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ABSTRACT

In this thesis, we have studied contact angle behavior of droplets on ideal and rough

surfaces. We have examined contact angles on both homogeneous rough surfaces and hetero-

geneous rough surfaces. Then, we have studied how the contact angles of droplets change if

we apply an external potential to the surface where the droplet rests. Splitting of a droplet

has also been studied. To do that, first we have rederived some formulas and with the help

of these formulas we have figured out how to split the droplets. Also, we have calculated the

electrostatic forces and capacitive energies on an ewod-actuated droplet. Finally, we have

calculated the forces acting on the liquid-droplet interface of a droplet which is immersed

in a liquid. These calculations have been done for three different cases.
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ÖZETÇE

Bu çalışmada, damlacıkların kontakt açılarının kusursuz ve pürüzlü yüzeylerde nasıl

davrandıg̃ını inceledik. Kontakt açıların homojen ve heterojen yüzeylerde nasıl davrandıg̃ını

inceledik. Daha sonra, damlacıkların üzerinde bulundug̃u yüzeye bir potansiyel uygularsak

açının nasıl deg̃işeceg̃ine baktık. Damlacıg̃ın nasıl bolünebileceg̃i konusu da çalışıldı. Bunu

yapabilmek için öncelikle bazı formülleri elde etik ve bu formüller yardımıyla damlacıg̃ın

nasıl bölüneceg̃ini og̃rendik. Ayrıca, ewod yöntemiyle harekete geçirilen damlacık üzerine

etki eden kuvvetleri ve kapasitif enerjileri hesapladık. Son olarak da, başka bir sıvı içerisine

daldırılmış bir damlacıg̃ın sıvı-damlacık yüzeyine etki eden kuvvetleri hesapladık. Bu hesapla-

malar üç ayrı durum için yapıldı.
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Chapter 1

INTRODUCTION

In the beginning of the 19th century, Laplace and Young proposed the existence of the

term interfacial energy [23, 24, 25] and that term was the essence of wetting, which has

become one of the hottest topics in the last 20 years [26, 27] because of some applications

such as self-cleaning. Wetting is the result of intermolecular interactions when a liquid and

a solid are brought together. If a liquid has a large surface tension or if it is put on a

surface with low surface tension, it will have a small contact with the surface and form a

spherical shape. However, droplets having low surface tension or droplets on a surface with

high surface tension will maximize the contact with the surface.

Wetting has been studied for many years both theoretically [28, 29], and experimentally

[30, 31]. Studying wetting properties of liquids on ideal surfaces is easier but in real life

surfaces are not ideal but rough. Studying wetting properties and contact angle behavior

of liquids is much harder on rough surfaces due to complications of roughness.

Figure 1.1: Lotus Effect

As we said before, self cleaning of the surfaces is a very important area to investigate.

Some plant leaves such as, lotus plant leaves, raspberry leaves and strawberry leaves are
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known as water repellents because they eliminate the water droplets. When a water droplet

comes on the leaf, the droplet minimizes the contact with the leaf and starts rolling over the

leaf and while rolling, it washes off the contamination very effectively as seen in Fig. (1.1).

Water repellent surfaces are very important in many areas, such as prevention of adhesion

of snow, self-cleaning windows, rain drops on planes.

For a droplet to start rolling, it should have a small contact angle hysteresis. The contact

angle hysteresis and the apparent contact angle depend on the surface where the droplet

rests. The surface roughness has a strong effect on the contact angle hysteresis of droplets

and it has been studied by many researchers [32, 33] in order to develop superhydrophobic

surfaces. If we can combine hydrophobicity and roughness cleverly, we can have droplets

which can remain nearly spherical on substrates [34, 35, 36, 37].

Fluidic control at small scales is also very important due to its potential applications

such as chemical analysis. In chemical analysis, it is preferred to use small droplets rather

than continuous flows, because it is more efficient and easier to control. Electrowetting,

EWOD, is the most promising actuation method where the droplet can be carried on flat

surfaces or between two plates.
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Chapter 2

CONTACT ANGLE ON IDEAL AND ROUGH SURFACES

In this section, we briefly explain what a contact angle is and how it behaves on ideal and

rough surfaces. We also discuss hydrophobic and hydrophilic surfaces and which features of

droplets tell us whether the surface is more hydrophobic or not. Contact angles of the same

droplet on homogeneous and heterogeneous surfaces act differently and we derived contact

angle formulas of droplets on these surfaces.

2.1 Contact Angle

Adhesive forces are considered between two bodies. If we consider glass and water, attractive

forces between them cause the water to spread across the surface. But cohesive forces are

internal forces of a body, which results due to the attraction of the molecules of it. Cohesive

forces cause the water drop to have a spherical shape and avoid contact with the surface.

So, we can say that the contact angle of a droplet on a substrate is the result of adhesive and

cohesive forces. The contact angle θ, as seen in Fig. (2.1), is the angle between liquid-vapor

interface and solid-liquid interface. In Fig. (2.2) we can see that when the drop spreads

over the surface contact angle decreases. So, we can say that contact angle has an inverse

measure of wettability.

Figure 2.1: Contact angle



Chapter 2: Contact Angle on Ideal and Rough Surfaces 4

For low contact angles (θ < 90o), the wetting is propitious and the droplet spreads on

a large portion of the substrate. For high contact angles (θ > 90o) the wetting is poor,

so the droplet will not spread over the substrate and minimize the contact. For water

droplets if the surface is wettable we can call the surface as �hydrophilic�but if the surface

is non-wettable we can call it as �hydrophobic�. There is also one more surface called as

�superhydrophobic�on which the contact angle of a water droplet is higher than 150o. Water

droplets on superhydrophobic surfaces have almost no contact with the surface.

Figure 2.2: Relation between contact angle and wettability

We can seperate the solids into two groups: the first one is high energy solids. Solids

such as metals are hard solids because bonds within the solids are very strong. Most liquids

show low contact angle, thus high wettability on high energy solids. The second group is

low energy solids. The bonds within these solids are weak. Liquids on low energy solids can

either have complete or partial wetting.

In 1805, Young and Laplace proposed existence of the �surface energy�term which is the

excess energy of a material at the surface [1]. If gravity effect is neglected, a droplet on an

ideal substrate will form a spherical cap. By ideal, we mean that the substrate is flat, rigid,

perfectly smooth and chemically homogeneous. Contact angle, θ, of a droplet on an ideal

surface was proposed by Thomas Young two hundred years ago [2];

cos θ =
γSV − γSL

γLV
(2.1)

where γSV , γSL , and γLV are solid-vapor, solid-liquid, and liquid-vapor interfacial tensions

respectively.
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Unlike described above, solids are not ideal but rough, which affects their wettability very

much [3]. The wettability is affected by not only non-ideality of surfaces but also droplets

containing different chemical species such as surfactants [4]. Droplets remaining stuck on a

tilted surface can be given as an example for the result of non-ideality of the surface. For

this situation the droplet has two contact angles; advancing contact angle θa, and receding

contact angle θr. We can observe advancing and receding contact angles in the following

way; first we put the droplet on a substrate and start tilting the substrate. When the droplet

starts moving, the angle in the leading face of the droplet is the advancing contact angle

and the angle in the rear part of the droplet is the receding contact angle as in Fig. (2.3).

