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ABSTRACT

The aim of this thesis is to present an explicit duality for smooth projective

curves. More standard Serre duality achieves the final results exhibited in the thesis

with far greater generality, using powerful homological machinery. The shortcom-

ing of such methods, however, is that they do not yield an explicit dualizing sheaf

but only show its existence. The general form of the treatment of the subject we

follow was given by Serre in 1959 ([Ser]). A cornerstone of this treatment is the

residue theorem, which essentially states that the sum of the residues for a given

differential at all points of a regular projective curve is 0. Tate improved upon

Serre’s treatement (in [Tat]), giving an elegant, characteristic independent proof of

the residue theorem by defining residues in a novel way. Hence, our account gen-

erally follows Tate, drawing parallels to Serre where appropriate (and occasionally

to Chevalley’s 1951 work [Che] which contains some seeds of the ideas involved, al-

beit from a purely algebraic viewpoint). Having developed duality, to demonstrate

its power, we conclude the thesis with the proof of a form of the Riemann-Roch

Theorem.
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ÖZ

Bu tez çalışmasının amacı düz projektif eğriler için açık bir ikilemin sunumunu

yapmaktır. Daha standart Serre ikilemi, kuvvetli homolojik yöntemler kullanarak

bu tezde gösterilen sonuçların çoğuna -üstelik çok daha genel formda- ulaşabilir. Bu

yaklaşımın eksik kaldığı taraf, ortaya çıkan ikilemin açık bir şekilde ifade edilememe-

sidir. Bu tezdeki yaklaşım, en ana hatlarıyla Serre tarafından 1959 anlatılmıştır

([Ser]). Bu yaklaşımın yapıtaşlarından birisi residue teoremidir. Serre’den sonra,

Tate residue teoreminin daha doğal, karakteristiğe bağlı olmayan güzel bir kanıtını

vermiştir ([Tat]). Bu sebeple, bu tezde daha çok Tate’in yaklaşımı takip edilecektir.

Uygun olan yerlerde Serre’in yöntemiyle (ve daha az sıklıkla, buradaki bazı fikirlerin

tohumlarını taşıyan Chevalley’in 1951 çalışmasıyla) bağlantılara işaret edilecektir.

Projektif düz eğriler için Serre ikilemini kanıtladıktan sonra, bu sonucun gücünü

göstermek için tezin sonunda Riemann-Roch teoreminin bir formu kanıtlanacaktır.
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Introduction

The existence of a dualizing sheaf for projective varieties of all dimensions is

a standard result of Serre duality (that can for instance be found in [Har], Chpt.

III, Sect. 7). The value of the dualizing sheaf is that, given a coherent sheaf on

a projective nonsingular variety, it lets one find natural functorial isomorphisms

between certain Ext groups and homological groups of various dimensions that are

similar in form to the Poincaré duality. If in addition the variety is smooth, the

dualizing sheaf is also known to be isomorphic to the canonical sheaf, which is an

exterior product of the sheaf of differentials on our variety.

While the existence of this isomorphism can indeed be proved using cohomolog-

ical methods, it is more difficult to exhibit an explicit isomorphism in the general

case. The main purpose of this thesis is to give an account of how an explicit

dualizing sheaf can be given in the case of smooth projective curves, in an as self-

contained manner as possible. While the result was before presented by Serre (in

[Ser]), and in a less recognizable form by Chevalley (in [Che]), we mainly follow

the account of Tate (in [Tat]), and occasionally mention the works of Serre and

Chevalley to draw parallels.

The unique feature of working with nonsingular projective curves over a field k,

is that this category is equivalent to the category of function fields of dimension

1 over k. As such, most of the results presented in the thesis could be dealt with

purely in the realm of commutative algebra (which is what Chevalley does).

However, it is much more expedient to use scheme theory as needed. The prelim-

inaries section of the thesis is aimed at stating, and developing where appropriate,

results that will let us skip back and forth between commutative rings and schemes.

In the following three sections, we present the theory of residues on curves, and

finally prove the residue theorem. The residue theorem is the most important step

in our goal of constructing an explicit isomorphism between a dualizing sheaf and

the canonical sheaf (which, in dimension 1, is just the sheaf of differentials). The

proof of the residue theorem we give is Tate’s novelty, the major focus of this thesis,

and the main reason we follow Tate’s account as opposed to Serre’s.

Finally, in section 5, we use the residue theorem in completing our goal of viewing

the sheaf of differentials as the dualizing sheaf via an explicit isomorphism.
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At this point, we have developed all of the machinery needed to prove a form of

the Riemann-Roch theorem for curves. So, while the explicit isomorphism we have

constructed is not really needed for it, we conclude the thesis with a proof of this

result to demonstrate the power of duality.
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1. Preliminaries

In this section, we prove some standard theorems to be used later on. One can

defer reading these results until needed later, especially the subsection on commu-

tative algebra.

An important thread running through the first three subsections is how closely

our schemes (which are of dimension 1 and “nice”) turn out to be related to their

underlying rings and fields. Indeed, it is possible (but cumbersome) to give a

treatment of the residue theorem using only commutative algebra as Chevalley

does in [Che].

Subsection-1.4 introduces divisors on “nice” schemes (that are not necessarily of

dimension 1), and concludes by explicating the natural isomorphism between the

invertible sheaves on a scheme and a certain quotient group of the divisors on the

scheme. Besides being interesting in its own right, this result will let us easily step

back and forth between the land of schemes and the land of commutative algebra

when working on duality.

Finally, in Subsection-1.5 we prove a simple version of the Riemann-Roch The-

orem. This serves a two-fold purpose. First, we use it in the section on duality

to prove that the dualizing sheaf we define is isomorphic to the sheaf of differ-

entials on a smooth curve. In turn, we use this isomorphism together with the

simple version of the Riemann-Roch Theorem to prove a more general version of

the Riemann-Roch Theorem in the final section of the paper.

1.1. Commutative algebra.

1.1.1. Valuation rings. Here, we give a basic account of valuation rings. In the

subsections 1.2 and 1.3, we will explore the ties between the points of a scheme

and the valuation rings of its function field. For a proper scheme over a field, we

will show that there is a one-to-one correspondence between them. In the case of

curves, we will also show that the image of a point under a surjective morphism is

determined entirely by the corresponding inclusion of function fields.

Let R be an integral domain with field of fractions K. We say that R is a

valuation ring if for all x ∈ K, x /∈ R ⇒ x−1 ∈ R. A simple example is Z(p) for

any prime number p.
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Theorem 1. Let K be a field, A a subring of K, and p a prime ideal of A. Then

there exists a valuation ring R of K such that A ⊆ R, and mR ∩A = p (where mR

is the maximal ideal of R).

Proof. [Mat1], Thm. 10.2, p.72. �

The integral closure of A in K is the set of elements of K that are roots of

polynomials with leading coefficient 1 and all coefficients in A. It turns out that

the integral closure of a valuation ring is just itself.

Theorem 2. A valuation ring is integrally closed.

Proof. Let A be a valuation ring of K. Suppose x ∈ K is integral over A, satisfying

xn+an−1xn−1+ . . .+a0 = 0, and x /∈ A. Then x−1 ∈ mA. Multiplying the equality

by x−(n−1),

x = −an−1 − an−2x
−1 − . . .− a0x

n−1 ∈ A,

which is a contradiction. �

If R and S are local rings with S ⊆ R and mR ∩ S = mS , we say that R

dominates S. In Subsection-1.3, we will show that the image of a point under a

surjective morphism of curves is determined by such a domination relation in a

certain way.

Theorem 3. Let K be a field, and A a subring of K. Then the integral closure

B of A in K is the intersection of all the valuation rings of K containing A. If in

addition A is a local ring, then B equals the intersection of all valuation rings of

K dominating A.

Proof. By Thm.-2,

B ⊆
�

R (taken over valuation rings R containing A)

Conversely, suppose x ∈ K is not integral over A. 1 /∈ x−1A[x−1] (if 1 = a1x−1 +

. . . + anx−n, then xn + a1xn−1 + a2xn−2 + . . . + an = 0, making x integral over

A), so x−1A[x−1] ⊆ m for some maximal ideal m of A[x−1]. By Thm.-1, there is

a valuation ring R of K such that A ⊆ R and mR ∩ A = m. But then x−1 ∈ mR,

x /∈ R, and so

x /∈
�

A⊆R

R



5

If A is a local ring, then 1 /∈ (x−1A[x−1], mA) (if 1 = r + a1x−1 + . . . + anx−n for

some r ∈ mA, then 1− r is a unit of A and 1 = (a1x−1 + . . . + anx−n)(1− r)−1).

As before (x−1A[x−1], mA) is contained in some maximal ideal m of x−1A[x−1], so

that mR

�
A[x−1] = m. Hence mR

�
A = m

�
A = mA, i.e. R dominates A. �

1.1.2. Discrete valuation rings. Discrete valuation rings (DVRs) are an easier to

study subset of all valuation rings. Happily, since we are working in dimension 1

and with “nice” schemes, the valuation rings we encounter will be mostly DVRs.

Definition 1. Let K be a field. A discrete valuation on K is a group homomorphism

ν of the multiplicative group of K onto the additive group Z such that ν(x + y) ≥

min{ν(x), ν(y)}. A subring R of K is a discrete valuation ring (DVR) if it equals

{x|ν(x) ≥ 0} for some discrete valuation ν on K.

We state first the characterization of DVRs among valuation rings, and then

their characterization among all rings.

Theorem 4. Let R be a valuation ring. Then the following conditions are equiva-

lent:

• R is a DVR

• R is a principal ideal domain

• R is noetherian

Proof. [Mat1], Thm. 11.1, p. 78. �

Theorem 5. Let R be a ring. Then the following conditions are equivalent:

• R is a DVR.

• R is a local principal ideal domain, and not a field.

• R is a noetherian local ring, dimR > 0, and the maximal ideal mR is

principal.

• R is a normal noetherian local ring of Krull dimension 1.

Proof. [Mat1], Thm. 11.2, p. 79. �

For example, it follows immediately from the theorem that Z(p) is a DVR for any

prime p. We could also show this directly by defining an explicit discrete valuation
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on Z(p). Given a ∈ Z, let ν(a) be the highest integer c such that pc divides a, and

extend this to the whole of Q in the obvious way. Then the set of elements of Q

with non-negative valuation is precisely Z(p).

Claim 1. Let A be a complete discrete valuation ring that is a k-algebra with residue

field also k, and let K be the field of fractions of A. Then A ∼= k[[x]] and K ∼= k((x)).

Proof. Let π be a uniformizer of A. Since k �→ A, we readily have representatives

for the cosets A/m. Take any a ∈ A. Since A/m = k, there is an s0 ∈ k such

that a − s0 ∈ m, i.e. we can write a = s0 + a1π for some a1 ∈ A. Similarly, we

can write a1 = s1 + a2π, so that a = s0 + s1π + a2π2. Thus, the series
�∞

n=0 snπn

converges to a. This series representation is clearly unique, since
�∞

n=0 snπn = 0

only if all of the sn are 0. This shows that the k-algebra homomorphism k[[x]] → A,

determined by the choice of the uniformizer for A, is an isomorphism. k((x)) ∼= K

follows immediately. �

Lemma 1. If R is a discrete valuation ring and K its field of fractions, then there

do not exist any proper intermediate rings between R and K.

Proof. Suppose R � S ⊂ K. The inverse of some uπn must be in S, where u is a

unit in R, and π is a uniformizer of R. Then π−1 = π−nπn−1 ∈ S, so S = K. �

1.1.3. Regular local rings. See the beggining of the next subsection for a summary

of the results from this section that we will use often. Essentially, the ”niceness”

of our schemes correspond to the fact that their local rings are regular.

Definition 2. Let A be a noetherian local ring with maximal ideal m and residue

field k. We say A is regular if dimk(m/m2) = dimA (where the first dimk is

dimension as a vector space and the second dim is the Krull dimension).

For example, any discrete valuation ring is a regular local ring. Let A be a DVR,

and fix a uniformizer t. We have m = (t), m2 = (t2). Denote A/(t) by k. Then

multiplication by t is a k-vector space isomorphism between A/(t) and (t)/(t2).

Hence dimk(m/m2) = 1, which is the Krull dimension of A.

