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ABSTRACT

The aim of this thesis is to present an explicit duality for smooth projective
curves. More standard Serre duality achieves the final results exhibited in the thesis
with far greater generality, using powerful homological machinery. The shortcom-
ing of such methods, however, is that they do not yield an explicit dualizing sheaf
but only show its existence. The general form of the treatment of the subject we
follow was given by Serre in 1959 ([Ser]). A cornerstone of this treatment is the
residue theorem, which essentially states that the sum of the residues for a given
differential at all points of a regular projective curve is 0. Tate improved upon
Serre’s treatement (in [Tat]), giving an elegant, characteristic independent proof of
the residue theorem by defining residues in a novel way. Hence, our account gen-
erally follows Tate, drawing parallels to Serre where appropriate (and occasionally
to Chevalley’s 1951 work [Che] which contains some seeds of the ideas involved, al-
beit from a purely algebraic viewpoint). Having developed duality, to demonstrate
its power, we conclude the thesis with the proof of a form of the Riemann-Roch

Theorem.

ii



0z

Bu tez caligmasinin amaci diiz projektif egriler icin agik bir ikilemin sunumunu
yapmaktir. Daha standart Serre ikilemi, kuvvetli homolojik yontemler kullanarak
bu tezde gosterilen sonuglarin ¢goguna -iistelik cok daha genel formda- ulagabilir. Bu
yaklagimin eksik kaldig: taraf, ortaya ¢ikan ikilemin acik bir gekilde ifade edilememe-
sidir. Bu tezdeki yaklasim, en ana hatlariyla Serre tarafindan 1959 anlatilmigtir
([Ser]). Bu yaklagimin yapitaglarimdan birisi residue teoremidir. Serre’den sonra,
Tate residue teoreminin daha dogal, karakteristige bagl olmayan giizel bir kanitini
vermigtir ([Tat]). Bu sebeple, bu tezde daha gok Tate’in yaklagim takip edilecektir.
Uygun olan yerlerde Serre’in yontemiyle (ve daha az siklikla, buradaki baz fikirlerin
tohumlarim tagiyan Chevalley’in 1951 galigmasiyla) baglantilara isaret edilecektir.
Projektif diiz egriler icin Serre ikilemini kanitladiktan sonra, bu sonucun giiciinii

gostermek icin tezin sonunda Riemann-Roch teoreminin bir formu kanitlanacaktir.

iii
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INTRODUCTION

The existence of a dualizing sheaf for projective varieties of all dimensions is
a standard result of Serre duality (that can for instance be found in [Har], Chpt.
ITI, Sect. 7). The value of the dualizing sheaf is that, given a coherent sheaf on
a projective nonsingular variety, it lets one find natural functorial isomorphisms
between certain Ext groups and homological groups of various dimensions that are
similar in form to the Poincaré duality. If in addition the variety is smooth, the
dualizing sheaf is also known to be isomorphic to the canonical sheaf, which is an
exterior product of the sheaf of differentials on our variety.

While the existence of this isomorphism can indeed be proved using cohomolog-
ical methods, it is more difficult to exhibit an explicit isomorphism in the general
case. The main purpose of this thesis is to give an account of how an explicit
dualizing sheaf can be given in the case of smooth projective curves, in an as self-
contained manner as possible. While the result was before presented by Serre (in
[Ser]), and in a less recognizable form by Chevalley (in [Che]), we mainly follow
the account of Tate (in [Tat]), and occasionally mention the works of Serre and
Chevalley to draw parallels.

The unique feature of working with nonsingular projective curves over a field k,
is that this category is equivalent to the category of function fields of dimension
1 over k. As such, most of the results presented in the thesis could be dealt with
purely in the realm of commutative algebra (which is what Chevalley does).

However, it is much more expedient to use scheme theory as needed. The prelim-
inaries section of the thesis is aimed at stating, and developing where appropriate,
results that will let us skip back and forth between commutative rings and schemes.

In the following three sections, we present the theory of residues on curves, and
finally prove the residue theorem. The residue theorem is the most important step
in our goal of constructing an explicit isomorphism between a dualizing sheaf and
the canonical sheaf (which, in dimension 1, is just the sheaf of differentials). The
proof of the residue theorem we give is Tate’s novelty, the major focus of this thesis,
and the main reason we follow Tate’s account as opposed to Serre’s.

Finally, in section 5, we use the residue theorem in completing our goal of viewing

the sheaf of differentials as the dualizing sheaf via an explicit isomorphism.



At this point, we have developed all of the machinery needed to prove a form of
the Riemann-Roch theorem for curves. So, while the explicit isomorphism we have
constructed is not really needed for it, we conclude the thesis with a proof of this

result to demonstrate the power of duality.



1. PRELIMINARIES

In this section, we prove some standard theorems to be used later on. One can
defer reading these results until needed later, especially the subsection on commu-
tative algebra.

An important thread running through the first three subsections is how closely
our schemes (which are of dimension 1 and “nice”) turn out to be related to their
underlying rings and fields. Indeed, it is possible (but cumbersome) to give a
treatment of the residue theorem using only commutative algebra as Chevalley
does in [Che].

Subsection-1.4 introduces divisors on “nice” schemes (that are not necessarily of
dimension 1), and concludes by explicating the natural isomorphism between the
invertible sheaves on a scheme and a certain quotient group of the divisors on the
scheme. Besides being interesting in its own right, this result will let us easily step
back and forth between the land of schemes and the land of commutative algebra
when working on duality.

Finally, in Subsection-1.5 we prove a simple version of the Riemann-Roch The-
orem. This serves a two-fold purpose. First, we use it in the section on duality
to prove that the dualizing sheaf we define is isomorphic to the sheaf of differ-
entials on a smooth curve. In turn, we use this isomorphism together with the
simple version of the Riemann-Roch Theorem to prove a more general version of

the Riemann-Roch Theorem in the final section of the paper.
1.1. Commutative algebra.

1.1.1. Valuation rings. Here, we give a basic account of valuation rings. In the
subsections 1.2 and 1.3, we will explore the ties between the points of a scheme
and the valuation rings of its function field. For a proper scheme over a field, we
will show that there is a one-to-one correspondence between them. In the case of
curves, we will also show that the image of a point under a surjective morphism is
determined entirely by the corresponding inclusion of function fields.

Let R be an integral domain with field of fractions K. We say that R is a
valuation ring if for allz € K, x ¢ R = x~! € R. A simple example is Zp) for

any prime number p.



Theorem 1. Let K be a field, A a subring of K, and p a prime ideal of A. Then
there exists a valuation ring R of K such that A C R, and mg N A = p (where mg

is the mazimal ideal of R).

Proof. [Matl], Thm. 10.2, p.72. O

The integral closure of A in K is the set of elements of K that are roots of
polynomials with leading coeflicient 1 and all coefficients in A. It turns out that

the integral closure of a valuation ring is just itself.

Theorem 2. A valuation ring is integrally closed.

Proof. Let A be a valuation ring of K. Suppose z € K is integral over A, satisfying
2"+ an_12" 1 ... +ag=0,and z ¢ A. Then 271 € m4. Multiplying the equality

by 1,7(n71)7

1

T=—Qn1—Gnot + —...—agz" e A,

which is a contradiction. O

If R and S are local rings with S C R and mr NS = mg, we say that R
dominates S. In Subsection-1.3, we will show that the image of a point under a
surjective morphism of curves is determined by such a domination relation in a

certain way.

Theorem 3. Let K be a field, and A a subring of K. Then the integral closure
B of A in K is the intersection of all the valuation rings of K containing A. If in
addition A is a local ring, then B equals the intersection of all valuation rings of

K dominating A.
Proof. By Thm. 2
B C m R (taken over valuation rings R containing A)

Conversely, suppose x € K is not integral over A. 1 ¢ x 1Az~ (if 1 = a1z~ ! +
oo Fapxz™", then 2" + a12” ' + asz™ 2 + ... 4+ a, = 0, making x integral over
A), so 27 Afz™!] € m for some maximal ideal m of Afz~!]. By Thm.]I] there is
a valuation ring R of K such that A C R and mr N A = m. But then 27! € mp,

x ¢ R, and so

x§éﬂR

ACR



If Ais alocal ring, then 1 ¢ (z7*Alz71],ma) (if 1 =r + ayz™t + ... + apz™™ for
some r € m4, then 1 — 7 is a unit of A and 1 = (a12~ '+ ...+ anz ™)1 —7)"").
As before (z 71 A[z~!],m4) is contained in some maximal ideal m of x =1 A[z~1], so

that mp () A[z~!] = m. Hence mr( A =m[)A=mau, ie R dominates A. O

1.1.2. Discrete valuation rings. Discrete valuation rings (DVRs) are an easier to
study subset of all valuation rings. Happily, since we are working in dimension 1

and with “nice” schemes, the valuation rings we encounter will be mostly DVRs.

Definition 1. Let K be a field. A discrete valuation on K is a group homomorphism
v of the multiplicative group of K onto the additive group Z such that v(z +y) >
min{v(x),v(y)}. A subring R of K is a discrete valuation ring (DVR) if it equals

{z|v(z) > 0} for some discrete valuation v on K.

We state first the characterization of DVRs among valuation rings, and then

their characterization among all rings.

Theorem 4. Let R be a valuation ring. Then the following conditions are equiva-
lent:

e Risa DVR

e R is a principal ideal domain

o R is noetherian

Proof. [Matl], Thm. 11.1, p. 78. O

Theorem 5. Let R be a ring. Then the following conditions are equivalent:

e Risa DVR.

e R is a local principal ideal domain, and not a field.

e R is a noetherian local ring, dimR > 0, and the mazimal ideal mp is
principal.

e R is a normal noetherian local ring of Krull dimension 1.

Proof. [Matl], Thm. 11.2, p. 79. O

For example, it follows immediately from the theorem that Z,) is a DVR for any

prime p. We could also show this directly by defining an explicit discrete valuation
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on Zy). Given a € Z, let v(a) be the highest integer ¢ such that p® divides a, and
extend this to the whole of Q in the obvious way. Then the set of elements of Q

with non-negative valuation is precisely Z,).

Claim 1. Let A be a complete discrete valuation ring that is a k-algebra with residue

field also k, and let K be the field of fractions of A. Then A = k[[z]] and K = k((x)).

Proof. Let m be a uniformizer of A. Since k — A, we readily have representatives
for the cosets A/m. Take any a € A. Since A/m = k, there is an s9 € k such
that a — sp € m, i.e. we can write a = sy + aim for some a; € A. Similarly, we
can write a1 = s1 + aa, so that a = sg + s17 + aow?. Thus, the series ZZOZO Sy
converges to a. This series representation is clearly unique, since ZZCZO S, =0
only if all of the s,, are 0. This shows that the k-algebra homomorphism k[[z]] — A,
determined by the choice of the uniformizer for A, is an isomorphism. k((z)) =2 K

O

follows immediately.

Lemma 1. If R is a discrete valuation ring and K its field of fractions, then there

do not exist any proper intermediate rings between R and K.

Proof. Suppose R C S C K. The inverse of some un™ must be in S, where u is a

unit in R, and 7 is a uniformizer of R. Then 7! =7 """ 1€ S, s0 S=K. [

1.1.3. Regular local rings. See the beggining of the next subsection for a summary
of the results from this section that we will use often. Essentially, the "niceness”

of our schemes correspond to the fact that their local rings are regular.

