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Koç University

August, 2010
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ABSTRACT

This study introduces an algorithm, which selects important observations and

variables to estimate SVR models for very large data sets. In this two-stage method-

ology, namely the Row and Column Selection Algorithm, ε-SVR models with L1-norm

regularization are used both for selecting rows and columns. The first stage penalizes

support vector weights to identify few support vectors as important points to include

in the training data set. These support vectors are then used in the second stage to

select the variable subset to be kept in the training data by penalizing the variable

weights. The accuracy of holdout test set of the RBF-SVR models trained on this set

including selected rows with all variables is significantly better than the accuracy of

the same model trained on the benchmark which is the randomly sampled data set

of the same size with all variables and SVMTorch.

The contribution of this thesis is the development of an algorithm which facili-

tates estimating SVR models with very large data sets which are accurate and low

complexity. By using the proposed algorithm, it is possible to select the important

observations and variables and use them for estimation. The experimental results

validate that the resulting training data set works effectively and reduces the number

of variables dramatically while improving the generalization error of the RBF-SVR

models in the presence of redundant variables. Furthermore, we investigate how the

selected points differ from others by analyzing their distribution with respect to their

distance from the prediction line, target values and the input variables of data set.
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This analysis demonstrates that L1-norm ε-SVR provides much more sparse solution

than standard ε-SVR. Further the observations with extreme target values are more

likely to be selected than average observations. Interestingly, in contrast to standard

ε-SVR, the L1-norm ε-SVR support vectors can be located both inside and outside the

ε-tube. Moreover, low multi-collinearity between selected columns gives face validity

variable selection procedure of our algorithm, namely second part of the proposed

algorithm. Lastly, we identify which points are selected with respect to variables’ val-

ues. The result of this analysis indicates that the row and column selection algorithm

select observations based on background knowledge.



ÖZETÇE

Bu çalışmada çok büyük veri setleri için Destek Vektör Regresyon (DVR) mod-

ellinin kurulabilmesini mümkün kılmak için önemli nokta ve değişkenlerini seçen bir

algoritma geliştirilmiştir. İki aşamalı bu yöntemde, yani satır ve sütun seçme algorit-

masında, hem satır hem de sütun seçimininde L1-norm düzenlemeli ε-DVR modelleri

kurulmuştur. İlk aşama, eğitim veri setinin destek vektörlerinin ağırlıklarını ceza-

landırarak veri setinin önemli noktalarından en az sayıda destek vektökterini seçer ve

bu seçilen noktaları yeni eğitim veri setine dahil eder. Seçilen bu destek vektörlerinden

oluşturulan yeni eğitim veri seti daha sonra ikinci aşamada değişken ağırlıklarını ceza-

landırarak eğitim veri setinde tutulacak olan değişken alt küme seçiminde kullanılır.

Seçilen satır ve tüm değişkenleri içeren eğitim veri seti ile çalıştırılıp kurulan

Radyal Tabanlı İşlev (RTI) çekirdekli DVR modellerinin test veri seti üzerindeki

doğruluğu karşılaştırma yapılan yani seçilen satır sayısı kadar satırla tüm değişkenleri

içeren rassal örneklem veri setinden ve SVMTorch algoritması ile oluşturulan mod-

ellerden önemli ölüçüde daha iyi olduğu gözlenmiştir.

Bu tezin katkısı oldukça büyük veri setlerini kullanarak doğru ve düşük karmaşıklık

içeren DVR modellerinin kurulmasını kolaylaştıran bir algoritma geliştirmesidir. Bu

çalışmada önerilen algoritma veri setlerinin önemli gözlem ve değişkenlerini seçip

ve onları tahmin modelinde kullanmayı mümkün kılmıştır. Deneysel sonuçlar satır

ve sütun seçme algoritmasının etkili bir şekilde çalıştığını ve gereksiz değişkenlerin

varlığında değişken sayısını önemli ölüçüde azaltırken RT-DVR modellerinin genelleme

hatasını iyileştirdiğini kanıtlamıştır. Bu çalışmada ayrıca seçilen noktaların diğerler

noktalardan nasıl farklı anlayabilmek için seçilen noktaların tahmin çizgisine olan

uzaklıklarına, hedef değere ve veri kümesinin değişkenlerine göre nasıl dağıldıkları



analiz edilmiştir.

Yapılan analizler sonucunda, L1-normlu ε-DVR standart ε-DVR’a göre çok daha

seyrek bir çözüm sunduğunu gözlenmiştir. Ayrıca L1-normlu ε-DVR’de uç noktalar-

daki hedef değerlere sahip olan gözlemlerin seçilmesi ortalama hedef değerlere sahip

olan gözlemlerden daha olasıdır. Standart ε-DVR’nin aksine, L1-normlu ε-DVR al-

goritmasının destek vektörleri ε tüpünün içinde ve dışında olabilir. Bunlara ilaveten,

seçilen sütunlar arasındaki düşük çoklu doğrusal bağıntı algoritmamızın ikinci kısmını

oluşturan değişken seçimi prosedürünün doğru bir şekilde çalıştığını desteklemektedir.

Son olarak, seçilen noktalarla değişken değerleri arasındaki ilişki incenlenmiş ve bu

analizin sonucunda satır ve sütun seçme algoritmasının noktaları seçimini literatürdeki

bazı ön bilgilere dayalı yaptığı gözlenmiştir.



ACKNOWLEDGMENTS

Writing these few lines will be the last thing I will do as a student at Koç Uni-
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Chapter 1

INTRODUCTION

With the rapid growth in size and number of available databases in many areas,

there is an opportunity to use machine learning and statistical models to help the

managerial decision making process. For example companies use forecasting in areas

such as marketing, customer relationship management (CRM), financial planning

which include large amounts of data, to increase their service levels while maintaining

lower cost. To deal with these huge amounts of data, data mining algorithms are

becoming increasingly attractive. Support Vector Regression (SVR) [1], a data mining

algorithm, has been used successfully in many applications. Particularly, the SVR

with the radial basis function (RBF) kernel is very popular, as it offers the ability to

learn a variety of nonlinear relationships.

Support vector machines (SVM), developed by Vapnik [2], construct nonlinear

models like the neural networks. However; due to the structural risk minimization

principle in SVM, SVM differ in conjunction with the ability to generalize and strive to

minimize model complexity. A significant advantage of SVM is that the solution to an

SVM is global and unique. Moreover, the computational complexity of SVM does not

depend on the number of the variables of the data set and SVM gives a sparse solution.

The reason that SVM often outperforms other data mining algorithms is that it is less

prone to overfitting, which constitutes the biggest problem with many data mining

algorithms. The advantages of SVM encourage researchers to use SVM in various
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research fields. In 1996, a new version of SVM for prediction, called Support Vector

Regression (SVR), is proposed by Vapnik et al.[2]. It has been used in time varying

applications successfully. These advantages and accurate results of SVR motivates us

to study on SVR in this thesis. Following section gives a detailed description of SVR

formulation. On the other hand, applying this promising tool to large scale business

problems, with tens of thousands of observations and hundreds of potentially useful

variables, is not straightforward. The memory and time requirements grow with the

square of the number of data points [3] and make it time consuming, if not infeasible.

In this thesis, to address this key problem, we propose the Row and Column Selec-

tion Algorithm to select a small but informative subset from large business data sets to

train SVR models. We select rows and columns; i.e. observations and variables those

are likely to lead to models which generalize and predict well. The algorithm consists

of two steps: 1) Row selection dividing the original data into chunks and identifying

the support vectors from the non-linear SVR model with L1 norm regularization of

the support vector weights to systematically identify the most informative points 2)

Column selection - using the epsilon insensitive linear regression with L1 norm reg-

ularization of the variable weights on this reduced data set to select the informative

variable subset. The resulting data set is used to train the standard ε-SVR model

with RBF kernel. The accuracy of the algorithm is evaluated on the 7 large scale

problems, 6 of which are stock keeping unit (SKU) sales volume prediction problems

and the other one is a median price of house prediction problem and commonly used

to test the accuracy of regression model.

In addition to accuracy evaluation, observations and variables selected by the

Row and Column Selection algorithm to see what makes them different than other

observations and variables to be selected. In order to see the characteristics of selected

rows we explore their geometric positions according to prediction line, constructed in
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the first stage of the algorithm, target values and input variables. Moreover, selected

variables are investigated are checked whether they are independent independence

and consistent or not.

This thesis is organized as follows. In section 2, we provide relevant literature,

section 3 describes the proposed algorithm. The experiments and results are described

in section 4 while section 5 concludes with interpretation of results and future research

opportunities.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Solving business problems with huge amount of data require large memory and time

and some algorithms, such as SVM of SVR, is not suitable since the training com-

plexity of SVM is highly dependent on the size of data. In this thesis, in order to

facilitate SVR models estimation for large data sets, we develop an algorithm which

results in accurate and understandable forecasting models by selecting and using only

the most informative data points and variables to construct SVR model. The relevant

streams of literature for this problem are SVR, sampling methods, variable selection

and specific methods for training large scale SVM and SVR models.

2.2 Support Vector Regression

Suppose that training data is given as {(x1, y1) , (x2, y2) , . . . , (x`, y`)} ⊂ ℵ×<, where

xi is a vector and ℵ denotes the space of the input patterns and yi is the target

value for the corresponding observation i. The goal is to find the best approximation

function that gives the minimum generalization error. For this purpose, at AT&T Bell

Laboratories Vapnik and co-workers [4] developed Support Vector Machines(SVM).

