
DISCOVERY OF FREQUENT ITEM SET IN PEER-TO-PEER

NETWORKS

by

Emrah Çem

A Thesis Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical & Computer Engineering

Koç University

October, 2010

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Emrah Çem

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Öznur Özkasap (Advisor)

Prof. A. Murat Tekalp

Assoc. Prof. Mine Çağlar

Date:

To my family and cousin Serap Cansu

iii

ABSTRACT

Several peer-to-peer (P2P) applications require a global view of system information such

as data access frequencies, item frequencies, query and event counts, that are available lo-

cally and partially at peers. Frequent item set discovery (FID) in a distributed environment

is a common problem requiring global information computation. Items that globally occur

more than a threshold value are referred as frequent or popular and the number of diverse

applications that need globally frequent items is increasing expeditiously in today’s P2P

networks. Therefore, efficiently discovering frequent items would be a valuable service for

peers. Being significant for P2P systems, FID problem is also applicable to distributed

database applications, cache management, data replication, sensor networks, and security

mechanisms in which identifying frequently occurring items in the entire system is useful.

In this thesis, we propose and develop a gossip-based distributed approach, namely

ProFID, for discovering frequent items in unstructured P2P networks. In contrast to the

prior studies, our solution progresses in a fully distributed manner using an atomic aver-

aging function to discover frequent items. Utilizing averaging function with gossip-based

aggregation in frequent item set discovery problem and a practical convergence rule are

novel and beneficial features of our approach. We make the following contributions to the

current state of the art. First, we propose a fully distributed Protocol for Frequent Item Dis-

covery (ProFID) where the result is produced at every peer. ProFID uses a novel pairwise

averaging function and network size estimation together to discover frequent items in an un-

structured P2P network. We also propose a practical rule for convergence of the algorithm.

In contrast to previous works, each peer gives local decision for convergence based on the

change of updated local state. Moreover, we developed a model of ProFID in PeerSim and

performed various experiments to compare and evaluate its efficiency, scalability, applicabil-

ity. Finally, we compared the accuracy and scalability of ProFID with adaptive Push-Sum

algorithm. The comparison results show that ProFID outperforms adaptive Push-sum in

terms of accuracy, convergence speed and message overhead.

iv

ÖZETÇE

Bir çok görevdeş ağ uygulaması, sistemdeki düğümlerde kısmi olarak bulunan veri erişim

sıklığı, öğe sıklığı, sorgu ve olay sayısı gibi sistem genelindeki bilgiye ihtiyaç duyarlar.

Dağıtık bir sistemde sık bulunan öğelerin belirlenmesi problemi sistem genelindeki bir bil-

ginin hesaplanmasını gerektiren yaygın bir problemdir. Sistem genelindeki sıklığı belirli bir

eşik değerinin üstünde bulunan öğelere sık bulunan veya yaygın öğeler denir. Günümüz

P2P ağlarında, sistem genelinde sık bulunan öğelerin bilgisine ihtiyaç duyan uygulamaların

sayısı hızla artmaktadır. Bu yüzden sık bulunan öğelerin verimli bir şekilde belirlenmesi,

bir çok görevdeş ağ uygulamalarında, düğümler için değerli bir servistir. Ayrıca, bu servis

dağıtık veri tabanı uygulamalarında, önbellek yönetiminde, veri yineleme yöntemlerinde,

algılayıcı ağlarda ve güvenlik mekanizmalarının önemli olduğu sistemlerde de kullanılabilir.

Bu tezde, ProFID olarak adlandırdığımız, yapılandırılmamış görevdeş ağlarda sık bulu-

nan öğelerin belirlenmesi için epidemik tabanlı yöntemi kullanan tam dağıtık bir yöntem

sunulmuştur. Ortalama yönteminin epidemik tabanlı yöntem ile birlikte sık bulunan öğelerin

tespit edilmesinde kullanılması ve pratik yakınsama yöntemi önerdiğimiz yöntemin yenilikçi

ve yararlı özellikleridir. Bu konudaki çalışmalara katkılarımızı şu şekilde sıralayabiliriz. İlk

olarak, sık bulunan öğe setinin bütün düğümlerde hesaplandığı tam dağıtık bir yöntem

önerisi sunulmuştur. Bu yöntem yapılandırılmamış ağlarda ikili gruplar halinde ortalama

yöntemi ile ağ boyutu tahminini kullanarak sık bulunan öğeleri tespit eden ilk yöntemdir.

İkinci olarak, algoritmanın sonlandırılması için pratik yakınsama yöntemi sunulmuştur. Bu

yöntem ile düğümler yerel durumlarındaki değişimleri değerlendirerek, diğer düğümlerden

bağımsız olarak yakınsama kararı alırlar. Ayrıca, PeerSim simülatörü ile elde edilen kap-

samlı sonuçlar kullanılarak önerilen yöntemin verimliliği, ölçeklenebilirliği ve uygulanabilirliği

ölçülmüştür. Son olarak, uyarlanmış Push-Sum ile ProFID yöntemleri karşılaştırılmıştır.

Bu karşılaştırma sonuçlarında, ProFID hem doğruluk hem de ölçeklenebilirlik açısından

uyarlanmış Push-Sum yöntemine göre daha iyi sonuçlar vermiştir.

v

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Öznur Özkasap for her great support, encour-

agement, and understanding as well as her stimulating ideas. Besides my advisor, I am also

grateful to members of my thesis committee for their valuable and insightful comments.

Special thanks to my colleagues Yusuf Sahillioglu (for his motivating acts and mimics),

M. Ali Yatbaz (for his motivating jokes), C. Goktug Gurler (for his motivating ideas), Burak

Gorkemli (for his motivating life experience), Görkem Saygılı (for his motivating friendship),

and many others in College of Engineering.

I am sincerely and heartily grateful to my future wife, Sevinç Tekin, for her moral

support she showed me throughout my dissertation writing. I am sure it would have not

been possible without her support.

My deepest gratitude goes to my family for their unflagging love and support throughout

my life. My father, Yunus Çem, has always supported me in pursuit of my dreams and

motivated me from an early age. My mother, Nazife Çem, is the most altruistic mother

in the world and she has done her best, and I am sure she will; this dissertation would be

impossible without them.

The financial support of the Turkish National Science Foundation (TÜBİTAK) is also

sincerely acknowledged.

Finally, I offer my regards and blessings to all of those who supported me in any respect

during the completion of my thesis.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Chapter 1: Introduction 1

1.1 Scope . 2

1.2 Contributions . 3

1.3 Overview . 3

Chapter 2: Related Work 5

2.1 Aggregate Computation . 6

2.1.1 Gossip-based aggregate computation 7

2.1.2 Hierarchical aggregate computation 11

2.2 Threshold Mechanism . 12

2.2.1 Absolute Threshold . 13

2.2.2 Relative Threshold . 14

2.3 Frequent Item Set Discovery (FID) . 14

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 16

3.1 System Model . 16

3.2 Problem Statement . 17

3.2.1 Illustrative Example . 17

3.3 Algorithm . 18

3.4 System Size Estimation . 20

3.5 Atomic Pairwise Averaging . 22

3.5.1 Illustrative Example of a Non-atomic Pairwise Communication 24

3.5.2 Buffer Mechanism for Atomic Pairwise Averaging 25

vii

3.5.3 Deadlock Prevention . 26

3.6 Convergence Rule . 28

3.7 Discussion of Analytical Findings . 30

3.8 Threshold Mechanism . 32

Chapter 4: Performance Analysis 34

4.1 Experimental Setup . 34

4.1.1 P2P Network Simulators Review . 34

4.1.2 PeerSim: A Peer-to-Peer Simulator . 36

4.1.3 ProFID in PeerSim . 37

4.2 Performance Metrics . 37

4.3 Efficiency of Atomic Pairwise Averaging . 39

4.3.1 Scalability . 39

4.3.2 Effect of fan-out . 40

4.3.3 Link failures . 40

4.4 Efficiency of ProFID . 41

4.4.1 Simulation methodology . 41

4.4.2 Effect of convergence parameters . 42

4.4.3 Effect of average degree . 43

4.4.4 Effect of mms . 46

4.4.5 Gossip Target Selection . 46

4.4.6 Threshold Mechanism . 48

Chapter 5: Comparison with Push-Sum Protocol 53

5.1 Adaptive Push-Sum Protocol . 53

5.2 Comparison Results . 54

Chapter 6: Conclusion and Future Work 57

Bibliography 60

Vita 66

viii

LIST OF TABLES

1.1 Usage of FID in some applications . 2

3.1 Parameters of distributed movie database example 19

3.2 Algorithm parameters . 22

4.1 Commonly used network simulators . 35

4.2 Default parameter values . 39

4.3 Simulation parameters used in the analysis of ProFID 42

4.4 Statistical measurements and their meanings 50

4.5 Statistical measurement results of different threshold techniques 51

ix

LIST OF FIGURES

2.1 Subproblems of FID problem. 5

2.2 Communication styles in gossip-based approaches 8

2.3 Pairwise update using stepwise parameter . 11

2.4 Threshold types: Regular and Lahiri’s . 13

3.1 Sample three peers with local frequencies of movie items queried/searched . . 18

3.2 Peer State Diagram . 20

3.3 Illustration of need for atomic pairwise averaging 24

3.4 Circular Wait: 2 Peer Case . 27

3.5 Circular Wait Scenario . 27

3.6 Peer Convergence State Diagram . 29

3.7 Centered threshold . 33

4.1 PeerSim Architecture . 36

4.2 ProFID Architecture . 37

4.3 Convergence Time . 40

4.4 Effect of C on convergence . 41

4.5 Effect of fan-out on convergence and gossip message number 42

4.6 Effect of link drop probability on accuracy . 43

4.7 Peer degree distribution . 44

4.8 Effects of convergence parameters on convergence time and message cost . . . 44

4.9 Effects of convergence parameters on convergence time 45

4.10 Effect of average degree on convergence time and message complexity 46

4.11 Effect of mms on convergence and message complexity 47

4.12 Neighbor selection based on weighting factor 48

4.13 An example neighbor selection probability using neighbor’s degree 48

x

4.14 Neighbor selection based on degree information 49

4.15 Histogram of item frequencies . 51

4.16 Statistical measure results of different threshold techniques 52

4.17 Average number of wrong decisions (False Positives + False Negatives). . . . 52

5.1 ProFID vs. Adaptive Push-Sum protocol (time and message complexity) . . . 55

5.2 ProFID vs. Adaptive Push-Sum protocol (accuracy). 56

xi

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Recent years have witnessed an extraordinary growth of P2P network services that have

a very dynamic structure since peers may join or leave the system at any time. On the

other hand, advantages of these type of systems are the enhanced scalability and service

robustness due to their distributed architectures. Because of P2P systems’ dynamic and

scalable nature, centralized approaches are not as functional and reliable as decentralized

approaches. In decentralized approaches, there is no central administration, so peers need

to communicate with each other to perform various tasks such as searching and indexing.

Furthermore, peers may need a system-wide information such as network size, system load,

query/event counts, or mostly contacted peers for specific files in order to perform various

tasks such as load-balancing and topology optimization [1]. Database applications, wireless

sensor networks, and security applications can also make use of frequent item set discovery

(FID) service, as well as P2P applications. Hence, efficient discovery of frequent items would

be a valuable service for distributed systems.

There are various P2P applications such as cache management, search technique design,

query refinement, content mirroring, network topology optimization, denial of service attack

and internet worm detections that can utilize FID service (see Table 1.1). For example, in

cache management application, peers can put frequent item set into a cache to access them

faster. This will reduce the average access time of peers significantly, since the probability

of accessing frequent items is more probable than accessing non-frequent items in the near

future. Other than P2P networks, FID protocol can also be used in sensor networks to

detect anomalies and attacks. For example, assume that there are many movement sensors

implanted in the ground which can detect whether there is a moving object around it or not.

If most of the sensors detect a moving object, then there might be the possibility of an attack.

It can also be used to detect anomalies in atmospheric conditions via temperature sensors

Chapter 1: Introduction 2

Application Area Application Meaning of an item

Database Cache management A keyword used in queries

Sensor Networks Military attack detection A sensed soldier trying to pass

through the border

Internet Security Worm detection A similar byte sequence

Internet Security DoS attack detection A destination address of a packet

P2P Networks Most downloaded files detection A shared file in the network

P2P Networks Topology optimization A contacted peer ip address

Table 1.1: Usage of FID in some applications

[2, 3]. If average temperature of a region is measured above/below a certain threshold,

then that might be an indication of an anomaly in atmospheric condition such as fire.

Moreover, that service can be used in database applications such as maintenance [4], auto-

administration [5], and computation of iceberg (hot list) queries [6, 7, 8].

1.1 Scope

The goal of this research is to develop a distributed approach for efficient discovery of

frequent items in unstructured networks. The main motive in this thesis is to provide an

efficient and robust distributed approach which does not use any central administration as in

hierarchical approaches and global information such as network size or topology information.

FID problem can be decomposed into 3 phases. First phase is the initialization of the

local state, which has no network overhead. Second phase is the computation of aggregates of

items in the system, which is the phase that this thesis mostly focuses on. Efficient aggregate

computation is the key point in FID problem since robustness, network overhead, and speed

of the algorithm mostly depends on the efficiency of this phase. In fact, what differentiates a

FID problem from an aggregate computation problem is that it is not necessary to compute

the frequencies of all items until the end of the algorithm. Last phase is to distinguish

frequent items from infrequent items. Last phase also does not have any network cost. It is

only a local computation of information. There are various studies focusing on each phase

separately and they will be discussed in Chapter 2.