Definition 2. Let A be a noetherian local ring with maximal ideal m and residue
field k. We say A is regular if dimy(m/m?) = dimA (where the first dimy is

dimension as a vector space and the second dim is the Krull dimension).

For example, any discrete valuation ring is a regular local ring. Let A be a DVR,
and fix a uniformizer t. We have m = (t), m? = (t?). Denote A/(t) by k. Then
multiplication by t is a k-vector space isomorphism between A/(t) and (t)/(?).

Hence dimy(m/m?) = 1, which is the Krull dimension of A.

Lemma 2 (Krull’s principal ideal theorem). Let A be a noetherian ring and let x
be an element of A which is neither a zero-divisor nor a unit. Then every minimal

prime ideal p containing © has height 1.



Proof. [Atil], Corollary-11.18, p.122. O

Theorem 6. A regular local ring is a UFD. In particular, a reqular local ring is

an integrally closed integral domain.

Proof. [Mat2], Thm. 48, p.142. For a simpler proof of regular rings being integral
domains: [Ati], Lemma 11.23, p. 123. O

Corollary 1. A regular local ring of Krull dimension 1 is a discrete valuation ring.

Proof. This follows immediately from the characterization of DVRs among rings

(Thm.{f). O

1.1.4. Integral closure. Regarding integral closures, we will only need the following

lemma, which will be useful in the context of morphisms of curves.

Lemma 3. Let A be a subring of a field K, S a multiplicative subset of A, and B
the integral closure of A in K. Then the integral closure of S~*A is S™1B.

Proof. Suppose x is integral over S™!A, satisfying o™ + apn_1/8p_ 12"t + ... +
ao/so = 0. Let s = s1---5s,. Multiplying by s", we have (sz)" + a/,_,(sz)" ! +
...+ aj(sz) + ajy = 0 with the a} € A. Hence sz is integral over S™1A, so that
st € Band x € S7!B.

Conversely, take some b/s € S~! B with b satisfying " +. . .4+-ag = 0. Multiplying
this integral dependence relation by s=" we have (b/s)" + (a,—1/s)(b/s)" 1 +...+
(ag/s™) = 0, so that b/s is integral over S™1A. O

1.1.5. Kdhler differentials. Let K be a k-algebra. Here, we merely note that Q}(/k,
the module of differential forms of K over k, can be constructed by taking the free
K-module generated by {df : f € K}, and dividing it by the submodule generated
by all elements of the form d(f + f') — df — df’ and d(ff’) — fdf’ — f'df with
[, /' € K, and dr with r € k. Then, the map K @, K — Qg i, f® g+ fdgisa
surjective K-module homomorphism, with kernel generated by all elements of the
form1Qff —ff — f & f with f, f/ € K (elements of the form 1 ®r with r € k

are included in this).

1.1.6. Trace map on a finite seperable field extension.
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Lemma 4. Let K be a finite seperable field extension of k. Then there exists some

w € K such that Trg,(w) # 0.

Proof. By the well-known primitive element theorem, K = k(a) = k[z]/(f(z)) for
some o € K and some irreducible, seperable polynomial f(z) € k[z]. Let k be the

algebraic closure of k (containing K'). Then,

Il
Pl

K @ k= k[z]/(f(x) @ k = k[z]/(f(2))

klz]/(x — a1) -+ (@ — o)

1%

= H k by the Chinese remainder theorem

Let ey,...,e, be the obvious k-basis for [] k. The discriminant det({Tr(e;e;)})
of K @y k = H/_f over k is 1 # 0, so the discriminant of K ®; k will be nonzero
independent of the choice of basis.

Given a basis w1,...,w, of K over k, w1 ®1,...,w, ® 1 is a basis for K @i k

over k. Hence,
det({Tr(wyw;)}) = det({Tr(w; ®1-e; @1)})

is nonzero, so that we must have Trg/,(w;w;) # 0 for some w;w; € K.

O

1.1.7. Completion. Completion is a useful tool for localizing a scheme ” just enough”.
The following lemma will be needed in section-5, when considering how residues

behave with respect to surjective morphisms of curves.

Lemma 5. Let A be a local ring, Ay its completion with respect to its maximal ideal
p, K its field of fractions and K, the completion of K with respect to the valuation

whose valuation ring is A. Then K, equals the field of fractions of Ap.

Proof. Note that K, is the completion of K with respect to the system of neighbor-
hoods pA D p?A D ... of 0, and A, is the completion of A with respect to the subset
topology of A. S0, 0 = A - K — K/A — 0 induces 0 — A, — K, - K/A— 0
(where the completion of K/A is again K/A, since the quotient topology on it is

the discrete topology). Since K is a flat A-algebra, we get

0—-A4,9K—-K,9dK=K,— K/A® K =0.



1.2. Schemes. The eventual object of interest in this paper is a "regular curve
proper over a field k”. In this subsection, we explore the implications of properness
in a slightly more general setting. The most important result here is lemma-6]
which gives a relation between the points of a scheme X and the field extension

We start with two basic properties of schemes. A scheme X is reduced if its local
rings have no nilpotent elements, and it is integral if Ox(U) is an integral domain

for every open subset U of X.

Proposition 1. A scheme is integral if and only if it is reduced and irreducible.

Proof. Since all local rings of an integral scheme are integral domains (but the
converse does not hold), clearly an integral scheme is reduced. If an integral scheme
X is not irreducible, we can pick disjoint open sets U and V contained in X. Then
Ox(UUV) = Ox(U)xOx(V) is not an integral domain. Conversely, suppose there
exist nonzero elements f,g € Ox (U) such that fg = 0. Let Yy = {z € U|f, € m,},
the complement of D(f)NU in U, and Y, = {z € Ulg, € m,}, the complement of
D(g)NU in U. We have Y; UY, = U. But since X is irreducible, U is irreducible.
SoY;=UorY,=U,say Yy =U. Then, given any open affine subset W = SpecR
of U, f|w is in the nilradical of R. Since X is reduced, covering U by open affine

subsets, we have f = 0. O

Definition 3. A morphism f : X — Y is of finite type if for every open affine
subset U = SpecR of Y, f~1(U) can be covered by finitely many open affine subsets
{U;} = SpecR; with each R; a finitely generated R-algebra.

Definition 4. A scheme X is noetherian if it can be covered by finitely many open

affine subsets {U;} = SpecR; with each R; a noetherian ring.

In particular, if X is of finite type over Y = Speck, then X can be covered
by finitely many open affine subsets {U;} = SpecR; where each R; is a finitely
generated k-algebra, i.e. isomorphic to some k[x1, ..., 2z,]/I. Hence X is noetherian

in this case.

Definition 5. X is proper over k if the morphism X — Speck is separated, of finite

type, and universally closed.
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We will mainly use two consequences of properness: The following lemma, and

the fact that a proper curve is projective (next section).

Theorem 7. Let f : X — Y be a morphism of finite type, with X noetherian.
Then f is proper if and only if for every valuation ring R with field of fractions
K and for every morphism of U = SpecK to X and T = SpecR to Y forming
a commutative diagram U — X  there exists a unique morphism T — X
i i i !
T ——Y

making the following diagram commute U —— X

e

T —Y
Proof. [Har], Chpt. 2, Thm. 4.7. O

This characterization of properness is much more handy than the raw definition.
It gives us our first important bridge between schemes and their underlying rings,

in the form of the following lemma.

Lemma 6. Let X be an integral noetherian scheme over a field k, and let K be
its function field. We say that a valuation ring R of K/k has center z on X if R
dominates Ox . If X is proper over k, then every valuation ring of K/k has a

unique center on X.

Proof of Lemma. Given a valuation ring R of K/k, we have the morphisms
o T = SpecR — Speck, induced by k — R, and
o U = SpecK — X, taking the only point of SpecK to the generic point of
X

adding up to the commutative diagram [ —— X  which means there is a

|

T — Speck

unique morphism f : SpecR — X by the valuative criterion of properness. Let p
denote the only closed point of T'. If f(p) = z, we have

@

Ox. T,=R

N7

K
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where ¢ is an injective local homomorphism, so that R dominates Ox . On the
other hand, suppose R had another center ' on X. Then, we have the inclu-
sion maps of rings Ox ,» — R — K, inducing the morphisms U — SpecR —
SpecOx ,» — X. This gives another morphism f’ : T — X commuting with the
diagram. R dominates Ox ./, so we know f’ takes p to ’. Hence f’ is a different
morphism than f, contradicting the valuative criterion of properness.

O

Leaving commutative algebra aside for a bit, we state a basic but very useful
lemma about the cohomology of schemes. While simple, it provides a large chunk

of the benefit of our working with schemes.

Lemma 7. Let X be any scheme. A flasque sheaf F of Ox-modules has zero
cohomology in dimension 1. In particular, if X is irreducible, then a constant sheaf

of Ox-modules has zero cohomology in dimension 1.
Proof. Embed F in an injective Ox-module Z. We have
0—-F—-I—F/T—0,
and the induced long exact sequence
0—-T(X,F) -T(X,I) = T(X,T/F) - H'(X,F) - H'(X,ZI) =0
But since F is flasque, we also have
0-T(X,F)-TI'(X,7) - T(X,Z/F)—0

d

Remark 1. Indeed, a flasque sheaf has zero cohomology in all positive dimensions,

as follows easily from the above by induction, after noting that quotients of flasque

sheaves and injective O x-modules are flasque.

1.3. Curves. Now, we narrow our focus to the case of curves. A curve is a scheme
of dimension 1, of finite type over some field k. A curve is then Noetherian, because
any scheme of finite type over a field is Noetherian as noted in the previous section.

The first important result of this Subsection is Lemmad8] which gives a relation
between a surjective morphism of schemes and the corresponding inclusion of func-

tion fields. Often one wants to compute the residue in an easy case, and then pass
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to another curve using this lemma. For example, Serre proves the residue theorem
by direct calculation in the easy case of the projective line, and then generalizes
the result using surjective morphisms of curves.

In this paper, we are interested in connected regular curves proper over some field
k. The other important result in the Subsection, Theorem§] is a standard result
that basically means our curves are projective as well. This will sanction us to use
some standard cohomological results formulated for projective schemes, and say
things about the k-dimensions of the global sections and the first cohomological
groups of our schemes. The fact that these dimensions are finite will make the
formulation of the rudimentary Riemann-Roch theorem in the final subsection make
sense, as well as help directly in proving the residue theorem later on.

From here on, unless noted otherwise, X denotes a curve as described in the

previous paragraph.
Definition 6. A scheme X is regular if all of its local rings are regular.

Note that being regular is an absolute notion, i.e. independent of the base field
k. Summing up the results in the previous sections about regular rings of Krull
dimension 1, we note that the local rings of X at its closed points are integral

domains; integrally closed; discrete valuation rings; unique factorization domains.

Proposition 2. A regular connected noetherian scheme X of dimension 1 is irre-

ducible.