Lemma 2 (Krull’s principal ideal theorem). Let A be a noetherian ring and let x

be an element of A which is neither a zero-divisor nor a unit. Then every minimal

prime ideal p containing x has height 1.
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Proof. [Ati], Corollary-11.18, p.122. �

Theorem 6. A regular local ring is a UFD. In particular, a regular local ring is

an integrally closed integral domain.

Proof. [Mat2], Thm. 48, p.142. For a simpler proof of regular rings being integral

domains: [Ati], Lemma 11.23, p. 123. �

Corollary 1. A regular local ring of Krull dimension 1 is a discrete valuation ring.

Proof. This follows immediately from the characterization of DVRs among rings

(Thm.-5). �

1.1.4. Integral closure. Regarding integral closures, we will only need the following

lemma, which will be useful in the context of morphisms of curves.

Lemma 3. Let A be a subring of a field K, S a multiplicative subset of A, and B

the integral closure of A in K. Then the integral closure of S−1A is S−1B.

Proof. Suppose x is integral over S−1A, satisfying xn + an−1/sn−1xn−1 + . . . +

a0/s0 = 0. Let s = s1 · · · sn. Multiplying by sn, we have (sx)n + a�n−1(sx)n−1 +

. . . + a�1(sx) + a�0 = 0 with the a�
i
∈ A. Hence sx is integral over S−1A, so that

sx ∈ B and x ∈ S−1B.

Conversely, take some b/s ∈ S−1B with b satisfying bn+. . .+a0 = 0. Multiplying

this integral dependence relation by s−n we have (b/s)n +(an−1/s)(b/s)n−1 + . . .+

(a0/sn) = 0, so that b/s is integral over S−1A. �

1.1.5. Kähler differentials. Let K be a k-algebra. Here, we merely note that Ω1
K/k

,

the module of differential forms of K over k, can be constructed by taking the free

K-module generated by {df : f ∈ K}, and dividing it by the submodule generated

by all elements of the form d(f + f �) − df − df � and d(ff �) − fdf � − f �df with

f, f � ∈ K, and dr with r ∈ k. Then, the map K ⊗k K → ΩK/k, f ⊗ g �→ fdg is a

surjective K-module homomorphism, with kernel generated by all elements of the

form 1⊗ ff �− f ⊗ f �− f �⊗ f with f, f � ∈ K (elements of the form 1⊗ r with r ∈ k

are included in this).

1.1.6. Trace map on a finite seperable field extension.
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Lemma 4. Let K be a finite seperable field extension of k. Then there exists some

w ∈ K such that TrK/k(w) �= 0.

Proof. By the well-known primitive element theorem, K = k(α) = k[x]/(f(x)) for

some α ∈ K and some irreducible, seperable polynomial f(x) ∈ k[x]. Let k̄ be the

algebraic closure of k (containing K). Then,

K ⊗k k̄ ∼= k[x]/(f(x))⊗k k̄ = k̄[x]/(f(x))

∼= k̄[x]/(x− α1) · · · (x− αn)

∼=
�

k̄ by the Chinese remainder theorem

Let e1, . . . , en be the obvious k̄-basis for
�

k̄. The discriminant det({Tr(eiej)})

of K ⊗k k̄ ∼=
�

k̄ over k̄ is 1 �= 0, so the discriminant of K ⊗k k̄ will be nonzero

independent of the choice of basis.

Given a basis w1, . . . , wn of K over k, w1 ⊗ 1, . . . , wn ⊗ 1 is a basis for K ⊗k k̄

over k̄. Hence,

det({Tr(wiwj)}) = det({Tr(wi ⊗ 1 · ej ⊗ 1)})

is nonzero, so that we must have TrK/k(wiwj) �= 0 for some wiwj ∈ K.

�

1.1.7. Completion. Completion is a useful tool for localizing a scheme ”just enough”.

The following lemma will be needed in section-5, when considering how residues

behave with respect to surjective morphisms of curves.

Lemma 5. Let A be a local ring, Ap its completion with respect to its maximal ideal

p, K its field of fractions and Kp the completion of K with respect to the valuation

whose valuation ring is A. Then Kp equals the field of fractions of Ap.

Proof. Note that Kp is the completion of K with respect to the system of neighbor-

hoods pA ⊇ p2A ⊇ . . . of 0, and Ap is the completion of A with respect to the subset

topology of A. So, 0 → A → K → K/A → 0 induces 0 → Ap → Kp → K/A → 0

(where the completion of K/A is again K/A, since the quotient topology on it is

the discrete topology). Since K is a flat A-algebra, we get

0 → Ap ⊗K → Kp ⊗K = Kp → K/A⊗K = 0.

�
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1.2. Schemes. The eventual object of interest in this paper is a ”regular curve

proper over a field k”. In this subsection, we explore the implications of properness

in a slightly more general setting. The most important result here is lemma-6,

which gives a relation between the points of a scheme X and the field extension

K(X)/k.

We start with two basic properties of schemes. A scheme X is reduced if its local

rings have no nilpotent elements, and it is integral if OX(U) is an integral domain

for every open subset U of X.

Proposition 1. A scheme is integral if and only if it is reduced and irreducible.

Proof. Since all local rings of an integral scheme are integral domains (but the

converse does not hold), clearly an integral scheme is reduced. If an integral scheme

X is not irreducible, we can pick disjoint open sets U and V contained in X. Then

OX(U∪V ) = OX(U)×OX(V ) is not an integral domain. Conversely, suppose there

exist nonzero elements f, g ∈ OX(U) such that fg = 0. Let Yf = {x ∈ U |fx ∈ mx},

the complement of D(f) ∩ U in U , and Yg = {x ∈ U |gx ∈ mx}, the complement of

D(g) ∩ U in U . We have Yf ∪ Yg = U . But since X is irreducible, U is irreducible.

So Yf = U or Yg = U , say Yf = U . Then, given any open affine subset W = SpecR

of U, f |W is in the nilradical of R. Since X is reduced, covering U by open affine

subsets, we have f = 0. �

Definition 3. A morphism f : X → Y is of finite type if for every open affine

subset U = SpecR of Y, f−1(U) can be covered by finitely many open affine subsets

{Ui} = SpecRi with each Ri a finitely generated R-algebra.

Definition 4. A scheme X is noetherian if it can be covered by finitely many open

affine subsets {Ui} = SpecRi with each Ri a noetherian ring.

In particular, if X is of finite type over Y = Speck, then X can be covered

by finitely many open affine subsets {Ui} = SpecRi where each Ri is a finitely

generated k-algebra, i.e. isomorphic to some k[x1, . . . , xn]/I. Hence X is noetherian

in this case.

Definition 5. X is proper over k if the morphism X → Speck is separated, of finite

type, and universally closed.



10

We will mainly use two consequences of properness: The following lemma, and

the fact that a proper curve is projective (next section).

Theorem 7. Let f : X → Y be a morphism of finite type, with X noetherian.

Then f is proper if and only if for every valuation ring R with field of fractions

K and for every morphism of U = SpecK to X and T = SpecR to Y forming

a commutative diagram U ��

i

��

X

f

��
T �� Y

there exists a unique morphism T → X

making the following diagram commute U ��

��

X

��
T ��

���������
Y

Proof. [Har], Chpt. 2, Thm. 4.7. �

This characterization of properness is much more handy than the raw definition.

It gives us our first important bridge between schemes and their underlying rings,

in the form of the following lemma.

Lemma 6. Let X be an integral noetherian scheme over a field k, and let K be

its function field. We say that a valuation ring R of K/k has center x on X if R

dominates OX,x. If X is proper over k, then every valuation ring of K/k has a

unique center on X.

Proof of Lemma. Given a valuation ring R of K/k, we have the morphisms

• T = SpecR → Speck, induced by k �→ R, and

• U = SpecK → X, taking the only point of SpecK to the generic point of

X,

adding up to the commutative diagram U ��

i

��

X

��

T �� Speck

which means there is a

unique morphism f : SpecR → X by the valuative criterion of properness. Let p

denote the only closed point of T . If f(p) = x, we have

OX,x

ϕ
��

����
��

��
��

Tp = R

����
��

��
��

�

K
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where ϕ is an injective local homomorphism, so that R dominates OX,x. On the

other hand, suppose R had another center x� on X. Then, we have the inclu-

sion maps of rings OX,x� �→ R �→ K, inducing the morphisms U → SpecR →

SpecOX,x� → X. This gives another morphism f � : T → X commuting with the

diagram. R dominates OX,x� , so we know f � takes p to x�. Hence f � is a different

morphism than f , contradicting the valuative criterion of properness.

�

Leaving commutative algebra aside for a bit, we state a basic but very useful

lemma about the cohomology of schemes. While simple, it provides a large chunk

of the benefit of our working with schemes.

Lemma 7. Let X be any scheme. A flasque sheaf F of OX-modules has zero

cohomology in dimension 1. In particular, if X is irreducible, then a constant sheaf

of OX-modules has zero cohomology in dimension 1.

Proof. Embed F in an injective OX -module I. We have

0 → F → I → F/I → 0,

and the induced long exact sequence

0 → Γ(X,F) → Γ(X, I) → Γ(X, I/F) → H1(X,F) → H1(X, I) = 0

But since F is flasque, we also have

0 → Γ(X,F) → Γ(X, I) → Γ(X, I/F) → 0

�

Remark 1. Indeed, a flasque sheaf has zero cohomology in all positive dimensions,

as follows easily from the above by induction, after noting that quotients of flasque

sheaves and injective OX -modules are flasque.

1.3. Curves. Now, we narrow our focus to the case of curves. A curve is a scheme

of dimension 1, of finite type over some field k. A curve is then Noetherian, because

any scheme of finite type over a field is Noetherian as noted in the previous section.

The first important result of this Subsection is Lemma-8, which gives a relation

between a surjective morphism of schemes and the corresponding inclusion of func-

tion fields. Often one wants to compute the residue in an easy case, and then pass
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to another curve using this lemma. For example, Serre proves the residue theorem

by direct calculation in the easy case of the projective line, and then generalizes

the result using surjective morphisms of curves.

In this paper, we are interested in connected regular curves proper over some field

k. The other important result in the Subsection, Theorem-8, is a standard result

that basically means our curves are projective as well. This will sanction us to use

some standard cohomological results formulated for projective schemes, and say

things about the k-dimensions of the global sections and the first cohomological

groups of our schemes. The fact that these dimensions are finite will make the

formulation of the rudimentary Riemann-Roch theorem in the final subsection make

sense, as well as help directly in proving the residue theorem later on.

From here on, unless noted otherwise, X denotes a curve as described in the

previous paragraph.

Definition 6. A scheme X is regular if all of its local rings are regular.

Note that being regular is an absolute notion, i.e. independent of the base field

k. Summing up the results in the previous sections about regular rings of Krull

dimension 1, we note that the local rings of X at its closed points are integral

domains; integrally closed; discrete valuation rings; unique factorization domains.

Proposition 2. A regular connected noetherian scheme X of dimension 1 is irre-

ducible.

Proof. Suppose X is not irreducible and let C1, . . . , Cs be the irreducible compo-

nents of X. Since X is connected there are distinct irreducible components of X

whose intersection contains a closed point, say x ∈ C1 ∩ C2. Let U = SpecR

be an affine neighborhood of x. Then C1 ∩ U and C2 ∩ U are irreducible sub-

sets of U, say C1 ∩ U = V (p1) and C2 ∩ U = V (p2) for prime ideals p1, p2 of

R. We have p1, p2 ⊆ mx. But X is regular, so OU,x is a DVR and has only mx

and 0 as prime ideals. Hence, without loss of generality, we have p1 ⊆ p2. Since

{x} ⊆ V (p2) ⊆ V (p1) and U is of dimension 1, we either have C2 ∩ U = {x} or

C2 ∩ U = C1 ∩ U . The former contradicts the irreducibility of C2, and the latter

means C2 = (C2 ∩ U)− = (C1 ∩ U)− = C1. We conclude that X is irreducible. �

Since X is regular, it is reduced, and hence an integral scheme by Proposition-1.
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Thus, X consists of a generic point and some closed points. We denote the local

ring at the generic point, or the function field of X, by K(X) or just K. Since X

is integral, we can think of all local rings OX,p of X as subrings of K(X) = OX,η,

each local ring having K(X) as its field of fractions. The morphism X → Speck

induces k �→ OX,p �→ K(X), giving a discrete valuation ring of K/k. In light of

Lemma-6, we conclude that the closed points of X correspond bijectively to the set

of valuation rings of K/k.

