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ABSTRACT

Driving behavior signals differ in how and under which conditions the driver use vehicle
control units, such as pedals, driving wheel, etc. In this study we investigate how the
driving behavior signals differ among drivers and among different driving tasks.
Statistically significant clues of these investigations are used to define driver and driving
status models. Experimental results over the UYANIK database are presented. Driver
identification over 23 drives achieves 57.39% identification rate with the fusion of gas and
brake pedal pressure classifiers. Driver identification system with reduced number of
drivers suits better to real-life scenario. 85.21% of identification rate is achieved among 3
drivers. Driver status identification over 10 drivers with task and no-task classes yields a

promising 79.13% identification rate.

Driving behavior is strongly related to past movements of drivers. In this thesis we aim to
predict driving behavior for warning drivers about future incidents and decreasing car
accidents caused by human factors. The proposed method is concerned with past samples
of behavior signals and we use Hidden Markov Models to model driving behavior. Earlier
findings have shown us that we can predict driving behavior with encouraging results in
both driver dependent and independent experiments. The experimental results also show
that distractive conditions have a certain effect on driving behavior as the prediction errors
are significantly increasing in these conditions. Road conditions are also influential on

driving.
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Siiriicti davranis sinyalleri; siirliclinlin pedal, direksiyon kontrol birimlerini nasil ve hangi
kosullar altinda kullandigina gore c¢esitlilik gdsterir. Bu ¢alismada farkl siirticiiler ve farkli
siiris  kosullarina gore davranig sinyallerinin nasil degistigi arastirllmistir. Bu
aragtirmalardan elde edilen istatistiksel bilgiler kullanilarak siiriicii ve siirlicii statii
modelleri tanimlanmis, UYANIK veritaban1 kullanilarak elde edilen deneysel sonuglar
sunulmustur. Gaz ve fren pedal basing siniflandiricilarinin fiizyonu kullanilarak 23 siirticii
tizerinden yapilan deneylerde %57.39 siiriicli tanima basar1 oran1 elde edilmistir. Az sayida
stiriicliniin kullanildig1 siirticii tanima sistemi, gergek hayat senaryolarina daha fazla uyar.
Bu amagcla 3 siirticii kullanilarak yapilan deneylerde %85.21 siiriici tanima basar1 orani
elde edilmistir. Stiriiclilerin daha 6nceden belirlenmis gorevleri yaptiklart ve hicbir gorev
yapmadiklar1 durumlar i¢in 2 sinif olusturulup, 10 siiriicii lizerinden siiriicii durumu tanima

deneyleri yapilmistir. Bu deneylerde %79.13 tanima basar1 orani saglanmustir.

Siirticii davraniglari, siirliciiniin  6nceki davraniglariyla biiylik o6lgiide ilintilidir. Bu
calismada, siiriiclileri olas1 tehlikeli olaylara karsi uyarmak ve insan kaynakli trafik
kazalarini minimuma indirmek i¢in siirlicii davraniglarint  kestirecek yontemler
arastinlmistir. Onerilen yontem, siiriicii davranis sinyallerinin gecmisteki Srneklerini
kullanmak ve Gizli Markov Modelleri’ni kullanarak siiriicii davraniglarini modellemek
tizerinedir. Elde edilen sonuclar hem siirliciiden bagimsiz hem de siiriiciiye bagiml
deneyler i¢in makul degerlerdir. Ayrica, deneylerden edindigimiz sonuglara gore siiriiciiyii
rahatsiz edici kosullarin siirlicii davranisi lizerinde kesin bir etkisi oldugu goriilmiistiir. Bu
rahatsiz edici kosullar altinda siiriicii sinyallerini kestirme hatalar1 ciddi 6l¢tide artmuistir.

Yol kosullariin da siiriicii davranisi kestirme de etkili oldugu gozlemlenmistir.
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CHAPTER 1

INTRODUCTION

Recent developments in man-machine interaction have created a wide range of
applications. Among those applications human-vehicle interfaces have been studied
extensively in the recent literature. Next-generation human-vehicle interfaces will likely
incorporate biometric person recognition, using speech, video, images, and analog driver
behavior signals to provide more efficient and safer vehicle operation. Furthermore, driving
behavior signals, such as pedal signals, velocity, car-following distance, yield important

clues on driving behavior status and driver’s cognitive stress/distraction.

There have been significant efforts on investigation of driving behavior patterns using
driving behavior signals. Kurahashi et al. used driving behavior signals to quantify
workload factors for driving behavior modeling [1]. Center for Acoustic Information
Research at Nagoya University has been collecting multi-modal driving behavior signals
since 1999 [2]. Their early studies investigate cepstral analysis of driving behavior signals
[3] and modeling driver behavior as car-following and pedal operation patterns [3, 4].

Recently, they investigate near-miss accidents by means of interviews to determine driver



behavior and cognitive state immediately before the incident [5]. Driver identification from
biometric and driving behavior signals has been investigated within a multi-modal decision

fusion system in [6].

Car following data collection and modeling have also been investigated across different
research centers [7, 4]. Predicting driver’s future actions with the resultant behavior and
past observations have been studied with implications to model the impact of Intelligent
Transport Systems (ITS) [5, 8]. Tezuka et al. investigate prediction of driving behavior
signals by capturing time-series steering angle data at the time of lane change with

conditional Gaussian models and Bayesian networks [8].

A multi-modal signal processing system for robust stress detection in urban driving
scenarios has been proposed in [9]. Marinova, Devereaux and Hansman has studied the
effects of cell phone conversations on driver reaction time and situation awareness at
different levels of cognitive with hands-free and hands-held cell phone configurations [10].
Cognitive workload and driver experience, using a secondary task method, the peripheral

detection task (PDT) in a field study has also been explored [11].

