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ABSTRACT 

 

Driving behavior signals differ in how and under which conditions the driver use vehicle 

control units, such as pedals, driving wheel, etc. In this study we investigate how the 

driving behavior signals differ among drivers and among different driving tasks. 

Statistically significant clues of these investigations are used to define driver and driving 

status models. Experimental results over the UYANIK database are presented. Driver 

identification over 23 drives achieves 57.39% identification rate with the fusion of gas and 

brake pedal pressure classifiers. Driver identification system with reduced number of 

drivers suits better to real-life scenario. 85.21% of identification rate is achieved among 3 

drivers. Driver status identification over 10 drivers with task and no-task classes yields a 

promising 79.13% identification rate. 

Driving behavior is strongly related to past movements of drivers. In this thesis we aim to 

predict driving behavior for warning drivers about future incidents and decreasing car 

accidents caused by human factors. The proposed method is concerned with past samples 

of behavior signals and we use Hidden Markov Models to model driving behavior. Earlier 

findings have shown us that we can predict driving behavior with encouraging results in 

both driver dependent and independent experiments. The experimental results also show 

that distractive conditions have a certain effect on driving behavior as the prediction errors 

are significantly increasing in these conditions. Road conditions are also influential on 

driving.  
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ÖZ 

 

Sürücü davranış sinyalleri; sürücünün pedal, direksiyon kontrol birimlerini nasıl ve hangi 

koşullar altında kullandığına gore çeşitlilik gösterir. Bu çalışmada farklı sürücüler ve farklı 

sürüş koşullarına gore davranış sinyallerinin nasıl değiştiği araştırılmıştır. Bu 

araştırmalardan elde edilen istatistiksel bilgiler kullanılarak sürücü ve sürücü statü 

modelleri tanımlanmış, UYANIK veritabanı kullanılarak elde edilen deneysel sonuçlar 

sunulmuştur. Gaz ve fren pedal basınç sınıflandırıcılarının füzyonu kullanılarak 23 sürücü 

üzerinden yapılan deneylerde %57.39 sürücü tanıma başarı oranı elde edilmiştir. Az sayıda 

sürücünün kullanıldığı sürücü tanıma sistemi, gerçek hayat senaryolarına daha fazla uyar. 

Bu amaçla 3 sürücü kullanılarak yapılan deneylerde %85.21 sürücü tanıma başarı oranı 

elde edilmiştir. Sürücülerin daha önceden belirlenmiş görevleri yaptıkları ve hiçbir görev 

yapmadıkları durumlar için 2 sınıf oluşturulup, 10 sürücü üzerinden sürücü durumu tanıma 

deneyleri yapılmıştır. Bu deneylerde %79.13 tanıma başarı oranı sağlanmıştır. 

 

Sürücü davranışları, sürücünün önceki davranışlarıyla büyük ölçüde ilintilidir. Bu 

çalışmada, sürücüleri olası tehlikeli olaylara karşı uyarmak ve insan kaynaklı trafik 

kazalarını minimuma indirmek için sürücü davranışlarını kestirecek yöntemler 

araştırılmıştır. Önerilen yöntem, sürücü davranış sinyallerinin geçmişteki örneklerini 

kullanmak ve Gizli Markov Modelleri’ni kullanarak sürücü davranışlarını modellemek 

üzerinedir. Elde edilen sonuçlar hem sürücüden bağımsız hem de sürücüye bağımlı 

deneyler için makul değerlerdir. Ayrıca, deneylerden edindiğimiz sonuçlara gore sürücüyü 

rahatsız edici koşulların sürücü davranışı üzerinde kesin bir etkisi olduğu görülmüştür. Bu 

rahatsız edici koşullar altında sürücü sinyallerini kestirme hataları ciddi ölçüde artmıştır. 

Yol koşullarının da sürücü davranışı kestirme de etkili olduğu gözlemlenmiştir. 
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CHAPTER 1  

 

INTRODUCTION 

Recent developments in man-machine interaction have created a wide range of 

applications. Among those applications human-vehicle interfaces have been studied 

extensively in the recent literature. Next-generation human-vehicle interfaces will likely 

incorporate biometric person recognition, using speech, video, images, and analog driver 

behavior signals to provide more efficient and safer vehicle operation. Furthermore, driving 

behavior signals, such as pedal signals, velocity, car-following distance, yield important 

clues on driving behavior status and driver’s cognitive stress/distraction. 

 

There have been significant efforts on investigation of driving behavior patterns using 

driving behavior signals. Kurahashi et al. used driving behavior signals to quantify 

workload factors for driving behavior modeling [1]. Center for Acoustic Information 

Research at Nagoya University has been collecting multi-modal driving behavior signals 

since 1999 [2]. Their early studies investigate cepstral analysis of driving behavior signals 

[3] and modeling driver behavior as car-following and pedal operation patterns [3, 4]. 

Recently, they investigate near-miss accidents by means of interviews to determine driver 
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behavior and cognitive state immediately before the incident [5]. Driver identification from 

biometric and driving behavior signals has been investigated within a multi-modal decision 

fusion system in [6]. 

 

Car following data collection and modeling have also been investigated across different 

research centers [7, 4]. Predicting driver’s future actions with the resultant behavior and 

past observations have been studied with implications to model the impact of Intelligent 

Transport Systems (ITS) [5, 8]. Tezuka et al. investigate prediction of driving behavior 

signals by capturing time-series steering angle data at the time of lane change with 

conditional Gaussian models and Bayesian networks [8]. 

 

A multi-modal signal processing system for robust stress detection in urban driving 

scenarios has been proposed in [9]. Marinova, Devereaux and Hansman has studied the 

effects of cell phone conversations on driver reaction time and situation awareness at 

different levels of cognitive with hands-free and hands-held cell phone configurations [10]. 

Cognitive workload and driver experience, using a secondary task method, the peripheral 

detection task (PDT) in a field study has also been explored [11]. 

