
QUANTUM KEY DISTRIBUTION PROTOCOLS

by

Utkan Güngördü

A Thesis Submitted to the

Graduate School of Sciences

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Physics

Koç University

August, 2010

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Utkan Güngördü

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Prof. Tekin Dereli

Assoc. Prof. Özgür Müstecaplıoğlu

Dr. Muhammet Ali Can

Date:

ABSTRACT

A review of quantum key distribution protocols has been made. A simulation of BB84

protocol with reconciliation and privacy amplification has been presented. Intervension of

an eavesdropper has been implemented.

iii

ÖZETÇE

Kuantum anahtar dağıtım protokollerinin incelemesi yapıldı. Uzlaşma ve güvenlik yükseltimi

aşamalarını da içeren, BB84 protokolünün benzetimi sunuldu. İletişime yabancı müdahale

gerçeklendi.

iv

ACKNOWLEDGMENTS

The author wishes to express his thanks to Prof. Tekin Dereli for his support and advices

during his education in Koç University.

v

TABLE OF CONTENTS

List of Tables viii

Nomenclature ix

Chapter 1: Introduction 1

1.1 An Overview of Classical Cryptography . 1

1.2 Origins of Quantum Cryptography . 2

1.3 Why Do We Need QKD? . 4

1.4 Structure of This Thesis . 4

Chapter 2: Preliminaries 6

2.1 Classical Information Theory . 6

2.1.1 Shannon’s Noisy-Channel Coding Theorem 9

2.2 Bits in Quantum Mechanics . 11

2.2.1 Bloch Sphere Representation of a Qubit 14

2.2.2 Coherent States . 14

2.3 Quantum Information Theory . 16

2.3.1 Density Operator . 16

2.3.2 Fidelity . 18

2.4 Some Important Results of Quantum Mechanics 19

2.4.1 No-cloning Theorem . 19

2.4.2 Information Gain Implies Disturbance 20

2.4.3 Bell Inequality . 21

2.4.4 CHSH Inequality (Generalized Bell Inequality) 24

Chapter 3: Quantum Key Distribution Protocols 26

3.1 BB84 . 26

vi

3.2 SARG04 . 27

3.3 B92 . 28

3.4 Six-state Protocol . 29

3.5 E91 (or EPR) Protocol . 29

3.6 Other Protocols . 32

Chapter 4: Information Reconciliation 33

4.1 BBBSS . 34

4.2 Cascade . 35

4.2.1 Choosing Good Block Sizes for Cascade 37

Chapter 5: Privacy Amplification 40

5.1 Privacy Amplification Using Hash Functions 40

Chapter 6: Security 45

6.1 Random Number Generation . 45

6.2 QBER Threshold for Secure Key . 46

Chapter 7: Results and Conclusion 48

7.1 Simulation of QKD . 48

Appendix A: Go Code To Simulate BB84 50

Bibliography 69

vii

LIST OF TABLES

2.1 Message efficiency and code bit ratio for various values of error rate. 11

viii

NOMENCLATURE

QKD Quantum Key Distribution

QC Quantum Cryptography

QBER Quantum Bit Error Rate

BB84 Bennett and Brassard’s 1984 protocol

B92 Brassard’s 2-state 1992 protocol

E91 Ekert’s 1991 EPR protocol

PNS Photon Number Splitting attack

log Logarithm in base 2

Alice Transmitting party

Bob Recieving party

Eve Eavesdropper

ix

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

1.1 An Overview of Classical Cryptography

Cryptography is the study of writing messages in such a way that its contents can only be

understood by the intended receiver. The security of these methods usually relies on limited

computational resource or time of eavesdroppers.

There is one classical algorithm, called one-time pad, whose security can be proved

unconditionally. When this method is used, an eavesdropper can gain no information about

the message beyond it’s length. Suppose Alice —the sending party— has a message she

would like to deliver in secrecy, converted to a binary representation. Alice prepares a binary

random key, that has the same length as the message, and performs a bitwise XOR with

the message. Bob —the receiving party— with the knowledge of the secret key, can decode

the message by XORing the encoded text with the key again. Without the key, decoding

a bit is like a coin-toss. Since every bit is encoded independently, the chances for accurate

decoding decreases exponentially with the message length, so the algorithm is considered to

be secure 1. The problem with one-time pad is, the length of the required key is as long as

the message itself, which is a problem for practical uses. That aside, Alice should be able to

send the secret key to Bob. This of course raises the question “If she has a way of sending

the key in secrecy, why doesn’t she use it for transmitting the message itself, since they are

of the same length anyway?”. One-time pad is not meant for actual use, nevertheless, it

serves as an example of unconditionally secure classical encryption. 2

The distribution of a key in secrecy is a serious problem in practice, and has lead to a

1Which is a part of the unconditional security definition.

2It is however possible to perform this scheme in quantum cryptography —quantum key distribution
solves exactly this problem.

Chapter 1: Introduction 2

class of ciphers that uses different keys for encryption and decryption, called asymmetric

cryptography. The key used for encryption is called public key (which is to be distributed

to everyone), and the key for decryption is called private key (which is never meant for

distribution). These two keys are related to each other, but they are designed in such a way

that deriving the private key from public key is computationally very difficult, relying on a

one-way function.

Classical algorithms used in public-key encryption rely on computational difficulty of

certain problems, such as integer factorization and discrete logarithm problems. Today,

there is no algorithm that can solve these problems in polynomial time, however it is not

proved that any such algorithm cannot be found either. A breakthrough can render all

widely used ciphers overnight!

One other problem is the requirement for random numbers in cryptography. Good ran-

dom number generation, the problem of finding uncorrelated sequence of random numbers

has proved to be notoriously difficult classically.

1.2 Origins of Quantum Cryptography

Quantum cryptography is an umbrella term for applications of quantum physics to cryptog-

raphy related subjects, such as digital signature, fingerprinting, random number generation,

secret key distribution 3, bit commitment, oblivious transfer,... It was initiated by Stephen

Wiesner in 1970 [1] in a paper in which he described the basic ideas for quantum key

distribution, but the paper was not published until 1983. 4

In 1984, Charles H. Bennett and Gilles Brassard picked up the idea and described a

protocol for quantum key distribution, now known as BB84 protocol [2]. Alice prepares a

random bit, and prepares a photon either in rectilinear or diagonal basis, again picked at

random. She then transmits the photon to Bob, who will measure the photon in rectilinear

or diagonal basis randomly. After all the photons are sent and measurements are complete,

they disclose their bases used in preparation (Alice) and measurement (Bob), but not the

original bits or measurement results. If Bob measured a photon in the “wrong” basis they

discard that bit, since the measurement result would be probabilistic. After they perform

3Generation, actually.

4It was rejected by IEEE Information Theory, and published by SIGACT News later on.

Chapter 1: Introduction 3

information reconciliation and privacy amplification on the remaining bits for reasons which

we will discuss later on, both parties will have a secure key on which they agree. Although

the protocol was originally described using polarization states of photon, any pair(s) of

conjugate states can be used in principle.

The idea was initially seen mostly as work of a science-fiction, including Bennett and

Brassard, because the required technology was out of reach [5]. Initial designs such as

quantum bank notes required long-term quantum memories, that is, the technology to store

a photon for days without significant decoherence. It was later on realized that fully working

systems can be designed with the idea that photons should only be used to transmit data,

not to store it.

The security of this protocol lies on the fact that, if eavesdropper interferes with the

photon she would disturb it’s state, eventually revealing her presence (for instance Bob

can measure the incoming photon in the “correct” basis, but because of Eve’s interven-

tion, may find a different result). This means that the security is based on the laws of

quantum mechanics, and not computational infeasibility. Considering the fact that classical

cryptosystems are based on a mixture of guesswork and mathematics, this is an important

milestone.

In 1991, initially unaware of the earlier work, Arthur Ekert invented a new way for

quantum key distribution independently. The protocol exploits the non-local nature of

quantum mechanics, first described by Einstein, Podolsky and Rosen in a 1935 paper [7].

This protocol requires a source that emits particles in a maximally entangled state

|Ψ−〉 =
|↑↓〉 − |↑↓〉√

2
. (1.1)

Alice and Bob each gets one particle from each pair. Like Bob does in BB84 protocol, Alice

and Bob measure the incoming particles in a random state, and afterwards, they announce

their bases used in measurement. For measurements with agreeing bases, they should expect

opposite results, due to the nature of the state they use. After either Alice or Bob inverts

her/his agreeing bits, they should have identical keys.

Remaining measurement results, where they used different bases for measurement, can

be used to detect the presence of an eavesdropper. Each party, using the measurement

results of non-agreeing bases, can check whether if Bell inequality (see 2.4.3) holds or not.

Chapter 1: Introduction 4

If the inequality is not violated, it would mean the particles were not perfectly entangled,

implying the disturbance of an eavesdropper.

1.3 Why Do We Need QKD?

Classical public-key (asymmetrical) encryption schemes rely on NP problems, which can-

not be solved efficiently on a classical computer, such as integer factorization and discrete

logarithm problem. These problems share the property that once we have a candidate for

solution, it can be checked efficiently, but coming up with an exact solution cannot be

achieved in polynomial time. It has been found, however, that this is not the case for a

quantum computer. Peter Shor found that both integer factorization and discrete logarithm

problems can be solved efficiently on a quantum computer [15], jeopardizing the security

5 of widely-used public-key encryption schemes like RSA. And this is why wide-spread us-

age of RSA is alerting, demanding a better solution for secure communication over public

channels, before devices implementing Shor’s factoring algorithm appear in the market.

One-time pad is an absolutely secure cryposystem, and block ciphers such as AES do

not exploit the mentioned NP problems and are considered to be safe up-to-day. But these

algorithms use the same key for both encryption and decryption, which means Alice will have

to find a way to send her key to Bob in a secure way. Quantum key distribution addresses

this issue, providing a method for secret key generation between two parties. Moreover, as

it turns out, QKD over a public channel can be proved to be secure, unconditionally. This

security is guaranteed by the laws of quantum mechanics.

1.4 Structure of This Thesis

This thesis is divided into 7 chapters. In chapter one, we give a brief background history as

a motivation. In chapter 2, we review the preliminaries required for quantum key distribu-

tion, namely the classical information theory and basic quantum mechanics for QKD. We

introduce widely-known QKD protocols in chapter 3, followed by information reconciliation

in chapter 4 and privacy amplification in chapter 5. For completeness, we briefly discuss

5Here, we mean conditional security, such as: given that integer factorization is NP and eavesdropper has
limited computational power, RSA is secure.

Chapter 1: Introduction 5

some of the security related issues in chapter 6. Finally, in chapter 7, we give the results of

our simulation, whose code is presented in appendix.

Chapter 2: Preliminaries 6

Chapter 2

PRELIMINARIES

2.1 Classical Information Theory

In information theory, the stream of data is modelled as a sequence of independent random

numbers from a certain probability distribution. And Shannon entropy —which will be a

particular function of interest— for a discrete random number sequence is defined by

H(X) ≡ −
∑
i

p(xi) log p(xi), (2.1)

1 where p(xi) is the probability for appearance of symbol xi, andX = {xi} = {x1, x2, . . . , xn}

is a vector of symbols. This function can be seen as the average of log(xi) over the proba-

bility distribution {p(xi)}.

One of the essential ideas in the definition above is this. If a symbol is less likely to

occur, it carries more information or has a higher “surprise factor”, and the associated term

should contribute more. A series of 0s would contain the least possible information for

instance (p = 1 and H = 0). One may be inclined to think that the sequence 01010101...

shouldn’t contain any information at all either by this rationale, since it’s a series of 01s

(or 010101s), but it is clearly not the case if we consider single bits as our symbol table

(in which case we get H = 1). Shannon entropy depends on the choice of symbol table (or

“dictionary”), and is of important consideration when one tries to compress data, as in the

case of Lempel-Ziv family algorithms, but since we will be restricting ourselves to binary

alphabet in QKD, we will not be discussing them.

One other important property of entropy function is related to additivity of information.

When two independent events, p and q, occur together, one would expect to gain information

I(p) + I(q), where I(p) ≡ log(p) is the information gained when event p occurs individually.

In other words,

1Unless explicitly stated, log(x) refers to log2(x).

Chapter 2: Preliminaries 7

I(pq) = I(p) + I(q), (2.2)

and it is all thanks to additivity property of logarithm function. Moreover, this establishes

an intuitive interpretation for Shannon entropy: it is the average information gain for

independent events with occurrence probabilities {p(xi)}.

One other interpretation comes from Shannon’s source coding theorem, which we will

state here without giving proof.

Theorem 2.1.1. (Shannon’s source coding theorem) As the data length grows large,

lowest possible code rate (average bits per symbol) that can be achieved by a lossless com-

pression is the Shannon entropy of the source.

This means that on average, compressed size of a message will be |X|H(X) bits, where

|X| is the length 2 of the message.

One trivial case for Shannon entropy is where every possible symbol has the same chance

of occurrence. In this case, each term contributes equally with probability p(xi) = 1/|X|,

resulting in

H(X) = log |X|. (2.3)

For any other distribution, this becomes an inequality

H(X) ≤ log |X|. (2.4)

One of the common distributions is the binary distribution, and we will define a special

function for its entropy

h(p) = −p log p− (1− p) log(1− p) (2.5)

where p is the probability of occurrence for one of the symbols.

Other entropies can be defined in the case of two random variables.3 We can define joint

2Number of symbols.

3These definitions can be extended to more than two variables.