Shortly, maximum and minimum contact angle values are called advancing and receding

contact angles respectively. The difference of advancing contact angle and receding contact

angle is called as �contact angle hystetesis� which is shown by H. (H = θa − θr). Contact

angle hysteresis is a very important parameter [4] and we can explain this importance with

an example. Let us assume we have two different surfaces. When we put a droplet on

the first surface let the contact angle be θ1 = 170o, and let the contact angle of the same

droplet be θ2 = 150o on the second surface. First surface seems more hydrophobic than

the second surface due to the larger contact angle. However, the second surface might be

more hydrophobic. To understand this let us start tilting the surfaces. If the contact angle

hysteresis of the first droplet, H1 , is large the droplet remains stuck on the tilted surface.

However, if the contact angle hysteresis of the second droplet, H2 , is very low the droplet

starts rolling on the surface. Because H1 > H2, we conclude that the second surface is more

hydrophobic. So, to discuss whether a surface is superhydrophobic or not we should not

only mention its contact angle but also its contact angle hysteresis [5].

Figure 2.3: Contact angle hysteresis
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Rough surfaces can be split into two categories: homogeneous and heterogeneous sur-

faces. On homogeneous rough surfaces, the liquid fills the roughness of the surface. However,

on the heterogeneous rough surfaces there is air in the roughness, so the liquid is in contact

with both air and the surface. Wenzel and Cassie-Baxter methods try to explain how the

contact angles of droplets behave on homogeneous and heterogeneous surfaces respectively.

[1, 3, 4, 6]

Figure 2.4: a) Cassie state, b) Wenzel state, [6]

2.2 Wenzel’s Model

Wenzel proposed a model to understand how the roughness affects contact angle of a droplet.

He assumed a substrate with roughness r, which is defined as the surface area of the solid

over its apparent surface area. The contact angle, θ∗, of the droplet on this rough surface

can be calculated by assuming a small displacement dx of the contact line as in Fig. (2.5).

The displacement will cause a change in the surface energy [4]:

dE = r(γSL − γSV )dx+ γLV dx cos θ∗ (2.2)

Figure 2.5: Displacement of the contact line, [4]
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We know that, E will be minumum at equilibrium. By substituting Young’s law

γSV − γSL = γLV cos θ in the equation above we get the Wenzel’s relation;

0 = −γLV r cos θdx+ γLV dx cos θ∗

cos θ∗ = r cos θ (2.3)

This relation tells us that if a droplet is put on an ideal hydrophilic surface (θ < 90o),

the following relation holds true; θ∗ < θ < 90o. If the same droplet is put on an ideal

hydrophobic surface (θ > 90o), the relation is θ∗ > θ > 90o

2.3 Cassie-Baxter Method

In this model the air is trapped in cavities and the liquid is in contact with both air and

solid. In this case [1],

γSV → rγSV

γSL → φrγSL + (1− φ)(rγSV + γLV )

where φ is the fraction of the area where the liquid is in contact with the solid. If we

substitute these relations in Eq. (2.1) we get;

cos θ∗ =
rγSV − φrγSL − (1− φ)(rγSV + γLV )

γLV

=
rγSV − φrγSL − rγSV − γLV + φrγSV + φγLV

γLV

=
φr(γSV − γSL) + γLV (φ− 1)

γLV

=
φrγLV cos θ + γLV (φ− 1)

γLV

cos θ∗ = φ(r cos θ + 1)− 1 (2.4)

Note that when φ = 1, Eq. (2.4) reduces to Eq. (2.3). We have seen that roughness

can make a hydrophobic surface more hydrophobic. For example, if the contact angle of a

droplet on an ideal surface is around 120o, it can be as high as 150o on a rough surface.

Both of the methods above explains this effect.
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Chapter 3

CONTRIBUTION OF ENERGY AND ENTROPY TO THE

ELECTRICAL DOUBLE LAYER

3.1 Electrical Double Layer

When we bring a liquid, which contains free ions, and a solid in contact, due to van

der Waals forces, adsorption of ions and water molecules occurs. As a result, a layer which

consists of a region with a net surface charge bound to solid and another region above it

is formed. This layer is called electrical double layer [5]. If we have a solid surface which

is electrically charged, because of the attraction of the ions, having opposite charge, to the

surface and repulsion of the ions, having the same charge, away from the surface, electrical

double layer is formed. The lower layer is called Stern layer and the other layer is called

diffuse layer. Adsorption of water molecules does not introduce a net surface charge. If we

have a solution which contains ion types, i, with charge number, zi , in mole fraction, xi the

thickness of the diffuse layer, as seen in Fig. (3.1), is called Debye length, 1/K, where

K
2

=
∑

i ni0z
2

i
e

2

εrε0kT

where n is the concentration of ions, ε0 the vacuum permittivity, εr the dielectric constant

of the solution.

Figure 3.1: Electrical Double Layer, [5]
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3.2 The Energy

In order to calculate the energy contribution to the double layer let us define dimensionless

potentials as ψ=
eϕ

kT
, and ψ0=

eϕ0

kT
. Also, surface charge density relation states that [9],

σ = −εrε0∇nϕ = −εrε0
dϕ

dn
(3.1)

where n is the normal of the surface.

The Green’s theorem tells us that [7],

−
∫
A

(a0∇nb)dA =
∫
V

(a∇2
b+∇a.∇b)dV (3.2)

where a and b are scalar fields. These fields vanish at infinity and have values a0 , and b0 at

the surface. We also need Poisson’s equation for some future calculations,

∇2
ϕ = − ρ

εrε0
(3.3)

The electrostatic energy, U
el

, can be written as [8],

U
el

=
εrε0

2

∫
V

(∇ϕ)
2
dV

By using Green’s theorem we get,

U
el

= −εrε0
2

∫
A
ϕ0

(
∂ϕ

∂n

)
surf

dA− εrε0
2

∫
V
ϕ(∇2

ϕ)dV

If we substitute Eq. (3.1), and Eq. (3.3) in the equation above,

U
el

= −εrε0
2

∫
A
ϕ0

(
−εrε0
−εrε0

)(
∂ϕ

∂n

)
dA− εrε0

2

∫
V
ϕ

(
−ρ
εrε0

)
dV

Finally,

U
el

=
1
2

∫
A
ϕ0σdA+

1
2

∫
V
ϕρdV (3.4)

We can get Poisson-Boltzmann equation, Eq. (3.5), by using the equation below,

∇2
ϕ = − ρ

εrε0
= −

∑
i zieni
εrε0

= −
∑

i zieni0 exp(−zieϕ/kT )
εrε0

For a single z-z electrolyte we can rewrite the equation as,

∇2
ϕ = −zen0

εrε0
exp(−zeϕ/kT ) +

zen0

εrε0
exp(zeϕ/kT )

=
zen0

εrε0
[exp(zeϕ/kT )− exp(−zeϕ/kT )]



Chapter 3: Contribution of Energy and Entropy to the Electrical Double Layer 10

= 2
zen0

εrε0
sinh(zeϕ/kT )

= 2
zen0

εrε0

(ze
ze

)(kT
kT

)
sinh(zeϕ/kT )

