.
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In R3, we know the existence of isothermal coordinates so any surface can be
parametrized conformally. We will see that a conformally parametrized surface is
minimal iff ∆f = 0. This means that, each component function is harmonic. This
follows from the following theorem.

Theorem 2.0.11. Suppose f : U → R3 is a two dimensional space. If det(fx, fy, N) >
0 and if f is conformal, it satisfies the following equation

(4) ∆f = 2Hfx × fy
for all p ∈ U.

(Here ∆f = fxx + fyy).

Proof. From definitions (2.0.1), (2.0.3) and equation (3) we have

H =
|fy|2〈fxx, N〉 − 2〈fx, fy〉〈fxy, N〉+ |fx|2〈fyy, N〉

2(|fx|2|fy|2 − 〈fx, fy〉2)
.

Since f is conformal by replacing the values in the definition (2.0.10), we get

H =
1

2λ2
〈fxx + fyy, N〉 =

1

2λ2
〈∆f,N〉.

Differentiating the conformality conditions we get

∂

∂x
|fx|2 =

∂

∂x
|fy|2 ⇒ 〈fxx, fx〉 = 〈fxy, fy〉

∂

∂y
〈fx, fy〉 = 0 ⇒ 〈fyy, fx〉 = −〈fxy, fy〉

.
Adding them we get

〈fxx + fyy, fx〉 = 0

and similarly

〈fxx + fyy, fy〉 = 0.

fx, fy and N are orthogonal, so we have ∆f ‖ N . So it follows that

∆f = 〈∆f,N〉N = 2Hλ2N

Also

λ2N = |fx||fy|N = fx × fy.
�

The first fundamental form gives the area of a surface f : U → R3. The formula is

(5) AU(f) =

∫
U

√
det gdx.

So we have

(6) AU(f) =

∫
U

√
g11g22 − g2

12dxdy =

∫
U

√
|fx|2|fy|2 − 〈fx, fy〉2dxdy.
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Definition 2.0.12. Let f : R2 → R3 be a surface with Gauss map N , and u ∈ C1
0(U,R)

be differentiable with compact support V . Then the normal variation determined by u
is given by

f t : f + tuN.

For small |t|, f t is a regular parametrized surface with

f tx = fx + tuNx + tuxN

and

f ty = fy + tuNy + tuyN.

Theorem 2.0.13. Let f : U → R3 be a regular parametrized surface. Then f is a
minimal surface iff

d

dt
AV (f + tuN)|t=0 = 0

for all normal variations u ∈ C1
0(U,R) with V = supp u.

Proof. By equation (6)

AV (f + tuN) =

∫
V

√
gt11g

t
22 − gt12

2dxdy =

∫
V

√
|f tx|2|f ty|2 − 〈f tx, f ty〉2dxdy

By calculating we get

det gt = det g[1− 4tuH + t2u2(4H2 + 2K) + t2‖∇u‖2] +O(t3).

So we have
d

dt
AV (f + tuN)|t=0 = −2

∫
V

uHds = 0

for all u ∈ C1
0(U,R) iff H = 0 by the fundamental lemma of calculus of variations.

�

So we have another equivalent definition for minimal surfaces.

Definition 2.0.14. A surface is minimal iff it is a critical point of the area functional
for all compactly supported variations. (ie, for all u which is zero on the boundary of
the domain of the definition.)

The second variation is computed considering the second derivative of Area(f +
tuN). When it is positive then the minimal surface is a local minimum. That is in a
neighborhood of it, it has least area among all surfaces which has the same boundary.
A global minimum of the area functional gives the area minimizing surface having fixed
boundary values. So we have in general, an area minimizing surface and a minimal
surface are not same. To show the difference between them is not straightforward.

We will give statements of some theorems. For the proof see [8].

Theorem 2.0.15. (Weak Maximum Principle) Let U be a bounded domain and u ∈
C2(U,R) ∩ C0(U,R) be harmonic. Then

sup∂Uu = supUu

and

inf∂Uu = infUu.
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Theorem 2.0.16. (Maximum Principle for Minimal Surfaces) Let U be bounded and
u, v ∈ C2(U,R) ∩ C0(U,R) describe two graphs of mean curvature H ∈ C0(U,R) with
respect to the upper normal. Then we have:
(i) Interior maximum principle: If u ≤ v and u(p) = v(p) at some interior point
p ∈ U , then u ≡ v.
(ii) Boundary maximum principle: Let ∂U be smooth and u, v ∈ C2(U) ∩ C0(U).
Suppose that u and v have a normal derivative at p ∈ ∂U . Moreover, let u ≤ v for all
interior points x ∈ U and u(p) = v(p) for some p ∈ ∂U . Suppose that ∂u

∂N
(p) = ∂v

∂N
(p).

Then u ≡ v.

Theorem 2.0.17. (Convex Hull Property)
(i) A bounded minimal hypersurface M is contained in the convex hull of its boundary
values, M ⊂ conv(∂M).
(ii) If M touches the boundary ∂conv(∂M) of its conver hull at a point interior to M ,
then M is contained in a plane.

Some Examples of Minimal Surfaces:

(1) A plane which is given by z = 0.
(2) The helicoid, which is given by the equation z = tan−1( y

x
) and in parametric

form (x, y, z) = (t cos s, t sin s, s) where s, t ∈ R.
(3) The catenoid, which is given by the equation z = cosh−1

√
x2 + y2. That is the

surface obtained by rotating the curve x = cosh z around the z axis.
(4) Scherk’s surface, which is the union of the closure of the surfaces

Σk,l = {(x, y, z) : |x− k| < 1, |y − l| < 1, and z = log
cos π

2
(y − l)

cos π
2
(x− k)

},

where k, l are even and k + l ≡ 0 ( mod 4 ).
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3. SOLUTION OF THE PLATEAU PROBLEM

In this section we will give the Douglas solution to the Plateau problem.
Plateau Problem: Given a closed curve Γ, find an area minimizing surface with

boundary Γ.
We shall consider the solution of the Plateau Problem for parametrized disks.

Theorem 3.0.18. Let Γ ⊂ R3 be a piecewise C1, closed Jordan curve. Then there
exists a piecewise C1 map u : D ⊆ R2 → R3 with u(∂D)⊂ Γ such that the image has
the minimum area among all disks with boundary Γ.

It seems reasonable to consider a sequence of maps whose areas are going to infimum
and take a convergent subsequence. But there are some problems with this idea. First
problem is related to noncompactness of the diffeomorphism group of disk. Since the
diffeomorphism group of the disk is not compact we can not guarantee that the area
minimizing sequence is convergent. We can take a sequence Φk in the diffeomorphism
group of a disk which is not convergent. For some fixed map u : D → R3, u(Φk) has
the same image but it is not convergent. The second problem is that bounding the
area will not guarantee that the sequence of surfaces will converge to a surface. For
instance, consider the area of a sequence of surfaces which are disks with thin tubes
such that the tubes get thinner but longer as index of the sequence increases. The
area of this sequence of surfaces converges to the area of the disk but the surfaces do
not converge to a surface. To eliminate the last problem we will consider minimizing
energy instead of minimizing area. Then we will show that minimizing energy also
minimizes the area.

Let (x, y) be coordinates on R2 and suppose that u = (u1, u2, u3) is a map from R2

to R3.
The energy is defined by

E(u) =

∫
D

|∇u|2dxdy =

∫
D

(|ux|2 + |uy|2)dxdy.

and the area is given by

Area(u) =

∫
D

√
detgijdx

where g is the Riemannian metric defined on the surface:

g =

(
〈ux, ux〉 〈ux, uy〉
〈uy, ux〉 〈uy, uy〉

)
Then

Area(u) =

∫
D

(|ux|2|uy|2 − 〈ux, uy〉2)1/2dxdy.
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Arithmetic and geometric mean gives

a+ b

2
≥
√
ab ≥

√
ab− c

for all a, b ≥ 0 and 0 ≤ c ≤ ab with the equality precisely when a = b and c = 0. So

(7)
1

2
E(u) =

1

2

∫
D

(|ux|2 + |uy|2)dxdy ≥
∫
D

(|ux|2|uy|2 − 〈ux, uy〉2)1/2dxdy = Area(u)

with equality precisely when |ux| = |uy| and 〈ux, uy〉 = 0 that is, when u is con-
formal. By a theorem in differential geometry any surface can be parametrized con-
formally because of the existence of the isothermal coordinates. So there exists a
diffeomorphism φ : D → D such that u(φ) : D → R2 is almost conformal and
Area(u(φ)) = Area(u)(They have the same image).

Let u be an energy minimizing map and v be an area minimizing map. Then v can
be considered as a conformal map by the above statement. Then Area(u) ≥ Area(v) =
E(v)/2 ≥ E(u)/2 ≥ Area(u) Thus the two variational problems of minimizing energy
and minimizing area have the same solutions. Namely, we have the lemma following
the Definition 3.0.20.

Definition 3.0.19. A map f : ∂D → Γ is monotone if the inverse image of the every
connected set is connected.

Define the set
χΓ={Ψ : D → R3 : Ψ is piecewise C1 and Ψ|∂D is a monotone map onto Γ}

Definition 3.0.20.
AΓ = infΨ∈χΓ

Area(Ψ)

and
EΓ = infΨ∈χΓ

E(Ψ)

Lemma 3.0.21. AΓ = 1/2EΓ and E(ψ) = EΓ imply that A(ψ) = AΓ

We will solve the Plateau problem in 3 steps.
1) We will show that for each parametrization of the boundary there is an energy

minimizing map from the disk with these boundary values. Each such map is harmonic.
This is the standard Dirichlet problem.

2) We will consider all possible parametrizations of the boundary. When we compose
a map on the disk with a conformal diffeomorphism of the disk we will get a map with
the same energy. We know that the conformal diffeomorphism group of the disk is not
compact. We will consider three point condition to get a compact set.

3) We will take an energy minimizing sequence of harmonic maps over all possible
parametrizations of the boundary. Then we will reparametrize them to satisfy the
three-point condition which will guarantee convergence on the boundary.

Now we will start with the first step.

Dirichlet Problem: Find a solution u ∈ C2(D,R) ∩ C0(D,R) and 4u = 0 in U
with u|∂D = ϕ.
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Solution:

Proposition 3.0.22. If a map f ∈ C2(U, V ) is conformal then it satisfies Cauchy-
Riemann Equations or

∂1f1 = −∂2f2 and ∂1f2 = ∂2f1.

That is, we have the following equation:

(∂1f1)2 = (∂2f2)2 and (∂1f2)2 = (∂2f1)2 .

Proof. If f is conformal then

| ∂1f |=| ∂2f | and 〈∂1f, ∂2f〉 = 0.

then
(∂1f1)2 + (∂1f2)2 = (∂2f1)2 + (∂2f2)2

and

(∂1f1) (∂2f1) + (∂1f2) (∂2f2) = 0 ⇒ ∂2f1 = −(∂1f2) (∂2f2)

∂1f1

.

which means

(∂1f1)2 + (∂1f2)2 =

(
(∂1f2) (∂2f2)

∂1f1

)2

+ (∂2f2)2

implies

(∂1f1)2 + (∂1f2)2 = (∂2f2)2 (∂1f2)2 + (∂1f1)2

∂1f1

2

then

(∂1f1)2 = (∂2f2)2 .

So
∂1f1 = ∂2f2 ⇒ ∂1f2 = −∂2f1 C-R Equations

or
∂1f1 = −∂2f2 ⇒ ∂1f2 = ∂2f1

�

Lemma 3.0.23. Let U and V ⊂ R. Suppose h ∈ C2 (U,R) is harmonic and f ∈
C2 (U, V ) is conformal. Then h ◦ f is harmonic.

Proof. f is conformal then

∂1f1 = ∂2f2 and ∂2f1 = −∂1f2.

Differentiate with respect to first and second component,

∂11f1 = ∂12f2

∂22f1 = −∂21f2

=⇒ ∂11f1 + ∂22f1 = 0

Therefore f1 is harmonic, and similarly f2 is harmonic.

∂i (h ◦ f) = (∂1h ◦ f) ∂if1 + (∂2h ◦ f) ∂if2



3. Solution of the Plateau Problem 13

∂ii (h ◦ f) = ∂11h (∂if1)2 + 2∂12h∂if1∂if2

+ ∂1h∂iif1 + ∂22h (∂if2)2 + ∂2h∂iif2

4 (h ◦ f) = ∂11 (h ◦ f) + ∂22 (h ◦ f)

= ∂11 (h ◦ f) (∂1f1)2 + ∂22 (h ◦ f) (∂2f2)2

+ ∂11 (h ◦ f) (∂2f1)2 + ∂22 (h ◦ f) (∂1f2)2

+ (2∂12 (h ◦ f)) ∂1f1∂1f2 + (2∂12 (h ◦ f)) ∂2f1∂2f2

+ ∂1 (h ◦ f) ∂11f1 + ∂1 (h ◦ f) ∂22f1

+ ∂2 (h ◦ f) ∂11f2 + ∂2 (h ◦ f) ∂22f2

= (∂11h+ ∂22h) ◦ f (∂1f1)2 + (∂11h+ ∂22h) ◦ f (∂2f1)2

+ 2 (∂12h ◦ f) ∂1f1∂1f2 − (2∂12h ◦ f) ∂1f2∂1f1

+ (∂1h ◦ f) (∂11f1 + ∂22f1) + (∂2h ◦ f) (∂11f2 + ∂22f2)

= 0.

(since h is harmonic first terms are zero and also f1 and f2 are harmonic).

�
Let us denote the volume of the n-dimensional unit ball by V (Bn) = ωn. Then by

the divergence theorem, the bounding unit sphere has volume V (Sn−1) = nωn. The
following theorem gives a formula for harmonic functions.

Theorem 3.0.24. (Mean Value Formula) Let u ∈ C2(U,R) be harmonic. Then for
any ball Bρ(y) for ρ ≤ R and BR(y) ⊂ U

u(y) =
1

nwnRn−1

∫
∂Bρ

u(x)dS

and

u(y) =
1

wnRn

∫
Bρ

u(x)dx.

Proof. We know from Divergence Theorem that∫
U

divudx =

∫
∂U

u.νdS ⇒
∫
U

∆udx =

∫
∂U

∇u.νdS =

∫
∂U

∂u

∂ν
dS

where ν is the normal vector to ∂U.