In 1996 Vapnik et al. [2] proposed a version of SVM for regression, namely Support

Vector Regression(SVR), with the idea of finding the flattest function that has at

most ε deviation from actual observations yi for all training data. In other words,
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SVR locates a tube with radius ε around the regression function called the ε-tube and

does not penalize the errors located inside the ε-tube.

In the case of linear functions, the function used in ε-SVR for estimation can be

represented as follow:

f(x) = 〈ω, x〉+ b (2.1)

with ω ∈ ℵ, b ∈ < where 〈., .〉 denotes the dot product in ℵ. As mentioned above,

the main idea behind the SVR is to find the flattest function that approximates given

data with ε precision. In the case of (2.1), flatness means a small ω, which can

measured by the second norm of ω, i.e. ‖ω‖2 =
√
ω1 + ω2 + . . .+ ωd

2
. This kind of

SVR problems are also called as ε-insensitive Support Vector Regression (ε-SVR) [1]

and can be written as convex optimization problem as follows:

min
ω

1

2
‖ω‖2

s.t.yi − 〈ω, xi〉 − b ≤ ε

〈ω, xi〉+ b− yi ≤ ε

(2.2)

.

However, in most cases finding a function that has at most ε deviation from the

actual values for all training data may not be possible and can result with an infeasible

solution. Therefore, one can introduce slack variables (ξi, ξ
∗
i ) to cope with infeasibility
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of this problem and arrive at the formulation stated in Vapnik [5].

min
ω,ξi,ξ∗i

1

2
‖ω‖2 + C

∑̀
i=1

(ξi + ξ∗i )

s.t.yi − 〈ω, xi〉 − b ≤ ε+ ξi i = 1, 2 . . . `

〈ω, xi〉+ b− yi ≤ ε+ ξ∗i i = 1, 2 . . . `

ξi, ξ
∗
i ≥ 0

(2.3)

The constant C in the above formulation represents the trade-off between the

flatness of the model and the amount of tolerated deviations larger than ε while ε

determines the width of the ε-insensitive tube. That is to say that, Equation (2.3)

disregards the errors if they are less than ε but penalizes deviations larger than ε.

Smola and Schölkopf [1] states the optimization problem (2.3) can be solved more

easily in its dual formulation. Moreover, they show that the dual formulation provides

the key for extending SV machine to nonlinear functions. Therefore they use a stan-

dard dualization method utilizing Lagrange multipliers, as described in e.g. [6]. In

the formulation (2.4) L is the Lagrangian and (αi, α
∗
i , ηi, η

∗
i ) are Lagrange multipliers

of each constraints of Equation 2.3.

L =
1

2
ωTω + C

∑̀
i=1

(ξi + ξ∗i )−
∑̀
i=1

αi
(
ε+ ξi − yi + ωTxi + b

)
−
∑̀
i=1

α∗
i

(
ε+ ξ∗i + yi + ωTxi + b

)
+
∑̀
i=1

(ηiξ + η∗i ξ
∗
i )

(2.4)

By using the saddle point condition [7], when the primal objective function is

minimized and the dual is maximized, the partial derivatives of Equation (2.4) with
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respect to (ω, b, ξi, ξ
∗
i ) have to vanish for optimality.

∂bL =
m∑
i=1

(α∗
i − αi) = 0 (2.5)

∂ωL = ω −
m∑
i=1

(α∗
i − αi)xi = 0 (2.6)

∂ξiL = C − αi − ηi = 0 (2.7)

∂ξ∗i L = C − α∗
i − η∗i = 0 (2.8)

where ξ and ξ(∗) are primal variables and (α and α∗, η and η∗ are Lagrangian varaibles.

Substituting Equation (2.5) and (2.7) into L yields the following dual problem.

max
αi,α∗

i

−1

2

∑̀
i=1

(αi − α∗
i ) (αi − α∗

i ) 〈xi, xj〉 − ε
∑̀
i=1

(αi + α∗
i ) +

∑̀
i=1

yi (αi − α∗
i )

s.t.
∑̀
i=1

(αi − α∗
i ) = 0

0 ≤ αi, α
∗
i ≤ C

(2.9)

Smola and Schölkopf [1] rewrite Equation (2.6) and reach the following formula-

tion for ω definition. This is the so-called Support Vector expansion, i.e. ω can be

completely described as a linear combination of the training patterns xi.

ω =
m∑
i=1

(αi − α∗
i )xi (2.10)

and therefore

f(x) =
m∑
i=1

(αi − α∗
i ) 〈xi, x〉+ b (2.11)

According to Karush-Kuhn-Tucker (KKT) ([8], [9]) minima conditions, the product
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between dual variables and constraints has to vanish at the point of optimal solution

[9].

αi (ε+ ξi − yi + 〈ω, xi〉 + b) = 0 (2.12)

α∗
i (ε+ ξ∗i + yi − 〈ω, xi〉 − b) = 0 (2.13)

(C − αi) ξi = 0 (2.14)

(C − α∗
i ) ξ

∗
i = 0 (2.15)

By using the equations above, one can obtain the relationship between error term

ξ
(∗)
i and lagrangian multiplier α

(∗)
i .

1. If ξi = 0 then αi < C or if ξ∗i = 0 then α∗
i < C

2. If ξi > 0 then αi = C or if ξ∗i > 0 then α∗
i = C

Based on the KKT conditions, the following properties can be learned

1. Based on the Equation (2.12) and (2.13), only for the samples |f(xi)− yi| ≥ ε

the coefficient (αi − α∗
i ) will be nonzero; in other words the values of αi and

α∗
i vanish for all the data points inside the ε-tube. Vanished (αi − α∗

i ) brings a

sparse expansion of ω in terms of xi and the data points whose dual variables

are non-zero are called Support Vectors.

2. The set of dual variables of a given point (αi, α
∗
i ) can never be nonzero at the

same time, at most only one of them can be nonzero.

3. Samples (xi, yi) with corresponding |αi − α∗
i | = C are support vectors lying

outside the ε-insensitive tube, while samples (xi, yi) with corresponding 0 <

|αi − α∗
i | < C lie on the decision boundary.
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2.2.1 Nonlinear Support Vector Regression

One of the attractive features of SVR is its ability to model nonlinear relationships by

mapping the given data into a high dimensional feature space F via a nonlinear map-

ping φ. An example of mapping in [1] φ : <2 → <3 with φ (x1, x2) =
(
x21,
√

2x1x2, x
2
2

)
.

Constructing a linear model on the preprocessed features yields a quadratic function

in the input space. The function of ε-SVR, namely Equation (2.1), takes the following

form:

f(x) = 〈ω, φ (x)〉+ b (2.16)

where 〈., .〉 denotes the dot product in F [1].

One can define a kernel function, k, such that k (xi, xj) = φ (xi) · φ (xj), and use

k in the training algorithm instead of φ. The elegance of using the kernel function is

that one can deal with high dimensional feature spaces without having to compute

the map φ explicitly [10]. Accordingly one can rewrite the problem (2.9) in terms of

the dot products in the low dimensional input space.

max
αi,α∗

i

−1

2

∑̀
i=1

(αi − α∗
i ) (αi − α∗

i )k (xi, xj)− ε
∑̀
i=1

(αi + α∗
i ) +

∑̀
i=1

yi (αi − α∗
i )

s.t.
∑̀
i=1

(αi − α∗
i ) = 0

0 ≤ αi, α
∗
i ≤ C

(2.17)

After mapping the input space to high dimensional feature space via kernel func-

tion, weight vector and regression estimate then take the form as follows [1]

ω =
m∑
i=1

(αi − α∗
i )φ (xi) (2.18)
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f(x) =
m∑
i=1

(αi − α∗
i ) k (xi, x) + b (2.19)

Note that unlike the linear case in nonlinear SVR, ω can not be expressed explicitly

and the algorithm finds the flattest function in the feature space rather than input

space.

2.2.2 Loss Functions

As shown in the preivous section, the lagrange multipliers (αi, α
∗
i ) are often sparse

in the (2.3) and related (2.10) formulations, i.e they result in non-zero values only if

observations related with these lagrange multipliers are on or outside the boundary.

The so called ε-insensitive loss function, |ξ|ε, described by [5].

|ξ|ε =

 0 if |ξ| ≤ ε

ξ − ε otherwise
(2.20)

Note that other loss functions, such as the huber loss shown in Equation (2.21),

can also be used in SVR. On the contrary to ε-insensitive, the cost function, using

huber loss, has the advantage of not introducing additional bias. However, this cost

function sacrifices sparsity in the lagrange multipliers (α, α∗) [11]. Furthermore, for

the ε-insensitive loss function, SVR problem can be defined as linear programming,

which is explained in the section (2.2.3), while the problem still stays quadratic for

other loss functions [1].

|ξ|ε =

 1
2σ

if |ξ| ≤ σ

ξ − σ
2

otherwise
(2.21)

The loss functions are shown in Figure 2.1 Huber loss function and ε-insensitive loss

function are shown in Figure 2.1-(a) and 2.1-(b), respectively. Note that huber loss

function contributes a positive penalty to all errors other than zero. These positive
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penalties gives cause for non-zero ξ and ξ∗, which results in non-zero lagrangian

variables (α and α∗). Hence, huber loss function sacrifices sparsity. In order to get a

sparse solution Vapnik introduced ε-insensitive loss function, shown in Figure 2.1-(b).

These benefits of ε-insensitive loss function motivate researchers in using ε-insensitive

loss function in their studies.