Chapter 2: Preliminaries 8

entropy using the joint probability distribution of X and Y , p(xi, yj)

H(X,Y) ≡ −
∑
i,j

p(xi, yj) log p(xi, yj) (2.6)

If X and Y are not correlated, their joint probability distribution can be written as the

product of marginal distributions p(xi, yj) = pX(xi)pY (yj). It can be shown that joint

entropy satisfies the inequality

H(X,Y) ≤ H(X) +H(Y), (2.7)

with equality if and only if X and Y are independent random variables. In terms of source

coding theorem, this means that two sources can be compressed better jointly, rather than

compressing each one individually.

When we know the value Y , our “surprise factor” should drop by H(Y) compared to

the case when we don’t know X or Y . Remaining Shannon entropy is called the conditional

entropy, defined as

H(X|Y) ≡ H(X,Y)−H(Y) (2.8)

H(X|Y) = −
∑
i,j

p(yj)p(xi|yj) log p(xi|yj) = H(X,Y)−H(Y) (2.9)

And the mutual information is defined as

H(X : Y) ≡ H(X) +H(Y)−H(X,Y) (2.10)

As an example, we may consider a noisy channel on which we can transmit 0s or 1s. We

shall assume that physical properties of the channel are symmetric, so that the “bit-flip”

probability (or crossover probability) is the same no matter which “signal” is sent (such a

channel is called binary symmetric channel). If the error probability is ε, then

p(yj = 0|xi = 1) = p(yj = 1|xi = 0) = ε (2.11)

Chapter 2: Preliminaries 9

p(yj = 0|xi = 0) = p(yj = 0|xi = 0) = 1− ε (2.12)

Since p(x, y) = p(x)p(y|x) and H(Y) = 1, mutual information of the channel is found to be

H(X : Y) = H(Y)−
∑
i,j

p(xi)p(yj |xi) log p(yj |xi) = 1− h(ε). (2.13)

In quantum key distribution protocols, we will assume that the error sources (which is

typically the eavesdropper, the “wrong-basis errors due to Bob” are eliminated in the sifting

stage) are symmetric in the sense that the way photon states are disturbed does not depend

on the initial state of the photon. When we analyze the security of the BB84 protocol, we

will refer back to this result.

2.1.1 Shannon’s Noisy-Channel Coding Theorem

When we try to communicate using a noisy channel, we usually want the recipient to get

a certain message without any deformations. There are many schemes to correct errors in

a message, which requires us to add some extra bits to the message for error correction

purposes. We usually want to keep the number of this excess bits at minimum, because

error correction data itself can also be corrupted and if its length gets larger, the number

of errors increases. And we would like to keep message efficiency as good as possible, that

is we would like to reduce the number of excess bits per message bit in a transmission.

More formally, let’s say the message we would like to send is M bits, and the number

of extra bits (code bits) we require for a certain error correction scheme is m. Then the

total message length for transmission is MC = M + m. We would like to keep the ratio

C = M/MC (the transmission rate) as big as possible, but at the same time be able to

communicate with arbitrarily small number of uncorrected errors.

In 1948, Claude Shannon showed that there is a limit to how small M/MC can be made,

independent of the error correction scheme. He showed that the following inequality holds

for this ratio:

M/Mc ≤ 1− h(ε) (2.14)

Chapter 2: Preliminaries 10

where ε is the probability for a single bit going wrong. This is a very important theorem,

defining the limits of communication over all kinds of channels with noise.

We adopt a non-rigorous proof following the one given in [18]. We assume that the total

message MC is large, so that expected values converge to actual numbers (or otherwise,

we can imagine that we’re repeating the same communication scheme many times over and

consider the average of consecutive trials). Since the error probability for one bit is ε, the

(average) number of error in the whole message will be

k = εMC (2.15)

The number of ways this k errors could be distributed though the whole message is given

by
MC !

k!(MC − k)!
(2.16)

And an error in a bit is nothing more than a flip, we only need to know its location to correct

it. The information for the locations of these errors should be conveyed within m code bits,

which can mean 2m different things, and it should at least contain the exact locations of

possible distributions of errors, which means

2MC−M ≥ MC !

k!(MC − k)!
(2.17)

Taking the logarithm and using Stirling’s approximation, it results in

MC −M ≥MC (−ε log ε− (1− ε) log(1− ε)) (2.18)

which is equivalent to the original statement. Comparing with the previous result (2.13), we

see that mutual information is the limiting value for transmission rate, that is average bits

per channel use. To illustrate Shannon’s limit, we list the coding efficiency or transmission

rate M/MC for various values of channel error ratio ε:

For the extreme case of ε = 1/2, the noise dominates over the useful content, making

reliable transmission impossible. A possible error rate for wireless modems at 40-45 meters

is 1/1000, which means we need to add about at least 12 code bits to send 1000 bits of data.

Chapter 2: Preliminaries 11

ε M/MC (MC −M)/M

1/2 0 ∞
1/3 0.082 11.2
1/10 0.531 0.9
1/100 0.919 0.09
1/1000 0.988 0.012

Table 2.1: Message efficiency and code bit ratio for various values of error rate.

2.2 Bits in Quantum Mechanics

Classically, information is represented by numbers, usually written in binary representation.

A binary digit is called bit, and is the basic unit of information. An “unbiased” binary

variable has a unit Shannon entropy, or contains one bit of information.4 In communication,

a bit may represent conductance state of a transistor, or a certain voltage threshold for a

signal.

In quantum mechanics, a binary system is represented by a two-level system, and its

state is what describes a qubit, short for quantum bit. A two-level system “lives” as a vector

in a two-dimensional Hilbert space, whose basis vectors can be labeled {|0〉, |1〉}. Written

with these labels, this basis is usually referred as the computational basis, or rectilinear

basis. A general qubit in this basis can be written as

|ψ〉 = α|0〉+ β|1〉. (2.19)

Throughout the text we will be using Dirac notation, a complete description of bras and

kets can be found in quantum mechanics books such as [14]. Assuming the following basis

 1

0

 ≡ |0〉,
 0

1

 ≡ |1〉, (2.20)

we can also write in vector form

4Since h(1/2) = 1. Note that if the probabilities of 0 and 1 are not equal, the information content is less
than 1 bit. It is this fact which makes data compression possible.

Chapter 2: Preliminaries 12

|ψ〉 =

 α

β

 (2.21)

Here, α and β are complex numbers, satisfying the normalization condition ‖|ψ〉‖2=

〈ψ|ψ〉 = |α|2 + |β|2 = 1, and their physical meaning is as follows. If we carry out a

measurement in {|0〉, |1〉} basis, the outcome will be |0〉 with probability |α|2, and |1〉 with

probability |β|2. They are usually called probability amplitudes in physical contexts, referring

to the interference of these “amplitudes” when there are more than one particles. Using the

normalization condition, this state can also be written as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2.22)

Since qubits can be represented by two dimensional vectors, any operation on them can

be represented by 2× 2 unitary matrix (unitarity is essential because of the normalization

condition). Any 2× 2 matrix can be represented as linear combination of Pauli matrices

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 (2.23)

and a 2× 2 unit matrix

σ0 = I =

 1 0

0 1

 . (2.24)

Pauli matrices were originally defined to describe the spin state of an electron, which is a

two-level system. These matrices are generators of SU(2) rotations (up to a constant, i).

They obey the product rule

σjσk = δjk + i
3∑
l=1

εjklσl (2.25)

which implies, along with the fact that Pauli matrices are traceless,

tr(σjσk) = 2δjk. (2.26)

Using these, we can break any 2× 2 matrix into it’s “Pauli components” as follows. Since

Chapter 2: Preliminaries 13

M can be written in terms of Pauli matrices and unit matrix, we can write

M = M0σ0 +M1σ1 +M2σ2 +M3σ3 (2.27)

Multiplying this equation from left with σj , and taking the trace, we have

tr(σjM) = tr

(
σj

3∑
k=0

Mkσk

)
= 2Mj (2.28)

A photon’s polarization state is a two-level system, and represents a qubit. All operations

on its polarization state can be described in terms of Pauli matrices and a unit matrix.

The {|0〉, |1〉} basis is usually taken to be eigenstates of σ3 operator with eigenvalues

+1 and −1 respectively. One other important basis used in QKD is the eigenstates of σ1

operator,

|+〉 =
|0〉+ |1〉√

2
(2.29)

|−〉 =
|0〉 − |1〉√

2
(2.30)

again with eigenvalues +1 and −1 respectively. As expected, the basis states are orthogonal,

meaning 〈+|−〉 = 0. An important fact exploited by BB84 is the fact that these states are

not orthogonal to computational basis vectors, and a measurement in computational basis

cannot distinguish σ1 eigenstates at all:

|〈+|0〉|2 = |〈+|1〉|2 = |〈−|0〉|2 = |〈−|1〉|2 =
1

2
(2.31)

which behaves like a fair coin toss, having the highest average “surprise factor” (i.e., Shannon

entropy).

σ1 is also called the bit-flip operator, due to its effect on computational basis vectors

σ1|0〉 = |1〉 (2.32)

σ1|1〉 = |0〉 (2.33)

Chapter 2: Preliminaries 14

Bit-flip errors in a quantum channel can be modeled using this operator (and the unit

operator). σ3 does the analogous thing for |+〉 and |−〉 vectors.

σ1, σ2, σ3 matrices are sometimes written as σx, σy, σz (after electron’s spin components).

For this reason {|0〉, |1〉} is also referred as the Z basis, and {|+〉, |−〉} as the X basis. And

their eigenstates with eigenvalue ±1 is denoted as | ± z〉 and | ± x〉. We will use both

notations throughout the text.

2.2.1 Bloch Sphere Representation of a Qubit

It can be easily verified by direct substitution that the two-angle representation of a qubit

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2.34)

is actually the eigenstate of the operator σ · n̂ with eigenvalue +1, where

σ = (σ1, σ2, σ3) (2.35)

n̂ = (u, v, w) = (sin θ cosφ, sin θ sinφ, cos θ) (2.36)

This unit vector n̂ is called the Bloch vector, which spans a unit sphere with angular

coordinates (θ, φ). It is a representation of a qubit as a point on a unit sphere in a fictitious

three-dimensional space.

2.2.2 Coherent States

It is mathematically straightforward to encode a qubit using its polarization state, since it

readily is a two-level system. For realization of BB84 any 2-level system can be used in

theory. In practice, almost all implementations encode qubits using photons. Thanks to

the developments in optical telecommunication, decoherence of photons can be controlled

and moderated.

However, producing single photons is not an easy task. In most practical applications,

sending party encodes her random bits using weak laser pulses, a feasible way of producing

single photons with fair probability. Generated pulses can be described by coherent states

[19]. We will not discuss the physics of weak laser pulses, and how they eventually output

Chapter 2: Preliminaries 15

photons in coherent states, as the topic is outside of the scope of this thesis. We will,

however, mention some properties of coherent states briefly.

Electromagnetic field can be described as an assembly of independent harmonic oscilla-

tors 5, a full treatment on quantization of electromagnetic field can be found in quantum

mechanics text books, such as [17]. We only quote the relations that we will need later on.

A coherent state |λ〉 is the eigenstate of the annihilation operator a, satisfying the

eigenvalue equation

a|λ〉 = λ|λ〉 (2.37)

and it’s explicit solution is

|λ〉 = e−|λ|
2/2

∞∑
n=0

λn√
n!
|n〉 (2.38)

where the state |n〉 represents the case where “there are n photons in the electromagnetic

field” 6, µ = |λ|2 is the average number of photons 〈n〉 = 〈λ|a†a|λ〉, or the intensity. Clearly,

the probability of finding n photons in the field is

P (n) = e−µ
µn

n!
(2.39)

which happens to be the Poissonian probability distribution.

To get close to the single photon limit, we may like to make µ very small, but then we

hardly get any photon at all, since for µ� 1, P (0) ≈ 1− µ in this limit. For the rare cases

where we get some photons, the chances of getting only one photon is P (n = 1|n > 0) =

P (1)/(1 − P (0)) = e−µµ/(1 − e−µ) ≈ 1 − µ/2. In a practical demonstration, attenuation

reduced intensity down to µ ≈ 0.12 [5], which means for about 88% of the cases we get no

photon at all. Within the remaining non-empty pulses, we only get about 6% single photon

states.

Although coherent states can be easily created, the higher order terms in the state can

pose serious problems. We see that there’s a non-zero chance in a weak laser pulse to have

5Harmonics oscillator and particle approaches are equivalent, see for instance Feynman Lectures on
Physics Vol. III, 4-5.

6They are also referred as Fock states, after Soviet physicist V.A. Fock.

Chapter 2: Preliminaries 16

more than one photons, produced in the same state. This is a security hole, because an

eavesdropper can save one of the extra photon(s) in a quantum memory and send the rest

to Bob, wait until the bases are announced, and perform the correct measurements. This

attack, called photon number splitting attack (PNS), allows Eve to gain information without

being detected at all. This means, in weak laser pulse implementations, one must take into

account the existence of multiphoton pulses when computing Eve’s information, and QBER

threshold.

2.3 Quantum Information Theory

In this section, we briefly introduce some basic tools of quantum information theory that

we will need later on.

2.3.1 Density Operator

Instead of using state vectors in Hilbert space, it is possible to formulate quantum mechanics

in terms of what is called density operator (or density matrix). It is particularly useful when

considering a quantum system’s interaction with its environment.