Let |x− y| = ρ and x−y
ρ

= w. Since u is harmonic

0 =

∫
Bρ

∆udx =

∫
∂Bρ

∂u(x)

∂ν
dS = ρn−1

∫
∂Bρ

∂u(ρw + y)

∂ρ
= ρn−1 ∂

∂ρ

∫
|w=1|

u(ρw + y)dw

Then ∫
|w=1|

u(ρw + y)dw is independent of ρ.

implies
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∫
|w=1|

u(ρw + y)dw =

∫
|w=1|

u(y)dw = nwnu(y)

So

u(y) =
1

nwnρn−1

∫
∂Bρ

u(ρw + y)dS =
1

nwnρn−1

∫
∂Bρ

u(x)dS

Now ∫
Bρ

u(x)dx =

∫ R

0

(

∫
∂Bρ

u(x)dS)dρ =

∫ R

0

nwnρ
n−1u(y)dρ = wnR

nu(y)

Result follows. �

Theorem 3.0.25. (Poisson Formula) Let ϕ be a continuous function on ∂D. Then

(8) u(x) :=

{
1−|x|2

2π

∫
∂D

ϕ(y)
|x−y|2dSy for x ∈ D.

ϕ(x) for x ∈ ∂D.

belongs to C2(D,R) ∩ C0(D,R) and is harmonic in D.
Define the Poisson kernel

(9) K(x, y) :=
1− | x |2

2π | x− y |2
, x ∈ D, y ∈ ∂D

the Poisson integral then becomes

(10) u(x) =

∫
∂D

K(x, y)ϕ(y)dSy.

Proof. ϕ is independent of x and K is differentiable in x. So u is differentiable which
means u ∈ C2(D,R).

Claim 1:If u ∈ C0(D,R) and u|∂D = ϕ(x) and ∆u = 0 on D then

u(x) =

∫
∂D

K(x, y)ϕ(y)dSy

for all x ∈ D.

Proof of Claim 1: Consider for |x| ≤ 1 an automorphism wx of D which is defined
as wx(z) = x−z

1−xz . From Lemma 3.0.23 u ◦ wx is harmonic. So by Thm 3.0.24 (Mean
Value Theorem) for all 0 < r < 1 we have

u(x) = u(wx(0)) =
1

2π

∫
∂Br

u ◦ wx(z)dSz

But u is continuous on D by assumption. So as r → 1

u(x) = u(wx(0)) =
1

2π

∫
∂D

ϕ ◦ wx(z)dSz

wx(wx(z)) =
x− x−z

1−xz

1− x x−z
1−xz

=
x− xxz − x+ z

1− xz − xx+ xz
=

(1− |x|2)z

1− |x|2
= z

So wx is its own inverse. Let wx(z) = y ⇒ wx(y) = z Then
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(11)

u(x) =
1

2π

∫
∂D

ϕ ◦ wx(z)dSz =
1

2π

∫
∂D

ϕ ◦ wx(wx(y))dSz =
1

2π

∫
∂D

ϕ(y)|w′x(y)|dSy

But

w
′

x(y) =
−(1− xy) + (x− y)x

(1− xy)2
=
|x|2 − 1

(1− xy)2

We need to find |w′x(y)|. For y ∈ S1 we have

|1− xy|2 = (1− xy)(1− xy) = 1− xy − xy + |x|2 = (y − x)(y − x) = |y − x|2

so |w′x(y)| = 1−|x|2
|y−x|2 . Plug this in (8) claim is proven.

i.e.

u(x) =
1

2π

∫
∂D

ϕ(y)
1− |x|2

|y − x|2
dSy.

Claim 2: u is harmonic.

Proof of Claim 2:

∆u(x) =

∫
∂D

(∆K(x, y))ϕ(y)dSy.

Apply the Claim 1 for u = 1. Then

1 =
1

2π

∫
∂D

K(x, y)dSy ⇒ 2πK(x, y) =
1− |x|2

|y − x|2
=
yy − yx+ yx− xx

(y − x)(y − x)
=

y

y − x
+

x

y − x
which is the sum of the holomorphic function y

y−x and the antiholomorphic function
x
y−x . So this summation is harmonic. Then clearly u is also harmonic. Now we will

show that u is continuous at ∂D.
Let x0 ∈ ∂D and ε > 0 be given. We know that ϕ is continuous. So there is δ > 0

such that |x − x0| < δ implies that |ϕ(x) − ϕ(x0)| < ε. Also ϕ is continuous on the
compact set ∂D there is M > 0 such that |ϕ(x)| ≤M .

Now for |x− x0| < δ/2 we have

|u(x)− u(x0)| =|
∫
∂D

K(x, y)(ϕ(y)− ϕ(x0))dSy |

≤|
∫
y∈∂D|y−x0|≤δ

K(x, y)(ϕ(y)−ϕ(x0))dSy | + |
∫
y∈∂D|y−x0|>δ

K(x, y)(ϕ(y)−ϕ(x0))dSy |

We have

|
∫
y∈∂D|y−x0|≤δ

K(x, y)(ϕ(y)− ϕ(x0))dSy |< ε

since ∫
∂D

K(x, y)dSy = 1

(Apply equation (9) to the harmonic function u = 1.)
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|
∫
y∈∂D|y−x0|>δ

K(x, y)(ϕ(y)− ϕ(x0))dSy |< 2M |
∫
∂D|y−x0|>δ

K(x, y)dSy |

since |x− x0| < δ/2 and |y − x0| > δ it must be true that |x− y| > δ/2 and

K(x, y) =
1− |x|2

2π|x− y|2
<

1− |x|2

2π(δ/2)2

so

(12)

|
∫
y∈∂D|y−x0|>δ

K(x, y)(ϕ(y)− ϕ(x0))dSy |< 2M
1− |x|2

2π(δ/2)2

∫
y∈∂D

dSy < 2M
1− |x|2

(δ/2)2

when |x − x0| is sufficiently small |x| will be close to 1 so the numerator will be
sufficiently small to make the left hand side of the equation (12) smaller than ε. Thus
u is continuous at x0. �

Result: So for any parametrization of the boundary Γ, Poisson Formula gives us a
harmonic function which has the same boundary values as the parametrization. We
will now show that a harmonic function has the minimum energy among all functions
which has the same boundary values.

Proposition 3.0.26. Suppose h ∈ C2(D,Rn) ∩ C0(D,Rn) is harmonic in D. If f
is piecewise C1(D,Rn) and has the same boundary values f |∂D = h|∂D and satisfies
E(f) <∞ then E(f) ≥ E(h).

To prove this proposition we need some theorems and lemmas.

Theorem 3.0.27. (Arzela-Ascoli) Let K ⊂ Rn be a compact set and uk ∈ C0(K) be
a sequence which is uniformly bounded and equicontinuous. Then uk has a uniformly
convergent subsequence on K.

Proof. Let ε > 0 be given. uk is equicontinuous so there exists δ > 0 such that
|x− y| < δ implies that |u(x)− u(y)| < ε/3 for all k. Select j ∈ N such that 1/j < δ.
Also K ⊂

⋃
z∈K B1/j(z). Since K is compact K ⊂ B1/j(z1) ∪ ... ∪ B1/j(zn) for some

n ∈ N . uk is uniformly bounded ⇒ uk(zi) is bounded for all i ∈ {1, .., n}. Consider
ukn(z2) which is also bounded so has a convergent subsequence say uknm . Then consider
uknm (z3). It is also bounded so has a convergent subsequence. Continue this way. After
finitely many steps we can find a subsequence of uk which converges pointwise at all
points zi for all i ∈ {1, .., n} call this subsequence as uk. uk(zi) is Cauchy for all
i ∈ {1, .., n}. So there is Ni such that |uk(zi)− ul(zi)| < ε/3 for all k, l > Ni. Choose
N = max{N1, ..., Nn}

Let x ∈ K. Then x ∈ B1/j(zi) for some i. Which means |x − zi| < 1/j < δ. By
equicontinuity it follows that |uk(x)− uk(zi)| < ε/3 for all k ∈ N. For k, l ≥ N

|uk(x)−ul(x)| ≤ |uk(x)−uk(zi)|+|uk(zi)−ul(zi)|+|ul(zi)−ul(x)| < ε/3+ε/3+ε/3 = ε

Thus uk is uniformly convergent. �
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Theorem 3.0.28. Let u ∈ C∞(U,R) be harmonic, K ⊂ U be compact and α be a
multi-index. Then there exists a constant C such that

supU |∂αu| ≤ CsupU |u|

Proof: If u is harmonic then ∆∇u = ∇∆u = 0 so ∇u is also harmonic. For y ∈ K and

R = 1/2dist(K, ∂U)

and B = BR(y). Applying Thm 3.0.24 (Mean Value Formula) we get

∇u(y) =
1

wnRn

∫
B

∇u(x)dx =
1

wnRn

∫
∂B

∇uνdSx

(second equality is from divergence theorem in the above equation) ⇒

| ∇u(y) |≤ 1

wnRn

∫
∂B

|u|dSx ≤
1

wnRn
sup∂B|u|

∫
∂B

dSx

=
1

wnRn
sup∂B|u|

nwnR
n−1

wnRn
=
n

R
sup∂B|u| ≤

n

R
supUu

For higher derivatives the above reasoning is iterated but it is important to choose
radii to satisfy R→ 0 as α→∞.

Theorem 3.0.29. Any bounded sequence of harmonic functions uk ∈ C∞(U,R), k ∈
N, contains a subsequence that converges uniformly on each compact set K ⊂ U to a
harmonic function, all derivatives converge as well.

Proof. By above theorem(3.0.28) the first derivatives are uniformly bounded over K.

uk(x)− uk(y)

x− y
= ∂iuk(c) for some c ∈ [x, y] by Mean-Value Theorem

≤ Csupuk C is independent of k by Theorem 3.0.28

Since uk is a bounded sequence there exists M such that supuk ≤M. Choose
| x− y |< ε

CM
for given ε.

Then

| uk(x)− uk(y) |= Csupkuk ≤| x− y |MC < ε

so uk is equicontinuous. By Arzela-Ascoli Theorem (by Theorem 3.0.27 ), we can
obtain a convergent subsequence uk → u. Now consider ∇uk for uk convergent subse-
quence since by the same theorem third derivatives also bounded similarly. ∇uk also
converges so ∇uk → ∇u then u is harmonic. We can iterate the argument for higher
derivatives. �

Lemma 3.0.30. Let (hn)n∈N be a sequence of functions harmonic in D which converges
to a harmonic function h uniformly on all compact subsets K ⊂ D. Then E(h) =
limn→∞E(hn) on D.

Proof. By theorem (3.0.21) on compact subsets K ⊂ D all derivatives of u converge
uniformly so ∇hn → ∇h. So limn→∞Ek(hn) = Ek(h). Take the limit of compact
subsets Kn ⊂ D so limn→∞E(hn) = E(h). �
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Now we will define some sequence of functions which we will use in the proof of the
Proposition 3.0.26.

Suppose f : R→ R is a continuous, 2π-periodic function. The Fourier Series of f is

f(x) =
a0

2
+
∞∑
n=1

ancos(nx) + bnsin(nx) where

a0 =
1

π

∫ π

−π
f(x)dx, an =

1

π

∫ π

−π
f(x)cos(nx)dx, bn =

1

π

∫ π

−π
f(x)sin(nx)dx

Now define the sequence of functions sn which are extensions of f to D, ∀n.

sn : D → R sn(r exp(iθ)) =
n∑
k=1

rk(akcos(kθ) + bksin(kθ))

Each sn is smooth on D also they are harmonic. To see this

4sn(r exp(iθ)) =
1

r

∂

∂r

(
r
∂

∂r
sn)

)
+

1

r2

∂2

∂θ2
sn

=
1

r

∂

∂r

(
n∑
k=1

krk(akcos(kθ) + bksin(kθ)

)

− k2

r2

n∑
k=1

rk(akcos(kθ) + bksin(kθ))

=
1

r
k2

n∑
k=1

rk−1(akcos(kθ) + bksin(kθ))

− k2

r2

n∑
k=1

rk(akcos(kθ) + bksin(kθ))

= 0

| sn |≤ f on D since f is convergent, s also converges uniformly on all compact subsets
of D. sn → s where

s =
1

2
a0 +

∞∑
k=1

rk(akcos(kθ) + bksin(kθ))

which is clearly continuous s : D → R. By theorem (3.0.29) s is also harmonic.

Proof. (Proof of the proposition 3.0.26) sn ∈ C2
(
D,Rn

)
where sn are as defined above.

E (f) = E (sn + (f − sn)) =
1

2

∫
D

|∇sn|2 + 2 〈∇sn,∇ (f − sn)〉+ |∇ (f − sn)|2 dx

= E (sn) + E (f − sn) +

∫
D

〈∇sn,∇ (f − sn)〉 dS.

Consider the divergence theorem∫
U

divXdx =

∫
∂U

〈X, ν〉 dS

if X = ν∇u then
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∫
∂U

div (ν∇u) dS =

∫
U

〈∇ν,∇u〉 dx+

∫
U

ν 4 udx

=

∫
∂U

〈ν∇u, ν〉 dS

so

∫
∂D

〈(f − sn)∇sn, ν〉 dS =

∫
U

〈∇sn,∇ (f − sn)〉 dx+

∫
D

(f − sn)4sndx

sn is harmonic, so∫
U

〈∇sn,∇ (f − sn)〉 dx =

∫
∂D

〈(f − sn)∇sn, ν〉 dS

and this is equal to∫
∂D

(f − sn) 〈∇sn, ν〉 dS =

∫
∂D

〈
(f − sn) ,

∂sn
∂r

〉
dS

We have

f (exp iθ)− sn (exp iθ) =
∞∑

k=n+1

(ak cos kθ + bk sin kθ)

and

∂sn
∂r

(exp iθ) =
∞∑
k=1

k (ak cos kθ + bk sin kθ)

Then ∫ 2π

0

〈
(f − sn) ,

∂sn
∂r

〉
dθ

=

∫ 2π

0

〈
∞∑

k=n+1

(ak cos kθ + bk sin kθ) ,
n∑
k=1

k (ak cos kθ + bk sin kθ)

〉
= 0 (by usual computations)

so E(f) > E(sn) for all n ∈ N implying that E(f) > lim inf E(sn). Taking limit we
get E(f) > E(s). But s should be equal to h since s − h equals to non-zero on the
boundary so it should be identically zero by theroem (2.0.15) weak maximum principle.

Hence E(f) > E(h). �

We have found for each parametrization of the boundary a unique energy minimizing
harmonic map. Consider all possible parametrizations of the boundary.

Now we will take a minimizing sequence over all possible parametrizations of the
boundary say fk ∈ C1. We need to find a limit f with E(f) = inf {E(fk)} .
First, we need to show that the sequence fn is convergent.
Second, we need to show that f actually converges to a surface with boundary Γ.