Next, we make some comments about a surjective morphism of two curves of the

type we are interested in

X � ��

���
��

��
��

�
X

����
��

��
��

k

inducing a commutative diagram of function fields:

K(X) ��

����������
K(X �)

����
��

��
��

�

k

Since K(X) and K(X �) are both function fields of dimension 1 over k, K(X �)

is a finite extension field of K(X). Suppose p� �→ p, where p, p� are closed points.

Then, we have the commutative diagram (with all maps injective, and where Op� ,

Op are discrete valuation rings)

Op�

��

Op
��

��
K � K��

Claim 2. Op� dominates Op.

Proof. Note that Op� ∩K = Op by (Lemma-1). r ∈ mp implies r ∈ mp� ∩Op, since

otherwise r−1 ∈ Op� ∩K, but r−1 /∈ Op. On the other hand, r ∈ mp� ∩Op implies

r ∈ mp, since otherwise r−1 ∈ mp ⊆ Op� . �

Conversely, suppose R is a valuation ring of K(X �)/k that dominates Op consid-

ered as a subring of K(X �). By (Lemma-6), R has a unique center p� on X. Then,

p� �→ p: Suppose p� �→ x. Then R dominates both Op and Ox by the claim, so that
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Op = R ∩K = Ox by (Lemma-1). Thus p = x (since Op = Ox has a unique center

on X). This concludes the proof of the following lemma:

Lemma 8. Let f : X � → X be a morphism of two connected regular schemes of

dimension 1 over a field k. Then, f(p�) = p if and only if Op� dominates Op.

The rest of this subsection, except for one short result at the very end, is devoted

to proving that a regular proper curve over a field is projective. The result holds,

but is somewhat more complicated to prove, without the assumption of regularity.

Since our curves are regular anyway, we will keep regularity as a condition.

Once we have constructed projective morphisms for small pieces, the following

two lemmas will help us combine them.

Lemma 9. Let X be a reduced scheme over S, Y a separated scheme over S. If f

and g are two S-morphisms that agree on an open dense subset of X, then f=g.

Proof. [Liu], Prop. 3.11, p. 102. �

Lemma 10. Let Y be a proper scheme over a field k, X a normal proper curve

over k, and U an open subset of X. Then any morphism f : U → Y extends to a

morphism X → Y .

Proof. The generic point η of X is contained in U, so f induces a morphism fη :

SpecK(X) → Y (given by OY (U) → OY,f(η) → k(f(η)) → K(X)). For any closed

point x ∈ X (not necessarily contained in U), OX,x is a discrete valuation ring with

field of fractions K(X), so we have

SpecK(X) ��

��

Y

��
SpecOX,x

��

fx

������������

k

where fx is the unique map of the valuative criterion of properness. Next, we show

that fx extends to a morphism from an open neighborhood of x.

Let V = SpecR be an open affine neighborhood of fx(x) for a finitely gener-

ated k-algebra R, say R = k[α1, . . . ,αn]. Then the whole image of fx is contained

in V , and fx factors into SpecOX,x → V → Y , with the first morphism corre-

sponding to some ring homomorphism ϕ : R → OX,x. For each i, pick some
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si ∈ OX(Vi) having the germ ϕ(αi) ∈ OX,x. We thus have a commutative dia-

gram k[α1, . . . ,αn] ��

ϕ

�������������
OX(Ux)

��
SpecOX,x

(where Ux is an open affine neighborhood of

x contained in OX(
�

i
Vi)), corresponding to an extension gx of fx to Ux.

Now, let W be an open affine neighborhood of gx(x), and consider

U � = f−1(W )
�

gx
−1(W ) ⊆ U

�
Ux

U �, as it contains η, is nonempty. The diagram

OY (W )

gx|U�

��

f |U� �� OX(U �)

��

OX(U �) �� K(X)

is commutative, with OX(U �) → K(X) injective, so f |U � and gx|U � induce the

same homomorphism OY (W ) → OX(U �). Since morphisms from a scheme to an

affine scheme correspond bijectively to ring homomorphisms of global sections in

the reverse direction, we conclude f |U � = gx|U � . Then, by Lemma-9, f and gx agree

on U
�

Ux. Likewise, gx and gx� agree on Ux

�
Ux� for any other closed point x�.

Gluing all these gx, we get the extension of f to X. �

Proposition 3. A normal proper curve X over a field k is projective.

Proof. Let {Ui}i be a finite open cover of X by affine open sets Ui = SpecRi with

each Ri a finitely generated k-algebra. Then for each i there is an open immersion

ϕ : Ui → Yi for some projective variety Yi over k, and so a morphism
�

i
Ui → Y

where Y is the fiber product of all the Yi (which is projective). By Lemma-10,

this morphism extends uniquely to f : X → Y . Since X and Y are proper over

k, f is surjective onto the scheme-theoretic image Z of X and the induced maps

Zf(x) → OX,x are surjective for each x ∈ X. We now have the following diagram

which we will subsequently show to be commutative: Ui
��

ϕi

���������� C
f

�� Y

��

Z Yi

Let g : Ui → Yi be the composition of the three maps in the diagram. We do know
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that this diagram is commutative

�
i
Ui

��

g

�������������������������� Ui
�� X �� Y

��
Yi

because f is just the extension of
�

i
Ui → Y to all of X. So ϕi and g are two

morphisms that agree on the dense open subset
�

i
Ui of Ui, and hence they are

equal on the whole of Ui by Lemma-9. But ϕ is an isomorphism, so the induced

maps Zf(x) → OX,x are isomorphisms.

Now, Z is projective and hence proper over k. The only point of Z whose local ring

is a field is f(η), so it is irreducible. As it is also reduced, it is an integral scheme.

All of its local rings are discrete valuation rings, so it is a regular curve. Suppose

f(x) = z = f(y) for x, y ∈ X. Then OX,x and OX,y both dominate the valuation

ring OZ,z (all considered as subrings of K(X)). Hence OX,x = OZ,z = OX,y, and so

x = y (because each valuation ring of K/k has a unique center on X). This shows

that f is a bijection of the underlying sets of X and Z, taking the generic point of

X to the generic point of Z. Since X and Z both have the cofinite topology, f is a

homeomorphism. Thus X is isomorphic to the projective scheme Z.

�

Now that we know our curves to be projective, we will make extensive use of the

following standard theorem.

Theorem 8. Let X be a projective scheme over a noetherian ring A. Then for any

coherent sheaf F on X, Hi(X,F) is a finitely generated A-module. In particular,

if X is a projective curve over some field k, then H0(X,OX) and H1(X,OX) are

finite dimensional vector spaces over k.

Proof. ([Har], III.5, Thm. 5.2) �

1.4. Divisors. We define (Weil) divisors on a noetherian integral seperated regular

scheme X over some field k (that is not necessarily of dimension 1) and mention

their connection to the group PicX of isomorphism classes of invertible sheaves on

X. The material here is a recap of ([Har], II.6) simplified to the types of schemes

we are interested in.
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The first few results are a general introduction to divisors, and will be useful

for proving the residue theorem. Lemma-13 is a basic result that we will use often

towards the end of the paper, when dealing with duality, after proving the residue

theorem.

The final result in the subsection, which explicates an isomorphism between the

group of invertible sheaves on a scheme X and a certain quotient group of the

divisors on X, will be useful when proving the Riemann-Roch theorem, in addition

to being interesting in its own right.

Definition 7. A prime divisor of X is a closed irreducible subset of codimension

1. DivX is the free abelian group generated by the prime divisors. A divisor of X

is an element of DivX.

In our case with dimX equal to 1, the prime divisors are just the closed points

of X.

Each prime divisor has a corresponding generic point η. Since the codimension

of the closure of η is 1, the Krull dimension of Oη is 1. Moreover, since X is

integral, the field of fractions of Oη is K = K(X). Since X is a scheme over Speck,

k is contained in Oη. Finally, X is regular, so Oη is a discrete valuation ring of

K/k. Now, for any f ∈ K(X) and any η corresponding to a prime divisor Y , the

valuation vY (f) of f with respect to Oη is defined.

Definition 8. For any f ∈ K∗ we define the divisor (f) of f by (f) =
�

vY (f) · Y ∈

DivX (with the sum taken over all prime divisors Y ). An element of DivX that

can be expressed as (f) for some f ∈ K is called a principal divisor. The sum
�

vY (f) · Y is indeed finite (see lemma below).

The principal divisors form an additive subgroup of DivX: For any f, g ∈ K, we

have (f)− (g) =
�

(vY (f)− vY (g)) · Y =
�

vY (f/g) · Y , so (f)− (g) is a principal

divisor; (1) = 0 is the identity element.

Lemma 11. For any f ∈ K∗, vY (f) is nonzero for at most finitely many prime

divisors Y of X.

Proof. Let U = SpecA be an open affine subset of X satisfying f ∈ OX(U). The

generic point η of X is contained in U since X is integral. Then each prime divisor Y

of X contained in Z = X −U is an irreducible component of Z (since if there were
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some closed irreducible subset W of Z containing Y, we would have Y � W � X

which is impossible as the codimension of Y in X is one). On the other hand, if

Y is not contained in Z, then the generic point of Y must be in U. Since f is a

regular function on U, vY (f) � 0. If vY (f) > 0, we have f ∈ ηAη, and so f ∈ η (as

f ∈ A also). The converse is also true, so vY (f) > 0 if and only if Y is contained

in V (Af). Now V (Af) is a proper closed subset of U since f �= 0, so each prime

divisor of U contained in V (Af) is also an irreducible component of V (Af). But

V (Af) is noetherian and can only have finitely many irreducible components. �

Definition 9. The quotient of DivX by the subgroup of principal divisors is called

the divisor class group of X, and is denoted by ClX.

Definition 10. A scheme is called normal if all its local rings are integrally closed.

Lemma 12. Let A be a noetherian integral domain. Then A is a UFD if and only

if every prime ideal of A of height 1 is principal.

Proof. [Mat2], Thm. 47, p. 141. �

Proposition 4. Let A be a noetherian integral domain. Then A is a UFD if and

only if X = SpecA is normal and ClX = 0.

Proof. If A is a UFD, then it is integrally closed, so all of its localizations are

integrally closed, and SpecA is a normal scheme. This and the previous lemma

reduce the problem to: In an integrally closed domain A, every prime ideal of

height 1 is principal if and only if Cl(SpecA)=0.

Suppose every prime ideal of height 1 is principal. Each prime divisor Y corre-

sponds to a prime ideal pY of height 1, say generated by fY . Then vY (fY ) = 1.

If we had fY ∈ pZ for a different prime divisor Z, we would have pY � pZ , and so

Z � Y , contradicting codim(Z,X)=1. For any prime divisor Z �= Y , since fY /∈ pZ ,

fY is a unit in ApZ , and so vZ(fY ) = 0. Hence (fY ) = 1 · Y . By multiplying such

fY or their inverses we see that any divisor can be written in the form (f) for some

f ∈ K.

Conversely, suppose ClX=0. Let p be a prime ideal of height 1. Then 1 · Y =

1 ·V (p) is a divisor of X, so that we can write Y = (f) for some f ∈ K. This means

vY (f) = 1 (so that f ∈ pAp) and vY �(f) = 0 (so that f ∈ Ap�) for Y � �= Y . Hence,
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f ∈ A. Then f ∈ A ∩ pAp = p. It only remains to show that an element f of p

with vY (f) = 1 and vY �(f) = 0 for Y � �= Y in fact generates p.

Take any g ∈ p, say with vY (g) = n. Then vY (g/fn) = vY (g) − nvY (f) = 0

(g/fn ∈ K) and vY �(g/fn) = vY �(g) ≥ 0, so that g/fn ∈ Ap for all prime ideals p

of A of height one. Hence g/fn ∈ A, and so g ∈ (f) in A.

�

Note that ClX = 0 means every divisor on X can be expressed as a principal

divisor. In the rest of this section, we look at the relation between invertible sheaves

and divisors.

Proposition 5. The isomorphism classes of invertible sheaves on a ringed space

X form a group under the operation ⊗.

Proof. Given any x ∈ X, L|Ux
∼= OX |Ux and G|Ux

∼= OX |Ux for a sufficiently small

neighorbhood Ux of x. Then L⊗G|Ux
∼= OX ⊗OX |Ux

∼= OX |Ux , which shows L⊗G

is invertible on X. The inverse of an invertible sheaf L is L∨ = HOM(L,OX):

HOMOX (L,OX)⊗OX L ∼= HOMOX (L,L) ∼= OX

by the following lemma. �

Lemma 13. For a locally free sheaf L and any OX-module F , HOMOX (L,F) ∼=

L∨ ⊗OX F .