Figure 2.1: Loss Functions in SVM - (a) Huber loss function and (b) ε-insensitive loss
function

2.2.3 L1-norm Support Vector Regression

The standard SVR formulation, namely L2-norm ε-SVR, can give good results for

machine learning problems, but since the training time of SVR depends heavily on

the training set size, SVR can be computationally expensive for large-scale problems

(Schölkopf et. al, 1998). This quadratic programming problem can also be written as

a linear program by regularizing with L1-norm [12].

Smola et. al [12] gives more importance to defining ω by using the smallest subset

of training patterns than choosing the flattest function as in general SVR. In other

words, they control the complexity of the function in a different way by minimizing
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the sum of the dual variables (α, α∗) instead of ω.

min
α,α∗,ξ,ξ∗

l∑
i=1

(αi + α∗
i ) + C

l∑
i=1

(ξi + ξ∗i )

s.t. yj −
l∑

i=1

(αi − α∗
i )k(xj, xi)− b ≤ ε+ ξi

l∑
i=1

(αi − α∗
i )k(xj, xi) + b− yj ≤ ε+ ξ∗i

αi, α
∗
i , ξj, ξ

∗
j ≥ 0

(2.22)

This L1-norm formulation can also be called as sparse SVR because the optimal

solution of ω can be represented by using fewer but most informative training examples

than in general SVR. Training SVR with only these most important training points

can bring the same accuracy level as training SVR with full training set. Note that

only for the ε-insensitive loss function this leads to a sparse solution and the desired

computational advantage [1].

Note that, there is an important difference between L2-norm ε-SVR and L1-norm

ε-SVR in support vector definition. As mentioned in section 2.2, under L2-norm ε-

SVR the set of points not inside the tube coincides with the set of SVs. However,

points lying outside the tube do not necessarily have to be support vectors in LP

context. Smola et. al [12] does not explain but states that under the L1-norm any

point can be an SV, even if it is inside the tube. The reason behind this can be

explained by the difference between the objective functions of these two formulations.

L2-norm ε-SVR tries to minimize the L2-norm of the ω vector, i.e. the weights of

the feature of model function, while L1-norm ε-SVR does not minimize the features

weights directly, it just tries to reduce the number of training instances that are used

to define ω. Because of this property L1-norm ε-SVR picks fewer SVs compared to
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L2-norm ε-SVR. In this thesis we define SV as points that have non-zero Lagrangian

multipliers (α or α∗) which may or may not be inside the tube.

Besides advantages, both models also have an important drawback: they may

not be applicable for large-scale problems, since the number of constraints increases

as the size of the training set increases. On the other hand, as mentioned above the

weight vector, namely the decision function of SVR, depends only on a small subset of

training data, called support vectors. Therefore, removing the data points, which are

irrelevant to the final decision function, does not affect the accuracy of the prediction

model [13]. Wang et al. [13] select training data for SVM classification and state

that if the support vectors of a data set are known, then one can obtain the same

prediction function by solving a much smaller problem.

2.2.4 ε-insensitive Linear Regression

It is often beneficial to use a small subset of the available variables even if a large

set of variables is available. The reason behind this is clear, training data sets that

have a small subset of variables require much smaller memory and time complexity.

Furthermore, sometimes obtaining variables can be costly, time consuming and the

estimation function which uses a large number of variables can be incomprehensible.

Moreover, data with large set of variables can include noise. Therefore, models with

a small number of variables is generally preferable than models depending on a large

number of variables.

LASSO [14], which uses L1-norm regularization of the variable weights on the

training, is often an effective technique for shrinkage and variable selection. Using

L1-norm regularizer leads to a sparse solution in the variable space, which means that

the regression coefficients for most irrelevant or redundant variables are shrunk to
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zero.

(
α̂, β̂

)
= argmin


N∑
i=1

(
yi − α−

∑
j

βjxij

)2


s.t.
∑
j

βj ≤ t

(2.23)

where t ≥ 0 is a tuning parameter, βi is the weights of ith input variable. And the

solution for α is α̂ = y therefore without loss of generality that y=0 and hence α

can be omitted [14]. Bi et. al. [15] used L1-norm regularization to select variables

in a linear model before constructing a nonlinear model. Their objective function

penalizes the weights of the variables, with an L1-norm regularization which results

in a sparse variable set. Moreover, the epsilon insensitive loss function used in the

model proposed in [15] provides additional robustness in the face of noise, resulting

in fewer variables. The following formulation shows the ε-insensitive linear regression

[1] with L1-norm regularization.

min
ω,ξi,ξ∗i

λ
D∑
d=1

‖ωd‖+
1

`

∑̀
i=1

(ξi + ξ∗i )

s.t.yi − 〈ω, xi〉 − b ≤ ε+ ξi

〈ω, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(2.24)

2.3 Sampling Methods

The typical practitioner approach for applying SVR to large data sets is to use a

smaller random subsample for training. In random sampling, each instance of the

data set has the same probability of being selected - with or without replacement. The
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main drawback of random sampling is that it may not include some of the important

observations for estimation or it may give rise to a skewed sample. Stratified sampling

ensures that the sample distribution for the stratification variable(s) is the same as

the distribution in original data set. But it is not very practical since it requires the

analyst to specify the important variables. Further when using multiple stratification

variables data becomes sparse and the number of observations for in high dimensions

vanishes.

Imbalanced data sets in terms of the output variable also pose a problem. For the

regression problem imbalance can present itself in the form of very few observations

in particular ranges of the target variable. The performance of machine learning al-

gorithms including the SVM drops significantly when the data set is imbalanced [16],

for example, the classification algorithm simply never predicts a class with very few

training observations. Two popular approaches in classification to solve the imbalance

problem are random oversampling of the minority class or undersampling of majority

class to obtain a balanced data set. A potential problem with undersampling is dele-

tion of highly informative data points [17], while oversampling can cause the machine

learning algorithm to learn these observations by heart leading to over fitting [18].

Similar issues are present in regression problems. For example, building prediction

models on imbalanced data set can result in getting the solutions that perform well

only on over-represented areas of the input space. In other words, regression models

constructed with imbalanced data sets can try to make accurate prediction for most

existing target values while ignoring the others and regard them as outliers.

Researchers use different methodologies to identify important points for training

the SVM model. Based on the fact that the prediction function only depends on the

points called support vector they try to identify good candidates for SVR. Shin and

Cho [19] focused on chosing the data points, which may be located near the decision
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boundary, based on the neighborhood properties to reduce the size of training set,

which may become impractical for problems with high dimensionality. Wang et al.

[13] propose two new data selection methods by using the same idea. To select data

points near the decision boundary, their first method selects data points based on

a statistical confidence measure, which is associated with the number of training

examples that fall inside the largest possible sphere drawn centered at each training

example without covering a training example of a different class, while the second

method uses distance based criterion that calculates the minimal distance from a

training data to another training data, which belongs to a different class. As a result

of their study, they find that random sampling also performs very well when the data

reduction is high, in other words, when the number of support vectors is considerably

less than the data set size. These sampling methods can be assumed as related with

active learning which is a subfield of artificial intelligence and actively choose the

training data. The main motivation of active learning is that labeling an example

requires time and wasting resources on non-informative samples is useless for learning

algorithm. Therefore, the key point of active learning is chosing the data from which

alogrithm learns and will perform better with less training [20].

2.4 Variable Selection

The success of machine learning algorithms on a given task can be affected by the size

and relevance of the variable set. In fact, data sets with a large number of variables

should result in models that fit training data better. However, in the presence of

irrelevant and redundant information and noisy output functions, which is the case

in business data sets, learning algorithm may perform poorly. Because of this, se-

lection of relevant variables and reducing the dimensionality of data sets has become

a challenging research topic, as many of data sets contain hundreds or thousands of
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variables, many of which are often redundant or irrelevant [21].

The L2-norm regularization of the ω vector in ε-SVR, mentioned in the Problem

(2.3), ensures flatness but does not result in selection of variables, i.e. a sparse solution

in terms of weights (ω). Thus, reducing the dimensionality by using a variable selec-

tion algorithm may improve learning ability of ε-SVR. variable selection, which is used

as a preprocessing step of machine learning algorithms, has also been very effective

in reducing the computational time of the learning algorithm and improving result

comprehensibility [21]. Therefore, the given data should be dimensionally reduced by

eliminating irrelevant and redundant data before consturcting the estimation model

by solving the Problem (2.3).

Guyon and Elisseeff [21] provide an overview of the variable selection methods and

classify them into three groups: filter, wrapper and embedded methods. The filter

selection method was the earliest approach to variable selection. It is defined as a

preprocessing step to induction that can remove irrelevant variables before training

occurs. It utilizes an independent search criterion to find the appropriate variable

subset before a machine learning algorithm is used [22]. The advantage of the filter

model is that it does not need to re-run the algorithm for every training algorithm

when choosing to run on a reduced variable data set, as a consequence, the filter

approach is generally computational efficient, and practical for data sets with very

high dimensionality. However, since the filter approach reduces the dimensionality

before a machine learning algorithm is performed, it does not take into account the

learning bias introduced by the learning algorithm. Therefore, filter selection method

may not be able to select the most suitable subset for the final learning algorithm.

For this reason, the wrapper model was proposed [23].

The strategy of the wrapper model is to search through the space of variable

subsets by using the estimated accuracy from particular training algorithm as the



Chapter 2: Literature Review 18

measure of goodness for a variable subset. Thus, the relevance measure is directly

defined from the learning algorithm. When compared to the filter methods, wrapper

approaches often have better results than the filter approaches because they are tuned

to the specific interaction between an induction algorithm and its training data [23].

In this way, variable selection takes into account the biases from the final learning

algorithm. However, the major disadvantage of wrapper methods over filter methods

is the computational time, which results from training the induction algorithm for

each variable set considered.