3. Solution of the Plateau Problem 20

Definition 3.0.31. Let D ⊂ R2 be the open disk. We call

Aut(D) =

{
w(z) | w(z) = wa,ϕ(z) = exp iϕ

a− z
1− az

, ϕ ∈ R a ∈ D
}

the conformal automorphism group of the unit disk or the group of Möbius transfor-
mations.

Since the automorphism group of the disk is not compact we will consider the three-
point condition: Given three distinct points ql in Γ and three distinct points pl in ∂D
we define the class of mappings

χΓ′ = {ψ ∈ χΓ | ψ(pl) = ql} .

We will prove that any element of χΓ is conformally equivalent to an element of χΓ′ .

Lemma 3.0.32. Any w ∈ Aut(D) maps D to D conformally and ∂D to ∂D.

Proof. First | az |≤| a || z |< 1 implies that the denominator of w does not vanish on
D.
Next

| w(z) |2= w(z)w(z) =
(a− z)(a− z)

(1− az)(1− az)
=
| a |2 + | z |2 −az − az
1+ | a |2| z |2 −az − az

if | z |= 1 then | w(z) |= 1
if z ∈ D

0 < (1− | a |2)(1− | z |2) ⇒ | a |2 + | z |2< 1+ | a |2| z |2 so | w(z) |< 1

since a ∈ D, w(z) is complex differentiable on D so it is holomorphic so conformal. �

Proposition 3.0.33. For any two sets of triples 0 ≤ v1, v2, v3 < 2π and 0 ≤ α1, α2, α3 <
2π, there exists a unique Möbius transformation w ∈ Aut(D) of the unit disk such that
w(exp ivj) = exp iαj for j = 1, 2, 3.

To prove this proposition we will use the upper half plane H = {(x, y) ∈ C, y > 0}
instead of D which is conformally equivalent to D.

Lemma 3.0.34. The map η : C \ {i} → C \ {1} η(z) = z−i
z+i

is a conformal dif-

feomorphism. It maps bijectively H to D, H to D and the real axis to the unit circle
without the point 1.

w = η(z) =
z − i
z + i

⇒ zw + iw = z − i

⇒ z(1− w) = iw + i

⇒ z =
iw + i

1− w
= ζ(w) the inverse of η
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w and η are differentiable ⇒ η is a diffeomorphism.
For z ∈ H, | z − i |<| z + i | so w(z) ∈ D and for w ∈ D

2Imζ(w) =
1

i
(ζ(w)− ζ(w)) =

1 + w

1− w
+

1 + w

1− w
=

(1 + w)(1− w) + (1 + w)(1− w)

(1 + w)(1− w

=
2− 2 | w |2

| 1− w |2
> 0

Others are similar.
Also η : H ∪ {∞} → D is a diffeomorphism.

Lemma 3.0.35. For every triple of real numbers a < b < c there is a conformal
diffeomorphism f : H ∪ {∞} → H ∪ {∞} such that f(a) = 0, f(b) = 1, f(c) =∞

Proof. Let f : H⇒ H, f(z) = z−a
z−c

b−c
b−a .

f is complex differentiable so holomorphic so conformal and f maps H to H. Also f
maps extended real line to itself. �

Proof. (Proof of the proposition 3.0.24) Set a = η−1(exp(iv1)), b = η−1(exp(iv2)), c =
η−1(exp(iv3)). Then f ◦ η−1 maps exp(iv1), exp(iv2), exp(iv3) to 0, 1,∞ in ∂H∪{∞} .
Since mappings are diffeomorphisms any triple exp(iv1), exp(iv2), exp(iv3) can be
mapped conformally to any other triple. �

Lemma 3.0.36. Let f ∈ C1(V, U) be conformal and h ∈ C1(U,Rn). Then EV (h◦f) =
EU(h)

Proof. We have

∂i(h ◦ f) = (∂1h ◦ f)∂if1 + (∂2h ◦ f)∂if2.

Taking the square of this expression, we get

|∂i(h ◦ f)|2 = |∂1h|2(∂if1)2 + |∂2h|2(∂if2)2 + 2〈∂1h, ∂2h〉∂if1∂if2.

where i = 1, 2 and on the right side ∂ih is always evaluated at f . This gives

|∂1(h ◦ f)|2 + |∂2(h ◦ f)|2 = |∂1h|2(∂1f
2
1 + ∂2f

2
1 ) + |∂2h|2(∂1f2)2 + ∂2f2)2)

+2〈∂1h, ∂2h〉(∂1f1∂1f2 + ∂2f1∂2f2)

= |∂1h|2| det df |+ |∂2h|2| det df |.

The last step follows from the conformality of f and Proposition (3.0.22).
By making a change of variables in the integration we get:

EV (h◦f) =
1

2

∫
V

|∂1(h◦f)|2 + |∂2(h◦f)|2dxV =
1

2

∫
V

(|∂1h◦f |2 + |∂2h◦f |2)| det df |dxV

=
1

2

∫
U

(|∂1h|2 + |∂2h|2)dxU = EU(h)

�
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Lemma 3.0.37. Any element of χΓ is conformally equivalent to an element of χΓ′ . It
follows that for any element in χΓ there is an element in χΓ′ , which is of same image
and same energy.

Proof. Let f ∈ χΓ. Then f : D⇒ R3 is piecewise C1 and f |∂D is a monotone map onto
Γ. f : ∂D → Γ, there exist α1, α2, α3 distinct such that f(exp(iαj)) = qj for j =
1, 2, 3. Let β1, β2, β3 so that f(exp(iβj)) = pj. By proposition(3.0.33), there is a Möbius
transformation wk with wk(exp iβj) = exp(iαj).

Now consider f ◦ wk = f̃ ∈ χΓ′ . wk is conformal, E(f ◦ wk) = E(f) by lemma 3.0.36.
�

Now we will prove Courant-Lebesgue Lemma which we will use in the proof of com-
pactness of χΓ′ .

Given any point ρ ∈ D for each ρ > 0, we define Cρ = {q ∈ D| | p− q |= ρ}, d(Cρ)
to be the diameter of the image of the curve Cρ and L(Cρ) to be the length of the
image of the curve Cρ.

Lemma 3.0.38. (Courant-Lebesgue Lemma) Let u ∈ C1(D,R3) ∩ C0(D,R3) with

E(u) ≤ K. For each positive δ < 1 there exists some ρ ∈
[
δ,
√
δ
]

such that (d(Cρ))
2 ≤

2πεδ where εδ = 4πK
− log δ

when δ → 0.

We will bound L(Cρ) and this implies a bound on d(Cρ). Define p(r) = r
∫
Cr | ∇u |

2

ds. We have∫ √δ
δ

p(r)d(log r) =

∫ √δ
δ

p(r)
dr

r
=

∫ √δ
δ

∫
Cr
| ∇u |2 dsdr ≤

∫ 1

0

∫
Cr
| ∇u |2 dsdr

=

∫
D
| ∇u |2 dxdy ≤ K(13)

by Mean-Value Theorem for integrals for some ρ ∈
[
δ,
√
δ
]

p(ρ)

∫ √δ
δ

d(log r) =

∫ √δ
δ

p(r)d(log r)

(14) ⇒ p(ρ) =

∫ √δ
δ

p(r)d(log r)
2

− log δ
≤ 2K
− log δ

Consider in polar coordinates. Then

L(Cr) =

∫
Cr

√
u
′
1(θ)2 + u

′
2(θ)2u

′
3(θ)2dθ ≤

∫
Cr

| ∇u | ds by C-S Inequality

≤
(∫

Cr

12ds

) 1
2
(∫

Cr

| ∇u |
1
2 ds

)
≤ (2πr)

1
2

(
p(r)

r

) 1
2

= (2πp(r))
1
2(15)

Combining (14) and (15) we get that

(L(Cρ))
2 ≤ 4πK
− log δ
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then

(d(Cρ))
2 ≤ 4πK
− log δ

follows.

Lemma 3.0.39. For any constant K, the family of functions

F = {ψ |∂D |ψ ∈ χΓ′ and E(ψ) ≤ K}
is equicontinuous on ∂D. Hence by the Arzela - Ascoli Theorem, F is compact in the
topology of uniform convergence.

Proof. Let ψ ∈ χΓ′ with E(ψ) ≤ K and ε > 0 where ε < min | qi − qj | be given.
For any p ∈ D we need to find some ρ > 0 such that the neighborhood of p which has di-
ameter less than ρ is mapped to a neighborhood of ψ(p) which has diameter less than ε.

Claim: Let Γ be a closed Jordan curve. Then given ε > 0, ∃d > 0 such that for
any points p, q which has distance in R3 less than d separates Γ such that at least one
component has length in Γ less than ε.

Proof of the Claim: Assume for a contradiction the claim is not true. Given ε,
as d → 0 two points with distance d in R3 get close to each other and the intrinsic
distance gets close to the extrinsic distance. So for d small enough their intrinsic dis-
tance will be small than ε. Contradiction.

As log 1
δ
→ ∞ for δ → 0 we can choose δ = δ(ε) ∈ (0, 1) small enough to ensure√

2πεδ < d where εδ = 4πK
log 1

δ

and such that given any p ∈ ∂D at least two of the pi are

not in the ball of radius
√
δ about p.

Now given any p ∈ ∂D, by Courant - Lebesgue Lemma(Lemma 3.0.38) there exists

ρ ∈
[
δ,
√
δ
]

such that d(Cρ) ≤
√

2πεδ < d. Let m1 and m2 be the intersection points

of the Cρ and D. A1 be the component of D separated by m1 and m2 which contains p
and A2 be the remaining component. Also let B1 = ψ(A1) and B2 = ψ(A2). ψ(m1) and
ψ(m2) has extrinsic distance less than α so one of the components B1 and B2 which are
separated by ψ(m1) and ψ(m2) must have length less than ε. B1 should have length
less than ε because A1 contains at most one of the points pi and B1 contains at most
one of the points qi and ψ satisfies the 3-point condition.

Hence by the Arzela - Ascoli Theorem (theorem 3.0.27), F is compact in the topology
of uniform convergence. Result follows. �

Proof. (Proof of theorem 3.0.18:) For any parametrization of Γ, we can find a harmonic
map (by proposition 3.0.26 and the result following poisson formula ) which is energy
minimizing. Considering all parametrizations of Γ we can find an energy minimizing
sequence {ũj} of harmonic maps in χΓ so that E(uj) → EΓ. But by the three-point
condition, we can change our sequence {ũj} with {uj} such that all functions {uj}
satisfy the three-point condition, they are harmonic and for all j, uj is a conformal
reparametrization of ũj (from lemma 3.0.37), so they have the same energy (lemma
3.0.36) so {uj} ⊆ χΓ′ .

The bounded sequence uj of harmonic functions contains a subsequence un that con-
verges uniformly on each component subset all derivatives converge as well to say u
which is harmonic(by theorem 3.0.29). Then by Lemma 3.0.30. E(u) = limE(un) on
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D. Now consider u |∂D= ϕn. ϕn is compact by Lemma 3.0.39, so ϕn has a convergent
subsequence ϕn → ϕ so un converges on the boundary to a monotone function. Hence
we have E(u) = EΓ. By lemma 3.0.21, we have 1

2
EΓ = AΓ. So the area minimizing

map is a conformal and harmonic map.
�
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4. MEEKS-YAU EMBEDDEDNESS THEOREM

In this section we will follow Meeks-Yau [16].

4.1. THE EXISTENCE OF MINIMAL SURFACES IN A CONVEX RIE-
MANNIAN MANIFOLD.

Definition 4.1.1. A smooth manifold M is said to be strictly convex if the second
fundamental form of its boundary is positive definite.

Definition 4.1.2. A smooth manifold M is convex if it is a subset of a strictly convex
manifold N with the following properties.

(1) There is a convex function g which is 0 on ∂M and nonpositive on M.
(2) There is a bi-Lipschitz homeomorphism ϕ from ∂M × [−1, 1] to a neighborhood

of ∂M such that for x ∈ ∂M and 1 ≥ t2 ≥ t1 ≥ −1 we have ϕ(x, 0) = x and
−c(t2 − t1) ≥ g[ϕ(x, t2)]− g[ϕ(x, t1)] for some constant c.

(3) There is a smooth function g defined on N which is strictly convex in a neigh-
borhood of the closure of N/M.

Consider a compact convex set M in Euclidean space with the usual definition. For
the above definition if we consider N as a large ball containing M which is strictly
convex. For g consider the distance to the boundary for outside M and negative of
the distance to the boundary for the points in the closure of M. Consider origin as
in M then take ϕ as radial deformation and g as the square of the distance from the
origin.So this definition is same as the standard convex set definition in the Euclidean
space.

Definition 4.1.3. Let Γ = {Γ1, ...Γk} be a collection of Jordan curves in a convex
manifold M . Let Γi be a subcollection of curves selected from {Γ1, ...Γk} such that
Γ1 ∪ ... ∪ Γp = {Γ1, ...Γk} where p > 1 and Γi ∩ Γj = ∅.Then

(1) dM(Γ) : The infimum of areas of all possible maps from a plane domain bounded
by k disjoint circles so that the restriction of the maps to the circle i gives a
parametrization of the Jordan curve Γi.

(2) d∗M(Γ) : For k > 1 define as min
∑p

i=1 dM(Γi) where letting Γi vary to get the
minimum. For k = 1 define d∗M(Γ) =∞.

Theorem 4.1.4. Suppose that M is a convex manifold as defined above and Γ =
{Γ1, ...Γk} be a collection of Jordan curves in M . If dM(Γ) < d∗M(Γ) then there exists
a connected plane domain B which is bounded by k circles and there exists a map f
which is conformal and harmonic on B◦ with area dM(Γ) that maps each boundary
circle Ci of B to Γi monotonically. Moreover either f maps B◦ to M◦ or f maps B
to ∂M.

( When dM(Γ) < d∗M(Γ) B should be connected since all unconnected possibilities
are considered when calculating d∗M(Γ). From a connected plane domain to a homo-
geneously regular manifold Morrey solution exists [17]. So the important part of this
theorem is that either this solution stays completely in ∂M or interior of the solution
is mapped into the interior of M . )
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Proof. We know that M is a subset of some strictly convex manifold N . We will
first prove the theorem for a strictly convex manifold N. Consider N as a subset of
some smooth Riemannian manifold Ñ There is a strictly convex function h which is
negative on the interior of N , positive on Ñ\N and zero on the boundary of N. We
will define a new homogeneously regular metric by multiplying the original metric with
some function. Homogeneously regular means that curvature and injectivity radius is
bounded. An equivalent definion from [11] is :

Definition 4.1.5. A Riemannian manifold is homogeneously regular if there exist pos-
itive constants k and K such that every point of the manifold lies in the image of a
chart ϕ with domain the unit ball B(0,1) in R3 such that

k‖v‖2 ≤ gij(ϕ(x))vivj ≤ K‖v‖2 for all x inB(0, 1),

where v is any tangent vector to x, g is the metric on M and gij its components.