Proof. Let R be a ring, M a finitely generated free R-module, and N some R-module.

The map

ψ : HOMR(M, R)⊗R N → HOMR(M,N)

defined by

[ψ(λ⊗ n)](m) = λ(m) · n

is an isomorphism (and independent of the basis chosen for M).

Now, let U be an open set such that OX |U ∼= L|U . For any open affine set

SpecR = V ⊆ U , noting that HOMOX |V
(L,F) = HOMR(L(V ),F(V )), and using

the isomorphism ψ, we have

HOMOX(V )(L(V ),OX(V ))⊗OX(V ) F(V ) ∼= HOMOX(V )(L(V ),F(V )).
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Moreover, this isomorphism is independent of the basis chosen for L(V ) (i.e. inde-

pendent of the isomorphism OX |V ∼= L|V ), so they can be glued together to give

the canonical isomorphism

HOMOX (L,F)|U ∼= (L∨ ⊗OX F)|U .

Covering X by such open sets U and glueing these isomorphisms, we get the iso-

morphism of the lemma. �

Definition 11. The group of Proposition-5 is called the Picard group of X, and

denoted by PicX.

Theorem 9. On a noetherian integral separated regular scheme X, the groups ClX

and PicX are isomorphic in a natural way.

Proof. See Chpt.2, Corollary 6.16 [Har] for a proof.

Here, we briefly describe the isomorphism, given by D �→ OX(D).

For any x ∈ X, D induces a divisor Dx on SpecOX,x (keeping the coefficients of

prime divisors passing through x and making all others 0). Since X is regular,

SpecOX,x is a UFD, and so Dx is a principal divisor, say Dx = (fx) on SpecOX,x

(where fx ∈ K(X)). Throwing out the prime divisors that don’t pass through x,

we get an open set Ux of X on which Dx and (fx) agree. Then, using the collection

{(Ux, fx)} thus obtained (with the {Ux} covering X), let OX(D) be the subsheaf

of K(X) defined by

OX(D)|Ux = fx
−1OX |Ux .

�

Remark 2. In our case with X a curve, given

D =
�

p closed

cp · p,

OX(D) is the subsheaf of the constant sheaf K(X) defined by

f ∈ [OX(D)](U) ⇔ vp(f) ≥ ordp(−D) for all closed points p ∈ U.
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1.5. Rudimentary Riemann-Roch. We prove an easy version of the Riemann-

Roch theorem, which we will need later first to determine the dimension of the

dualizing sheaf, and then to prove a more powerful version of the Riemann-Roch

theorem in the last section of the paper.

Let X be a regular, integral scheme of dimension 1 proper over a field k. For

any OX -module F , denote dimk(Hi(X,F)) by hi(F) and h0(F)− h1(F) by χ(F).

These numbers are all finite by Theorem-8.

Definition 12. For a divisor D of X, let degD =
�

p
dimk(k(p)) · vp(D).

dimk(k(p)) is indeed finite for each closed point p: k(p) = Op/mp = R/p,

where R is a finitely generated k-algebra such that U = SpecR is an open affine

neighborhood of p and p is the maximal ideal of R corresponding to p. Then k(p)

is a field that is finitely generated as a k-algebra, whence it is a finite extension of

k.

Proposition 6. For any divisor D on X,

χ(OX(D)) = degD + χ(OX)

Proof. We use induction on D. For D = 0 the equality is obviously true. Suppose

it holds for some D. For any closed point p,

deg(D + p) + χ(OX) = degD + dimk(k(p)) + χ(OX),

so we need to show the left hand side increases by dimk(k(p)) as well. Note that

this suffices, as it also shows that if the equality holds for some D, then it holds

for D − p as well. Because OX(D) is a subsheaf of OX(D + p), we have the exact

sequence

0 → OX(D) → OX(D + p) → Q→ 0,

which gives rise to the long exact sequence

0 → H0(X,OX(D)) → H0(X,OX(D + p)) → H0(X,Q)

→ H1(X,OX(D)) → H1(X,OX(D + p)) → H1(X,Q) → 0
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But Qq = 0 for q �= p, so H1(X,Q) = 0, and

H0(X,Q) = OX(D + p)p/OX(D)p
∼= tvp(D+p)Op/tvp(D)Op

= tvp(D)+1Op/tvp(D)Op

∼= k(p).

Applying the general property of vector spaces to the exact sequence above, we get

h0(OX(D))−h0(OX(D + p))+dimk(k(p))−h1(OX(D))+h1(OX(D + p))− 0 = 0,

and rewriting it

χ(OX(D + p)) = χ(OX(D)) + dimk(k(p))

�

Note that, as ClX ∼= PicX, we could have shown χ(L) = degL + χ(OX) for

any invertible OX -module L, defining degL to be the the degree of the divisor

corresponding to L. We now know that this is indeed a legitimite definition, since

it is an immediate corollary of the proposition that principal divisors have degree

0 (because OX((f)) ∼= OX for any principal divisor (f)).

We easily get the following corollary, which says that the global sections of certain

invertible sheaves are trivial.

Corollary 2. If degD < 0, then H0(X,OX(D)) = 0

Proof. Suppose f ∈ K(X) is a nonzero global section of OX(D). Then deg(f) > 0,

which is a contradiction since deg(f) = 0 by the remark above. �

Remark 3. The fact that X is projective was essential to our proof, since otherwise

hi(X,OX) may not be finite dimensional over k. Indeed, for instance Speck[x] is a regular,

separated scheme of dimension 1 over k, but it will have many principal divisors that are

not of degree 0.

2. Traces

In this section we extend the usual definition of the trace of an endomorphism

of a finite dimensional vector space to finite-potent endomorphisms of infinite di-

mensional vector spaces. This new kind of trace is the main tool for defining the

residue in a different way, allowing for Tate’s elegant proof of the residue theorem.



23

Definition 13. Let k be a field and V a vector space over k. Then θ ∈ HOMk(V, V )

is finite-potent if θn(V ) is finite-dimensional for some n ∈ N. We then define TrV (θ)

to be TrθnV (θ).

To give a more concrete feeling to this definition, consider the filtration θn(V ) �

θn−1(V ) � · · · � V . Then we can construct a basis B for V by starting with a basis

for θn(V ) and extending to a basis for θn−1(V ), and so on. Attempting to calculate

TrV with respect to this basis in the usual way, we naturally arrive at the above

definition.

When V is finite dimensional, the same basis construction shows TrV (θ) =

TrθnV (θ). Also, since θi+1V = θi(θV ) ⊆ θiV , we have θn(V ) = θn+1(V ) for n

large enough. Thus, in the definition, we can as well take TrV (θ) to be TrθnV (θ)

for n large enough.

(T1): If V is finite dimensional, TrV (θ) is the usual trace.

(T2): For a subspace W of V satisfying θ(V ) ⊆ W , we have TrV (θ) =

TrW (θ) + TrV/W (θ).

(T3): If θ is nilpotent, then TrV (θ) = 0.

(T3) follows immediately from the definition of TrV . (T1) follows immediately

from writing out TrV (θ) using the base B. To show (T2), note that TrV/W (θ) +

TrW (θ) = Tr(θnV +W )/W (θ) + TrθnW (θ) = TrθnV/(θnV ∩W )(θ) + TrθnV ∩W (θ) for n

large enough (since θn(θnV ∩W ) = θnW for n large enough that θnV = θn+1V

and θnW = θn+1W ). This last quantity equals TrθnV (θ), as (T2) holds in the finite

case.

Remark 4. The properties (T1), (T2), (T3) give an equivalent definition of TrV :

TrV (θ) = TrθnV (θ) + TrV/θnV (θ) (by T2)

= TrθnV (θ) (by T1 and T3)

In extending the definition of the trace we have sacrificed its linearity, as the sum

of two finite potent maps need not even be finite potent. Even if it is, the trace

of the sum might not be the sum of the traces. There is a counterexample where

the trace of the sum of three finite potent maps is not the sum of their traces, even

though the sum of the three of them is finite potent (but the sum of any two of

them is not finite potent) ([T1]). However the case of two maps appears to be still
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an open question for which a similar counterexample will not work ([T2]). Tate

himself notes that he doubts linearity for two maps holds in general ([Tat]).

Luckily, we can recover linearity for certain subspaces of End(V ). We say F is

a finite potent subspace of EndV if there is an n ∈ N such that θ1 · · · θn(V ) is finite

dimensional for any θ1, . . . , θn ∈ F .

(T4): For a finite potent k-subspace F of End(V ), TrV : F → k is linear.

It is immediate from the definition that any element of F is itself finite potent,

so TrV is defined on all of F. To show TrV (θ1 + θ2) = TrV (θ1) + TrV (θ2), we

may assume F is spanned by θ1 and θ2. Then Fn(V ) is finite dimensional, being

generated by the union of at most 2n finite dimensional vector spaces. For any θ ∈

F , TrV (θ) = TrF nV +TrV/F nV (θ) = TrF nV (θ) since θ is nilpotent on V/FnV . Now

TrV (θ1 + θ2) = TrF nV (θ1 + θ2) = TrF nV (θ1) + TrF nV (θ2) = TrV (θ1) + TrV (θ2).

(T5): Suppose ϕ : V � → V and ψ : V → V � are vector-space homomorphisms

and ϕψ : V → V is finite potent. Then ψϕ is finite potent and TrV (ϕψ) =

TrV �(ψϕ)

Proof. Let n be large enough that (ϕψ)nV is finite dimensional. Then ψϕ is finite

potent since ϕ(ψϕ)nV � = (ϕψ)nϕV � is finite dimensional, and so ψ(ϕψ)nϕV =

(ψϕ)n+1V is also finite dimensional. Now, let n be large enough that W =

(ϕψ)nV = (ϕψ)n+1V and W � = (ψϕ)nV � = (ψϕ)n+1V �. Then ψW = ψ(ϕψ)nV =

(ψϕ)nψV ⊆ W �, and similarly ϕW � ⊆ W . We have W � = ψϕW � ⊆ ψW ⊆ W �, and

so ψW = W �; similarly, ϕW � = W . Hence φ and ψ induce isomorphisms of W and

W’. In particular, fixing a base {e1, . . . , er} for W, we have a base {ψ(e1), . . . ,ψ(er)}

for W �. Let < v, ei > denote the ith coordinate of v in the basis e1, . . . , en. Then,

TrV (ϕψ) = TrW (ϕψ) =
�

i
< ϕψ(ei), ei >. Also, TrV �(ψϕ) = TrW �(ψϕ) =

�
i
<

ψϕ◦ψ(ei), ψ(ei) >. Write ϕψ(ei) = c1,ie1 + . . .+cr,ier, so that < ϕψ(ei), ei >= ci,i

and < ψϕ ◦ ψ(ei), ψ(ei) >= ci,i. Hence, TrV (ϕψ) =
�

i
ci,i = TrV �(ψϕ). �

In the remainder of this section, we fix a k-vector space V, and investigate how

we can use TrV on certain subspaces of End(V).

We say a k-subspace A of V is not much bigger than a k-subspace B, and write

A < B if (A + B)/B is finite dimensional.
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Claim 3. This definition is equivalent to requiring A ⊆ B + W for some finite

dimensional subspace W of V.

Proof. If A ⊆ B + W , (A + B)/B ⊆ (B + W )/B is clearly finite dimensional.

Conversely, if (A + B)/B has a finite basis v̄1, . . . , v̄s, A is contained in B +

Spank{v1, . . . , vs}. �

We say A is about the same size as B, and write A ∼ B, if A < B and B < A.

Here are three basic properties of these relations:

• A < B and B < C ⇒ A < C.

Proof. A ⊆ B + W1 and B ⊆ C + W2 ⇒ A ⊆ B + (W1 + W2) �

• For any k-linear map ϕ, A < B ⇒ ϕ(A) < ϕ(B).