Embedded methods differ from filter and wrapper methods in the way variable

selection and learning interact. In contrast to the wrapper approach, the embed-

ded approach embeds the selection within the basic training algorithm. Embedded

methods select variables during training and are algorithm specific while, in filter

and wrapper methods the learning part and the variable selection part are separated;

therefore, the variable selection method can be combined with any learning machine.

Least Absolute Shrinkage and Selection Operator (LASSO) method [14], which min-

imizes the sum of squared errors subject to a bound on the sum of absolute values

of coefficients, falls in this class. In this study we use an embeded method for vari-

able selection, which penalizes the weights of the variables with the regularization by

L1-norm and results in a sparse variable set.

Bierman and Steel [24] consider the problem of variable selection for SVMs. In

their paper, they state that the classification accuracy of SVMs can be substantially

improved if a smaller subset of variables is use instead of all variables. For this pur-

pose, they proposed a two-step approach to variable selection for SVMs. During the

first step best variable subsets corresponding to each possible value of the number of

variables of the dataset are identified. These subsets are determined by using back-

ward selection strategy as a search method through the different subsets of variables
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and variation ratio as criterion, which is a function of the kernel matrix and used

to decide on an optimal subset of a given size. Then in the second stage one of the

previously identified subsets is chosen as final selection by considering the number of

support vectors since it is an upper bound on the expected probability of training data

error of the SVM. Experimental studies of this paper proves that variable selection

is very much worthwhile for SVMs by demonstrating the accuracy of the no column

selection model is inferior to the model which is constructed with selected columns.

The improvement in test error is especially significant in cases with many variables

and small samples.

2.5 Previous Methods for Training SVR with Large Data

Support vector regression has empirically been shown to give good generalization

performance on a wide variety of problems. However, the use of SVR is limited since

time and memory requirement is high for training SVR with very large data. In

order to make large scale problems solvable by using optimization methods Vapnik

[25] suggested to break up of the problem into subproblems and then solve each of

them separately. The idea behind chunking approach is based on the fact that only

the support vectors play role in the SVR estimation. Therefore, knowing the support

vectors, one could directly deal with very large data sets. However, the set of support

vectors of a given data are not known beforehand and support vectors corresponding

to non-zero lagrangian variables can only be observed only after training SVR for the

given data sets.

Chunking approach divides problem into subproblems by selecting a subset of the

constraints corresponding to observations of the problem. After training SVR on

this first chunk of constraints is complete, all non-support vectors are discarded and

the next chunk is created. This chunk contains all support vectors, patterns that
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violate the Kuhn-Tucker conditions, of the previous phase and additionally some new

observations selected from the data. The chunking algorithm terminates when the

training set only contains support vectors. Thus, for very large data sets chunking can

be used efficiently if only the number of support vectors is small. But when the data

set has a high noise problem, many of the slack variables ξi and ξ∗i become nonzero

and all the corresponding examples become SVs. In this case, chunking approach

is not useful and does not bring any computational advantages; thus, decomposition

algorithms [26] were proposed.

For the case of pattern recognition, Osuna et al.[26] proposed a decomposition

algorithm and in 1998 [27] this decomposition algorithm is extended for SVR. The key

idea of decomposition is to divide original variables into working and fixed variables.

By keeping only working variables, decomposition approach optimizes a sequence of

constant sized problems iteratively. The value of the objective function is improved at

each iteration and the algorithm is stopped when termination criteria are met. That

is to say that, the convergence is also guaranteed for the decomposition algorithm as

in chunking approach. However, in contrast to chunking approach, the decomposition

algorithm operates on a working set of constant size. It starts with an arbitrary subset

of training patterns and solves the subproblem, while keeping the lagrangians of all

other patterns constant. As long as the Kuhn-Tucker conditions are violated by at

least one sample xj from the remaining set, an arbitrary sample is chosen, both are

interchanged, and the new subproblem is solved. With this method even problems

with many thousands of support vectors can be handled.

By using the decomposition approach Platt [28] proposed the Sequential Minimal

Optimization(SMO) algorithm. Unlike the other methods, SMO chooses the smallest

optimization problem to solve, which involves two Lagrange multipliers, at every step

and finds the optimal values for these multipliers. The advantage of SMO lies in
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the fact that one can easliy solve this simple two-variable problem without using any

optimization software. However SMO is not designed for SVR. Because of this based

on an idea Osuna et al. [29] and Platt [28], SVMTorch algorithm is introduced by

Bengio and Collobert [3] to solve large scale problems by training SVR. In every

iteration of SVMTorch a small subset of variables is selected as working set and the

problem is solved on this working set. Furthermore, SVMTorch uses a shrinking phase

to exclude variables that are stuck to 0 or C so that these variables will probably not

change anymore. These variables can be removed from the optimization problem such

that a more efficient overall optimization is obtained. However SVMTorch can not

provide optimal solution if the working set size is not equal to two [3].
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Chapter 3

ROW AND COLUMN ALGORITHM

3.1 Introduction

In this chapter we propose a new algorithm, Row and Column Selection Algorithm, to

select important observations and variables of large business data sets in order to train

SVR models. The proposed algorithm uses two steps: 1) row selection, 2) column

selection. The first step, row selection, aims to select the most informative points of

the large data set to reach a small but informative sub-sample to facilitate training a

support vector regression model generalizing over the whole data set. Even though,

once the kernel matrix is calculated, the support vector regression computation time

and memory requirements will not be affected by the number of columns in the

training set the accuracy of predictive model can still be affected, as a large number

of redundant or irrelevant variables may result in over fitting. Therefore, the second

step of the algorithm aims to select an informative set of variables for training the

final SVR model. The first and the second step of the proposed algorithm can be

thought as a sampling method and as a variable selection, respectively.

3.2 Row Selection

In the row selection step of the proposed algorithm, a chunking method, which divides

the data set into small enough subsets that fit into memory, is used. The idea behind

chunking approach that only the support vectors play a role in the SVR estimation.
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In other words, if any of the other observations, which are not support vectors, are

removed from the training set, the SVR solution will be exactly the same. Hence, to

obtain the set of support vectors of large data set, we divide the given data sets into

a number of subproblems by chunking it on the rows and train each suproblem with

L1-norm SVR to obtain a small set of support vectors. The support vectors of these

subproblems constitute the final training data, which will be used in the second part

of proposed algorithm.

To ensure that the data chunks are representative of the distribution of the main

driver of the output we use stratified sampling. For example, in the case of SKU sales

prediction in the presence of promotions, the major driver that is used for stratification

indicates whether the SKU itself was on discount.

Then by using the L1-norm ε-SVR with RBF kernel function, which is introduced

by Smola et. al [12], support vectors of each chunk is determined and kept while other

observations are discarded. The resulting support vectors from each chunk collectively

form the observations of the new training data set.

min
α,α∗,ξ,ξ∗,b

l∑
i=1

(αi + α∗
i ) + C2

l∑
i=1

(ξi + ξ∗i )

s.t. yj −
l∑

i=1

(αi − α∗
i )k(xj, xi)− b ≤ ε+ ξi

l∑
i=1

(αi − α∗
i )k(xj, xi) + b− yj ≤ ε+ ξ∗i

αi, α
∗
i , ξj, ξ

∗
j ≥ 0

Equation 3.1. L1-norm ε-SVR

(3.1)

where k (xi, xj) = −γ ‖xi − xj‖2 and γ = 1/d.

Note that, this ε-SVR formulation controls the complexity of the function by using
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dual variables instead of ω. Further, L1-norm regularization is applied, which has the

effect of picking a small subset of training patterns, rather than the L2-norm which

ensures flatness in terms of small coefficients [30]. Thus, L1-norm formulation can

also be called as sparse SVR because the optimal solution of ω can be represented

by using fewer but most informative training examples than in standard SVR [12].

No constraint on α’s trying to set them to C, therefore any point regardless of their

location with respect to the ε-tube can become a support vector.

3.3 Column Selection

In the second step of the algorithm, we use the L1-norm regularized ε-insensitive

linear regression mentioned in the section (2.2.4) on the reduced data set to select an

informative subset of variables. Following formulation shows he L1-norm regularized

ε-insensitive linear regression.

min
ω,ξi,ξ∗i ,b

λ
D∑
d=1

‖ωd‖+
∑̀
i=1

1

`
(ξi + ξ∗i )

s.t.yi − 〈ω, xi〉 − b ≤ ε+ ξi

〈ω, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

Equation 3.2. ε-insensitive Linear Regression

(3.2)

Training selected points with L1-norm regularized ε-insensitive linear regression

results in a small but informative variable subset by eliminating redundant and irrel-

evant variables. The final training data set then consists of the data points identified

in row selection part and the variables with nonzero weights in column selection part.

Note that, L1-norm often produce zero coefficients for variables. Figure 3.1 provides
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the estimation picture for L1-norm and L2-norm regression. The square and the circle

are the constraints regions of L1-norm and L2-norm respectively, while the ellipses are

the contours of the least square error functions (β). The picture of L2-norm has no

corners hence zero solution will rarely results while the solution of L1-norm touches

the square and lead to zero coefficient for variables [14].

Figure 3.1: Estimation picture of L1-norm(left) and L2-norm(right)

3.4 Model Parameter Selection Procedure

Notice that in both steps of the training data set selection algorithm, we use the

same ε insensitive loss function as in the (ε-SVR) model (2) that we want to build.