 

Nagoya University CIAIR center leads the effort on international research coordination of 

driving behavior signal processing based on large scale real world database [2]. Within this 

research coordination, UTDrive of University of Texas at Dallas collects multi-modal 

driving behavior data [12]. UTDrive investigates driver’s cognitive stress/distraction to 

adapt interactive systems for improved safety. Similarly, the Drive- Safe consortium, which 

has partners from academia and industry in Turkey, collects a similar multi-modal driving 

behavior corpus to create conditions for prudent driving [13]. 
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In this thesis as a partner of the Drive-Safe consortium, we investigate driver identification, 

driving status identification and driver behavior prediction under different cognitive 

stress/distraction conditions using driving behavior signals. Our objective is to search out 

and examine the effects of cognitive distraction conditions on driving behavior and inquire 

whether the driving behavior signals are characteristic information for every driver. We 

compare our findings with different studies’ results on similar databases in Japan and USA. 

We also investigate task identification performances. Earlier findings are presented in [17]. 

 

Significant contributions of this thesis are defined within the following three problems: 

 

1.1 Driver Identification 

 

Identification of a driver using behavioral signals is one the most interesting signal 

processing problems. A driver identification method, proved to achieve high performance 

can be used in many applications, such as driver verification for security purposes and 

customization of vehicle according to driver’s behavior characteristics. In the study of 

methods for recognizing drivers, driving behavior signals play a central role. In this study 

we only use driving behavior signals such as the vehicle speed, gas pedal pressure, brake 

pedal pressure and the distance from the vehicle in front. First, we investigate the 

characteristics of these signals and present a selected set of driving statistics. We propose 

an identification method and employ this method on behavior signals respectively. Also, 

we analyze the performance of fusion methods on the identification problem. Identification 

results are presented in the Experiments section. 
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1.2 Driver Status Identification 

 

Distractive conditions cause important safety problems to drivers. Studies have shown that 

nearly 80% of traffic accidents occur because of the driver inattention, which are 

commonly result of distractive conditions. Navigation systems and other services in 

vehicles introduce many secondary driving tasks that can increase accident risk. Thus, 

developing a distraction detection method would be very beneficial for in-vehicle system to 

reduce the effects of distraction. In this study, driving experiments were done under some 

distractive conditions, which can be considered as the secondary driving tasks stated above. 

These tasks are dialog on cell phone, including route navigation and online banking, 

conversation with passenger on board, signboard and license plate reading. First, we plot 

the histograms of each driving behavior signals under driving tasks respectively. Effects of 

distractive conditions on drivers are analyzed by comparing these histograms. Next, we try 

to detect distractive conditions by employing the same method used for driver 

identification. Identification results are presented in the Experiments section. 

 

1.3 Predicting Driver Behavior 

 

Human factors play a big role in traffic accidents. Predicting driving behavior is an 

important issue because it has a significant effect on decreasing human-caused accidents. 

Drivers’ behavior is strongly related to their past actions, so in this research we construct a 

model concerning with drivers’ past movements by using Hidden Markov Models. 

Selecting the adequate number of HMM states and past samples is crucial for enhancing 

the system performance. Also we investigate the influence of road conditions and 

distractive conditions on our prediction model.  
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CHAPTER 2  

 

DRIVING BEHAVIOR SIGNAL CHARACTERISTICS  

Driving signals differ in how and under which conditions the driver use vehicle control 

units, such as pedals, driving wheel, etc. We aim to model individual differences among the 

selected drivers and identify the drivers by using gas pedal pressure, brake pedal pressure, 

vehicle velocity and fusion of these signals. We also benefit from the car following 

distances. Driver behavior modeling has also been studied with encouraging results in the 

U.S., Japan, Italy and Singapore by using similar driving behavior signals collected with 

different vehicles. Japanese research demonstrates that the driver model based on pedal 

operation signals achieved a driver identification rate of 76.8 % for 276 drivers [4]. It is not 

difficult to guess characteristics in driving behavior differ from person-to-person under 

some distractive conditions. In order to search out and examine the effects of these 

distractive conditions we investigate how the driving behavior signals differ among some 

driving tasks. Statistically significant clues of this investigation are used to define a driving 

status model. Besides these, we investigate driver behavior prediction with driver’s past 

movements by using the same database. Behavior signals are clustered into different 

segments and we employ the prediction method on all these segments. This section 
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presents general characteristics and statistics of the driving behavior signals from the 

UYANIK database, feature representation of these driving behavior signals, and the 

statistical clustering, identification framework for the driver and driving status and 

predicting driver behavior. 

 

2.1 Data Collection 

 

Driving behavior data was supplied by Drive-Safe Consortium in Turkey with the test 

vehicle, UYANIK, which is a sedan car equipped with various sensors. The UYANIK 

database includes synchronous audio-visual recordings, CAN-Bus readings, pedal sensor 

recordings, 1800 laser range finder and XYZ accelerometer recordings as seen in Fig. 2.1 

[13]. “Nagoya Vehicle” in Japan and “UT-Drive” in Dallas, Texas, USA have also been 

equipped in a similar way.  

 

The data collection route, shown in Fig. 2.2 is around 25 km at about 40 minutes, starting 

and ending at the OTAM Research Center in the ITU Campus in Ayazaga. It consists of 

two 1.5 km very busy city sections, followed by the TEM Highway with much less traffic. 