Proof. Suppose X is not irreducible and let C1, ...,y be the irreducible compo-
nents of X. Since X is connected there are distinct irreducible components of X
whose intersection contains a closed point, say z € C; N Cs. Let U = SpecR
be an affine neighborhood of x. Then Cy NU and Cs N U are irreducible sub-
sets of U, say C1 NU = V(p1) and Co NU = V(py) for prime ideals pq,ps of
R. We have p;1,p2 C m,. But X is regular, so Oy, is a DVR and has only m,
and 0 as prime ideals. Hence, without loss of generality, we have p; C ps. Since
{z} C V(p2) C V(p1) and U is of dimension 1, we either have Co NU = {z} or
ConU = CyNU. The former contradicts the irreducibility of Cy, and the latter
means Cy = (CoNU)~™ = (C1 NU)~ = Cy. We conclude that X is irreducible. O

Since X is regular, it is reduced, and hence an integral scheme by Proposition{l}
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Thus, X consists of a generic point and some closed points. We denote the local
ring at the generic point, or the function field of X, by K(X) or just K. Since X
is integral, we can think of all local rings Ox , of X as subrings of K(X) = Ox,,
each local ring having K(X) as its field of fractions. The morphism X — Speck
induces k — Ox, — K(X), giving a discrete valuation ring of K/k. In light of
Lemmad6 we conclude that the closed points of X correspond bijectively to the set
of valuation rings of K/k.

Next, we make some comments about a surjective morphism of two curves of the

type we are interested in

X/\7X

inducing a commutative diagram of function fields:

KX) — K(X')

NS

k

Since K(X) and K(X') are both function fields of dimension 1 over k, K(X')
is a finite extension field of K(X). Suppose p’ — p, where p,p’ are closed points.
Then, we have the commutative diagram (with all maps injective, and where O,,

O, are discrete valuation rings)

Op <— Op
K =——K
Claim 2. O, dominates O,.
Proof. Note that Oy N K = O, by (Lemmadl). r € m,, implies r € m, N Op, since

otherwise r~! € O,y N K, but r=! ¢ O,. On the other hand, r € m, N O, implies

r € my, since otherwise r~le myp C Op. O

Conversely, suppose R is a valuation ring of K (X’)/k that dominates O, consid-
ered as a subring of K(X’). By (Lemma—@, R has a unique center p’ on X. Then,

p’ — p: Suppose p’ — z. Then R dominates both O, and O, by the claim, so that
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O,=RNK =0, by (Lemma. Thus p = z (since O, = O, has a unique center

on X). This concludes the proof of the following lemma:

Lemma 8. Let f : X' — X be a morphism of two connected regular schemes of

dimension 1 over a field k. Then, f(p") = p if and only if O, dominates O,.

The rest of this subsection, except for one short result at the very end, is devoted
to proving that a regular proper curve over a field is projective. The result holds,
but is somewhat more complicated to prove, without the assumption of regularity.
Since our curves are regular anyway, we will keep regularity as a condition.

Once we have constructed projective morphisms for small pieces, the following

two lemmas will help us combine them.

Lemma 9. Let X be a reduced scheme over S, Y a separated scheme over S. If f

and g are two S-morphisms that agree on an open dense subset of X, then f=g.

Proof. |Liu], Prop. 3.11, p. 102. O

Lemma 10. Let Y be a proper scheme over a field k, X a normal proper curve
over k, and U an open subset of X. Then any morphism f : U — Y extends to a

morphism X — Y.

Proof. The generic point 7 of X is contained in U, so f induces a morphism f, :
SpecK (X) — Y (given by Oy (U) — Oy, ) — k(f(n)) — K(X)). For any closed
point € X (not necessarily contained in U), Ox . is a discrete valuation ring with

field of fractions K (X), so we have

SpecK(X) — Y
fa

|

SpecOx o — k

where f, is the unique map of the valuative criterion of properness. Next, we show
that f, extends to a morphism from an open neighborhood of x.

Let V' = SpecR be an open affine neighborhood of f,(z) for a finitely gener-
ated k-algebra R, say R = k[aq,...,a,]. Then the whole image of f, is contained
in V, and f, factors into SpecOx , — V — Y, with the first morphism corre-

sponding to some ring homomorphism ¢ : R — Ox . For each i, pick some
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s; € Ox(V;) having the germ ¢(o;) € Ox . We thus have a commutative dia-

gram  kloy ... a,] —> Ox(Uy) (where U, is an open affine neighborhood of

O
SpecOx

x contained in Ox ([, V;)), corresponding to an extension g, of f, to U,.

Now, let W be an open affine neighborhood of g,(z), and consider

U'=f'W) (g (W) CU( U,

U’, as it contains 7, is nonempty. The diagram

s
=
3
s
>

<

is commutative, with Ox(U’') — K(X) injective, so f|y- and g¢,|ys induce the
same homomorphism Oy (W) — Ox(U’). Since morphisms from a scheme to an
affine scheme correspond bijectively to ring homomorphisms of global sections in
the reverse direction, we conclude f|y: = g|v. Then, by Lemma—@, f and g, agree
on UNU,. Likewise, g, and g,/ agree on U, (U, for any other closed point z’.
Gluing all these g, we get the extension of f to X. O

Proposition 3. A normal proper curve X over a field k is projective.

Proof. Let {U;}; be a finite open cover of X by affine open sets U; = SpecR; with
each R; a finitely generated k-algebra. Then for each i there is an open immersion
¢ : Uy — Y, for some projective variety Y; over k, and so a morphism (), U; — Y
where Y is the fiber product of all the ¥; (which is projective). By Lemma
this morphism extends uniquely to f : X — Y. Since X and Y are proper over
k, f is surjective onto the scheme-theoretic image Z of X and the induced maps
Zs(z) — Ox o are surjective for each z € X. We now have the following diagram

which we will subsequently show to be commutative: 7, — ~ & *f> '

~
~
~
~
Pi ~
~

A
Z Y
Let g : U; — Y; be the composition of the three maps in the diagram. We do know
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that this diagram is commutative

N Ui U; X Y

—_|

Y;

because f is just the extension of (), U; — Y to all of X. So ¢; and g are two
morphisms that agree on the dense open subset (), U; of U;, and hence they are
equal on the whole of U; by Lemma{J] But ¢ is an isomorphism, so the induced
maps Zs(,) — Ox . are isomorphisms.

Now, Z is projective and hence proper over k. The only point of Z whose local ring
is a field is f(n), so it is irreducible. As it is also reduced, it is an integral scheme.
All of its local rings are discrete valuation rings, so it is a regular curve. Suppose
f(x) =2z = f(y) for xz,y € X. Then Ox , and Ox,, both dominate the valuation
ring Oz . (all considered as subrings of K(X)). Hence Ox , = Oz, = Ox , and so
x =y (because each valuation ring of K/k has a unique center on X). This shows
that f is a bijection of the underlying sets of X and Z, taking the generic point of
X to the generic point of Z. Since X and Z both have the cofinite topology, f is a
homeomorphism. Thus X is isomorphic to the projective scheme Z.

O

Now that we know our curves to be projective, we will make extensive use of the

following standard theorem.

Theorem 8. Let X be a projective scheme over a noetherian ring A. Then for any
coherent sheaf F on X, H'(X,F) is a finitely generated A-module. In particular,
if X is a projective curve over some field k, then H°(X,Ox) and H'(X,Ox) are

finite dimensional vector spaces over k.

Proof. ([Har], I11.5, Thm. 5.2) O

1.4. Divisors. We define (Weil) divisors on a noetherian integral seperated regular
scheme X over some field k (that is not necessarily of dimension 1) and mention
their connection to the group PicX of isomorphism classes of invertible sheaves on
X. The material here is a recap of ([Har], I1.6) simplified to the types of schemes

we are interested in.
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The first few results are a general introduction to divisors, and will be useful
for proving the residue theorem. Lemma{I3]is a basic result that we will use often
towards the end of the paper, when dealing with duality, after proving the residue
theorem.

The final result in the subsection, which explicates an isomorphism between the
group of invertible sheaves on a scheme X and a certain quotient group of the
divisors on X, will be useful when proving the Riemann-Roch theorem, in addition

to being interesting in its own right.

Definition 7. A prime divisor of X is a closed irreducible subset of codimension
1. DivX is the free abelian group generated by the prime divisors. A divisor of X

is an element of DivX.

In our case with dimX equal to 1, the prime divisors are just the closed points
of X.

Each prime divisor has a corresponding generic point 7. Since the codimension
of the closure of 7 is 1, the Krull dimension of O, is 1. Moreover, since X is
integral, the field of fractions of O, is K = K(X). Since X is a scheme over Speck,
k is contained in O,. Finally, X is regular, so O, is a discrete valuation ring of
K/k. Now, for any f € K(X) and any 7 corresponding to a prime divisor Y, the

valuation vy (f) of f with respect to O, is defined.

Definition 8. For any f € K* we define the divisor (f) of f by (f) =Y vy (f) - Y €
DivX (with the sum taken over all prime divisors Y'). An element of DivX that
can be expressed as (f) for some f € K is called a principal divisor. The sum

S~ wuy(f) Y is indeed finite (see lemma below).

The principal divisors form an additive subgroup of DivX: For any f,g € K, we

have (f) = (g9) = 22 (v (f) —ov(9)) - Y =2 vy (f/g) - Y, s0 (f) = (g) is a principal

divisor; (1) = 0 is the identity element.

Lemma 11. For any f € K*, vy (f) is nonzero for at most finitely many prime

divisors 'Y of X.

Proof. Let U = SpecA be an open affine subset of X satisfying f € Ox(U). The
generic point 7 of X is contained in U since X is integral. Then each prime divisor Y

of X contained in Z = X — U is an irreducible component of Z (since if there were
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some closed irreducible subset W of Z containing Y, we would have Y g w ; X
which is impossible as the codimension of Y in X is one). On the other hand, if
Y is not contained in Z, then the generic point of Y must be in U. Since f is a
regular function on U, vy (f) > 0. If vy (f) > 0, we have f € nA,, and so f € n (as
f € A also). The converse is also true, so vy (f) > 0 if and only if Y is contained
in V(Af). Now V(Af) is a proper closed subset of U since f # 0, so each prime
divisor of U contained in V(Af) is also an irreducible component of V(Af). But

V(Af) is noetherian and can only have finitely many irreducible components. O

Definition 9. The quotient of DivX by the subgroup of principal divisors is called
the divisor class group of X, and is denoted by CIX.

Definition 10. A scheme is called normal if all its local rings are integrally closed.

Lemma 12. Let A be a noetherian integral domain. Then A is a UFD if and only

if every prime ideal of A of height 1 is principal.

Proof. [Mat2], Thm. 47, p. 141. O

Proposition 4. Let A be a noetherian integral domain. Then A is a UFD if and
only if X = SpecA is normal and CIX = 0.

Proof. If A is a UFD, then it is integrally closed, so all of its localizations are
integrally closed, and SpecA is a normal scheme. This and the previous lemma
reduce the problem to: In an integrally closed domain A, every prime ideal of
height 1 is principal if and only if Cl(SpecA)=0.

Suppose every prime ideal of height 1 is principal. Each prime divisor Y corre-
sponds to a prime ideal py of height 1, say generated by fy. Then vy (fy) = 1.
If we had fy € pz for a different prime divisor Z, we would have py C pz, and so
Z C Y, contradicting codim(Z,X)=1. For any prime divisor Z # Y, since fy ¢ pz,
fr is a unit in A,,, and so vz(fy) = 0. Hence (fy) = 1-Y. By multiplying such
fy or their inverses we see that any divisor can be written in the form (f) for some
feK.