= 2
z

2
e

2
n0

εrε0kT

(
kT

ze

)
sinh(zψ)

∇2
ϕ = K

2 kT

ze
sinh(zψ) (3.5)

3.3 The Entropy

The entropy difference, ∆S, between the ion distribution in the double layer and solvent

molecules at ϕ = 0 can be written for dilute solutions by [8],

∆S = −k
∫
V

[∑
i

ni ln
(
xi
xi0

)
+ nw ln

(
1−

∑
i xi

1−
∑

i xi0

)]
dV

∼= −k
∫
V

[∑
i

(
ni ln

(
ni
ni0

)
− ni + ni0

)]
dV

By using the relations, ni = ni0e
−zieϕ/kT , and ψ =

eϕ

kT

∆S = −k
∫
V

[∑
i

(
ni0e

−ziψ ln
(
ni0e

−ziψ

ni0

)
− ni0e−ziψ + ni0

)]
dV

= −k
∫
V

[∑
i

(
ni0e

−ziψ(−ziψ)− ni0e−ziψ + ni0

)]
dV

= k

∫
V

[∑
i

ni0(ziψe
−ziψ + e−ziψ − 1)

]
dV (3.6)

We know that,

ρ =
∑
i

zieni = −εrε0∇
2
ϕ (3.7)

If we integrate the equation above over (0,ψ) we get,∫ ψ

0
εrε0∇

2
ϕdψ = −

∫ ψ

0
ρdψ =

∫ ψ

0

∑
i

eni0e
−ziψd(−ziψ) =

∑
i

eni0(e−ziψ − 1) (3.8)

Let us multiply Eq. (3.6) by -T and seperate the integral into two parts,

−T∆S = −kT
∫
V

[∑
i

ni0(ziψe
−ziψ + e−ziψ − 1)

]
dV

= −kT
∫
V

∑
i

ni0ziψe
−ziψdV − kT

∫
V

[∑
i

ni0(e−ziψ − 1)

]
dV
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By using Eq. (3.7) and Eq.(3.8)

= −kT
∫
V

∑
i

ni0zi

(e
e

)
ψe−ziψdV − kT

(e
e

)∫
V

[∑
i

ni0e
−ziψ − 1

]
dV

= −kT
∫
V

(
ψ

e

)
(−εrε0)∇2

ϕdV − kT

e

∫
V
dV

∫ ψ

0
εrε0∇

2
ϕdψ

ψ =
eϕ

kT
⇒ dψ =

e

kT
dϕ

−T∆S = kT

∫
V

eϕ

kT

1
e
εrε0∇

2
ϕdV − kT

e

∫
V
dV

∫ ψ

0
εrε0∇

2
ϕ
e

kT
dϕ

Finally we get,

−T∆S = εrε0

∫
V
ϕ∇2

ϕdV − εrε0
∫
V
dV

∫ ϕ

0
∇2
ϕdϕ (3.9)

3.4 Single Flat Double Layer

We can write the electrostatic free energy of a single flat double layer in a 1-1 electrolyte of

concentration n as,

U
el

=
εrε0

2

∫ x=∞

x=0

(
dϕ

dx

)2

dx =
εrε0

2

∫ ϕ=0

ϕ=ϕ0

(
dϕ

dx

)
dϕ (3.10)

For this case, the solution of the Poisson-Boltzmann equation giving the first integral is,

dϕ

dx
= −2K

kT

e
sinh

( eϕ

2kT

)
(3.11)

If we substitute Eq. (3.11) in Eq. (3.10), we get

U
el

=
εrε0

2

∫ ϕ=0

ϕ=ϕ0

−2K
kT

e
sinh

( eϕ

2kT

)
dϕ

= −εrε0K
kT

e

2kT
e

cosh
( eϕ

2kT

)
|ϕ=0

ϕ=ϕ0

= −2εrε0K
(
kT

e

)2 (
1− cosh

( eϕ0

2kT

))
U
el

= 2εrε0K
(
kT

e

)2 (
cosh

( eϕ0

2kT

)
− 1
)

(3.12)

Let us multiply Eq. (3.6) by -T and do the summation for this case,

−T∆S = −kT
∫ ∞
x=0

n(ψe−ψ + e−ψ − 1− ψeψ + eψ − 1)dx

= −nkT
∫ ∞
x=0

[ψ(e−ψ − eψ + (eψ + e−ψ)− 2]dx
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= −nkT
∫ ∞
x=0

[−2ψ sinh(ψ) + 2 cosh(ψ)− 2]dx

= 2nkT
∫ ∞
x=0

[ψ sinh(ψ)− cosh(ψ) + 1]dx (3.13)

By using the relations,
dϕ

dx
= −2K

kT

e
sinh

( eϕ

2kT

)
, and ψ =

eϕ

kT
we get,

d

dx

( eϕ

2kT

)
= −K sinh

(
ψ

2

)
d

dx

(
ψ

2

)
= −K sinh

(
ψ

2

)

dx =
d

(
ψ

2

)
−K sinh

(
ψ

2

)
If we substitute the relation above in Eq. (3.12) we get,

−T∆S = −2nkT
K

∫ ψ=0

ψ=ψ0

(ψ sinh(ψ)− cosh(ψ) + 1)

sinh
(
ψ

2

) d

(
ψ

2

)

By using the relation cosh
2
(x)− sinh

2
(x) = 1

= −2nkT
K

∫ ψ=0

ψ=ψ0

(
ψ sinh

(
ψ

2
+
ψ

2

)
− cosh

(
ψ

2
+
ψ

2

)
+ cosh

2

(
ψ

2

)
− sinh

2

(
ψ

2

))
sinh

(
ψ

2

) d

(
ψ

2

)

We also know that,

cosh(a+ b) = cosh(a) cosh(b) + sinh(a) sinh(b)

sinh(a+ b) = sinh(a) cosh(b) + sinh(b) cosh(a)

=− 2nkT
K

∫ ψ=0

ψ=ψ0

(
2ψ sinh

(
ψ

2

)
cosh

(
ψ

2

)
− cosh

2

(
ψ

2

)
− sinh

2

(
ψ

2

))
sinh

(
ψ

2

) d

(
ψ

2

)

− 2nkT
K

∫ ψ=0

ψ=ψ0

(
cosh

2

(
ψ

2

)
− sinh

2

(
ψ

2

))
sinh

(
ψ

2

) d

(
ψ

2

)
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=− 2nkT
K

∫ ψ=0

ψ=ψ0

(
2ψ cosh

(
ψ

2

)
− 2 sinh

(
ψ

2

))
d

(
ψ

2

)
=2nkKT

εrε0kT

2ne2

∫ ψ=0

ψ=ψ0

(
2 sinh

(
ψ

2

)
− 2ψ cosh

(
ψ

2

))
d

(
ψ

2

)
=2εrε0K

(
kT

e

)2 ∫ ψ=0

ψ=ψ0

(
sinh

(
ψ

2

)
− ψ cosh

(
ψ

2

))
d

(
ψ

2

)

If we change the variables, x =
ψ

2
⇒ dx =

dψ

2
⇒ dψ = 2dx

= 2εrε0K
(
kT

e

)2
[∫ x=0

x=ψ0/2
sinh(x)−

∫ x=0

x=ψ0/2
2x cosh(x)