Homogeneous regularity is important because Morrey solution exists in Ñ when the
metric is homogeneously regular. Define a smooth function h̃ on Ñ so that h̃ = 1
on N and 1 + exp(−1/h) on N\Ñ . We can consider as h̃|∂Ñ = a > 1. Now define a

new metric by multiplying the original metric by the function (a− 1)2/(a− h̃)2. Since

a− h̃→ 0 as x→ ∂Ñ , so we have ∂Ñ pushed to infinity. On N metric stays the same.

Claim 1: This new metric is homogeneously regular.

Proof of Claim 1: Consider x ∈ Ñ with distance ≥ ε from the boundary and
the geodesic ball with center x and radius ε/2. Since Ñ is a manifold, this ball is
diffeomorphic to the Euclidean ball of radius ε/2, so that under this diffeomorphism
the metric has the form

∑
i,j gijdx

i ⊗ dxj. Since it is homogeneously regular gij has
eigenvalues bounded from above and below by positive constants independent of x.
Using radial deformation, map the unit ball onto the ε/2 ball. So the pulled back
metric on the unit ball becomes (ε2/4)

∑
i,j gijdx

i ⊗ dxj. Now we will multiply this

metric by (a− 1)2/(a− h̃)2. h is strictly convex so

|∇h̃| = | < exp(−1/h)h−2hx, exp(−1/h)h−2hy > | = (exp(−1/h)2h−4(h2
x + h2

y))
1/2 > 0

so a−h̃
d(x,∂N)

is bounded below and above by a positive constant in a neighborhood of ∂Ñ .

Therefore the new metric on the unit ball is obtained by multiplying (ε2/4)
∑

i,j gijdx
i⊗

dxj with a function bounded from above and below, which means that it is equivalent
to the Euclidean metric. So Ñ is homogeneously regular.

We know Morrey solution exists in Ñ . We will show that it is in fact stays in N by
considering the function h ◦ f . We have ∆(h ◦ f) ≥ −b|∇(h ◦ f)|2 on neighborhood of
Ñ\N where b is a positive constant. [[16]Theorem 1]

Lemma 4.1.6. Let h be continuous on a bounded open set B such that Dirichlet integral
of h is finite and for some constant b we have ∆h ≥ −b|∇h|2. Then supBh ≤ sup∂Bh.

Proof. Assume on the contrary that supBh < sup∂Bh. Let c be a number such that

supBh < c < sup∂Bh and b(supBh− c) < 1

Define the set Bc = {x|h(x) ≥ c}. Then

∂Bc = {x|h(x) = c}.
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We have
∆h ≥ −b|∇h|2

by the hypothesis. Now multiply both sides with h− c. Then

∆h(h− c) ≥ −b(h− c)|∇h|2.
Take the integral over the set Bc.∫

Bc

∆h(h− c) ≥
∫
Bc

−b(h− c)|∇h|2.

By integration by parts we know,∫
D

u∆u =

∫
∂D

u.−→n dσ −
∫
D

|∇u|2 = −
∫
D

|∇u|2

the second equality holds if u is zero on ∂U.
So we have∫

Bc

(h− c)∆h =

∫
∂Bc

(h− c).−→n −
∫
|Bc|∇h|2 = −

∫
|Bc|∇h|2.

since h− c = 0 on ∂Bc. Then we have

−
∫
|Bc|∇h|2 ≥

∫
Bc

−b(h− c)|∇h|2 ⇒ −
∫
|Bc(1− b(h− c))|∇h|2 ≤ 0

so |∇h|2 = 0. But h is strictly convex. Contradiction. �

To see that f maps B into N define the set

Ωε = {x ∈ B|h ◦ f(x) > ε}
if ε > 0 then for x ∈ Ωε, h ◦ f(x) ≥ ε; which means x /∈ ∂B. So Ωε ∩ ∂B = ∅.
Now for some ε1, ∆(h ◦ f) ≥ −b|∇(h ◦ f)|2 on Ωε1 . So by lemma (4.1.6)

sup∂Ωε1
h ◦ f ≥ supΩε1

h ◦ f.
For ε2 < ε1,

Ωε1 ⊆ Ωε2 and sup∂Ωε2
h ◦ f ≥ supΩε2

h ◦ f ≥ sup∂Ωε1
h ◦ f ≥ supΩε1

h ◦ f ≥ ε1

Let ε = ε1−ε2
2

> 0. So sup∂Ωε2
h ◦ f − ε = sup∂Ωε2

h ◦ f − ε1−ε2
2
≤ h ◦ f(xε) for some

xε ∈ ∂Ωε2 .
ε1 < ε ≤ h ◦ f(xε) so xε ∈ Ωε1 . Continue similarly we get a sequence εn when

εn → 0 ∃xn ∈ ∂Ωεn at the same time xn ∈ Ωε1 . But as εn → 0 we have ∂Ωεn → ∂B
so h ◦ f(xε)→ 0 which is a contradiction. Therefore Ωε should be empty for all ε > 0
which means h ◦ f ≤ 0 on B and f maps B into N .

Now we will show that f maps B◦ toN◦ or ∂N . h is strictly convex in a neighborhood
of ∂N and h◦f is subharmonic in a neighborhood of {x|h◦f(x) = 0}. We know h◦f ≤ 0
on B. By the strong maximum principle h ◦ f takes its maximum on the boundary, if
it takes its maximum on the interior then it must be constant. So 0 ≥ sup∂B(h ◦ f) >
supB◦(h ◦ f). If it takes sup in the interior then it must be constant which means that
h ◦ f = 0 so f maps B to ∂N . But this is not possible since h ◦ f constant means
f constant since h is strictly convex. This proves theorem 4.1.4 for strictly convex
manifolds in case k = 1.
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For k > 1 we have two possible cases.
If dÑ(Γ) < d∗

Ñ
(Γ) then B should be connected, since when computing d∗

Ñ
(Γ), we take

the minimum over all possible unconnected partitions of Γ. If B is connected then the
argument for k = 1 also applies here. We similarly consider the function h ◦ f and
prove that f maps B◦ to N◦.

If dÑ(Γ) ≥ d∗
Ñ

(Γ) then we can find p > 1 such that Γ1 ∪ ... ∪ Γp = {Γ1, ...Γk} and∑p
i=1 dÑ(Γi) ≤ dÑ(Γ). Let p be the largest integer that can be chosen in such a way.

Claim 2: dÑ(Γi) < d∗
Ñ

(Γi)

Proof of Claim 2: If dÑ(Γi) ≤ d∗
Ñ

(Γi) for some i, then there is some partition of Γi

which has lesser area. So we can split Γi and get a number q greater than p satisfying∑q
i=1 dÑ(Γi) ≤ dÑ(Γ) and get a contradiction.
So we have dÑ(Γi) < d∗

Ñ
(Γi) which means the domain for Γi connected for all i. So

we can solve Plateau problem for each Γi. According to previous arguments the solu-
tion must stay in N which means dÑ(Γi) =dN(Γi). So

∑p
i=1 dÑ(Γi) =

∑p
i=1 dN(Γi) ≤

dÑ(Γ) ≤ dN(Γ). So we have d∗N(Γ) < dN(Γ) which contradicts with the hypothesis of
the theorem. So we have proved Theroem 4.1.4 for strictly convex manifolds.

Now we will consider the theorem for general convex manifold M. By the definition of
M we know that M stays in N. By the above arguments we also know that the solution
stays in N . To show that the solution also stays in M we will use similar arguments.
The problematic part is to show that g ◦ f is continuous and subharmonic. This is
proven by approximating g by smooth functions. For the details see [[16] Theorem
1]. �

4.2. LOCAL PROPERTIES OF MINIMAL SURFACES.

Lemma 4.2.1. Let B be an open plane domain and f : B →M be a minimal immer-
sion where M is a three dimensional manifold. If for some p 6= q f(p) = f(q) then
there exists neighborhoods U and V of p and q such that either f(U) = f(V ) or f(U)
and f(V ) intersects along finite number of curves and the intersection is transversal
other than the points of f(p).

Proof. If the images of some small neighborhoods of these point intersects then nothing
to prove. If for any neighborhoods the images the intersection of the images does not
contain an open set, and the intersection is transversal at f(p) then f(U)∩ f(V ) must
be clearly the intersection of finite curves. The nontrivial case is when the intersection
is not transversal at f(p). In this case we consider the common tangent plane at p
and q. We consider local coordinates (x1, x2, x3) such that f(p) represent the point
x1 = 0, x2 = 0, x3 = 0 and the common tangent plane represents the plane (x1, x2, 0).
Then we can consider small neighborhoods U and V of p and q respectively such that,
locally f(U) and f(V ) as graphs of functions ϕ1 and ϕ2 over U and V . Since ϕ1 and
ϕ2 satisfies minimal surface equation, their difference ϕ1 − ϕ2 should satisfy a linear
homogeneous second order elliptic equation.

By [[4]Lemma 4.31 and 4.32] we can make a C1 change of the coordinates x1 and
x2such that ϕ1 − ϕ2 is given by pN(x), where pN(x) is a polynomial of degree N ≥ 2
satisfying a second order linear homogeneous elliptic equation. So we can take a
neghborhood small enough, so that zero is the only critical point in that neighborhood.
pN(x) takes the value zero on the union of finite curves so the intersection of the graphs
over the U is finite number of smooth curves intersecting at f(p).



4. Meeks-Yau Embeddedness Theorem 29

�

Lemma 4.2.2. If f : D →M is a conformal harmonic immersion from the disk into a
three dimensional manifold M such that f is continuous on ∂D, for x ∈ D◦ f(x) /∈ ∂D
and f |∂D is one to one. Then the image of any two disjoint open sets is not equal.

Proof. Assume for a contradiction that for some open sets U1 and U2 we have f(U1) =
f(U2) and also assume wlog that f is an embedding on U2. For x ∈ U1 define the
conformal map h : U1 → U2 such that h(x) = f−1(f(x)). Also define for ε > 0,Dε =
{x : |x| < 1 − ε} such that U1 ⊂ Dε. Let U ⊂ Dε be the largest open disk such that
there exits a locally one to one and conformal map k : U → D satisfying k|U1 = h.

Claim : U = D

Proof of Claim: If U 6= Dε then ∃x ∈ ∂U ∪ Dε. So f(x) /∈ f(∂D) and f is an
immersion on D implies that f is a diffeomorphism in a neighborhood of x. Consider
f−1(f(x)) ⊂ D which is compact being a closed subset of a compact set. But it is
a discrete set because f is a diffeomorphism around each point in it. So f−1(f(x))
must be a finite set, say {x1, ...xn} and each xi has a neighborhood Ni such that f
is an embedding on it. Consider a disk around x; = x1 and call it Dx ⊂ Ni. Then
k(Dx ∩ U) ⊂ Ni for some i.Since f(x) = f(k(x)) by lemma 3.2.1 we have f(Dx ∩ U)
and f(Ni) intersects along finite number of curves or f(Dx) ⊂ f(Ni) when we shrink
Dx if necessary. The intersection contains f(k(Dx ∩ U)) which is an open set since k
is one to one conformal map. So we must have f(Dx) ⊂ f(Ni). Then we can extend
k to Dx in a continuous manner so that f(x) = f(k(x)). We can consider the above
procedure for each x ∈ ∂U ∩Dε, so we can extend k on each boundary point U . Since
U is the largest open set in Dε that we can extend k, we can extend k to D. Since ε > 0
is arbitrarily small, by unique continuation of conformal maps we can extend k to D.
k is continous on the boundary so it must satisfy k(x) = x because f is one to one on
the boundary. Hence k is identity map so U1 ⊂ U2 which is a contradiction. �

Corollary 4.2.3. If f : D → M is a conformal harmonic immersion from the disk
into the three dimensional Riemannian manifold such that f is continuous on D, f |∂D
for x ∈ D◦, then the self-intersection set of f can not be a point, a curve with an end
point in the interior of D or a set with nonempty interior.

Proof. By lemma 4.2.2 the self intersection set can not be a set with nonempty interior.
By lemma 4.2.1 the self intersection set can not be a point, a curve with an end point
in the interior of D. �

Lemma 4.2.4. Let f : D → M and f : D → M be two conformal harmonic im-
mersions from the disk into three dimensional manifold M satisfying f(∂D) = f(∂D),
f and f continuous on D and one to one on the boundary. Suppose also that for
x ∈ D◦ f(x) /∈ f(∂D) and there exists two open sets U and V such that f(U) = f(V ).
Then f(D) ⊂ f(D) and there exists a continuous one to one conformal map satisfying
f(x) = f(k(x)) for x ∈ D. When f is a solution to Plateau problem or for x ∈ D◦ we
have f(x) /∈ f(∂D), the map k is surjective.

Proof. Claim 1: f(D) ⊂ f(D)

Proof of Claim 1:Let O be the interior of f−1(f(D)) in D◦. We will show that
O = D◦. Let x ∈ ∂O − ∂D and x be a point such that f(x) = f(x). Then by inverse
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function theorem we can find two disks Dx and Dx around x and x such that f |Dx and
f |Dx are embeddings. By lemma 4.2.2 either f(Dx) ∩ f(Dx) is a union of finite curves
or f(Dx) ⊂ f(Dx). But x ∈ ∂O so O ∩Dx contains an open set around x. Similarly
O∩Dx contains an open set around x. So f(Dx)∩ f(Dx) contains an open set around
f(x) = f(x). So we have f(Dx) ⊂ f(Dx) which means Dx ⊂ f−1f(Dx).This means
that we can enlarge O unless O = D◦. Result follows.

Claim 2: There is a function k as stated by theorem.