Chapter 1: Introduction 3

1.2 Contributions

We address the FID problem in unstructured P2P networks. Our contributions are as

follows:

1. We propose a fully distributed gossip-based approach named ProFID using pairwise

averaging function which is novel in frequent item set discovery problem.

2. We introduce a practical convergence algorithm. In contrast to previous works, each

peer gives local decision for convergence based on the change of updated local state.

Converged peers may list frequent items independently from other peers in the net-

work.

3. We develop a model of ProFID in PeerSim [9], and perform various experiments to

compare and measure its efficiency and scalability.

4. We develop a model of adaptive Push-Sum protocol in PeerSim and compare it with

ProFID in terms of accuracy and scalability.

1.3 Overview

In this thesis, a distributed approach using atomic pairwise averaging with gossip-based

aggregation technique to compute frequent item set is proposed. Details of the thesis are

presented in respective chapters as described here:

Chapter 2 presents the literature review. First, FID problem is divided into 2 subprob-

lems, namely aggregate computation problem and threshold mechanisms. Then, in Sect.

2.1, aggregate computation studies are discussed in detail. In Sect. 2.2, existing threshold

techniques are discussed. Finally, in Sect. 2.3, studies focusing on FID are reviewed.

Chapter 3 presents the details of ProFID. Firstly, the system model and the formal

definition of the FID problem is stated in Sect. 3.1 and 3.2, respectively. The network

details such as peer characteristics, network structure, and communication style is given.

Then, problem is defined formally with system parameters composed of local and global

parameters. Moreover, an illustrative example is given to clarify the problem and its pa-

rameters. Then, the reason of using average aggregation instead of sum aggregation is

Chapter 1: Introduction 4

explained. Then, algorithm is given with parameters and their descriptions in Sect. 3.3.

Then, system size estimation technique used in ProFID is given in Sect. 3.4. Next, the

details of atomic pairwise averaging is given as well as the convergence rule of ProFID in

Sect. 3.5 and 3.6, respectively. Next, discussion of analytical findings is given in Sect. 3.7.

Lastly, threshold determination mechanism we proposed is presented in Sect. 3.8.

Sect. 4.1 presents the details of how the network environment is set up. Then, in Sect.

4.1.1, review of popular P2P networks simulators is introduced. Then, Sect. 4.1.2 gives

the details of the PeerSim simulation environment we used to model ProFID and obtain

experimental results. Finally, in Sect. 4.1.3, we give implementation details of ProFID in

PeerSim.

Chapter 4 presents the simulation results of ProFID. First, Sect. 4.1 presents the

details of how the network environment is set up. Then, different performance metrics that

were used for analysis is presented, as well as algorithm parameters. Then, we evaluated

the effect of those metrics in both atomic pairwise averaging operation and ProFID in two

different sections. We also compared the time and message complexity of ProFID with a

well known Push-Sum protocol that we modified to adapt it to the FID problem.

Chapter 5 gives the comparison results of ProFID and adaptive Push-Sum protocols.

First, in Sect. 5.1, the details of how Push-Sum algorithm is adapted to FID problem are

given. Then, comparison results of ProFID and adaptive Push-Sum are presented in Sect.

5.2.

Finally, in Chapter 6, this thesis is concluded and future directions are stated.

Chapter 2: Related Work 5

Chapter 2

RELATED WORK

This section describes related work on FID and two sub-problems of it. Different ap-

proaches will be compared and contrasted in those fields. As illustrated in Fig. 2.1, FID

problem can be divided into two parts, namely aggregate computation and threshold mech-

anism. There exist hierarchical and gossip based approaches for aggregate computation,

and static(absolute) and adaptive(relative) schemes for threshold mechanisms. We first re-

view the studies on aggregate computation and threshold mechanisms, and then the studies

focusing on FID problem.

����������
�	
�����	��

��	�	�	�

������	���
�������

���������
����
����

���������

�	���
�����

������
����	����

�����!�
�"����!�

������������
�����#��	!��$���	�	�	�

Figure 2.1: Subproblems of FID problem.

Chapter 2: Related Work 6

2.1 Aggregate Computation

Aggregate computation is a common name for operations computing global information,

such as sum, average, max, and min, in distributed systems. It is an important step in

popular item identification, since an item is identified as popular if its global value (sum

aggregate) is above a threshold value. Aggregate computation protocols need to have the

following properties to be applicable in real networks [10]:

• Scalable : Today’s P2P networks support a large number of nodes at any specific time;

hence an aggregation computation protocol should have an efficient memory usage and

a reasonable completion time in such a large network.

• Robust : P2P networks are very dynamic and they show churn characteristics since

peers enter/leave the system whenever they want. Moreover, message loss events can

be frequent due to network characteristics. Thus, a solution should be resilient to

node failures and message losses.

• Communication efficient : A method should compute the result with small number

of messages in order to use bandwidth efficiently, and run with other applications in

parallel.

In general, there are two main approaches in aggregate computation techniques, namely

hierarchical and gossip-based. In hierarchical approaches, peers form a structure such as

a tree to communicate with each other. These approaches are generally communication

efficient but not robust against peer failures. In dynamic networks, they have the problems

of structure maintenance cost as well as the single point of failure. On the other hand,

gossip-based approaches are robust against peer and link failures. Moreover, system load is

distributed fairly and there is no single point of failure. Furthermore, result is obtained at

every peer instead of only at the initiator peer. However, communication overhead is higher

due to random communication and the result is probabilistic. The longer the protocol runs,

the better approximation is obtained.

Chapter 2: Related Work 7

2.1.1 Gossip-based aggregate computation

Gossip-based protocols emerged for the maintenance of replicated database systems [4] and

then they have been used for various applications such as reliable data dissemination [11, 12],

membership maintenance [13, 14], overlay topology construction [15, 16, 17], failure detec-

tion [18, 19], P2P streaming [20, 21] as well as data aggregation [2, 22, 23, 10, 24, 25, 26].

Even though gossip-based protocols are used in different application areas, they have some

common properties. Gossip-based algorithms consist of rounds, which are the time intervals

that nodes periodically communicate among each other. In each round, each peer contacts

one or a few nodes, called neighbors, to exchange state. The more rounds, the closer the

calculated aggregate to true aggregate. Algorithm finishes in multiple rounds, and data is

disseminated to the network like an epidemic disease. A peer infects its neighbor, and then

neighbor infects its neighbors, and so on. An advantages of this approach is its robustness

against peer failures. Removal, or a failure of a peer does not affect the dissemination speed

significantly. It is also very simple and there is no single point of failure. Moreover, all

peers have equal responsibilities; hence the system is inherently load-balanced. However,

in practice, peer capabilities such as computation power and bandwidth might be signifi-

cantly different, which may make load-balance undesirable property [27] . Consider a video

streaming application, which requires fast data dissemination 1. In such an environment,

system utilization must be maximized, instead of giving equal responsibilities to all peers.

Thus, we can infer that if time is critical, gossip-based approaches may fall behind. An-

other disadvantage of gossip-based approaches is high communication overhead since any

two neighbors may communicate multiple times during the algorithm, hence resulting in

redundant information exchange when compared to hierarchical approaches. Furthermore,

result is probabilistic in gossip-based approaches due to random communication of peers.

However, it is more convenient to use gossip-based algorithms in P2P, wireless and sensor

networks with high link-failure probability, since deterministic algorithms generally use a

hierarchy which may fail even with a little disruption such as node or link failures [23].

In gossip-based protocols, there are three communication styles used to exchange states

as depicted in Fig. 2.2:

1fast data dissemination means within a given time window in video streaming context

Chapter 2: Related Work 8

• Push based : peer chooses random peer(s) to send its state

• Pull based : peer chooses random peer(s) to receive their states

• Push-pull based : peer chooses random peers both to send and receive states.

�� �� �� ��
������	
	�

�� ��

�����������	

���������	
	�

������	
	�

���������	
	�

������
��� �������
��� �����������
���

Figure 2.2: Communication styles in gossip-based approaches

Aggregate computation operation is generally based on obtaining an information sample

and then combining the values in order to calculate global values [28]. Several researchers

have proposed decentralized gossip-based protocols to compute aggregates and most relevant

ones are described next.

Push-Sum Protocol

A well-known gossip-based data aggregation protocol is named Push-Sum, as described in

study [23]. In this study, Kempe et al. propose a push-synopses protocol for aggregate com-

putation and analyze the scalability, reliability and efficiency of their approach. According

to this protocol, each peer i initially keeps a single value s0,i = xi and a weight w0,i = 1.

It is assumed that, each peer sends (s0,i, w0,i) tuple to itself at t0. Then in each round t,

every peer performs the actions given in Alg. 1.

Push-Sum protocol computes average aggregate values in O(logN) rounds with O(NlogN)

messages, where N is the network size. Relative error is bounded by ε after O(logN+log 1
N +

log 1
δ) rounds with probability 1-δ. However, algorithm uses a single item and assumes that

all peers are aware of that item initially, meaning that even a peer, which does not have the

Chapter 2: Related Work 9

Algorithm 1: Push-Sum Protocol
Input: prevIncomingPairs: all incoming pairs at time t-1

Output: estimate: estimate of aggregate at time t

1 (ŝr,ŵr)=prevIncomingPairs;

2 st,i=
∑

r ŝr, wt,i=
∑

r ŵr

3 target=chooseUniformlyAtRandom()

4 send(1
2st,i,

1
2wt,i) /*to yourself and target*/

5 estimate= st,i

wt,i

6 return estimate

item, sets its local value to zero. This is not possible in FID problem because FID problem

has multiple items and each peer only knows its local state initially. Peers are not aware

of items that exist in the system at initial state. Hence Push-Sum algorithm converges to

true result, if and only if all peers initially have a knowledge about all items in the sys-

tem, which might be an inconvenient requirement for large networks without centralized

agents. Moreover, efficiency of the algorithm uses the assumption of uniform gossiping.

They also present a scheme to compute rank and select samples using O(log2 N) rounds

and O(N log2 N) messages.

Push-Pull Based Aggregation

Jelasity et al. [22] present a fully distributed way of calculating aggregates such as counting,

averages, sums, products, and extremal values. Instead of push based communication, they

use a push-pull based communication. Moreover, they provide a theoretical analysis of

the proposed algorithm. They restart the gossip protocol periodically in order to prevent

accumulation in estimation error. They also give both theoretical analysis and empirical

results of convergence of the proposed algorithm. Moreover, they analyze the effect of

overlay topology on convergence of the algorithm, and show that it effects the convergence

significantly. Hence, they use topology information while determining the termination time.

This is not practical since it may not be available at all peers.

Chapter 2: Related Work 10

Other Gossip-based Aggregation Protocols

A gossip-based protocol for computing aggregates such as min, max, sum, average, and

rank has been proposed in [10]. However, only theoretical analysis is performed without any

simulation results. At the end of the proposed algorithm, results are computed at all peers in

O(logNloglogN) rounds with message complexity O(NloglogN). Main contribution in that

study is the decrease in message cost by a small increase in round complexity. According

to their system model, each peer holds a single value and gossip rounds are synchronized.

Moreover, a node can send a message to only one node (in push-based model) or receive from

only one node (in pull-based model). Furthermore, each peer can communicate with every

other node in the network. Upper bound for a gossip message size is given as O(logN+logQ),

where Q is the range of values at the nodes. Atomicity is maintained by queuing connections

in case of multiple connection request. If queue fills up, connection requests are rejected.

Node failures are not considered, however, links and initial node crashes are assumed. In

order to compute aggregate values, clusters are formed using a coloring mechanism. Cluster

roots compute aggregate value of their own cluster. Then, cluster roots gossip among

themselves to compute global aggregate. Finally, cluster roots propagate the result back to

their cluster members.

In [25], a non-uniform gossip-based aggregate computation technique is proposed. Ac-

cording to this technique, node i has a probability of Pij to communicate with its neighbor

node j. They relate the convergence time of the gossip-based averaging with the second

largest eigenvalue of a doubly stochastic matrix. Since minimizing this quantity is a semi-

definite program (SDP), and SDPs can not be solved in a distributed environment. They

propose a subgradient method that solves the minimization problem.

Another study [26] suggests a gossip-based technique, namely Distributed Random

Grouping (DRG), for aggregate computation in wireless sensor networks with better perfor-

mance. It is local and randomized and it uses probabilistic grouping to efficiently converge

to the actual value. They give an upper-bound for the convergence time of the proposed

algorithm, as well as comparison results with other distributed algorithms. Yet, they use

the broadcasting property of wireless sensor network which reduces its applicability.

Another recent study [29] proposed asynchronous distributed protocols for average com-

putation and proved the convergence of the proposed protocol both by analytical studies

Chapter 2: Related Work 11

and simulation results deployed on PlanetLab. Proposed algorithms do not require global

coordination and converge under asynchronous timing assumptions. They use a push-pull

based pairwise communication. In pairwise updates, peers do not simply half the values,

but use a stepsize parameter γ to update local state as shown in Fig. 2.3. They also use

atomic pairwise state exchange assumption in order to calculate the average correctly. Their

algorithm sends NACK messages when a peer is waiting a reply from another peer, but re-

ceives a push (they call state) message from a peer. This may cause redundant message

exchanges and these increase message overhead.