Let us assume that a quantum system state would be prepared in |ψi〉 with probability

pi (where is goes from 1 to N). Then the density operator ρ of this system is defined as

ρ ≡
N∑
i=1

pi|ψi〉〈ψi|. (2.40)

ρ is a positive semi-definite matrix, so it is in general true that it has a spectral decom-

position in terms of orthogonal unit vectors |ei〉, which we can always write in the following

form

ρ =
∑
i

λi|ei〉〈ei|. (2.41)

We can express the evolution of the system and measurements on it in this formalism

as well. The evolution will be described by a unitary operator U , and basis states will

accordingly become U |ψi〉, and ρ̄ becomes

Chapter 2: Preliminaries 17

ρ′ =
∑
i

piU |ψi〉〈ψi|U † = UρU † (2.42)

p(m) =
∑
i

p(m|i)pi (2.43)

Since given the initial state |ψi〉 the probability of obtaining m is 〈ψi|M †M |ψi〉,

p(m) =
∑
i

pi〈ψi|M †M |ψi〉 (2.44)

=
∑
i,j

pi〈ψi|j〉〈j|M †M |ψi〉 (2.45)

= tr
(
M †Mρ

)
(2.46)

Measurement operators act in the same form as unitary operators, except that they do

not preserve the unitarity, so we can write down the post-measurement density operator,

up to a constant C, this way

ρ̄ = CMρM † (2.47)

We can work out the constant like this. The unitarity condition, in terms of density

operator, is

tr(ρ) =
∑
i

pitr (|ψi〉〈ψi|) =
∑
i

pi = 1 (2.48)

and since the post-measurement density matrix should obey this condition as well,

tr (ρ̄) = tr
(
CMρM †

)
= 1 (2.49)

which means the constant C is 1/tr
(
M †Mρ

)
, resulting in

ρ̄ =
MρM †

tr (M †Mρ)
. (2.50)

The expectation value of an operator A is

Chapter 2: Preliminaries 18

〈A〉 =
∑
i

pi〈ψi|A|ψi〉 = tr (ρA) . (2.51)

A density operator satisfies

ρ2 = ρ and tr
(
ρ2
)

= 1 (2.52)

if and only if it is a pure state. An example would be ρ = |ψ〉〈ψ|. Otherwise, it is a

composition of pure states (such as ρ = p|ψ〉〈ψ|+ (1− p)|φ〉〈φ|), and is called a mixed state,

and satisfies

tr
(
ρ2
)
< 1 (2.53)

Since we will be working with qubits, it is of interest to know the density matrix of a

qubit. Written in terms of “Bloch angles” (2.34) , we can right away tell the result of σi|ψ〉,

since it is an eigenstate with “components” given in the corresponding Bloch vector. Using

(2.28) with this fact, we have

ρ = |ψ〉〈ψ| = 1

2
(I + σ · r) (2.54)

2.3.2 Fidelity

One of the most commonly used way of measuring the “closeness” of two given quantum

states is fidelity. The fidelity between two quantum states ρ and σ is defined to be

F (ρ, σ) ≡ tr
√√

ρσ
√
ρ (2.55)

and lies within the interval

0 ≤ F (ρ, σ) ≤ 1 (2.56)

There are some remarkable cases we would like to mention When ρ = σ, we have F = 1.

For ρ = |ψ〉〈ψ|, a pure state, we have

F (ρ, σ) = tr
√
〈ψ|σ|ψ〉|ψ〉〈ψ| =

√
〈ψ|σ|ψ〉 (2.57)

Chapter 2: Preliminaries 19

As a special case is when σ is pure state as well (say, |φ〉〈φ|), which yields F (ρ, σ) = |〈ψ|φ〉|.

When two states commute, that is [ρ, σ] = 0, both density matrices can be diagonalized

together

ρ =
∑
i

ri|ei〉〈ei|, σ =
∑
i

si|ei〉〈ei| (2.58)

and fidelity becomes

F (ρ, σ) = tr

√∑
i

risi|ei〉〈ei| =
∑
i

√
risi. (2.59)

This is the classical definition of fidelity, in terms of probability distributions {ri} and {si}.

2.4 Some Important Results of Quantum Mechanics

2.4.1 No-cloning Theorem

No-cloning theorem is the backbone of the security of BB84 protocol, which forbids making

identical copies of an arbitrary, unknown state. We will prove the theorem on mathematical

grounds, but prior to that, we would like to mention an informal proof based on Heisenberg’s

uncertainty principle. Suppose we are able to make identical copies of a particle’s state.

Then we could measure the position of the original particle with arbitrary precision, and

perform a momentum measurement on the clone, thus violating the uncertainty principle.

We see that security of BB84 is protected by the uncertainty principle. The actual proof

goes as follows.

Assume that we have a “cloning machine”, that can copy the unknown state of a particle

(|ψ〉) onto another, which we can refer as “blank qubit” (|0〉). We assume that the machine

works independent of the original state. This operation can be denoted as

|ψ〉|0〉 → |ψ〉|ψ〉 (2.60)

Like any other operation in quantum mechanics, we should be able to represent this as

a unitary operation 7

7This stems from the fact that probabilities should add up to 1.

Chapter 2: Preliminaries 20

U |ψ〉|0〉 = |ψ〉|ψ〉 (2.61)

Since this is a universal cloning machine, the same relation should hold for another

—again, initially unknown— state |φ〉

U |φ〉|0〉 = |φ〉|φ〉 (2.62)

When we take the inner product of both sides of these equations, we get

〈0|〈ψ|U †U |φ〉|0〉 = 〈ψ|〈ψ|φ〉|φ〉 (2.63)

For a unitary operator, U †U is unit operation I by definition, so this equation is actually

|〈ψ|φ〉|2 = 〈ψ|φ〉 (2.64)

In other words, either this machine works for one kind of state (ψ = φ), or 〈ψ|φ〉 = 0.

They both imply we already know the input state in advance, and work only for particular

states, which means this is not a universal cloning machine.

Theorem 2.4.1. (No-cloning theorem) It is impossible to create identical copies of an

unknown, arbitrary quantum state.

There is, however, work done on creating imperfect copies of quantum states, which are

usually based on minimizing the fidelity (see 2.3.2) between the original state and clone.

See for instance [20, 21]. These so-called cloning machines can be used for designing attacks

in BB84 [21], but we won’t be discussing them in this thesis.

2.4.2 Information Gain Implies Disturbance

No-cloning theorem is not the only physical constraint on eavesdropping, however. One

can also show that in Eve’s attempts to distinguish between the non-orthogonal states, her

gaining information is only possible at the expense of disturbing the qubit. We can show

that this proposition is not limited to bases used in BB84, but true for any non-orthogonal

pair. Let us say |ψ〉 and |φ〉 are such pair. Without loss of generality, we can assume that

Chapter 2: Preliminaries 21

she uses an ancillary qubit to obtain information on the incoming qubit [15]. If we label

the initial state of the ancilla |u〉, and her “method” for obtaining information U , a unitary

operator which does not disturb the incoming state at all , we can write

U |ψ〉|u〉 = |ψ〉|v〉 (2.65)

U |φ〉|u〉 = |φ〉|v′〉 (2.66)

For her to obtain some information about the incoming state, |v〉 and |v′〉 should differ, so

that she can use this difference to acquire information about the incoming unknown (to her)

state. Taking the inner products side-by-side, and using the fact that U †U = I, we have

〈u|u〉〈ψ|φ〉 = 〈v|v′〉〈ψ|φ〉 (2.67)

Also, by taking the inner products to the equations by themselves, we must —due to

normalization— have

〈u|u〉 = 1 (2.68)

〈v|v′〉 = 1. (2.69)

Which means |v〉 = |v′〉. In other words, it is impossible for Eve to gain some sort of

information about the incoming state without causing any disturbance in the incoming

qubit.

It is this fact which makes it possible to construct a quantum key distribution protocol

that uses only two non-orthogonal states. Such a protocol (B92) is described in detail in

3.3.

2.4.3 Bell Inequality

In 1935, Einstein, Podolsky and Rosen have written a paper in which they concluded that

the physical reality as described by quantum mechanics is incomplete [7]. They considered a

pair of entangled particles (an entangled state is a multipartite state which cannot be broken

Chapter 2: Preliminaries 22

into product of single particle states), which interacted during a certain interval of time,

and stopped interacting afterwards. After waiting long enough time, an observer measures

one of the particles, causing the wavefunction collapse. Following quantum mechanics, we

instantaneously make the other particle to be in a certain state as well. For this reason,

Einstein referred entanglement as “spooky action at-distance”.

We can, for instance, consider a pair of an electron and a positron in the spin state

|Ψ−〉 =
|0〉|1〉 − |1〉|0〉√

2
. (2.70)

8 Suppose we measured the spin of the first particle in Z basis, and found |1〉. Then

we can tell that the second particle will be in the |0〉 state right away, and this happens

instantaneously, no matter what the spatial separation between the particles may be.

The idea was, that, both particles had some extra information from the beginning, and

this was how the observer could tell about the second particle instantaneously. It’s just

that wavefunction does not contain this extra bit of information (or hidden variables, λ),

because quantum mechanics is incomplete.

At the time, it was thought that the predictions of quantum mechanics is correct, but

the results are due to the statistical distribution of hidden variables —something missing

in quantum mechanics.

In 1964, John S. Bell showed that any (local) theory of hidden variables is incompatible

with quantum mechanics [8]. That is to say, one can either conclude that quantum me-

chanics is downright wrong or there are no local hidden variables —“quantum mechanics is

incomplete” is not an option here. We will closely follow [8] in demonstrating this fact here.

Considering the experiment with the singlet state |Ψ−〉, the prediction of quantum me-

chanics for E(a, b) = 〈(σ1 ·â)(σ2 ·b̂)〉 9 (this function is also referred as correlation function)

is

〈Ψ−|(σ1 · â)(σ2 · b̂)|Ψ−〉 = −a · b (2.71)

where, σi denotes the Pauli operators as components of a vector (as in 2.35) for the ith

8This state is sometimes called singlet state.

9We consider measurement of spin in units of h̄/2.

Chapter 2: Preliminaries 23

particle. a and b are unit vectors. Bell showed that no local hidden variable theory can be

compatible with this result.

We assume that A, the measurement result of σ1 · a, depends only on a and hidden

variables represented by λ, and similarly B (σ2 · b measurement) of the second particle

depends on b and λ. This is a crucial step, because here we single out the possibility that

the result B for particle does not depend on the measurement configuration of the first

particle (a), vice and versa. This is the assumption of locality.

Obviously, the possible values for spin measurements are

A(a, λ) = ±1, B(b, λ) = ±1. (2.72)

Then the expectation value of A(a, λ)B(b, λ) in this framework is

E(a, b) =

∫
dλA(a, λ)B(b, λ) (2.73)

where ρ is the probability distribution function of the hidden variable. We do not make

any assumption about the nature of ρ(λ) except that it is a normalized distribution function,

that is ∫
dλρ(λ) = 1. (2.74)

Since when the detectors are aligned, that is when a = b, the measurement results will

be perfectly anti-correlated, we learn the following about the form of measurement functions

A(a, λ) = −B(a, λ). (2.75)

Using this, we can re-write (2.73):

E(a, b) = −
∫
dλρ(λ)A(a, λ)A(b, λ) (2.76)

Let c be another unit vector. Then we can write

E(a, b)− E(a, c) = −
∫
dλρ(λ) [A(a, λ)A(b, λ)−A(a, λ)A(c, λ)] (2.77)

= −
∫
dλρ(λ)A(a, λ)A(b, λ) [1−A(b, λ)A(c, λ)] (2.78)

Chapter 2: Preliminaries 24

Here, we used the fact that A(b, λ)2 = 1. Since A can be either 1 or −1,

|E(a, b)− E(a, c)| ≤
∫
dλρ(λ)[1−A(b, λ)A(c, λ)] (2.79)

or

1 + E(b, c) ≥ |E(a, b)− E(a, c)| (2.80)

This is the original Bell inequality.

We can consider that case where a ·b = b · c = 1/
√

2 and a · c = 0. Then Bell inequality

reads

1− 1√
2
≥ 1√

2
(2.81)

which is a contradiction.

Violation of Bell inequality has been experimentally verified by Alain Aspect, Philippe

Grangier and Gerard Roger in 1982 [11]. This was the experimental confirmation that

nature is fundamentally nonlocal, and that the “spooky action at distance” really exists.

2.4.4 CHSH Inequality (Generalized Bell Inequality)

In a more general version of Bell inequality, due to John Clauser, Michael Horne, Abner

Shimony and Richard Holt, one more term is incorporated [9]. We shall adopt the derivation

in [10], however.

Assuming the previous notation, we follow (2.77)

E(a, b)− E(a, b′) =

∫
dλρ(λ)[A(a, λ)B(b, λ)−A(a, λ)B(b′, λ)] (2.82)

But this time, we introduce 2 extra terms that add up to zero on the right-hand side

E(a, b)− E(a, b′) =

∫
dλρ(λ)A(a, λ)B(b, λ)[1±A(a′, λ)B(b′, λ)]

−
∫
dλρ(λ)A(a, λ)B(b′, λ)[1±A(a′, λ)B(b′, λ)]

Applying the triangle inequality and taking (2.72) into account, we have

Chapter 2: Preliminaries 25

|E(a, b)−E(a, b′)| ≤
∫
dλρ(λ)[1±A(a′, λ)B(b′, λ)]+

∫
dλρ(λ)[1±A(a′, λ)B(b, λ)] (2.83)

Since ρ(λ) is normalized (2.74), we have

|E(a, b)− E(a, b′)| ≤ 2± [E(a, b′) + E(a′, b′)] (2.84)

which includes the CHSH inequality (or sometimes referred as generalized Bell inequality)

−2 ≤ S ≤ 2 (2.85)

where S is given by

S = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′). (2.86)

We will be using this inequality when we discuss Ekert’s 1991 protocol (sec 3.5).