Next comes the city streets in Etiler, Akatlar, Levent, 4. Levent, Ayazaga and the drivers 

go back to OTAM at ITU campus. The last segment is very busy with local traffic. Among 

the database we benefit from 23 drivers’ behavior signals, 20 of them are male and 

remaining are female. Each driver drove the car on the same route; however road 

conditions may differ depending on traffic jam and weather in Đstanbul. There are four 

primary tasks in the UYANIK database: i) reference driving which includes no specific 

driving task, ii) dialog on cellphone which includes on-line banking application and 

navigational dialog, iii) signboard reading in which driver reads road-by signs and license 

plates aloud, and iv) dialog with passenger where driver talks with the on board passenger.     
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Fig. 2.1 Sensors in the data collection vehicle upperleft clockwise: cameras, navigator area 

and lab bench for data acquisition systems, laser scanner, IMU XYZ accelerator, break 

pedal pressure sensor, headset/mics, and EEG cap [13] 

 

 

2.2 Driving Behavior Signals 

 

We consider gas and brake pedal pressure signals, velocity from Can-Bus and car 

following distance from the laser range finder as driving behavior signals. The gas, brake 

and velocity signals are all sampled at 32 Hz, and the laser range finder sweeps 1800 at 

every 2 seconds. Samples of driving behavior signals are given in Fig. 2.3, where the brake 
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and gas pedal pressure levels, velocity and car following distance are given from top to 

bottom. 

 

 

 

Fig 2.2 Data collection route in Đstanbul [13] 
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Fig. 2.3 Driving behavior signals of a driver from the UYANIK database 

         

 

The laser range finder in front of the vehicle records two-dimensional (x,y) data consisting 

of horizontal and vertical distances. Fig. 2.4 shows the Laser Scan Reading and the photo 

for a selected driver recorded at 12:56 PM on April 6, 2007. Truck on the right is between -

200 to +800 cm, the white truck is away 22 meters, and the vehicle on the next lane (left) is 

about 23 meters ahead [13]. 
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Fig. 2.4 Laser Scan Reading and the photo for a selected driver 

 

Histograms of the driving behavior signals over all 23 drivers from highway and city traffic 

conditions are shown in Fig. 2.5. Histograms show that, on highway drivers rarely use 

brake pedal and much more use gas pedal. As a result of this, people reach higher velocity 

levels on highway. The maximum range that the laser can sweep is about 80 meters and 

generally most of the drivers exceed this distance on highway.  
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Fig. 2.5 Histograms of the driving behavior signals from highway (top) and city (bottom) 

traffic 

 

Histograms of the driving behavior signals, taken from two randomly selected drivers are 

shown in Fig 2.6. The driver on the left side of the figure prefers driving faster and rarely 

uses the brake pedal. Also he/she generally keeps distance with the vehicle in front for all 

road conditions while the other driver prefers following a vehicle with closer distances 

where he/she faces traffic jam and much more uses brake pedal. Such differences are clear 

indications that driving behavior signals differ across drivers. 
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Fig. 2.6 Histograms of driving signals for two drivers:driver one on the left, driver two on 

the right columns.  
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CHAPTER 3  

 

DRIVING BEHAVIOR MODELING  

Modeling driver behavior is very important in enhancing the safety of the drivers and 

pedestrians. Driver authentication, early warning systems for vehicles and other 

technologies for security purposes can be given as the application areas of driver behavior 

modeling. Driving behavior is a cyclic process. Basic dynamics of this process is shown in 

Fig. 3.1. The driver determines the action to take by considering the road environment and 

operates the gas or brake pedal. Velocity of the vehicle changes according to the driver’s 

operation and the distance from the vehicle in front (road environment) also changes 

according to the vehicle status. 
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Fig. 3.1 Cyclic process of driving behavior [16] 

 

In this chapter we discuss feature extraction, driver identification, driver behavior signal 

prediction and their role for driver behavior modeling. Driver identification is based on 

recognition of driving feature vectors using a statistical model. Our model is designed 

using a training and test procedure. In the training part, our algorithm learns the model of 

the data from a training set constructed by extracting the driver behavior features. In the 

testing part accuracy of the algorithm is measured on the testing set, which is completely 

different from the training set. Here, feature extraction is a key point for our algorithm to 

select reliable features that represent the true underlying distribution of driver behaviors.   

 

3.1. Feature Extraction 

 

First preprocessing step is the high pass filtering of the driving signals to remove the DC 

component. Gas pedal pressure, brake pedal pressure and vehicle velocity signals are all 

filtered with the following high-pass filter: 

1

1

9999.01

1
)(

−

−

−

−
=

z

z
zH    

which has the frequency response as shown in Fig.3.2. 

(3.1) 
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Fig. 3.2 Frequency response of the high-pass filter 

 

The input data is too large to be processed, so we need to transform it into a reduced 

representation set of features. We need to capture significant information from driving 

behavior signals. Spectral analysis is one option. In driver modeling, hitting a gas or brake 

pedal is filtered with driver model represented as the spectral envelope. Spectral envelopes 

of pedal operation signals represent the differences in pedal operation patterns. These 

spectral envelopes are similar in the same driver and different among different drivers. 

Using this property we apply the cepstrum method, known as a source/filter separation 
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method, to perform feature extraction. Research dictates us to conclude that using raw 

signals results in worse performance rates when compared to the cepstral features [4]  

In this study we extract cepstral features for the gas and brake pedal pressure and velocity 

signals, which are sampled at 32 Hz. The cepstral features are extracted over 800 ms 

windows for every 96 ms frames as shown in Fig. 3.3. The cepstral feature is defined as the 

first K coefficients of the discrete cosine transform of band-pass filtered log-magnitude 

spectra, 

|}})}({|{log{ kTnxFBPFDCTf k +=
−

 

where k is the frame index, )( kTnx +
−

 is the windowed signal of duration T. Band-pass 

filter picks 1-13 Hz spectral components for brake signal and 1-6.5 Hz for gas and velocity 

signals. The dimension of the feature vector is set as k=10. Feature extraction process is 

summarized in Fig. 3.4. 

 

 

 

Fig 3.3 Feature extraction parameters 

(3.2) 
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Fig 3.4 Feature extraction process  

 

 

3.2. Driver Identification Model 

 

The ability to identify a driver and his/her driving behaviors is related with how he/she hits 

the gas and brake pedals. We model these pedal operation patterns with Gaussian mixture 

models (GMM) in a maximum likelihood criterion so that the conditional probability is 

maximized for given conditions.   