�� ��

�
�

�
�

����������	

����
����������
�������������������	�����

�

����������������	�����

����
����������
�������	��	��������	����

�
�

�
�

�	 ��

Figure 2.3: Pairwise update using stepwise parameter

2.1.2 Hierarchical aggregate computation

In hierarchical aggregate computation, a virtual hierarchy is constructed by either giving

some tasks to some specific peers or forming an infrastructure and passing local aggregates to

upper levels till the whole aggregate values are merged at the root peer of the infrastructure.

Since the state is aggregated over a hierarchy, if a failure occurs in an upper level peer, then

all the aggregate information coming to that peer will not be able to reach the root node.

Hence, a lot of aggregation information will be lost even in the case of a single peer failure.

An approach in this category [1] forms an infrastructure from the most stable peers to

calculate the aggregate information. Another study [30] constructs a virtual infrastructure

which has some monitor nodes monitoring frequency counts of a specific stream, and a

unique root node which monitors the frequent items. Even though the aggregate information

is not calculated directly, popular items are identified by using an infrastructure to control

communication of peers. Study of [3] computes the aggregate values by giving some specific

tasks to some chosen peers in the network. A hybrid solution has been introduced in [31]

Chapter 2: Related Work 12

to compute aggregates in sensor networks, which uses strengths of both gossip and tree

aggregation protocols together.

Using a hierarchy is risky as failure in the root peers, or upper level peers in infras-

tructures or responsible peers in task-based hierarchy may cause undesirable results such

as loosing all pre-computed aggregates, and constructing the hierarchy again and again.

Hence hierarchical aggregation needs a recovery mechanism as opposed to the gossip-based

aggregation.

2.2 Threshold Mechanism

Threshold is the parameter that differentiates the aggregate computation from FID problem.

The term frequent is not very clear by itself; however, by adding a user defined parameter

called threshold , frequent items can be discriminated from infrequent items. If an item

occurs more than a threshold, then it is called frequent item, otherwise we call it as an

infrequent item. In order to discover frequent items in a set, a reasonable threshold must

be chosen. However, the term reasonable threshold has also unclear meaning and it is

user/application dependent. In most applications, determination of a reasonable threshold

value is non-trivial. Consider the problem of discovery of frequently downloaded files in

a P2P network. The term frequently downloaded is not obvious and it can be interpreted

differently by each person. Note that, discovery of mostly downloaded top-k items is much

easier, since number of files that needs to be output is known a priori. Consequently, we are

left with a term reasonable threshold in the problem of discovery of frequent items whose

value needs to be determined by considering the application.

There are several studies that use threshold mechanism in distributed systems for differ-

ent applications. In one study [3], threshold is used in monitoring applications. If an item’s

frequency exceeds the threshold, then it is monitored on the screen to inform the user. The

problem is to decide when and how frequently to inform monitor nodes in order to out-

put frequent items continuously with a minimum message overhead in the network. Other

studies [1, 30] use the threshold to discriminate frequent items from infrequent items, as

well as to prune infrequent items during algorithm to reduce communication cost. Another

study [32] uses threshold just to discriminate frequent items from infrequent items, which

is similar to our usage of threshold.

Chapter 2: Related Work 13

����������	
���

�����

��������	
���

�����

�

(a)

����������	
���

�����

��������	
���

�����

��������
			�����

�����				�
���

(b)

Figure 2.4: (a) Regular threshold (b) Lahiri’s threshold

If it is not possible to calculate the exact frequencies of items, which is generally the

case, one can determine a region named indecisive region which includes frequencies around

the threshold and helps to reduce erroneous decisions. Study [32] uses such an approach to

prevent taking wrong decisions on boundaries as shown in Fig 2.4b.

In general, determination of the threshold can be categorized into two depending on

whether it has a predetermined or a data dependent value. If the threshold is determined

independent of data, it is called absolute threshold. If the threshold is determined based on

the distribution of data, then it is called relative threshold.

2.2.1 Absolute Threshold

In absolute threshold mechanism, threshold is determined before algorithm is started and

it is commonly used in monitoring applications. The following examples are appropriate for

using absolute threshold mechanism.

• Raise an alert when the average temperature is above 60 in a region (might be an

indicator of a fire)

• Raise an alert when the total number of cars on a specific highway exceeds a certain

value. This value can be obtained after some observation and it might be different for

each highway. (might be indicator of a traffic congestion in that highway) [3]

Chapter 2: Related Work 14

2.2.2 Relative Threshold

In relative threshold mechanism, peers do not know the item distribution; hence, predeter-

mining the threshold is not possible. Peers determine the threshold after the calculation

of frequencies of items. For instance, peer may set the threshold to the average or median

of frequencies of all items it knows. Relative frequency mechanism is more appropriate in

applications in which estimation of item distributions is troublesome.

2.3 Frequent Item Set Discovery (FID)

Frequent item set discovery (FID) problem has been studied for data streams, P2P ser-

vices and network monitoring. First deterministic algorithm for data streams is proposed

in [33]. Algorithms named Sticky sampling and Lossy counting for identifying items whose

frequency exceeds a user-defined threshold value are proposed in [34]. They find approxi-

mate frequencies, and the error rate is bounded by a user-specified parameter. They also

propose an algorithm to optimize finding frequent item set in a single pass. However, if

the dataset is highly skewed, algorithm may result in high error rates. Even though their

algorithms are efficient and applicable for the discovery of frequent items in datastreams,

it is a centralized algorithm. More related to our work, [30] proposes an algorithm to find

approximate frequent items in distributed data streams. Datastreams are composed of item

occurrences with time stamps and recent items are given more importance while discov-

ering frequent items. The aim is to output approximate frequencies of items whose true

frequencies exceed a user-specified threshold. In order to accomplish that, a hierarchical

communication structure is constructed. Moreover, the concept of precision gradient is

introduced in order to minimize communication overhead . Another recent work [35] de-

scribes significant algorithms in FID in data streams and provides baseline implementations

of them. Experimental evaluation on different data sets is also performed in order to figure

out how practical their implementations are. An algorithm for the problem of distributed

monitoring of thresholded counts is proposed in [3, 36]. The goal is to monitor all items

whose frequency is above a threshold value within specified accuracy bounds. They use hi-

erarchical approach. However, since the frequent items are only available on a single node,

this work is exposed to single point of failure.

Obtaining exact frequent items with a technique named in-network filtering is investi-

Chapter 2: Related Work 15

gated in [1]. It consists of two phases called candidate filtering and candidate verification.

In order to calculate the aggregates, a tree-based hierarchy composed of only stable peers

is formed, and the most stable peer is chosen as the root of the hierarchy. This is done

to make algorithm more stable, since constructing tree-like structures is not robust against

failures. The basic idea is to form item groups and calculate the aggregates of item groups.

If item group frequency is below the threshold value, than all items in that group fails to

be a candidate, otherwise items are chosen as candidates (for being frequent item). They

theoretically show how to optimize parameters of the proposed approach such as group size,

filter size, and give the effects of parameters on the performance of the algorithm. However,

this approach is not practical and easy to deploy for large scale distributed settings.

A uniform gossip based technique for disseminating the local information of each peer is

proposed in [32]. Since they use gossiping for data dissemination, result is probabilistic as

opposed to the study of [1]. However, thanks to gossiping, there is no underlying network

structure or central control which makes algorithm simpler. In order to identify frequent

elements, a threshold mechanism is used, and by using sampling, the communication load

is decreased. Moreover, a space efficient data representation named sketch is used to store

aggregate values efficiently.

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 16

Chapter 3

PROFID: PROTOCOL FOR FREQUENT ITEM SET DISCOVERY

We propose a gossip-based fully distributed approach with pairwise averaging function

for discovering frequent items in unstructured P2P networks. Utilizing pairwise averaging

function with gossip-based aggregation and a practical convergence rule are novel features

of our approach. Due to the unstructured form of communication in gossiping, it is not

easy to prevent a local frequency of an item at a peer from being accounted for multiple

times. For this reason, either peers need to handle the duplicates in incoming gossip mes-

sages or use an aggregation function which is insensitive to duplicates. Pairwise averaging

function is the latter choice. Even though the local frequency of an item at a peer might be

accounted for multiple times, it still efficiently converges to the approximate global average

frequency of the item at each peer due to mass conservation [23]. The only assumption we

do is to perform pairwise averaging operation atomically. We used buffering and timeout

mechanisms to provide atomicity.

3.1 System Model

We consider a network consisting of N peers with unique id which have only local state

information initially. We also consider that peers form an unstructured network and they

know only a subset of other peers, called neighbors, in the network. In order to have

knowledge about system wide information, peers have to collaborate and obtain information

about all peers’ states in the network. In order to collaborate and communicate, peers

need to know the identifiers of their neighbors. This neighborhood relation determines the

topology of an overlay network. We also assume that peers may leave (intentionally or due

to failures) or join the network at any time, which is inevitable in P2P networks.

We use a pairwise communication model meaning that a peer can communicate with

only a single peer at any time. In distributed computing, communication is determined by

a time model and it can be categorized as synchronous and asynchronous. In synchronous

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 17

time model, local clocks of peers are synchronized and each peer performs operations within

the same time interval. This is actually not practical in large distributed systems due to

the variable and unpredictable message delays. In asynchronous time model, each peer uses

its local clock to perform a computation. In our case, peers communicate in rounds with a

fixed duration. However, it is not necessary to synchronize the peers’ local clocks because

peers use clocks just to perform periodic operations. Round duration just determines how

often a peer sends local state to its neighbor(s). It should be long enough (more than max

round trip time (RTT) between any two peers) to complete a push-pull communication, but

must not be too long in order to compute the result quickly. We also make the assumption

that no malicious information is given by peers that will cause algorithm to work improperly

such as modifying local state.

3.2 Problem Statement

Consider a network consisting of N peers denoted as P={P1, P2, . . . , PN} and M item types

denoted as D={D1, D2, . . . , Dj , . . . , DM}, where Dj has a global frequency gDj . Parameters

N, M, and g are system-wide information, hence they are unknown to all peers a priori.

Let each peer (Pi) has a local set of items Si ⊆ D and each local item (Dj) has a local

frequency fi,Dj such that

gDj =
N∑

i=1

fi,Dj , Dj 6∈ Si =⇒ fi,Dj = 0 (3.1)

The aim is to find (at all peers) all items with frequency above threshold T (see Eq. 3.2)

as fast as possible with low communication overhead and high accuracy.

F (T) = {Dj |gDj > T,∀j ∈ 1, 2, . . . , M} (3.2)

3.2.1 Illustrative Example

To illuminate the parameters, let’s examine how we can use FID protocol in a cache man-

agement problem. Consider three peers in Fig.3.1 representing local movie databases dis-

tributed in different countries. Items at each peer correspond to the name of movies

queried/searched by clients and frequency of each item corresponds to the number of queries

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 18

that includes the item (movie name in this case). Our system parameters for these peers can

be written as given in Table 3.1. After running a FID protocol with threshold 8000, all the

movies that are queried more than the threshold are computed. In this example, protocol

needs to output Avatar and The Hurt Locker. Peers may actually utilize this information to

cache frequently queried/searched movies in order to access them in a shorter time because

clients will probably query these movies more than others in future, at least for a period of

time.

����� ����	�
��
�������
������ ����� ������
�����	���������� ������
��������� ������� ��!��
"#��� ����� ���� ����

���� ����	�
��
�������
�����	���������� ��$���
������� ������
"#��� ����� ����

���� ����	�
��
�������
������� �����
�����	���������� �����
��������� ����� ��$��

%� %�%!

Figure 3.1: Sample three peers with local frequencies of movie items queried/searched

3.3 Algorithm

Being a frequent item is directly related with the global frequency of that item and a

straightforward way of calculating the global frequency of an item is to use a sum aggregate

function. However, computing a global frequency using a sum aggregate function is prob-

lematic since local values of peers may contribute to the sum more than once during the

computation due to the random nature of communication in gossip-based algorithms. For

this reason, we propose an approach that uses atomic pairwise average aggregate function

along with a network size estimation to compute global frequencies of items.

Atomic pairwise averaging function computes the global average of an item Dj , gaDj ,

which is defined as follows:

gaDj =
1
N

N∑

i=1

fi,Dj (3.3)

Then, network size estimation is used to obtain the global values of items:

gDj = N · gaDj = N(
1
N

N∑

i=1

fi,Dj) (3.4)

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 19

Global parameters (unknown a priori):

P = {P1, P2, P3} , N=3

D = {Avatar,DisasterMovie, TheHurtLocker,EpicMovie} , M=4

g(Avatar) = 10000, g(DisasterMovie) = 700, g(TheHurtLocker) = 9400, g(EpicMovie) = 70

P1’s local parameters:

S1 = {Avatar, TheHurtLocker,DisasterMovie, EpicMovie}
f1,Avatar = 4500, f1,TheHurtLocker = 3200, f1,DisasterMovie = 100, f1,EpicMovie = 20

P2’s local parameters:

S2 = {TheHurtLocker,Avatar,EpicMovie}
f2,TheHurtLocker = 6000, f2,Avatar = 5000, f2,EpicMovie = 50

P3’s local parameters:

S3 = {Avatar, TheHurtLocker,DisasterMovie}
f3,Avatar = 500, f3,TheHurtLocker = 200, f3,DisasterMovie = 600

Table 3.1: Parameters of distributed movie database example

In general, gossip algorithms can be divided into 3 parts in terms of decisions regarding:

1. To whom gossip messages to send

2. What to perform when a message comes in

3. When to stop (convergence rule)

In ProFID, all of those decisions are taken locally, and peers do not know any system wide

information such as topology and network size, initially. Algorithm 2 shows initialization,

periodic send operation and handling of incoming messages. First, peers setup their local

states, and a single peer, namely initiator, adds an item to its local state with unique

id (ui) and frequency 1. Then, gossip rounds start and each peer sends its state to one

of its neighbors periodically. The algorithm continues until every peer decides that it has

converged. Descriptions of algorithm parameters are given in Table 3.2 to better understand

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 20

the algorithm. Moreover, we provide a state diagram of a peer in Fig. 3.2 to clarify how a

peer reacts to certain events during a gossip round.