Conversely, suppose C1X=0. Let p be a prime ideal of height 1. Then 1Y =
1-V(p) is a divisor of X, so that we can write Y = (f) for some f € K. This means
vy (f) =1 (so that f € pA,) and vy/(f) =0 (so that f € A,) for Y’ #Y. Hence,
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f € A. Then f € ANpA, = p. It only remains to show that an element f of p
with vy (f) =1 and vy (f) =0 for Y’ # Y in fact generates p.

Take any g € p, say with vy (g) = n. Then vy (g/f™) = vy(g9) — nvy(f) =0
(g/f" € K) and vy/(g/f™) = vy/(g) > 0, so that g/f" € A, for all prime ideals p
of A of height one. Hence g/f™ € A, and so g € (f) in A.

O

Note that CIX = 0 means every divisor on X can be expressed as a principal
divisor. In the rest of this section, we look at the relation between invertible sheaves

and divisors.

Proposition 5. The isomorphism classes of invertible sheaves on a ringed space

X form a group under the operation ®.

Proof. Given any x € X, L|y, = Ox|u, and G|y, = Ox|y, for a sufficiently small
neighorbhood U, of z. Then L& G|y, = Ox ® Ox|u, = Ox|u,, which shows L& G
is invertible on X. The inverse of an invertible sheaf £ is £Y = HOM(L, Ox):

HOM(’)X (‘Ca OX) RPox L= HOMOX (‘Cv ‘C) = Ox
by the following lemma. O

Lemma 13. For a locally free sheaf L and any Ox-module F, HOMo, (L, F) =
LY ROy F.

Proof. Let R be aring, M a finitely generated free R-module, and N some R-module.

The map
¢ : HOMg(M,R) ® N — HOMg(M, N)
defined by
(A @n)|(m) = A(m) -n

is an isomorphism (and independent of the basis chosen for M).
Now, let U be an open set such that Ox|y = L|y. For any open affine set
SpecR =V C U, noting that HOMoe |, (£, F) = HOMg(L(V),F(V)), and using

the isomorphism 1, we have

HOMo, (v)(L(V),0x(V)) @oxv) F(V) 2 HOMo, (v)(L(V), F(V)).
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Moreover, this isomorphism is independent of the basis chosen for £(V') (i.e. inde-
pendent of the isomorphism Ox|y = L|y), so they can be glued together to give

the canonical isomorphism
HOMo (L, F)|lv = (LY @0y F)lu-

Covering X by such open sets U and glueing these isomorphisms, we get the iso-

morphism of the lemma. O

Definition 11. The group of Proposition{j| is called the Picard group of X, and
denoted by PicX.

Theorem 9. On a noetherian integral separated regular scheme X, the groups CIX

and PicX are isomorphic in a natural way.

Proof. See Chpt.2, Corollary 6.16 [Har] for a proof.

Here, we briefly describe the isomorphism, given by D — Ox (D).

For any « € X, D induces a divisor D, on SpecOx , (keeping the coefficients of
prime divisors passing through x and making all others 0). Since X is regular,
SpecOx , is a UFD, and so D, is a principal divisor, say D, = (f;) on SpecOx
(where f, € K(X)). Throwing out the prime divisors that don’t pass through x,
we get an open set U, of X on which D, and (f;) agree. Then, using the collection
{(Ug, fz)} thus obtained (with the {U,} covering X), let Ox (D) be the subsheaf
of K(X) defined by

Ox(D)|v, = f. ' Ox|u,.

Remark 2. In our case with X a curve, given
D = E Cp * Dy
p closed

Ox (D) is the subsheaf of the constant sheaf K(X) defined by

f€0x(D)|(U) < vy(f) > ord,(—D) for all closed points p € U.
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1.5. Rudimentary Riemann-Roch. We prove an easy version of the Riemann-
Roch theorem, which we will need later first to determine the dimension of the
dualizing sheaf, and then to prove a more powerful version of the Riemann-Roch
theorem in the last section of the paper.

Let X be a regular, integral scheme of dimension 1 proper over a field k. For
any Ox-module F, denote dimy,(H*(X,F)) by h*(F) and h°(F) — h1(F) by x(F).
These numbers are all finite by Theorem{§

Definition 12. For a divisor D of X, let degD = 3_  dimy(k(p)) - vp(D).

dimg(k(p)) is indeed finite for each closed point p: k(p) = O,/m, = R/p,
where R is a finitely generated k-algebra such that U = SpecR is an open affine
neighborhood of p and p is the maximal ideal of R corresponding to p. Then k(p)
is a field that is finitely generated as a k-algebra, whence it is a finite extension of

k.
Proposition 6. For any divisor D on X,
X(Ox(D)) = degD + x(Ox)

Proof. We use induction on D. For D = 0 the equality is obviously true. Suppose

it holds for some D. For any closed point p,
deg(D + p) + x(Ox) = degD + dimy(k(p)) + x(Ox),

so we need to show the left hand side increases by dimy(k(p)) as well. Note that
this suffices, as it also shows that if the equality holds for some D, then it holds
for D — p as well. Because Ox (D) is a subsheaf of Ox (D + p), we have the exact

sequence

0— Ox(D)— Ox(D+p)— Q—0,

which gives rise to the long exact sequence

0— HO(X,O)((D)) - HO(Xa Ox(D+p)) - HO(Xa Q)

— H'(X,0x(D)) — H'(X,0x(D +p)) — H'(X,Q) = 0
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But Q, =0 for ¢ # p, so H'(X, Q) = 0, and
H'(X, ) = Ox (D +p),/Ox (D), = 170, 1P,
= tvp(D)H(Qp/tvp(D)Op
> k(p).
Applying the general property of vector spaces to the exact sequence above, we get
h?(Ox (D)) = h*(Ox (D +p)) +dimy(k(p)) = h' (Ox (D)) + h' (Ox (D +p)) =0 = 0,
and rewriting it

X(Ox (D +p)) = x(Ox (D)) + dimy.(k(p))

O

Note that, as CiX = PicX, we could have shown x(L) = degl + x(Ox) for
any invertible Ox-module L, defining degL to be the the degree of the divisor
corresponding to £. We now know that this is indeed a legitimite definition, since
it is an immediate corollary of the proposition that principal divisors have degree
0 (because Ox ((f)) = Ox for any principal divisor (f)).

We easily get the following corollary, which says that the global sections of certain

invertible sheaves are trivial.

Corollary 2. If degD < 0, then H°(X,0x (D)) =0

Proof. Suppose f € K(X) is a nonzero global section of Ox (D). Then deg(f) > 0,

which is a contradiction since deg(f) = 0 by the remark above. d

Remark 3. The fact that X is projective was essential to our proof, since otherwise
h*(X,Ox) may not be finite dimensional over k. Indeed, for instance Speck[z] is a regular,
separated scheme of dimension 1 over k, but it will have many principal divisors that are

not of degree 0.

2. TRACES

In this section we extend the usual definition of the trace of an endomorphism
of a finite dimensional vector space to finite-potent endomorphisms of infinite di-
mensional vector spaces. This new kind of trace is the main tool for defining the

residue in a different way, allowing for Tate’s elegant proof of the residue theorem.
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Definition 13. Let k be a field and V a vector space over k. Then § € HOM(V, V)
is finite-potent if 0™ (V') is finite-dimensional for some n € N. We then define T'ry (0)
to be Trony ().

To give a more concrete feeling to this definition, consider the filtration 8™ (V') C
"=1(V) C --- C V. Then we can construct a basis B for V by starting with a basis
for ™ (V) and extending to a basis for 7~1(V), and so on. Attempting to calculate
Try with respect to this basis in the usual way, we naturally arrive at the above
definition.

When V is finite dimensional, the same basis construction shows Try (0) =
Trony (6). Also, since 0°F1V = 04(V) C 'V, we have §"(V) = 0"1(V) for n
large enough. Thus, in the definition, we can as well take Ty (6) to be Trony (6)

for n large enough.

(T1): If V is finite dimensional, Try () is the usual trace.

(T2): For a subspace W of V satisfying 0(V) C W, we have Try(0) =
Trw(0) + Tryw(0).

(T3): If 0 is nilpotent, then Try (0) = 0.

(T3) follows immediately from the definition of Try . (T1) follows immediately
from writing out Try (¢) using the base B. To show (T2), note that Ty, w (0) +
Trw(0) = Trenviw)w(8) + Trgnw (0) = Tronv/onvaw)(0) + Tronyaw (0) for n
large enough (since 0™(0"V N W) = "W for n large enough that 67V = 91V
and 0"W = "F1W). This last quantity equals Trgny (6), as (72) holds in the finite

case.

Remark 4. The properties (T1), (T2), (T3) give an equivalent definition of Try:
Try(0) = Trg-V(0) + Trygny (0) (by T»)

=Tronv(0) (by Ty and T3)

In extending the definition of the trace we have sacrificed its linearity, as the sum
of two finite potent maps need not even be finite potent. Even if it is, the trace
of the sum might not be the sum of the traces. There is a counterexample where
the trace of the sum of three finite potent maps is not the sum of their traces, even
though the sum of the three of them is finite potent (but the sum of any two of

them is not finite potent) ([T1]). However the case of two maps appears to be still
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an open question for which a similar counterexample will not work ([T2]). Tate

himself notes that he doubts linearity for two maps holds in general ([Tat]).

Luckily, we can recover linearity for certain subspaces of End(V). We say F is
a finite potent subspace of Endy if there is an n € N such that 6y - -- 6, (V) is finite

dimensional for any 64,...,0, € F.
(T4): For a finite potent k-subspace F of End(V), Try : F — k is linear.

It is immediate from the definition that any element of F is itself finite potent,
so Try is defined on all of F. To show Try (01 + 02) = Try(61) + Try(62), we
may assume F is spanned by 6, and 6. Then F™(V) is finite dimensional, being
generated by the union of at most 2" finite dimensional vector spaces. For any 6 €
F,Try(0) = Trpay+Try pey (0) = Treay(0) since 0 is nilpotent on V/F"V. Now
Try (01 +02) =Trpay (01 + 02) = Trpny (01) + Treny (02) = Try (61) + Try(02).

(T5): Suppose ¢ : V! — V and ¢ : V. — V' are vector-space homomorphisms
and ¢ : V — V is finite potent. Then v is finite potent and Try () =
Try:(vep)

Proof. Let n be large enough that (¢¢)™V is finite dimensional. Then ¥y is finite
potent since p(Yp)"V’ = (pi)"pV’ is finite dimensional, and so ¥ (py)"pV =
()" TV is also finite dimensional. Now, let n be large enough that W =
(P¥)"V = (p)"™ 1V and W' = (0)"V' = (1pp)"F1V". Then W = p(ot)"V =
(Yp)pV C W', and similarly oW’ C W. We have W' = W’ C W C W’ and
so YW = W'; similarly, W' = W. Hence ¢ and v induce isomorphisms of W and
W’. In particular, fixing a base {ey, ..., e, } for W, we have a base {¢(e1),...,9¥(e.)}
for W'. Let < v,e; > denote the i*" coordinate of v in the basis ey, ...,e,. Then,
Try (pu) = Tra(gw) = X, < @i(es),er >, Also, Trys(ig) = Trw (b) = ;<
po(e;), P(e;) >. Write pi(e;) = c15e1+. ..+ cpier, s0 that < pih(e;), e; >=c¢;;
and < Ypop(e;),¥(e;) >= c;i. Hence, Try (o) = >, cii = Try: (Ye). O

In the remainder of this section, we fix a k-vector space V, and investigate how
we can use Ty on certain subspaces of End(V).