Nagoya University CIAIR center leads the effort on international research coordination of
driving behavior signal processing based on large scale real world database [2]. Within this
research coordination, UTDrive of University of Texas at Dallas collects multi-modal
driving behavior data [12]. UTDrive investigates driver’s cognitive stress/distraction to
adapt interactive systems for improved safety. Similarly, the Drive- Safe consortium, which
has partners from academia and industry in Turkey, collects a similar multi-modal driving

behavior corpus to create conditions for prudent driving [13].



In this thesis as a partner of the Drive-Safe consortium, we investigate driver identification,
driving status identification and driver behavior prediction under different cognitive
stress/distraction conditions using driving behavior signals. Our objective is to search out
and examine the effects of cognitive distraction conditions on driving behavior and inquire
whether the driving behavior signals are characteristic information for every driver. We
compare our findings with different studies’ results on similar databases in Japan and USA.

We also investigate task identification performances. Earlier findings are presented in [17].

Significant contributions of this thesis are defined within the following three problems:

1.1 Driver Identification

Identification of a driver using behavioral signals is one the most interesting signal
processing problems. A driver identification method, proved to achieve high performance
can be used in many applications, such as driver verification for security purposes and
customization of vehicle according to driver’s behavior characteristics. In the study of
methods for recognizing drivers, driving behavior signals play a central role. In this study
we only use driving behavior signals such as the vehicle speed, gas pedal pressure, brake
pedal pressure and the distance from the vehicle in front. First, we investigate the
characteristics of these signals and present a selected set of driving statistics. We propose
an identification method and employ this method on behavior signals respectively. Also,
we analyze the performance of fusion methods on the identification problem. Identification

results are presented in the Experiments section.



1.2 Driver Status Identification

Distractive conditions cause important safety problems to drivers. Studies have shown that
nearly 80% of traffic accidents occur because of the driver inattention, which are
commonly result of distractive conditions. Navigation systems and other services in
vehicles introduce many secondary driving tasks that can increase accident risk. Thus,
developing a distraction detection method would be very beneficial for in-vehicle system to
reduce the effects of distraction. In this study, driving experiments were done under some
distractive conditions, which can be considered as the secondary driving tasks stated above.
These tasks are dialog on cell phone, including route navigation and online banking,
conversation with passenger on board, signboard and license plate reading. First, we plot
the histograms of each driving behavior signals under driving tasks respectively. Effects of
distractive conditions on drivers are analyzed by comparing these histograms. Next, we try
to detect distractive conditions by employing the same method used for driver

identification. Identification results are presented in the Experiments section.

1.3 Predicting Driver Behavior

Human factors play a big role in traffic accidents. Predicting driving behavior is an
important issue because it has a significant effect on decreasing human-caused accidents.
Drivers’ behavior is strongly related to their past actions, so in this research we construct a
model concerning with drivers’ past movements by using Hidden Markov Models.
Selecting the adequate number of HMM states and past samples is crucial for enhancing
the system performance. Also we investigate the influence of road conditions and

distractive conditions on our prediction model.



CHAPTER 2

DRIVING BEHAVIOR SIGNAL CHARACTERISTICS

Driving signals differ in how and under which conditions the driver use vehicle control
units, such as pedals, driving wheel, etc. We aim to model individual differences among the
selected drivers and identify the drivers by using gas pedal pressure, brake pedal pressure,
vehicle velocity and fusion of these signals. We also benefit from the car following
distances. Driver behavior modeling has also been studied with encouraging results in the
U.S., Japan, Italy and Singapore by using similar driving behavior signals collected with
different vehicles. Japanese research demonstrates that the driver model based on pedal
operation signals achieved a driver identification rate of 76.8 % for 276 drivers [4]. It is not
difficult to guess characteristics in driving behavior differ from person-to-person under
some distractive conditions. In order to search out and examine the effects of these
distractive conditions we investigate how the driving behavior signals differ among some
driving tasks. Statistically significant clues of this investigation are used to define a driving
status model. Besides these, we investigate driver behavior prediction with driver’s past
movements by using the same database. Behavior signals are clustered into different

segments and we employ the prediction method on all these segments. This section



presents general characteristics and statistics of the driving behavior signals from the
UYANIK database, feature representation of these driving behavior signals, and the
statistical clustering, identification framework for the driver and driving status and

predicting driver behavior.

2.1 Data Collection

Driving behavior data was supplied by Drive-Safe Consortium in Turkey with the test
vehicle, UYANIK, which is a sedan car equipped with various sensors. The UYANIK
database includes synchronous audio-visual recordings, CAN-Bus readings, pedal sensor
recordings, 180" laser range finder and XYZ accelerometer recordings as seen in Fig. 2.1
[13]. “Nagoya Vehicle” in Japan and “UT-Drive” in Dallas, Texas, USA have also been

equipped in a similar way.

The data collection route, shown in Fig. 2.2 is around 25 km at about 40 minutes, starting
and ending at the OTAM Research Center in the ITU Campus in Ayazaga. It consists of
two 1.5 km very busy city sections, followed by the TEM Highway with much less traffic.
Next comes the city streets in Etiler, Akatlar, Levent, 4. Levent, Ayazaga and the drivers
go back to OTAM at ITU campus. The last segment is very busy with local traffic. Among
the database we benefit from 23 drivers’ behavior signals, 20 of them are male and
remaining are female. Each driver drove the car on the same route; however road
conditions may differ depending on traffic jam and weather in Istanbul. There are four
primary tasks in the UYANIK database: i) reference driving which includes no specific
driving task, ii) dialog on cellphone which includes on-line banking application and
navigational dialog, iii) signboard reading in which driver reads road-by signs and license

plates aloud, and iv) dialog with passenger where driver talks with the on board passenger.