Proof of Claim 2: Let k : U → V be the conformal map defined by f(x) = f(k(x)).
Define Dε = x||x| < 1 − ε so that U ⊂ Dε. Let W be the maximal open disk in Dε

so that U ⊂ W and we can extend the locally one to one conformal map k to W .
Then k : W → D is a map such that f(x) = f(k(x)). For x ∈ ∂W f(x) /∈ f(∂D) so
f(x) ∈ f(D◦) which means f−1(f(x)) ∈ D◦ so k(x) ∈ D◦ ⇒ we have f(x) = f(k(x))
for k(x) ∈ D◦ then by lemma 4.2.2 there exists neighborhoods Dx and Dk(x) of x and

k(x) such that f(Dx)∩ f(Dk(x)) is a finite union of curves or f(Dx) ⊂ f(Dk(x)). Since
x ∈ ∂W , Dx∩W contains an open setO such thatO ⊂ Dx∩W and k(O) ⊂ Dk(x)∩k(W )

which implies f(O) = f(k(O)) ⊂ f(Dx) so f(Dx) ∩Dk(x) contains an open set which

excludes the option that f(Dx) ∩ f(Dk(x)) is a finite union of curves. So we are left

with f(Dx) ⊂ f(Dk(x)). This means that we can extend k Dx. We can consider same
way for all x ∈ ∂W so W maximal makes W = Dε. Letting ε→ 0 we obtain a locally
one to one conformal map k from D◦ to D◦ so that f(x) = f(k(x)) for x ∈ D.

Claim 3: k is continuous on ∂D.

Proof of Claim 3: Let x ∈ ∂D. Then f(x) ∈ f(∂D) = f(∂D). f is one to one on
∂D so f−1(f(x)) is either a finite set or a sequence of points converging to a point on
the boundary. Take a neighborhood N of f(x). Then take sufficiently small meigbor-
hoods U1, .., Unof these points such that these are mapped to N under f . Then k maps
some neighborhood of x into one of these sets Ui. Which means that k is continuous.

Claim 4:k is one to one on D.

Proof of Claim 4: f is one to one and continuous on ∂D then k must be also one
to one on ∂D. k is a conformal map so by argument principle k must be one to one onD.

Claim 5: If f(x) /∈ f(∂D) for x ∈ D◦or f is a solution to Plateu problem then k is
surjective.

Proof of Claim 5: If f(x) /∈ f(∂D) for x ∈ D◦ if k(D) 6= D then we have for
x ∈ ∂D k(x) ∈ D◦ which leads clearly a contradiction. If f is a solution to Plateau
problem for f(∂D) and k(D) 6= D the restriction of f to k(D) gives us smaller area
with the same boundary values. Bt Jordan curve theorem we must have k(D◦) = D◦

and k(∂D) = ∂D. Result follows. �
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Lemma 4.2.5. Let Ω and Ω
′

be two planar domains bounded by circles γ1, .., γm and
γ
′
1, .., γ

′
m respectively. Suppose also that f and f be two conformal harmonic immersions

from Ω and Ω
′

to a three dimensional Riemannian manifold M such that f |
⋃m
i=1 γi

and f |
⋃m
i=1 γ

′
i are one to one maps and f(Ω◦) ∩ f(

⋃m
i=1 γi) = ∅ and f is a solution

to Plateau’s problem for
⋃m
i=1 f(γi). If there are nonempty open sets U and V so that

f(U) = f(V ), then there exists a one to one conformal map k : Ω → Ω
′

which is
continous and satisfies f(x) = f(k(x)).

Lemma 4.2.6. Let Σ1 and Σ2 be two minimal surfaces in a three dimensional manifold
M so that ∂Σ1 = ∂Σ2 and some part of the boundary is a smooth curve σ. Suppose that
at each point of σ where Σ1 and Σ2 are immersed the tangent planes coincide and the
inward normals agree along σ. Then some nonempty open subsets of these sets must
agree.

Proof. Choose local coordinates (x1, x2, x3) around a point p of σ such that p represents
the point 0 and σ represents the line x2. (that is x1 = 0, x3 = 0). Let ϕ1 and ϕ2 be
functions such that Σ1 and Σ2 represent their graph in a small neighborhood of σ. The
tangent planes of the sets are equal along σ means that ∂ϕ1/∂x2 = ∂ϕ2/∂x2 along
σ. ϕ1 and ϕ2 satisfies minimal surface equations so ϕ1 − ϕ2 also satisfies a linear
homogeneous elliptic equation. We know ϕ1 − ϕ2 = 0 along σ. Also by differentiating
we see that all derivatives are zero along σ. By the unique continuation property
[2]ϕ1−ϕ2 is zero in a nighborhood where the functions are defined. So some open sets
of Σ1 and Σ2 must be equal. �

Definition 4.2.7. Let f be A Lipschiz map from the disk into a three dimensional
manifold M such that the resriction of f to either right or left disk is C1 up to the
boundary and is an immersion. Then f has a folding curve along the image of the
y axis if one of the following holds.

(1) If for each point (0, y), the plane spanned by

f∗(∂/∂y)|(0,y)

and

lim
x>0,x→0

f∗(∂/∂x)|(x,y)

is transversal to the plane spanned by

f∗(∂/∂y)|(0,y)

and

lim
x<0,x→0

f∗(−(∂/∂x))|(x,y)

(there is some angle between the image of the right hand disk and the image
of the left hand disk. )

(2) If for each point (0, y),

lim
x<0,x→0

f∗((∂/∂x))|(x,y)
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is a positive multiple of

lim
x>0,x→0

f∗(−(∂/∂x))|(x,y)

.

(the image folded such that the image of the right hand disk and the image
of the left hand disk coincide. )

We will give another description of a situation where the folding curve arises. Let f
be a Lipschitz map form the unit disk into a three dimenasional manifold M such that
the restriction of f to right hand disk and left hand disk is a C1 up to the boundary and
is an immersion. Choose a local coordinate (x1, x2, x3)around the image such that the
image of the y axis represents the x3 and f(0) is the point where x1 = 0, x2 = 0, x3 = 0.
Consider the planes P1, ..., Pn which passes through the x3 axis and a small ball B
around the origin. Suppose we have the sequence of Lipschitz maps fj : D → M
satisfying:

(1) Each fj is C1 on both right and left closed half disks.
(2) fj(D) ∩

⋃n
i=1 Pi = ∅.

(3) {fj} converges in C1 both in right and left closed half disks to f .

Then we have the following lemma.

Lemma 4.2.8. If f(D) ∩B ⊂
⋃n
i=1 Pi. Then we have one of the following:

(1)
lim

x<0,x→0
f∗((∂/∂x))|(x,y)

is a positive multiple of

lim
x>0,x→0

f∗(−(∂/∂x))|(x,y)

(2) there are distinct planes Pi and Pj so that for y small (0, y),

lim
x<0,x→0

f∗((∂/∂x))|(x,y) ∈ Pi

and
lim

x>0,x→0
f∗(−(∂/∂x))|(x,y) ∈ Pj

.

Particularly when we restrict f to a small disk around the origin, it has a folding
curve along the x3 axis.

Proof. Assume for a contradiction that limx<0,x→0 f∗((∂/∂x))|(x,y) is not a positive mul-
tiple of limx>0,x→0 f∗(−(∂/∂x))|(x,y) and they are elements of the same plane Pi. Then
the image of the x axis is a nontrivial curve in Pi and its projection into the (x1, x2)
plane is a line segment containing the origin. For n big enough consider fn and the
projection of its image of the x axis onto the (x1, x2) plane. Then this will same with
the projection of f except for a set of very small neighborhood of the origin. So this
line segment must intersect one of the planes different from Pi which is a contradiction
with the definition of fn. �

Lemma 4.2.9. Let f : D → M be a Lipschiz map which has a folding curve defined
above. Then f can not have minimal area among all Lipschiz C1 maps which have the
same boundary values as f .
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Proof. Assume for a contradiction that f has minimal area among all maps that have
the same boundary values. Since f is an immersion both on the right disk and left
disk the mean curvature is zero on that parts. Since f has a folding curve along y axis
we can find a vector field such that

〈E, f∗(
∂

∂y
)〉|(0,y) = 0

,

lim
x>0,x→0

〈E, f∗(
∂

∂x
)〉|(x,y) > 0

and

lim
x<0,x→0

〈E, f∗(−
∂

∂x
)〉|(x,y) < 0

By the first variation formula the first variation on the right hand disk is given by the
integral of

−〈E, f∗(
∂

∂x
)〉

along the folding curve, since at other points we have mean curvature zero. Similarly
the first variation on the left hand disk is given by the integral of

−〈E, f∗(−
∂

∂x
)〉

along the folding curve. When f is deformed by E then area is decreasing which is a
contradiction. �

Remark 4.2.10. We can say that the self-intersection set of a minimal immersed disk
can not be nontrivial under some conditions.

Proof. Assume for a contradiction that it is nontrivial. Let p be a point of self in-
tersection of a minimal immersed disk. Then we know that f−1(p) = {p1, .., pk} such
that each point has neighborhoods U1, .., Uk such that the restriction of f each one of
them is an embedding. By Corollary 4.2.3 we know that they can not intersect on an
open set so by lemma 4.2.1 they must be mutually transversal to each other. If we
know that f is real analytic then f is simplicial with respect to some triangulations
of D and M . We can triangulate Ui’s such that all f(Ui)’s pass through a real ana-
lytic curve containing p. If the self intersection set is a compact subset of D then the
inverse image of every point must be finite since f is an immersion. So f(D) seems
in a small neighborhood of f(p) as a union of f(Ui)’s. So this small neighborhood is
similar to the intersection of the planes Pi’s. Locally consider the boundary of some
small neighborhood is in f(D) then by Lemma 4.2.9 this part of the surface can not
have minimal area locally which mean globally it is not a minimal disk. �

In section 4.4 we will use smooth metrics, when passing from the real analytic metric
to smooth metric we will use the following lemma.

Lemma 4.2.11. Let f : D →M be a Douglas- Morrey solution to Plateau problem for
the disjoint union of Jordan curves {f(γi)} where D is a planar domain bounded by
disjoint union of Jordan curves {γi} and M is a three dimensional manifold. Suppose
also that D

′
is a proper subset of D which is diffeomorphic to D and f restricted to

the each boundary component of D
′

is one to one. Assume also that there is a smooth
curve σ which is on the boundary of D

′
and on the interior of D. If g is any Douglas-

Morrey solution to the Plateau problem for f(D
′
) and f(∂D

′
) ∩ f(D

′◦) = ∅ then g is
equal to f up to a conformal reparametriazation of D

′
.
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Proof. By nonconformal parametrization we may assume that f(x) = g(x) for all
x ∈ ∂D′ . By [12], f and g are smooth on σ . Also the theorems of Nitche and Heinz-
Hildebrant show that there are only finite number of branch points of f or g on σ
we may assume that f and g are immersions in a neighborhood of σ. We will define
a new map f : D →M such that f(x) = f(x) for x ∈ D\D′and f(x) = g(x) for x ∈ D′ .

Claim: f does not have a folding curve along σ.

Proof of Claim: Assume for a contradiction that f has a folding curve along σ.
Then by lemma 4.2.9 we have another map from D into M with smaller area and same
boundary values. The area of g is equal to the area of f |D′ . Because otherwise one will
be smaller and this will contradict their being Plateau solution to the boundary of the
domains. So the area of f is equal to the area of f . If there is a map with smaller area
than f and have the same boundary values then this will contradict f being a Plateau
solution for the boundary of D.
f does not have a folding curve along σ implies that the tangent planes of f(D

′
) and

g(D
′
) agree along σ then by lemma 4.2.6 some nonempty set of f(D

′
) must be equal

to some nonemty set of g(D
′
). Then by lemma 4.2.5 f is equal to g up to a conformal

reparametrization of D
′
. �

Lemma 4.2.12. Let f : D → M be from a bounded plane domain D with smooth
boundary into a three dimensional smooth manifold M . Then we have f is one to one
on ∂D if it satisfies the following conditions:

(1) f ∈ C(D) ∩ C2(D◦)
(2) f restricted to each properly oriented boundary component of D describes a

monotonic representation of an oriented Jordan curve.
(3) f is harmonic
(4) f is conformal.

For the proof see [16]

4.3. APPROXIMATING A SMOOTH METRIC BY REAL ANALYTIC
METRICS.

We will prove there is an embedded solution to the Plateau problem for a Jordan
curve in a smooth convex manifold. In this section we will show that we can prove this,
if we know the embeddedness of any solution to Plateau problem for a real analytic
curve in a convex real analytic manifold. We will use the following hypothesis in this
section and prove it in the next sections.

Hypothesis H: Suppose that M is a three dimensional real analytic manifold with
real analytic convex boundary. Also assume that γ is a real analytic Jordan curve in
∂M . Then any solution to Plateau problem for γ is embedded.

Theorem 4.3.1. Let M be a three dimensional smooth convex manifold, γ be a Jordan
curve in ∂M . Then σ bounds an embedded solution to Plateau problem.

Proof. Let f : D → M be a solution to Plateau problem for γ. Then by Theorem
4.1.4 either f maps D◦ to M◦ or f maps D to ∂M. If the image of the interior of
D is completely contained in ∂M then γ is null homotopic on ∂M . By the Jordan
curve theorem γ must separate ∂M into two components Ω1 and Ω2, where Ω1 is a
disk. f is Plateau solution so is conformal then by open mapping theorem f must
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be an open map. By the continuity and and being an open map f(D) must be equal
to Ω1 or Ω2 or Ω1 ∪ Ω2. If f(D) is equal to Ω1or Ω2 then by open mapping theorem
f(D◦) ∩ γ = ∅. So f |D◦ is covering projection. The area of the disk is finite so the
number of covering sheets is finite. When we consider deck transformations we see
that a finite group must have a free action on disk but this is not possible by Brouwer
fixed point theorem. This gives us that f is a homeomorphism. The case Ω1 ∪ Ω2 is
not possible, since f is a solution to Plateau problem, the fact that Ω1 is a disk with
less area gives a contradiction. So when f(D) is a subset of ∂M we have embedding.

Assume that f(D) is a not a subset of ∂M . By definition of a convex manifold
there is a strictly convex manifold N , M is a subset of which. By [18], [19] we know
that N admits a real analytic structure and real analytic metric. We can approximate
the original smooth metric, say

∑
i,j gij(x)dxi ⊗ dxj by real analytic metric sequence∑

i,j g
n
ij(x)dxi⊗dxj such that gnij → gij in smooth norm when n→∞. We will consider

real analytic manifolds Mn which have real analytic boundary and they are very close
to M for n large. By definition of a convex manifold we have some function g which
is convex in a neighborhood of N \M such that M = g−1((−∞, 0]) and also some
function g which is strictly convex in a neighborhood of N \M . Take a sequence of
real numbers εn → 0 such that the functions g + εng are strictly convex with respect
to the metric

∑
i,j g

n
ij(x)dxi ⊗ dxj in a fixed neighborhood of N \M . According to

[16] by using the Heat kernel of the metric
∑

i,j g
n
ij(x)dxi ⊗ dxj, we can approximate

g+εng by a real analytic function gn which is strictly convex with respect to the metric∑
i,j g

n
ij(x)dxi⊗dxj in a fixed neighborhood of ∂M . Since εn → 0 we have g+ εng → g.