]
dx

By doing integration by parts x = u ⇒ dx = du, cosh(x)dx = dv ⇒ sinh(x) = v

= 2εrε0K
(
kT

e

)2
[

cosh(x)|x=0

x=ψ0/2
− 2

(
x sinh(x)|x=0

x=ψ0/2
−
∫ x=0

x=ψ
0
/2

sinh(x)dx

)]

= 2εrε0K
(
kT

e

)2 [
1− cosh

(
ψ0

2

)
− 2

(
ψ

2
sinh

(
ψ

2

)
|0
ψ0
− cosh

(
ψ

2

)
|0
ψ0

)]
= 2εrε0K

(
kT

e

)2 [
1− cosh

(
ψ0

2

)
− 2

(
0− ψ0

2
sinh

(
ψ0

2

)
− 1 + cosh

(
ψ0

2

)])
= 2εrε0K

(
kT

e

)2 [
1− cosh

(
ψ0

2

)
+ ψ0 sinh

(
ψ0

2

)
+ 2− 2 cosh

(
ψ0

2

)]
−T∆S = 2εrε0K

(
kT

e

)2 [
3− 3 cosh

(
ψ0

2

)
+ ψ0 sinh

(
ψ0

2

)]
(3.14)

Finally, we can calculate Helmholtz free energy, F
el

, by adding Eq. (3.11) to Eq. (3.13)

F
el

= U
el
− T∆S

F
el

= 2εrε0K
(
kT

e

)2 [
cosh

(
ψ0

2

)
− 1 + 3− 3 cosh

(
ψ0

2

)
+ ψ0 sinh

(
ψ0

2

)]
F
el

= 2εrε0K
(
kT

e

)2 [
2− 2 cosh

(
ψ0

2

)
+ ψ0 sinh

(
ψ0

2

)]
(3.15)

Let us assume we have a water droplet on a substrate. We can control the contact

angle of this droplet by applying an electrical potential to the substrate. When we apply

electrical potential, the force acting on the liquid-air interface can be calculated. This will

be discussed in one of the subsequent chapters. Free energy (per unit surface area) equation,

Eq. (3.15), also corresponds to the horizontal component of the force acting on the liquid-air

interface.
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Chapter 4

SPLITTING A LIQUID DROPLET

In order to split a droplet reliably, we have to know the theory of splitting very well. In

this chapter, we rederived some mathematical formulas which help us to split a droplet in a

microchannel. We also discussed which parameters help splitting process and the conditions

in which the droplet can not be split.

4.1 Electrowetting

When we apply an electrical potential between a droplet and a surface, we observe

that contact angle of the droplet changes as seen in Fig. (4.1). This phenomenon is called

electrowetting. Electrowetting is treated as the charge-induced change in the interfacial

energy between solid and liquid [5]. Lippmann recognised that capillary forces can be

modified by adding electrostatic charges at an interface [10]. This situation is very important

when it is applied to the case called electrowetting on dielectrics (EWOD). In this case the

electrode is covered with an insulating film of microscopic thickness. When the electric

voltage is applied, the electric charge is accumulated on the insulating layer causing a

change in wettability and contact angle of the droplet.

Figure 4.1: a) No applied potential, b) Under applied potential
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According to Lippmann [10], the solid-liquid interfacial tension depends on the externally

applied potential V as;

γSL(V ) = γSL |V=0 −
1
2
CV

2
(4.1)

where C is the capacitance of the dielectric layer. According to Young’s equation, the

relation between contact angle of the droplet and interfacial tensions:

cos θ =
γSV − γSL

γLV
(4.2)

where γSL , γSV , and γLV are solid-liquid, solid-vapor, and liquid-vapor interfacial tensions

respectively.

If an external potential is applied to the system, Young’s equation can be rewritten as:

cos θ∗ =
γSV − γSL(V )

γLV

=
γSV
γLV
− γSL(V )

γLV

=
γSV
γLV
− γSL
γLV

+
CV

2

2γLV

cos θ∗ = cos θ +
CV

2

2γLV

where θ is the contact angle when there is no external applied potential and C =
ε0ε

t
.

Finally, the modified contact angle equation can be written as:

cos θ∗ = cos θ +
ε0ε

2γLV t
V 2 (4.3)

where ε0 (8.85×10−12F/m) is the permittivity of vacuum, and ε the dielectric constant and

t the thickness of the dielectric layer. From the equation above, we can see that contact

angle decreases parabolically as the potential increases. But the contact angle is saturated

at about 80o. Although there are some theories about why contact angle saturates [11, 12],

the reason for the saturation is not clearly understood yet.
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Figure 4.2: Contact angle change according to the Lippmann equation

4.2 Splitting a Droplet

To split a droplet, we need to put the droplet in a channel which consists of a top

wall and a bottom wall. On the bottom wall, there should be electrodes covered with a

hydrophobic dielectric layer. These electrodes are called �control electrodes�, because they

control the splitting process. On the top wall, there should be a grounded electrode which

is also covered with a hydrophobic dielectric layer. In order to split the droplet, it should be

put in the channel and squeezed. The droplet must be in contact with both top and bottom

wall at all times in order to complete the circuit. The solid-liquid interfacial area must

occupy three electrodes as in Fig. (4.3 (c)). When the potential is applied on the left and

right electrodes, while the middle electrode is left grounded, contact angles at three phase

points decrease according to Eq. (4.3). If the contact angles at both sides decrease, they

cause an increase of the radius of the curvature. Because the middle electrode is grounded

during the process, it causes no contact angle change. The droplet wants to keep its total

volume constant but the radius is getting larger, so it starts to shrink in the middle. We

can say the splitting process starts with elongation of the droplet in the horizontal direction

and necking of the droplet in the middle.
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Figure 4.3: Droplet in a microchannel [14]. (a) Top view, (b) Cross-sectional view, (c) After
energizing electrodes

The most important parameters to split a droplet are the distance between channels,

the droplet size and contact angle change. We first need to understand the relation between

these parameters in order to split the droplet reliably. For example, small channel gap helps

the necking of the droplet. Also applying higher voltage results higher change in the contact

angle and consequently helps the splitting process as well. If we use a large channel gap

compared to droplet size we can not split the droplet.