Chapter 3: Quantum Key Distribution Protocols 26

Chapter 3

QUANTUM KEY DISTRIBUTION PROTOCOLS

The purpose of quantum key distribution is the generation of a secret string of bits

which is known only to sending and receiving parties, who initially share no secret infor-

mation. The key generation involves production of qubits in certain states, followed by

randomly determined measurements. A classical, unsecured channel is required for post-

processing (sifting, information reconciliation and privacy amplification). Ideally, this string

is a perfectly random key, which will typically be used as key to encrypt data on a clas-

sical computer. By contrast to ancient methods, the (classical) encrypting and decrypting

algorithms are assumed to be known publicly.

QKD protocols are secure even in the existence of an eavesdropper possessing unlimited

computational power and utmost quality devices. Unlike the practical classical cipher, which

are based on a mixture of a guesswork and mathematics, the unconditional security of these

protocols can actually be proved (see 6.2). Secrecy of the key is protected by physical laws.

Today, there are dozens of QKD protocols in the literature. We will be limiting ourselves

to popular, discrete 1 protocols.

3.1 BB84

This one is the archetypal QKD protocol, invented by Bennett and Brassard in 1984 [2]. It

uses two sets of orthogonal basis pairs, which are usually taken to be X and Z polarization

eigenstates of photon.

We adapt the description of the protocol given in [15].

• Alice generates (4+δ)n-bit random string D for data , and (4+δ)n-bit random string

B for basis choice.

• Bob generates (4 + δ)n-bit random string M to decide whether he will measure the

1That is to say, the Hilbert space of states used for encoding information is finite.

Chapter 3: Quantum Key Distribution Protocols 27

incoming qubits in X or Z basis. Basis choice bits decide whether she will use {|0〉, |1〉}

or {|+〉, |−〉} basis. The data bit will decide which state will be used, of the chosen

basis.

• For each data and basis bit, she prepares a photon in the corresponding state and

sends it to Bob over quantum channel.

• Bob measures the incoming photons one by one in accordance with M , and notes

down the results.

• Alice announces B over a classical channel. The channel may well be insecure.

• Alice and Bob discard the bits where he measured in a different basis than Alice

prepared. Mostly likely 2, there will be at least 2n bits left. They start over otherwise.

• Alice picks n bits at random positions from D, tells Bob the positions and values. They

compute QBER using these bits to decide whether there was a significant amount

of eavesdropping, then throw them away. If QBER is above a certain threshold,

they start over. (We will discuss this threshold value when we consider the security

conditions in section 6)

• They perform reconciliation, followed by privacy amplification on the remaining n

bits, and finally obtain m bits, known to both.

3.2 SARG04

This protocol, introduced by Valerio Scarani, Antonion Acin, Gregoire Ribordy, Nicolas

Gisin in 2004 [19] is identical to BB84 except the classical sifting stage. It was designed as

a countermeasure to PNS attack (see 2.2.2).

SARG04 involves the following change in BB84. After the transmission, instead of

announcing her basis, Alice will instead send a pair of signs Aωx,ωz = {ωx, ωz} (each ∈

{+,−}) to Bob, which will mean “The state I sent was either |ωxx〉 or |ωzz〉” (one of them

2We choose δ such that this probability is acceptable.

Chapter 3: Quantum Key Distribution Protocols 28

denotes the actual state, the other one is picked at random). If Bob, according to his

measurement result, can’t tell with certainty which is which, they discard the result.

Suppose Alice sent a qubit in | + x〉 state, and announced the set of possible states as

A++, meaning “I sent either | + x〉 or | + z〉”. If Bob made an X measurement, he would

definitely get +1, but he cannot be sure because from his perspective, it is also possible that

Alice may have sent |+ z〉 and his X measurement yielded +1. The situation is symmetric

if he performed an Z measurement and got +1. However, if he measured Z and got −1,

then he definitely is sure that he performed the “wrong” measurement since it not possible

for him to get a −1 when Alice sends |+ z〉, thus can conclude that the state Alice sent was

| + x〉. And this happens with p = 1/4 probability (unlike BB84 where we had p = 1/2).

With probability 1− p = 3/4, the result is inconclusive and is discarded. 3

In comparison to BB84, SARG04 halves the key generation rate. However, Eve now

needs at least two extra photons (pulses with three or more photons) in order to be sure

about in the incoming state without causing any disturbance. This makes two photon states

safe, in the sense that they do not risk revealing information to Eve without any disturbance.

Given that there is a non-empty pulse, the probability of getting a pulse with three or

more photons is

P (n > 2|n > 0) =
1− P (2)− P (1)− P (0)

1− P (0)
≈ µ2

6
(3.1)

For µ = 0.12, this means 0.24% of the non-empty pulses can still be a threat. However, this

number is greatly reduced in comparison to BB84.

3.3 B92

Bennett later on realized that quantum key distribution can be made using only 2 arbitrary

non-orthogonal states [3]. Although Bennett’s original analysis in [3] assumed only non-

orthogonality of the basis states |u0〉 and |u1〉, following [15] we will describe the protocol

on a more simple and concrete example. We will take Alice’s states to be |u0〉 = |0〉 and

|u1〉 = |+〉. The protocol differs from BB84 in encoding and processing photons, so it suffices

to describe what happens to a single photon. Alice sends a photon in either |0〉 or |+〉 state

at random. Bob chooses to measure the incoming photon, again at random, in either X or

3The basic idea here is essentially the same used in B92 (section 3.3)

Chapter 3: Quantum Key Distribution Protocols 29

Z basis. By contrast to BB84, he announces his measurement result, but does not reveal

his choice of basis.

We see that if his choice of basis was consistent with Alice’s, then his measurement

result would definitely be +1, corresponding to +1 eigenstate of X or Z (i.e., |+〉 or |0〉).

Otherwise, he still may get +1 with 1− p = 1/2 4 probability. When, however, he gets −1,

he will be certain that his basis is the “wrong” one. And only in this case (which has an

overall probability of (p/2 = 1/4) they will keep the result. If we call the bit Alice registers

b, Bob should register ¬b 5 since he is certain that he chose the “wrong” basis.

The rest of the protocol is similar to BB84. After they are finished sending/measuring

qubits and sifting the results by public discussion, Alice and Bob can apply information

reconciliation, followed by privacy amplification to agree on a secret, shared key.

This protocol exploits the indistinguishability of non-orthogonal states (see 2.4.2), while

keeping the number of required basis states at minimum.

3.4 Six-state Protocol

Six-state protocol, introduced by D. Bruss, represents the symmetry in Bloch vector repre-

sentation better by using eigenstates of X, Y , and Z [16]. This time, Alice chooses from

3 possible axes, which will cause them to throw away 2/3 of the bits in the sifting stage,

reducing the efficiency in comparison to BB84. The protocol is otherwise identical to BB84.

However, the intrinsic symmetry of the protocol simplifies the security analysis and reduces

Eve’s optimal information gain, increasing the QBER threshold for intercept-resend on all

qubits to 33% (which is 25% in BB84) [16].

3.5 E91 (or EPR) Protocol

Unaware of the recent developments, Arthur Ekert re-invented quantum cryptography in

1991 [4]. Unlike the previous protocols however, this new protocol used entangled particles

instead of non-orthogonal pairs of state. The security condition was stated in terms of

generalized Bell inequality (or CHSH inequality, see 2.4.3) rather than disturbance in the

4p = 1− |〈u0|u1〉|2

5Here ¬ operator is the bitwise-NOT, or base-2 complementary operator. For a single bit, it means 0→ 1
and 1→ 0.

Chapter 3: Quantum Key Distribution Protocols 30

states. The secrecy is protected by the completeness of quantum mechanics.

The protocol requires a source that emits pairs of entangled particles in singlet state

|Ψ−〉 =
|0〉|1〉 − |1〉|0〉√

2
(3.2)

One of the particles is sent to Alice, and the other is to Bob via channel. They both perform

measurements in σ · n̂, where n̂ is one of the vectors {a1,a2,a3} for Alice and {b1, b2, b3}

for Bob, chosen at random for every incoming qubit. These three vectors like in xy plane,

and are defined by their azimuthal angles: For Alice φa1 = 0, φa2 = π/4, φa3 = π/2, for Bob

φb1 = π/4, φb2 = π/2, φb3 = 3π/4. Each measurement yields either +1 or −1 (we assume that

the measurement results are recorded in units of h̄/2).

When the measurement devices of Alice and Bob are aligned, we get a perfect anti-

correlation. According to (2.71),

E(a3, b2) = E(a2, b1) = −1 (3.3)

(3.4)

This first set results of aligned measurements can be used to generate the secret key, as in

BB84. For other cases, we have

E(a1, b1) = E(a3, b1) = E(a3, b3) = − 1√
2

(3.5)

E(a1, b3) =
1√
2

(3.6)

So, for this configuration, quantum mechanics predicts

S = E(a1, b1)− E(a1, b3) + E(a3, b1) + E(a3, b3) = −2
√

2 (3.7)

and obviously, CHSH inequality (2.85) is violated. That is, of course, assuming that no-one

modified the particles along the road.

After the transmission is completed, Alice and Bob can publicly announce their choice

of measurement bases (similar to the case in BB84). For cases where their detectors are

Chapter 3: Quantum Key Distribution Protocols 31

not aligned, their measurement results may not agree. However, they can be tested against

(3.5) and CHSH inequality to check for eavesdropping.

Note that since the key in undetermined before the measurement, it doesn’t really matter

who creates the entangled pair of qubits. And if the forged qubit pair is not truly entangled,

correlation would yield unexpected result, revealing the truth.

We can consider an eavesdropper’s intervention by considering a general modification

(due to Eve) in correlation terms. Because of Eve’s perfect measurements E(ai, bj) becomes

E(ai,na)E(nb, bj) where na and nb are two unit vectors along direction of Eve’s detectors

6. We assume that there is a normalized probability distribution function ρ(na,nb) which

describes Eve’s strategy. Averaged over this function (which is actually an average over

trials, where Eve tries one of the possible configurations with probability ρ(na,nb)), sum

of new correlation terms becomes

S̄ = 〈S〉ρ(na,nb) =

∫
dnadnbρ(na,nb)× (3.8)

[(a1 · na)(a1 · nb)− (a1 · na)(a3 · nb) + (a3 · na)(a1 · nb) + (a3 · na)(a3 · nb)] (3.9)

If we call the azimuthal angles for na and nb, α and β respectively, the term between

square brackets becomes

cosα

[
cos
(
β − π

4

)
− cos

(
β − 3π

4

)]
+cos

(
α− π

2

)[
cos
(
β − π

4

)
+ cos

(
β − 3π

4

)]
=
√

2 cos(α−β)

(3.10)

and S̄ reduces to

S̄ = −
∫
dnadnbρ(na,nb)[

√
2na · nb] (3.11)

For the case of na = −nb for instance, CHSH inequality becomes

−
√

2 ≤ S̄ ≤
√

2 (3.12)

We see that this result contradicts (3.7). Furthermore, it does not violate CHSH in-

6We will assume that they lie on the xy plane.

Chapter 3: Quantum Key Distribution Protocols 32

equality, which makes it clear that someone has intervened, or as Ekert put it “someone has

introduced elements of physical reality”.

3.6 Other Protocols

There are plenty of other protocols, built on the ideas of BB84 [16]. Some protocols abondon

qubits, and exchange three-level qutrits (or systems with even higher dimensions) instead.

Another variation is, Alice and Bob do not choose from X and Z with equal probability.

There is also the idea of preparing qubits in superposition of two spatially separated states,

one component is then sent to Bob, and only after he recieves it, the second component is

sent.

Chapter 4: Information Reconciliation 33

Chapter 4

INFORMATION RECONCILIATION

Even after Alice and Bob complete the sifting stage, due to noise (physical imperfections

of the channel, misalignment of polarizers and analyzers, eavesdropping...) in the channel,

their keys may not agree. They need to reconcile their keys in order to make them identical.

Reconciliation 1 is the procedure of finding and correcting discrepancies between Alice’s and

Bob’s secret keys. This is realized via a (non-secure) classical, public channel.

Before describing the reconciliation protocols, we would like to mention some general,

theoretical issues. Throughout the chapter we will model the quantum channel as binary

symmetric channel (see 2.1), with bit-flip probability ε.

Let us label Alice’s sifted key as A, and Bob’s as B. They would like to agree on a secret

key S of length n after a public discussion on a classical channel. Since anyone can tap into

this channel, some bits (which we will call Q) will inevitably be leaked to eavesdropper.

They would like to divulge as few as possible during this discussion, however, conditional

entropy (2nd term on the right-hand side in (2.13)) gives a lower bound to the least possible

number of bits they should exchange on average 2

H(A|B) = nh(ε) (4.1)

This is the theoretical lower bound (on average) to the amount of leaked information

to Eve during the reconciliation. If we will call the total information leaked IE(S|Q), on

average, they have n− IE(S|Q) secret bits. We define the number of secret bits per bit in

S to be efficiency of reconciliation and denote as 3

1Sometimes called information reconciliation or error reconciliation.

2Considering the limit of n → ∞ is equivalent to average over trials, since in a very long sequence, the
ratios will converge to probabilities by the law of large numbers. This is the statement of preference in
[6].