Proof. A ⊆ B + W ⇒ ϕ(A) ⊆ ϕ(B + W ) = ϕ(B) + ϕ(W ), where ϕ(W ) is

of course finite dimensional. �

•
�m

i=1 Ai < ∩n
j=1Bj if and only if Ai < Bj for all i,j

Proof. The obvious map Ai + ∩Bj →
�n

j=1(Ai + Bj)/Bj has kernel ∩Bj ,

and so we have (Ai + ∩Bj)/∩Bj �→
�

j
(Ai + Bj)/Bj . The latter is finite

dimensional by the assumption Ai < Bj . This shows Ai < ∩Bj for all i,

or equivalently that Ai ⊆ ∩Bj + Wi for each i, for some finite dimensional

subspace Wi. Then
�

Ai ⊆ ∩Bj + (W1 + . . . + Wm) as wanted. The other

direction is immediate. �

Now we fix a k-subspace A of V and define some subspaces of End(V) with

respect to this A:

E = {θ ∈ End(V)|θA < A}

E1 = {θ ∈ End(V )|θV < A}

E2 = {θ ∈ End(V )|θA < (0)}

E0 = {θ ∈ End(V )|θV < A and θA < (0)}

Proposition 7. (1) E is a k-subalgebra (with identity) of End(V)

(2) E0, E1, E2 are two-sided ideals of E

(3) The E’s depend only on the ∼-class of A

(4) E1 ∩ E2 = E0 and E1 + E2 = E

(5) E0 is finite potent.
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Proof. (1) For any θ1, θ2 ∈ E, θ1θ2A ⊆ θ1(A + W ) = θ1(A) + θ1(W ), so

(θ1θ2)A < A For any λ ∈ k, (λθ)A = λ(θA) = θA < A (θ1 + θ2)A ⊆

θ1A + θ2A < A by N3

(2) let ϕ ∈ E, θ, θ1, θ2,∈ Ei. E1 : (θ1 + θ2)V ⊆ θ1(V ) + θ2(V ) < A.θϕ(V ) ⊆

θ(V ) < A. (ϕθ)V ⊆ ϕ(A + W ) = ϕ(A) + ϕ(W ) < ϕ(A) < A. E2 :

(θ1+θ2)A ⊆ θ1(A)+θ2(A) < (0). (θϕ)A ⊆ θ(A+W ) = θ(A)+θ(W ) < (0).

(ϕθ)A ⊆ ϕ(W ) < (0). E0 : This is just the intersection of the two ideals

E1 and E2.

(3) Suppose A ∼ B. Let EB
· be the same E·’s defined for B in place of A.

Let θ ∈ EA
· = E·. E : θB < θA < A < B since B < A and A < B, so

θ ∈ EB . By symmetry, EA = EB . E1 : θV < A < B, so θ ∈ EB
1 . E2 :

θB < θA < (0), so θ ∈ EB
2 . E0 : E0 = E1 ∩ E2 = EB

1 ∩ EB
2 = EB

0 .

(4) E1 ∩ E2 = E0 is immediate from the definitions. To prove E = E1 + E2,

let π be a linear projection of V onto A (i.e. a linear map V → A whose

restriction to A is the identity). π(V ) = A < A, so π ∈ E1. Also, (1 −

π)(a) = 0 for all a ∈ A, so (1− π)(A) = 0 and (1− π) ∈ E2. Now for any

θ ∈ E, we have θ = 1 · θ = ((1− π) + π)θ = (1− π)θ + πθ, where πθ ∈ E1

and (1− π)θ ∈ E2 since E1 and E2 are two sided ideals of E.

(5) For any θ1, θ2 ∈ E0, we have θ1θ2(V ) < θ1A < (0).

�

Importantly, (5) means our map TrV restricted to E0 is linear (by T4).

Proposition 8. Suppose that either ϕ ∈ E0 and ψ ∈ E, or ϕ ∈ E1 and ψ ∈ E2.

Then, [ϕ, ψ] = ϕψ − ψϕ ∈ E0 and TrV ([ϕ, ψ]) = 0.

Proof. In either case, ϕψ,ψϕ, and [ϕ, ψ] are elements of the finite potent subspace

E0, and so we have

TrV (ϕψ − ψϕ) = TrV (ϕψ)− TrV (ψϕ) = 0 (by T4 and T5).

�

3. Abstract residues

Using these basic properties of infinite traces, we now define a residue map

in a certain algebraic setting, to be used later for the curves we are interested
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in. Throughout this section, K denotes a commutative k-algebra with identity,

V denotes a K-module (which is also a k-vector space in the obvious way), and A

denotes a k-subspace of V satisfying fA < A for all f ∈ K. For any element f ∈ K,

multiplication by f induces a k-endomorphism of V. Moreover, fA < A, so the k-

endomorphism induced by f is in fact in E. This gives a (possibly non-injective)

homomorphism of k-algebras K → E. In the rest of this thesis we don’t distinguish

between f ∈ K and the induced endomorphism f ∈ E.

Let c denote the K-linear map

K ⊗k K → Ω1
K/k

, f ⊗ g �→ fdg,

which is surjective with kernel generated as a K-module by {f ⊗ gh − fg ⊗ h −

fh⊗ g|f, g, h ∈ K}.

3.1. Definition of residue. :

The following lemma gives the definition of the abstract residue, and shows that

it is well-defined.

Lemma 14. With K, k, V, A as above, there is a unique k-linear map

resV

A : Ω1
K/k

→ k,

such that for any f, g ∈ K

resV

A(fdg) = TrV ([f1, g1])

for any f1, g1 ∈ E satisfying

i: f ≡ f1(modE2) and g ≡ g1(modE2)

ii: f1 ∈ E1 or g1 ∈ E1

Proof. Given any f, g ∈ K we can write f = f1+f2, g = g1+g2 since E = E1+E2, so

resV

A
(fdg) is meaningful for all f, g ∈ K. Moreover, we can always pick both f1 and

g1 from E1. Suppose f �1, g
�
1 is any other pair satisfying (i) and (ii), say with f �1 ∈ E1.

Then f1 − f �1 ∈ E0, so TrV ([f1 − f �1, g
�
1]) = 0. Since [f �1, g�1], [f1 − f �1, g

�
1] ∈ E0, we

have TrV ([f �1, g�1]) = TrV ([f1, g�1]) by T4. Likewise, [f1, g1 − g�1] ∈ E0 and its trace

is 0, so TrV ([f1, g�1]) = TrV ([f1, g1]). Thus TrV ([f1, g1]) does not depend on the

choice of f1 and g1.

Given f1, g1 satisfying (i) and (ii), we have [f1, g1] ∈ E1 and

f1g1 − g1f1 ≡ [f, g] = 0(modE2)
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since K is commutative. Hence [f1, g1] ∈ E0. So, by T4,

TrV ([f1, (g + h)1]) = TrV ([f1, g1 + h1]) = TrV ([f1, g1]) + TrV ([f1, h1]).

Thus the map K × K → k defined by (f, g) �→ TrV ([f1, g1]) is k-bilinear, and so

induces the k-linear map r : K ⊗k K → k, r(f ⊗ g) = TrV ([f1, g1]).

Now, all that remains is to show that r factors through the map c : K ⊗k K →

Ω1
K/k

. Then resV

A
will be the factoring map Ω1

K/k
→ k. The uniqueness of resV

A
is

immediate, since c is surjective and resV

A
◦ c = r.

Indeed, r vanishes on the kernel of c:

r(f⊗gh−fg⊗h−fh⊗g) = r(f⊗gh)−r(fg⊗h)−r(fh⊗g) = TrV ([f1, (gh)1])−

TrV ([(fg)1, h1])−TrV ([(fh)1, g1]) = TrV ([f1, g1h1])−TrV ([f1g1, h1])−TrV ([f1h1, g1])

(where the pair ((fg)1 = f1g1, h1) satisfies (i) and (ii) once we choose the appro-

priate f1, g1, h1 ∈ E1). By T4, this last quantity equals TrV ([f1, g1h1]− [f1g1, h1]−

[f1h1, g1]) = TrV (0) = 0. �

3.2. A lemma for calculating residues. Of course, the definition of the previous

subsection is difficult to use in practice, as it involves traces on infinite dimensional

vector spaces. The following lemma expresses the residue of some fixed element as

a finite trace (on a vector space that is determined by the fixed element we want

to evaluate the residue at).

Let f, g be fixed elements of K.

Let

B = gA + A (< A)

C = B ∩ f−1(A) ∩ (fg)−1(A) = {v ∈ B|fv ∈ A and (fg)v ∈ A},

and suppose π : A + fA + fgA → A is a k-linear projection onto A.

Then,

i: dim(B/C) is finite

ii: resV

A
(fdg) = TrB/C([πf, g])

Proof. Extend π to a projection of all of V onto A (eg. pick a basis B for A+fA+

fgA, extend it to a basis for V; then send every base element not in B to 0 and

every e ∈ B to π(e)). Then πf ∈ E1, and πf ≡ f(modE2) since (π − 1) ∈ E2 and

E2 is an ideal of E. Hence resV

A
(fdg) = TrV ([πf, g]) by definition.
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For any c ∈ C, f(c), fg(c) ∈ A, so

[πf, g]c = πfg(c)− gπf(c) = fg(c)− gf(c) = 0 ∈ C

So, by T2,

TrV ([πf, g]) = TrV/C([πf, g]) + TrC([πf, g]) = TrV/C([πf, g]).

Also, [πf, g](V ) ⊆ B. Applying T2 once more,

TrV/C([πf, g]) = TrB/C([πf, g]) + Tr(V/C)/(B/C)([πf, g]) = TrB/C([πf, g]).

To prove dim(B/C) is finite it suffices to show dim(A/A ∩ f−1A ∩ (fg)−1A) is

finite, since B = A + gA ⊆ A + W for some finite dimensional subspace W of V.

As A ∩ f−1A ∩ (gf)−1A is a k-subspace of A, we can write A = A�
�

(A ∩ f−1A ∩

(gf)−1A). For each 0 �= a� ∈ A�, we either have fa� /∈ A or gfa� /∈ A.

Now, suppose we had an infinite k-basis e1, . . . for A�. Then, we either have

fei /∈ A or gfei /∈ A (or both) for infinitely many i. Assume without loss of

generality that fei /∈ A for infinitely many i. We can once again decompose A

as A��
�

(A
�

f−1A) with A�� having an infinite basis e1, . . . . As fa�� ∈ A (with

a�� ∈ A��) if and only if a�� = 0, we see that f is injective on A��, the vectors fe1, . . .

are linearly independent, and that the k-span of fe1, . . . intersects A at 0 only. This

contradicts fA < A, so A� must be finite dimensional. �

3.3. Some properties of resV

A
. Having established a way to calculate the abstract

residue, we now prove some basic properties. All of these will come in handy in the

next section, when we work with residues on curves.

(R1). i: If A ⊆ V � ⊆ V and KV � = V � then resV

A
= resV

�

A
.

ii: If A ∼ A�, then resV

A
= resV

A� .

Proof. i: For f, g ∈ K, resV

A
(fdg) = TrB/C([πf, g]) = resV

�

A
(fdg) by applying

the lemma above twice.

ii: E,E0, E1, E2 depend only on the equivalance class of A, and by definition

resV

A
depends only on V and these subspaces of End(V).

�

Thanks to (R1), from now on we will usually omit the V on resV

A
.

(R2). If fA + fgA + fg2A ⊆ A, then res
A
(fdg) = 0
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Proof. Let b = a+a� ∈ B. Then fb = fa+fga� ∈ A and fgb = fga+fg2a� ∈ A, so

b ∈ B ∩ f−1(A)∩ (fg)−1(A) = C. Hence B = C and res
A
(fdg) = TrB/C([πf, g]) =

0. �

In particular, res
A
(fdg) = 0 if fA ⊆ A and gA ⊆ A. If A is a K-submodule of

V, then resV

A
is identically 0.

The following two properties hint at an alternate definition of the residue, to be

seen in the next section. Let R be a discrete valuation ring that is also complete,

K its field of fractions, and g a fixed uniformizer of R. Then, given some f ∈ K,

we can write it in the form of a Laurent series in the variable g. Loosely speaking,

in the next section we will apply the two following properties in a situation like this

and see that the residue of f equals the coefficient of the −1th term (much like in

complex analysis).

(R3). Let g ∈ K. Then res
A
(gndg) = 0 for all n ≥ 0; and for all n ≤ −2 in case

g is invertible in K. In particular, res
A
(dg) = 0 for all g ∈ K.

Proof. Choose g1 ∈ E1 satisfying g1 ≡ g(mod E2) (eg. let g1 = πg = (π− 1)g + g).

Note that gn
1 ≡ gn(mod E0) for n ≥ 0. Then res

A
(gndg) = TrV ([gn

1 , g1]) = 0.