The channel gap is geometrically related with the contact angles and radius of the

meniscus curvature [13]:

r1 = − d

cos θt + cos θ
b1

(4.4)

r2 = − d

cos θt + cos θ
b2

(4.5)

where subscript 1 indicates the parameters in the middle region of the droplet and subscript

2 indicates the parameters in the right or left end region of the droplet. Here, θt is the
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contact angle on the top wall, θ
b

is the contact angle on the bottom wall and r is the

principal radius of the curvature. We can now write the pressures in the middle and in the

end regions related to the atmosphere pressure, principal radii and interfacial tension [14]:

P1 − Pa = γLV

(
1
r1

+
1
R1

)
(4.6)

P2 − Pa = γLV

(
1
r2

+
1
R2

)
(4.7)

where R is the principal radius of curvature as shown in Fig. (4.2 (a)), and Pa atmosphere

pressure. In static equilibrium, pressures must be equal inside the droplet. Now if we

substract Eq. (4.7) from Eq. (4.6):

P1 − P2 = 0 = γLV

(
1
r1

+
1
R1

)
− γLV

(
1
r2

+
1
R2

)

⇒ γLV

[(
1
r1

− 1
r2

)
+
(

1
R1

− 1
R2

)]
= 0

From the equations (4.4) and (4.5) we can write,

1
r1

− 1
r2

=
cos θ

b2
− cos θ

b1

d

If we put this relation in the equation above, we get:

0 = γLV

(
1
R1

− 1
R2

+
cos θ

b2
− cos θ

b1

d

)
(4.8)

Finally, we can write the channel gap related to the difference of contact angles and radii

of curvature:

1
R1

=
1
R2

− cos θ
b2
− cos θ

b1

d
(4.9)

On the right side of the droplet or on the left side of the droplet the contact angle change

under the applied potential can be written as:

cos θ
b2

(V ) = cos θ
b2
|V=0 +

ε0εV
2

2γLV t
(4.10)
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We don’t energize the middle droplet, so the contact angle of the middle part of the

droplet does not change and it is equal to the contact angle of the right or left side of the

droplet when there is no applied potential:

θ
b1

= θ
b2
|V=0

So, we can write,

cos θ
b2
− cos θ

b1
= cos θ

b2
− cos θ

b2
|V=0 =

ε0εV
2

2γLV t
(4.11)

If we substitute Eq. (4.11) into Eq. (4.9) we can get a relationship between the applied

potential, the channel gap, the dielectric constant of the dielectric layer and the radii of the

curvature

1
R1

=
1
R2

− ε0εV
2

2γLV td
(4.12)

4.3 Contact Angle Change

During the splitting process the height of the droplet will decrease and because of

this the channel gap must be arranged so carefully that the droplet must always touch the

electrodes in order to have a closed circuit. In order to arrange the channel gap, we must

know how much the contact angle of the droplet will change by EWOD in the channel

system. We know that the externally applied potential V in Eq. (4.12) is the voltage across

the dielectric layer on the bottom wall. In the systems where we use a microchannel to

split the droplet, the total voltage drop is the total of the voltage drop across the dielectric

layer on the bottom wall, the voltage drop across the dielectric layer on the top wall and

the voltage drop across the droplet. But here we neglect the electric resistance of the water

droplet compared to that of the dielectric layers. Sung Kwon Cho and his co-workers [13]

considered 2 different channel systems in order to see how the voltage drops are seen across

the dielectric layers. For channel I, they coated the top layer with a 200 Angstrom Teflon

layer and they coated the bottom layer with a 200 Angstrom Teflon and 1000 Angstrom

Silicon dioxide layer.

For channel II, they used 200 Angstrom Teflon layer and 1000 Angstrom Silicon dioxide

layer for both top and bottom electrodes. When they applied total 25 V for the first channel
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Figure 4.4: Channel I System, [14]

system, the contact angle on the top wall changed from 117o to 115o but on the bottom wall

the contact angle changed from 117o to 90o. From this we can conclude that the voltage

drop across the dielectric layer on the bottom wall is the total voltage drop because the

voltage drop across the dielectric layer on the top wall is negligible. Fig. (4.4) shows the

contact angle change on both top and bottom wall with an applied 25 V. When a 100 V

is applied for the second channel system, the contact angle on both top and bottom walls

changed from 117o to 86o. It means that the total voltage applied is shared equally in the

top and the bottom dielectric layers. Fig. (4.5) shows the contact angle change on both top

and bottom walls with an applied 100 V. From the results above we can conclude that we

can split the droplet more easily by using Channel I system.

Figure 4.5: Channel II System, [14]
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4.4 Optimizing the Channel Gap

Figure 4.6: Optimizing the channel gap to have a reliable splitting, [13]

When a droplet is squeezed in a microchannel, contact angles on the top and

bottom layers are almost equal to 120o. As explained before, contact angle saturates at

about 80o. So, the contact angle change on the bottom layer must be smaller than 40o.

(θ
b2
|V=0−θb2 < 40o) Also, we want to split the droplet with a low external applied potential.

If we make the calculation based on the values θ
b2
|V=0 = 120o, θ

b2
= 80o, and the applied

voltage 25 V we can conclude that the required gap for a succesfull splitting should be

smaller than 0.15 mm. Here it was assumed that R2= 0.5 mm and the splitting occurs

when R1 becomes half size of the control electrode.

Conclusion

After all observations and calculations, we see that increasing of externally applied potential

helps us split the droplet. Similarly, small gap size helps the splitting process. We have

also seen that, if the channel gap size is too large compared to the droplet size, it becomes

impossible to split the the droplet.



Chapter 5: Calculation of Electrostatic Forces and Capacitive Energies for an EWOD-Actuated
Droplet 22

Chapter 5

CALCULATION OF ELECTROSTATIC FORCES AND CAPACITIVE

ENERGIES FOR AN EWOD-ACTUATED DROPLET

In this section, we calculated electrostatic forces and capacitive energies on a droplet

which is actuated by using EWOD configuration. We can actuate a droplet by using EWOD

mechanism. To do that, let us put the droplet on a substrate containing electrodes benath it,

as in Fig. (5.1). If we apply a potential to the electrodes on one side of the droplet, charges

on solid/liquid contact will be modified at the interface [15]. According to the Lippmann

equation, Eq. (4.3), contact angle of the droplet which is on the energized electrodes side,

will decrease and actuation towards this side will start.

Theoretical Calculation of Net Force

Let us consider a droplet of height h, and length L in a microchannel which is coated

with dielectric layers. The thickness of the dielectric layer is d
l

on the lower electrode and

du on the upper electrode. The dielectric constant of dielectric layer is ε
l

on the lower

electrode and εu on the upper electrode. We consider here that the droplet is situated

between a grounded lower electrode and an electrode with an applied Va potential on the

upper advancing face of the droplet and a grounded electrode on the upper receding face of

the droplet as seen in Fig. (5.1).

By considering a displacement of the droplet to the right by distance x, we can now

write the total capacitive energy of the system;

U =
1
2
C
l
LV

2

d
+

1
2
Cu

(
x+

L

2

)
(Va − Vd)

2
+

1
2
Cu

(
L

2
− x
)

(−V
d
)
2

(5.1)

where V
d

is the potential on the droplet, Cu and C
l

are the capacitances (per unit length)

of upper and lower coatings. We can find the droplet voltage V
d

by minimizing the total

energy with respect to V
d
,



Chapter 5: Calculation of Electrostatic Forces and Capacitive Energies for an EWOD-Actuated
Droplet 23

Figure 5.1: Conducting droplet in EWOD configuration, [16]

dU

dV
d

= C
l
LV

d
− Cu

(
x+

L

2

)
(Va − Vd) + Cu

(
L

2
− x
)
V
d

On the equation above we have a form like Q = C1V1 +C2V2 +C3V3 +C4V4 and because

the droplet is insulated the net charge must be zero. So, we can write;