3In [6], the following is −ζ. We believe this is a more natural definition.

Chapter 4: Information Reconciliation 34

ζ ≡ 1− IE(S|Q)

n
. (4.2)

This implies that the theoretical bound for efficiency is 1 − h(ε), which happens to be

the mutual information of Alice and Bob, H(A : B) (see (2.13)). This gives us a way of

measuring the “quality” of a given reconciliation protocol.

Reconciliation methods usually have several parameters that depend on channel’s error

rate, ε. A common way of getting an estimate is this. Alice and Bob sacrifice a fraction

of their bits (at random positions) by publicly announcing them, and by comparing these

bits, they compute ε.

4.1 BBBSS

BBBSS is the original reconciliation protocol by Charles H. Bennett, Francois Bessette,

Gilles Brassard, Louis Salvail and John Smolin, introduced in 1992 [5], when they announced

the first experimental implementation of BB84.

We adopt the description given in [5]. To randomize the positions of errors, Alice and

Bob first shuffle their bits in they same way, so that the errors (i.e., bits that do not agree)

will hopefully be distributed uniformly throughout A andB. They then break their messages

into blocks of k-bits such that each block has about one error. Obviously, the optimal block

size depends on the error rate. (We will present a derivation of such a relation when we

discuss Cascade in the next section.) They then compute the parity (the summation of

a given list of bits, mod 2) for each block and tentatively treat the blocks with matching

parity as error-free (they may actually contain even-number of errors since 2N is zero in

mod 2). For the case of “bad blocks” which contain odd-number of errors, a bisective search

is executed (which runs recursively): the block is divided into two sub-blocks and parity is

computed for each, block with even number of errors are ignored while others are divided

into two blocks... This way, errors are found and corrected. (Corresponding part in Cascade

is called BINARY, they both perform bisective search except for the part they throw away

the last bits of each block they compute the parity.) During the bisective search, an extra

dlog ke bits (at most) of parities of sub-blocks is disclosed. In order to avoid leaking extra

information to Eve, they thus discard the last bit of each block or sub-block. We see that

Chapter 4: Information Reconciliation 35

key rate decreases with increasing k. This highlights the importance of k.

After this procedure, we expect some errors to remain undetected (in blocks with an

even number of error). To remedy the situation, we repeat the whole procedure from the

beginning several more times with increasing block sizes, until they are convinced that at

most only a few errors remains in their data 4.

To reduce the chances of having errors in the final key, in each iteration, Alice and Bob

can compute the parity of a block, made of randomly picked bits. If their blocks are not

identical, the parities will disagree with probability 1/2. In that case, they do a bisective

search as described above. Assuming that there are l blocks in that pass, the chances of

having undetected errors is 2−l with this modification (see CONFIRM below).

4.2 Cascade

Gilles Brassard and Louis Salvail have published a reconciliation protocol based on BBBSS

in 1993 [6]. By contrast to BBBSS, it does not require discarding the last bit after computing

the data block’s parity. Instead of throwing them away, they are used for further corrections

in following passes.

Following [6], we introduce two useful sub-procedures BINARY and CONFIRM, before giving

a definition of Cascade.

BINARY: This is the bisective search part of the protocol, which recursively compares

the parities of sub-blocks. This is at the cost of divulging at most dlog ne parity bits to

eavesdropper.

1. Alice sends Bob the parity of the first half of her sifted key.

2. Bob computes the parity of the first half of his sifted key and compares to Alice’s

parity, and decides whether the odd number of errors occurred in the first half or

second half.

4At some point, the new pass is redundant, as we cannot determine how many passes we actually need
beforehand. After a few passes, before starting over, it is possible for them to compare a “brief” hash of
their whole data array that divulges very few information of their keys (or a random portion of their keys
in large chunks) to get a better idea whether their keys are identical or not (using large chucks is better
than using separate small chunks as in [23] in the sense that we can “compress” more with combined
data). Afterwards, they may shuffle their data in a way they agree on, and/or throw away a few bits to
compensate for the information leak when divulging the hash, and go on.

Chapter 4: Information Reconciliation 36

3. This process is recursively applied to the half determined in step 2, until the error is

eventually found. When the error is found, it is corrected by a single bit-flip.

CONFIRM: 5 When Alice’s and Bob’s keys are not identical, this protocols confirms it with

probability 1/2. In the absence of errors, it confirms with probability 1.

1. Alice and Bob pick a block at random locations in their keys (they agree on these

locations, of course).

2. Alice sends the parity of her subset to Bob.

3. Bob checks whether the parities agree or not. For the case where there are even

number of errors, his conclusion will be misleading.

This procedure can be iterated l times, so that failure probability decreases exponentially

(2−l).

Cascade: We here give the description of the protocol, followed by a discussion on the

optimal choice of block size for each pass —which depends on error rate of the channel—

in 4.2.1.

In the first pass (which we will denote as i = 1), Alice and Bob split their keys into

blocks of k1 bits. Alice computes and sends the parities of her blocks to Bob. Using BINARY,

Bob corrects errors in blocks whose parities differ from Alice’s corresponding block. So far,

the method is very similar to BBBSS.

Beginning from the second pass (i > 1) however, we use the following procedure. Alice

and Bob construct blocks of ki bits from their keys 6 (both sides will have n/ki blocks in

total), but this time, the elements of blocks are picked at random. To formalize this, we

say we have a function fi whose domain is [1 . . . n] → [1 . . . dn/kie], that assigns a random

block to a given bit index (i.e., it tells which bit is in which block). To refer these blocks

in a more compact way, we will make one more definition. Ki
j is a list of bit-positions that

defines the jth block of Alice and Bob in ith pass, or in terms of fi, K
i
j = {l|fi(l) = j}.

5Although this is not a part of Cascade, we keep this procedure, which originally defined in [6], because
it can be incorporated into BBBSS.

6They do not work on copies of these bits, however. When we say “constructing a block”, we merely
mean making a list of indices that point to these bits.

Chapter 4: Information Reconciliation 37

As in the first pass, Alice sends the parities of the newly formed blocks to Bob. And Bob

in return computes the parities of his blocks and executes BINARY for differing ones. Let us

say the parity for jth block did not match, and after using BINARY, they corrected the bit

at position l, which is in Ki
j . At this point, Alice and Bob can make use of the previous

passes like this. Since the end of each pass every parity mismatch is corrected, this newly

found error at l implies that we missed it in all the previous cases. Which means every

block that contained lth bit in previous searches had double (or even number of) errors (let

us call the set of these blocks K —this includes all such blocks in the current, and previous

passes). Now that we corrected the one at l, they all are left with odd number of errors.

We should go back and correct these even “newer” 7 errors! We just pick the smallest block

in K8 and execute BINARY on it, this will yield the position of the other error we missed, l′

and correct it. Let us call the set of blocks containing l′, B. Now it happens that not every

block containing the lth bit contains l′th, vice and versa. It was the case for the block on

which we just used BINARY on, but it may not be the case for others in K. There may still

be blocks that contained either one of l or l′, and upon correction, now left with an odd

number of errors. The set of these blocks is, obviously,

K′ = B∇K = (B ∪ K) \ (B ∩ K). (4.3)

If such blocks exists, that is to say, if K′ 6= ∅, then Bob will find another pair of errors in the

same way. This procedure is repeated until there are no more known parity mismatches.

4.2.1 Choosing Good Block Sizes for Cascade

We follow the analysis in [6], which yields the appropriate choice of block size for each

pass, such that the probability that the number of errors in a block (say, K1
v) decreases

exponentially with increasing number of passes completed. Let us define δi(j) to be the

probability that after the pass i(≥ 1), 2j errors remain in K1
v . The distribution of errors

will approximately be binomial distribution, and since both 2j and 2j + 1 errors contribute

7Of course they were there from the beginning, it’s just we haven’t noticed them before.

8So that the processing will be quick.

Chapter 4: Information Reconciliation 38

to δ1(j), we have

δ1(j) =

(
k1
2j

)
ε2j(1− ε)k1−2j +

(
k1

2j + 1

)
ε2j+1(1− ε)k1−(2j+1) (4.4)

And let Ei be the expected number of errors in that block after ith pass (and the goal

will become that it is roughly halved after each pass: Ei = Ei−1/2). For the first pass,

E1 =

bk1/2c∑
j=1

2j × δ1(j) = εk1 −
1− (1− 2ε)k1

2
. (4.5)

And let γi to be the probability of correcting at least 2 errors in ith pass (i > 1) for the

block K1
v , which still contains errors even after the corrections in i− 1th pass. The number

of expected errors per block9 in i − 1th pass is n
k1
Ei−1, and the probability that a given

(erroneous) bit is in a certain block is ki/n. Using these, and the fact that errors are

corrected in pairs, we can write down the following inequality (for large n)

γi ≥ 1−

(
1−

(
1− ki

n

) n
k1
Ei−1

)2

≈ 1−
(

1− e−kiEi−1/k1
)2

(4.6)

With the inequality for γi, we can give an upper bound for δi(j) (for i > 1, of course)

δi(j) ≤

bk1/2c∑
l=j+1

δi−1(l)

+ δi−1(j)(1− γi) (4.7)

If we choose the initial block size k1 such that

bk1/2c∑
l=j+1

δ1(l) ≤
1

4
δ1(j) (4.8)

and double the block size at each pass (i.e., ki = 2ki−1) and plugging this into (4.6), and

using (4.8) within (4.7) in conjunction, we can write

δi(j) ≤
1

4
δi−1(j) +

(
1− exp

(
2i−1Ei−1

))2
δi−1(j). (4.9)

If we furthermore introduce the following restriction

9Since our discussion focuses on the error correction in K1
v , we here refer to the blocks of the first pass.

Chapter 4: Information Reconciliation 39

E1 = ek1 −
1− (1− 2ε)k1

2
≤ ln 2

2
(4.10)

since δi(j) ≤ δi−1(j)
2 ≤ δ1(j)

2i−1 , we have Ei = Ei−1

2 , and thus (4.6) can be written as

1− γi ≤
(
1− e−2E1

)2 ≤ 1

4
(4.11)

In summary, we choose our “free” parameter k1 such that it obeys (4.8) and (4.10), and

we double it after each pass.

There is, however, no analysis for the number of total passes ω as a function of error

rate ε (and maybe the length of the sifted key, n), to the best knowledge of the author.

Benchmarks in [6] list that ω = 4 is a good choice for n = 10000 in a practical weak-pulse

implementation with µ = 0.12, within the acceptable range of QBER of BB84.

Chapter 5: Privacy Amplification 40

Chapter 5

PRIVACY AMPLIFICATION

The goal of privacy amplification is to reduce the information of Eve on reconciled bit-

string S. One simple way of implementing the idea is this. Alice and Bob can split their

keys into blocks of 2 bits, and by XORing these blocks, generate a new key. If Eve had

the correct values of bits with 3/4 probability, after XOR, this reduces her chances down

to (3/4)2 + (1/4)2 = 10/16. This is good, but we would like to establish an exponentially

decreasing upper bound for Eve’s information.

5.1 Privacy Amplification Using Hash Functions

Following [13], we will show that if Eve’s information on S is no more than t deterministic

bits, when a randomly and public chosen hash function h : {0, 1}n → {0, 1}r (where r =

n − t − s) maps S into a smaller key K on which Eve’s information is less than 2−s/ ln 2

bits, where s is called the security parameter. The key after privacy amplification is it’s

final form, so we expect Eve’s information to be exponentially small at this point, which is

satisfied by this method.

When we say hash function in this context, we actually mean linear universal2 (we will

just say universal) functions {0, 1}n → {0, 1}r. Universal functions are a class of functions

G which are A → B, and for all any distinct x1 and x2, the probability for g(x1) = g(x2) is

at most 1/|B| (where |B| is the number of elements in B —for our case, it is 2r) when the

function g is chosen from G using a uniform distribution. Such linear universal functions

can be described using r × n matrices with 0s and 1s as its elements (GF (2)).

Collision probability for a random variable X over an alphabet X , with a probability

distribution is defined to be

Pc(X) =
∑
x∈X

PX(x)2. (5.1)

The Rényi entropy (of order two) of X is defined as

Chapter 5: Privacy Amplification 41

R(X) = − logPc(X). (5.2)

The conditional entropy is extended in a similar manner as in the case of Shannon’s entropy

R(X|Y) =
∑
y∈Y

PY (y)R(X|Y = y). (5.3)

At this point, we will state Jensen’s inequality, which says, for a concave function f(x)

(such as logarithm function)

f
(∑

pixi

)
≥
∑

pif(xi) (5.4)

when
∑
pi = 1, which is the case for probabilities 1. In other words,

f(〈xi〉) ≥ 〈f(xi)〉 (5.5)

Since H(X) = −〈logPX(X)〉 and R(X) = − log〈PX(X)〉, we see that Rényi entropy is

bounded by Shannon entropy

R(X) ≤ H(X). (5.6)

By the same token, for conditional entropies, we can easily derive

R(X|Y) ≤ H(X|Y). (5.7)

Before analyzing Eve’s information, we will derive one other inequality, which is not as

straightforward as the ones so far:

H(K|G) ≥ R(K|G) ≥ r − 2r−R(X)

ln 2
(5.8)

where G is the (uniformly) random choice of a universal hash function, and K = G(X). We

begin with explicitly writing out the Rényi entropy

1For any pair of positive real numbers that obey p1 + p2 = 1, concavity implies f(p1x1 + p2x2) ≥
p1f(x1)+p2f(x2) for any x1 and x2, and by induction, this can be generalized to any number of variables.