We say a k-subspace A of V is not much bigger than a k-subspace B, and write
A < B if (A+ B)/B is finite dimensional.
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3. This definition is equivalent to requiring A C B + W for some finite

dimensional subspace W of V.

Proof. If A C B+ W, (A+ B)/B C (B + W)/B is clearly finite dimensional.

Conversely, if (A + B)/B has a finite basis v1,...,70s, A is contained in B +

Spang{vy,...,vs}. O

We say A is about the same size as B, and write A ~ B, if A < B and B < A.

Here are three basic properties of these relations:

Now

A<Band B<C=A<C.

Proof. ACB+W;and BCC+Wy=AC B+ (W, + W) O
For any k-linear map ¢, A < B = ¢(A) < ¢(B).

Proof. AC B+W = p(A) C o(B+ W) = ¢(B)+ ¢(W), where (W) is
of course finite dimensional. O
>oimy Ay <7 By if and only if A; < B; for all i,]

Proof. The obvious map A; +NB; — @_, (A; + B;)/B; has kernel NBj,
and so we have (4; + NB;)/NB; — @,(A; + B;)/B;. The latter is finite
dimensional by the assumption A; < B;. This shows A; < NB; for all i,
or equivalently that A; € NB; + W; for each i, for some finite dimensional
subspace W;. Then )  A; CNB; + (W1 +...+W,,) as wanted. The other

direction is immediate. O

we fix a k-subspace A of V and define some subspaces of End(V) with

respect to this A:

E
By
Ey
Ey

= {0 € End(V)|0A < A}
= {0 € End(V)|0V < A}
= {0 € End(V)|#A < (0)}

(
(
(
= {0 € End(V)|0V < A and A < (0)}

)
)
)
)

Proposition 7. (1) Eis a k-subalgebra (with identity) of End(V)

(2)
(3)
(4)
(5)

Ey, E1, Es are two-sided ideals of E
The E’s depend only on the ~-class of A
ElﬂEngo andE1+E2:E

Ey is finite potent.
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Proof. (1) For any 61,65 € E, 616,A C 01(A+ W) = 6;(A) + 6,(W), so
(0102)A < A For any A € k, (M)A = ANOA) = 0A < A (6, +62)A C
1A+ 0;A < Aby N3

(2) let ¢ € E, 6,61,02,€ E;. Er: (61 +62)V C61(V)+602(V) < Abp(V) C
OV) < A (pO)V C o(A+W) = p(A) + (W) < p(A) < A. Es :
(01+02)A C 01(A)+02(A) < (0). (0p)A CO(A+W) =0(A)+0(W) < (0).
(p8)A C (W) < (0). Ep : This is just the intersection of the two ideals
FEq and Es.

(3) Suppose A ~ B. Let EP be the same E.’s defined for B in place of A.
Let § ¢ EA=FE. F:0B <A < A< Bsince B< Aand A < B, so
6 € EB. By symmetry, EA = EP. B, : 0V < A< B,so 0 € EE. FEy:
0B < 0A < (0),50 0 € EB. Ey: Ey= By N Ey = EENEP = EB.

(4) E1 N Ey = Ey is immediate from the definitions. To prove E = E; + Eo,
let 7 be a linear projection of V onto A (i.e. a linear map V — A whose
restriction to A is the identity). (V) = A < A, so ® € E;. Also, (1 —
m)(a) =0 forall a € A, so (1 —m)(A) =0 and (1 —x) € Ey. Now for any
e E, wehave 0 =1-0 = ((1 —7m)+m)f = (1 — )0 + 76, where 70 € E;
and (1 — )0 € E5 since Ey and E5 are two sided ideals of E.

(5) For any 61,62 € Ey, we have 0102(V) < ;A < (0).

Importantly, (5) means our map T'ry restricted to Ey is linear (by Ty).

Proposition 8. Suppose that either ¢ € Ey and ¢ € E, or ¢ € Ey and v € Es.
Then, [p,¥] = ¢ — o € Eo and Try([p,]) = 0.

Proof. In either case, pi, 1o, and [p, )] are elements of the finite potent subspace

FEy, and so we have

Try (oY — o) = Try(py) — Try(he) =0 (by Ty and Ts).

3. ABSTRACT RESIDUES

Using these basic properties of infinite traces, we now define a residue map

in a certain algebraic setting, to be used later for the curves we are interested
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in. Throughout this section, K denotes a commutative k-algebra with identity,
V denotes a K-module (which is also a k-vector space in the obvious way), and A
denotes a k-subspace of V satisfying fA < A for all f € K. For any element f € K|
multiplication by f induces a k-endomorphism of V. Moreover, fA < A, so the k-
endomorphism induced by f is in fact in E. This gives a (possibly non-injective)
homomorphism of k-algebras K — FE. In the rest of this thesis we don’t distinguish
between f € K and the induced endomorphism f € E.

Let ¢ denote the K-linear map
Koy K — Qs f®g— fdg,

which is surjective with kernel generated as a K-module by {f ® gh — fg®@ h —
fheglf.g,h € K}.

3.1. Definition of residue. :
The following lemma gives the definition of the abstract residue, and shows that

it is well-defined.
Lemma 14. With K, k, V, A as above, there is a unique k-linear map
res : Q}(/k — k,
such that for any f,g € K

res\, (fdg) = Try([f1,91])

for any f1,91 € E satisfying
i f= fi(modEy) and g = ¢g1(modE»)
ii: f1 € Fy or g1 € FEy

Proof. Given any f,g € K we can write f = f1+f2, g = g1+¢2 since E = E1+F», so
resY (fdg) is meaningful for all f, g € K. Moreover, we can always pick both f; and
g1 from E;. Suppose f7, g} is any other pair satisfying (i) and (ii), say with f] € Ej.
Then fi — fi € Eo, so Try([f1 = f1,01]) = 0. Since [f1,91], [f1 = f1,91] € Eo, we
have Trv ([f1,91]) = Trv([f1,91]) by Ty. Likewise, [f1,91 — ¢1] € Eo and its trace
is 0, so Try([f1,91]) = Trv([f1,01]). Thus Try([f1,91]) does not depend on the
choice of f; and g;.

Given f1, ¢1 satisfying (i) and (ii), we have [f1,¢1] € E1 and

fig1 —g1f1 = [f, g] = 0(mod E»)
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since K is commutative. Hence [f1,¢91] € Eo. So, by Ty,

Trv([fi,(g+hh]) = Trv([f1, 01 + h]) = Trv([f1, 01]) + Trv([f1, ha]).

Thus the map K x K — k defined by (f,g) — Trv([f1,91]) is k-bilinear, and so
induces the k-linear map r : K @, K — k, r(f ® g) = Trv([f1, g1])-

Now, all that remains is to show that r factors through the map ¢: K ®; K —
Q}{/k. Then res!, will be the factoring map Q}{/k — k. The uniqueness of resY is
immediate, since c is surjective and res} o c = r.

Indeed, r vanishes on the kernel of c:

r(fegh—fg@h—fheg) =r(f@gh)—r(fg@h)—r(fheg) = Trv([fi, (gh)1])—
Try ([(f9)1, a])=Trv ([(FR)1, 1)) = Tev ([f1, g1ha])=Trv ([frgr, ) =Trv ([f1h1, 1])
(where the pair ((fg)1 = fig1, h1) satisfies (i) and (ii) once we choose the appro-
priate f1,¢91,h1 € E1). By Ty, this last quantity equals Try ([f1, 91h1] — [f191, h1] —

[fih1,91]) = Try(0) = 0. 0

3.2. A lemma for calculating residues. Of course, the definition of the previous
subsection is difficult to use in practice, as it involves traces on infinite dimensional
vector spaces. The following lemma expresses the residue of some fixed element as
a finite trace (on a vector space that is determined by the fixed element we want
to evaluate the residue at).

Let f, g be fixed elements of K.

Let

B=gA+A (< A)

C=Bnf'(A)N(fg)'(A) = {ve B|fve Aand (fg)v € A},

and suppose w: A+ fA+ fgA — A is a k-linear projection onto A.
Then,

i: dim(B/C) is finite

ii: resl (fdg) =Trp,c([rf,9])

Proof. Extend 7 to a projection of all of V onto A (eg. pick a basis B for A+ fA+
fgA, extend it to a basis for V; then send every base element not in % to 0 and
every e € B to w(e)). Then nf € Fy, and nf = f(modFEs) since (m — 1) € E3 and
Es is an ideal of E. Hence res’ (fdg) = Try ([rf, g]) by definition.
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For any ¢ € C, f(c), fg(c) € A, so

[mf,gle=mfg(c) — grf(c) = fg(c) —gf(c) =0€C

SO7 by T2a

Try ([ f, 9]) = Trysc([n f, g]) + Tro([nf, g]) = Tryv (7 f, g])-

Also, [7f,g](V) C B. Applying T, once more,

Try,c(Inf, g]) = Tre,c([nf, g]) + Trevicy ey (T f, g]) = Trec(n f, g])-

To prove dim(B/C) is finite it suffices to show dim(A/A N f~1AN (fg)tA) is
finite, since B = A+ gA C A+ W for some finite dimensional subspace W of V.
As AN f~tAN(gf) 1A is a k-subspace of A, we can write A = A'@(ANf1AN
(gf)~tA). For each 0 # a’ € A’, we either have fa' ¢ A or gfd’ ¢ A.

Now, suppose we had an infinite k-basis e1,... for A’. Then, we either have
fei ¢ Aor gfe; ¢ A (or both) for infinitely many i. Assume without loss of
generality that fe, ¢ A for infinitely many i. We can once again decompose A
as A" @(ANf1A) with A” having an infinite basis e;,... . As fa” € A (with
a’ € A”) if and only if " = 0, we see that f is injective on A", the vectors feq, ...
are linearly independent, and that the k-span of feq, ... intersects A at 0 only. This

contradicts fA < A, so A’ must be finite dimensional. O

3.3. Some properties of res!,. Having established a way to calculate the abstract
residue, we now prove some basic properties. All of these will come in handy in the

next section, when we work with residues on curves.

(R1). it fACV' CV and KV' =V’ then resy = res, .

ii: If A~ A’, then res', = resY,.

Proof. i: For f,g € K, resY (fdg) = Trg/c([nf,g]) = resxl(fdg) by applying
the lemma above twice.
ii: E, Ey, E1, E> depend only on the equivalance class of A, and by definition

res| depends only on V and these subspaces of End(V).

Thanks to (R1), from now on we will usually omit the V on res);.

(R2). If fA+ fgA+ fg?>A C A, then res,(fdg) =0
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Proof. Let b=a-+a’ € B. Then fb= fa+ fga’' € Aand fgb= fga+ fg?a’ € A, so
be BNf~HA)N(fg) ' (A) = C. Hence B = C and res ,(fdg) = Trg,c([rf,g]) =
0. (]

In particular, res ,(fdg) = 0 if fA C A and gA C A. If A is a K-submodule of
V, then res is identically 0.