However, instead of using the L2-norm regularization of the standard SVR, we use the

L1-norm regularization to facilitate selection of rows and columns with formulations

that penalize the support vector (Row Selection SVR), and variable weights (Column

Selection SVR) respectively.
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There are several parameters in our algorithm whose selection is an important

issue for ε-SVR because the accuracy of SVR models can be drastically affected by

the choice of model parameters. Parameter C2, C and λ control the trade-off between

the training error and the model complexity in standard ε-SVR model, row selection

step and column selection step, respectively. Parameter ε controls the width of the

εtube, used for training data. Poor choice of these parameters may result in a model

with an inferior accuracy level; therefore in order to obtain good generalization, it is

necessary to use a proper setting of model parameters.

3.4.1 Selecting Loss Function Parameter (ε)

Cherkassy and Mulier [31] and Scholkopf et al. [32] used cross-validation for parameter

selection procedure, but this approach is not found efficient because of high compu-

tational time requirements. For determining ε, a more efficient approach is proposed

by Scholkopf et al. [12] in 1998. They proposed a variant of the SVR algorithm called

ν-SVR, which determines ε automatically by using another user defined parameter ν.

They showed that, in regular SVR case, ν represents an upper bound on the fraction

of errors and lower bound on the fraction of points outside the ε-tube, namely support

vectors. Hence, using ν-SVR may be useful if prior knowledge about what percent of

data points will be support vectors is available. From the statistical literature it is

known that noise i.e. variation in the target values which is unpredictable from the

input data limits the accuracy of the learning algorithm. Therefore, preventing the

model from fitting the noise it is essential to cope with the noise by identifying the

optimal value of ε for the data set. By considering this idea, Kwok [33] and Smola

et al [34] proposed that asymptotically optimal ε values have a linear relationship

with the noise in the data. However, the main drawback of their approach is that

it does not reflect the sample size and that higher sample size should be associated
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with smaller ε. From the previous studies, it is known that ε should be proportional

to the input noise level ([33], [34]). Cherkassky and Ma [30] claimed that the value

of ε depends on the standard deviation of the noise and the size of training data, as

follows

ε = 3σ

√
ln(n)

n
where σ2 =

n

n− d
1

n

n∑
i

= 1 (yi − ŷi) (3.3)

In the equation above ŷi is the estimate based on the low bias model, which is

operationalized as nearest neighbor or one variable regression, d is the degrees of

freedom and n is the size of training data. By following this idea, we set the ε value

as follow

ε =
1

10
σ (3.4)

3.4.2 Selecting Parameter of Row Selection Step

Tradeoff parameter of row selection part of our algorithm determines a tradeoff be-

tween the ε insensitive error and the weights of selected points. The most proper value

for C2 parameter is established starting with 0, increasing by 0.5 at each step, and

comparing mean absolute error of validation set with the value from previous step. If

the reduction percentage in error is less than 0.001, the line search is terminated and

the C2 value is set as one that gives less than 0.1% reduction in error. The following

algorithm show steps of Row Selection Step:

1. Take the first chunk of the data set and set C2=0, i=1 and MAE0 =∞

2. Solve the problem by using the ”‘Row Selection SVR formulation”’ to construct

the prediction model

3. Test the model on the validation set and calculate the MAE and compute im-
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provement by using the following formulation.

improvement =
MAEi −MAEi−1

MAEi−1

4. If improvement ≥ -0.001 then stop, else increase C2 by 0.5 and go to step 3.

3.4.3 Selecting Parameter of Column Selection Step

In the column selection part of our algorithm λ is used for determining the tradeoff

between the L1-norm of variable weights and the sum of ε insensitive absolute errors.

We use the line search method to set λ. We start with a λ value that is high enough

to give rise to 0 variables and decrease it gradually. Decreasing the value of λ starts to

penalize variable weights less; therefore the number of selected variables is increased

with respect to the previous step. Larger variable sets generally bring better accuracy

level for training set but cause over fitting and reduce accuracy level for the test set.

In order to get the most variable subset we generate a criterion that depends

on the random variables and can be thought as a similar approach as Bi et al [15].

Before starting line search for the value of λ, we augment the training set with random

variables from different distributions that are independently generated of the response

variable and other variables. Specifically, we add [0.1×d], where d represents the

size of input space, random noise variables to determine stopping point of the grid

search. The value of λ is decreased by e−0.25 at each step and a new variable subset

is constructed until a random variable is chosen. If one of these random variables

is selected then this means that the model starts to select irrelevant variables and

the tradeoff parameter (λ) is too small to control the selected variables. In other

words, decreasing the value of tradeoff parameter (λ) beyond the value that selects

the random variable starts to select irrelevant variables.
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3.4.4 Selecting Parameter of standard ε-insensitive SVR

For determining tradeoff parameter used in the standard SVM formulation in clas-

sification, Mattera and Haykin [35] set the C value to the range of output values of

the training data. However, such a selection of C does not take into account possible

effect of outliers in the training data therefore this approach may not work well for

the data with outliers. By considering these studies Cherkassky and Ma [30] proposed

the following equation for parameter C:

max (|ȳ − 3σy| , |ȳ + 3σy|) (3.5)

where ȳ and σy are the mean and the standard deviation of the y values, namely target

values of the training data. In this thesis we use Equation (3.5) to determine C value

of Equation (3.6), which is the formulation of non-linear support vector regression.

[5].

min
ω,ξi,ξ∗i

1

2
‖ω‖2 + C

∑̀
i=1

(ξi + ξ∗i )

s.t.yi − 〈ω, φi〉 − b ≤ ε+ ξi i = 1, 2 . . . `

〈ω, φi〉+ b− yi ≤ ε+ ξ∗i i = 1, 2 . . . `

ξi, ξ
∗
i ≥ 0

(3.6)
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 Introduction

In this chapter we evaluate the Row and Column selection algorithm performance on

three different problems which have large data sets with thousands of observations

and hundreds of variables. We evaluate the impact of each step of algorithm on

the accuracy and bias of the RBF-SVR model. The bias of proposed algorithm is

calculated as Mean Error (ME) while the accuracy is calculated as Mean Absolute

Error (MAE). Both the accuracy and bias are compared with an alternative training

sample selection method, random sampling, and the SVM-Torch [3] method, which

is introduced to train large scale problems.

We analyzed rows and columns selected by the algorithm to see what makes them

different than other rows or columns to be selected. In order to see the characteristics

of selected rows we explore their geometric positions according to prediction line,

constructed in the first stage of the algorithm, target values and input variables.

From section 2.2.3 we know that there is a difference between L1-norm and L2-

norm in SV definition; therefore, to see this difference we also compare the selected

points with the SVs of L2-norm ε-SVR and make independency test to check whether

the probability of being selected in L1-norm is independent from the probability of

being SVs by L2-norm. Lastly, selected columns are checked for independence and

consistency.

In this study we use three different softwares. The statistical software SAS 9.1.3
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is used for the analysis and preparation of data sets and as well as the random

variables and subsamples generation. Row selection problem is coded and solved

under MATLAB R2008a software while BMRM [36] is used for the column selection

stage of the Row and Column Selection algorithm. Construction of final RBF-SVR

model is trained by using LibSVM via MATLAB R2008a software. Because of the

heuristic methods, BMRM and LibSVM, used in the steps of algorithm, Row and

Column Selection algorithm is also a heuristic method.

4.2 Data Sets

We use 7 different data sets from three domains with thousands of observations and

hundreds of variables to evaluate the impact of the proposed training data selection

algorithm on the accuracy of the RBF-SVR model. The first two data sets come

from different countries’ grocery stores and are used for SKU sales prediction for a

product category and the last data set is dealing with house price prediction. The

grocery data sets have three maingroups, which can be further used for consistency

check within each grocery data set.

The first data comes from the leading grocery store chain in Turkey and includes

daily sales, price and promotion information of SKUs in the black tea category in 5

different stores from September 6, 2006 to September 20, 2008. Following the work

by Gür Ali et al [37] 116 variables are created that describe the current prices and

promotions for the SKUs in the particular store; historical sales, promotion and price

statistics for the best selling namely focal SKU, and others in the store, along with

SKU and store characteristics, and seasonality variables. We use the first 18 months

of the data as the training data, and remaining 7 months as the test data with

exception of the randomly sampled 1000 observations that were used as validation

set to set parameters. Separate models are constructed for the 3 maingroups in the
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black tea category (loose tea, teabags, and bags for teapots respectively) to evaluate

the algorithm performance.

The second set of data is provided by the Information Resource, Inc. (IRI) and

deals with a large scale SKU sales volume prediction problem. The data set covers 6

years of weekly data and includes weekly sales, price and promotion information for

each SKU (i.e., SKU denoted by unique universal product code (UPC)). We focus on

the coffee category in 38 stores in the Chicago area. We use the second through the

fourth years of the data as the training data set, and the fifth as the test data after

setting aside 1000 observations for validation set. Moreover, we divide coffee data into

3 maingroups (ground caffeinated, ground decaf and coffee bean) and construct models

for each of the 3 maingroups independently to evaluate the algorithm performance.

The last data set that we used to test our proposed algorithm accuracy is Census

House Data set, which is constructed from the 1990 US Census and for predicting

the median house price in a small survey region, is obtained from website of Data for

Evaluating Learning in Valid Experiments (Delve). Census-house data set has 137

variables which mainly represent information about the people who live in that region.

We set aside 1000 observations as validation set and randomly divided the remaining

data to training and test data set to give roughly a 2:1 ratio. The importance of this

public data set is that it is a standard regression test problem and used in some other

studies such as [38],[39],[40].