Chapter 5: Privacy Amplification 42

R(G(X)|G) =
∑
g

PG(g)R(G(X)|G = g) =
∑
g

PG(g)(− logPc(G(X)|G = g)) (5.9)

Using Jansen’s inequality on the last expression, we have

R(G(X)|G) ≥ − log

(∑
g

PG(g)Pc(G(X)|G = g)

)
(5.10)

The sum inside the logarithm is equal to the probability for g(x1) = g(x2) when g is ran-

domly chosen according to PG and x1, x2 are randomly and independently chosen according

to PX), that is to say,

Pr[G(X1) = G(X2)]. (5.11)

We can also write the same thing this way

Pr[X1 = X2] + Pr[X1 6= X2]Pr[G(X1) = G(X2)|X1 6= X2] (5.12)

which makes a direct reference to the definition of a universal hash function. The chances

for G(X1) = G(X2) when X1 6= X2 is 2−r, and introducing the collision entropy, we can

write down the following inequality

Pr[X1 = X2]+Pr[X1 6= X2]Pr[G(X1) = G(X2)|X1 6= X2] ≤ Pc(X)+(1−Pc(x))2−r. (5.13)

An even higher bound is

Pc(X) + (1− Pc(x))2−r < 2−R(X) + 2−r = 2−r
(

1 + 2−r−R(X)
)
. (5.14)

Plugging this back into the logarithm, we have

H(K|G) ≥ R(K|G) ≥ r − log(1 + 2−r+R(X)) (5.15)

Using the bound for logarithm log(1 + x) ≤ x/ ln 2, we recover the original inequality

(5.8). We now have the tools to proceed to derive an upper bound to Eve’s information.

Chapter 5: Privacy Amplification 43

Suppose Eve has a way of obtaining t deterministic bits from the reconciled n-bit key S,

which we will represent using the function e(S), e : {0, 1}n → {0, 1}t (t < n). The nature

of the function is determined by the eavesdropping strategy used by Eve. Let v ∈ {0, 1}t to

be a particular value of V , as result of Eve’s measurements. There will be many possible

s that satisfies e(s) = v, only one being the correct S, and Eve will have to choose among

them. Let the number of possible choices for s be c, then PS|V=v = 1/c and

Pc(S|V = v) = c
1

c2
=

1

c
(5.16)

R(S|V = v) = log c (5.17)

When Eve’s Rényi entropy R(S|V = v) is known to be (at least) c, we can also write

H(K|G,V = v) ≥ r − log
(
1 + 2r−c

)
≥ r − 2r−c

ln 2
(5.18)

Averaging this over the possible values of v, we derive H(K|GV). , we obtain the following

for Eve’s information on the key

I(K;GV) = H(K)−H(K|GV) ≤ r −
∑
v

PV (v)H(K|G,V = v) (5.19)

Using PV (v) = c2−n

I(K;GV) ≤
∑
v

c2−n
2r

c · ln 2
=

2−n+t+r

ln 2
=

2−s

ln 2
(5.20)

which establishes the exponentially decreasing upper bound for Eve’s information, in terms

of the security parameter s. It is normally used to define the value of r = n − s − t, for a

pre-set value of n and t.

Choosing the class of linear universal hash functions (which can be represented by n× r

matrices of bits) as G has a practical downside, however. It requires parties to generate nr

random bits to transmit over a classical line, a number which can grow very fast. One can

however reduce this requirement, using Toeplitz matrices [21]. A Toeplitz matrix satisfies

Mij = Mi+δ,j+δ for 1 ≤ i, i+ δ ≤ r and 1 ≤ j, j + δ ≤ n (i.e., it has the same number along

a diagonal). It has only n+ r − 1 independent terms, which is a feasible number of bits to

Chapter 5: Privacy Amplification 44

transfer over a classical channel. 2

Explicitly, if we have arrays of random bits {a1, a2, a3, . . . an} and {b2, b3, . . . bm} for

instance, we can construct the following Toeplitz matrix

M =



a1 a2 a3 an

b2 a1 a2
. . .

...

b3 b2
. . .

. . .
. . .

...
...

. . .
. . .

. . . an−r+2 an−r+3

...
. . . b2 an−r+1 an−r+2

br b3 b2 an−r+1


(5.21)

2We will not try to establish that Toeplitz matrices are universal here, as it does not fall into the scope
of this text. Keen reader can, however, follow the references in [21].

Chapter 6: Security 45

Chapter 6

SECURITY

In this chapter we will give a brief introduction to security related issues and cite some

important results in QKD for the sake of completeness. We will omit the proof for un-

conditional security by Shor and Preskill —which otherwise requires us to broaden the

background information to include linear error correction codes and CSS codes— and cite

it instead. We will discuss the basic ideas involved, however.

6.1 Random Number Generation

The encryption techniques usually require perfectly random numbers, which cannot be

generated using classical methods. Random number sequences generated by classical com-

puters use an algorithm that relates a given number to another deterministically, with a

single function call as the interface

xn+1 = f(xn) (6.1)

Although the sequence {x1, x2, ..., xN} may look random, each number is directly related

to the previous one. The initial number in the sequence (sometimes called the seed) is

usually derived from computer’s clock at function’s execution time, so that the sequence

will mostly be different each time the program is run. It is possible to update the seed

value using current system time and maybe the previous random number before each call to

increase randomness, but the whole thing is deterministic by construction. These functions

are called pseudo-random number generators, and because the numbers are correlated in a

given sequence, they are avoided when security is of major concern.

Chapter 6: Security 46

6.2 QBER Threshold for Secure Key

We have already noted that when Eve measures every incoming qubit in X or Z and sends

a qubit in accordance to her measurement (this is called the intercept-resend strategy), she

will introduce a QBER of 0.25. Following the analysis in [12], we will not restrict Eve to

use X and Z axes, but allow for an arbitrary tilt θ for her measurement bases.

Let us say Alice encoded her qubit it Z basis. The probability for Eve to get the “correct”

result is

pz(θ) = cos2
(
θ

2

)
=

1

2
+

cos θ

2
(6.2)

Only the angles between measurement basis and encoding basis matters, and since Z →

X means a θ = π/2 rotation in Bloch sphere, we can work out the case for X by a simple

substitution θ → π/2− θ: px(θ) = pz(π/2− θ) Since X and Z basis are chosen with equal

likelihood, the probability for Eve to get the “correct” result is

p(r)(θ) =
1

2
px(θ) +

1

2
pz(θ) =

1

2
+

cos θ + sin θ

2
(6.3)

where the superscript (r) denotes this is the probability associated with the raw (prior to

sifting) key. Since the quantum channel is a binary channel, the information of Eve will be

given by

I(r)(θ) = 1− h
(
p(r)(θ)

)
(6.4)

After the bases are announced, Eve will know which basis is used for each qubit. She can

tell whether a bit was encoded in X or Z basis now, so she can separate her bits into two

groups. This means, Eve effectively behaves like two receivers listening to channel for X

bits only and channel for Z bits only. As a result, the information gain of Eve after sifting

will be equal to the average information gained by these two imaginary listeners

I(s)(θ) =
1

2
I(s)z (θ) +

1

2
I(s)x (θ) (6.5)

Chapter 6: Security 47

where

I(s)z (θ) = 1− h (pz(θ)) (6.6)

I(s)x (θ) = 1− h (px(θ)) (6.7)

We see that Eve’s information on the raw key is maximized when θ = π/4, whereas for

the sifted key, the ideal angle is θ = 0.

Eve introduces an average error probability of

1

2
(1− pz(θ)) +

1

2
(1− px(θ)) (6.8)

which is maximized for θ = π/4 (this configuration is called Breidbart basis), becoming

1−1/
√
2

2 ≈ 0.15. So, when Eve is limited to attach photons one by one (individual attack),

the threshold value for QBER is 0.15

We will state a theorem from [16] for the ultimate security, which is valid even when

Eve has a way of manipulating all qubits jointly after the public announcement, without

giving the proof. Alice and Bob can establish a secure key using reconciliation and privacy

amplification if and only if I(A : B) ≥ I(A : E). I(A : B) is readily 1/2 for the case of

BB84, so this condition becomes

1

2
≥ 1− h(ε), (6.9)

or numerically, ε < 0.11, which defines the threshold for acceptable QBER for secure

key.

We would like to emphasize that these proofs assume ideal conditions. Flaws of any

kind, such as weak pulses or detectors efficiency mismatches, should be taken into account

when giving a threshold value for QBER [16].

Chapter 7: Results and Conclusion 48

Chapter 7

RESULTS AND CONCLUSION

7.1 Simulation of QKD

We have implemented a computer simulation of BB84, which includes QBER estimation,

reconciliation (Cascade) and privacy amplification (Toeplitz matrices) in Go programming

language 1. We chose Go because the language has a natural representation of communica-

tion channels as a native type. The program runs the code for Alice and Bob (and Eve) in

parallel in separate goroutines. Although the whole code appears to be monolithic, break-

ing the code into submodules should be straightforward since data structures were defined

that way. Also, the program can easily be split into separate programs, which communicate

over network, by using a module such as JSON RPC. Since we are only concerned with the

results of simulation, we did not take these steps.

We compiled the program on an x86-64 machine, using the standard (non-GCC) compiler

$ 6g bb84.go && 6l -o bb84 bb84.6

The parameters, their defaults values and functions, accepted by the program, are as

follows.

-n=100: Number of qubits to be generated

-s=0: Security parameter for Cascade

-r=0.5: Ratio of bits to be used for QBER estimation

-v=false: Verbose output (too much output)

-S="intercept-resend": Strategy for Eve: nil, intercept-resend, breidbard

-T=1: The probability for Eve to tamper with the qubit

-k1=73: Cascade parameter: initial block size

1We would like to note that the language is still under development. We compiled the source with version
6063 of the Go compiler. Possible changes required to compile the code in future releases will be listed in
the Release History page in Go web-site: http://golang.org/doc/devel/release.html

Appendix : Results and Conclusion 49

Following is the output of a sample run the simulation. Eve uses intercept-resend attack

44% of incoming qubits, gaining partial information on the key without disturbing the

protocol. The security parameter is chosen to be s = 10, so that Eve’s information is next

to nil.

./bb84 -n 100 -k1 4 -s 10 -T 0.44

QBER was estimated to be 0.07142857142857142

We got 29 bits out of BB84

Starting reconciliation

Divulged: 4

15 bits final key:

Alice: [0 1 1 0 1 0 0 1 1 0 1 0 1 1 1]

Bob : [0 1 1 0 1 0 0 1 1 0 1 0 1 1 1]

(We picked n = 100 and disabled verbose mode to avoid a lengthy output.) We see that

out of 100 qubits, Alice and Bob can extract 29 bits of “sifted” key: sifting procedure recudes

the raw key length to half, and half2 of the sifted keys are used for QBER estimation.

When we let Eve to tamper with qubits each time, we get QBER=0.25, thus Alice and

Bob cancel the protocol.

./bb84 -n 10000 -k1 4 -s 10 -T 1

QBER was estimated to be 0.25273390036452004

We got 2469 bits out of BB84

Someone is badly tampering with the connection. Quiting.

2This behavior can be changed with -r parameter.

Appendix A: Go Code To Simulate BB84 50

Appendix A

GO CODE TO SIMULATE BB84

1 package main

2

3 import (

4 ”math”

5 ”cmath”

6 ”rand”

7 ” f l a g ”

8 ” log ”

9 ” time ”

10)

11

12 const QBERThreshold = 0.11

13

14 var nraw = f l a g . Int (”n” , 100 , ”Number o f qub i t s to be generated ”)

15 var verbose = f l a g . Bool (”v” , f a l s e , ” Verbose output (too much output) ”)

16 var qberBi t s = f l a g . Float64 (” r ” , 0 . 5 ,

17 ” Ratio o f b i t s to be used f o r QBER est imat ion ”)

18 // The equa t i ons f o r k1 are p r e t t y compl ica ted to be s o l v e d in Go.

19 // One can pipe through math (1) o f Mathematica , or genera te a look−up t a b l e

20 // in s t ead .

21 // We expec t user to input t h e s e numbers be forehand

22 var k1 = f l a g . Uint (”k1” , 73 , ”Cascade parameter : i n i t i a l b lock s i z e ”)

23 var s t r a t e g y = f l a g . S t r ing (”S” , ” in t e r c ep t−resend ” ,

24 ” Strategy f o r Eve : n i l , i n t e r c ep t−resend , bre idbard ”)

25 var s = f l a g . Uint (” s ” , 0 , ” Secu r i ty parameter f o r Cascade”)

26 var eveTamperP = f l a g . Float64 (”T” , 1 . 0 ,

27 ”The p r o b a b i l i t y f o r Eve to tamper with the qubit ”)

28 // ==========================

29

30 // Current ve r s i on does not a l l ow ca s t i n g from boo l

31 func Bool2Int (v bool) int {

Appendix A: Go Code To Simulate BB84 51

32 i f v == true {

33 return 1

34 }

35 return 0

36 }

37

38 // Workaround . Print f unc t i on ou tpu t s t rue / f a l s e wi th a boo l array .