���������	
���

�����
	������

���
�������	�����
���	�����

��
������������

������������

����	�����		��� ������������

���������� ����	��
��
��
��
�

�
�
�
�
��
�
��
�
��

!
��
��
�
��
�
�
�
��
�
�

Figure 3.2: Peer State Diagram

In the rest of this chapter, the details of ProFID will be explained. First, system size

estimation technique used in ProFID is explained in Sect. 3.4. Then, atomic pairwise

averaging operation is described in Sect 3.5. Then, convergence rule is explained in Sect.

3.6. Finally, threshold mechanism used to distinguish frequent items from infrequent items

is given in Sect. 3.8.

3.4 System Size Estimation

System size N is a global parameter, so it is not known by any peer a priori and it also

needs to be calculated. There are different approaches for network size estimation. Three

candidate ones are Sample&Collide [37], Hops Sampling [38], and Gossip-based aggregation

[2]. A comparative study of those approaches are also done in study [39], using different

performance metrics such as scalability, accuracy, message overhead,reactivity to changes.

The results show that even though the message overhead is high in gossip-based aggregation,

it is the only algorithm in which result is computed at each node as opposed to others in

which result is computed only at the initiator peer. Hence, there is no need for a broadcast of

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 21

Algorithm 2: ProFID: Protocol for Frequent Item Set Discovery
Input: fan− out, mms, ui, convLimit, ε, T , S

Output: F : set of frequent items

Initialize

if Initiator then

S.add(ui,1);

converged=false; prevSizeEstim=0; convCounter=0;

1.Gossip(periodically do)

if !converged then

targets = getNeighbors(fan− out);

for i=1:fan− out do
send(push, message(S,mms), targets(i));

2.Handle incoming messages

messg=accept();

if messg.Type == push then
avg = AVERAGE(S, messg); S.update(avg); send(pull, avg, sender)

else if messg.Type == pull then

S.update(messg);

reciprocalSizeEstim=messg.getVal(ui);

if ISCONVERGED(convLimit, ε) then

converged=true;

Query

F ={item | ∀ item ∈ S, S.getAvgFrequency(item)* 1
reciprocalSizeEstim ; > T };

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 22

Parameter

Name

Usage Description

T Threshold Mechanism threshold value used to distinguish frequent

items from infrequent items

fan-out Aggregation Protocol number of peers to whom gossip message is sent

at each round

mms Aggregation Protocol maximum gossip message size a peer can send.

ui Aggregation Protocol unique item used in network size estimation

convLimit Convergence Rule number of successive rounds a peer needs to sat-

isfy epsilon condition (see Sect. 3.6) in order to

converge

ε(epsilon) Convergence Rule parameter used to determine epsilon condition

Table 3.2: Algorithm parameters

system size estimation information. In ProFID, we use gossip-based aggregation technique

to compute the system size both due to its stated advantage and easily adaptable properties.

It is easily adaptable because ProFID already uses gossip-based aggregation technique to

compute the global frequencies of items. In order to calculate system size an initiator peer

adds a unique item type named ui in its local item set. The local frequency of this item is

set to 1. Since only one peer has that unique item, average frequency of that item would

converge to 1/N at the end of the algorithm.

3.5 Atomic Pairwise Averaging

In order to calculate global frequencies of items, we use pairwise averaging function with

network size estimation. Our pairwise averaging function uses push-pull scheme meaning

that a peer sends its state (in a push gossip message) to a target peer and the target

peer performs averaging operation using its own state and incoming state, then replies the

average (in a pull message) back to the sender. Then, sender updates its state. By this

way, a single push-pull based pairwise averaging operation is completed. In order to prevent

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 23

misleading calculations this operation must be performed atomically.

During atomic pairwise averaging, a peer resides in different states as follows: (see Fig.

3.2).

• Timer-interrupt : With a timer-interrupt, either a new epidemic round of a peer starts

and the peer sends push gossip message, or current round ends.

• Receive push: Upon receiving a push gossip message, a peer may perform one the

following three operations:

– If the peer is waiting for a pull message from any other peer, then incoming push

gossip message is buffered. Details of buffering mechanism will be discussed in

Sect. 3.5.2.

– If the peer receives a push gossip message from a peer it waits a pull gossip

message from, deadlock case may occur (see Fig. 3.4). In order to prevent this,

the peer performs atomic pairwise averaging operation and updates its state, but

it does not reply with a pull gossip message. Details of deadlock cases will be

discussed in Sect. 3.5.3.

– Otherwise, the peer performs atomic pairwise averaging, updates local state and

sends the reply back to the sender (of push gossip message) in a pull gossip

message.

• Receive pull : Upon receiving a pull gossip message, a peer either performs an atomic

pairwise averaging and updates its state, or buffers the message.

• Send push: Upon sending a push gossip message, a peer starts waiting for its corre-

sponding pull gossip message. Until receiving the corresponding pull gossip message

(or timeout event), peer cannot perform any other operation such as sending another

push gossip message or handling an incoming push gossip message. It puts them into

the buffer, instead. The peer either gets the corresponding pull gossip message in time

and updates its state, or timeout occurs. In both cases, the peer immediately checks

the buffer for the next operation. If fan-out is greater than 1, next push message is

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 24

sent since sending a push message has higher priority than responding to an incoming

message.

• Send pull : A pull gossip message is sent immediately after incoming push gossip

message is read from the buffer and averaging operation is completed. (see the last

operation in Receive push)

3.5.1 Illustrative Example: The Result of a Non-atomic Pairwise Communication

Fig. 3.3a illustrates the order of an example of push-pull based non-atomic pairwise averag-

ing operation. Assume that system has a unique item named item1 with global frequency

10 and initial local frequencies are f1,item1=3, f2,item1=5, f3,item1=2. The updated local

frequencies of item1after each operation shown in Fig. 3.3b. When states of all peers are

considered after operation 4, Eq. 3.1 does not hold any more, which puts the system in

an inconsistent state. Note that result converges to 4 instead of 10
3 . Thus, even though no

addition/removal of item, or loss of a message occurs, global value of item changes, which

contradicts with mass conservation [22].

�� ��

��

�

�

�
�

(a)

����������	�
���
������������������������������������
������������������	
�������
��������������������������������������
����� �
����� �

����� ���

����������	�
����
������������������������������������
������������������	
�������
��������������������������������������
����� ���
����� �
����� �

��
����������	�
����
������������������������������������
������������������	
�������

���������������������������������������
����� �
����� �
����� �

�

����������	�
����
������������������������������������
������������������	
�������

���������������������������������������
����� �
����� �
����� �

�

(b)

Figure 3.3: (a)Illustration of operation order of a non-atomic pairwise averaging (b)States

of peers after each operation

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 25

3.5.2 Buffer Mechanism for Atomic Pairwise Averaging

This section is devoted to the details of how the atomicity is achieved in pairwise averaging

using buffering mechanism.

In a distributed environment, the main issue is to control the interaction and order of

events because of independent terminals with different computing power and capabilities.

Besides that, network layer is also problematic in terms of control of events due to varying

latencies and message drops. Therefore, we can not control the message order or atomicity in

the network layer. Instead, we need to use either a TCP (Transmission Control Protocol) like

retransmission mechanism or a buffer mechanism to ensure atomicity in pairwise averaging

in application layer. Retransmission causes high communication overhead, so we use a

buffer mechanism in such a way that whenever a peer sends the first push gossip message

to another peer, all the requests coming into that peer or other push gossip messages that

will be sent in this round (in case of fan-out>1) are buffered until the reply of the first push

gossip message reaches. After the arrival of the reply of the first push gossip message, second

push gossip message is read from the buffer if fan-out is larger than 1. After completing to

send all the push gossip messages, peer checks the buffer for incoming push gossip messages.

If there are any, peer computes the average of local and incoming gossip message state and

sends the reply (in a pull gossip message) back to the sender. Furthermore, to deal with

message losses, we use a timeout mechanism. If the response of a message does not arrive

within a predefined time period, peer stops waiting for the response in order not to wait

infinitely for the response in case of message losses.

For the example in Fig. 3.3, we may perform operations atomically using buffering as

follows: P1 sends push gossip message to P2 (event 1) and starts waiting for the correspond-

ing pull message. Push gossip message came from P3 (event 2) is not replied immediately,

but buffered. Whenever the reply comes into P1 from P2 (event 3), P1 updates its state,

then removes and performs the next event in the buffer which is sending pull message to P3.

After sending the pull message, P3 receives the pull message and updates its state (event

4). By means of buffering and timeout mechanisms, we perform push-pull based pairwise

averaging operation atomically.

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 26

3.5.3 Deadlock Prevention

Maintaining atomicity may cause deadlock since peers may wait each other infinitely, which

is known as circular wait [40]. In ProFID, there can be two cases of deadlock. First,

two peers may send push gossip messages to each other simultaneously (Fig. 3.4). Second,

multiple peers may send push gossip messages simultaneously in such a manner that a circle

is constructed (Fig. 3.5). We handle these 2 cases differently because in the former case we

don’t need a circle detection mechanism, we only need the sender information of incoming

message.

There are two schemes to prevent deadlock: deadlock avoidance and deadlock prevention.

We use the latter scheme because former scheme requires a central administration that

will decide which process should wait using their resource necessities. In order to prevent

deadlock, at least one of the four conditions should not hold: mutual exclusion, hold and

wait, no preemption, and circular wait. We solved the deadlock problem by preventing

circular wait if only 2 peers are involved in circle. This is achieved if both peers perform only

averaging operation using local state and incoming state without sending a pull message back

to the sender. Peers can detect this deadlock case without any communication overhead.

A peer just needs to check if it receives a push gossip message from the peer it waits for a

pull message. If more than two peers are involved in a circular wait, then we use timeout

mechanism to preempt waiting peers. If timeout occurs, peers cancel the current operation

and continue with the next operation in their buffer.

Consider a case that a peer sent a push gossip message and waits for a pull message.

However, push gossip message is lost and did not reach the destination peer. In that case,

pull message will never reach to the peer that sent push gossip message, and it will wait

infinitely. This kind of problems are actually very common in network layer and they are

handled by a timeout mechanism. It is a mechanism such that a peer sending a message

waits for at most a predefined time interval. If response comes within that period, peer

continues with the next task. Otherwise, timeout occurs and peer stops waiting for the

reply. Loss of a push gossip message is not the worst case when compared to late arrival or

loss of pull, since in case of a push gossip message loss, no update occurs at each side of the

pairwise averaging operation. This will just increase the convergence time but will not drop

the accuracy. If push gossip message is not lost, but either pull message is lost or does not

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 27

arrive in time, timeout will occur on the push-sender peer. This is the worst case scenario

because only pull-sender peer updates its state in a pairwise averaging operation. This will

cause a drop in accuracy since mass conservation fails. In case of a timeout, a peer checks

the buffer if there are any waiting operations.

��������

�� � �

���
���

��������	
����������
���

��	
����������
�����

� �

Figure 3.4: Circular Wait Scenario (for 2 Peers)

����

��

��
����

���
���

��
����

���

��
����

��
����

� � � � � �

���� ���� ���� ���� ����

Figure 3.5: Circular Wait Scenario: Each peer is waiting for a pull message to send reply.

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 28

3.6 Convergence Rule

In ProFID, peers use parameters ε and convLimit to determine whether the algorithm

converged and frequent item set results are available. The idea of convergence is simply to

compute similar frequency values within at least a time length of convLimit gossip rounds.

Here, computing similar frequency means getting two average frequency estimation values

that change at most ε percentage in consecutive rounds of algorithm (see Alg. 3). When

a similar frequency is calculated, then a counter ,initially zero, is incremented. Otherwise,

counter is reset to zero. Whenever, the counter reaches convLimit value, then peer decides

that algorithm converged and can use frequent item set in a required service. As noted in

[22], initial distribution of an item does not affect the convergence speed, hence we use ui

value’s average frequency estimation to determine the convergence of the algorithm.

Convergence Rule. Let θt be the average frequency estimation of item ui at time t.

Epsilon condition check is performed at each gossip round and convCounter, starting from

zero, is set accordingly. Whenever the convCounter reaches to convLimit, then peer decides

that algorithm has converged.