Table 4.1 provides the number of observations and the average of target value for

each data set. As it can be seen from the table, our data sets have thousands of

rows and hundreds of columns. As data preparation, we standardized the variable

of each data set by subtracting the mean and dividing by the standard deviation of

the variable. Each data set was standardized with its specific mean and standard

deviation values. The target of grocery data set is set to a multiple of its historical
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Table 4.1: Data Set Properties

data set # of rows # columns Average of target value

Train

Grocery-1 71729 116 1.006
Grocery-2 36733 116 0.9954
Grocery-3 31346 116 1.022

IRI-1 36000 131 1.0015

IRI-2 15777 131 0.9896

IRI-3 28071 131 0.9845

Census-House 14000 137 -0.0054

Test

Grocery-1 33520 116 0.9867
Grocery-2 17034 116 0.9446
Grocery-3 12525 116 0.9701

IRI-1 47155 131 1.0246

IRI-2 9685 131 0.9921

IRI-3 19415 131 1.0023

Census-House 7784 137 0.0051

average sales to remove the effects best selling SKUs and the target of Census-House

data is also standardized.

4.3 Experimental Setup

For each data set and maingroup, we train the ε-SVR model with RBF kernel on

three different training data sets as follows:

1. Random sampling of rows with full variable set, which constitutes the bench-

mark (RR Model)

2. Selected rows based on step 1 of the algorithm, with full variable set (SR Model)

3. Selected rows and columns as a result of applying steps 1 and 2 of the Row and

Column Selection Algorithm (SRSC Model)
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For the benchmark (RR Model) we randomly sample as many rows from the original

data as the number of selected rows using the Row and Column Selection Algorithm

to ensure a fair comparison in terms of the training sample size.

We also train our data sets with SVMTorch [3], and compare the accuracy of Row

and Column Selection Algorithm with the results of SVMTorch[3]. Moreover, we use

mean error (ME) and mean absolute error (MAE) to make comparison between the

accuracy of proposed algorithm and benchmark methods.

ME =

∑n
i=1(actual-predicted)

n
(4.1)

MAE =

∑n
i=1 |actual-predicted|

n
(4.2)

4.4 Parameters of Algorithm

Table 4.2 shows the value of parameters used in the Row and Column Selection

Algorithm for SR and SRSC Models and the value of parameter C of RR Model.

Table 4.2: Parameters used in the models

ε C2 λ C C for RR Model

Grocery-1 0.1234 1.25 0.0143 7.6544 5.0606

Grocery-2 0.1044 1 0.0183 6.6613 5.0776

Grocery-3 0.1067 1 0.0087 6.8686 5.115

IRI1 0.0761 1.5 0.0235 3.4175 3.521

IRI2 0.0672 2 0.0639 3.1167 3.4061

IRI3 0.0692 2 0.0639 3.0871 3.1964

Census-House 0.017 1.5 0.0087 3.084 3.105

Following the algorithm procedure in section 3.4 within the IRI and grocery data



Chapter 4: Experiments and Results 35

sets the parameters are similar across maingroups except for λ. Note that, for RR

Model we use the same ε value as in SR and SRSC Models but the value of C used in

the RBF-SVR model differs since RR Model has different observation than SR and

SRSC Models.

A big driver of difference is the frequency of the observations while the IRI data

provide weekly observations, in the grocery data they are daily. Looking at the value

of ε, we observe that grocery data is more noisy than IRI data. Interestingly, when

the errors are assumed to be independent, the daily versus weekly data would imply

a factor of
√

7 for the noise. The factor is slightly less than
√

7. We can not make

comparison with Census-House data since its target value is different than grocery

and IRI data. Table4.3 shows the number of iterations of selection of parameter C

and λ and the number of chunks in each data set.

Table 4.3: Complexity of Row and Column Selection Algorithm

#of chunks # of
iteration for
setting up

parameter C

# of
iteration for
setting up

parameter λ
Grocery-1 36 5 13
Grocery-2 19 4 12
Grocery-3 16 4 15

IRI-1 18 6 11
IRI-2 8 7 7
IRI-3 14 7 7

Census-House 7 6 15
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4.5 Resulting Training Data

Table 4.4 shows the number of selected rows and columns by the methods I through

III, described in the previous section, for each data set. Row and Column Selection

Algorithm provides big reduction both for rows and columns. The algorithm retains

between 3% and 26% of the observations and 5% and 17% of the columns. Such a big

reduction in columns makes the prediction model clearer and more understandable.

Reduction in rows makes training the standard SVR easy to implement and saves

time and memory space since just the small amount of data is required.

Table 4.4: Number of selected rows (observations) and columns (variables) in the
training set

Row Selection Column Selection
Training

Data
Size

# of
Selected

Rows

% of
selected
Rows

# of
Vari-
ables

# of
Selected
Columns

% of
selected
Columns

Grocery-1 71729 13371 19% 116 16 14%
Grocery-2 36733 5605 15% 116 17 15%
Grocery-3 32346 7044 22% 116 19 16%

IRI 1 36000 4046 11% 131 22 17%
IRI 2 15777 1309 8% 131 10 8%
IRI 3 28071 877 3% 131 14 11%

Census-house 16000 4118 26% 137 7 5%

4.6 Accuracy and Bias

Table 4.5 reports the test set MAE values associated with the training data set se-

lection method. This experiment demonstrates that selecting data points by using

Row Selection SVR produces more accurate predictions than the training data set

generated by randomly selected data points RR Model. This is evidenced by the
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reduction in the MAEs by up to 48%. Moreover, comparison to SVMTorch [3], which

uses all data points to construct a prediction model, shows SR Model produces much

more accurate predictions in four data sets out of seven and is better than RR Model

according to average prediction accuracy level. The results of the other 3 data sets are

still comparable with SVMTorch [3], but slightly worse. Therefore, we can conclude

that selecting data points from a large data set works well and generally produce more

accurate predictions than using the whole training data set or randomly selected data

points.

Table 4.5: The test MAE associated with the training data set selection methods and
the benchmark

RR Model SR Model SRSC Model SVMTorch
Grocery-1 1.2964 0.6724 0.5552 0.6111
Grocery-2 0.5778 0.3327 0.29 0.5458
Grocery-3 0.3765 0.2362 0.1909 0.5477

IRI 1 0.6049 0.5377 0.6795 0.482
IRI 2 0.1115 0.1038 0.1178 0.4961
IRI 3 0.201 0.1983 0.2254 0.4613

Census-house 0.1002 0.1016 0.0168 0.0759
Average 0.467 0.312 0.297 0.46

Table 4.6 shows the significance values of the paired sample Z-test for the dif-

ferences between the test MAEs associated with the SR and SRSC models and the

benchmark models, which are RR Model and SVMTorch for each maingroup. Accord-

ingly, the proposed SR model has significantly better holdout accuracy performance

than the benchmark methods RR Model and SVMTorch in all maingroups of Grocery

and IRI data sets. However for Census House, while SRSC Model outperforms SVM-

Torch, pairwise z-test between SR Model and the RR Model indicates that difference

is not significantly different from 0 since the p-value is greater than significance level,
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which is equal 0.05.

Table 4.6: Significance level for the paired sample z-tests on the mean difference for
different models

Random vs SR SR vs SRSC SRSC vs SVMTorch

Grocery 1 0 0 0
Grocery 2 0 0 0
Grocery 3 0 0 0

IRI 1 0 1 0
IRI 2 0 1 0
IRI 3 0.0188 1 0

Census-House 0.9101** 0 0

The second experiment, which is done by using the model SR Model and SRSC

Model, illustrates the effects of Column Selection SVR, namely variable selection.

According to the test MAE, eliminating redundant columns and construct the model

based on the selected columns results in more accurate models for Grocery and

Census-House data sets. This experimental result demonstrates that the existence

of redundant variables can decrease the predictive power. On the other hand, for the

IRI data set models with weekly basis observations and long training data time frame

eliminating variables does not improve the accuracy of prediction model. The SRSC

model dramatically reduces the number of variables used in the model between 3%

and 17% of the original size. This is an important operational gain for the MIS oper-

ations considering the costs of maintaining the data. However, contrary to Grocery

and Census-House data sets findings, omitting variables in IRI data set reduces the

predictive power of the training set. Therefore, in the presence of redundant vari-

ables Column Selection SVR works effectively and reduces the number of variables

dramatically while improving the generalization error.

Table 4.7 reports the test ME associated with the training data set selection
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Table 4.7: The test ME associated with the training data set selection methods and
the benchmark

RR Model SR Model SRSC Model SVMTorch
Grocery-1 0.0355 -0.1421 -0.0724 0.2626
Grocery-2 0.02 -0.1128 -0.1031 0.1306
Grocery-3 -0.0403 -0.0259 0.0172 0.1156

IRI 1 -0.0139 -0.0234 0.234 0.1071
IRI 2 -0.0015 0.0128 0.0254 0.0792
IRI 3 -0.0008 0.002 0.0913 -0.0065

Census-house 0.0007 0 -0.0023 0.0018
Average 0 -0.042 0.027 0.099

method. The random rows method RR Model provides better or similar unbiasedness

compared to all other methods, which is not surprising as the L1-norm regularization

is known to introduce bias. However, note that for Grocery and Census-House data

sets MEs of SRSC Model and for IRI data sets MEs of SR Model are adequate, as

all MEs are smaller than ε, which was deemed an admissible error. Therefore, by

considering the experiments related with MAE, both SR Model and SRSC Model are

assumed to be more accurate than RR Model. In addition to these, Row and Column

Selection Algorithm outperforms SVMTorch when compared to average value of ME

among 7 data sets.