 

The maximum a posteriori probability solution to the N-class identification problem 

requires computing )|( fP nλ  for each class 
nλ , n = 1,…,N, given a feature vector f 
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representing the sample data of an unknown class. An alternative is to employ the 

maximum likelihood solution, which maximizes the class-conditional probability, 

                   

)|(logmaxarg*
nfP

n

λλ
λ

=  

Furthermore, the likelihood scores coming from different feature types can be combined at 

decision level using weighted summation rule, 

 

∑=
k

nkk fP
n

)|(maxarg* λαλ
λ

 

 

where 10 ≤≤ kα  is the weight of the k-th feature type and ∑ =
k k 1α  . 

Computation of class-conditional probabilities needs a prior modeling step, through which 

we estimate a probability density function of feature vectors for each class n = 1,…,N from 

an available training data. The class conditional probability density functions are modeled 

using the Gaussian mixture densities, 

 

),;()|(
1

kk

M

k

kn mfNfP ∑=∑
=

ωλ                

 

where mk and k∑  are respectively mean vector and covariance matrix of the k-th mixture, 

and M is the total number of mixtures. 

 

3.3 Driver Behavior Signal Prediction 

 

Every year, traffic accidents lead to several fatalities and injuries. Human error is blamed as 

the primary cause for these accidents. Driver behavior modeling is extremely important to 

(3.3) 

(3.4) 

(3.5) 
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warn drivers about future incidents based on predicting driving actions. Similar studies 

have built driving behavior models to predict future action by using past movements. 

Kishimoto and Oguri applied to Dynamic Bayesian Networks to construct a behavior 

model for inference of stop behavior [14]. They have revealed that using past movements 

has a great influence for predicting stop probability. We propose a linear prediction method 

for driver’s action based on driving behavior. We try to estimate the target samples from N 

recent samples of all behavior signals. The consistency of the predicted signal and the 

actual signal may give us an idea about driving quality. 

 

In order to predict driver behavior signals, we construct a prediction model concerning with 

past movements of driver by using Hidden Markov Models. The hidden states are valid 

stages of a dynamic process and HMMs lead probabilistic transitions among different 

stages. We employ three driving data, brake, gas pedal strokes and velocity for our model. 

Flowchart of predicting driver behavior is shown in Fig. 3.5.  

 

 

Fig. 3.5 Flowchart of predicting driver behavior 

 

First we build a temporal correlation between all driving signals using HMM structure. 

Then we apply linear prediction to predict the desired driving behavior sample. The state 
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sequence of the system is determined by using the Viterbi algorithm, which calculates the 

log-maximum likelihood of a series of observations given a particular HMM. 

 

In each segment, constructed by HMM clustering we perform a linear prediction analysis to 

estimate current driving behavior sample from N recent driving behavior samples. We 

construct the feature vector [ ])(),(),()( nvngnbnd =  where b, g and v vectors denote the 

direct samples taken from brake pedal pressure signal, gas pedal pressure signal and 

velocity signal of the corresponding segment respectively. Our prediction method is 

described as follows: 

[ ]))(),...,2(),1(()( indndndPns −−−=
∧

 

where )( ns
∧

 is the sample to be estimated and i is the number of past samples used. 

We construct a feature vector fn by combining the driver behavior samples. 

[ ])(),...,2(),1( indndndf n −−−=  

The mean removed feature component can be extracted as, 

−

−= ffx nn  

where 
−

f  is the mean vector of nf  sequence. 

In a similar way, the mean removed target sample can be extracted as, 

−

−= yyy n  

where yn is the current sample and 
−

y  is the mean of the driving behavior signal at current 

state. The linear estimator yields to the Yule-Walker equations, 

(3.9) 

(3.8) 

(3.6) 

(3.7) 
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where 
iyxR  and 

ji xxR  are the correlation of y, xi and xi, xj signals, respectively 
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[15]. 

 

We can also measure the prediction errors by using the minimum mean squares error 

(MSE) which is calculated as 

}||{|| 2
~

nn yyEMSE −=  

 

 

(3.11) 

(3.12) 

(3.13) 

(3.10) 
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CHAPTER 4  

 

EXPERIMENTS  

In the experimental evaluations we use two subsets from the UYANIK database. The first 

subset, U-DRIVER, includes 23 drivers to be used for the driver identification evaluation 

(3 of these drivers are not used for the car following task since they miss laser range 

information). The second subset, U-TASK, includes 10 drivers to be used for the driving 

task identification. Driver identification performance for a particular task-domain depends 

on the selection of accurate training database of interest in that domain. So, in order to 

achieve more realistic identification results we divide the U-DRIVER into 3 groups. 

Assuming that a vehicle is generally used by a limited number of different drivers, each of 

these groups is arranged in 20 subgroups including 3, 4 and 5 drivers respectively. Driver 

identification is performed for all these 60 subgroups independently. Also we benefit from 

this subset in order to predict driver behavior concerning with driver’s past movements. 

The four primary tasks are transcribed on the U-TASK subset. In all driver and task 

identification evaluations, we use 5-fold cross-validation, where the available database is 

divided into five equal length segments (the first segment starts with the beginning of the 

driving session, the second one starts with the end of the first segments and the others 
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follow the same procedure) and evaluations are performed over leave-one-segment-out 

train and test scheme. In driver behavior prediction evaluations we use 4-fold cross 

validation. 

 

4.1. Driver identification 

 

Every driver has characteristic driving behaviors. They vary in how they use the gas and 

brake pedals and how much distance they keep when following a vehicle. Considering the 

histograms in Fig. 2.5, it is not difficult to guess characteristics in driving behavior differ 

from driver to driver. 