Definition 3.1 Epsilon condition: A peer satisfies this condition if current frequency of

ui at that peer changes at most ε percentage after the last gossip.

convCounter =

convCounter + 1, if 100| θt−θt−1

θt−1
| ≤ ε,

0, otherwise,

Algorithm 3: ISCONVERGED: the convergence rule for ProFID.
Input: convLimit, ε, θ

Output: converged: boolean representing convergence

if ε ≥ (θ - prevSizeEstim)/prevSizeEstim && θ != 0 then
convCounter++

else
convCounter = 0

prevSizeEstim = θ;

return converged || convCounter==convLimit

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 29

In order to prevent misleading convergence cases at the beginning of the algorithm due

to the similar initial states of neighbors, we keep convLimit not less than a certain value so

that peers can not decide to converge in the early stages of the algorithm.

���������	
��
�����������

�
�����������	
����

�����	
��
�������������	���� ���

��

Figure 3.6: Peer Convergence State Diagram

Convergence check of a peer is performed after each receipt of push/pull gossip messages.

Upon receiving a push/pull gossip message, peer uses convergence rule to decide whether it

converged or not as shown in Fig.3.6, and takes actions accordingly. If a peer decides that it

converged, it stops sending push gossip messages to its neighbors, yet it continues to reply

incoming push gossip messages in order to contribute other peers’ convergence. Replying

push gossip messages may continue a few more rounds (∼10 rounds) since peers converge

approximately at the same round. Once a peer is converged, it stays at converged state
1. Then, information is sent to the application process that needs frequent items in the

system. Otherwise, peer continues sending and receiving gossip messages.

Since we design a fully distributed protocol, each peer makes a local decision about

convergence. In terms of state exchanges, our gossip operations for averaging are similar to

[22]. However, termination of the algorithm in that study uses topology information which

may not be available at all peers initially. On the other hand, ProFID uses no system-wide

information which makes it more practical, less costly, and easy to deploy.

As another related work, [23] gives a probabilistic upper bound on the number rounds

for all peers to converge. This upper bound depends on network size and accuracy. It is

shown theoretically that the more the algorithm runs, the more probable to get correct

1a converged peer can not change its state to not converged state since convergence means result was
computed and sent to application process

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 30

estimations. However, the problem in the proposed algorithm is that peers may not have

knowledge about all items in the network, which will cause accuracy drop in the algorithm.

3.7 Discussion of Analytical Findings

Convergence of the gossip-based atomic pairwise averaging aggregation is discussed in this

section. A peer periodically exchanges its state with neighbors until ui item in that peer

does not change more than ε% in convLimit consecutive rounds. Then, in order to calculate

the frequencies of items the average frequencies of items is multiplied by network size, as

discussed in Sect. 3.5. However, can one make sure that algorithm converges to the correct

result? The answer is ‘no’ since gossip based approaches always give probabilistic result

and in order to get 100% accurate result, algorithm needs to run indefinitely which is not

practical. Gossip-based algorithms are expected to give at most an upper bound on the

error.

Another question is how the result converges to the global average by performing atomic

pairwise averaging operations with other peers. Consider a network with a single item which

is distributed to multiple peers. Let’s define a vector, w, whose elements represent the local

frequencies of that item on each peer [22].

w0 = w0,1 + w0,2 + · · ·+ w0,N (3.5)

where wi,j is the frequency of an item on peer j at round i. Consider also a function,

avg which takes w as an input and replaces two random elements with the average of

those elements in place N times as described in Alg. 4 (see also Eq. 3.6). We, for simplicity,

analyzed the uniform gossiping meaning that every peer may communicate with every other

peer.

Algorithm 4: avg operation
Input: w: input vector

for k = 1 to N do
i,j ← choose two random elements from [1,N]

wi ← wj ← wi+wj

2

return w

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 31

wi+1 = avg(wi) (3.6)

Note that avg operation is performed atomically in ProFID , and hence performing

multiple avg operations in a single round does not create a problem; on the contrary, it

speeds up the convergence. avg function does not change the mean of the vector elements.

w0 = wi (3.7)

where wi, mean of the vector elements at round i, is

wi =
1
N

N∑

k=1

wi,k (3.8)

and the variance of values at round i is

σ2
i =

1
N − 1

N∑

k=1

(wi,k − wi)2 (3.9)

Eq. 3.9 implies that if σ2
w is zero, each peer keeps the correct average value. Hence, the

aim is to minimize σ2
w. For the purpose of analysis, centralize the initial vector. In other

words, remove the mean of the vector elements from each element.

w0,k = w0,k − w0, k = {1, 2, · · · , N} (3.10)

This is just to simplify the following equality:

E(σ2
w) =

1
N

N∑

k=1

E((wk − w0)2) (3.11)

If the elements are independent random variables with zero mean, then we can rewrite

Eq. 3.11 as:

E(σ2
w) =

1
N

N∑

k=1

E(w2
k) (3.12)

Now, using Eq. 3.10 and 3.12, it can be concluded that if expected value of σ2
w goes to

zero that means variance of vector elements tend to zero and all elements will converge to

the actual average w0.

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 32

Lemma. Let w’ be the vector obtained after replacing wi and wj by wi+wj

2 in vector

w. If w is composed of uncorrelated random variables with mean 0, then expected value of

reduction in σ2
w is given by

E(σ2
w − σ2

w′) = E(
1

N − 1

N∑

k=1

w2
k −

1
N − 1

N∑

k=1

w
′
k

2
) (3.13)

= E(
1

N − 1

N∑

k=1

(w2
k − w

′
k

2
)) (3.14)

= E(
1

N − 1
(w2

i − 2(
wi + wj

2
)2 + w2

j)) (3.15)

= E(
1

N − 1
(
w2

i + w2
j

2
)) (3.16)

=
1

2(N − 1)
E(w2

i) +
1

2(N − 1)
E(w2

j) (3.17)

Note that Eq. 3.16 is obtained from Eq. 3.15 using the fact that w contains uncorrelated

random variables, and hence satisfies

E(wiwj) = E(wi)E(wj) = 0 (3.18)

Moreover, note that obtained result is always positive so each avg operation will reduce

the variance; therefore, variance will be approxiamtely 0 if avg operation is applied ‘enough’

number of times. It is why this operation is seen as elementary variance reduction step in

[22]. Remember that avg also preserves the sum; hence, considering those two properties,

it can be concluded that each value in the vector will approximately converge to the actual

average.

3.8 Threshold Mechanism

Threshold is the parameter that is used to differentiate the frequent items from infrequent

items. To the best of our knowledge, two types of thresholds have been used in literature

for FID problem. First is regular threshold in which there is a single value that separates

frequent item region from infrequent item region (see Fig. 2.4a). Second is Lahiri’s threshold

in which an indecisive region is used to prevent taking wrong decisions on boundaries. The

idea behind this approach is that making a wrong decision is worse than not making any

decision. If the frequency of an item is larger than the maximum value in that region than

Chapter 3: ProFID: Protocol for Frequent Item Set Discovery 33

that item is considered as frequent. On the other hand, if item frequency is less than the

minimum value in that region it is considered as an infrequent item. Finally, if it is in

indecisive region, algorithm does not give any decision. Note that, if ∆ is 0, then this

technique becomes a regular threshold. By using an indecisive region, we relax the threshold

and prevent a strict decision rule. Consider an example with a threshold 10000 and assume

that there are two different items with frequencies 9995 and 10005 respectively. With a

strict decision rule, we would identify the former as infrequent, while the latter as frequent,

which does not seem to be reasonable because such a small difference should not cause a

distinct decision.

����������	
���

�����

��������	
���

�����

��������
			�����

� ����				�����				�
��� ���

Figure 3.7: Centered threshold

We propose another threshold technique, namely centered threshold, which is similar to

Lahiri’s threshold technique but indecisive region is shifted to the right so that threshold is

centered as shown in 3.7. We compared the accuracy of all three techniques. As expected,

centered threshold performs better, since in ProFID estimated frequencies might be more

or less than the actual frequency of item due to our convergence rule (see details in Sect.

4.4.6).

Chapter 4: Performance Analysis 34

Chapter 4

PERFORMANCE ANALYSIS

We evaluated the efficiency of atomic pairwise averaging and ProFID protocol through

extensive simulations. We used various performance metrics in our analysis. Furthermore,

we compared ProFID with a well known Push-Sum protocol which we modified to adapt it

to FID problem. We used PeerSim simulation environment to model ProFID and adaptive

Push-Sum protocols since it is more scalable than most of the simulators. It also provides

transport layer configuration so that we can test the robustness of algorithms in case of

peer or message losses. Moreover, it supports both structured and unstructured networks.

The most attractive property of PeerSim is its extensible and pluggable components which

makes it easy to come up with a new protocol.

We evaluated the behavior and performance of ProFID through extensive large-scale

distributed scenarios (up to 30,000 peers) on PeerSim. We tested different topologies such

as scale-free Barabasi-Albert topology, random topology, and transit stub topology with

average degree around 10 in the experiments. During experiments, network is static unless

otherwise stated. All the simulation data points presented in graphs are the average of 50

experiments unless stated otherwise.

4.1 Experimental Setup

In this chapter, P2P simulator used to model ProFID, namely PeerSim [9], is introduced

and explanation of why this simulator is found to be favorable among others is given. Then,

in Sect. 4.1.2, we explain the simulation environment. Next, in Sect. 4.1.3, we discuss how

we implemented ProFID and configured the overlay network in PeerSim.

4.1.1 P2P Network Simulators Review

There are several network simulators used in P2P simulations. In order to choose the proper

simulation environment, we used the following set of criteria [41]:

Chapter 4: Performance Analysis 35

Name Url Language

ns-2 http://www.isi.edu/nsnam/ns/ C++

PeerSim http://peersim.sourceforge.net/ Java

P2PSim http://pdos.csail.mit.edu/p2psim/ C++

Query-Cycle Sim. http://p2p.stanford.edu/ Java

Narses http://sourceforge.net/projects/narses Java

Neurogrid http://www.neurogrid.net/ Java

GnutellaSim http://www-static.cc.gatech.edu/computing/compass/gnutella/ C++

GPS http://www.cs.binghamton.edu/wyang/gps/ Java

myNS http://www.cs.umd.edu/suman/research/myns/index.html C++

Overlay Weaver http://overlayweaver.sourceforge.net/ Java

DHTSim http://www.informatics.sussex.ac.uk/users/ianw/teach/dist-

sys/dht-sim-0.3.tgz

Java

VPDNS http://p2p.cs.mu.oz.au/software/vpdns/ C

PlanetSim http://planet.urv.es/planetsim/ Java

Table 4.1: Commonly used network simulators

• Simulation Architecture : the design and functioning of the simulator, how node

behaviors are simulated.

• Underlying Network Simulation : which properties of the network layer can be simu-

lated.

• Scalability : how the protocol scales to high number of nodes (thousands of nodes).

• Statistics : how valuable and informative the output is.

• Usability : how easy to get used to the simulator, if the simulator is well documented.

We took commonly used P2P network simulators into consideration as stated in study

[41]. Two of the well known simulators were ns-2[42] and PeerSim[9]. A list of simulators

can be found in Table 4.1. Especially, ns-2 is the best known and most frequently used

network simulator; however it is designed to perform network layer simulations and not

scalable to thousands of peers.

On the other hand, PeerSim is specifically designed for epidemic algorithms but it can

also be used for other protocols as well. Moreover, it can scale up to 106 peers and it is

Chapter 4: Performance Analysis 36

modular so that new components can be plugged without modifying existing infrastructure.

4.1.2 PeerSim: A Peer-to-Peer Simulator

We used PeerSim simulator to build the model for ProFID. It is a java-based modular and

very scalable simulator and gives us a way to access and configure transport layer properties

such as message loss and delays. It is also highly pluggable and extendable so new protocols

can be added easily 4.1. User can also create components to gather statistics about the

network at any time, which eases the analysis part of our algorithm. Some of the well known

network topologies such as ScaleFreeBA (Barabasi-Albert Model), Watts-Strogatz Model,

star, and random topologies are ready to use, as well as a tree structure. Configuration of

parameters such as network size, gossip round length, and link failure probability are easily

done using a configuration file.

�������

�	
�
��
��� ��	��������

������

������

������

��������

������

�
�
�

������

����������

����
����������

���������	

�	���
��������	�����

���������

�
	�����

�
� ���
�	�!	"
	�

��	#
" ���
�	�$
��

Figure 4.1: PeerSim Architecture

There are two types of simulation engines in PeerSim: cycle driven and event driven.

In Cycle driven engine, up to 106 peers can be simulated. However, there is no transport

layer simulation and messaging. It is specifically designed to schedule periodic behaviors

of epidemic algorithms. Event driven engine is more complex and realistic. It supports

transport layer simulations and it can scale up to ∼ 3x105 peers. It can also be used

together with cycle driven engine to model more complex epidemic algorithms with ease.

Chapter 4: Performance Analysis 37

4.1.3 ProFID in PeerSim

PeerSim is highly configurable and new protocols can be plugged easily without modifying

the infrastructure. ProFID has 3 main mechanisms we plugged into PeerSim as shown

in Fig. 4.2: Atomic Pairwise Averaging, Convergence Rule, and Threshold Mechanism.

Application process requests frequent items which triggers the ProFID, and atomic pairwise

averaging operations start via push-pull communication with other peers. Then, whenever

the peer converges, it stops sending push message and continues to communicate just by

answering requests of other peers. After convergence, computed average aggregate values

are compared with threshold and application process is informed about the frequent item

set.