4.7 Characteristics of selected row and columns

4.7.1 Selected Rows

Next, we investigate how the rows selected by the algorithm differ from others accord-

ing to (1) distance of the training observations from the predicted value, (2) target

values, (3) SVs in L2-norm case and (4) the effects of variables. First of all, in order
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to see geometric position of selected points, we calculate the distance between actual

values of them and predicted values which comes from the first part of our algorithm.

We classified the training data errors into 5 groups according to the value of the ε.

Table 4.8: Distribution of SVs to training error ranges

no error within ε between ε
and 2ε

between
2ε and 3ε

beyond 3ε total

Grocery-1 65% 9% 5% 3% 19% 100%
Grocery-2 60% 11% 6% 3% 20% 100%
Grocery-3 64% 10% 5% 4% 17% 100%

IRI 1 53% 6% 5% 5% 29% 100%
IRI 2 49% 6% 6% 6% 33% 100%
IRI 3 38% 8% 7% 6% 41% 100%

Census-house 59% 2% 2% 2% 34% 100%

Table 4.8 indicates that a large portion (38% to 65%) of the selected points (sup-

port vectors) are on the prediction line. This results contradicts with the support

vector definition of standard ε-SVR, using L2 regularization on ω, where the support

vectors are located on the decision boundary and outside the ε-tube.

Table 4.9: Probability of being SVs in the given error class

0 errors
between 0

and ε

errors
between ε

and 2ε

errors
between

2ε and 3ε

errors
beyond 3ε

Overall

Grocery-1 0.27 0.11 0.10 0.08 0.13 0.19
Grocery-2 0.24 0.11 0.08 0.06 0.11 0.15
Grocery-3 0.34 0.15 0.12 0.11 0.15 0.22

IRI 1 0.29 0.09 0.08 0.09 0.08 0.11
IRI 2 0.28 0.01 0.01 0.11 0.08 0.08
IRI 3 0.20 0.09 0.08 0.08 0.09 0.03

Census-house 0.29 0.29 0.29 0.32 0.29 0.26
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Table 4.9 shows the percentage of points that are selected as SVs within each

error range. This analysis indicates that across all data sets observations on the line

have the highest probability of being selected (support vectors). Interestingly, for the

Census data set the density of support vectors does not seem to depend on the size

of the residual. On the other hand, in the other two data domains the density of

support vectors (i.e. the percentage of points that are support vectors) is highest on

the line.

Figure 4.1 and 4.2 show the probability of being selected as SV according to target

values for L1-norm and L2-norm ε-SVR, respectively. These figures indicate that both

in L1-norm and L2-norm, the probability of being selected as SV tends to increase or

remains nearly same as the target value deviates from average value. However, in the

case of L1-norm the target values has no effect or little effect on the selected points

for IRI data sets, because of this the probability remains nearly same for each range

of target values.

Figure 4.1: Probability of being selected as SV in L1-norm
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Figure 4.2: Probability of being selected as SV in L2-norm

Up to now, we analyze the selected points by considering their geometric positions.

Now we want to compare the selected points with support vectors of each data set,

which are obtained by training each chunk of data set with L2-norm ε-insensitive

SVR, namely standard ε-SVR.

Table 4.10: Percentage of SVs in L1-norm vs L2-norm

L1-norm L2-norm
Grocery-1 19% 58%
Grocery-2 15% 62%
Grocery-3 22% 61%

IRI-1 11% 72%
IRI-2 8% 76%
IRI-3 3% 76%

Census-House 29% 58%

As mentioned in section 2.2.3, the reason behind using L1-norm regularization of

the support vector weights is to select a small but a representative sample, which
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coincides with the SVs of L2-norm SVR. In order to compare the L1-norm SVs with

the L2-norm support vectors of the given data, we train each chunk of grocery data

sets with L2-norm SVR and construct the table 4.10. Table 4.10 shows that L1-

norm selects fewer SVs than as expected. It is not surprising because from section

2.2.3, we know that L1-norm ε-SVR picks fewer SVs compared to L2-norm ε-SVR.

We also test SVs for independence. The hypothesis is that the probability of being

selected in L1-norm is independent from the probability of being SVs by L2-norm. The

multiplication rule says that if two events were independent, then the probability of

both occurring was the product of the probabilities of each occurring. By considering

this rule, we test the SVs for independence by using the significance level as 0.05.

Table 4.11: Comparison of SVs by L1-norm with SVs of L2-norm

L1 SV and L2

SV
L1 SV not L2

SV
L2 SV not L1

SV
not L1 SV not

L2 SV
Grocery 1 7113 6258 34518 23840
Grocery 2 3404 2201 19230 11898
Grocery 3 4271 2773 14708 9594

IRI 1 2873 1173 23169 8785
IRI 2 993 316 11044 3647
IRI 3 677 200 20792 7325

Census House 2207 1911 5927 3955

In order to test SVs for independence, we compare the selected points coming

from the first step of the algorithm with the SVs of the L2-norm of the given data

and construct the table 4.11, which is further used for independence test. Table 4.12

indicates that in this analysis in three out of seven data sets the probability of being

selected in L1-norm is independent of the probability of being SVs by L2-norm but

for other four data sets the hypothesis is not true. However, the data sets, which

show dependency, does not show overlapping pattern i.e. for one data set expected
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value is lower than actual while for the rest not. Therefore, we can not conclude that

L1-norm and L2-norm are dependent and the data sets overlap in dependency.

Table 4.12: Independence Test

Grocery-1 P-value = 0
Grocery-2 0.1 ≤ P-value ≤ 0.2
Grocery-3 P-value = 1

IRI-1 0.025 ≤ P-value ≤ 0.05
IRI-2 0.5 ≤ P-value ≤ 0.6
IRI-3 0.025 ≤ P-value ≤ 0.05

Census-House P-value = 0

Finally, we investigate whether the chunking approach of row selection step con-

verges to the same solution as training the algorithm with whole data, without chunk-

ing and the prediction accuracy of the algorithm is affected by the chunking approach.

In order to make this analysis we compare three different models resulting from the

same data consisting 2000 observations. These three models differs from each other

in the data used to construct the final model. Model I includes all data points, Model

II consists of only SVs of the data obtained by training the data with L1-norm ε-

insensitive without chunking and Model III includes the SVs of the data obtained by

applying the first step of Row and Column Selection algorithm after dividing it into

10 chunks of equal size. When the selected points coming from training each chunk

with L1-norm ε-insensitive SVR (Model III) is compared with the SVs of the whole

data (2000 points) obtained by L1-norm ε-insensitive SVR (Model II), it is observed

that dividing the data into small chunks and solving them separately does not yield

the same solution as training the whole data by using same learning algorithm.

Table 4.13 summarizes the comparison of SVs of Model II and Model III. By

analyzing this table, we can observe that Model III results in larger set SVs than Model
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Table 4.13: Comparison of the SVs of Model II and Model III

SV of Model
II and SV of

Model III

SV of Model
II - not SV of

Model III

SV of Model
III - not SV of

Model II

not SV of
Model II not
SV of Model

III
Grocery 1 213 165 574 1048
Grocery 2 130 300 455 1115
Grocery 3 80 206 546 1168

IRI 1 55 191 376 1378
IRI 2 42 142 338 1478
IRI 3 8 53 244 1695

Census House 199 392 473 936

II and it does not include all the SVs of Model II. Therefore, we can conclude that the

resulting data set coming from the first step of algorithm does not converge to the SV

set of the whole data. Furthermore in order to see the effects of chunking approach on

the prediction accuracy, we compare accuracy of test set for three different RBF-SVR

models stated above.

Table 4.14: Effects of chunking approach on the bias and accuracy

ME MAE
Model I Model II Model III Model I Model II Model III

Grocery-1 -0.3762 -0.4063 -0.3878 0.7454 0.7108 0.7376
Grocery-2 -0.0166 0.2306 -0.0421 0.5995 0.571 0.5847
Grocery-3 0.175 0.185 0.2486 0.5808 0.5721 0.5706

IRI-1 -0.0376 -0.1309 -0.2281 0.7235 0.7623 0.7737
IRI-2 -0.0642 -0.2871 -0.1932 0.6338 0.6574 0.6427
IRI-3 0.0937 0.1578 -0.2704 0.5869 0.6402 0.6498

Census House 0.0101 -0.012 -0.0004 0.1379 0.1278 0.1342

Table 4.14 shows the prediction accuracy of the Model I through Model III. Look-
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ing at the MAE value of Model I and Model III, we observe that dividing the problem

into small chunks and solving them separately to select the important observations of

each chunk results in more accurate models for Grocery and Census-House data sets.

However, for IRI data sets, which are based on weekly basis and have a long train-

ing data time frame, chunking approach does not improve the accuracy of prediction

model. But it dramatically reduces the number of observations (12.6% to 21.55%)

with only 0.2ε to 1.9ε increase in MAE for IRI data sets. On the other hand, we can

conclude that selecting important observations of a data set by training whole algo-

rithm without diving it into small chunks (Model II) results gives the best accuracy

among three models for Grocery and Census House data sets while Model I, which

includes the whole data, gives the best accuracy level for IRI data sets. In addition

to these, Model I gives best ME value among three models but this is not surprising

since the bias generally increases in absolute value as the number of observations

decreases.