Fig. 2.1 Sensors in the data collection vehicle upperleft clockwise: cameras, navigator area
and lab bench for data acquisition systems, laser scanner, IMU XYZ accelerator, break

pedal pressure sensor, headset/mics, and EEG cap [13]

2.2 Driving Behavior Signals

We consider gas and brake pedal pressure signals, velocity from Can-Bus and car
following distance from the laser range finder as driving behavior signals. The gas, brake
and velocity signals are all sampled at 32 Hz, and the laser range finder sweeps 180° at

every 2 seconds. Samples of driving behavior signals are given in Fig. 2.3, where the brake



and gas pedal pressure levels, velocity and car following distance are given from top to

bottom.
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Fig 2.2 Data collection route in Istanbul [13]
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Fig. 2.3 Driving behavior signals of a driver from the UY ANIK database

The laser range finder in front of the vehicle records two-dimensional (x,y) data consisting
of horizontal and vertical distances. Fig. 2.4 shows the Laser Scan Reading and the photo
for a selected driver recorded at 12:56 PM on April 6, 2007. Truck on the right is between -

200 to +800 cm, the white truck is away 22 meters, and the vehicle on the next lane (left) is

about 23 meters ahead [13].
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Fig. 2.4 Laser Scan Reading and the photo for a selected driver

Histograms of the driving behavior signals over all 23 drivers from highway and city traffic
conditions are shown in Fig. 2.5. Histograms show that, on highway drivers rarely use
brake pedal and much more use gas pedal. As a result of this, people reach higher velocity
levels on highway. The maximum range that the laser can sweep is about 80 meters and

generally most of the drivers exceed this distance on highway.
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Fig. 2.5 Histograms of the driving behavior signals from highway (top) and city (bottom)
traffic

Histograms of the driving behavior signals, taken from two randomly selected drivers are
shown in Fig 2.6. The driver on the left side of the figure prefers driving faster and rarely
uses the brake pedal. Also he/she generally keeps distance with the vehicle in front for all
road conditions while the other driver prefers following a vehicle with closer distances
where he/she faces traffic jam and much more uses brake pedal. Such differences are clear

indications that driving behavior signals differ across drivers.
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CHAPTER 3

DRIVING BEHAVIOR MODELING

Modeling driver behavior is very important in enhancing the safety of the drivers and
pedestrians. Driver authentication, early warning systems for vehicles and other
technologies for security purposes can be given as the application areas of driver behavior
modeling. Driving behavior is a cyclic process. Basic dynamics of this process is shown in
Fig. 3.1. The driver determines the action to take by considering the road environment and
operates the gas or brake pedal. Velocity of the vehicle changes according to the driver’s
operation and the distance from the vehicle in front (road environment) also changes

according to the vehicle status.

-13 -
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Fig. 3.1 Cyclic process of driving behavior [16]

In this chapter we discuss feature extraction, driver identification, driver behavior signal
prediction and their role for driver behavior modeling. Driver identification is based on
recognition of driving feature vectors using a statistical model. Our model is designed
using a training and test procedure. In the training part, our algorithm learns the model of
the data from a training set constructed by extracting the driver behavior features. In the
testing part accuracy of the algorithm is measured on the testing set, which is completely
different from the training set. Here, feature extraction is a key point for our algorithm to

select reliable features that represent the true underlying distribution of driver behaviors.
3.1. Feature Extraction

First preprocessing step is the high pass filtering of the driving signals to remove the DC
component. Gas pedal pressure, brake pedal pressure and vehicle velocity signals are all

filtered with the following high-pass filter:

-z

= = (3.1)
1-0.9999z "

H(z)

which has the frequency response as shown in Fig.3.2.
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Fig. 3.2 Frequency response of the high-pass filter

The input data is too large to be processed, so we need to transform it into a reduced
representation set of features. We need to capture significant information from driving
behavior signals. Spectral analysis is one option. In driver modeling, hitting a gas or brake
pedal is filtered with driver model represented as the spectral envelope. Spectral envelopes
of pedal operation signals represent the differences in pedal operation patterns. These
spectral envelopes are similar in the same driver and different among different drivers.

Using this property we apply the cepstrum method, known as a source/filter separation

-15 -



method, to perform feature extraction. Research dictates us to conclude that using raw
signals results in worse performance rates when compared to the cepstral features [4]

In this study we extract cepstral features for the gas and brake pedal pressure and velocity
signals, which are sampled at 32 Hz. The cepstral features are extracted over 800 ms
windows for every 96 ms frames as shown in Fig. 3.3. The cepstral feature is defined as the
first K coefficients of the discrete cosine transform of band-pass filtered log-magnitude

spectra,
f, = DCT{BPF{log| F{x(n+kT)} |} (3.2)

where k is the frame index, )_c(n +kT) is the windowed signal of duration T. Band-pass

filter picks 1-13 Hz spectral components for brake signal and 1-6.5 Hz for gas and velocity
signals. The dimension of the feature vector is set as k=10. Feature extraction process is

summarized in Fig. 3.4.
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Fig 3.3 Feature extraction parameters
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3.2. Driver Identification Model

The ability to identify a driver and his/her driving behaviors is related with how he/she hits
the gas and brake pedals. We model these pedal operation patterns with Gaussian mixture
models (GMM) in a maximum likelihood criterion so that the conditional probability is

maximized for given conditions.

The maximum a posteriori probability solution to the N-class identification problem

requires computing P(4, | f) for each class 4, n = 1,...,N, given a feature vector f

-17 -



representing the sample data of an unknown class. An alternative is to employ the

maximum likelihood solution, which maximizes the class-conditional probability,

A =argmaxlog P(f | 4,) (3.3)
j'/1

Furthermore, the likelihood scores coming from different feature types can be combined at

decision level using weighted summation rule,

A= arg;llaxzakp(fk | 4,) (3.4)
n k

where 0 < ¢, <1 is the weight of the k-th feature type and Zk a, =1.