����

����������	
�������

������
�������

������	�

��	���	�
���

��������
����	���

�������

��������� ����

����

����	�

���
��

Figure 4.2: ProFID Architecture

4.2 Performance Metrics

We use various performance metrics to measure the efficiency and accuracy of atomic pair-

wise averaging, threshold mechanism, and ProFID.

We consider the following performance metrics in our analysis:

• Accuracy: This metric measures how approximate the estimated result to the actual

result. We analyzed the types of accuracy: accuracy of average item frequencies,

accuracy of items being frequent or not.

Chapter 4: Performance Analysis 38

• Number of rounds (to converge): This performance metric measures how fast the

algorithm converges. The effects of convergence parameters, average degree of nodes,

and number of nodes on convergence speed have been analyzed.

• Messages sent per peer: This performance metric measures the energy efficiency

of the algorithm, the effects of convergence parameters and average degree of nodes

on energy efficiency have been analyzed.

• Percentage of converged peers: This metric is another measure of how fast algo-

rithm converges. It shows the percentage of peers that converged during each gossip

round. The effects of this metric has been analyzed in terms of convergence parameters

and network size.

We also analyzed the effects of following parameters:

• epsilon and convLimit: The effects of convergence parameters have been analyzed

in terms of number of rounds to converge and average number of messages sent per

peer. Relative error has also been analyzed for different combination of convergence

parameters.

• mms: This parameter determines the size of a single gossip message. Its effects on

convergence speed and network overhead have been analyzed.

• C: This parameter is the convergence time constant.The effects have been analyzed

in terms of network size and percentage of peer that converged.

• fan-out: This parameter defines the number of peers to whom gossip message will be

sent at each round, its effects on convergence speed and C value have been analyzed.

• T: Threshold parameter is used to differentiate frequent items from infrequent items

and the effects of different threshold mechanisms on accuracy have been analyzed.

Chapter 4: Performance Analysis 39

4.3 Efficiency of Atomic Pairwise Averaging

We evaluate the performance of pairwise averaging function by excluding the convergence

rule of ProFID. In this analysis, a peer compares the actual averages of items with its esti-

mated averages while deciding whether it converged or not. This provides better evaluation

of the performance of pairwise averaging. During the analysis of efficiency of pairwise av-

eraging, we use a random topology with average degree around 10. The default values of

algorithm parameters are shown in Table 4.2, unless stated otherwise. Number of items in

the network is uniformly distributed between 1 and 1000, and they are distributed to peers

uniformly. Moreover, we use a regular threshold mechanism. We assume that network is

reliable and timeout does not occur. This assumption is made to see the pure performance

of pairwise averaging without network problems.

Parameter Value Parameter Value

N 1000 convLimit 10

M N/10 ε(epsilon) 10

mms M fan-out 1

T 500

Table 4.2: Default parameter values

4.3.1 Scalability

Fig. 4.3 depicts the scalability of ProFID in terms of time complexity. Number of gossip

rounds needed for the convergence of all peers in the system is measured to examine the

time complexity of ProFID as the network size scales up to 30000 peers. This result confirms

the scalability of our system in terms of time needed for convergence. In fact, our result

(for number of rounds to converge) agree with the O(logN) time complexity of epidemic

dissemination [43].

Fig. 4.4a illustrates the effect of C, convergence time constant, on the network size. It

decreases logarithmically with the increasing network size from which we can conclude that

for large networks, logN value will be much more dominant than C. Fig. 4.4b shows the

effect of C on the number of peers that converges. It is another way of showing that C

value decreases with increasing network size.

Chapter 4: Performance Analysis 40

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10

15

20

25

30

35

40

Number of peers (N)

c*logN

Figure 4.3: Number of gossip rounds needed for all peers to converge.

4.3.2 Effect of fan-out

The effect of fan-out on convergence speed is illustrated in Fig. 4.5a. For larger values of

fan-out, algorithm converges faster since a peer exchanges its state with more neighbors

and its state is disseminated faster to the network. However, as depicted in Fig. 4.5b, total

number of messages sent per peer until the convergence of the algorithm does not change

since a peer sends more messages in a single gossip round. Note that while setting the value

of fan-out, one needs to consider the gossip round length so that peers can complete all

operations with in a single gossip round.

4.3.3 Link failures

Fig. 4.6 illustrates the convergence error of the atomic pairwise averaging in case of link

failures and resulting message losses. In this simulation, the message loss probability of

each link is independent and identically distributed. Relative error is even less than 1%, in

case of 5% message drop probability, which is high enough when compared to real networks.

Hence, we can conclude that atomic pairwise averaging is robust against independent link

failures. However, in real-world networks, heterogeneity is inevitable; hence, simulations

may not give totally correct insight about how robust a gossip protocol in a particular

environment. It is still an open research area that to which kind of failures gossip based

Chapter 4: Performance Analysis 41

0 0.5 1 1.5 2 2.5 3

x 10
4

5

6

7

8

9

10

Number of peers

C

(a)

4 5 6 7 8 9 10 11
0

20

40

60

80

100

C

C
on

ve
rg

ed
 P

ee
rs

 (
%

)

100 peers
1000 peers
10000 peers
30000 peers

(b)

Figure 4.4: (a)The minimum value of C such that after ClogN rounds all peers converge.

(b)Percentage of peers converged after ClogN rounds

protocol is robust against.

4.4 Efficiency of ProFID

In this section, we will measure the efficiency of ProFID in terms of message complexity,

convergence speed, and accuracy.

4.4.1 Simulation methodology

Popular P2P networks such as freenet, napster and gnutella were analyzed a lot in order

to observe the characteristics of P2P networks. The open architecture and self-organizing

structure of the Gnutella file-sharing network make it an remarkable P2P architecture to

study. For this reason, in our simulations, we use the characteristics of gnutella network in

terms of degree and item distribution and popularity (see Table 4.3). The pioneering study

of scale-free networks [44] shows that the Barabasi-Albert (BA) model produces a power-law

distribution, which is also known as internet-like topology, with exponent 3 independent of

BA model parameter, hence while constructing the network we set the BA model parameter

to 5 so that the average node degree is around 10 which is the average of some P2P studies

[45, 46] (see Fig. 4.7). Besides a more realistic topology, we set the global frequencies of

Chapter 4: Performance Analysis 42

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

Number of peers

N
um

be
r

of
 r

ou
nd

s
(t

o
co

nv
er

ge
)

fanout=1
fanout=2
fanout=3
fanout=all neighbors

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

50

60

70

80

90

100

Number of peers

N
um

be
r

of
 m

es
sa

ge
s

pe
r

pe
er

fanout=1
fanout=2
fanout=3

(b)

Figure 4.5: (a)The effect of fan-out on the number of rounds needed for all peers to converge.

(b)The effect of fan-out on number of gossip messages sent per peer.

Topology BarabasiAlbert(k=5)

Number of items N/10

Frequencies of each item [1,N] (Zipf Distribution ρ =0.271)

Distributions of items PowerLaw(p=4)

Threshold N/2

Table 4.3: Simulation parameters used in the analysis of ProFID

items using zipf-like distribution with skew factor 0.271 [47, 48]. Moreover, we distribute

those items to the network using a power-law topology with exponent 4 [48]. Each link delay

is independent and uniformly distributed between 2ms and 100ms and timeout is 300ms.

We set the gossip round length to 1sec, which is long enough for a gossip operation to be

completed.

4.4.2 Effect of convergence parameters

We evaluate the effects of convergence parameters, namely ε and convLimit, and average

degree on the efficiency of ProFID. Fig. 4.8a shows that increasing ε, decreases both av-

Chapter 4: Performance Analysis 43

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Link drop probability(%)

C
on

ve
rg

en
ce

 E
rr

or
 (

%
)

Figure 4.6: The effect of link drop probability on the accuracy of pairwise averaging.

erage number of messages sent per peer and number of rounds to converge because a peer

increments convCounter value with more probability in each state update, which results in

faster convergence. Since algorithm converges faster and number of gossip messages sent

by each peer is constant, peers communicate less and average number of messages sent per

peer decreases. In contrast to ε parameter, increasing convLimit increases both the average

number of messages sent per peer and number of rounds to converge because convCounter

needs to be incremented more to reach convLimit (see Fig. 4.8b).

Fig. 4.9 illustrates the effects of convergence parameters, ε and convLimit on the number

of rounds to converge. The fastest convergence occurs whenever ε parameter takes its

largest value and convLimit takes its smallest value, which agrees with the convergence rule.

However, there is a tradeoff between convergence speed and accuracy. Hence, user should

select convergence parameters depending on the application requirement. If application

requires a fast computation than one can choose larger ε and smaller convLimit values. If

application requires high accuracy, then ε might be set to a smaller value, while convLimit

might be set to a larger value.

4.4.3 Effect of average degree

Fig. 4.10 illustrates the effect of average degrees of peers on the number of rounds to

converge. Increased connectivity of the network, decreases the number of rounds to converge.

Chapter 4: Performance Analysis 44

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

Peer Rank

D
eg

re
e

(a)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

100

200

300

400

500

600

700

800

900

Degree

N
um

be
r

of
 p

ee
rs

(b)

Figure 4.7: (a)Peer degree distribution. (b) Histogram of peer degrees.

0 10 20 30 40 50 60
15

20

25

30

35

40

45

ε(%)

Number of rounds
Avg. num. of messages

(a)

0 10 20 30 40 50

20

40

60

80

100

convLimit

Number of rounds
Avg. num. of messages

(b)

Figure 4.8: The effects of ε(a) and convLimit(b) on the number of rounds to converge and

average number of messages sent per peer

Chapter 4: Performance Analysis 45

This actually shows that, optimum results would be taken in complete graphs, as Kempe

et al. [23] showed.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

ε (%)

R
el

at
iv

e
er

ro
r

(%
)

convLimit=4
convLimit=8
convLimit=10
convLimit=15

Figure 4.9: The effects of the convergence parameters on number of rounds to converge.

In order to compute frequent item set, peers share local states with each other. Consider

a network consisting of millions of items. If peers iterate by sharing whole local states, it

will be very costly to send state after a while since the size of the local states of peers

increase by time. There are two solutions to this problem. First solution is that each peer

chooses a subset of its local state to send in a single gossip message. This actually solves the

problem of high bandwidth requirement but local state of a peer still gets larger and larger

while receiving first-time- encountered items in gossip messages. Second solution is to filter

out items before adding to local state in order to hinder local state from getting larger.

We assumed that peer has enough capacity to store frequencies of all items, and used the

former solution. However, using second approach with an intelligent filtering would be also

a reasonable choice. Those two solutions might be even combined to make use of powers of

both approaches.

In our simulations, we limit the gossip message size using a parameter, namely mms,

which represents maximum number of <itemId,freq> tuples (a.k.a item in this context)

sent in each gossip message. A peer chooses that much item from its state and puts into

a gossip message to be sent. It is possible that a peer may not send the item with id ui

Chapter 4: Performance Analysis 46

0 50 100 150
20

30

40

50

60

70

Average degree of peers

Number of rounds
Avg. num. of messages

Figure 4.10: The effects of average degree on number of rounds to converge and average

number of messages sent per peer.

in some gossip messages. If a peer receives such a gossip message, it bypasses convergence

check, which means convCounter is neither reset nor incremented.

4.4.4 Effect of mms

Fig. 4.11a shows how many rounds it takes to converge if items are drawn uniformly random

from local state. Convergence time is conversely proportional to mms because it takes more

time to distribute items to the system if each peer distributes less item in each gossip

message. Fig. 4.11b depicts the effect of mms on message overhead. Since peers converge

faster for larger mms,on the one hand, average number of messages sent per peer decreases,

but on the other hand, a gossip message size increases.

4.4.5 Gossip Target Selection

Gossip protocols always have some form of randomness in peer selection mechanisms. We

changed some random behaviors of ProFID to some deterministic decisions to analyze how

the algorithm’s performance is affected.

First, we start with equal probability of selecting each neighbor as a gossip target. After

selecting a peer as a gossip target, we multiply its probability with a constant value, namely

Chapter 4: Performance Analysis 47

0 5000 10000 15000
0

100

200

300

400

500

Number of peers

N
um

be
r

of
 r

ou
nd

s

mms=10
mms=15
mms=20
mms=25
mms=all local content

(a)

0 5000 10000 15000
0

200

400

600

800

1000

N
um

be
r

of
 m

es
sa

ge
s

Number of peers

mms=10
mms=15
mms=20
mms=25
mms=All local content

(b)

Figure 4.11: (a) The effect of mms on the convergence speed. (b) The effect of mms on

average number of messages sent per peer.

weight factor. Note that if weight factor is larger than one means, then the probability

of selecting a peer that has already been selected is higher than a peer that has never

been selected before, and vice-versa. We see that optimum result in terms of both relative

error and convergence time is obtained when weight factor is around one, which shows

that selecting peers always with equal probability decreases both the relative error and

convergence time as seen in Fig 4.12a and 4.12b respectively.