If g is invertible we have 0 = d1 = d(gg−1) = gdg−1 + g−1dg, i.e. −gdg−1 = g−1dg.

Then,

g−ng−2dg = g−n−1(g−1dg) = g−n−1(−g)dg−1 = −(g−1)ndg−1,

whose residue is 0 for n ≥ 0 by the first part of the statement. �

(R4). If g is invertible in K, and h ∈ K is such that hA ⊆ A, then res
A
(hg−1dg) =

TrA/(A∩gA)(h)−TrgA/(A∩gA)(h). In particular, if g is invertible and gA ⊆ A, then

res
A
(g−1dg) = dimk(A/gA).

Proof. Let f = hg−1(= g−1h) and let B, C be as in the lemma above. For a

projection π of V onto A, we have

resV

A(fdg) = TrB/C([πf, g]) = TrB/C(πfg − gπf)

= TrB/C(πh− gπg−1h)

= TrB/C(πh− π1h) (π1 some projection of V onto gA)

= TrB/C(πh)− TrB/C(π1h)
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Note that πh and π1h are both endomorphism of B/C, so that the last line of the

equality follows from linearity of the trace on the finite dimensional vector space

B/C.

Since πh(C) ⊆ A ∩ gA ⊆ C, we have

TrB/A∩gA(πh) = TrB/C(πh) + TrC/A∩gA(πh) = TrB/C(πh) by T2.

In the exact same way,

TrB/C(π1h) = TrA+gA/A∩gA(π1h).

Hence,

TrB/C(πh)− TrB/C(π1h) = TrA+gA/A∩gA(πh)− TrA+gA/A∩gA(π1h)

= TrA/A∩gA(πh)− TrgA/A∩gA(π1h) by T2

= TrA/A∩gA(h)− TrgA/A∩gA(h)

Now suppose gA ⊆ A and let h = 1 in the above. Then,

resV

A(fdg) = TrA/gA(1)− TrgA/gA(1) = TrA/gA(1) = dimk(A/gA).

�

The following property -with an easy but arduous proof- is the key tool for

evaluating an important residue in the next section.

(R5). Suppose B is another k-subspace of V satisfying fB < B for all f ∈ K.

Then,

f(A + B) < A + B, f(A ∩B) < A ∩B for all f ∈ K,

and we have

resA + resB = resA+B + resA∩B

Proof. The first two statements follow immediately from the properties of <.

To prove the last statement, we first construct projection maps of V onto A, B,

A+B and A ∩B satisfying πA + πB = πA+B + πA∩B .

We have A∩B ⊆ A ⊆ A+B ⊆ V , which we will use to construct an appropriate

basis for V. Let B be a basis for A∩B. Let BA and BB be extensions of B to A and

B respectively. Then BA∪BB is a basis for A+B. Finally, extend this to a basis BV

of V. Now let πA : V → A be the projection map that takes every basis element in
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BA to itself and takes BV −BA to 0, and so on. Clearly, πA +πB = πA+B +πA∩B .

We have

resA(fdg)− resA+B(fdg) = TrV ([πAf, g])− TrV ([πA+Bf, g]).

Claim. φ1 = [πAf, g] and φ2 = [πA+Bf, g] generate a finite potent subspace of

End(V):

Proof. i: φ1(V ) = (πAgf − gπAf)(V ) ⊆ (πAg − gπA)(V ) ⊆ A + gA < A <

A + B

Similarly, φ2(V ) < A + B.

ii: φ1(A + B) < φ1(V ) < A

φ2(A + B) = (πA+Bg − gπA+B)f(A + B) < (πA+Bg − gπA+B)(A + B) =

(πA+Bg−g)(A+B) = (πA+B−1)g(A+B) < (πA+B−1)(A+B) = (0) < A

iii: φ1(A) < (πAg − gπA)A = (πAg − g)A = (πA − 1)gA < (πA − 1)A = (0)

φ2(A) < φ2(A + B) < (0)

�

Substituting πA∩B and πB for πA and πA+B respectively in the proof above, we

see that [πBf, g] and [πA∩Bf, g] also generate a finite potent subspace of End(V).

By the linearity of TrV on finite potent subspaces, we have for any f, g ∈ K,

resA(fdg)− resA+B(fdg) = TrV ([πAf, g])− TrV ([πA+Bf, g])

= TrV ([(πA − πA+B)f, g])

= TrV ([(πA∩B − πB)f, g])

= TrV ([πA∩Bf, g])− TrV ([πBf, g])

= resA∩B(fdg)− resB(fdg)

�

The final property we will prove is useful for calculating the residue in a simple

case, and then passing to a more general curve by a base extension. A corollary of

this result is how Serre generalizes the residue theorem, after manually calculating

the residue in the simple case of P1
k
.
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(R6). Let K � be a commutative K-algebra which is a free K-module of finite rank.

Let V � = K � ⊗K V and A� =
�

i
xi ⊗A =

�n

i
{xi ⊗ ai|ai ∈ A} ⊆ V � for a K-basis

{x1, . . . , xn} of K �. Then,

i: f �A� < A� for all f � ∈ K �.

ii: The ∼-equivalance class of A� depends only on that of A, not on the choice

of the basis {xi}, and

iii: resA�(f �dg) = resA((TrK�/Kf �)dg) for any f � ∈ K, g ∈ K.

Proof. We can write f � = h1x1 + . . .+hnxn where hi ∈ K for each i. Also, for each

j, we have

f �xj = r1jx1 + . . . + rnjxn with rij ∈ K.

Then,

f �(
�

i

xi ⊗ ai) =
�

i

f �xi ⊗ ai =
�

i

((
�

j

rijxj)⊗ ai)

=
�

i

�

j

(xj ⊗ rijai)

=
�

j

xj ⊗ (
�

i

rijai)

Since rijA < A for each rij , there is a finite dimensional subspace W of V satisfying

rijA ⊆ A + W for each rij . Hence,
�

j
xj ⊗ (

�
i
rijai) ∈

�
j
xj ⊗ (A + W ) =

�
j
xj ⊗ A +

�
j
xj ⊗ W <

�
j
xj ⊗ A = A� (note that

�
j
xj ⊗ W is a finite

dimensional k-vector space with basis {xj ⊗ e} as j = 1, . . . , n and e runs through

the elements of a basis for W). This concludes the proof of (i).

(ii): Let {zj} be another basis for K � over K. For each j, write zj = r1jx1 + . . . +

rnjxn. Then we have A�� =
�

i
zi ⊗A =

�
j
xj ⊗ (

�
i
rijA) < A� as in the proof of

(i). By symmetry, we also have A� < A��, showing that the ∼-equivalance class of A�

does not depend on the choice of basis. On the other hand, suppose B is another

subspace of V satisfying A ∼ B. Then B� =
�

i
xi ⊗ B ⊆

�
i
xi ⊗ (A + W ) =

�
i
xi ⊗ A +

�
i
xi ⊗ W < A�. Again by symmetry A� ∼ B�, showing that A�

depends only on the equivalance class of A and not A itself.

(iii)

Note that K � ⊗ V ∼= Kn ⊗ V = V n as K-modules, where the first isomorphism

is determined by the choice of basis {xi}. Thus, let us denote elements of V � by
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n-tuples of elements of V , with





v1

. . .

. . .

vn




corresponding to

�
i
xi ⊗ vi. Now, given

a k-endomorphism ϕ of V �, we can decompose it as ϕ = ϕ1 + . . . + ϕn, where ϕj

equals ϕ on xj ⊗ V and 0 on xi ⊗ V for i �= j. Then, let ϕij = πi ◦ ϕj . Thus,

ϕ





v1

. . .

. . .

vn




= ϕ(

�

j

xj ⊗ vj) =
�

j

(ϕj(xj ⊗ vj)) =
�

j

(
�

i

ϕij(xj ⊗ vj)).

By abuse of notation, let ϕij also denote the k-endomorphism of V taking v to

v� if ϕij(xj ⊗ v) = xi ⊗ v�. Thus, we can write

ϕ





v1

. . .

. . .

vn




=





ϕ11 . . . . . . ϕ1n

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

ϕn1 . . . . . . ϕnn









v1

. . .

. . .

vn





On the other hand, any such n × n matrix of k-endomorphisms of V defines a

k-endomorphism of V �:





ϕ11 . . . . . . ϕ1n

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

ϕn1 . . . . . . ϕnn









v1

. . .

. . .

vn




=

�

i

(
�

j

xi ⊗ ϕij(vj)) =
�

i,j

xi ⊗ ϕij(vj)

Suppose F is a finite potent subspace of End(V). Then, n×n-matrices with entries

from F form a finite potent subspace F � of End(V �). Given M = ϕ ∈ F �, write

M = M �+M1+M2 with M � diagonal, and M1 lower triangular, M2 upper triangular

with 0’s on the diagonal. Since F � is finite potent, we have (even though the notation
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looks like the trace on the matrices, we are still in the infinite dimensional setting)

TrV �(M) = TrV �(M �) + TrV �(M1) + TrV �(M2)

= TrV �(M �) (since M1 and M2 are nilpotent)

= TrV �





ϕ11 0 . . . 0

0 0 0 0

. . . . . . . . . . . . . . .

0 0 0 0




+ . . . + TrV �





0 0 0 0

0 0 0 0

. . . . . . . . . . . . . . . .

0 . . . 0 ϕnn





Next, let us relate TrV �





0 0 . . . 0

0 ϕii . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 0




with TrV (ϕii).

Let ϕ�
ii

: V � → V � denote the map corresponding to TrV �





ϕ11 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 0




.

TrV �(ϕ�ii) = TrV �/xi⊗ϕr
iiV

(ϕ�ii) + Trxi⊗ϕr
iiV

(ϕ�ii)

= Trxi⊗ϕr
iiV

(ϕ�ii)

= Trϕr
iiV

(ϕii)

Hence, TrV �(M �) =
�n

i=1 Trϕr
iiV

(ϕii) =
�n

i=1 TrV (ϕii).

Write f �xj =
�n

i=1 fijxi with fij ∈ K. Let π : V → V be a k-linear projec-

tion, and let π� : V � → A� be the k-linear projection defined by π(
�

xi ⊗ vi) =
�

xi ⊗ πvi.

Before finally proving our result, we consider what the ijth entry of the matrix

�[f �π�, g]� representing [f �π�, g] is.

�f �π��(v1, . . . , vn) = �f ��(πv1, . . . ,πvn) = �{fij}�(πv1, . . . ,πvn)

= �{fijπ}�(v1, . . . , vn)
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Also, �g� is just the diagonal matrix with all its nonzero entries equal to g, since

g ∈ K. Hence,

�[f �π�, g]� = �{fijπg}� − �{gfijπ}� = �{[fijπ, g]}�.

Thus,

resV
�

A� (f
�dg) = TrV �([f �π�, g])

=
n�

i=1

TrV ([f �π�, g]ii)

=
n�

i=1

TrV ([fiiπ, g])

= TrV ([
n�

i=1

fiiπ, g]) (the [fiiπ, g] form a finite potent subspace)

= TrV ([(TrK�/Kf �)π, g])

= resV

A((TrK�/Kf �)dg)

�

4. Algebraic curves

Finally, we apply our results about abstract residues to curves. This section

is the gist of the thesis, bringing to conclusion Tate’s elegant proof of the residue

theorem. The actual use of the residue theorem for duality, which is similar in the

accounts of Tate and Serre, is left to the next section.

Throughout this section, X denotes a connected regular scheme of dimension 1,

proper over a ground field k and K = K(X) denotes its function field (see Section-1.3

for some standard implications of these hypotheses).

4.1. Residues on the curve X. For each closed point p of X, let Ap be the

completion of Op and let Kp be the field of fractions of Ap. Then Kp is equal to

the completion of K with respect to the valuation defined by Op (Lemma-5).

Now, for any closed point p of X, we define

resp : ΩKp/k → k, resp(fdg) = resKp

Ap
(fdg).

This definition makes sense: For any generator tp of the maximal ideal of Ap,

Ap/tpAp
∼= k(p) and so is finite dimensional as a k-vector space. This can be seen
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by taking an affine neighorbood U ∼= SpecR of p, with R a finitely generated k-

algebra. Then k(p) = R/mp is a field that is finitely generated as a k-algebra, so

that it is algebraic over k. Being finitely generated and algebraic over k, k(p) is

finite dimensional over k.