39 func BoolArray2IntArray (v [] bool) [] int {

40 out := make ([] int , len (v))

41 for i := 0 ; i < len (v) ; i++ {

42 out [i] = Bool2Int (v [i])

43 }

44 return out

45 }

46

47 func RandomBit () bool {

48 return rand . Float () < 0 .5

49 }

50

51 func RandomBitArray (n int) [] bool {

52 a := make ([] bool , n)

53 for j := 0 ; j < n ; j++ {

54 a [j] = RandomBit ()

55 }

56 return a

57 }

58

59 // ===========================

60

61 type Qubit struct {

62 a , b complex128

63 }

64

65 func cd iv (c complex128 , d float64) complex128 {

66 return cmplx(real (c) /d , imag(c) /d)

67 }

68

69 func (q ∗Qubit) normal ize () {

Appendix A: Go Code To Simulate BB84 52

70 n := math . Sqrt (real (q . a∗cmath . Conj (q . a) + q . b∗cmath . Conj (q . b)))

71 q . a = cdiv (q . a , n)

72 q . b = cdiv (q . b , n)

73 }

74

75 func (q ∗Qubit) In i tC (a , b complex128) {

76 q . a = a

77 q . b = b

78 q . normal ize ()

79 }

80

81 func (q ∗Qubit) In itR (a , b float64) {

82 q . a = cmplx(a , 0)

83 q . b = cmplx(b , 0)

84 q . normal ize ()

85 }

86

87 // Returns <q | p>

88 func Inner (q , p ∗Qubit) complex128 {

89 return cmath . Conj (q . a) ∗p . a + cmath . Conj (q . b) ∗p . b

90 }

91

92 func (q ∗Qubit) Measure (m ∗Qubit) (r e s bool) {

93 A := Inner (m, q)

94 P := real (cmath . Conj (A) ∗ A)

95 r e s = rand . Float64 () < P

96 i f A != 0 {

97 q . a = m. a

98 q . b = m. b

99 }

100 return

101 }

102

103 func NewQubit (base , data bool) Qubit {

104 var q Qubit

105 i f base { // computat iona l b a s i s

106 i f data { // |0>

107 q . In itR (1 , 0)

Appendix A: Go Code To Simulate BB84 53

108 } else {

109 q . In itR (0 , 1)

110 }

111 } else {

112 i f data { // |+>

113 q . In itR (1 , 1)

114 } else {

115 q . In itR (1 , −1)

116 }

117 }

118

119 return q

120 }

121

122 // ===================================

123

124 type QKD struct {

125 n int

126 data [] bool

127 base [] bool

128 s i f t e d [] bool

129 name string

130 qber float64

131 qch chan Qubit // Channel to send q u b i t s over

132 sch chan [] bool // Channel used in s i f t i n g

133 permch chan [] int // Used in computing QBER

134 // Only f o r Eve

135 qchB chan Qubit // Channel to send q u b i t s over

136 schB chan [] bool // Channel used in s i f t i n g

137 permchB chan [] int // Used in computing QBER

138 }

139

140 func NDi f f e r i ngB i t s (a , b [] bool) int {

141 i f len (a) != len (b) {

142 panic (”Should not happen”)

143 }

144 n d i f f := 0

145 for i := 0 ; i < len (a) ; i++ {

Appendix A: Go Code To Simulate BB84 54

146 i f a [i] != b [i] {

147 n d i f f++

148 }

149 }

150 return n d i f f

151 }

152

153 func (e ∗QKD) I n i t () {

154 e . data = RandomBitArray (e . n)

155 e . base = RandomBitArray (e . n)

156 }

157

158 func (a l i c e ∗QKD) Al i c e () {

159 for i := 0 ; i < a l i c e . n ; i++ {

160 q := NewQubit (a l i c e . base [i] , a l i c e . data [i])

161 // a l i c e . p r i n t (” Sending q u b i t #”, i , ” : ” , q)

162 a l i c e . qch <− q

163 }

164 a l i c e . sch <− a l i c e . base

165 bobsBase := <−a l i c e . sch

166

167 a l i c e . print (”Base : ” , BoolArray2IntArray (a l i c e . base))

168 a l i c e . print (”Data : ” , BoolArray2IntArray (a l i c e . data))

169

170 s i f t e d := make ([] bool , 0 , a l i c e . n)

171 for i := 0 ; i < a l i c e . n ; i++ {

172 i f a l i c e . base [i] == bobsBase [i] {

173 l := len (s i f t e d)

174 s i f t e d = s i f t e d [0 : l +1]

175 s i f t e d [l] = a l i c e . data [i]

176 } else {

177 a l i c e . print (” Bases do not match f o r qubit #” ,

178 i , ” , throwing away”)

179 }

180 }

181 a l i c e . print (” S i f t e d (1) : ” , BoolArray2IntArray (s i f t e d))

182

183 perm := rand . Perm(len (s i f t e d))

Appendix A: Go Code To Simulate BB84 55

184 a l i c e . permch <− perm

185 nQberEstimationBits := int (float64 (len (perm)) ∗ ∗ qberBi t s)

186 permEstimate := perm [0 : nQberEstimationBits]

187 permRemaining := perm [nQberEstimationBits :]

188 qberEst imateBits := make ([] bool , len (permEstimate))

189 for i := 0 ; i < len (qberEst imateBits) ; i++ {

190 qberEst imateBits [i] = s i f t e d [perm [i]]

191 }

192 a l i c e . sch <− qberEst imateBits

193 bobsQberEstimateBits := <−a l i c e . sch

194 n d i f f := NDi f f e r i ngB i t s (qberEst imateBits , bobsQberEstimateBits)

195 a l i c e . qber = float64 (n d i f f) / float64 (len (qberEst imateBits))

196

197 remain ingBits := make ([] bool , len (permRemaining))

198 for i := 0 ; i < len (remain ingBit s) ; i++ {

199 remain ingBits [i] = s i f t e d [perm [i]]

200 }

201

202 a l i c e . s i f t e d = remain ingBit s

203

204 a l i c e . print (” S i f t e d (2) : ” , BoolArray2IntArray (a l i c e . s i f t e d))

205 }

206

207 func (bob ∗QKD) Bob () {

208 for i := 0 ; i < bob . n ; i++ {

209 q := <−bob . qch

210 m := NewQubit (bob . base [i] , t rue)

211 bob . data [i] = q . Measure(&m)

212 }

213 a l i c e s B a s e := <−bob . sch

214 bob . sch <− bob . base

215

216 bob . print (”Base : ” , BoolArray2IntArray (bob . base))

217 bob . print (”Data : ” , BoolArray2IntArray (bob . data))

218

219 s i f t e d := make ([] bool , 0 , bob . n)

220 for i := 0 ; i < bob . n ; i++ {

221 i f bob . base [i] == a l i c e s B a s e [i] {

Appendix A: Go Code To Simulate BB84 56

222 l := len (s i f t e d)

223 s i f t e d = s i f t e d [0 : l +1]

224 s i f t e d [l] = bob . data [i]

225 } else {

226 bob . print (” Bases do not match f o r qubit #” ,

227 i , ” , throwing away”)

228 }

229 }

230

231 bob . print (” S i f t e d (1) : ” , BoolArray2IntArray (s i f t e d))

232

233 perm := <−bob . permch

234 nQberEstimationBits := int (float64 (len (perm)) ∗ ∗ qberBi t s)

235 permEstimate := perm [0 : nQberEstimationBits]

236 permRemaining := perm [nQberEstimationBits :]

237 qberEst imateBits := make ([] bool , len (permEstimate))

238 for i := 0 ; i < len (qberEst imateBits) ; i++ {

239 qberEst imateBits [i] = s i f t e d [perm [i]]

240 }

241 a l i c e sQberEs t imateB i t s := <−bob . sch

242 bob . sch <− qberEst imateBits

243 n d i f f := NDi f f e r i ngB i t s (qberEst imateBits , a l i c e sQberEs t imateB i t s)

244 bob . qber = float64 (n d i f f) / float64 (len (qberEst imateBits))

245

246 remain ingBits := make ([] bool , len (permRemaining))

247 for i := 0 ; i < len (remain ingBit s) ; i++ {

248 remain ingBits [i] = s i f t e d [perm [i]]

249 }

250

251 bob . s i f t e d = remain ingBits

252

253 bob . print (” S i f t e d (2) : ” , BoolArray2IntArray (bob . s i f t e d))

254 }

255

256 func (eve ∗QKD) Eve () {

257 for i := 0 ; i < eve . n ; i++ {

258 q := <−eve . qch

259 i f rand . Float64 () < ∗eveTamperP {

Appendix A: Go Code To Simulate BB84 57

260 switch ∗ s t r a t e g y {

261 case ” n i l ” :

262

263 case ” in t e r c ep t−resend ” :

264 m := NewQubit (eve . base [i] , t rue)

265 eve . data [i] = q . Measure(&m)

266

267 case ” bre idba r t ” :

268 var m Qubit

269 m. InitR (math . Cos (math . Pi /8) ,

270 math . Sin (math . Pi /8))

271 eve . data [i] = q . Measure(&m)

272

273 default :

274 log . Exit (”Unknown s t r a t e g y f o r Eve”)

275 }

276 }

277 eve . qchB <− q

278 }

279 a l i c e s B a s e := <−eve . sch

280 eve . schB <− a l i c e s B a s e

281

282 bobsBase := <−eve . schB

283 eve . sch <− bobsBase

284

285 perm := <−eve . permch

286 eve . permchB <− perm

287

288 a l i c e sQberEs t imateB i t s := <−eve . sch

289 eve . schB <− a l i c e sQberEs t imateB i t s

290

291 bobsQberEstimateBits := <−eve . schB

292 eve . sch <− bobsQberEstimateBits

293 }

294

295 func (e ∗QKD) S i f t e d () [] bool {

296 return e . s i f t e d

297 }

Appendix A: Go Code To Simulate BB84 58

298

299 func (e ∗QKD) QBER() float64 {

300 return e . qber

301 }

302

303 func (e ∗QKD) print (v . . . interface {}) {

304 i f ∗ verbose == f a l s e {

305 return

306 }

307 log . Stder r (e . name , v)

308 }

309

310 // ==================================

311

312 // Some cons tan t s f o r Cascade

313 const MAXPASS = 100

314 const NMINPASS = 2

315

316 // A b l o c k i s the s e t o f ind i ce s , r e f e r r i n g to the p o s i t i o n in data array

317 type Block [] int

318 // A pass i s a s e t o f b l ock s , t h a t covers whole data array

319 type Pass [] Block

320

321

322 func (b ∗Block) Par i ty (d [] bool) bool {

323 sum := 0

324 for , j := range ∗b {

325 // l o g . S tderr (” data index : ” , j)

326 sum += Bool2Int (d [j])

327 }

328

329 return sum&1 == 1

330 }

331

332 func (pass ∗Pass) whichBlock (index int) int {

333 for b lock i , b lock := range ∗pass {

334 for , j := range block {

335 i f j == index {

Appendix A: Go Code To Simulate BB84 59

336 return b l o c k i

337 }

338 }

339 }

340

341 panic (”Should never happen”)

342 return −1

343 }

344

345 func newPass (n , b l o c k s i z e int , randomized bool) Pass {

346 var perm [] int

347 i f randomized {

348 perm = rand . Perm(n)

349 } else {

350 perm = make ([] int , n)

351 for j := 0 ; j < n ; j++ {

352 perm [j] = j

353 }

354 }

355

356 n f u l l b l o c k s := n / b l o c k s i z e

357 remainder := n − n f u l l b l o c k s ∗ b l o c k s i z e

358 nblocks := n/ b l o c k s i z e + Bool2Int (remainder != 0)

359

360 p := make(Pass , nb locks)

361

362 for j := 0 ; j < n f u l l b l o c k s ; j++ {

363 p [j] = perm [j ∗ b l o c k s i z e : (j +1)∗ b l o c k s i z e]

364 }

365

366 i f remainder != 0 {

367 p [n f u l l b l o c k s] = perm [n f u l l b l o c k s ∗ b l o c k s i z e :]

368 }

369

370 return p

371 }

372

373 func (a l i c e ∗Cascade) A l i c e () {

Appendix A: Go Code To Simulate BB84 60

374 for ; ; a l i c e . i++ {

375 a l i c e . print (” Started pass #” , a l i c e . i)

376 pass := <−a l i c e . chPass

377 a l i c e . print (” Received i n d i c e s ”)

378 a l i c e . addPass (pass)

379 // number o f co r r e c t ed b l o c k s in the curren t pass

380 ncor r ec t ed := 0

381 for b lock i , b lock := range pass {

382 a l i c e s P a r i t y := block . Par i ty (a l i c e . d)

383 a l i c e . chPar i ty <− a l i c e s P a r i t y

384 bobsPar ity := <−a l i c e . chPar i ty

385

386 i f a l i c e s P a r i t y != bobsPar ity {

387 a l i c e . print (” P a r i t i e s f o r b lock #” , b lock i ,

388 ”do not match , s t a r t i n g e r r o r c o r r e c t i o n ”)

389 a l i c e . c o r r e c t B l o c k A l i c e (a l i c e . i , b l o c k i)

390 ncor r ec t ed++

391 }

392 }

393

394 i f ncor r ec t ed == 0 && a l i c e . i >= NMINPASS {

395 a l i c e . print (”Bye ! ”)

396 break

397 }

398 }

399 }

400

401 func (bob ∗Cascade) Bob () {

402 for ; ; bob . i++ {

403 bob . print (” Started pass #” , bob . i)

404 pass := newPass (len (bob . d) , bob . b l o c k s i z e<<uint (bob . i) ,

405 bob . i != 0)

406 bob . chPass <− pass

407 bob . print (” Created and sent the i n d i c e s ”)

408 bob . addPass (pass)