Computation of class-conditional probabilities needs a prior modeling step, through which
we estimate a probability density function of feature vectors for each class n = 1,...,N from
an available training data. The class conditional probability density functions are modeled

using the Gaussian mixture densities,
M
P(f|4,)=2 oN(fim,.%,) (3.5)
k=1

where my and >, are respectively mean vector and covariance matrix of the k-th mixture,

and M is the total number of mixtures.
3.3 Driver Behavior Signal Prediction

Every year, traffic accidents lead to several fatalities and injuries. Human error is blamed as

the primary cause for these accidents. Driver behavior modeling is extremely important to
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warn drivers about future incidents based on predicting driving actions. Similar studies
have built driving behavior models to predict future action by using past movements.
Kishimoto and Oguri applied to Dynamic Bayesian Networks to construct a behavior
model for inference of stop behavior [14]. They have revealed that using past movements
has a great influence for predicting stop probability. We propose a linear prediction method
for driver’s action based on driving behavior. We try to estimate the target samples from N
recent samples of all behavior signals. The consistency of the predicted signal and the

actual signal may give us an idea about driving quality.

In order to predict driver behavior signals, we construct a prediction model concerning with
past movements of driver by using Hidden Markov Models. The hidden states are valid
stages of a dynamic process and HMMs lead probabilistic transitions among different
stages. We employ three driving data, brake, gas pedal strokes and velocity for our model.

Flowchart of predicting driver behavior is shown in Fig. 3.5.

Trai
raim HMM Temporal Extract
Clustering Predictors

Driving Behavior
Data

h h 4

Cluster Via Linear Monitor Prediction
Viterbi Prediction Errors

Fig. 3.5 Flowchart of predicting driver behavior

Test

First we build a temporal correlation between all driving signals using HMM structure.

Then we apply linear prediction to predict the desired driving behavior sample. The state
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sequence of the system is determined by using the Viterbi algorithm, which calculates the

log-maximum likelihood of a series of observations given a particular HMM.

In each segment, constructed by HMM clustering we perform a linear prediction analysis to

estimate current driving behavior sample from N recent driving behavior samples. We
construct the feature vector d(n) = [b(n), g(n),v(n)] where b, g and v vectors denote the

direct samples taken from brake pedal pressure signal, gas pedal pressure signal and
velocity signal of the corresponding segment respectively. Our prediction method is

described as follows:
s(n) = PAd(n—1),d(n—2),...d(n—i)) (3.6)

where ; ( n ) 1is the sample to be estimated and i is the number of past samples used.
We construct a feature vector f, by combining the driver behavior samples.
1, =ldn=-1.d@n-2)...d@n-0)] (3.7)

The mean removed feature component can be extracted as,
X, =f —f (3.8)

where f is the mean vector of f, sequence.

In a similar way, the mean removed target sample can be extracted as,

Y=Yn—Y (3.9)

where y, is the current sample and y is the mean of the driving behavior signal at current

state. The linear estimator yields to the Yule-Walker equations,
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“Row (3.10)

ey

where R, and Rx[xj are the correlation of y, x; and x; x; signals, respectively

1 ¥ 1 ¥ . . )
R =E{px)=— x. and R =E{xx)=— xT'. The linear prediction vields a
= E{yx;} M;J’, 1 o, = EAXx ;) M;x,xj p y

solution for the LP filter w as,
w=RR (3.11)

Target sample can be estimated as,

Y, =xXw+y (3.12)
[15].
We can also measure the prediction errors by using the minimum mean squares error
(MSE) which is calculated as

MSE=E{||y, -y, I} (3.13)
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CHAPTER 4

EXPERIMENTS

In the experimental evaluations we use two subsets from the UYANIK database. The first
subset, U-DRIVER, includes 23 drivers to be used for the driver identification evaluation
(3 of these drivers are not used for the car following task since they miss laser range
information). The second subset, U-TASK, includes 10 drivers to be used for the driving
task identification. Driver identification performance for a particular task-domain depends
on the selection of accurate training database of interest in that domain. So, in order to
achieve more realistic identification results we divide the U-DRIVER into 3 groups.
Assuming that a vehicle is generally used by a limited number of different drivers, each of
these groups is arranged in 20 subgroups including 3, 4 and 5 drivers respectively. Driver
identification is performed for all these 60 subgroups independently. Also we benefit from
this subset in order to predict driver behavior concerning with driver’s past movements.
The four primary tasks are transcribed on the U-TASK subset. In all driver and task
identification evaluations, we use 5-fold cross-validation, where the available database is
divided into five equal length segments (the first segment starts with the beginning of the

driving session, the second one starts with the end of the first segments and the others
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follow the same procedure) and evaluations are performed over leave-one-segment-out
train and test scheme. In driver behavior prediction evaluations we use 4-fold cross

validation.

4.1. Driver identification

Every driver has characteristic driving behaviors. They vary in how they use the gas and
brake pedals and how much distance they keep when following a vehicle. Considering the
histograms in Fig. 2.5, it is not difficult to guess characteristics in driving behavior differ

from driver to driver.

As described in Section II-III, the gas, brake and velocity signals are all sampled at 32 Hz.
and the cepstral features are extracted over 800 ms (25 samples) of windows for every 96
ms (3 samples) of frames. Fig. 4.1 shows the driver identification performance over the U-
DRIVER database including 23 drivers for brake pedal pressure, gas pedal pressure and
velocity signals using cepstral coefficients and GMM classifier with varying number of
mixtures. For identification purpose we use different decision window lengths and
calculate the features for every 30 seconds of frames. Since brake pedal is not used
frequently on highway, driver identification using brake pedal is performed only on city

driving recordings.