0 = C
l
LV

d
+ CuL

(
x

L
+

1
2

)
V
d
− CuL

(
x

L
+

1
2

)
Va + CuL

(
1
2
− x

L

)
V
d

0 = V
d

[
C
l
L+ CuL

(
x

L
+

1
2

)
+ CuL

(
1
2
− x

L

)]
− CuL

(
x

L
+

1
2

)
Va

V
d

=
CuL

(
x

L
+

1
2

)
Va

L

[
C
l
+ Cu

(
x

L
+

1
2

+
1
2
− x

L

)]
V
d

=
CuVa
Cu + C

l

(
x

L
+

1
2

)
(5.2)

We can see that when C
l
� Cu the droplet potential is zero but when Cu � C

l
the

voltage reduces to,

V
d

= Va

(
x

L
+

1
2

)
(5.3)

If we differentiate the total energy with respect to x, we can find the net force on the

droplet in the x-direction
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Fx =
dU

dx
=C

l
LV

d

dV
d

dx
− Cu

(
x+

L

2

)
(Va − Vd)

dV
d

dx
+
Cu
2

(Va − Vd)
2

+ Cu

(
L

2
− x
)
V
d

dV
d

dx
− Cu

2
V

2

d

=C
l
LV

d

dV
d

dx
− Cu

(
x+

L

2

)
Va
dV

d

dx
+ Cu

(
x+

L

2

)
V
d

dV
d

dx
+
Cu
2
V

2

a

+
Cu
2
V

2

d
− CuVaVd + Cu

(
L

2
− x
)
V
d

dV
d

dx
− Cu

2
V

2

d

Fx =C
l
LV

d

dV
d

dx
− Cu

(
x+

L

2

)
Va
dV

d

dx
+ CuLVd

dV
d

dx
+
Cu
2
V

2

a
− CuVaVd

We know from Eq. (5.2) that V
d

=
CuVa
Cu + C

l

(
x

L
+

1
2

)
. So x-derivative of droplet

potential
dV

d

dx
=

CuVa
L(Cu + C

l
)
. Substituting these equations in the force equation above we

get;

Fx =C
l
L

C
2

u
V

2

a

(Cu + C
l
)2

(
x

L
+

1
2

)
1
L
− C2

u
V

2

a

(
x+

L

2

)
1

L(Cu + C
l
)

+
C

3

u
V

2

a

(Cu + C
l
)2

(
x

L
+

1
2

)
L

1
L

+
Cu
2
V

2

a
−

C
2

u
V

2

a

Cu + C
l

(
x

L
+

1
2

)
=C

l

C
2

u
V

2

a

(Cu + C
l
)2

(
x

L
+

1
2

)
−

2C
2

u
V

2

a

Cu + C
l

(
x

L
+

1
2

)
+

C
3

u
V

2

a

(Cu + C
l
)2

(
x

L
+

1
2

)
+
Cu
2
V

2

a

=
C

2

u
V

2

a

(Cu + C
l
)2

(
x

L
+

1
2

)
(Cu + C

l
)−

2C
2

u
V

2

a

Cu + C
l

(
x

L
+

1
2

)
+
CuV

2

a

2

(
Cu + C

l

Cu + C
l

)
=

C
2

u
V

2

a

(Cu + C
l
)

(
x

L
+

1
2

)
−

2C
2

u
V

2

a

Cu + C
l

(
x

L
+

1
2

)
+
CuV

2

a

2

(
Cu + C

l

Cu + C
l

)
=
CuV

2

a

2

(
Cu + C

l

Cu + C
l

)
−

C
2

u
V

2

a

Cu + C
l

(
x

L
+

1
2

)
2
2

=
1
2
CuV

2

a

Cu + C
l

(
Cu + C

l
− 2Cu

x

L
− Cu

)
Fx =

1
2
CuV

2

a

Cu + C
l

(
C
l
− 2Cu

x

L

)
(5.4)

We can see that when the droplet is situated at center (x=0), the force reduces to;

Fx =
1
2
CuClV

2

a

Cu + C
l

(5.5)
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The equation above is equal to the total capacitive energy per unit area when two

dielectric layers placed at a voltage Va are connected in series with capacitances Cu , and

C
l
.

If C
l

goes to infinity in Eq. (5.4), the force becomes;

Fx =
1
2
CuV

2

a
(5.6)

which is independent of position x. When C
l

goes to zero, the force becomes;

Fx = −
CuV

2

a

L
x (5.7)

When the capacitances of dielectric layers on both upper and lower electrodes are equal

Cu = C
l

= C, the force becomes

Fx =
1
2
CV

2

a

2C

(
C − 2C

x

L

)
(5.8)

Fx =
CV

2

a

4

(
1− 2

x

L

)

Figure 5.2: Forces acting on the droplet when C
l
� Cu , C

l
= Cu , and C

l
� Cu

As we have seen before, when C
l
� Cu , the droplet potential becomes zero (V

d
= 0).

Then the energy of the system from Eq. (5.1) becomes;
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U =
1
2
Cu

(
x+

L

2

)
V

2

a
(5.9)

When the capacitances of dielectric layers on both upper and lower electrodes are equal

Cu = C
l

= C, the droplet potential from Eq. (5.2) becomes

V
d

=
Va
2

(
x

L
+

1
2

)
(5.10)

So, the total energy of the system U becomes;
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1
2
CLV

2

d
+

1
2
C

(
x+

L

2

)
V

2

a
+

1
2
C

(
x+

L

2

)
V

2

d
− C

(
x+

L

2

)
VaVd +

C

2

(
L

2
− x
)
V

2

d

=
1
2
CLV

2

d
+

1
2
C

(
x+

L

2

)
V

2

a
+

1
2
CV

2

d
L− C

(
x+

L

2

)
VaVd

=CLV
2

d
+

1
2
C

(
x+

L

2

)
V

2

a
− C

(
x+

L

2

)
VaVd

=CL
V

2

a

4

(
x

L
+

1
2

)2

+
1
2
CV

2

a

(
x+

L

2

)
−
CV 2

a

2

(
x

L
+

1
2

)(
x+

L

2

)
=CL

V
2

a

4

(
x

L
+

1
2

)2

+
1
2
CV

2

a
L

(
x

L
+

1
2

)
−
CV

2

a

2
L

(
x

L
+

1
2

)2

=
1
2
CV

2

a
L

(
x

L
+

1
2

)
−
CV

2

a

4
L

(
x

L
+

1
2

)2

=
1
2
CV

2

a
L

(
x

L
+

1
2

)(
1− 1

2

(
x

L
+

1
2

))
U =

1
2
CV

2

a
L

(
x

L
+

1
2

)(
3
4
− x

2L

)
(5.11)

Now we can see how the total energy of the system changes when Cu � C
l
. From Eq.