But for x ∈ ∂M g(x) = 0 so we may assume that supx∈∂M |gn(x)| → 0 as n→∞.
By Sard’s theorem the points δ making the set g−1

n (−∞, δ) real analytic is dense so we
may choose a sequence δn → 0 such that Σn = {x ∈M : gn(x) = −supx∈∂M |gn(x)|−δn}
is real analytic. Then Mn = {x ∈ M : gn(x) ≤ −supx∈∂M |gn(x)| − δn} is an analytic
convex manifold with analytic boundary

∑
n.

Let ϕ be the function as given in definition 3.1.2. ϕ sends a the neighborhood
∂M × (−1, 1) of ∂M some neigborhood of ∂M . Since gn is a smooth approximation
of g + εng we may assume that for a smaller neigborhood of ∂M the same inequalities
hold when we use gn instead of g. i.e for all x ∈ ∂M and for all n and for 1/2 ≥ t2 ≥
t1 ≥ −1/2 we have the following:

Recall equation (1): 1 ≥ t2 ≥ t1 ≥ −1 we have ϕ(x, 0) = x and

−c(t2 − t1) ≥ g[ϕ(x, t2)]− g[ϕ(x, t1)]

for some constant c

−c(t2 − t1)

2
≥ gn[ϕ(x, t2)]− gn[ϕ(x, t1)](16)

then from equation (1) it follows that for t2 = 1/2 and t1 = 0 we have

−c
4

+ sup
x∈∂M

|gn(x)| ≥ gn[ϕ(x, 1/2)](17)

c

4
− sup

x∈∂M
|gn(x)| ≤ gn[ϕ(x,−1/2)](18)

When n large enough supx∈∂M |gn(x)| and δn is small eough, so we have
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−c
4

+ sup
x∈∂M

|gn(x)| ≤ − sup
x∈∂M

|gn(x)| − δn ≤
c

4
− sup

x∈∂M
|gn(x)|

so gn[ϕ(x, t)] = − supx∈∂M |gn(x)| − δn for some t ∈ [−1/2, 1/2]. which means the
line segment {ϕ(x, t)| − 1/2 ≤ t ≤ 1/2} intersects Σn at least one point. But by
inequality (16) the intersection is a single point. This gives us a one to one correspon-
dence between ∂M and Σn.

Claim 1: The map Ψ : ∂M → Σn defined by Ψ(x) = ϕ(x, t), where ϕ(x, t) is the
intersection point in Σn is a continuous.

Proof of Claim 1: Consider the map Ψ−1. It is given by the projection of ϕ−1(Σn) ⊂
∂M × (−1/2, 1/2) onto ∂M . Inverse map is homeomorphism so Ψ is continuous.

Under Ψ the Jordan curve σ on ∂M is mapped onto a Jordan curve σ̃n on Σn.
By [16] being a Jordan curve on a Riemannian surface σ̃n can be approximated

by real analytic Jordan curve σn on Σn such that σn is uniformly close to σ̃n and
they bound an annulus of arbitrary small area with respect to the induced metrics∑

i,j g
n
ijdx

i ⊗ dxj on Σn.
We will assume that σ is Lipschitz. We can define the annulus between Σn and σ

as {ϕ(x, t) : 0 < t ≤ tx} where tx is the time that annulus intersects Σn. This set is
clearly subset of {ϕ(x, t) : −1/2 ≤ t ≤ 1/2} which has finite area with respect to the
induced metric. So when Σn is very close to σ annulus has arbitrary small area with
respect to all metricss that we are considering.

Define χ = {ψ : D → R3 : ψ|∂D = σ} and χn = {ψ : D → R3 : ψ|∂D = σn}.
Let An = infψ∈χnArea(ψ) with respect to the metric

∑
i,j g

n
ijdx

i ⊗ dxj and let A =

infψ∈χArea(ψ) with respect to the metric
∑

i,j gijdx
i⊗dxj. Then limn→∞ supAn ≤ A.

Since otherwise as n → ∞ the annulus has arbitrary small area would give us a
contradiction.

Let fn be a solution to the Plateau problem for Σn in Mn. Since they are real ana-
lytic by hypotesis H we know that fn is an embedding.

Claim 2: fn has a subsequence which converges to a solution to Plateau problem
for σ.

Proof of Claim 2: Let pn1 , pn2 and pn3 in Mn be a sequence of points such that
pn1 → p1, pn2 → p2 and pn3 → p3 where pi ∈ σ and pni ∈ σn for all n and for all
i. We have a conformal map on disk sending 0 to f−1

n (pn1 ), 2
√
−1 to f−1

n (pn2 ) and
−1 to f−1

n (pn3 ). So by composing with this map we may assume that fn(0) = (pn1 ),
fn( 2
√
−1) = (pn2 ) and fn(−1) = (pn3 ) for all n. Since we have limn→∞ supAn ≤ A

there is a uniform upper bound for the areas of fn. By equation (7) in section 3,
when fn is conformal energy and area are equal. So we have also upper bound for the
energies of fn. Since the metrics

∑
ij g

n
ijdx

i⊗dxj are uniformly equivalent to the metric∑
ij gijdx

i ⊗ dxjthe energy of fn will have a uniform upper bound when considered in

the metric
∑

ij gijdx
i⊗ dxj. Also we know fn satisfies three point condition. It can be

shown that fn|∂D is equicontinuous, so by Arzela-Ascoli Thorem it has a convergent
subsequence which converges uniformly on ∂D.
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Now we will show that it converges in the interior of D. Let x ∈ D◦ be a point such
that B(x, r) ⊂ D. Then we know that by the proof of the Courant-Lebesgue Lemma
(Lemma 3.0.38) that there is some r2 < rn < r such that

L(fn(∂B(x, rn))) ≤ K(log 1/r)−1(19)

where L(fn(∂B(x, rn))) is the length of the curve B(x, rn) and K is a constant
independent of n.

Let ρ be a number such that any geodesic ball of the metric
∑

ij gijdx
i ⊗ dxj with

center in M and radius ρ is is smooth and strictly convex with respect to all metrics∑
ij gijndx

i ⊗ dxj. We can cover M by finitely many such balls B1, ..., Bl. Choose

some ε > 0 such that any geodesic ball with respect to the metric
∑

ij g
n
ijdx

i⊗dxj with
radius less than ε is a proper subset of some Bi and has distance to ∂Bi greater than
ε.

Now we want fn(∂B(x, rn)) to be a proper subset of some Bi and distance of
fn(∂B(x, rn)) to ∂Bi is greater than ε. To obtain this using equation (19), pick some
r satisfying

K(log 1/r)−1 < ε

Claim 3: The energy of fn over B(x, rn) is less than aL(fn(∂B(x, rn))) where a is
a constant depending on M .

Proof of Claim 3: We may assume that all metrics are uniformly equivalent,
so we may assume that Bi is diffeomorphic to Euclidean unit ball (All metrics are
uniformly equivalent to the Euclidean metric.) In this unit ball with respect to the
euclidean metric, for each Jordan curve fn(∂B(x, rn)) we can find a Plateau solution
hn. By [3] it is well known that Area(hn) ≤ (1/4)(L(fn(∂B(x, rn))))2. Since fn is a
solution to Plateau problem for another metric and metrics are uniformly equivalent
there is some constant a such that the energy of fn over B(x, rn) is bounded above by
aL(fn(∂B(x, rn))). Similarly the area is also bounded.

Claim 4: For r small eough we have fn(B(x, rn)) ⊂ Bi.

Proof of Claim 4: Assume for a contradiction that fn(B(x, rn)) is not a subset of
Bi. Then there is some point y ∈ fn(B(x, rn)) ∩ ∂Bi. But we know that the distance
of fn(∂B(x, rn)) from ∂B is greater than ε. So the distance of y to fn[∂B(x, rn)] is
greater than ε. Then by [ [16] Appendix] the area of fn(B(x, rn)) is greater than some
constant depending on ε and M . But we can make K(log 1/r)−1 very small such that
the area is less than the above constant by choosing r sufficiently small. Contradiction.

Now we have fn(B(x, rn)) ⊂ Bi. By Theorem (2.0.17) we have the convex hull
property. So fn[B(x, rn)] ⊂ conv(fn(∂B(x, rn))). But when r is small the convex hull
of fn[∂B(x, rn)] is arbitrarily small, so the diameter of fn(B(x, rn)) is uniformly small
which gives us the equicontinuity of {fn} for all compact subsets of D. We know that
fn converges uniformly on ∂D. So it converges on D to a continuous map f : D →M
such that f |∂D = σ.
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Claim 5: fn converges in smooth norm on compact subsets of D and the limit is
smooth in the interior of D, which is the Plateau solution.

Proof of Claim 5: Using Lp estimate and Sobolev inequality the proof is given in
[16] page 424–425

Claim 6: f is embedding.

Proof of Claim 6: Assume for a contradiction that there are two distinct points
x, y ∈ D such that f(x) = f(y). We know that f is a homeomorphism on ∂D and
f maps D◦ to M◦, so we must have x, y ∈ D◦. By lemma 4.2.2 we have convex
neighborhoods U and V of x and y, either f(U) and f(V ) intersects in an open set or
they intersects transversally and the resriction of f to either U or V is an embedding.
First one is not possible by lemma 4.2.3 so we have transversal intersection. Now
choose o local coordiante system (x1, x2, x3) such that f(U) is on the (x1, x2) plane
which contains the unit disk on that plane, and f(V ) is on the (x2, x3) plane which
contains the unit disk on that plane. Let z1 and z2 be two points on V such that
f(z1) is on the positive x3 axis and f(z2) is on the negative x3 axis. We also have

fn(z1, z2) < 1. For n large consider fn(U) over the disk with center 0 and radius 1/2.
This is very close to f so we can consider it as a graph over the disk with radius 1/2.
We may assume that fn(z1) is always above these graphs and fn(z2) is always below

these graphs. Consider fn(z1, z2). Since it has Euclidean length less than 1 it must
intersect fn(U) ,because the curves which do not intersect fn(U) and connecting fn(z1)
and fn(z2) has length greater than 1. This contradicts with fn’s being embedding. So
when we assume that the curve σ is Lipschitz the theorem is proven.

We are left with to prove the theorem for a general σ. We have some map from Σn

to M which is Lipschitz homeomorphism. Consider the inverse image of σ on Σnunder
this map. Then approximate it with a smooth Jordan curve so that they bound an
annulus with small area. Since the homeomorphism is Lipschitz this curve is mapped
to a Lipschitz curve on M and they bound an annulus of small area with σ. So the
result follows. �

We will give another hypothesis which we will prove in the next section.
Hypothesis K: Let σ be a real analytic Jordan curve in a three dimensional compact

real analytic manifold with real analytic metric and real analytic convex boundary. Let
f be a solution for the Plateau problem for σ in M .If f is embedding in a neighborhood
of ∂D and for x ∈ D◦, f(x) /∈ f(∂D) then f is an embedding from D into M .

Theorem 4.3.2. Let σ be a C2 regular Jordan curve in a three dimensional compact
manifold M with convex boundary. Let f : D → M be a Douglas-Morrey solution for
σ. If f has no boundary branch point and if f(x) /∈ f(∂D) for x ∈ D◦ then f is an
embedding from D to M. Also if σ ⊂ R3 then it is enough to assume that σ is C1

regular.

Proof. By [12] f is C1 in a neighborhood of ∂D. f has no branch points so f is
an immersion in a neighboRhood of the boundary of D. Since f is a Plateau solu-
tion f is conformal and harmonic, also it satisfies other hypothesis of lemma 4.2.12,
so f |∂D is one to one. Hence f is embedding in a neigborhood of ∂D. Define
Nε = {x ∈ D : 1− ε ≤ |x| ≤ 1}. Then f is an embedding on Nε for small ε.
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Claim 1: f(Nε) ∩ f(x||x| < 1− ε) = ∅ for small ε.

Proof of Claim 1: Assume for a contradiction that there is an element in f(Nε)∩
f(x||x| < 1− ε} for each ε > 0. So we can find sequences εi → 0 and xi, yi in D such
that |xi| < 1− εi, |yi| ≥ 1− εi and f(xi) = f(yi). We may assume that xi converges to
a point x0 ∈ ∂D. Assume that yi → y0. If y0 ∈ ∂D, then f(x0) = f(y0) implies that
x0 = y0 because f is an embedding in a neighborhood of ∂D. y0 ∈ D◦ is not possible,
because f(x0) = f(y0) ∈ f(∂D) contradicts with the assumption of the theorem. xi
and yi converges to the same point in the boundary means that eventually both xi and
yi belongs to the neighborhood of ∂D where f is an embedding. But f(xi) = f(yi)
gives us a contradiction so result follows.

Now define S = {x : |x| = 1 − ε/2} and Dε/2 = {x : |x| < ε/2}. Then f(S)
is a smooth regular Jordan curve.Also we have S ⊂ Nε so f is an embedding in a
neighborhood of S from this it follows that also for x ∈ Dε/2, f(x) /∈ f(S), because
by claim for |x| < 1 − ε it is satisfied, for 1 − ε ≥ |x| ≤ 1 − ε/2 we know that f is
an embedding on Nε. Then by lemma 4.2.11 any solution for the Plateau problem of
f(S) is equal to f up to a conformal parametrization. Now we will show that f is
an embedding. In the definition of the convex manifold N , we have a strictly convex
manifold N which contains M as a subdomain. By shrinking N a little, we consider
N has a real analytic structure and real analytic boundary. We will approximate
the smooth metric by real analytic metrics ds2

n in smooth norm and approximate the
smooth curve f(S) by real analytic curves Cn in smooth norm. Now we can find
Plateau solutions fn for the curves Cn with the metrics ds2

n such that fn : Dε/2 → M
and fn restricted to S parametrizes Cn.

Similar to theorem 4.3.1 we can show that fn converges uniformly on Dε/2. We may

assume that fn has a subsequence converging smoothly on Dε/2 to a function f̃ which
is a solution to Plateau problem for f(S).

fn converges smoothly on Dε/2, which implies that f̃ is smooth. Also f̃ is a Plateau

solution so by lemma 4.2.12 we have f̃ is a homeomorphism on S. By the three-point
condition we may assume that f̃ = f at three distinct points on S. But as stated
above by lemma 4.2.11, f̃ is equal to f up to a conformal parametrization. So there
is conformal automorphism k on Dε/2 satisfying f(x) = f̃(k(x)). By the three-point

condition k(x) = x. for all x ∈ Dε/2. So f = f̃ which means fn converges to f smoothly

on Dε/2.