As shown below, the gas pedal pressure signal yields better performance than the brake
pedal pressure signal. This is possibly due to the more frequent use of gas pedal by drivers.
Best identification results for all behavior signals are obtained by using GMM classifiers

with 16 mixtures over 8-10 minutes of decision windows. The unimodal driver
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identification rates are all below 60%, which presents a fair driver identification system

with possible room to improvement.
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Fig. 4.1 Identification rates for the (a) gas pedal pressure, (b) brake pedal pressure and (c)

velocity signals

For a possible improvement, we perform decision fusion of classifiers of different driver
behavior signals. We investigate the fusion of classifiers over gas, brake and velocity

signals, and identify fusion structures with improved identification rates.

Fig. 4.2 presents decision fusion results of the driver identification system over different
decision window sizes. The optimal weights of the classifiers in the decision fusion are set

experimentally. The resulting weights are set as o = 0.77 in the brake (B) and gas (G)
fusion, ¢, = 0.79 in the velocity (V) and gas (G) fusion, and o,= 0.70, o, = 0.15, a, =

0.15 in the gas, brake and velocity fusion. The best identification result is obtained as
69.5% with the fusion of gas (G) and brake (B) pedal pressure signals by using 16 mixtures
of GMM. The best scenarios for all modalities are summarized in Fig. 4.3. We can easily
observe from these results that decision fusion method significantly increases our system

performance.
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Fig. 4.2 Identification rates for the decision fusion of (a) gas pedal pressure + brake pedal
pressure, (b) gas pedal pressure + velocity and (c) gas pedal pressure + brake pedal

pressure + velocity signals
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Fig. 4.3 Comparison of identification rates for unimodal and multimodal classifiers
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Car following distance can also be used to identify a driver. Car following distance
measures are collected with a laser range finder. The laser range finder sweeps 180° at
every 2 seconds and measures the distance to the nearest object at each angle. We use the
distance at 90° to obtain the distance with the vehicle in front. Since the maximum range
that the laser can sweep is about 80 meters and most of the drivers exceed this distance on
both highway and two-way roads, we only employ the car following distance signals on
one-way roads. For one-way roads, the car following task is around 4 minutes long for each

driver.

Fig. 4.4 shows the identification results for the car following distance signals over the U-
DRIVER database including 20 drivers at different test lengths. Since the length of the task
is rather short, selecting the decision window size is very crucial. The best performance is

achieved as 45% with the 16 mixture GMM classifier with 150 seconds decision windows.
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Fig. 4.4 Identification rates for the car following distance signals
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As the accelerator pedal is operated directly by the driver, it yields us the best feature to
identify the driver characteristics. Since the distance from the vehicle in front and vehicle
velocity are the results of the driver’s pedal operations, we achieve poor results by using

only these features. Driver identification results are all summarized in Fig. 4.5.
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Fig. 4.5 Driver identification rate of GMM for combination of various driving signals

The identification rates of Japanese research were 81% for twelve drivers using a driving

simulator and 73% for thirty drivers using an actual vehicle [16].

In a real-life scenario, typically a car is used by several drivers. Hence we investigate the
performance of the driver identification system with reduced number of drivers. The
dataset is divided into 3 groups, which are made up of 20 different subgroups including 3, 4
and 5 drivers respectively. The parameters we use in this experiment are 8 minutes of
decision windows and 16 mixtures of GMMSs, which have been observed to achieve better

identification rates in the earlier experiments.
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We employ the driver identification task for each subgroup by using 5-fold cross validation
and evaluate an average identification rate for all 3 groups. Fig. 4.6 shows the average
identification results for each group, using different features. We achieve 85.21% of

success with the fusion of gas (G) and brake (B) pedal pressure signals among 3 drivers.
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Identification Rates (%)

10

G B \Y G+B G+V G+B+V

Features

@ 1. Group (3 drivers) m 2. Group (4 drivers) O 3. Group (5 drivers) @ All drivers

Fig. 4.6 Comparison of identification rates for different group of drivers

4.2. Driving status identification

In this study we also try to investigate the influence of the distraction conditions on driving

performance and develop a technique for quantifying the stress level of drivers under
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various conditions with different tasks. In the UYANIK database nearly half of the driving
sessions include driving under specific tasks. These tasks are dialog on cell phone, dialog
with passenger and signboard reading, which are expected to cause lack of cognitive

engagement in the driving task. The details of the tasks are described as follows:

e No task : A driver drives without any task.

e Signboard reading : A driver reads aloud the words on signboards/ plates during
driving.

e Dialogue on cellphone : A driver goes to an unfamiliar place being guided by a
navigator over cell-phones. Also online banking application is done over cell-
phone.

¢ Conversation with passenger : A driver talks with the on board passenger.

In order to investigate the use of driving behavior signals to classify different driving tasks;
we build a driving task identification system and perform identification performance
analysis over the U-TASK database, which includes 10 drivers. For task identification
purpose we use different decision window lengths and calculate features for every 1 second
of frames. Features extracted for task identification purpose are entirely different from the
features used for driver identification purpose, because it is not possible to obtain sufficient
number of decision windows by using 3 sec. frame update interval in task identification as

we do in driver identification.