Let ϕ : tipAp/ti+1
p Ap → ti+1

p Ap/ti+2
p Ap be the k vector space homomorphism

induced by multiplication by tp (in Kp). Indeed, ϕ is an isomorphism because if

ti+1
p a ∈ ti+2

p Ap, then ti+1
p (a− tpa�) = 0 in Ap for some a� ∈ Ap, so that a = a�tp and

tipa ∈ ti+1
p Ap. Then, for any n ∈ Z, tpnAp ∼ tpn+1Ap since (tpnAp+tpn+1Ap)/tpnAp

is 0 and (tpnAp + tpn+1Ap)/tpn+1Ap = tpn/tpn+1Ap is finite dimensional by induc-

tion. Thus, Ap ∼ tnpAp for all n ∈ Z.

Now, given f ∈ Kp, we can write f = tnpu for some unit u of Ap. Hence, for

f ∈ Kp, fAp = tpnAp for some n, and so fAp < Ap. Thus resKp

Ap
is defined.

The following theorem shows that, at a k-rational point, the residue can be

expressed very neatly. It provides the bridge between the residue definitions of

Serre and Tate (see also the remark following the theorem).

Theorem 10. Let p be a k-rational point of X (i.e. let p be such that Op/mp
∼= k).

Then, Ap
∼= k[[t]] and Kp

∼= k((t)). If f =
�

ν≫−∞
aνtν and g =

�
µ≫−∞

bµtµ

are elements of K (or Kp), then resp(fdg) equals the coefficient of t−1 in f(t)g�(t)

(=
�

µ+ν=0 µaνbµ).

Proof. The first statement is just Claim-1.

Let ν�, µ� be the smallest values that ν and µ take in the above sums. Write

f = f1 + f2 =
−2µ

��

ν≫−∞

(aνtν) +
∞�

ν=−2µ�+1

(aνtν).

Then, f2Ap + f2gAp + f2g2Ap ⊆ Ap, so by (R2), resKp

Ap
(f2dg) = 0. Hence,

resp(fdg) = resp(f1dg) = −resp(gdf1) (by the definition of abstract residues)

= −resp(g1df1)

= resp(f1dg1),

where f1 and g1 have only finitely many non-zero coefficients.

So we can assume that f and g have only finitely many non-zero terms, and then

fdg = f(t)g�(t)dt ∈ ΩKp/k.
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By the k-linearity of resKp

Ap
, and (R3), we have

resKp

Ap
(f(t)g�(t)dt) = resKp

Ap
(c−1t

−1)dt = c−1res
Kp

Ap
(t−1dt)

= c−1dimk(Ap/tAp) by R4

= c−1 (since p is a k-rational point)

�

Remark 5. In (II.7, [Ser]), Serre works over an algebraically closed ground field

k, in which case all closed points are k-rational, and defines resp(fdg) to be the

coefficient of t−1, which he later has to prove to be independent of the choice of the

uniformizing parameter t of Ap. The fact that the residue does not depend on the

choice of the parameter t is built into our definition.

Next, we give a convenient formula for summing up residues at various closed

points of X, and finally the residue theorem follows as a simple corollary.

Theorem 11. Let S be a subset of the closed points of X. Put

O(S) =
�

p∈S

Op ⊂ K

Then for ω ∈ ΩK/k,

�

p∈S

resp(ω) = res
K

O(S)(ω).

Corollary 3. (Residue theorem)

�

p closed in X

resp(ω) = 0

Proof of Corollary. Since X is projective over k, Γ(X,OX) is finite dimensional as

a k-vector space. Since X is an integral scheme, the set of elements of K(X) that

are defined globally is just the set of elements that are in every local ring of X, i.e.

O(X). Hence O(X) ∼ (0), and we have resK

O(X) = 0 by (R1). �

Proof of Theorem. Define

AS =
�

p∈S

Ap

VS = {(fp)p∈S |fp ∈ Ap for almost all p} ⊆
�

p∈S

Kp
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The case S = ∅ is trivially true:
�

p∈S
resp(ω) = 0 = resK

K
= resK

O(S).

We have K �→ VS defined by f �→ (f). This is well defined, as f ∈ Ap for all but

finitely many p ∈ S: K ∩Ap = Op, with the intersection taken in Kp, so it suffices

to show f ∈ Op for all but finitely many p ∈ S. Let U be an open subset of X on

which f is defined. Then f /∈ Op ⇒ p ∈ X − U , but X − U is finite.

Noting AS ⊆ VS and K ∩ AS = {f ∈ K|f ∈ Ap for all p ∈ S} = O(S), we have

the following picture:

VS

K + AS

���������

��
��

��
��

�

K

��������� AS

��
��

��
��

�

K ∩AS

(0)
This translates into our notation for abstract residues with:

VS ∼ V,A ∼ K, B ∼ AS

We let VS have the obvious K-module structure. For f ∈ K, fK ⊆ K and

fAS =
�

p∈S
fAp ⊆

�
f∈Op

Ap ×
�

f /∈Op
fAp. Since there are only finitely many

p ∈ S for which f /∈ Op, and fAp < Ap, we have fAS < AS .

By (R5), we have:

resVS
AS

+ resVS
K

= resVS

O(S) + resVS
K+AS

.

But resVS
K

= 0 by (R2), and resVS
K+AS

= 0 by (R1), since VS ∼ (K + AS) (VS/(K +

AS) is finite dimensional by Corollary-4 below). Thus,

resVS
AS

= resVS

O(S)

= resK

O(S) by (R1)

It only remains to show resVS
AS

(ω) =
�

p∈S
resp(ω). Fix ω = fdg ∈ ΩK/k; let

S� = {p ∈ S|f /∈ Op or g /∈ Op} be the set of poles of f or g, and let T = S − S�.
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Since S� is finite, we have

VS = VT ×
�

p ∈ S�Kp,

and AS = AT ×
�

p ∈ S�Ap

For any f ∈ K, f ·AT × {0} < AT × {0} and f ·AS� × {0} < AS� × {0}, so we can

apply (R5) to get

resVS
AS

(fdg) + resVS
AS

(fdg) = resVS
AT +AS�

(fdg) + resVS
AT∩AS�

(fdg).

Obviously AT + AS� = AS , AT ∩AS� = 0, and resVS
AT

= 0 (since fAT ⊆ AT and

gAT ⊆ AT ). Hence,

resVS
AS

(fdg) = resVS
AS�

(fdg) = resVS�
AS�

(fdg)

= resVS�
Aq

(fdg) + resVS�
AS�−{q}

(fdg)− resVS�
0 (fdg) by (R5)

= resKq

Aq
(fdg) + res

VS�−{q}
AS�−{q}

(fdg)

= resq(fdg) + res
VS�−{q}
AS�−{q}

(fdg)

= . . .

=
�

q∈S�

resq(fdg)

=
�

p∈S

resp(fdg) (for p /∈ S�, resp(fdg) = 0 since fAp, gAp ⊆ Ap)

�

To show that VS/(K +AS) is indeed finite dimensional, we prove a slightly more

general lemma that we will need later. Let V = VX (where X stands for all closed

points of X). Then, define

V (D) = {(fp) ∈ V |ordpfp ≥ −ordpD for all p ∈ X},

and the invertible OX -module OX(D) by

[OX(D)](U) = {f ∈ K|νq(f) ≥ −νq(D) for all q ∈ U}

for any open subset U of X, as before (see Thm.-9).

Lemma 15. H1(X,OX(D)) ∼= V/(K + V (D))
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Proof. Let G denote the cokernel of OX(D) �→ K(X). Consider the exact sequence

0 → OX(D) → K(X) → G → 0,

which induces the long exact sequence

0 → H0(X,OX(D)) → H0(X,K(X)) → H0(X,G)

→ H1(X,OX(D)) → H1(X,K(X)) → . . .

Since X is irreducible, H0(X,K(X)) = K(X). On an irreducible scheme any

constant sheaf is flasque, and hence has zero homology groups in dimensions greater

than 0, so H1(X,K(X)) = 0 (Lemma-7). Hence

H1(X,OX(D)) ∼= H0(X,G)/K(X).

OX(D)p is just the sub-module of K of elements with valuation greater than

or equal to −ordp(D). So,

�

p

Gp =
�

p

K(X)/OX(D)p = V/V (D),

and all that remains to do is to show that the global sections of G is a direct sum of

its stalks at its closed points. Let G�p be the skyscraper sheaf defined by G�p(U) = 0

if p /∈ U and G�p = Gp if p ∈ U . We first define a map ψp : G�p → G:

Given gp ∈ (G�p)p = Gp, gp comes from some section g� ∈ G(U), whose restriction

to some smaller neighorhood V � of p must be an element of K(X)/[OX(D)](V �).

Let g ∈ K(X) be a representative for this element. Let V be the subset of V �

obtained by throwing away all points where D is nonzero and all poles of g, and

adding back p if necessary (both sets that are thrown away are finite, so V is open).

Now, for gp ∈ G�p(W ), ψp(gp) is the element of G(W ) whose restriction to V
�

W

is g, and restriction to W − {p} is 0.

Next, taking the direct sum of the ψp we have a map

�

p

G�p → G,

that is obviously an isomorphism at each stalk. Hence Γ(X,G) =
�

p
Gp as wanted.

�

Corollary 4. For any subset S of the closed points of X, VS/(K + AS) is finite

dimensional.
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Proof. The projection VX/(K + AX) → VS/(K + AS) is surjective, so it suffices

to show this for S = X. But VX/(K + AX) ∼= H1(X,OX) by taking D=0 in the

lemma. Since X is projective over k, H1(X,OX) is finite dimensional. �

The final theorem of this section is the same result Serre utilizes to generalize

(by means of base extensions) his manual calculation of residues on the projective

line ( [Ser], Chpt. 2, Sect. 3).

Theorem 12. Let X � → X be a surjective morphism inducing the inclusion of

function fields K(X) = K �→ K � = K(X �).

i: For f � ∈ K �, g ∈ K, and p ∈ X,

�

p� �→p

resp�(f �dg) = resp((TrK�/Kf)dg).

ii: For p� ∈ X � mapping to p ∈ X, f � ∈ K �

p� , and g ∈ Kp,

resp�(f �dg) = resp((TrK�
p/Kp

f �)dg).

Proof. i:

�

p� �→p

resp�(f �dg) = resK
��
p� �→p

Op�(f �dg)

= resK
��
{Op� dominates Op}

Op�(f �dg) by Lemma-8

= resK
��
{R val. ring. dominating Op}

R(f �dg)

= resK
�

B (f �dg) (with B the integral closure of Op in K� by Thm.-3)

= resK

Op
((TrK�/Kf �)dg) by (R6)

Here is how we were able to apply (R6) in the last line: B is a finitely gen-

erated free Op−module (finitely generated since it is the integral closure of

the finitely generated k-algebra Op, and free since it is torsion free over the

PID Op), say x1, . . . , xr is an Op−basis for B. Since localization commutes

with taking the integral closure (Lemma-3), K · B = K �, and x1, . . . , xr is

also a K-basis for K � . Thus in the notation of (R6), A� =
�

i
xi ⊗Op = B

and V � = K � ⊗K K = K �.

ii: This follows exactly as in (i), since the integral closure of Ap in K �

p� is just

A�
p� .

�
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This concludes our treatment of residues. The next section is devoted to the

application of these results to exhibit an explicit dualizing sheaf in the case of

smooth curves.

5. Duality

In this section, we first construct a natural ”dualizing sheaf” JX/k for a regular

curve proper over an arbitrary field k. We show that it is an invertible sheaf, and

has the desired properties. However, the dualizing sheaf is somewhat contrived, is

not a familiar object at all. So, we employ the residue theorem to show that the

dualizing sheaf is actually the same as ΩX/k in the case of smooth curves.

To begin with, let J(D) = {λ ∈ HOMk(V, k)|λ(K + V (D)) = HOMk(V/(K +

V (D)), k) (∼= H1(X,OX(D))∨ by Lemma-15).

We have D ≤ D� ⇒ V (D) ⊆ V (D�) ⇒ J(D�) ⊆ J(D). Given any two divisors,

there is another divisor that is smaller than both of them, so
�

D
(J(D)) as D runs

through all divisors D of (X,OX) is a k-module. Let JK/k =
�

D
(J(D)), and

Jp = {λ ∈ JK/k|λ(Ap) = 0}. Finally, for each open U ⊆ X, define JX/k(U) =
�

p∈U
Jp ⊆ JK/k. The stalk of JX/k at each closed point p is Jp, and its generic

stalk is JK/k.