4.7.2 Selected Columns

Finally, we investigate the columns that are selected by the Row and Column Selection

Algorithm. While the specific columns selected for each maingroup differ, 4 and 7

of the variables are present in all maingroup models for Grocery and IRI data sets,

respectively. Variables common in all grocery data sets include an indicator variable

showing whether the item was sold yesterday, its current discount level, whether the

sale of product is fast, and its share with the maingroup in the same store. On the

other hand, overlapping selected variables among IRI data sets include the historical

sales of the product for non discount days and four weeks ago, number of days passed

since last discount, whether the product has a discount or not for the given day,

number of the SKUs in the maingroup and size of the product. Historical discount
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probabilities for the SKU and maingroup, discount amounts for the SKU yesterday,

and number of the SKUs in the maingroup are also used in two out of the three

models. Some prediction models also use store as a variable to predict the sales.

Table 4.15: Overlapping Selected Columns among the Grocery and IRI Data Sets

# of variables common with all
other maingroups

common with
another maingroup

Grocery 1 16 4 7
Grocery 2 17 4 4
Grocery 3 19 4 5

IRI 1 22 7 8
IRI 2 10 7 3
IRI 3 14 7 5

Moreover, in order to see the independency between selected columns we construct

regression models for each independent variable and use the Variance Inflation Factor

(VIF), which is a measure of the degree of multi-collinearity of the ith independent

variable with the other independent variables in a regression model [41], to check

whether there is a dependency between selected columns or not.

V IFi =
1

1−R2
i

(4.3)

VIF provides a reasonable and intuitive indication of the effects of multi-collinearity

on the variance of the ith regression coefficient. The VIF value 1 means that there

is no correlation among the ith predictor and the remaining predictor variables and

the VIF exceeding 4 is a sign of dependence between ith predictor and the remaining

predictor [41].

In this analysis, we use original data sets and resulting data sets, which include

only selected rows and columns of the original data sets. Comparison of the results of
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Table 4.16: Test of Independence of Variables

Original rows and columns Selected rows and columns
Max
VIF

Mean
VIF

%
columns

with
VIF ≥ 4

Max
VIF

Mean
VIF

%
columns

with
VIF ≥ 4

Grocery 1 455.469 22.917 56% 2.2504 1.4208 0%
Grocery 2 546.561 24.941 52% 2.0331 1.4613 0%
Grocery 3 239.025 19.761 57% 4.1508 1.9955 5%

IRI 1 70.9232 8.6092 56% 2.5322 1.6956 0%
IRI 2 217.4418 11.3313 53% 1.4278 1.1956 0%
IRI 3 548.0794 21.7451 56% 7.5757 2.8738 36%

Census House 1378.9733 92.31 79% 5.8417 3.5376 14%

these two data sets, verifies that the column selection part of our algorithm eliminates

or reduces multi-collinearity. Strong evidence for this statement can be found in table

4.16, if we compare the percentages of variables with VIF value grater than 4 for

original data sets to the corresponding entries for resulting data sets. Furthermore,

analyzing max VIF values of selected rows and columns indicates that there is no

dependency between any selected columns for four out of seven data sets. For Grocery

1, Grocery 2, IRI 1 and IRI 2 the variables with highest VIF values are smaller than

4, which is the sign of dependence. However, for Grocery 3, IRI 3 and Census House

the variables with highest VIF values tells us that some variables can be correlated

with at least one of the other predictors in the model.

4.7.3 Effects of Variables

In this section, we identify the effects of variables on the selected points only for

grocery data set. Before starting statistical data analysis of the variables of the

gorcery data set, we categorize continuous variables based on the standard deviations
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away from the mean and generate a new target showing whether the point is SV

or not. Once a data set with categorical variables is obtained, two-way contingency

tables can be constructed between each categorical predictor and the new response

variable.

In all three maingroups of grocery data set, according to chi-square goodness-of-fit

test, slow moving SKUs are more likely to become support vectors. Also, as the share

of a SKU or brand increases with respect to all stores the probability of being selected

starts to decrease. In other word when the SKU becomes a fast moving product, then

it is less likely to be selected as a support vector. This observation supports the first

claim which is about the size of SKU. Conversely, presence and amount of discounts

for the SKU and competitors at different time periods such as today, yesterday and a

week ago has a positive effect on probability of becoming support vectors. Moreover,

the days with zero and the observations of some specific brand and store sales play

an important role in determining the rows more likely to be support vectors. Besides

the points mentioned above, we see that the algorithm selects observations that are

located on the extreme values rather than selecting the observations located on the

average values. This will facilitate measurement of the impact of the high and low

share SKUs or brand in the subgroup and as well as the number of sales yesterday of

the SKU and the average sales for the last four weeks. Lastly, discounts for the best

selling SKUs have also effect on row selection. As the variation of discount amount of

specific competitor SKU form mean increases, the probability of the given observation

being support vector starts to decrease. That is to say that, the probability of being

support vector is highest for the observations with the average value of discount

amount of specific competitor SKUs when compared to higher or lower value of this

variable. As a result of this, we see that the algorithm selects observations that will

facilitate measurement of the impact of discounts on sales in the same time period, in
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the future time periods, as well as impact of discounts and promotions of competitors

on focal SKU sales, one day and four week sales history of the SKU, and the specific

brand and store. Interestingly these are the main components of promotion impact

that are studied in the marketing literature.

Table 4.17: Effects of variables on support vectors

Variable Name seen in # of
data sets

Effect Type

Size of SKU 3 negative effect
SKU or brand share in all stores 2 negative effect

non zero sales yesterday 3 negative effect
absolute or relative discount 3 positive effect
competitor weighted discount 3 positive effect

specific brand or store 3 positive effect
SKU or brand share in subgroup 3 u-shaped effect

sales history of SKU 3 u-shaped effect
specific competitor SKU discount 2 n-shaped effect

# of days SKU has been on discount in the store 3 w-shaped effect

Table 4.17 summarizes the effects of variables on being support vector. According

to results stated in table 4.17, we can conclude that the effects of variables have

consistent effects on each maingroup of grocery data set.
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Chapter 5

CONCLUSION

In this thesis, we use support vector regression to construct a forecasting model

for grocery chain to predict the daily sales of a particular category. Our objective

is to develop a methodology to estimate SVR models for very large data sets, which

have low complexity and give accurate predictions. To accomplish this objective, we

developed a two stage methodology, namely Row and Column Selection algorithm.

In the first stage, the algorithm divides the given data into small chunks and solves

each of them independently by using linear programming models and obtain the

important points of data set. Then, in the second stage of proposed algorithm, a small

variable subset is selected by training ε-insensitive linear regression with L1-norm

regularization of the variable weights on these selected points. The data complexity

reduction approach of proposed algorithm makes it possible to train standard ε-SVR

for large data set.

The SR Model, which includes selected points coming from the first stage of the

algorithm with all columns, is more accurate and as unbiased as random sampling.

The promising result of SR Model comes from utilising the fact that only the SVs play

role in the SVR estimation. Moreover, the result of SVMTorch are not as accurate as

SR Model.

From background knowledge, it is known that accuracy training of the algorithm

can deteriorate in the presence of redundant or irrelevant variables. Eliminating the

redundant or irrelevant variables and selecting the best variable subset by implement-
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ing second stage of proposed algorithm decreases the data complexity dramatically

while improving the generalization error. Therefore, Row and Column Selection al-

gorithm provides respectable accuracy while dramatically reducing the number of

variables, which is an important operational gain for the MIS considering the costs

of maintaining the data. As in SR Model, data set with seleted rows and columns

(SRSC Model) also outperforms the SVMTorch.

The analysis of selected points demonstrates that unlike the standard SVR model,

where the support vectors are just located on the decision boundary and outside the

ε-tube [1], for the non-linear SVR model with L1-norm regularization of the support

vector weights, SVs can be located both inside and outside the ε-tube with large

portion on the line. Another analysis related with the geometric position of selected

points according to the target value of observations shows that in the case of L1-norm,

observations with extreme target values of Grocery and Census-house data sets are

more likely to be selected while the target values has no effect or little effect on the

selected points for IRI data sets. The result of this analysis is also consistent with

L2-norm. As in L1-norm case, the probability of being SV in L2-norm increases as the

target value deviates from mean. Furthermore, the difference between SVs of L1-norm

and L2-norm are compared. According to result of this experiment, we can conclude

that L1-norm SVR selects fewer points compared to L2-norm ε-SVR and probability

of being selected in L1-norm is not independent from the probability of being SVs by

L2-norm.

Moreover, variables which are selected by the Row and Column Selection Al-

gorithm is also analyzed to check whether there is a multi-collinearity between the

selected variables or not. The result of this analysis indicates that there is no or low

multi-collinearity between selected variables. In other words, our algorithm can ac-

complish dimensionality reduction via eliminating redundant and irrelevant variable
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and selecting only the most informative subset of variables. Selected variables are also

consistent within Grocery and IRI data sets. This consistency enables the retailer to

understand the main drivers of sales and retain less data.

Lastly, effects of variables on selected points is analyzed to identify those that carry

the most information about support vectors. The result of this analysis indicates that

the row and column selection algorithm select observations that are located on the

extreme values rather than selecting the observations located on the average values.

The effects of variables on selected points are consistent in all Grocery and IRI data

sets. As a result of this analysis we see that for Grocery data sets the algorithm selects

observations that will facilitate measurement of the impact of the product discounts

on the sales in different time periods as well as impact of discounts and promotions

of competitors on focal SKU sales, sales history of the SKU, and the specific brand

and store. Interestingly these are the main components of promotion impact that are

studied in the marketing literature.

5.1 Future Works

This research can be extended into at least two directions. The first involves using

Row Selection SVR as active learning to select the points as the new observations

added to data set and determine a rule for when to retrain the model. A second

possible research direction is to repeat the analysis in this paper for some other public

research data sets to determine under which conditions this training data selection

algorithm provides more favorable results.
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