In another approach, we again start with equal probability of selecting each neighbor as

a gossip target. Then during gossiping, peer gets information about the neighbors’ degrees

and sets the selection probabilities of neighbors inversely proportional to their degrees. This

means that neighbor with a higher degree has a lower probability to be chosen as a gossip

target than a neighbor with lower degree. The aim of this setup was to prevent the starvation

of low degree peers and make all peers’ contribution equal during gossiping. An example

setup is given in Fig. 4.13. Fig. 4.14 depicts that random neighbor selection is better than

neighbor selection method using neighbors’ degree information in terms of accuracy. The

reason might be that considering only the neighbor degree may not be enough, we may also

need to consider the local clustering coefficient or other characteristics of the peer to get a

Chapter 4: Performance Analysis 48

0 0,4 0,8 1 1,2 1,6 2 2,4
0

10

20

30

40

50

60

weight factor

R
el

at
iv

e
E

rr
or

 (
%

)

random
neighbor
 selection

(a)

0 0,4 0,8 1 1,2 1,6 2 2,4
0

10

20

30

40

50

60

weight factor

N
um

be
r

of
 r

ou
nd

s
to

 c
on

ve
rg

e

random
neighbor
 selection

(b)

Figure 4.12: (a)The effect of weight factor on relative error. (b)The effect of weight factor

on convergence time.

better accuracy than random neighbor selection.

��
�

�

� �

�

���	� ���	�

���	�

��������
��������
���	

�����

��������������������
���������������������
������
������������������������

���	�

Figure 4.13: Neighbor selection using degree information of neighbors.

4.4.6 Threshold Mechanism

In this section, we analyze the effect of threshold on ProFID in terms of accuracy. We com-

pare regular, centralized and Lahiri’s threshold techniques using statistical measurements of

sensitivity, specificity, accuracy, error, positive predictive value(PPV), and negative predic-

Chapter 4: Performance Analysis 49

0 5 10 15 20
4

6

8

10

12

14

16

18

20

22

Experiment #

R
el

at
iv

e
er

ro
r

uniformly random
inversely prop. to neighbor’s degree

Figure 4.14: Neighbor selection based on degree information.

tive value (NPV). In regular threshold technique, items with frequency above threshold are

called frequent, while items with frequency below threshold are called infrequent. In central-

ized and Lahiri’s threshold techniques [32], there is an undecisive region and the algorithm

does not make any decision on items that falls into this region. The difference in those

two threshold techniques is the placement of undecisive region. In centralized threshold

technique, the threshold divides undecisive region into half, whereas in Lahiri’s threshold

technique, the threshold lies on the right border of undecisive region (see Fig. 2.4 and 3.7).

Explanations of these measures in frequent item set discovery context are given in Table

4.4.

Experimental results of each threshold technique are given in Table 4.5. The simulated

network consists of 1000 peers and 100 items, and there are 24 actual frequent items whose

frequency is above T (which is chosen to be 500). Actual item frequencies are depicted in

Fig. 4.15. In all three approaches, the results are satisfactory, meaning that percentage of

wrong decisions is very low when compared to correct decisions. For instance, the right-

uppermost value, 23.815, is the value representing the average number of actual frequent

items that were computed as frequent in 50 experiments. Note that this value needs to be 24

if all frequent items were computed as frequent in all experiments. Statistical measurement

results such as sensitivity, specificity, accuracy, etc. (see Table 4.4) shows that centered

threshold outperforms other techniques in all cases (Fig. 4.16). As expected, centered

Chapter 4: Performance Analysis 50

Measurement Type Meaning

Sensitivity (TP
TP+FN) the proportion of actual frequent items which are cor-

rectly identified as such

Specificity (TN
TN+FP) the proportion of infrequent items which are correctly

identified as such

Accuracy (TP+TN
TP+TN+TP+FN) probability of correctly predicting whether an item is

frequent or not

Error (FP+FN
TP+TN+TP+FN) probability of incorrectly predicting whether an item

is frequent or not

Positive Predictive Value (TP
TP+FP) the proportion of items computed as frequent which

are actually frequent

Negative Predictive Value (TN
TN+FN) the proportion of items computed as infrequent which

are actually infrequent.

Table 4.4: Statistical measurements and their meanings

threshold technique performs better since, in ProFID, estimated frequencies might be more

or less than the actual frequencies of items due to our convergence rule. In other words, we

can not make sure that an item is frequent if its frequency is computed a little bit more than

threshold. We can also not make sure that an item is infrequent if its frequency is computed

a little bit less than threshold. Therefore, being indecisive around threshold reduces the

number of wrong decisions. This is why centered threshold technique gives the minimum

number of false decisions (see Fig.4.17).

Chapter 4: Performance Analysis 51

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Frequency

4 6
3

11

4 4 4
7

5

52

Figure 4.15: Histogram of item frequencies

ACTUAL

Lahiri Threshold Centered Threshold Regular Threshold

Freq non-Freq Freq non-Freq Freq non-Freq

P
R

E
D

IC
T

E
D

Freq 23,815 0,593 23,671 0,284 23,815 0,593

∆=2 non-Freq 0,116 74,753 0,116 74,753 0,185 75,407

Undecisive 0,069 0,654 0,213 0,964 - -

Freq 23,867 0,075 22,881 0,064 23,867 0,433

∆=5 non-Freq 0,049 73,426 0,049 73,663 0,134 75,568

Undecisive 0,084 1,906 1,070 2,275 - -

Freq 23,840 0,017 21,900 0,013 23,840 0,385

∆=10 non-Freq 0,028 71,321 0,028 71,564 0,161 75,617

Undecisive 0,132 4,053 2,073 4,425 - -

Table 4.5: Statistical measurement results of different threshold techniques

Chapter 4: Performance Analysis 52

����������������������������
��	
������ ����������� �������� ��� ��� ��������	������������ !"

Figure 4.16: Statistical measure results of different threshold techniques

Regular Lahiri’s Centered
0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e

N
u
m

b
e
r

o
f

F
a
ls

e
 P

o
s
it
iv

e
s
 +

 F
a
ls

e
 N

e
g
a
ti
v
e
s

∆ =2

∆ =5

∆ =10

Figure 4.17: Average number of wrong decisions (False Positives + False Negatives).

Chapter 5: Comparison with Push-Sum Protocol 53

Chapter 5

COMPARISON WITH PUSH-SUM PROTOCOL

In ProFID, peers use push-pull based aggregation scheme, which means they exchange

their states mutually. On the other hand, push-based protocol is proposed in [23]. In this

case, peers choose random peers only to send their state. The reason to use push-based

protocol is that the correctness of the algorithm requires mass conservation and this is

possible with only Push-Sum protocols. Push-Sum protocol can not be directly used in FID

problem since peers are not aware of all items that exist in the network.

5.1 Adaptive Push-Sum Protocol

Consider the problem of discovering most downloaded files in a network, since almost all of

the peers may not know about all items at the beginning, they have no chance to initialize

their local value at time t0. However, Push-Sum protocol (described in Sect. 2.1.1) assumes

that if a peer has not downloaded a specific file, it initializes its sum to 0 without considering

whether the peer is aware of that file or not. This is impractical in large networks since

peers may have only a partial view of the network and can not store all file information in

their local storages due to scalability issues.

For this reason, we modified Push-Sum protocol in order to adapt it to FID problem

(Adaptive Push-Sum protocol) (see Alg. 5). It takes items arrived in previous round as

input and adds up all values (ŝr) and weights (ŵr) separately (line 1-2). Whenever a peer

pi receives a message(1
2st,j ,12wt,j) about an item it has not been aware before, it adds one

to its total weight (line 3-4). This means that if a peer is informed about the item first

time at time t, that peer pretends to send the item (with st,i=0, wt,i=1) only to itself at

time t in order to satisfy the mass conservation for both s and w. Then, peer sends half of

its total value and weight to itself and randomly chosen neighbors (line 5-6). Finally, peer

calculates the average estimate of this round as st,i

wt,i
(line 7-8).

In general (fan-out>=1), peers choose multiple targets and send pairs as described in

Chapter 5: Comparison with Push-Sum Protocol 54

Algorithm 5: Adaptive Push-Sum Protocol
Input: prevIncomingPairs: all incoming pairs at time t-1

Output: estimate: estimate of aggregate at time t

1 (ŝr,ŵr)=prevIncomingPairs;

2 st,i=
∑

r ŝr, wt,i=
∑

r ŵr

3 if item is encountered first time then

4 wt,i= wt,i+1

5 target=chooseUniformlyAtRandom()

6 send(1
2st,i,

1
2wt,i) /*to yourself and target*/

7 estimate= st,i

wt,i

8 return estimate

Eq. 5.2 to their each target peer (note that for fan-out=1, it corresponds to the case in

Algorithm 5):

(
1

fan-out + 1
st,i,

1
fan-out + 1

wt,i) (5.1)

5.2 Comparison Results

In this section, we compare ProFID and Adaptive Push-Sum algorithms in terms of message

complexity and convergence time, and accuracy. We use Barabasi-Albert model in topology

construction. This model constructs the topology by starting a small number of peers

and adding new peers to the networks. Newly added peer is connected to the peer i with

probability

Π(ki) =
ki∑
i ki

(5.2)

where ki is the connectivity of peer i. This model produces scale-free power-law distri-

bution with exponent 3. The average peer degree is set to 10. Item frequencies follows a zipf

distribution and items are distributed to peers using a power-law distribution with degree

4. As depicted in Fig. 5.1a, ProFID converges faster than Adaptive Push-Sum algorithm

for all fan-out values. The reason for faster convergence is that ProFID increments/resets

Chapter 5: Comparison with Push-Sum Protocol 55

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60

70

Number of peers

N
um

be
r

of
 r

ou
nd

s
(t

o
co

nv
er

ge
)

Adaptive Push−Sum
ProFID

fanout=1

fanout=3
fanout=5

fanout=1

fanout=3
fanout=5

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

40

60

80

100

120

140

160

180

200

Number of peers

N
um

be
r

of
 m

es
sa

ge
s

(p
er

 p
ee

r)

Adaptive Push−Sum
ProFID

fanout=3
fanout=1

fanout=5

fanout=3

fanout=5

fanout=1

(b)

Figure 5.1: (a) Comparison of ProFID and Adaptive Push-Sum protocol in terms of con-

vergence time.(b) Comparison of ProFID and Push-Sum protocol in terms of message com-

plexity.

convLimit after each incoming message, whereas Adaptive Push-Sum algorithm does this

operation after each round since aggregate is updated once in each round. Fig. 5.1b shows

that ProFID is at least as much efficient as Adaptive Push-Sum in terms of message com-

plexity for all cases. The reason of this difference might be faster item dissemination in

push-pull schemes than push-based or pull-based schemes [49]. It can also be concluded

that Adaptive Push-Sum is more sensitive to fan-out in terms of message complexity.

ProFID gives more accurate results when compared to Push-Sum protocol as depicted

in Fig. 5.2. This difference in accuracy might be because of better performance of push-pull

scheme aggregation than push-based aggregation scheme. Moreover, the convergence rule of

ProFID may not fit the Push-Sum protocol and decrease its accuracy. It might have better

accuracies for different convergence parameters, such as smaller ε or larger convLimit.

Chapter 5: Comparison with Push-Sum Protocol 56

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3

Number of peers

R
el

at
iv

e
E

rr
or

 (
%

)

ProFID
Adaptive Push−Sum

Figure 5.2: ProFID vs. Adaptive Push-Sum protocol (accuracy).

Chapter 6: Conclusion and Future Work 57

Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, we proposed a practical protocol named ProFID for discovering frequent

items in unstructured P2P networks, developed an implementation on PeerSim simulator,

and evaluated/compared its behavior extensively. In contrast to prior works, ProFID uses

atomic pairwise averaging function with gossip-based aggregation. It is fully distributed,

uses local peer information and neighborhood knowledge only. It also offers a convergence

rule for efficiently approximating system wide averages of items without using any global

knowledge such as overlay topology information.

In this thesis (Chap. 1), we have discussed the importance of the problem and the variety

of application areas utilizing frequent item set discovery protocol on different fields such as

P2P networks, database, and network security. Lastly, we have stated our contributions.

Then (in Chap. 2), we have described the previous works done on aggregate computa-

tion and frequent item set discovery, as well as threshold mechanisms. Even though various

approaches have been proposed, they generally lack either analytical analysis or make un-

realistic assumptions for analytical analysis, which is the general problem in this research

area.

We have both given analytical discussion of how average aggregation is computed and

why it should converge to the actual average, as well as simulation results that support the

analytical discussion (Chap. 3). Moreover, we have proposed a practical convergence rule

which uses no global information. Therefore, peers may initiate the algorithm immediately

without pre-computing any global information such as network size and topology informa-

tion. Furthermore, we have compared different threshold mechanisms and their effects on

different statistical measures of sensitivity, specificity, accuracy, positive predictive value,

and negative predictive value. We have also proposed two different neighbor selection mech-

anisms as an alternative to the random neighbor selection mechanism. In one mechanism,

neighbor selection probabilities depend on the history of selections. Each time a neighbor is

Chapter 6: Conclusion and Future Work 58

chosen, its probability to be chosen again is increased/decreased. In the other mechanism,

neighbors are chosen based on their degrees. The more degree they have, the less probabil-

ity they are chosen as gossip targets. However, random neighbor selection performed best,

which showed the power of randomness in gossiping.

We have developed the simulation model, evaluated the behavior and performance of

ProFID through extensive large-scale distributed scenarios (up to 30,000 peers) in PeerSim

(Chap. 4). First, we have studied the atomic pairwise averaging function in terms of its

efficiency in approximating averages of items. Then, we have evaluated the ProFID protocol

by considering several metrics such as accuracy, convergence speed, and message complexity.