The following two properties hint at an alternate definition of the residue, to be
seen in the next section. Let R be a discrete valuation ring that is also complete,
K its field of fractions, and ¢ a fixed uniformizer of R. Then, given some f € K,
we can write it in the form of a Laurent series in the variable g. Loosely speaking,
in the next section we will apply the two following properties in a situation like this
and see that the residue of f equals the coefficient of the —1*" term (much like in

complex analysis).

(R3). Let g € K. Then resy(g™dg) =0 for all n > 0; and for all n < —2 in case

g is invertible in K. In particular, res,(dg) =0 for all g € K.

Proof. Choose g1 € Fj satisfying g1 = g(mod E») (eg. let g1 = mg = (7 —1)g + g).
Note that ¢} = ¢"(mod Ey) for n > 0. Then res ,(¢9"dg) = Tryv ([¢}, ¢1]) = 0.
If g is invertible we have 0 = d1 = d(gg™!) = gdg~' + g~ 'dg, i.e. —gdg=! = g 'dg.
Then,

97" g =g g dg) = 97" (—g)dg ™ = —(g7)"dg ™,
whose residue is 0 for n > 0 by the first part of the statement. O
(R4). If g is invertible in K, and h € K is such that hA C A, then res,(hg~'dg) =

Trascanga)(h) — Trga;canga)(h). In particular, if g is invertible and gA C A, then
res, (g dg) = dim(A/gA).

Proof. Let f = hg='(= ¢g~'h) and let B, C be as in the lemma above. For a

projection 7 of V onto A, we have
res (fdg) = Trp/c([nf,g]) = Trpsc(mfg — grf)
= Trg,c(mh — grg 'h)
= Trg/c(mh — m1h) (71 some projection of V onto gA)

= Trp/c(mh) — Trp/c(mih)
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Note that wh and w1 h are both endomorphism of B/C, so that the last line of the
equality follows from linearity of the trace on the finite dimensional vector space
B/C.

Since mh(C) C ANgA C C, we have

Trpjanga(mh) = Trg,c(mh) + Tre/anga(mh) = Trpc(mh) by Ts.

In the exact same way,

Trp,c(mih) = Trasgasanga(mih).

Hence,

Trg,c(mh) — Trg,c(mih) = Trajgasanga(mh) — Trargasanga(mih)
=Tra/anga(mh) — Trgasanga(mih) by Ty
=Trajanga(h) — Trga,anga(h)

Now suppose gA C A and let h =1 in the above. Then,
resy (fdg) = Trasga(1) — Tryasga(l) = Trasga(l) = dimy(A4/gA).

O

The following property -with an easy but arduous proof- is the key tool for

evaluating an important residue in the next section.

(R5). Suppose B is another k-subspace of V satisfying fB < B for all f € K.
Then,
f(A+B) <A+ B,f(ANB)<ANB fordl fekK,

and we have

TeSA + 1resp = resa+p + resanp

Proof. The first two statements follow immediately from the properties of <.
To prove the last statement, we first construct projection maps of V onto A, B,
A+B and AN B satisfying 74 + 75 = Ta4+B + TanB-

We have ANB C A C A+ B C V, which we will use to construct an appropriate
basis for V. Let B be a basis for ANB. Let B4 and B g be extensions of B to A and
B respectively. Then B 4 U is a basis for A+B. Finally, extend this to a basis By

of V. Now let m4 : V — A be the projection map that takes every basis element in
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B 4 to itself and takes By —B 4 to 0, and so on. Clearly, 14 +7p = Ta+B+TanB-

We have

resa(fdg) —resaip(fdg) = Trv([raf,g]) — Trv([mat st g])-

Claim. ¢1 = [waf,g] and ¢3 = [rat+Bf,g] generate a finite potent subspace of
End(V):

Proof. it 91(V) = (magf — graf)(V) C (mag —gra)(V) CA+gA < A<
A+ B
Similarly, ¢2(V) < A+ B.
ii: ) (A+B)< i (V)< A
¢2(A+ B) = (ma+pg — gmatp)f(A+ B) < (Taypg — gmayn)(A+ B) =
(ma+B9—9)(A+B) = (tarp—1)g(A+B) < (ma+p—1)(A+B) = (0) < A
ili: ¢1(A) < (mag —gma)A = (mag —g)A= (74 —1)gA < (74 —1)A = (0)
$2(A) < $2(A+ B) < (0)
[l

Substituting manp and 7p for m4 and w44 p respectively in the proof above, we
see that [rpf,g] and [mansf, g] also generate a finite potent subspace of End(V).

By the linearity of Try on finite potent subspaces, we have for any f,g € K,

resa(fdg) — resayn(fdg) = Trv([raf,g]) — Trv ([rassf, g])
= Trv([(ma — Tas8)f,9])
= Try ([(ranB — 78)f, 9])
= Trv([ransf,9]) = Trv([7s £, 9])

=resanp(fdg) —resp(fdg)

O

The final property we will prove is useful for calculating the residue in a simple
case, and then passing to a more general curve by a base extension. A corollary of
this result is how Serre generalizes the residue theorem, after manually calculating

the residue in the simple case of P}.
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(R6). Let K’ be a commutative K-algebra which is a free K-module of finite rank.
Let V' =K' @V and A’ =%, 2, @ A =>"{x; @ a;la; € A} C V' for a K-basis
{z1,...,2,} of K'. Then,
i: ffTA < A foradl f' € K'.
ii: The ~-equivalance class of A’ depends only on that of A, not on the choice
of the basis {x;}, and

iii: resa/(f'dg) = resa((Trg /i f')dg) for any f' € K, g€ K.

Proof. We can write f' = hyx1+...+ hy,x, where h; € K for each i. Also, for each

j, we have

f/acj =7T1T1+ ...+ ThjiTn with ri; € K.

Then,
f’(E $i®ai)=§ f/$i®ai:E ((E rijTi) ® a;)
i i j

i

= ZZ(%‘ ®1ija;)
= ij ® (Zrijai)

Since r;; A < A for each r;;, there is a finite dimensional subspace W of V satisfying
rijA C© A+ W for each 7;;. Hence, > 2; ® (32, mijai) € >0, @ (A+ W) =
DT @A+ Y ;W < Yr; A = A (note that Y x; @ Wois a finite
dimensional k-vector space with basis {z; ® e} as j =1,...,n and e runs through
the elements of a basis for W). This concludes the proof of (i).
(i1): Let {z;} be another basis for K’ over K. For each j, write z; = ry;z1 + ... +
TnjTn. Then we have A" =37,z ® A= 3" 2;® (32, 1:;4) < A’ as in the proof of
(i). By symmetry, we also have A’ < A”, showing that the ~-equivalance class of A’
does not depend on the choice of basis. On the other hand, suppose B is another
subspace of V satisfying A ~ B. Then B’ =) .2, @ BC >, 2; @ (A+ W) =
YTt @A+, @ W < A’ Again by symmetry A’ ~ B’, showing that A’
depends only on the equivalance class of A and not A itself.
(iii)

Note that K/ @ V & K" ®@ V = V"™ as K-modules, where the first isomorphism

is determined by the choice of basis {z;}. Thus, let us denote elements of V' by
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n-tuples of elements of V', with corresponding to >, z; ® v;. Now, given

Un
a k-endomorphism ¢ of V', we can decompose it as ¢ = p1 + ... + ¢,, where ¢,

equals ¢ on z; ® V and 0 on x; ® V for ¢ # j. Then, let ¢;; = m; o ;. Thus,

J J i

el = w(z 2@ v) =Y (il @) =D (D ijla; ©v))).

By abuse of notation, let ¢;; also denote the k-endomorphism of V taking v to

v if pii(x; ® v) = x; @ v'. Thus, we can write

U1 ©11 . . P1n V1

On the other hand, any such n x n matrix of k-endomorphisms of V defines a

k-endomorphism of V':

O11 e e P1p V1

.................... L Z(Z £ ® sy (0) = th 8 01 (13)

.................... . i

Suppose F is a finite potent subspace of End(V). Then, nxn-matrices with entries
from F form a finite potent subspace F’ of End(V’). Given M = ¢ € F’, write
M = M'+M;+M, with M’ diagonal, and M, lower triangular, My upper triangular

with 0’s on the diagonal. Since F” is finite potent, we have (even though the notation
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looks like the trace on the matrices, we are still in the infinite dimensional setting)

TI“V/(M) = TIV/(M/) + TI‘V/ (M1) + TYV/(MQ)

= Try/(M') (since My and M, are nilpotent)

o1 0 0 0 0 0 O
0 0 O 0 0 0 O
= TI'V/ —|— .. + TI'V/
0 0 0 o0 0 0 ©Ynn
0 0 0
0 wi ... 0
Next, let us relate Try/ with Try (¢i;)-
0 0 0
p11 0 0
0 O 0

Try/(¢h) = Trvejzor, v (9h) + Troeer, v (#;)
= T‘I.$1®<P{1V((p;z)
= Tror v (i)
Hence, Try/(M') = 377 Trorv (i) = Y1 Trv (i)
Write f'z; = >0, fijz; with f;; € K. Let 7 : V. — V be a k-linear projec-

tion, and let ' : V/ — A’ be the k-linear projection defined by 7(}_ z; ® v;) =
S a; @ wu;.

Before finally proving our result, we consider what the ij" entry of the matrix

([f'7, g]) representing [f'n’, g] is.

(f'7"Y (o1, svn) = () (o1, .. o) = {fig D (or, ... Toy)
= ({fiymh (v, on)
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Also, (g) is just the diagonal matrix with all its nonzero entries equal to g, since

g € K. Hence,

(=", gl) = {fismg}) — Qafism}) = {Ufigm, g1})-

Thus,
resxll (f'dg) = Try:([f'', g])

= Trv([f'7, glus)

i=1

= ZTTV([fiiWag])

= Trv([z fum,g]) (the [fim,g] form a finite potent subspace)
i=1

= ’I‘rv([(TTK'/Kf/>7Tag])

= resX((TrK//Kf/)dg)

4. ALGEBRAIC CURVES

Finally, we apply our results about abstract residues to curves. This section
is the gist of the thesis, bringing to conclusion Tate’s elegant proof of the residue
theorem. The actual use of the residue theorem for duality, which is similar in the
accounts of Tate and Serre, is left to the next section.

Throughout this section, X denotes a connected regular scheme of dimension 1,
proper over a ground field k and K = K(X) denotes its function field (see Section{I.3]

for some standard implications of these hypotheses).

4.1. Residues on the curve X. For each closed point p of X, let A, be the
completion of O, and let K, be the field of fractions of A,. Then K, is equal to
the completion of K with respect to the valuation defined by O, (Lemma.

Now, for any closed point p of X, we define
res, : Qg ik — k,resy(fdg) = resf::(fdg).

This definition makes sense: For any generator ¢, of the maximal ideal of A,,

Ay /tpAp = k(p) and so is finite dimensional as a k-vector space. This can be seen
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by taking an affine neighorbood U = SpecR of p, with R a finitely generated k-
algebra. Then k(p) = R/m,, is a field that is finitely generated as a k-algebra, so
that it is algebraic over k. Being finitely generated and algebraic over k, k(p) is
finite dimensional over k.