 

As described in Section II-III, the gas, brake and velocity signals are all sampled at 32 Hz. 

and the cepstral features are extracted over 800 ms (25 samples) of windows for every 96 

ms (3 samples) of frames. Fig. 4.1 shows the driver identification performance over the U-

DRIVER database including 23 drivers for brake pedal pressure, gas pedal pressure and 

velocity signals using cepstral coefficients and GMM classifier with varying number of 

mixtures. For identification purpose we use different decision window lengths and 

calculate the features for every 30 seconds of frames. Since brake pedal is not used 

frequently on highway, driver identification using brake pedal is performed only on city 

driving recordings.  

 

As shown below, the gas pedal pressure signal yields better performance than the brake 

pedal pressure signal. This is possibly due to the more frequent use of gas pedal by drivers. 

Best identification results for all behavior signals are obtained by using GMM classifiers 

with 16 mixtures over 8-10 minutes of decision windows. The unimodal driver 
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identification rates are all below 60%, which presents a fair driver identification system 

with possible room to improvement. 

 

 

(a) 

 

(b) 
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(c) 

Fig. 4.1 Identification rates for the (a) gas pedal pressure, (b) brake pedal pressure and (c) 

velocity signals 

 

For a possible improvement, we perform decision fusion of classifiers of different driver 

behavior signals. We investigate the fusion of classifiers over gas, brake and velocity 

signals, and identify fusion structures with improved identification rates.  

 

Fig. 4.2 presents decision fusion results of the driver identification system over different 

decision window sizes. The optimal weights of the classifiers in the decision fusion are set 

experimentally. The resulting weights are set as 
gα  = 0.77 in the brake (B) and gas (G) 

fusion, 
gα  = 0.79 in the velocity (V) and gas (G) fusion, and 

gα = 0.70, 
bα  = 0.15, 

vα  = 

0.15 in the gas, brake and velocity fusion. The best identification result is obtained as 

69.5% with the fusion of gas (G) and brake (B) pedal pressure signals by using 16 mixtures 

of GMM. The best scenarios for all modalities are summarized in Fig. 4.3. We can easily 

observe from these results that decision fusion method significantly increases our system 

performance. 
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(a) 

 

(b) 
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(c) 

Fig. 4.2 Identification rates for the decision fusion of (a) gas pedal pressure + brake pedal 

pressure, (b) gas pedal pressure + velocity and (c) gas pedal pressure + brake pedal 

pressure + velocity signals 
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Fig. 4.3 Comparison of identification rates for unimodal and multimodal classifiers 
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Car following distance can also be used to identify a driver. Car following distance 

measures are collected with a laser range finder. The laser range finder sweeps 1800 at 

every 2 seconds and measures the distance to the nearest object at each angle. We use the 

distance at 900 to obtain the distance with the vehicle in front. Since the maximum range 

that the laser can sweep is about 80 meters and most of the drivers exceed this distance on 

both highway and two-way roads, we only employ the car following distance signals on 

one-way roads. For one-way roads, the car following task is around 4 minutes long for each 

driver.  

 

Fig. 4.4 shows the identification results for the car following distance signals over the U-

DRIVER database including 20 drivers at different test lengths. Since the length of the task 

is rather short, selecting the decision window size is very crucial. The best performance is 

achieved as 45% with the 16 mixture GMM classifier with 150 seconds decision windows. 

 

 

 

Fig. 4.4 Identification rates for the car following distance signals 

 



  
- 29 - 

 
 

As the accelerator pedal is operated directly by the driver, it yields us the best feature to 

identify the driver characteristics. Since the distance from the vehicle in front and vehicle 

velocity are the results of the driver’s pedal operations, we achieve poor results by using 

only these features. Driver identification results are all summarized in Fig. 4.5. 
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Fig. 4.5 Driver identification rate of GMM for combination of various driving signals 

 

The identification rates of Japanese research were 81% for twelve drivers using a driving 

simulator and 73% for thirty drivers using an actual vehicle [16]. 

 

In a real-life scenario, typically a car is used by several drivers. Hence we investigate the 

performance of the driver identification system with reduced number of drivers. The 

dataset is divided into 3 groups, which are made up of 20 different subgroups including 3, 4 

and 5 drivers respectively. The parameters we use in this experiment are 8 minutes of 

decision windows and 16 mixtures of GMMs, which have been observed to achieve better 

identification rates in the earlier experiments.  
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We employ the driver identification task for each subgroup by using 5-fold cross validation 

and evaluate an average identification rate for all 3 groups. Fig. 4.6 shows the average 

identification results for each group, using different features. We achieve 85.21% of 

success with the fusion of gas (G) and brake (B) pedal pressure signals among 3 drivers. 
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Fig. 4.6 Comparison of identification rates for different group of drivers 

 

 

4.2. Driving status identification 

 

In this study we also try to investigate the influence of the distraction conditions on driving 

performance and develop a technique for quantifying the stress level of drivers under 
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various conditions with different tasks. In the UYANIK database nearly half of the driving 

sessions include driving under specific tasks. These tasks are dialog on cell phone, dialog 

with passenger and signboard reading, which are expected to cause lack of cognitive 

engagement in the driving task. The details of the tasks are described as follows: 

 

• No task：：：：A driver drives without any task. 

• Signboard reading：：：： A driver reads aloud the words on signboards/ plates during 

driving. 

• Dialogue on cellphone：：：：A driver goes to an unfamiliar place being guided by a 

navigator over cell-phones. Also online banking application is done over cell-

phone.  

• Conversation with passenger：：：：A driver talks with the on board passenger. 

 

In order to investigate the use of driving behavior signals to classify different driving tasks; 

we build a driving task identification system and perform identification performance 

analysis over the U-TASK database, which includes 10 drivers. For task identification 

purpose we use different decision window lengths and calculate features for every 1 second 

of frames. Features extracted for task identification purpose are entirely different from the 

features used for driver identification purpose, because it is not possible to obtain sufficient 

number of decision windows by using 3 sec. frame update interval in task identification as 

we do in driver identification.  