Claim 2: For n large enough fn has no branch points on S.

Proof of Claim 2: f has no branch points on S = ∂Dε/2, since it is an embedding

in a neighborhood of it.fn converges to f smoothly on Dε/2. So fn has no branch point
on S for large n.

Claim 3: For n large enough fn(Dε/2) ∩ fn(S) = ∅.

Proof of Claim 3: Assume for a contradiction that this is not true. So for all n there
exists xn ∈ Dε/2 and yn ∈ S satisfying fn(xn) = fn(yn). Assume that xn → x0 Since fn
converges uniformly to f we have limn→∞ fn(xn) = fn(yn) which implies f(x) = f(y)
for x and y are the limits of the sequences xn and yn so we must have x = y ∈ S since
{yn} ⊂ S and f(Dε/2) ∩ f(S) = ∅. Take a fixed coordinate neighborhood of f(x) such
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that for all n, fn maps a fixed neighborhood of x into that coordinate neighborhood.
Define the constant vector field sequence Xn = yn−xn

|yn−xn| defined on D. By passing to a

subsequence converging to some unit vector field X we can consider Xn as a convergent
vector field. With respect to the coordinate chart, assume f 1

n is the first component of

fn. By mean value theorem we have 0 = f1
n(xn)−f1

n(yn)
xn−yn = (f 1

n)
′
(xn) for some xn on the

line segment joining xn and yn. Then we have (df 1
n)xn(Xn) = Xn(f 1

n)(xn) = 0. The
smooth convergence of fn to f on Dε/2 implies that X(f 1)(x) = 0. Similarly we have
X(f 2)(x) = 0 and X(f 3)(x) = 0. So X(f) = df(X) is equal to the zero matrix. So
the differential of f is not full rank at x. But f is conformal which implies that df is
identically zero at x. This means f has a brach point at x ∈ S which is a contradiction.

We know that fn has no branch point on S , fn(Dε/2) ∩ fn(S) = ∅ and also fn
is an embedding in a neighborhood of S, so by hypothesis K we know that fn is an
embedding on Dε/2 . Arguments similar to Thm 4.3.1 can be used to show that f is

also an embedding on Dε/2. But we already know that f is embedding on remaining
parts and the intersection is empty. So result follows.

4.4. DEHN’S LEMMA FOR ANALYTIC MANIFOLDS.

In section 4.3 we proved embeddedness problem when we know embeddedness in
real analytic case. Now we will prove for real analytic case.

Topological analysis in real analytic case is simpler, because
1) An analytic solution f : D →M is simplicial with respect to some triangulations

of D and M . This follows from [14]
2) The image of D under f is embedded near the boundary of M . This follows from

boundary regularity theorem.
Let f : M2 →M3 be a mapping from a surface into a three dimensional manifold.

Definition 4.4.1. The self intersection set of f is defined by

S(f) = {x ∈M2 : ∃y 6= x ∈M2 with f(x) = f(y)}
.

Theorem 4.4.2. Assume that f : D → M is a solution to Plateau problem from the
disk into a three dimensional manifold M satisfying the following properties:

(1) S(f) is disjoint from ∂D.
(2) f is simplicial with respect to some triangulations of D and M.
(3) The image of the interior of f is disjoint from the boundary of M .

Then f is an embedding.

(When we prove this theorem then we also prove that the following hypothesis H,
which was given in section 4.3.

Hypothesis H: Suppose that M is a three dimensional real analytic manifold with
real analytic convex boundary. Also assume that γ is a real analytic Jordan curve in
∂M . Then any solution to Plateau problem for γ is embedded. The proof is given in
the last part of this section, which is given as analytic version of Dehn’s lemma.)

Proof. If necessary by restricting the range space M we can assume that the Jordan
curve f(D) = γ lies on the boundary of M . We will now construct the following tower
of covering spaces. Let N1 be a regular neighborhood of f(D). If H1(N1, Z2) is nonzero,
then by sending nonzero elements to 1 then one can write a surjective homomorphism
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ρ : H1(N1, Z2) → Z2, and this induces a homomorphism ρ : π1(N1) → Z2. By main
isomorphism theorem the kernel of this map has index 2, so π1(N1) has a subgroup of
index 2, which gives us a 2-sheeted covering space P1 : Ñ1 → N1. When we restrict
the range of f(D) to the regular neighborhood N1 we get a new map f1 : D → N1.
Since D is a simply connected space, we can lift the map f1 to the space Ñ1 and get
a map f̃1 : D → Ñ1. Then restricting the range space f̃1(D) to a regular neighorhood
N2, we get another map f2 : D → N2. If H1(N2, Z2) is nonzero, then we can repeat the

same procedure and get a 2-sheeted cover P2 : Ñ2 → N2 and a lift f̃2 : D → Ñ2 of f2.
After restricting the lift f̃2 to a regular neighborhood N3 of f̃2(D) we get f3 : D → N3.
Repeating the same procedure n times we will get a tower of covering spaces such that
Pi : Ni+1 → Ni.

Claim 1: Each of the lifts fi : D → Ni is a solution to Plateau’s problem for the
Jordan curve fi(∂D).

Proof of Claim 1: Assume on the contrary it is not a solution for the Plateau
problem. Then there is a map g : D → Ni which is a solution to Plateau’s problem for
fi(∂D) and with respect to the pulled back metric to D we have Area(g) < Area(fi).
When we compose all covering maps and consider in the first space then we have
Area(P1 ◦ ... ◦ Pi−1 ◦ g) ≤ Area(g) < Area(fi) ≤ Area(f). This gives us a contradic-
tion. The result follows.

Claim 2: The maps f1, f2, ..., fn can be made simultaneously simplicial with respect
to a fixed triangulation of D that includes S(f) as its 1-complex.

Proof of Claim 2: Let T and K be triangulations of D and M respectively such
that for which f is simplicial. Then f(D) = |L| for some subcomplex L ⊂ K. By
adding the barycenters of the simplices of K − L we will get a subcomplex K ′ of K.
L is a subcomplex of K ′. So similarly add the barycenters of the simplices of K ′ − L
and get a subcomplex K ′′ of K. Define N(K,K ′′) = {σ ∈ K ′′ : σ ∩L 6= 0 where σ is a
closed simplex of K ′′ }. This is a regular neighborhood of f1(D) which is a subset of M
since we consider the simplices which has a common point with the image. Making two
iterations guarantees that this neighborhood does not intersect itself. We can consider
this regular neighborhood as N1. When we restrict the triangulation K ′′ to N1 then
we will get a triangulation of N1 and lifting it with the covering map we will get a
triangulation K2 of Ñ1. Then f̃1 : D → Ñ1 is a simplicial map which sends the trian-
gulation T of D to the triangulation K2 of Ñ1. We may iterate the same procedure to
get triangulations for Ñi and we have f1, f2, ..., fn are simultaneously simplicial with
respect to the triangulation T of D.

Claim 3: For some k we will have Nk with H1(Nk, Z2) = 0.

Proof of Claim 3: Define X(fj) = {(σ, τ) ∈ T × T : σ, τ are open simplices,
σ 6= τ and fj(σ) ∩ fj(τ) 6= ∅}. Then, clearly X(fj) are finite sets and we have
X(fj+1) ⊂ X(fj). We will prove that X(fj+1) 6= X(fj). Pick a base point p for Nj in

fj(D) ⊂ Nj. Also pick another base point p̃ for Ñj which is in the f̃(D)∩P−1
j (p). We

have fj(D) ⊂ Nj so the inclusion map induces the isomorphism i∗ : π1(fj(D), p) →
π1(Nj, p). For any [α] ∈ π1(Nj, p) is represented by a loop α : [0, 1] → fj(D) with
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α(0) = α(1) = p. Assume for a contradiction that X(fj+1) = X(fj). Then the

restriction of the covering map Pj to the image of f̃j must be one to one, because
otherwise the number of intersecting simplices under fj will be greater than the number
of intersecting simplices under fj+1 which will make X(fj) greater than X(fj+1). The

restriction of the covering map Pj to the image of f̃j is one to one implies that the

loop α will lift to a loop α̃ : [0, 1] → Ñj. This means that the map Pj∗ : π1(Ñj, p̃) →
π1(Nj, p) induced by the covering map Pj is onto. This is a contradiction because,

Pj∗(π1(Ñj, p̃)) ⊂ π1(Nj, p) has index 2. So we have X(fj+1) 6= X(fj). After k many
steps where k is the number of elements in X(f1), we have X(fk) = 0 so we can not
go further to the tower construction. We must have H1(Nk, Z2) = 0, otherwise we can
construct another 2-sheeted covering space.

Let fk : D → Nk be the lift of f to the space which is on top of the tower. The
pairing between homology and cohomology groups is nondegenerate and H1(Nk, Z2) =
0 implies that H1(Nk, Z2) = 0. H2(Nk, ∂Nk, Z2) = 0 by the Poincare duality for
manifolds with boundary. The long exact sequence for the pair (Nk, ∂Nk) is

→j∗ H2(Nk, ∂Nk, Z2)→∂ H1(∂Nk, Z2)→i∗ H1(Nk, Z2)→ ..

It follows that H1(∂Nk, Z2) = 0. For each boundary component of Nk the first ho-
mology group with Z2 coefficients is zero. By the classification theorem for compact
surfaces it follows that each component of the boundary is a sphere.

Claim 4: fk : D → Nk is an embedding.

Proof of Claim 4:

Claim 4.1: Since Nk is a simplicial regular neigborhood after a possible subdivision
there is a simplicial retraction S : Nk → fk(D).

Proof of Claim 4.1: By the definition of regular neighborhood, fk(D) is obtained
from Nk by sequentially collapsing the three simplices of Nk which has free face or
faces that is not contained in fk(D). For the collapsing process there are three cases
to be considered.

Case 1: Suppose σ is a three simplex [ABCD] with vertices A, B, C, D and exactly
one free face [ABC] that is not contained in fk(D). Then let v be the barycenter of
the free face [ABC] and L is the straight line joining v to the vertex D. By projecting
the face [ABC] linearly along L, onto the other faces, the simplex can be collapsed.

Case 2: Now assume that the simplex has two free faces [ABC] and [ACD] that is
not contained in fk(D). Let L be the line passing through the barycenter of [AC] and
barycenter of [BD]. By projecting the free faces along L linearly the simplex can be
collapsed.

Case 3: Assume that the simplex has three free faces [ABC], [ACD] and [ABD]
that is not contained in fk(D). Let L be the line passing through the barycenter of
[BCD] and the vertex A. The simplex can be collapsed by linearly projecting the free
faces along L onto [BCD].

Clearly these maps are simplicial when we add the barcenters of the faces. If
there are n such simplices after n sequential collapsing we get a piecewise linear map
S|∂Nk = R : ∂Nk → fk(D).
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Claim 4.2: The simplicial retraction defined in Claim 4.1 has a restriction R =
S|∂Nk : ∂Nk → fk(D) such that R covers each open 2-simplex of fk(D) exactly two
times and R|(∂Nk\fk(∂D)) is locally one to one.

Proof of the claim 4.2: In the above collapsing process we project the free face that
is not contained in fk(D) onto the other faces in a one to one manner so R|(∂Nk\fk(∂D))

is locally one to one. Each open two simplex of fk(D) is a face of exactly two three
simplexes and R|(∂Nk\fk(∂D)) is locally one to one, so two simplex is collapsed on it.
The result follows.

γ = fk(D) is a Jordan curve lying in ∂Nk. So it is on one of the boundary spheres
of Nk. By the Jordan curve theorem it separates the sphere into two connected disks
D1 and D2. By claim 4.2 we know that the retraction on the boundary Nk covers the
two simplices on fk(D) at most two times. So we have Area(R|D1) + Area(R|D2) ≤
2Area(fk). If one 2-simplex on fk(D) is not covered by one of the maps (R|D1) or
(R|D2) then the inequality is strict. But then one of the maps (R|D1) or (R|D2) has
area less than Area(fk). We know that they bound the same curve γ and fk is a
solution to Plateau problem, which gives us a contradiction. So we have every two
simplex on fk(D) is covered by one of the maps (R|D1) or (R|D2) and we have the
equality Area(R|D1) = Area(R|D2) = Area(fk).

By lemma 4.2.1 and 4.2.2 the self intersection set can not be a point and an open
set but it can be finite curves, so there is one simplex in fk(S(fk)). Take a 2-simplex
σ having an edge E which is one of the one simplexes in fk(S(fk)). Then by the
last paragraph σ is covered by one of the maps (R|D1) or (R|D2), say (R|D1). fk is
real analytic then by lemma 4.2.1 we may assume that have after subdivision fk is
transverse to itself at points other than the vertices of the triangulation of fk(D).
Because we can make the triangulation such that the vertices is satisfies that property.

Since R is the restriction of a retraction to ∂Nk there are maps Ri : ∂Nk →
(Nk − fk(D)) such that each Ri is an embedding and Ri converges smoothly on each
closed simplex to R. (We can consider maps that send the part ∂Nk that stays in
above fk(D) to surface that is stays above it and the part below to a surface below it
such that as i → ∞ these surfaces get closer to fk(D)) . Let R−1(σ) = σ1 ⊂ D1 be a
two simplex. Let σ2 be another two simplex which has R−1(E) ∩ σ1 as an edge. Then
σ1 ∪ σ2 forms a disk and we have the situation described before lemma 4.2.8.(We have
maps converging to R that does not intersect the image of R. Also other hypothesis
of the lemma satisfied.) So by lemma 4.2.8 R has a folding curve along E. By lemma
4.2.9 we can decrease the area of R|D1 with the same boundary. But R|D1 has the
same area with fk, and fk is a solution to Plateau’s problem, which is a contradiction.
So we must have fk is an embedding. If we show that k = 1 the theorem will be proven.

Claim 5: k = 1.

Lemma 4.4.3. Suppose that f : D → M is a minimal immersion from the disk into
a three dimensional manifold, simplicial with respect to some triangulations of M and
D with S(f) 6= ∅ and S(f)∩ ∂D = ∅. Then there exists a Jordan curve γ1 on D which
bounds a subdisk D1 with ∂D1 = D1 ∩ S(f).

Proof. S(f) is one complex with every vertex in it is joined by at least two edges in it
by corollary 4.2.3
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By induction it can be shown that a finite one-dimensional complex with these
properties have a simple closed curve in each path component.