Let ¢ : th Ap/titt A, — T A, /tiF2 A, be the k vector space homomorphism
induced by multiplication by ¢, (in K,). Indeed, ¢ is an isomorphism because if
titla € thH2 Ay, then tht! (a —t,a’) = 0 in A, for some o’ € A, so that a = at), and
tha € tht1A,. Then, for any n € Z,t," A, ~ t," 1 A since (t," Ap+t," 1 Ay) /1, Ay
is 0 and (t,"A, +t," " A,)/t," 1A, = t,"/t," T A, is finite dimensional by induc-
tion. Thus, A, ~t5 A, for all n € Z.

Now, given f € K, we can write f = {ju for some unit u of A,. Hence, for
fe Ky, fA, =t," A, for some n, and so fA, < A,. Thus resf: is defined.

The following theorem shows that, at a k-rational point, the residue can be
expressed very neatly. It provides the bridge between the residue definitions of

Serre and Tate (see also the remark following the theorem).

Theorem 10. Let p be a k-rational point of X (i.e. let p be such that O,/m, = k).

Then, Ap = k[[t]] and Kp = k(). If f =3, cat” and g =73 . but!
are elements of K (or K,,), then res,(fdg) equals the coefficient of t=* in f(t)g'(t)

(: Z,LL—O—VZO /”LaVb,u)'

Proof. The first statement is just Claim{I]

Let v/, 1/ be the smallest values that v and p take in the above sums. Write

—2u/ 0o
f = fl + f2 = Z (aytu) + Z (auty)-
v>3>—o00 v=—2u'+1

Then, f2A, + f2gA, + f29%A, C Ay, so by (R2), resfi(fgdg) = 0. Hence,
res,(fdg) = res,(fidg) = —res,(gdfi) (by the definition of abstract residues)

= —resy(g1df1)

= res,(f1dg1),

where f; and ¢; have only finitely many non-zero coefficients.

So we can assume that f and g have only finitely many non-zero terms, and then

fdg = f(t)g'(t)dt € Qg 1.
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By the k-linearity of resﬁf;’, and (R3), we have

resyy” (f(t)g' (t)dt) = res,y” (c_yt™')dt = c_yres)y” (t~"dt)
= c,ldimk (Ap/tAp) by R4

=c_1 (since p is a k-rational point)
O

Remark 5. In (IL7, [Ser]), Serre works over an algebraically closed ground field
k, in which case all closed points are k-rational, and defines res,(fdg) to be the
coefficient of ¢~1, which he later has to prove to be independent of the choice of the
uniformizing parameter t of A,. The fact that the residue does not depend on the

choice of the parameter t is built into our definition.

Next, we give a convenient formula for summing up residues at various closed

points of X, and finally the residue theorem follows as a simple corollary.

Theorem 11. Let S be a subset of the closed points of X. Put
0S)=(0,CK
peS

Then for w € Qg p,
Z resy(w) = resg(s)(w).

peS

Corollary 3. (Residue theorem)
Z resp(w) =0
p closed in X
Proof of Corollary. Since X is projective over k, I'(X, Ox) is finite dimensional as
a k-vector space. Since X is an integral scheme, the set of elements of K(X) that
are defined globally is just the set of elements that are in every local ring of X, i.e.

O(X). Hence O(X) ~ (0), and we have resg(X) =0 by (Ry). O

Proof of Theorem. Define

As =[] 4

pES

Vs = {(fp)pes|fp € Ap for almost all p} C H K,
peS
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The case S = 0) is trivially true: 3° _sres,(w) =0 = resk = resg(s).
We have K — Vg defined by f + (f). This is well defined, as f € A, for all but
finitely many p € S: K N A, = O,, with the intersection taken in K, so it suffices
to show f € O, for all but finitely many p € S. Let U be an open subset of X on
which f is defined. Then f ¢ O, = p € X — U, but X — U is finite.

Noting Ag C Vg and K NAg ={f € K|f € A, for all p € S} = O(S), we have

the following picture:

(0)

This translates into our notation for abstract residues with:
Ve~ VA~ K, B~ Ag

We let Vg have the obvious K-module structure. For f € K, fK C K and
fAs = HpES fA, C erop Ap % ero,, fAp. Since there are only finitely many
p € S for which f ¢ Op, and fA, < A, we have fAg < Ag.
By (R5), we have:

resxss +resys = resgs(s) + resXSJrAS.

But res}? = 0 by (Ry), and resXﬂAS =0 by (Ry), since Vs ~ (K + Ag) (Vs/(K +
Ag) is finite dimensional by Corollary{4] below). Thus,

Vs _ Vs
I'GSAS = reso(s)

= resg(s) by (Ry)

It only remains to show resxss (W) = > estesp(w). Fix w = fdg € Qgyp; let

S '={peS|f¢0O,org¢O,} be the set of polesof for g, and let T =5 — 5".
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Since S’ is finite, we have

Vo=Vrx[[peSK

and Ag = Ar x [[pe 54,

Forany f € K, f- Ar x {0} < Apr x {0} and f- Ag x {0} < Ag x {0}, so we can

apply (R5) to get
res) (fdg) + resys (fdg) = resis , ,_, (fdg) +resis 4, (fdg).

Obviously Ar + Asr = Ag, Ar N Ag: = 0, and resA =0 (since fAr C Ap and
gAr C Ar). Hence,

res)® (fdg) = ves\® (fdg) = res (fdg)

ves){? (fdg) +res'y? (fdg) — resy™ (fdg) by (Rs)

= resA: (fdg) + resASS/:{{‘;}} (fdg)

Vs i4
=res,(fdg) +res,,"\" (fdg)

Z res, (fdg)

qeSs’

= Zresp(fdg) (for p ¢ S’, res,(fdg) = 0 since fA,,gA, C Ay)
peS

O

To show that Vs /(K + Ag) is indeed finite dimensional, we prove a slightly more
general lemma that we will need later. Let V = Vx (where X stands for all closed

points of X). Then, define

V(D) ={(fp) € Vl]ord, f, > —ord, D for all p € X},
and the invertible O x-module Ox (D) by

[Ox(D)|(U) = {f € Klvg(f) = —vg(D) for all g € U}
for any open subset U of X, as before (see Thm.-@.

Lemma 15. H'(X,Ox (D)) = V/(K + V(D))
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Proof. Let G denote the cokernel of Ox (D) — K(X). Consider the exact sequence

0—-0x(D)— K(X)—G—0,

which induces the long exact sequence

0 — H°(X,0x(D)) — H(X,K (X)) — H°(X,G)

— HY(X,0x(D)) - HY(X,K(X)) — ...

Since X is irreducible, H%(X, K(X)) = K(X). On an irreducible scheme any

constant sheaf is flasque, and hence has zero homology groups in dimensions greater

than 0, so HY(X, K(X)) =0 (Lemma. Hence
HY(X,0x(D)) = H*(X,G)/K(X).

Ox (D), is just the sub-module of K of elements with valuation greater than

or equal to —ord, (D). So,
P, = P K (x)/0x(D), = V/V(D),

and all that remains to do is to show that the global sections of G is a direct sum of
its stalks at its closed points. Let G}, be the skyscraper sheaf defined by G, (U) =0
ifpg U and G, =G, if pe U. We first define a map ¢, : G, — G:

Given g, € (G,)p = Gy, gp comes from some section g’ € G(U), whose restriction
to some smaller neighorhood V' of p must be an element of K(X)/[Ox(D)](V’).
Let g € K(X) be a representative for this element. Let V be the subset of V'
obtained by throwing away all points where D is nonzero and all poles of g, and
adding back p if necessary (both sets that are thrown away are finite, so V is open).
Now, for g, € G,(W), ¥;,(gp) is the element of G(W') whose restriction to V ()W
is g, and restriction to W — {p} is 0.

Next, taking the direct sum of the v, we have a map
ba -9
P

that is obviously an isomorphism at each stalk. Hence I'(X, G) = @, G, as wanted.
O

Corollary 4. For any subset S of the closed points of X, Vs/(K + Ag) is finite

dimensional.
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Proof. The projection Vx /(K + Ax) — Vs/(K + Ag) is surjective, so it suffices

to show this for S = X. But Vx /(K + Ax) = H!(X,Ox) by taking D=0 in the

lemma. Since X is projective over k, H'(X, Ox) is finite dimensional. (]

The final theorem of this section is the same result Serre utilizes to generalize
(by means of base extensions) his manual calculation of residues on the projective

line ( [Ser], Chpt. 2, Sect. 3).

Theorem 12. Let X' — X be a surjective morphism inducing the inclusion of
function fields K(X) = K — K' = K(X').
i: For ffe K',ge K, andpe X,

Z resy (f'dg) = resy((Tri /x f)dg).

p'—p

ii: Forp' € X" mappingtop € X, f' € K,, and g € K,
resy (f'dg) = resp((TrK;/Kpf’)dg).

Proof. i:

Z res, (f'dg) = resg;,Hp O, (f'dg)
p'—=p

/

O, (f'dg) by Lemma-g]

R(f'dg)

K
res
ﬂ {Op/ dominates Oyp}
’

res
ﬂ {R val. ring. dominating Op}

= resgl (f'dg) (with B the integral closure of O, in K’ by Thm.
= res¢s, ((Trgryc f')dg) by (R6)

Here is how we were able to apply (R6) in the last line: B is a finitely gen-
erated free O, —module (finitely generated since it is the integral closure of
the finitely generated k-algebra O,, and free since it is torsion free over the
PID O,), say z1, ..., x, is an O, —basis for B. Since localization commutes
with taking the integral closure (Lemma, K -B=K', and z1,...,2, is
also a K-basis for K’ . Thus in the notation of (Rs), A’ =) .2, ® O, = B
and V' = K'@xg K = K'.

ii: This follows exactly as in (i), since the integral closure of A, in K, is just

Al
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This concludes our treatment of residues. The next section is devoted to the
application of these results to exhibit an explicit dualizing sheaf in the case of

smooth curves.

5. DuALITY

In this section, we first construct a natural ”dualizing sheaf” Jx, for a regular
curve proper over an arbitrary field k. We show that it is an invertible sheaf, and
has the desired properties. However, the dualizing sheaf is somewhat contrived, is
not a familiar object at all. So, we employ the residue theorem to show that the
dualizing sheaf is actually the same as {2x/; in the case of smooth curves.

To begin with, let J(D) = {\ € HOM(V,k)IN(K + V(D)) = HOM(V/(K +
V(D)),k) (= H(X,0x(D))" by Lemmall5).

We have D < D' = V(D) C V(D') = J(D') C J(D). Given any two divisors,
there is another divisor that is smaller than both of them, so |J,(J(D)) as D runs
through all divisors D of (X,0x) is a k-module. Let Jg/,, = Up(J(D)), and
Jp = {X € Jk/|A(Ap) = 0}. Finally, for each open U C X, define Jx/,(U) =
ﬂpeU Jp € Jik/k- The stalk of Jy/;, at each closed point p is J,, and its generic
stalk is Jg/g-

Now, Jx/i has a natural Ox — module structure given by f - A(v) = A(f - v),
where v € V, f € Ox(U), and X € Jx;(U). Since f € Ox(U), f-A, C A,
and so f - A(A,) =0 for all p € U. Also, f(K + V(D)) = K+ V(D — (f)), so
f-AeJ(D—(f)). Hence, f- X e Jx;(U).