Now, JX/k has a natural OX − module structure given by f · λ(v) = λ(f · v),

where v ∈ V , f ∈ OX(U), and λ ∈ JX/k(U). Since f ∈ OX(U), f · Ap ⊆ Ap

and so f · λ(Ap) = 0 for all p ∈ U . Also, f(K + V (D)) = K + V (D − (f)), so

f · λ ∈ J(D − (f)). Hence, f · λ ∈ JX/k(U).

That JX/k has the dualizing property is a simple consequence of Lemma-15:

H0(X, JX/k(−D)) = H0(X, JX/k ⊗OX(−D)) = HOMk(V/(K + V (D), k))

∼= H1(X,OX(D))∨

The following lemma will help prove that JX/k is an invertible sheaf.

Lemma 16. JX/k is coherent.

Proof. Let U = SpecA be some open affine subset of X, and M = JX/k(U). We

show that for any distinguished open subset D(f) of SpecA JX/k(D(f)) = Mf =

AfM (where the last term is an Af submodule of JK/k).
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If λ ∈ JX/k(D(f)), then λ(Ap) = 0 for all p ∈ U satisfying f /∈ mpOp. There are

finitely many points in U −D(f), and vq(f) � 0 for each q ∈ U −D(f). Now, since

λ(V (D)) = 0 for some divisor D, we have λ(tqnqAq) = 0 for some integer nq for

each q. Let n be the maximum of these nq. Then fnAq ⊆ tqnAq ⊆ tqnqAq for each

q, so that fn · λ(Aq) = λ(fnAq) = 0. Hence JX/k(D(f)) ⊆ AfM . The converse

follows immediately, since M ⊆ JX/k(D(f)) and JX/k is an OX -module. �

Now that we know it is coherent, showing JX/k to be invertible is essentially a

matter of considering dimensions. This is where the rudimentary Riemann-Roch

theorem (Prop.-6) plays its part.

Proposition 9. JX/k is an invertible OX-module.

Proof. It suffices to show that Jp is a free Op-module of rank 1 for each point p.

We start with the generic stalk showing dimK(JK/k) = 1, and the rest will follow

easily.

Step 1. dimK(JK/k) ≤ 1.

We suppose α,α� are two linearly independent elements of JK/k, and reach a con-

tradiction. First, we must have α,α� ∈ J(D) for some D, since given any two

divisors D1, D2 we can always find some divisor D smaller than both of them, so

that J(D1) ⊆ J(D) and J(D2) ⊆ J(D). Let ∆n be a divisor of degree n.

Given f ∈ H0(X,OX(∆n)), consider f ·α ∈ JK/k. If x ∈ V (D+(f))(or equivalently

fx ∈ V (D)), we have 0 = α(fx) = f ·α(x), so f ·α ∈ J(D + (f)). But −∆n ≤ (f),

so f · α ∈ J(D −∆n). Now, we have a mapping

H0(X,OX(∆n))×H0(X,OX(∆n)) → J(D −∆n), (f, g) �→ fα + gα�

This map is injective by the assumption that α,α� are linearly independent over

K, and we must have

dimkJ(D −∆n) ≥ 2 · h0(X,OX(∆n)) (*)

By Lemma-15, dimkJ(D−∆n) = h1(OX(D−∆n)). By Prop.-6, this last quantity

equals h0(OX(D−∆n)) + h1(OX)− deg(D−∆n)− 1. If deg(D−∆n) is less than

0, then H0(X,OX(D −∆n)) = 0 (Corollary to Prop.-6), so for n large enough the

left hand side of (*) equals deg(∆n)+ c0 = n+ c0 (where c0 = h1(OX)−deg(D)−1

does not depend on n).



45

On the other hand h0(OX(∆n)) = h1(OX(∆n)) + deg(∆n) + c1, where c1 = 1 −

h1(OX) does not depend on n. But then the right hand side of (*) is at least

2n + 2c1, so that by (*) n + c0 ≥ 2n + 2c1, which cannot be true for very large n.

Step 2. dimKJK/k is exactly 1.

It suffices to exhibit a nonzero element of V/(V (D) + K) for some divisor D, or

equivalently that V (D) + K �= V . Let D = −2 · p for some closed point p and

take (fq) ∈ V with fq = 1 for q = p and fq = 0 for q �= p. Suppose we can

write (fq) = (gq) + h with (gq) ∈ V (D) and h ∈ K. vp(gp + h) = vp(fp) = 1 and

vp(gp) ≥ 2, so we must have vp(h) = 1. But as we noted before the degree of the

principal divisor defined by h must be 0, so we must have vq(h) < 0 for some q.

Then vq(gq + h) < 0 ≤ vq(fq), contradicting (fq) = (gq) + h.

Step 3. For each closed point p, Jp is a free OX,p module of rank 1.

It will suffice to show Jp is generated by a single element over OX,p (because

OX,p ⊆ K, Jp ⊆ JK/k, and JK/k is a K-vector space). Let λ ∈ Jp − tpJp. For any

ϕ ∈ Jp, we have f · λ = ϕ for some f ∈ K, since JK/k is a 1-dimensional K-vector

space. Suppose f /∈ Op. Then tp−1Ap ⊆ fAp and 0 = ϕ(Ap) = f ·λ(Ap) = λ(fAp),

so that λ(tp−1Ap) = 0. But then tp · λ ∈ Jp, which is a contradiction.

�

Remark 6. Step-2 of the proof of the proposition is in line with Chevalley’s approach

in ([Che], Chpt.2). The question he investigates is: given xp ∈ K and integers np

for each valuation ring Rp of K/k, when can we find x ∈ K satisfying vp(x−xp) ≥

np for each p. Then he restricts to the case where vpxp ≥ 0 for all but finitely

many p and np = 0 for all but finitely many p, so that the question becomes

about V/(V (D) + K). Then using purely algebraic arguements he investigates the

dimension of V/(V (D)+K) over k and thereby proves a form of the Riemann-Roch

theorem.

The fact that X is proper is essential to Step-2. If we had X = SpecA for

a Dedekind domain A for instance, the approximation lemma assures that given

finitely many xp ∈ Ap and integers np, one can find x ∈ K such that vp(x−xp) ≥ np

for each p and vq(x) ≥ 0 for all other prime ideals of A ([Ser2], p.12), which shows

that V/(K + V (D)) = 0, making JK/k trivial. In the proper case a similar result

holds, but without the guarantee vq(x) ≥ 0 ([Che], Chpt.1, Thm.3), which would

be impossible because of the fact that degx = 0 (see Remark-3).
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Finally, we can relate JX/k with Ω1
X/k

. Consider the canonical map

c : Ω1
K/k

→ JK/k

taking w ∈ Ω1
K/k

to the linear map (cw) defined by

(cw)(f) =< f,w >=
�

p∈X

resp(fpw) for all f ∈ V .

The image of c is indeed contained in JK/k: By Corollary-3, (cw)(K) = 0. Write

w = hdg with h, g ∈ K. Define a divisor D by:

ordpD = max{vp(h), vp(h) + vp(g), vp(h) + 2vp(g)} for each p

Then vp(fph), vp(fphg), vp(fphg2) are all nonnegative, so (fph+fphg+fphg2)Ap ⊆

Ap and by (R2) resAp(fphdg) = 0 for all p. Hence (cw)(K + V (D)) = 0, and

(cw) ∈ JK/k.

Note that we can easily glue morphisms that extend this homomorphism to whole

open sets of X: If ϕ1 and ϕ2 are homomorphisms on U1 and U2 that agree at the

generic stalk, then ϕ1 − ϕ2|U1
�

U2 induces the 0 map on the generic stalk, so that

ϕ1|U1
�

U2 − ϕ2|U1
�

U2 is itself the 0 map.

Now, we show that c can be extended to a morphism on any open affine sub-

set, say U = SpecR. Ω1
X/k

|U ∼= (Ω1
R/k

)∼, so we only need to give an R-module

homomorphism Ω1
R/k

→ JX/k(U) = {λ ∈ JK/k|λ(Ap) = 0 for all p ∈ U} that

agrees with c. The restriction of c to Ω1
R/k

works: For w = hdg ∈ Ω1
R/k

and

(f) ∈ Ap (i.e. fq = 0 for q �= p and fp ∈ Ap), we have (cw)(f) = resp(fpw) = 0

(fphAp, fpgAp ⊆ Ap, as h and g are both regular at p).

In the case of smooth curves the canonical map c is actually an isomorphism, as

the next theorem asserts.

Theorem 13. Suppose X is smooth over k (the residue fields k(p) at the closed

points are separable over k and K(X) is separably generated over k). Then the

homomorphism c : Ω1
X/k

→ JX/k is an isomorphism.

Proof. At any closed point p, Jp and Ω1
p are free Op-modules of rank 1, with Ω1

p

generated by dtp for some uniformizer tp of Op and Jp generated by any element not

in tpJp. For λ ∈ Jp, λ /∈ tpJp if and only if tp−1λ /∈ Jp, if and only if λ(tp−1Ap) �= 0.
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We show that c(dtp) has this property:

λ = c(dtp) is defined by

λ((fq)) =
�

q∈X

resq(fqdtq).

Let (fq) = utp−1dtp when q = p, and (fq) = 0 when q �= p, where u is some unit of

Ap to be determined. Then,

[c(dtp)]((fq)) = resp(utp
−1dtp) = resAp(utp

−1dtp)

= TrAp/(Ap
�

tpAp)(u)− TrtpAp/(Ap
�

tpAp)(u) ((R4))

= TrAp/(tpAp)(u) = Trk(p)/k(u)

Now, we can find u ∈ k(p) such that Trk(p)/k(u) �= 0 by Lemma-4 (strictly speaking,

the lemma tells us we can find such u� ∈ k(p) = Ap/tpAp, and then we can pick

any u whose image is u�).

Since ΩK/k and JK/k are 1-dimensional vector spaces and c is nonzero, it is an

isomorphism at the generic point as well. �

Corollary 5. If X/k is smooth (eg. if k is perfect), then for any invertible sheaf

L on X, we have

H1(X,L) ∼= H0(X,Ω1
X/k

⊗ L∨)∨.

Proof. L ∼= OX(D) for some divisor D, and so

H0(X,Ω1
X/k

⊗ L∨) = H0(X, JX/k ⊗OX(−D))

= Homk(V/(K + V (D)), k) ∼= H1(X,OX(D))∨ = H1(X,L)∨

�

6. Riemann-Roch

At this point, we have concluded our main mission. We have proved the residue

theorem using Tate’s elegant method, and then used it to show that the dualizing

sheaf JX/k is the same thing as the sheaf of differentials for smooth curves.

In finishing, we prove a stronger form of the Riemann-Roch theorem to demon-

strate the power of duality. For some related applications, see ([Har], IV.1).

As before, let X be a regular proper curve over some field k. In addition, let

X be smooth over k. Since ΩX/k is an invertible OX -module, ΩX/k
∼= OX(D)

for some divisor D. It is not necessarily unique, but we call any divisor in its
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equivalance class (in the group DivX divided by the principal divisors of X) a

canonical divisor, and denote it by K. Note that OX(K) and degK are well-

defined since OX(K + (f)) ∼= OX(K)⊗OX OX((f)) ∼= OX(K)⊗OX OX
∼= OX(K)

and deg((f)) = 0 for any principal divisor (f).

Definition 14. The genus of the curve X is g = h0(ΩX/k).

Theorem 14. Let D be a divisor on the curve X. Then,

h0(OX(D))− h0(OX(K −D)) = deg(D) + h0(OX)− g

Proof. OX(K −D) ∼= OX(K)⊗OX(−D) ∼= ΩX/k ⊗OX(−D), and by Corollary-5,

h0(ΩX/k ⊗ OX(−D)) = h1(OX(D)). Now, the equation we wanted to prove is

equivalent to

h0(OX(D))− h1(OX(D)) = deg(D) + h0(OX)− g

But g = h0(ΩX/k) = h0(JX/k) = dimk(Homk(V/(K + V (0)))) = h1(OX) by

Lemma-15, so we are reduced to proving

χ(OX(D)) = deg(D) + χ(OX),

which is just Proposition-6. �

Remark 7. In case k is algebraically closed, h0(OX) = 1, so the equation simplifies

to h0(OX(D))− h0(OX(K −D)) = deg(D) + 1− g.
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