Fig. 4.7 shows the histograms of the gas pedal pressure signal under different driving task
conditions. Statistical differences between reference driving and driving under a task are
clear. However, driving task specific histograms, especially dialog on cellphone and with

passenger, are close to each other.
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Fig. 4.7 Histograms of gas pedal pressure signals under reference driving (top left), dialog
on cellphone (top right), signboard reading (bottom left) and dialog with passenger (bottom
right)

We first consider a two-class classification system to identify reference driving and driving
with a task. The two-class identification system is expected to show whether distractive
conditions are influential on driving performance. Among 10 drivers’ data reference
driving last 190 minutes (47.8% of all data) and driving under a task last 207.5 minutes
(52.2% of all data) totally. Each session is considered as a class independent from drivers.
To evaluate task vs. no-task identification we use 16 Gaussian mixtures for constructing
our model and 5-fold cross validation for classification. If everything is random

performance rate is expected to be 50.1%.
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The average identification rates of the classifiers using gas and brake pedal pressure signals
and their decision fusion with different decision window sizes are given in Figure 4.8. The

best scenario is achieved by using 360 seconds of decision windows.
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Fig. 4.8 Average identification rates of the classifiers using gas and brake pedal pressure

signals and their decision fusion with different decision window sizes

Table 4.1 shows the identification rates of each class for this scenario. In this table, the last
column presents the prior reference distribution of events in the database. We identify a
reference driving session with 93.2% of success and identify a driving session under a
specific task with 72.5% of success by using the fusion of gas and brake pedal signals. The

average task vs no-task identification result is obtained as 83.3% with the fusion of 16
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mixture GMM classifiers of gas and brake signals. Note that, these identification rates are

significantly higher than random.

Table 4.1 Task vs no-task identification results of 16 mixture GMM classifiers with 360

sec decision windows (%)

G B G+B R
No-Task | 91.1 76.6 93.2 52.2
Task 71.6 61.9 72.5 47.8
Avg. 81.8 69.6 83.3 50.1

We also consider identification of individual tasks from driving behavior signals. Among
all driving sessions under a specific task dialog on cellphone lasts 97.5 minutes (47.56% of
all driving with a task data), conversation with passenger lasts 87.5 minutes (42.68% of all
driving with a task data) and signboard & license plate reading lasts 20 minutes (9.76% of
all driving with a task data) totally. Each session under different tasks is considered as a
class independent from drivers. To evaluate task identification we use 16 Gaussian
mixtures for constructing our model and 5-fold cross validation for classification. If

everything is random performance rate is expected to be 41.8%.
Task class dependent average identification results with reference prior distribution of task

data is given in Figure 4.9. This figure shows that selecting window length is not crucial for

this experiment.
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Fig. 4.9 Average task class dependent identification rates of the classifiers using gas and

brake pedal pressure signals and their decision fusion with different decision window sizes

Table 4.2 shows the identification rates of each class for the best scenario. Dialog on
cellphone task is identified with 58.5%, signboard reading with 25% and conversation with
passenger with 52.6% of success by using the fusion of gas and brake pedal signals. The
average task identification result is obtained as 52.7% with 60 sec. of decision windows
and the fusion of 16 mixture GMM classifiers of gas and brake signals. Identification rates

are observed to be slightly higher than random for all task classes.
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Table 4.2 Task identification results of 16 mixture GMM classifiers with 60 sec decision

windows (%)

G B |[GtB| R
Dialog on cellphone 56.4 | 49.7| 58.5 | 47.6
Signboard reading 175325 25 | 97
Conversation with passenger | 50.3 | 44.1 | 52.6 | 42.7
Avg. 50 |45.7] 527 |41.8

4.3. Predicting Driver Behavior

We construct a driving behavior model to warn drivers about future incidents. A method of
modeling driving behavior is concerned with certain period of past movements by using
Hidden Markov Models in order to predict driver signals as described in Section 3.4. We
use the U-DRIVER database for this purpose, which includes 23 drivers. Also we try to
analyze the effects of cognitive distraction conditions on predicting driver behavior. For
this purpose we benefit from the transcribed data, which is in the U-TASK database
including 10 drivers. Here we apply 4-fold cross validation for all estimation experiments.
This procedure is basically partitioning the signal into 4 parts, taking one as test data while
keeping other segments for training purpose and applying the test procedure 4 times for
each part. These parts are made up of equally numbered segments constructed by HMM
clustering. Since the lengths of these segments are not equal, the ratio of test/training data

over time is different for all drivers.
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In this experiment we try to predict one of the driving behavior signals by using a window
of past samples of all behavior signals. All behavior signals are decimated by 4 for this
experiment. The features are extracted over 800 ms windows (25 samples) for every 96 ms
frames (3 samples). First we build a temporal correlation between all three signals using
HMM structure shown in Fig. 4.10. This structure is specified by the following parameters:
e Set of discrete states S [ = S, (i=1,2,...,M)]
e g;: State transition probability (i=1,2,...M; j=1,2,...,.M)
where, M denotes the number of states [15]. Transition probabilities from one state to

another are set equal initially and system starts with probability 1 at the first state.

Fig. 4.10 HMM structure for clustering
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The Viterbi decoding algorithm, explained in Section 3.4, determines the state sequence of

the system as shown in Fig. 4.11. This is an example of HMM clustering by using 8

discrete states.
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Fig. 4.11 State sequence of the system
In each segment, constructed by HMM clustering we perform a linear prediction analysis to

estimate current driving behavior sample from N recent driving behavior samples. Our

prediction method is described in Section 3.3. Here, it is important to select the appropriate
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linear prediction filter order. We observe correlation between current and recent driving
behavior samples to decide it. Fig. 4.12 shows how this correlation changes considering the
filter order. The y-axis shows the correlation of N recent samples of different behavior

signals with the corresponding behavior signal (R,.;). Here,
X, =1~/ (4.1)

where j_r is the mean vector of f, sequence and f, represents a vector containing all past
samples of all 3 driving behavior signals.
f,=ld(n=1,d(n=2)....d@n-0)] (4.2)
where
d(n) = [b(n), g(n), v(m)] (4.3)
In Fig. 4.12 x-axis shows the number of past samples used for each behavior signal (filter

order). Also,
y=y,=Y (4.4)

where, v, represents the sample to be estimated and y is the mean of the driving behavior

sample, which the sample y, is element of at current state. In Fig. 4.12 y denotes the (a)

brake, (b) gas and (c) velocity signals respectively. Ry is calculated as:

(4.5)

Here R, is calculated as:
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where M is the number of samples at the current segment.