(5.3) droplet potential has the value of Vd = Va

(
x

L
+

1
2

)
. So, when we substitute this

equation in Eq. (5.1) we get,

U =
1
2
C
l
V

2

a
L

(
x

L
+

1
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Cu
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Since Cu � C

l
, we can neglect C

l
in the first term of equation above. Then we get;
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Figure 5.3: Capacitive energies for the droplet when C
l
� Cu , C

l
= Cu , and C

l
� Cu
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We have seen that, when the capacitance of the lower dielectric layer, C
l
, is very large,

the force acting on the droplet is constant. However, when C
l

is low enough the force

decreases linearly as the droplet moves. Similarly, if the capacitance of the lower and upper

layers are the same, we again see that the force decreases as the droplet moves. In Fig. (5.3)

we can see that, when capacitance of the lower layer is much larger than the capacitance of

the upper layer, capacitive energy increases linearly according to Eq. (5.9) as the droplet

moves. If we consider capacitances of upper and lower dielectrics equal, the capacitive

energy changes according to Eq. (5.11) and we can also see that, capacitive energy goes to

zero at two different points, x=-0.5 and x=1.5. When the capacitance of the upper layer is

much larger than the capacitance of the lower layer, the capacitive energy has a maximum

point at x=0 and becomes zero at x=-0.5 and x=0.5.
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Chapter 6

CHARGE-RELATED WETTING PHENOMENA

In this section, we have examined 3 cases of wetting phenomena, as seen in Fig. (6.1).

In each case, the force acting on the liquid-droplet interface has been calculated. In the

first case, case a) in Fig. (6.1), the droplet is situated on a substrate and the potential

is kept constant on the substrate. For the second case, case b) in Fig. (6.1), there is no

external applied potential but constant charge density on the droplet-substrate surface and

another constant charge density on the liquid-substrate surface. For the last case, case c)

in Fig. (6.1), there is a dielectric layer situated on the substrate and constant potential V

is applied. All the aforementioned cases are called charge-related wetting phenomena.

Figure 6.1: Charge Related Wetting Phenomena

Let us consider a two-dimensional droplet which is in equilibrium on a substrate and

immersed in a fluid. In order to find the electrostatic force acting on the droplet-liquid inter-

face, we can define two surfaces [17];
∑

1
= S12

⋃
S13

⋃
S1∞ , and

∑
2

= S21

⋃
S22

⋃
S23

⋃
S2∞ .

Here
∑

1
encloses the droplet region and

∑
2

encloses the fluid region. Indices 1, 2, and 3

indicate the variables associated with droplet, fluid, and substrate respectively. Also double

indices in Sij indicate the surface which is in the ith medium facing the jth medium. S1∞ ,

and S2∞ indicate the surfaces which are perpendicular to the substrate and situated at a

large distance from three phase contact line, TCL.
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Figure 6.2: Control Surfaces of the System, [17]

We can find the electrostatic force acting on the droplet-fluid interface by integrating

the stress acting on the droplet-fluid interface [20]:

F = −
∫
S12+S21

T.ndS (6.1)

where T = −(Π+(1/2)εE
2
)I+εEE is the sum of Maxwell stress tensor and osmotic pressure

tensor (Π), n is the outward unit normal vector at the surfaces, E is the electric field, ε is

the electric permittivity, and I is the second order isotropic tensor.

We assume that the electrical double layer satisfies Poisson-Boltzmann equation (Eq.

(3.5)). The osmotic pressure is given by [22],

Π = 2n
b
kT [cosh(βϕ)− 1]

where β = ez/kT .

By using the mechanical equilibrium condition, we can simplify the integral in Eq. (6.1).

Mechanical equilibrium condition states that [21],

∫
P T.ndS =

∫
P
[
−
(

Π +
1
2
εE

2

)
I + εEE

]
.ndS = 0 (6.2)

6.1 Constant Potential Case (Case I)

In this case, the potential is constant (ϕ = V ) on the substrate surface (S13 , and

S23). We can seperate the force acting on the liquid-droplet interface into two parts, the

force acting on the droplet side (F1) and the force acting on the liquid side (F2).
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F = F1 + F2 = −
∫
S12

T.ndS −
∫
S21

T.ndS (6.3)

Now, we can examine (F1) and (F2) seperately by using Eq. (6.2),

∫
S12+S13+S1∞

T.ndS =
∫
S12

T.ndS +
∫
S13

T.ndS +
∫
S1∞

T.ndS = 0

−
∫
S12

T.ndS =
∫
S13

T.ndS +
∫
S1∞

T.ndS

We can also write;

∫
S21+S22+S23+S2∞

T.ndS =
∫
S21

T.ndS +
∫
S22

T.ndS +
∫
S23

T.ndS

+
∫
S2∞

T.ndS = 0

−
∫
S21

T.ndS =
∫
S22

T.ndS +
∫
S23

T.ndS +
∫
S2∞

T.ndS

Finally;

F1 + F2 =
∫
S13+S1∞

T.ndS +
∫
S22+S23+S2∞

T.ndS

Now, let’s consider these two components seperately:

F1 =
∫
S1∞

[
−
(

Π +
1
2
ε1E

2

)
n + ε1(n.E)E

]
dS

+
∫
S13

[
−
(

Π +
1
2
ε1E

2

)
n + ε1(n.E)E

]
dS

At large distances from TCL (S1∞ , S2∞), the electric field is not normal to the control

surfaces which means E.n|S1∞
= 0. Therefore, F1 becomes,

F1 =−
∫
S1∞

(
Π +

1
2
ε1E

2

)
ndS (6.4)

+
∫
S13

[
−
(

Π +
1
2
ε1E

2

)
n + ε1(n.E)E

]
dS
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Wetting tension is given by W
el

= −F.ex . So, we are interested in the horizontal

component of F1 , that is, f1x = F1.ex .

f
(1)

1x
=−

∫
S1∞

(
Π +

1
2
ε1E

2

)
n.exdS

+
∫
S13

[
−
(

Π +
1
2
ε1E

2

)
n.ex + ε1(n.E)E.ex

]
dS

We know that on the horizontal substrate surface normal vector n is perpendicular to

the normal vector ex which means n.ex |S13
= 0. Then, we can write,

f
(1)

1x
= −

∫
S1∞

(
Π +

1
2
ε1E

2

)
n.exdS +

∫
S13

ε1(n.E)E.exdS (6.5)

In case I, the electrostatic potential is constant on the horizontal surface (ϕ|S13
= V )

which means E.ex |S13
= −(dϕ/dx)|S13

= 0. Because of this reason, the second integral in

Eq. (6.5) vanishes. As a result we have,

f
(1)

1x
= −

∫
S1∞

(
Π +

1
2
ε1E

2

)
n.exdS (6.6)

Eq. (6.6) corresponds to the free energy of the plane electrical double layer and it is

[17],

f
(1)

1x
= −8

n
1b
kT

K1

[
cosh

(
βV

2

)
− 1
]

(6.7)

We can calculate the force acting on the fluid side (F2) and then calculate f
(1)

2x
following

the same procedure. Consequently,

f
(1)

2x
= 8

n
2b
kT

K2

[
cosh

(
βV

2

)
− 1
]

(6.8)

Finally, the wetting tension W
(1)

el
= −f (1)

1x
− f (1)

2x
becomes,

W
(1)

el
= 8kT

(
n

1b

K1

− n
2b

K2

)[
cosh

(
βV

2

)
− 1
]

(6.9)
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6.2 Constant Charge Case (Case II)

In case II, we keep the surface charge densities constant on the surfaces S13 , and S23 .

Let the surface charge density on S13 be σ1 and the surface charge density on S23 be σ2 .

Again, we can seperate the forces acting on the droplet-fluid interface and examine them

seperately.