 

Fig. 4.7 shows the histograms of the gas pedal pressure signal under different driving task 

conditions. Statistical differences between reference driving and driving under a task are 

clear. However, driving task specific histograms, especially dialog on cellphone and with 

passenger, are close to each other. 
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Fig. 4.7 Histograms of gas pedal pressure signals under reference driving (top left), dialog 

on cellphone (top right), signboard reading (bottom left) and dialog with passenger (bottom 

right) 

 

We first consider a two-class classification system to identify reference driving and driving 

with a task. The two-class identification system is expected to show whether distractive 

conditions are influential on driving performance. Among 10 drivers’ data reference 

driving last 190 minutes (47.8% of all data) and driving under a task last 207.5 minutes 

(52.2% of all data) totally. Each session is considered as a class independent from drivers. 

To evaluate task vs. no-task identification we use 16 Gaussian mixtures for constructing 

our model and 5-fold cross validation for classification. If everything is random 

performance rate is expected to be 50.1%. 
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The average identification rates of the classifiers using gas and brake pedal pressure signals 

and their decision fusion with different decision window sizes are given in Figure 4.8. The 

best scenario is achieved by using 360 seconds of decision windows. 

 

 

Fig. 4.8 Average identification rates of the classifiers using gas and brake pedal pressure 

signals and their decision fusion with different decision window sizes 

 

Table 4.1 shows the identification rates of each class for this scenario. In this table, the last 

column presents the prior reference distribution of events in the database. We identify a 

reference driving session with 93.2% of success and identify a driving session under a 

specific task with 72.5% of success by using the fusion of gas and brake pedal signals. The 

average task vs no-task identification result is obtained as 83.3% with the fusion of 16 
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mixture GMM classifiers of gas and brake signals. Note that, these identification rates are 

significantly higher than random. 

 

Table 4.1 Task vs no-task identification results of 16 mixture GMM classifiers with 360 

sec decision windows (%) 

 

 G B G+B R 

No-Task 91.1 76.6 93.2 52.2 

Task 71.6 61.9 72.5 47.8 

Avg. 81.8 69.6 83.3 50.1 

 

 

We also consider identification of individual tasks from driving behavior signals. Among 

all driving sessions under a specific task dialog on cellphone lasts 97.5 minutes (47.56% of 

all driving with a task data), conversation with passenger lasts 87.5 minutes (42.68% of all 

driving with a task data) and signboard & license plate reading lasts 20 minutes (9.76% of 

all driving with a task data) totally. Each session under different tasks is considered as a 

class independent from drivers. To evaluate task identification we use 16 Gaussian 

mixtures for constructing our model and 5-fold cross validation for classification. If 

everything is random performance rate is expected to be 41.8%. 

 

Task class dependent average identification results with reference prior distribution of task 

data is given in Figure 4.9. This figure shows that selecting window length is not crucial for 

this experiment.  
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Fig. 4.9 Average task class dependent identification rates of the classifiers using gas and 

brake pedal pressure signals and their decision fusion with different decision window sizes 

 

Table 4.2 shows the identification rates of each class for the best scenario. Dialog on 

cellphone task is identified with 58.5%, signboard reading with 25% and conversation with 

passenger with 52.6% of success by using the fusion of gas and brake pedal signals. The 

average task identification result is obtained as 52.7% with 60 sec. of decision windows 

and the fusion of 16 mixture GMM classifiers of gas and brake signals. Identification rates 

are observed to be slightly higher than random for all task classes. 

 

 

 



  
- 36 - 

 
 

 

Table 4.2 Task identification results of 16 mixture GMM classifiers with 60 sec decision 

windows (%) 

 

 

 

4.3. Predicting Driver Behavior 

 

We construct a driving behavior model to warn drivers about future incidents. A method of 

modeling driving behavior is concerned with certain period of past movements by using 

Hidden Markov Models in order to predict driver signals as described in Section 3.4. We 

use the U-DRIVER database for this purpose, which includes 23 drivers. Also we try to 

analyze the effects of cognitive distraction conditions on predicting driver behavior. For 

this purpose we benefit from the transcribed data, which is in the U-TASK database 

including 10 drivers. Here we apply 4-fold cross validation for all estimation experiments. 

This procedure is basically partitioning the signal into 4 parts, taking one as test data while 

keeping other segments for training purpose and applying the test procedure 4 times for 

each part. These parts are made up of equally numbered segments constructed by HMM 

clustering. Since the lengths of these segments are not equal, the ratio of test/training data 

over time is different for all drivers. 

 

 G B G+B R 

Dialog on cellphone 56.4 49.7 58.5 47.6 

Signboard reading 17.5 32.5 25 9.7 

Conversation with passenger 50.3 44.1 52.6 42.7 

Avg. 50 45.7 52.7 41.8 
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In this experiment we try to predict one of the driving behavior signals by using a window 

of  past samples of all behavior signals. All behavior signals are decimated by 4 for this 

experiment. The features are extracted over 800 ms windows (25 samples) for every 96 ms 

frames (3 samples). First we build a temporal correlation between all three signals using 

HMM structure shown in Fig. 4.10. This structure is specified by the following parameters: 

• Set of discrete states S [ = Si, (i=1,2,…,M)] 

• aij : State transition probability (i=1,2,…,M; j=1,2,…,M)  

where, M denotes the number of states [15]. Transition probabilities from one state to 

another are set equal initially and system starts with probability 1 at the first state.   

 

Fig. 4.10 HMM structure for clustering 
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The Viterbi decoding algorithm, explained in Section 3.4, determines the state sequence of 

the system as shown in Fig. 4.11. This is an example of HMM clustering by using 8 

discrete states. 