Values are normalized to 0-100 interval. In Fig. 4.12 it is clear that taking 6 samples from

velocity signal and 1 sample from pedal operation signals would yield us better prediction

(4.6)

results.
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Fig. 4.12 Correlation between current (a) brake signal, (b) gas signal, (c) velocity signal
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and recent driving behavior samples
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After selecting the filter order we need to decide the number of states for HMM clustering.
To do so, we try different number of states and calculate the mean squares error for each
case. Fig. 4.13 and Fig. 4.14 show how the error changes depending on the state number for
training and test data respectively. The 3 state HMM structure is chosen as an adequate

model for the classification of driving behavior signals.

Prediction Errors
Training

40 ~—¢
-60
1 2 3 4 5 6 7 8 11 13
Brake | -545 |-27,54 | -42,7 | -40,3 | 43,2 | -42,35 | -42,68 | -39,94 | 43,55 | -38,56
Gas 0,12 | -22,45| -35,6 | -33,65 | -34,66 | -31,75 | -38,55 | -35,32 | -38,1 -33
Velocity| 55,76 | 24,6 | 545 | 8,34 | 9,98 | 10,33 | 1241 | 103 | 7,43 | 10,34

Number of states
‘ —e—Brake —=— Gas —A—Velocity‘

Fig. 4.13 Prediction errors for training data
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Prediction Errors
Test
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For the selected linear prediction filter order (taking 6 samples from velocity, 1 sample
from gas and 1 sample from brake signal) and 3 HMM states, we estimate driving behavior

samples in 2 scenarios:

In the first scenario we use the direct samples of behavior signals at each prediction step.
We construct the feature vector d(n) = [b(n), g(n),v(n)] where b, g and v vectors denote the

raw samples taken from brake pedal pressure signal, gas pedal pressure signal and velocity

signal of the corresponding segment respectively and use the following method to predict

the behavior signal:

Fig. 4.14 Prediction errors for test data

s(n) = P([d(n-1),d(n-2),...d(n-1))
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where s(n) is the sample to be estimated and i is the number of past samples used.

Fig. 4.15 shows the prediction steps for this scenario. Here, points in blue represent the raw
samples and green ones represent the sample to be estimated. Points in red circles are used
as past samples for predicting the green points. At each step we use the raw samples to

predict the behavior samples.
Driving behavior samples are estimated as shown in Fig. 4.16 for one randomly selected

driver by using this scenario. Here, signal plotted in blue represents the actual signal and

the red one represents the estimated signal.
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Raw signals before prediction
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Fig. 4.15 Prediction steps for the first prediction scenario
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Fig. 4.16 Driving behavior signal estimation for the first prediction scenario

In the first scenario we assume that all raw samples in the corresponding segment are
available. If we know all samples, prediction process is meaningless. So we consider

another scenario assuming that only a few samples are available.

Second scenario is briefly updating the direct samples with the estimated ones at each step.
We construct the feature vector d(n)= [b(n), g(n),v(n)] and use the following method to

predict the behavior signal:

s(n) = P([&(n ~1,d(n=2),...d(n—- i)}) (4.8)
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where s(n) is the sample to be estimated, d(n)is a vector containing estimated samples of

brake, gas, velocity signals and i is the number of past samples used. For the first 6 steps if

a sample hasn't been estimated, we use the raw samples instead.

Fig. 4.17 shows the prediction steps for this scenario. Here, points in red represent the
estimated samples, blue points represent the raw samples and green ones represent the
sample to be estimated. Points in red circles are used as past samples for predicting the

green points.
Driving behavior samples are estimated as shown in Fig. 4.18 for one randomly selected

driver by using the second scenario. Here, signal plotted in blue represents the actual signal

and the red one represents the estimated signal.
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Raw signals before prediction
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Fig. 4.17 Driving behavior signal estimation for the second prediction scenario
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Fig. 4.18 Driving behavior signal estimation for the second prediction scenario

We also apply this method for driver independent experiment. Among the database we
select 20 drivers for training and the remaining 3 drivers for testing. Test data for each 3
driver is same with the one that we used in driver dependent experiment. In both driver
dependent and independent experiments parameters are set all equal. Clustering is done
with the structure shown in Fig 4.10 by using 3 HMM states and in the prediction process
we use 6 past samples from velocity, 1 sample from gas and 1 sample from brake signal to
predict the next behavior sample. We apply our prediction method (second scenario) for

each test driver and calculate an average prediction error. Fig. 4.19 shows the prediction
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errors for driver independent experiment with comparison to driver dependent one.
Considering these results prediction driver behavior in driver independent experiments is

more difficult than driver dependent experiments.