409

410 // number o f co r r e c t ed b l o c k s in the curren t pass

411 ncor r ec t ed := 0

Appendix A: Go Code To Simulate BB84 61

412 for b lock i , b lock := range pass {

413 a l i c e s P a r i t y := <−bob . chPar i ty

414 bobsPar ity := block . Par i ty (bob . d)

415 bob . chPar i ty <− bobsParity

416 i f a l i c e s P a r i t y != bobsPar ity {

417 bob . print (” P a r i t i e s f o r b lock #” , b lock i ,

418 ”do not match , s t a r t i n g e r r o r c o r r e c t i o n ”)

419 bob . correctBlockBob (bob . i , b l o c k i)

420 ncor r ec t ed++

421 }

422 }

423

424 i f ncor r ec t ed == 0 && bob . i >= NMINPASS {

425 bob . print (”Bye ! ”)

426 break

427 }

428 }

429 }

430

431 func (c ∗Cascade) correctBlockBob (i , b l o c k i int) {

432 block := c . k [i] [b l o c k i]

433 ix := c . binaryBob (block)

434 for j := 0 ; j < i ; j++ {

435 pass := c . k [j]

436 b i := pass . whichBlock (ix)

437 c . correctBlockBob (j , b i)

438 }

439 }

440

441 func (c ∗Cascade) c o r r e c t B l o c k A l i c e (i , b l o c k i int) {

442 block := c . k [i] [b l o c k i]

443 ix := c . b ina ryAl i c e (b lock)

444 for j := 0 ; j < i ; j++ {

445 pass := c . k [j]

446 b i := pass . whichBlock (ix)

447 c . c o r r e c t B l o c k A l i c e (j , b i)

448 }

449 }

Appendix A: Go Code To Simulate BB84 62

450

451 func (bob ∗Cascade) binaryBob (block Block) int {

452 i f len (b lock) == 1 {

453 bob . d [b lock [0]] = ! bob . d [b lock [0]]

454 bob . print (” Error at b i t #” , b lock [0] , ”has been c o r r e c t e d ”)

455 return block [0]

456 }

457

458 l := len (b lock)

459 b0 := block [0 : l /2]

460 b1 := block [l / 2 :]

461

462 bobsPar ity := b0 . Par i ty (bob . d)

463 a l i c e s P a r i t y := <−bob . chPar i ty

464 bob . chPar i ty <− bobsParity

465 i f bobsParity != a l i c e s P a r i t y {

466 return bob . binaryBob (b0)

467 } else {

468 return bob . binaryBob (b1)

469 }

470

471 panic (”Should never happen”)

472 return −1

473 }

474

475 func (a l i c e ∗Cascade) b ina ryAl i c e (b lock Block) int {

476 i f len (b lock) == 1 {

477 return block [0]

478 }

479

480 l := len (b lock)

481 b0 := block [0 : l /2]

482 b1 := block [l / 2 :]

483

484 a l i c e s P a r i t y := b0 . Par i ty (a l i c e . d)

485 a l i c e . chPar i ty <− a l i c e s P a r i t y

486 bobsPar ity := <−a l i c e . chPar i ty

487

Appendix A: Go Code To Simulate BB84 63

488 a l i c e . d ivu lged++

489

490 i f bobsParity != a l i c e s P a r i t y {

491 return a l i c e . b ina ryAl i c e (b0)

492 } else {

493 return a l i c e . b ina ryAl i c e (b1)

494 }

495

496 panic (”Should never happen”)

497 return −1

498 }

499

500 func (c ∗Cascade) print (v . . . interface {}) {

501 i f ∗ verbose == f a l s e {

502 return

503 }

504 log . Stder r (c . name , v)

505 }

506

507 func (c ∗Cascade) addPass (pass Pass) {

508 l := len (c . k)

509 c . k = c . k [0 : l +1]

510 c . k [l] = pass

511 }

512

513 func (c ∗Cascade) I n i t () {

514 c . k = make ([] Pass , 0 , MAXPASS)

515 }

516

517 func (c ∗Cascade) Divulged () int {

518 return c . d ivu lged

519 }

520

521 func (c ∗Cascade) Data () [] bool {

522 return c . d

523 }

524

525 type Cascade struct {

Appendix A: Go Code To Simulate BB84 64

526 k [] Pass // Pass data , f o r each pass

527 d ivu lged int

528 d [] bool // Data array

529 i int // Current pass #

530 chPar i ty chan bool

531 chBINARY chan int

532 chPass chan Pass

533 ch chan int // Aux i l l a r y channel

534 b l o c k s i z e int

535 name string

536 }

537

538 // ===

539

540 type Toep l i t z struct {

541 data [] bool

542 ch chan [] bool

543 m [] [] bool

544 s , t int

545 }

546

547 func (a l i c e ∗Toep l i t z) A l i c e () {

548 n := len (a l i c e . data)

549 r := n − a l i c e . s − a l i c e . t

550 i f r <= 0 {

551 panic (”Eek”)

552 }

553 a := RandomBitArray (n)

554 b := RandomBitArray (r)

555

556 a l i c e . ch <− a

557 a l i c e . ch <− b

558

559 a l i c e .m = make ([] [] bool , r)

560 for i := 0 ; i < r ; i++ {

561 row := make ([] bool , n)

562 for j := 0 ; j < n ; j++ {

563 for k := 0 ; k < i ; k++ {

Appendix A: Go Code To Simulate BB84 65

564 row [k] = b [k]

565 }

566 for k := i ; k < n−i ; k++ {

567 row [k] = a [k]

568 }

569 }

570 a l i c e .m[i] = row

571 }

572

573 a l i c e . data = BinaryMatrixTimesVector (a l i c e .m, a l i c e . data)

574 }

575

576 func (bob ∗Toep l i t z) Bob () {

577 n := len (bob . data)

578 r := n − bob . s − bob . t

579 i f r <= 0 {

580 panic (”Eek”)

581 }

582

583 a := <−bob . ch

584 b := <−bob . ch

585

586 bob .m = make ([] [] bool , r)

587 for i := 0 ; i < r ; i++ {

588 row := make ([] bool , n)

589 for j := 0 ; j < n ; j++ {

590 for k := 0 ; k < i ; k++ {

591 row [k] = b [k]

592 }

593 for k := i ; k < n−i ; k++ {

594 row [k] = a [k]

595 }

596 }

597 bob .m[i] = row

598 }

599

600 bob . data = BinaryMatrixTimesVector (bob .m, bob . data)

601 }

Appendix A: Go Code To Simulate BB84 66

602

603 func BinaryMatrixTimesVector (m [] [] bool , v [] bool) [] bool {

604 r e s := make ([] bool , len (m))

605 for i , row := range m {

606 i f len (row) != len (v) {

607 panic (”Eek ! ”)

608 }

609 sum := 0

610 for j := 0 ; j < len (row) ; j++ {

611 // Can use XOR and AND here .

612 sum += Bool2Int (row [j]) ∗ Bool2Int (v [j])

613 }

614 r e s [i] = sum&1 == 1

615 }

616 return r e s

617 }

618

619 // ===

620

621 func i n i t () {

622 f l a g . Parse ()

623 rand . Seed (time . Seconds ())

624 }

625

626 func main () {

627 // BB84 + QBER Est imat ion

628 // channe l s between Al i ce and Eve

629 qch1 := make(chan Qubit)

630 sch1 := make(chan [] bool)

631 permch1 := make(chan [] int)

632

633 // channe l s between Eve and Bob

634 qch2 := make(chan Qubit)

635 sch2 := make(chan [] bool)

636 permch2 := make(chan [] int)

637

638 a l i c e := &QKD{n : ∗nraw , qch : qch1 , sch : sch1 , permch : permch1 ,

639 name : ” A l i c e : ”}

Appendix A: Go Code To Simulate BB84 67

640 bob := &QKD{n : ∗nraw , qch : qch2 , sch : sch2 , permch : permch2 ,

641 name : ”Bob : ”}

642 eve := &QKD{n : ∗nraw , qch : qch1 , sch : sch1 , permch : permch1 ,

643 qchB : qch2 , schB : sch2 , permchB : permch2 , name : ”Eve : ”}

644

645 a l i c e . I n i t ()

646 bob . I n i t ()

647 eve . I n i t ()

648

649 go bob . Bob ()

650 go eve . Eve ()

651 a l i c e . A l i c e ()

652

653 log . Stder r (”QBER was est imated to be” , bob .QBER())

654 log . Stder r (”We got ” , len (a l i c e . S i f t e d ()) , ” b i t s out o f BB84”)

655

656 i f bob .QBER() > QBERThreshold {

657 log . Exit (

658 ”Someone i s badly tampering with the connect ion . Quit ing . ”)

659 }

660

661 i f int (∗ k1) > len (a l i c e . S i f t e d ()) /NMINPASS {

662 log . Exit (” Pick a b e t t e r va lue f o r ∗k1”)

663 }

664

665 log . Stder r (” S ta r t i ng r e c o n c i l i a t i o n ”)

666 ch := make(chan int)

667 chBINARY := make(chan int)

668 chPass := make(chan Pass)

669 chPar i ty := make(chan bool)

670 a l i c eCascade := Cascade{name : ” A l i c e : ” , d : a l i c e . S i f t e d () , ch : ch ,

671 chBINARY: chBINARY, chPass : chPass , chPar i ty : chPar i ty }

672 bobCascade := Cascade{name : ”Bob : ” , d : bob . S i f t e d () ,

673 b l o c k s i z e : int (∗ k1) , ch : ch , chBINARY: chBINARY, chPass : chPass ,

674 chPar i ty : chPar i ty }

675

676 a l i c eCascade . I n i t ()

677 bobCascade . I n i t ()

Appendix A: Go Code To Simulate BB84 68

678

679 go a l i c eCascade . A l i c e ()

680 bobCascade . Bob ()

681

682 t := a l i c eCascade . Divulged ()

683 log . Stder r (” Divulged : ” , t)

684

685 tch := make(chan [] bool)

686 a l i c e T o e p l i t z := Toep l i t z {data : a l i c eCascade . Data () ,

687 t : t , s : int (∗ s) , ch : tch }

688 bobToepl i tz := Toep l i t z {data : bobCascade . Data () ,

689 t : t , s : int (∗ s) , ch : tch }

690

691 go bobToepl i tz . Bob ()

692 a l i c e T o e p l i t z . A l i c e ()

693

694 log . Stder r (len (a l i c e T o e p l i t z . data) , ” b i t s f i n a l key : ”)

695 log . Stder r (” A l i c e : ” , BoolArray2IntArray (a l i c e T o e p l i t z . data))

696 log . Stder r (”Bob : ” , BoolArray2IntArray (bobToepl i tz . data))

697

698 }

bb84.go

Bibliography 69

BIBLIOGRAPHY

[1] G. Brassard, A Bibliography of Quantum Cryptography, SIGACT News 75 (1993)

[2] C.H. Bennett and G. Brassard Quantum Cryptography: Public Key Distribution and

Coin Tossing, Proceedings of IEEE International Conference on Computers Systems

and Signal Processing, 175-179 (1984)

[3] C. H. Bennett, Quantum Cryptography Using Any Two Nonorthogonal States, Phys.

Rev. Lett. 68, 3121 (1992)

[4] A.K. Ekert, Quantum Cryptography Based on Bell’s Theorem, Phys. Rev. Lett. 67,

661 (1991)

[5] C. H. Bennett, F. Bessette, L. Salvail, G. Brassard, J. Smolin, Experimental Quantum

Cryptography, Journal of Cryptography, 5:3-28 (1992)

[6] G. Brassard, L. Salvail, Secret-key reconciliation by public discussion, Advances in

Cryptology - Eurocrypt ’93, Lecture Notes in Computer Science, 410-423 (1993)

[7] Einstein, A., Podolsky, B., Rosen, N., Can quantum-mechanical description of physical

reality be considered complete?, Physical Review 47: 777-780. (1935)

[8] J.S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1(3): 195-200 (1964)

[9] J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)

[10] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University

Press 1987)

[11] A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 1804 (1982)

Bibliography 70

[12] B. Huttner and A. K. Ekert, Information gain in quantum eavesdropping, J. Mod. Opt.

41, 2455–2466 (1994)

[13] C.H. Bennett, G. Brassard, C. Crepeau, and U.M. Maurer, Generalized Privacy Am-

plification, IEEE Trans. Inform. Theory, vol. 41, 1915–1923 (1995)

[14] J.J. Sakurai, Modern Quantum Mechanics, Revised Edition, Addison-Wesley Publish-

ing Company (1993)

[15] N.A. Chuang, I.L. Chuang, Quantum Computation and Quantum Information, Cam-

bridge University Press (2000)

[16] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod.

Phys. 74, 145. (2002)

[17] W.P. Schleich, Quantum Optics in Phase Space, Wiley (2001)

[18] R.P. Feynman, Feynman Lectures on Computation, Perseus Books (1996)

[19] V. Scarani, A. Acin, G. Ribordy, N. Gisin, Phys. Rev. Lett. 92, 057901 (2004)

[20] H. Imai, M. Hayashi, Quantum Computation and Information, Springer (2006)

[21] G. Assche, Quantum Cryptography and Secret-Key Distillation, Cambridge University

Press (2006)

[22] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh, Current status of the

DARPA Quantum Network, arXiv:quant-ph/0503058v2 (2005)

[23] T. Sugimoto and K. Yamazaki. A study on secret key reconciliation protocol “cascade”.

IEICE Trans. Fundamentals, E83A No. 10:1987 (2000)