Hence the collection C of all Jordan curves in S(f) is nonemtpty. Define the Jordan
curve γ ∈ C such that γ is the boundary of a subdisk D1 of D such that (int(D1))∩S(f)
contains the smallest number of open one-simplexes of S(f). There are two cases.

i) Every closed one-simplex of S(f) that is contained in D1 ∩ S(f) and which inter-
sects γ is a subset of γ.

ii) There is a one simplex in D1 ∩ S(f) which intersects γ at a point p and which is
not contained in γ.

In case i) we must have int(D1∩S(f) = ∅. Assume on the contrary. Then any closed
simplex of S(f) must stay on int(D1). So there is a path component of S(f) staying in
intD1. Any path component contains a Jordan curve, so there is a Jordan curve α in
D1 different than γ. α bounds some disk D2 such that D2 ⊂ D1 and (int(D2)) ∩ S(f)
has fewer open simplices than (int(D1)) ∩ S(f). So there is no Jordan curve different
from γ and contained in D1 ∩ S(f). Contradiction. For this case lemma is proven.

We will see that case ii) is not possible. In the last paragraph we have seen that
there is no Jordan curve different from γ and contained in (D1 ∩ S(f). So there is a
longest Jordan arc τ : [0, 1] → D1 ∩ S(f) with τ(0) = p and τ((0, 1)) is contained in
int(D1). Because τ((0, 1)) is the longest arc τ(1) must be a vertex of S(f). We have
every vertex in int(D1∩S(f) is joined to an even number of edges of S(f). If τ(1) /∈ γ,
then there is another edge in (D1 ∩ S(f) to which τ(1) is joined. But τ is the longest
arc this is not possible, so we must have τ(1) ∈ γ. The Jordan arc together with one
of the arcs on γ joining τ(0) and τ(1) gives us a Jordan curve in D1 ∩ S(f) different
than γ. We know that this is not possible. So lemma is proven. �

Proof of Claim 5: Assume for a contradiction that k > 1 and S(fk−1) is nonempty.
We know that fk : D → Nk is an embedding by the above claim. So it is one to one.
Consider the order two deck transfromation σ : ˜Nk−1 → ˜Nk−1. Then any point and
its image is sent to same point under the covering map Pk−1. If a point p in fk−1(D)
is an intersection point then there are two points in ˜Nk−1 sent to that point. That is
Pk−1(q) = Pk−1(σ(q)) = p. fk is one to one so there are q1, q2 ∈ D such that fk(q1) = q
and fk(q2) = σ(q). So q1 and q2 are sent to p under the map fk−1. So S(fk−1) consists of
entirely double points. By lemma 4.4.3 there is a Jordan curve γ1 : S1→ D bounding
a subdisk D1 with D1∩S(fk−1) = ∂D1. Since S(fk−1) consists of entirely double points
there is another curve γ2 : S1 → D. Then we have fk(γ2) = σ(fk(γ1)). As fk is an
embedding and γ2 = f−1

k ◦ σ ◦ fk(γ1), γ2 is a continuous Jordan curve.
Then γ2 bounds a subdisk D2 of D. Suppose that Area(D1) ≤ Area(D2). Choose

a diffeomorphism h : D2 → D1 with h(α2(t)) = α1(t). We have h(γ2(t)) = γ1(t). Now
define a map g : D → Nk−1 by

g(x) =

{
fk−1(x) if x ∈ (D −D2)
fk−1 ◦ h(x) if x ∈ D2

which places the image of the disk D1 instead of the image of the disk D2. g is
a continuous piecewise smooth map with Area(g) ≤ Area(fk−1). We will prove that
g has a folding curve, then by lemma 4.2.9 Area(g) can be decreased and this will
contradict the least area property of fk−1. S(fk−1) is compact, so by lemma 4.2.2 and
4.2.3, fk−1 crosses itself transversely except at finitely many points which are vertices
in the triangulation of D. Pick a point p ∈ γ1(S1) and q = σ(p) ∈ γ2(S1) which
corresponds to a point of transverse self-intersection. Since fk−1 is an immersion we
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have disjoint neighborhoods U1 and U2 of p and q respectively such that fk−1 is an
embedding on U1 and U2 and fk−1(U1) and fk−1(U2) intersect transversely along an
arc α : [0, 1]→ Nk.

For any x ∈ ∂D1 or ∂D2 define tx as the tangent vector of the oriented curves ∂D1

or ∂D2 at x and also define nx as the outer normal vector of the oriented curves ∂D1

or ∂D2 at x. At the point fk−1(p) = fk−1(q) the two planes are transversal so the plane
spanned by (fk−1)∗(tp) and (fk−1)∗(np) intersects transversally the plane spanned by
(fk−1)∗(tq) and (fk−1)∗(−nq). We know (fk−1)∗(tp) = g∗(tp), (fk−1)∗(np) = g∗(np),
(fk−1)∗(tq) = g∗(tp) and (fk−1)∗(−nq) = g∗(−np). When we replace this in the last
sentence we will get the plane spanned by g∗(tp) and g∗(np) intersects transversally the
plane spanned by g∗(tp) and g∗(−np). So by the definiton of the folding curve g has a
folding curve along g(∂D1). This is impossible. So result follows. �

Theorem 4.4.4. (Analytic Version of Dehn’s Lemma:) Suppose M is a three dimen-
sional convex analytic manifold and γ is an analytic Jordan curve in ∂D which is
nullhomotopic in M . Then γ bounds an embedded solution to Plateau’s problem and
each such solution is embedded.

Proof. As in the proof of Theorem 4.3.1 we may assume that a solution f maps an the
interior of D to the interior of M . The case where the solution is mapped onto the
boundary can be solved similar method in Theorem 4.3.1. f has no boundary branch
point by [13], f |∂D is one to one, f is an immersion at the boundary and there is a
neighborhood N of ∂D where f is an embedding. Since f(D − N) is compact and
and disjoint from the boundary of N , f(D − N) stays a positive distance from the
boundary. So f is embedded near the boundary of M .

By a theorem of Morrey f : D →M is an analytic mapping. By the triangulability
theorem [14] f is simplicial with respect to some triangulations of D and M . So all
conditions of theorem 4.4.2 is satisfied. f is an embedding.

�

4.5. THE EMBEDDING THEOREM FOR PLANAR DOMAINS.

We will say that a continous map g which maps a compact smooth surface Ω into a
three dimensional manifold bounds a collection of disjoint Jordan curves {γ1, ..., γn} if
g|∂Ω is a homeomorphism onto

⋃n
i=1 γi.

Theorem 4.5.1. Let Γ = {γ1, ..., γn} be a collection of disjoint unoriented Jordan
curves on the boundary of a three dimensional orientable convex manifold M . Assume
that these Jordan curves bound a continous mapping g from a compact plane domain
Ω. Then there exists a branched minimal immersion f : Ω → M which bounds Γ and
has least area among such maps. Also all such maps must be embeddings.

(sketch of proof) First for the anlaytic case is proven. This is done by similar method
to section 4.4. The tower construction is done. However this is more complicated
since there are more curves. Then it is similarly found that any path component of
∂Nk \ ∪ni=1γi is either a sphere or a planar surface bounded by the curves. Then it is
shown that fk, which is the map on the top of the tower, is embedding. Then by using
cut and paste arguments, it is proven that in fact k = 1.

For the smooth case the approximation procedure in the proof of 4.3.1 is used. Then
for any given Plateau solution, embeddedness is proven by using the given lemmas and
theorems.
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4.6. THE GENERAL CASE OF DEHN’S LEMMA.

Theorem 4.6.1. Suppose M is a three dimensional convex manifold. If γ is a Jordan
curve on the boundary which is contractible in M , then

(1) There exists a solution with finite area to Plateau problem for γ.
(2) Any solution to Plateau problem for γ is embedded.
(3) Any two solutions to the Plateau problem either represents the same disk or the

images intersect only at the boundary.

Proof. (1) follows from theorem 4.1.4. In section 4.4 we see that the hypotesis is proven.
For the smooth case it is proven by approximating the curve with real analytic curves
and the metric with real analytic metrics similar to the technique used in the proof of
theorem 4.3.1. Alternatively the method given in the last part(before corollary) of the
section 5 of [16] may be used. So (2) also follows.

Now we will prove (3). Let f1 and f2 be two solutions to Plateau problem for the
curve γ which does not represent the same disk.

Claim 1: f1(D) ∩ f2(D) = γ

Proof of Claim 1: First we will give the proof for analytic Jordan curve γ and
analytic metric on M . Define the sets S(f1, f2) = {x ∈ D|∃y ∈ D with f1(x) = f2(y)}
and {S(f1, f2) = x ∈ D|∃y ∈ D with f2(x) = f1(y)}. These are analytic subsets of D
and f1(D) and f2(D) are embedded in M .

Assume for a contradiction that f1(D) ∩ f2(D) 6= γ. By the same technique used in
the proof of Lemma 4.4.3 we can see that there is a Jordan curve γ1 ⊂ S(f1, f2). Let
γ2 be the corresponding curve in S(f2, f1). Let D1 and D2 be the subdisks bounded
by γ1 and γ2 respectively. f1(γ1) = f2(γ2) and f1 and f2 are solutions to Plateau
problem for the curve f1(γ1). By lemma 4.2.11 any solution to the Plateau problem
for the curve f1(γ1) must be a conformal reparametrization of the other solution. So
we must have f1(D1) = f2(D2). But this contradicts with lemma 4.2.2. So we must
have f1(D) ∩ f2(D) = γ.

Let γ be an arbitrary Jordan curve on ∂M . Assume again that f1(D)∩f2(D) 6= γ and
f1 is not the conformal reparametrization of f2. Since by theorem 4.1.4 we have either
the interior of D is mapped onto the interior of M , or the disk is mapped completely
onto ∂M . If one of f1(D) or f2(D) is mapped onto the boundary then clearly we have
f1(D) ∩ f2(D) = γ. Then assume that neither of the two is not contained in ∂M . By
lemma 4.2.1 f1(D) and f2(D) intersects transversely. Let k : [0, 1] → M◦ be the arc
of transverse intersection. Consider a small ball B centered at k(1/2) such that k(0)
and k(1) are on ∂B. Let the intersection of B with f1(D) and f2(D) be F and E
respectively. So E and F also intersects transversely along k. Let the intersection of
E with ∂B be α and the intersection of F with ∂B be β. One point intersections of α
and β separates α into two subarcs say α1 and α2 and β into two subarcs say β1 and
β2. Let E1 and E2 be two subdisks of E separated by k and with boundary α1 and
α2 respectively. Similarly let F1 and F2 be two subdisks of F separated by k and with
boundary β1 and β2 respectively.

Define Aij = Area(Ei ∪ Fj) and Bij is the solution of the Plateau problem for the
Jordan curve αiβ

−1
j . Also define ε = inf{(Aij − Bij)|1 ≤ i, j ≤ 2}. Since the Ei ∪ Fj

has a folding curve along the arc k. So by lemma 4.2.9 we have ε > 0.
Now construct a sequence of analytic Jordan curves γi : S1 → ∂M. which converge

uniformly to γ : S1 → ∂M and that are disjoint from γ. Assume also that for all i
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the area of the annulus bounded by γi and γ is less than min(ε/5, AreaE). For the
annular area bounded by γ and α f2|D−f−1

2 (E◦) say F , is the unique solution to Plateau’s

problem. Similar to proof of theorem 4.3.1 when we take the maps Fi : Ω→M which
are annular solutions to Plateau problem for the annular area Ω which is the area
bounded by γi and α, they converges uniformly to F. We have F is transverse to f1(D)
near the boundary of B. Since the convergence is uniform in C∞ norm we may assume
that Fi is embedded near α and it is transverse to f1(D) near the boundary of B and
Fi(Ω

◦) is different from B. By [[16] remark(given in the proof of theorem 5)] it follows
that Fi is an embedding for large i.

Now consider large i satisfying the above properties. Glue the embedded annu-
lus Fi(Ω) along the boundary α to the embedded disk E and let the map represents
this area is f3 which is a piecewise differentiable map. When the metric is real an-
alytic on M , then the sets S(f1, f3) = {x ∈ D|∃y ∈ D with f1(x) = f3(y)} and
{S(f3, f1) = x ∈ D|∃y ∈ D with f3(x) = f1(y)} are finite 1-complexes which have even
number of edges since the intersection is two to one. The same applies by lemma 4.2.2
when the metric is not real analytic.

Claim 2: There is a Jordan curve δ1 ⊂ S(f1, f3) such that f−1
1 ⊂ δ1.

Proof of Claim 2: Consider the arc κ = f−1
1 (k) ⊂ S(f1, f3) with end points p1 and

p2. If we show that there is a path joining p1 to p2 in the setX = (S(f1, f3)−κ)∪{p1, p2}
then we are done. Assume for a contradiction that p1 and p2 lie in different path
components P1 and P2 respectively. By induction argument on the number of edges in
a finite one-complex it can be seen that a finite one-complex can not have odd number
of vertices where odd number of edges meet. So this is true in (S(f1, f3). ie in (S(f1, f3)
there is an even number of vertices where odd number of edges meet. When we delete
κ, p1 is left with an odd number of vertices. So P1 has odd number of edges where odd
number of edges meet. We have a contradiction. So we have an arc joining p1 to p2.
Let σ be the shortest of these arcs and define δ1 = σκ. Result follows.

By the above claim we have a Jordan curve δ1 ⊂ S(f1, f3) such that f−1
1 ⊂ δ1. Let

δ2 ⊂ S(f3, f1) be the corresponding Jordan curve. So we have f1(δ1) = f2(δ2). Let
the disk bounded by δ1 and δ2 be D1 and D2 respectively. f1 is a solution to Plateau
problem, so by lemma 4.2.11 any Plateau solution to the curve f1(δ1) = f2(δ2) is a
conformal reparametrization of the restriction of f1 to D1. ie represent the same disk.
So we have Area(f1|D1) ≤ Area(f3|D2).

We have chosen i large enough so that the area of the annulus between the curves
γ and γi is less than ε/5. So we have Area(f3) ≤ Area(f1) + ε/5. By interchanging
the disk f3(D2) with the disk f1(D1) we get a new map f4 : D → M such that
Area(f4) ≤ Area(f3) ≤ Area(f1) + ε/5.

We have chosen as the infimum of difference between the Plateau solution to the
curve αiβ

−1
j so we may decrease the area of f4 at least ε. So there is a solution f5 to

Plateau problem for γi, so we have Area(f5) ≤ Area(f1) − 4ε/5. We have the area
of γi and γ is less than ε/5. So there is another map f6 : D → M with boundary γ
such that Area(f6) ≤ Area(f1) − 3ε/5. This contradicts with the fact that f1 is area
minimizing. So the theorem is proven. �
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