 

 

Fig. 4.11 State sequence of the system 

 

In each segment, constructed by HMM clustering we perform a linear prediction analysis to 

estimate current driving behavior sample from N recent driving behavior samples. Our 

prediction method is described in Section 3.3. Here, it is important to select the appropriate 
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linear prediction filter order. We observe correlation between current and recent driving 

behavior samples to decide it. Fig. 4.12 shows how this correlation changes considering the 

filter order. The y-axis shows the correlation of N recent samples of different behavior 

signals with the corresponding behavior signal (Ryxi). Here,  

−

−= ffx nn  

where 
−

f  is the mean vector of  fn sequence and fn represents a vector containing all past 

samples of all 3 driving behavior signals. 

[ ])(),...,2(),1( indndndf n −−−=  

where 

[ ])(),(),()( nvngnbnd =  

In Fig. 4.12 x-axis shows the number of past samples used for each behavior signal (filter 

order). Also, 

−

−= yyy n
 

where, yn represents the sample to be estimated and 
−

y  is the mean of the driving behavior 

sample, which the sample yn is element of at current state. In Fig. 4.12 y denotes the (a) 

brake, (b) gas and (c) velocity signals respectively. Ryx is calculated as: 
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Here 
iyxR  is calculated as: 

(4.1) 
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(4.4) 
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where M is the number of samples at the current segment. 

 

Values are normalized to 0-100 interval. In Fig. 4.12 it is clear that taking 6 samples from 

velocity signal and 1 sample from pedal operation signals would yield us better prediction 

results. 
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Gas Signal
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(b) 
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(c) 

Fig. 4.12 Correlation between current (a) brake signal, (b) gas signal, (c) velocity signal 

and recent driving behavior samples 
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After selecting the filter order we need to decide the number of states for HMM clustering. 

To do so, we try different number of states and calculate the mean squares error for each 

case. Fig. 4.13 and Fig. 4.14 show how the error changes depending on the state number for 

training and test data respectively. The 3 state HMM structure is chosen as an adequate 

model for the classification of driving behavior signals.  
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Fig. 4.13 Prediction errors for training data 
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Prediction Errors 

Test
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Fig. 4.14 Prediction errors for test data 

 

For the selected linear prediction filter order (taking 6 samples from velocity, 1 sample 

from gas and 1 sample from brake signal) and 3 HMM states, we estimate driving behavior 

samples in 2 scenarios:  

 

In the first scenario we use the direct samples of behavior signals at each prediction step. 

We construct the feature vector [ ])(),(),()( nvngnbnd =  where b, g and v vectors denote the 

raw samples taken from brake pedal pressure signal, gas pedal pressure signal and velocity 

signal of the corresponding segment respectively and use the following method to predict 

the behavior signal: 

[ ]))(),...,2(),1(()( indndndPns −−−=
∧

 (4.7) 
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where )(ns
∧

 is the sample to be estimated and i is the number of past samples used. 

 

Fig. 4.15 shows the prediction steps for this scenario. Here, points in blue represent the raw 

samples and green ones represent the sample to be estimated. Points in red circles are used 

as past samples for predicting the green points. At each step we use the raw samples to 

predict the behavior samples. 

 

Driving behavior samples are estimated as shown in Fig. 4.16 for one randomly selected 

driver by using this scenario. Here, signal plotted in blue represents the actual signal and 

the red one represents the estimated signal.  
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Fig. 4.15 Prediction steps for the first prediction scenario 
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Fig. 4.16 Driving behavior signal estimation for the first prediction scenario 

 

In the first scenario we assume that all raw samples in the corresponding segment are 

available. If we know all samples, prediction process is meaningless. So we consider 

another scenario assuming that only a few samples are available. 

 

Second scenario is briefly updating the direct samples with the estimated ones at each step. 

We construct the feature vector [ ])(),(),()( nvngnbnd =  and use the following method to 

predict the behavior signal: 