Prediction Errors (Q=3)
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Fig. 4.19 Prediction errors for driver independent experiment with comparison to driver

dependent one

We evaluate the prediction errors for each sample of behavior signals regarding to one
randomly selected driver and plot its graph via all samples as shown in Fig. 4.20. In Fig.
4.20 some segments contain high level of prediction errors. To investigate the driving
conditions where these errors appear, it is necessary to determine and transcribe high
erroneous parts clearly. To do so, we select the 20% of the highest prediction error as the

threshold value and define the segments higher than this threshold as high erroneous parts.
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To figure out the effects of driving conditions on prediction we calculate the ratio of
change of length of driving tasks and road types over erroneous parts to the original amount
over all parts. Percents of changes are shown in Fig. 4.21 and Fig. 4.22
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Fig. 4.20 Prediction errors for one driver’s behavior signals
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Fig. 4.21 Percentage of change of driving task lengths over erroneous parts for each driver
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Fig. 4.22 Percentage of change of driving session lengths on different types of roads over

erroneous parts for each driver to entire sessions
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Considering Fig. 4.21 we can come to a conclusion that distractive conditions have a
certain effect on driving behavior. Prediction of behavior signals under distractive
conditions is more erroneous than prediction under no secondary task. Experiments show
that the ratio of all task lengths over erroneous parts is slightly higher than the ratio of all
task lengths over all segments. Fig. 4.21 also shows that among driving tasks dialog on
cellphone is more effective on driving behavior than other tasks. Fig. 4.22 shows that road
conditions are also effective on predicting driver behavior. It is hard to predict driver
behavior on U-Turns, the connection part of highway and drive way. Sudden maneuvers
and unsteady use of pedal operations may avoid predicting the next action. Percentage of
change of driving task lengths on different road types over erroneous parts for each driver

is summarized in Fig. 4.23.
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CHAPTER 5

CONCLUSION

In this thesis we consider the problem of driver and driver status identification under
different cognitive stress/distraction conditions. Also we try to predict driving behavior
signals by using the past movements of the drivers. Our objective is to construct a system
to facilitate driver-vehicle interaction by analyzing the driving behaviors. To study and
determine the nature of driving behavior we benefit from the characteristic driving signals
including brake pedal pressure, gas pedal pressure, vehicle velocity and the distance from
the vehicle in front signals. The system is expected to be more reliable due to the presence

of sufficient amount of driving behavior signals.

We collaborate with the Drive Safe Consortium in Turkey. Driving behavior data was
collected by a test vehicle, UYANIK, customized with various sensors, cameras,
microphones and lasers with similar to other test vehicles used in USA and Japan. Among
the collected database we benefit from 23 drivers’ data for driver identification and driver
behavior signal prediction experiments and 10 drivers’ data for task identification purpose.

Second subset of the database is also used to analyze the effects of distractive conditions on
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driver behavior estimation. All drivers drove the car on driveway and two-way, where they
have to face with traffic congestion and also on highway with much less traffic. Their task
is a 40 minutes of car driving under cognitive distraction conditions such as dialogue on
mobile phone, conversation with passenger on board, sign reading and license plate
reading. We rearrange 10 drivers’ data sets via transcription for these tasks. For all
experiments we use the gas, brake pedal pressure and vehicle velocity, which are the most
beneficial ones for our study, among driving behavior signals. Also, we analyze the
performance of the distance from the vehicle in front signal for the driver identification

experiment.

To perform the feature extraction, we use the Cepstrum method. Cepstral analysis is a
known source/filter separation method, which is defined as the inverse Fourier transform of
the short-term log-power spectrum. In earlier studies the cepstrum method has been applied
to the driving behavior signals [4]. When the driving behavior signals are modeled as
outcomes of a system which is excited by commands of driver, cepstral analysis yields a
fine spectral representation of the system. Also, same studies have shown that
probabilistically sophisticated Gaussian Mixture Models would better suit for our purposes

as a training algorithm.

Driver behavior signals are modeled with Gaussian Mixture Models that represent spectral
characteristics extracted. In driver identification experiment, test results show that decision
fusion method significantly increases our system performance. We achieve 69.5% of
success with the fusion of gas and brake pedal pressure signals, while these signals can
reach 58% of success at most individually among 23 drivers. Driver identification results
of the car following task is lower than the pedal operation models however it is feasible to

use them to recognize a driver. Since the pedals are operated directly by the driver, they
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yield us the best feature to identify the driver characteristics. We also apply the same
identification method on a group of few drivers to achieve more realistic results. The best
identification result is obtained as 85.21% with the fusion of gas and brake pedal pressure
signals among 3 drivers by using 16 mixtures of GMM and 8 minutes of decision windows,

which have been proved to achieve higher performance rates in the earlier experiments.

In this study we also try to develop a distraction detection module based on driving
behavior signals. Distraction detection is an important issue because cognitive/stress
conditions have a great influence on driving behavior. We achieve 93.2% of success in
detecting the driver behavior signals under no specific task while the random rate is about
52% among 10 drivers. In our database nearly half of the driving sessions are done under
specific task. Among these tasks dialog on mobile phone, conversation with passenger on
board, sign reading and license plate reading are the most effective ones. We evaluate
identification rates of these tasks individually and observe that these rates are slightly
higher than random values. Because of time and computational constraints we can only
transcribe 10 drivers’ datasets. The results suggest that relatively more efficient

transcription methods could yield better performance rates on more drivers’ data.

Warning drivers about future incidents is an important application area because many of
the traffic accidents are caused by drivers. In this study we propose a method of predicting
driving behavior based on gas pedal pressure, brake pedal pressure and vehicle velocity
signals. These behavior signals are employed for our model with Hidden Markov Models.
Estimation method is concerned with past driving movements since human’s behavior is
strongly related to past actions. Preliminary findings show us that 3 states of HMM, 6 past
samples of velocity and 1 past sample of each pedal operation signals are adequate for our

purpose. Predicting a single sample by using past samples yield us encouraging results
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while predicting more than one sample fails to achieve our aim. We did this experiment on
both dependent and independent of drivers. Considering the results we can come to a
conclusion that though prediction errors for driver independent experiment is slightly
higher than the driver dependent one, drivers’ behavior can be predicted by using other
drivers’ samples with sufficient error rates. Earlier findings have shown us that distractive
conditions have a great influence on driving behavior. Prediction results are also supporting
this finding. Prediction of driving behavior signals under distractive conditions is 20%
more erroneous than prediction under no secondary task. Also road conditions are

influential on predicting samples.
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