That Jx/;. has the dualizing property is a simple consequence of Lemma

H(X, Jx/u(—=D)) = H*(X, Jx, ® Ox(—=D)) = HOM(V/(K + V(D),k))

~ HY(X,0x(D))Y

The following lemma will help prove that Jx/ is an invertible sheaf.

Lemma 16. Jx/; is coherent.

Proof. Let U = SpecA be some open affine subset of X, and M = Jx/,(U). We
show that for any distinguished open subset D(f) of SpecA Jx,,(D(f)) = My =

Ay M (where the last term is an Ay submodule of Jg /).
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If X € Jx/i(D(f)), then A(A,) = 0 for all p € U satisfying f ¢ m,0O,. There are
finitely many points in U — D(f), and v,(f) > 0 for each ¢ € U — D(f). Now, since
A(V(D)) = 0 for some divisor D, we have A(¢,”7A,) = 0 for some integer n, for
each ¢. Let n be the maximum of these n,. Then f"A, C t,"A, C t,"1 A, for each
q, so that f™ - X(A4,) = M(f"A4y) = 0. Hence Jx/,(D(f)) € AyM. The converse

follows immediately, since M C Jx i (D(f)) and Jx/;, is an Ox-module. O

Now that we know it is coherent, showing Jy,; to be invertible is essentially a
matter of considering dimensions. This is where the rudimentary Riemann-Roch

theorem (Prop.«@ plays its part.

Proposition 9. Jx/;, is an invertible Ox-module.

Proof. It suffices to show that J, is a free Op-module of rank 1 for each point p.
We start with the generic stalk showing dimg (Jk /i) = 1, and the rest will follow
easily.
Step 1. dimp(Jg /) < 1.

We suppose «, o’ are two linearly independent elements of Jx 5, and reach a con-
tradiction. First, we must have «,o’ € J(D) for some D, since given any two
divisors Dy, Dy we can always find some divisor D smaller than both of them, so
that J(Dy) C J(D) and J(D3) C J(D). Let A, be a divisor of degree n.

Given f € HY(X,0x(A,)), consider f-a € Jg ;. If 2 € V(D+(f))(or equivalently
fx e V(D)), we have 0 = o fz) = f-a(z),so f-a € J(D+(f)). But —A, < (f),

so f-a€ J(D—A,). Now, we have a mapping
HO(X,0x(A,)) x H(X,0x(An)) — J(D = Ay), (f,9) = fa+ ga’

This map is injective by the assumption that «, o’ are linearly independent over

K, and we must have
dimpJ(D — A,) > 2-1%(X,0x(An))  (¥)

By Lemma dimyJ(D—A,) = h'(Ox(D—A,)). By Prop.-@, this last quantity
equals h°(Ox (D — A,)) + h'(Ox) —deg(D — A,,) — 1. If deg(D — A,,) is less than
0, then H°(X,Ox (D — A,)) = 0 (Corollary to Prop.«@, so for n large enough the
left hand side of (*) equals deg(A,,) +co = n+co (where ¢ = h'(Ox) —deg(D) — 1

does not depend on n).
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On the other hand h°(Ox(A,)) = h1(Ox(A,)) + deg(A,,) + c1, where ¢ = 1 —
h'(Ox) does not depend on n. But then the right hand side of (*) is at least
2n + 2c¢q, so that by (*) n 4+ ¢o > 2n 4 2¢1, which cannot be true for very large n.

Step 2. dimg Jg i is exactly 1.
It suffices to exhibit a nonzero element of V/(V(D) 4+ K) for some divisor D, or
equivalently that V(D) 4+ K # V. Let D = —2 - p for some closed point p and
take (fy) € V with f; = 1 for ¢ = p and f; = 0 for ¢ # p. Suppose we can
write (fy) = (gq) + h with (g4) € V(D) and h € K. v,(g, + h) = vp(fp) = 1 and
vp(gp) > 2, so we must have v,(h) = 1. But as we noted before the degree of the
principal divisor defined by h must be 0, so we must have vq(h) < 0 for some g.
Then v,(gq + h) < 0 < vy(fy), contradicting (f,) = (g4) + h-

Step 8. For each closed point p, J,, is a free Ox , module of rank 1.
It will suffice to show J, is generated by a single element over Ox , (because
Oxp C K, J, C Jgp, and Jg ;. is a K-vector space). Let A € J, —t,.J,. For any
¢ € Jp, we have f -\ = ¢ for some f € K, since Jg/; is a 1-dimensional K-vector
space. Suppose f & Op. Thent, 1A, C fA, and 0 = p(4,) = f-MNA,) = A(fA,),
so that A\(t, '4,) = 0. But then ¢, - A € J,, which is a contradiction.

U

Remark 6. Step-2 of the proof of the proposition is in line with Chevalley’s approach
in ([Che], Chpt.2). The question he investigates is: given x, € K and integers n,
for each valuation ring R, of K/k, when can we find x € K satisfying v,(z — z,) >
np for each p. Then he restricts to the case where v,z, > 0 for all but finitely
many p and n, = 0 for all but finitely many p, so that the question becomes
about V/(V (D) + K). Then using purely algebraic arguements he investigates the
dimension of V/(V(D)+ K) over k and thereby proves a form of the Riemann-Roch
theorem.

The fact that X is proper is essential to Step-2. If we had X = SpecA for
a Dedekind domain A for instance, the approximation lemma assures that given
finitely many x, € A, and integers n,, one can find € K such that v,(x—2z,) > n,
for each p and vg(z) > 0 for all other prime ideals of A ([Ser2], p.12), which shows
that V/(K + V(D)) = 0, making Jg ;, trivial. In the proper case a similar result
holds, but without the guarantee vg(x) > 0 ([Chel], Chpt.1, Thm.3), which would
be impossible because of the fact that degz = 0 (see Remark.
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Finally, we can relate Jx /5, with Q; e Consider the canonical map
C: Q}(/k — JK/k
taking w € Q}(/k to the linear map (cw) defined by

(cw)(f) =< f,w >= Z res,(fpw) forall feV.

peX

The image of c is indeed contained in Ji: By Corollary (cw)(K) = 0. Write
w = hdg with h, g € K. Define a divisor D by:

ordy,D = max{vy(h), vp(h) + vp(g), vp(h) + 2v,(g)} for each p

Then v, (fph), v, (fohg), v, (fyhg?) are all nonnegative, so (f,h+ fyhg+ fyhg*)A, C
Ay, and by (Rz) resa,(fphdg) = 0 for all p. Hence (cw)(K + V(D)) = 0, and
(cw) € Jg k-

Note that we can easily glue morphisms that extend this homomorphism to whole
open sets of X: If ¢; and ¢o are homomorphisms on U; and U that agree at the
generic stalk, then ¢1 — @2y, n v, induces the 0 map on the generic stalk, so that
o1lv, v, — w2|lu, v, is itself the 0 map.

Now, we show that ¢ can be extended to a morphism on any open affine sub-
set, say U = SpecR. Q5 lv = (2 ),)~, so we only need to give an R-module
homomorphism Q}%/k — Jx/(U) = {\ € Jg/|M(Ap) = Oforall p € U} that
agrees with c¢. The restriction of ¢ to Q}%/k works: For w = hdg € Q}{/k and
(f) € A, (ie. f; =0for ¢ #pand f, € A,), we have (cw)(f) = res,(fw) =0
(fphAp, frgA, C Ay, as h and g are both regular at p).

In the case of smooth curves the canonical map c is actually an isomorphism, as

the next theorem asserts.

Theorem 13. Suppose X is smooth over k (the residue fields k(p) at the closed
points are separable over k and K(X) is separably generated over k). Then the

. . 1 . . .
homomorphism c : QX/,~C — Jxyk is an isomorphism.

Proof. At any closed point p, J, and Q} are free Op-modules of rank 1, with Q}
generated by dt, for some uniformizer ¢, of O, and J, generated by any element not

int,J,. For A\ € J,, A ¢ t,J,ifand only if t,7' X & J,, if and only if A\(¢, 71 A4,) # 0.
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We show that c(dt,) has this property:
A = c(dtp) is defined by
AM(fq)) = Z resg(fqdtq)-

qeX

Let (f,) = ut,~'dt, when ¢ = p, and (f,) = 0 when g # p, where u is some unit of
Ay to be determined. Then,

[C(dtp)]((fq)) = resp(Utp_ldtp) = TIes4, (Utp_ldtp)
=Tra,/a,Ntpa,) W) = Tre, 4, /4,0 t,4,) (W) ((R4))
=Tra, /t,4,) (1) = Trig) p(u)

Now, we can find u € k(p) such that Try(,y,/r(u) # 0 by Lemma (strictly speaking,
the lemma tells us we can find such v’ € k(p) = A,/t,Ap, and then we can pick
any u whose image is u’).

Since Qg and Jg, are 1-dimensional vector spaces and c is nonzero, it is an

isomorphism at the generic point as well. O

Corollary 5. If X/k is smooth (eg. if k is perfect), then for any invertible sheaf

L on X, we have

HY (X, L) = H(X, Q%) @ LY)".
Proof. £ = Ox (D) for some divisor D, and so
HO(Xa Q%{/k ® EV) = HO(Xa JX/k & OX(fD))

= Homy,(V/(K +V(D)), k) = H'(X,0x (D))" = H*(X, L£)¥

6. RIEMANN-ROCH

At this point, we have concluded our main mission. We have proved the residue
theorem using Tate’s elegant method, and then used it to show that the dualizing
sheaf Jx /i is the same thing as the sheaf of differentials for smooth curves.

In finishing, we prove a stronger form of the Riemann-Roch theorem to demon-
strate the power of duality. For some related applications, see ([Har], IV.1).

As before, let X be a regular proper curve over some field k. In addition, let
X be smooth over k. Since {2x/, is an invertible Ox-module, Qx/, = Ox (D)

for some divisor D. It is not necessarily unique, but we call any divisor in its
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equivalance class (in the group DivX divided by the principal divisors of X) a
canonical divisor, and denote it by K. Note that Ox(K) and degK are well-
defined since Ox (K + (f)) =2 Ox(K) ®ox Ox((f)) = Ox(K) ®0, Ox = Ox(K)
and deg((f)) = 0 for any principal divisor (f).

Definition 14. The genus of the curve X is g = h%(Qx/y).
Theorem 14. Let D be a divisor on the curve X. Then,
h(Ox(D)) = h°(Ox (K — D)) = deg(D) + h*(Ox) — g

Proof. Ox(K — D) = Ox(K) ® Ox(=D) = Qx/; ® Ox(=D), and by Corollary{3}
RO (Qx/, ® Ox(—D)) = h'(Ox(D)). Now, the equation we wanted to prove is

equivalent to
h?(Ox(D)) — h'(Ox (D)) = deg(D) + h°(Ox) — g

But g = hO(QX/k) = hO(JX/k) = dimp(Homi(V/(K + V(0)))) = h'(Ox) by

Lemma{I5] so we are reduced to proving

x(Ox (D)) = deg(D) + x(Ox),

which is just Proposition{6} O

Remark 7. In case k is algebraically closed, h°(Ox) = 1, so the equation simplifies

to h(Ox (D)) — h(Ox (K — D)) = deg(D) +1 — g.
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