F1 + F2 =
∫
S13+S1∞

T.ndS +
∫
S22+S23+S2∞

T.ndS (6.10)

At large distances from TCL (S1∞ , S2∞) we remember that E.n|S1∞ ,S2∞
= 0 and at

horizontal surfaces n.ex |S13 ,S23
= 0. Unlike in Eq. (6.6) the second integral will not vanish

in this case and the force acting on S12 will be,

f
(2)

1x
= −

∫
S1∞

(
Π +

1
2
ε1E

2

)
n.exdS +

∫
S13

ε1(n.E)E.exdS (6.11)

The first integral will be very similar to Eq. (6.7) except the potential term V. We know

that ε1E.n|S13
= −σ1 and E.ex |S13

= −(dϕ/dx)|S13
. So, for the second integral we can

write, ∫
S13

ε1(n.E)E.exdS = σ1

∫ ∞
0

dϕ

dx
dx = σ1(ϕ1∞ − ϕ0)

where ϕ0 is the electrostatic potential at TCL, and ϕ1∞ is the electrostatic potential far

from TCL. Now, we can write the force acting on S12 as,

f
(2)

1x
= −8

n
1b
kT

K1

[
cosh

(
βϕ1∞

2

)
− 1
]

+ σ1(ϕ1∞ − ϕ0)

The force acting on S21 , f
(2)

2x
, can be calculated with a similar way. Consequently,

f
(2)

2x
= 8

n
2b
kT

K2

[
cosh

(
βϕ2∞

2

)
− 1
]

+ σ2(ϕ0 − ϕ2∞)

Finally, the wetting tension W
(2)

el
= −f (2)

1x
− f (2)

2x
becomes,

W
(2)

el
=
(

8n
1b
kT

K1

[
cosh

(
βϕ1∞

2

)
− 1
]
− σ1ϕ1∞

)
−
(

8n
2b
kT

K2

[
cosh

(
βϕ2∞

2

)
− 1
]
− σ2ϕ2∞

)
+ (σ1 − σ2)ϕ0 (6.12)
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As we can see, the results of Case I and Case II differ by an extra term. The first and

the second terms in Case II represent the electrostatic free energy of the double layer which

has constant charge density. However, the last term is due to the Coulombic interaction

near TCL.

6.3 Electrowetting on Dielectrics (EWOD) Case (Case III)

EWOD mechanism has drawn much attention due to its applications on controlling

droplets. By using this mechanism, droplets having very small volumes can be controlled

with low power consumption [18, 19].

Figure 6.3: Control Surfaces of EWOD System, [17]

The difference of this case from case I is that there is a thin dielectric layer between

droplet and the substrate as in Fig. (6.3). We know from previous cases that the force

acting on the liquid-droplet interface can be written as,

F1 + F2 =
∫
S13+S1∞

T.ndS +
∫
S22+S23+S2∞

T.ndS (6.13)

Now, the horizontal component of the force can be written as,

f
(3)

x
= ex .

∫
S13+S1∞

T.ndS + ex .
∫
S22+S23+S2∞

T.ndS (6.14)
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From previous case, we know that,

ex .
∫
S1∞

T.ndS = −8
n

1b
kT

K1

[
cosh

(
βϕ1∞

2

)
− 1
]

ex .
∫
S2∞

T.ndS = 8
n

2b
kT

K2

[
cosh

(
βϕ2∞

2

)
− 1
]

Also, we can write the equation ex .
∫
S13+S23

T.ndS as;

ex .
∫
S13

(Π + (1/2)εE
2
)ndS +

∫
S13

ε(E.ex)E.ndS + ex .
∫
S23

(Π + (1/2)εE
2
)ndS

+
∫
S23

ε(E.ex)E.ndS

On the horizontal substrate surfaces, n.ex |S13 ,S23
= 0, and consequently

ex .
∫
S13 ,S23

(Π + (1/2)εE
2
ndS) = 0

Eq. (6.13) now can be written as,

f
(3)

x
= −8

n
1b
kT

K1

[
cosh

(
βϕ1∞

2

)
− 1
]

+ 8
n

2b
kT

K2

[
cosh

(
βϕ2∞

2

)
− 1
]

+
∫
S13+S23

ε(E.ex)E.ndS (6.15)

Since n.ex |S13 ,S23
= 0

∫
S31+S32

ε(E.ex)E.ndS = ex .
∫
S31+S32

T
′
dS

where T′ = −1
2
εE

2
n + εE(E.n)

We know that the normal electric flux and the tangential component of electric field

must be continuous; which means,

εE.n|S13 ,S23
= −εE.n|S31 ,S32

E.ex |S13 ,S23
= −dϕ

dx
|S13 ,S23

= −dϕ
dx
|S31 ,S32

= E.ex |S31 ,S32
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Consequently, ∫
S13+S23

ε(E.ex)E.ndS = −
∫
S31+S32

ε(E.ex)E.ndS

By using mechanical equilibrium condition, we can write,

ex .
∫
S31+S32+S

L∞+S
R∞+S3e

T′.ndS = 0

ex .
∫
S31+S32

T′.ndS = −ex .
∫
S
L∞+S

R∞+S3e

T′.ndS

= −ex .
∫
S
L∞+S

R∞+S3e

[
−1

2
εE

2
n + εE(E.n)

]
dS

We know that E.n|S
R∞ ,S

L∞
= 0, and

E1 =
V − ϕ1∞

d

E2 =
V − ϕ2∞

d

We know that n.ex |S3e
= 0 and since the potential is constant on S3e (ϕ|S3e

= V ) there is

no contribution from the surface S3e . Therefore,

∫
S
L∞+S

L∞+S3e

ex .(T
′.n)dS =

ε3
2d

[(V − ϕ1∞)
2 − (V − ϕ2∞)

2
]

where ε3 is the electric permittivity of the dielectric layer

If we substitute everything in Eq. (6.14), we get the wetting tension,

W
(3)

el
=− f (3)

x

W
(3)

el
=
ε3
2d

[(V − ϕ1∞)
2 − (V − ϕ2∞)

2
] + 8

n
1b
kT

K1

[
cosh

(
βϕ1∞

2

)
− 1
]

− 8
n

2b
kT

K2

[
cosh

(
βϕ2∞

2

)
− 1
]

(6.16)

Here, the first term comes due to the dielectric layer but last two terms again represent

the free energy of the double layer.
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Chapter 7

CONCLUSION

We have seen that contact angles of droplets behave differently on different substrates

and by using some methods we have tried to explain why contact angles change as the

surface changes. We have also seen that the most important parameters to split a droplet

reliably are the channel gap, the applied voltage and the droplet size. If these parameters are

suitably combined, the droplet can be split easily. We know that, we can actuate a droplet by

using ewod configuration. We have calculated capacitive energies and electrostatic forces on

an ewod-actuated droplet and seen that their results are different for different cases. These

forces and energies have been examined for three different cases where C
l
� Cu , C

l
� Cu ,

and C
l

= Cu = C. The capacitive energy results are in agreement with the graph given

in the paper [16]. Finally, we have seen that when a droplet is put on a substrate where

we keep a constant potential, the force acting on the fluid-droplet interface gives a different

result when it is put on a substrate where we keep the charge density constant or when it

is put on a dielectric layer.
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