We have also analyzed the effects of algorithm parameters such as epsilon, convergence limit,

fan-out, threshold (T), maximum message size (mms). The results confirm the practical

nature, ease of deployment and efficiency our approach.

We have compared the scalability and accuracy of ProFID with the well-known Push-

Sum protocol [23] by adapting it to the FID problem and practical P2P network settings

(Chap. 5). ProFID performed better in terms of convergence time and message complexity,

as well as accuracy. This might be due to the adaptation problem of Push-Sum since it

uses the assumption that all peers are aware of all items in the network. We eliminated this

assumption and modified it such that a peer becomes aware of an item whenever it gets a

gossip message including that item. This modification has probably reduced the efficiency

of the algorithm. However, it is a necessary modification to make it applicable to FID

problem in large distributed systems.

We mainly focused on an applicable and practical algorithm to compute frequent item

set in unstructured P2P networks by eliminating some unrealistic assumptions. In this way,

distributed system applications would make profit from using ProFID.

Future Directions:

Peer churn: Today’s P2P networks are very dynamic and churn is inevitable. Hence,

we plan to integrate churn into our network environment and analyze the effect of it on

accuracy and convergence. In order to make ProFID more realistic and practical, we aim

to evaluate it in peer churn scenarios and dynamic environment.

Furthermore, in addition to simulation model and analysis, we aim to conduct network

tests of ProFID on the PlanetLab to evaluate its performance in a real network testbed.

Chapter 6: Conclusion and Future Work 59

Topology effect : The effects overlay topology properties such as vertex degrees, degree

distributions and correlations, clustering coefficient and centrality [49] will be analyzed. To

do that, simulations of different topologies with different properties will be performed and

the results will be compared and contrasted to the previous results obtained in this thesis.

Improved robustness: ProFID’s convergence depends on the estimation of ui item which

is the network size estimation item. An initiator peer adds an ui item to its state and this

item is eventually distributed to the whole system with frequency around 1/N. Then, value

of N is extracted by taking reciprocal of that value and multiplied with the averages of

each item to compute their frequencies. Miscalculation of N causes undesirable frequency

computations; therefore robustness of ProFID depends on the robust computation of N.

In this implementation, early failure of initiator peer (or its neighbors), will result in a

misleading computation and we plan to make ProFID more robust against such scenarios.

We have two possible approaches to achieve that. First approach is to start ProFID after

making sure that ui item is distributed to some stable peers in the system. By this way,

removal of a single peer holding the ui item initially is not going to affect the network

size estimation result, and hence frequency estimations of items as much as the original

approach. Second approach is to run multiple instances of ProFID. In this approach, each

instance starts with a different initiator and the result is computed by interpreting the

results of all instances such as choosing the instance that gives the median of list composed

of ui estimations of each instance.

Improved energy efficiency : Today’s P2P networks consist of millions of peers forming

an unstructured network, so computation of even a single global value such as network

size consumes a considerable energy. Hence, we plan to have studies focusing on the min-

imization of energy consumption in FID problem. As an initiative, we developed a model

for energy cost of each peer in the network. Based on our energy cost model, each peer

consumes energy during the following operations: sending and receiving gossip messages

and local computations including averaging operation and local state update. We plan to

compute the energy consumption of some well-known algorithms in FID problem and try

to improve their energy consumption based on our energy cost model. Moreover, we plan

to analyze and reduce the energy cost of ProFID. More specifically, we will focus on how to

compress gossip messages, use low bandwidth, less local computation and storage.

Bibliography 60

BIBLIOGRAPHY

[1] Mei Li and Wang Chien Lee, “Identifying frequent items in p2p systems,” in Distributed

Computing Systems, 2008. ICDCS ’08. The 28th International Conference on, June

2008, pp. 36–44.

[2] Márk Jelasity and Alberto Montresor, “Epidemic-style proactive aggregation in large

overlay networks,” in ICDCS, 2004, pp. 102–109.

[3] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham,

“Communication-efficient distributed monitoring of thresholded counts,” in SIGMOD

Conference, June 2006, pp. 289–300.

[4] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,

Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry, “Epidemic algorithms

for replicated database maintenance,” in PODC, 1987, pp. 1–12.

[5] Kamel Aouiche, Jérôme Darmont, and Le Gruenwald, “Frequent itemsets mining for

database auto-administration,” CoRR, vol. abs/0809.2687, 2008.

[6] Kevin S. Beyer and Raghu Ramakrishnan, “Bottom-up computation of sparse and

iceberg cubes,” in SIGMOD Conference, 1999, pp. 359–370.

[7] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jef-

frey D. Ullman, “Computing iceberg queries efficiently,” in VLDB’98, Proc. of 24rd

International Conference on Very Large Data Bases, August 24-27, 1998, New York

City, New York, USA, Ashish Gupta, Oded Shmueli, and Jennifer Widom, Eds. 1998,

pp. 299–310, Morgan Kaufmann.

[8] Phillip B. Gibbons and Yossi Matias, “Synopsis data structures for massive data sets,”

in SODA, 1999, pp. 909–910.

Bibliography 61

[9] “The Peersim simulator,” http://peersim.sf.net.

[10] Srinivas R. Kashyap, Supratim Deb, K. V. M. Naidu, Rajeev Rastogi, and Anand Srini-

vasan, “Efficient gossip-based aggregate computation,” in Proc. of ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS), June 2006,

pp. 308–317.

[11] Kenneth P. Birman, Mark Hayden, Öznur Özkasap, Zhen Xiao, Mihai Budiu, and

Yaron Minsky, “Bimodal multicast,” ACM Trans. Comput. Syst., vol. 17, no. 2, pp.

41–88, 1999.

[12] Patrick Th. Eugster, Rachid Guerraoui, Sidath B. Handurukande, Petr Kouznetsov,

and Anne-Marie Kermarrec, “Lightweight probabilistic broadcast,” ACM Trans. Com-

put. Syst., vol. 21, no. 4, pp. 341–374, 2003.

[13] André Allavena, Alan J. Demers, and John E. Hopcroft, “Correctness of a gossip based

membership protocol,” in PODC, 2005, pp. 292–301.

[14] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and

Maarten van Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst., vol.

25, no. 3, 2007.

[15] François Bonnet, Anne-Marie Kermarrec, and Michel Raynal, “Small-world networks:

From theoretical bounds to practical systems,” in OPODIS, 2007, pp. 372–385.

[16] Márk Jelasity and Özalp Babaoglu, “T-man: Gossip-based overlay topology manage-

ment,” in Engineering Self-Organising Systems, 2005, pp. 1–15.

[17] Alberto Montresor, Márk Jelasity, and Özalp Babaoglu, “Chord on demand,” in

Peer-to-Peer Computing, 2005, pp. 87–94.

[18] Robbert Van Renesse, Yaron Minsky, and Mark Hayden, “A gossip-style failure detec-

tion service,” Tech. Rep., Ithaca, NY, USA, 1998.

Bibliography 62

[19] Robbert van Renesse, Kenneth P. Birman, and Werner Vogels, “Astrolabe: A robust

and scalable technology for distributed system monitoring, management, and data

mining,” ACM Trans. Comput. Syst., vol. 21, no. 2, pp. 164–206, 2003.

[20] Meng Zhang, Qian Zhang, Lifeng Sun, and Shiqiang Yang, “Understanding the power

of pull-based streaming protocol: Can we do better?,” IEEE Journal on Selected Areas

in Communications, vol. 25, no. 9, pp. 1678–1694, 2007.

[21] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter Yum, “Coolstream-

ing/donet: a data-driven overlay network for peer-to-peer live media streaming,” in

INFOCOM, 2005, pp. 2102–2111.

[22] Márk Jelasity, Alberto Montresor, and Özalp Babaoglu, “Gossip-based aggregation

in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 3, pp. 219–252,

2005.

[23] David Kempe, Alin Dobra, and Johannes Gehrke, “Gossip-based computation of ag-

gregate information,” in Proc. of Symposium on Foundation of Computer Scienece

(FOCS), Oct. 2003, pp. 482–491.

[24] Indranil Gupta, Robbert van Renesse, and Kenneth P. Birman, “Scalable fault-tolerant

aggregation in large process groups,” in DSN, 2001, pp. 433–442.

[25] Stephen P. Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah, “Gossip algo-

rithms: design, analysis and applications,” in INFOCOM, 2005, pp. 1653–1664.

[26] Jen-Yeu Chen, Gopal Pandurangan, and Dongyan Xu, “Robust computation of aggre-

gates in wireless sensor networks: Distributed randomized algorithms and analysis,”

IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, pp. 987–1000, 2006.

[27] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Boris Koldehofe, Martin Mo-

gensen, Maxime Monod, and Vivien Quma, “Heterogeneous Gossip,” in Proceedings

of the 10th ACM/IFIP/USENIX International Middleware Conference (Middleware),

2009.

Bibliography 63

[28] Ken Birman, “The promise, and limitations, of gossip protocols,” Operating Systems

Review, vol. 41, no. 5, pp. 8–13, 2007.

[29] Mortada Mehyar, Demetri Spanos, John Pongsajapan, Steven H. Low, and

Richard M. Murray, “Asynchronous distributed averaging on communication net-

works,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 512–520, 2007.

[30] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston,

“Finding (recently) frequent items in distributed data streams,” in Proc. of Inter-

national Conference on Data Engineering (ICDE), Apr. 2005, pp. 767–778.

[31] Laukik Chitnis, Alin Dobra, and Sanjay Ranka, “Aggregation methods for large-scale

sensor networks,” ACM Trans. Sen. Netw., vol. 4, no. 2, pp. 1–36, 2008.

[32] Bibudh Lahiri and Srikanta Tirthapura, “Computing frequent elements using gossip,”

in SIROCCO, 2008, pp. 119–130.

[33] Jayadev Misra and David Gries, “Finding repeated elements,” Sci. Comput. Program.,

vol. 2, no. 2, pp. 143–152, 1982.

[34] Gurmeet Singh Manku and Rajeev Motwani, “Approximate frequency counts over data

streams,” in VLDB, 2002, pp. 346–357.

[35] Graham Cormode and Marios Hadjieleftheriou, “Finding the frequent items in streams

of data,” Commun. ACM, vol. 52, no. 10, pp. 97–105, 2009.

[36] Chris Olston, Jing Jiang, and Jennifer Widom, “Adaptive filters for continuous queries

over distributed data streams,” in SIGMOD Conference, 2003, pp. 563–574.

[37] Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh,

“Peer counting and sampling in overlay networks: random walk methods,” in PODC,

2006, pp. 123–132.

Bibliography 64

[38] Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta, Ken Birman, and Alan J.

Demers, “Decentralized schemes for size estimation in large and dynamic groups,” in

NCA, 2005, pp. 41–48.

[39] Erwan Le Merrer, Anne-Marie Kermarrec, and Laurent Massoulié, “Peer to peer size

estimation in large and dynamic networks: A comparative study,” in HPDC, 2006, pp.

7–17.

[40] Abraham Silberschatz, Operating System Concepts, John Wiley & Sons, Inc., New

York, NY, USA, 2007.

[41] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, Ian Wakeman, and Dan Chalmers,

“The state of peer-to-peer simulators and simulations,” Computer Communication

Review, vol. 37, no. 2, pp. 95–98, 2007.

[42] “Ns-2 network simulator,” http://www.isi.edu/nsnam/ns/.

[43] Boris Pittel, “On spreading a rumor,” SIAM J. Appl. Math., vol. 47, no. 1, pp. 213–223,

1987.

[44] A. L. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science

(New York, N.Y.), vol. 286, no. 5439, pp. 509–512, 1999.

[45] Matei Ripeanu, Adriana Iamnitchi, and Ian T. Foster, “Mapping the gnutella network,”

IEEE Internet Computing, vol. 6, no. 1, pp. 50–57, 2002.

[46] Qin Lv, Sylvia Ratnasamy, and Scott Shenker, “Can heterogeneity make gnutella

scalable?,” in IPTPS, 2002, pp. 94–103.

[47] Zhe Xiang, Qian Zhang, Wenwu Zhu, Zhensheng Zhang, and Ya-Qin Zhang, “Peer-to-

peer based multimedia distribution service,” IEEE Transactions on Multimedia, vol.

6, no. 2, pp. 343–355, 2004.

[48] Daniel Stutzbach, Shanyu Zhao, and Reza Rejaie, “Characterizing files in the modern

gnutella network,” Multimedia Syst., vol. 13, no. 1, pp. 35–50, 2007.

Bibliography 65

[49] Maarten van Steen, Graph Theory and Complex Networks: An Introduction, Maarten

van Steen, VU University, Amsterdam, The Netherlands, 2010.

Bibliography 66

VITA

EMRAH ÇEM was born in İstanbul, Turkey on May 21, 1985. He received his B.S

degree in Computer Engineering from Koç University, İstanbul in 2008. In September 2008,

he joined M.Sc. Program in Electrical and Computer Engineering at Koç University as a

research and teaching assistant. During his study he worked on P2P networks and gossip

protocols. He has co-authored a journal paper in Computer Networks (Elsevier Science),

and published papers in conferences ISCIS’10 (25th International Symposium on Computer

and Information Sciences, London), and AB’10 (Akademik Bilisim, Mugla). He also has a

journal paper submission under review.