))(),...,2(),1(()(
~~~
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where )(ns
∧

 is the sample to be estimated, )(
~

nd is a vector containing estimated samples of 

brake, gas, velocity signals and i is the number of past samples used. For the first 6 steps if 

a sample hasn't been estimated, we use the raw samples instead.  

 

Fig. 4.17 shows the prediction steps for this scenario. Here, points in red represent the 

estimated samples, blue points represent the raw samples and green ones represent the 

sample to be estimated. Points in red circles are used as past samples for predicting the 

green points.  

 

Driving behavior samples are estimated as shown in Fig. 4.18 for one randomly selected 

driver by using the second scenario. Here, signal plotted in blue represents the actual signal 

and the red one represents the estimated signal. 
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Fig. 4.17 Driving behavior signal estimation for the second prediction scenario 
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Fig. 4.18 Driving behavior signal estimation for the second prediction scenario 

 

We also apply this method for driver independent experiment. Among the database we 

select 20 drivers for training and the remaining 3 drivers for testing. Test data for each 3 

driver is same with the one that we used in driver dependent experiment. In both driver 

dependent and independent experiments parameters are set all equal. Clustering is done 

with the structure shown in Fig 4.10 by using 3 HMM states and in the prediction process 

we use 6 past samples from velocity, 1 sample from gas and 1 sample from brake signal to 

predict the next behavior sample. We apply our prediction method (second scenario) for 

each test driver and calculate an average prediction error. Fig. 4.19 shows the prediction 
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errors for driver independent experiment with comparison to driver dependent one. 

Considering these results prediction driver behavior in driver independent experiments is 

more difficult than driver dependent experiments.  
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Fig. 4.19 Prediction errors for driver independent experiment with comparison to driver 

dependent one 

 

We evaluate the prediction errors for each sample of behavior signals regarding to one 

randomly selected driver and plot its graph via all samples as shown in Fig. 4.20. In Fig. 

4.20 some segments contain high level of prediction errors. To investigate the driving 

conditions where these errors appear, it is necessary to determine and transcribe high 

erroneous parts clearly. To do so, we select the 20% of the highest prediction error as the 

threshold value and define the segments higher than this threshold as high erroneous parts. 
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To figure out the effects of driving conditions on prediction we calculate the ratio of 

change of length of driving tasks and road types over erroneous parts to the original amount 

over all parts. Percents of changes are shown in Fig. 4.21 and Fig. 4.22 

 

 

Fig. 4.20 Prediction errors for one driver’s behavior signals 
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Fig. 4.21 Percentage of change of driving task lengths over erroneous parts for each driver 

to entire sessions 
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Fig. 4.22 Percentage of change of driving session lengths on different types of roads over 

erroneous parts for each driver to entire sessions 
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Considering Fig. 4.21 we can come to a conclusion that distractive conditions have a 

certain effect on driving behavior. Prediction of behavior signals under distractive 

conditions is more erroneous than prediction under no secondary task. Experiments show 

that the ratio of all task lengths over erroneous parts is slightly higher than the ratio of all 

task lengths over all segments. Fig. 4.21 also shows that among driving tasks dialog on 

cellphone is more effective on driving behavior than other tasks. Fig. 4.22 shows that road 

conditions are also effective on predicting driver behavior. It is hard to predict driver 

behavior on U-Turns, the connection part of highway and drive way. Sudden maneuvers 

and unsteady use of pedal operations may avoid predicting the next action. Percentage of 

change of driving task lengths on different road types over erroneous parts for each driver 

is summarized in Fig. 4.23. 

 

-500

0

500

1000

1500

2000

H
ig
h
w
a
y

D
ri
v
e
w
a
y

U
-T
u
rn

H
ig
h
w
a
y

D
ri
v
e
w
a
y

U
-T
u
rn

H
ig
h
w
a
y

D
ri
v
e
w
a
y

U
-T
u
rn

H
ig
h
w
a
y

D
ri
v
e
w
a
y

U
-T
u
rn

Driver 1 Driver 2 Driver 3 Driver 4
Drivers

P
e
rc
e
n
ta
g
e
 o
f 
C
h
a
n
g
e

No Task Dialogue on cellphone

Conversation with passenger Signboard & licence plate reading  

(a) 



  
- 54 - 

 
 

-500

0

500

1000

1500

2000

2500

3000

Highway Driveway U-Turn Highway Driveway U-Turn Highway Driveway U-Turn

Driver 5 Driver 6 Driver 7

Drivers

P
e
rc
e
n
ta
g
e
 o
f 
C
h
a
n
g
e

No Task Dialogue on cellphone

Conversation with passenger Signboard & licence plate reading  

(b) 

-500

0

500

1000

1500

2000

Highway Driveway U-Turn Highway Driveway U-Turn Highway Driveway U-Turn

Driver 8 Driver 9 Driver 10

Drivers 

P
e
rc
e
n
ta
g
e
 o
f 
C
h
a
n
g
e

No Task Dialogue on cellphone

Conversation with passenger Signboard & licence plate reading  

(c) 

Fig. 4.23 . Percentage of change of driving task lengths on different road types over 

erroneous parts for each driver with comparison to entire sessions 
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CHAPTER 5  

 

CONCLUSION  

In this thesis we consider the problem of driver and driver status identification under 

different cognitive stress/distraction conditions. Also we try to predict driving behavior 

signals by using the past movements of the drivers. Our objective is to construct a system 

to facilitate driver-vehicle interaction by analyzing the driving behaviors. To study and 

determine the nature of driving behavior we benefit from the characteristic driving signals 

including brake pedal pressure, gas pedal pressure, vehicle velocity and the distance from 

the vehicle in front signals. The system is expected to be more reliable due to the presence 

of sufficient amount of driving behavior signals. 

 

We collaborate with the Drive Safe Consortium in Turkey. Driving behavior data was 

collected by a test vehicle, UYANIK, customized with various sensors, cameras, 

microphones and lasers with similar to other test vehicles used in USA and Japan. Among 

the collected database we benefit from 23 drivers’ data for driver identification and driver 

behavior signal prediction experiments and 10 drivers’ data for task identification purpose. 

Second subset of the database is also used to analyze the effects of distractive conditions on 
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driver behavior estimation. All drivers drove the car on driveway and two-way, where they 

have to face with traffic congestion and also on highway with much less traffic. Their task 

is a 40 minutes of car driving under cognitive distraction conditions such as dialogue on 

mobile phone, conversation with passenger on board, sign reading and license plate 

reading. We rearrange 10 drivers’ data sets via transcription for these tasks. For all 

experiments we use the gas, brake pedal pressure and vehicle velocity, which are the most 

beneficial ones for our study, among driving behavior signals. Also, we analyze the 

performance of the distance from the vehicle in front signal for the driver identification 

experiment. 

 

To perform the feature extraction, we use the Cepstrum method. Cepstral analysis is a 

known source/filter separation method, which is defined as the inverse Fourier transform of 

the short-term log-power spectrum. In earlier studies the cepstrum method has been applied 

to the driving behavior signals [4]. When the driving behavior signals are modeled as 

outcomes of a system which is excited by commands of driver, cepstral analysis yields a 

fine spectral representation of the system. Also, same studies have shown that 

probabilistically sophisticated Gaussian Mixture Models would better suit for our purposes 

as a training algorithm. 

 

Driver behavior signals are modeled with Gaussian Mixture Models that represent spectral 

characteristics extracted. In driver identification experiment, test results show that decision 

fusion method significantly increases our system performance. We achieve 69.5% of 

success with the fusion of gas and brake pedal pressure signals, while these signals can 

reach 58% of success at most individually among 23 drivers.  Driver identification results 

of the car following task is lower than the pedal operation models however it is feasible to 

use them to recognize a driver. Since the pedals are operated directly by the driver, they 
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yield us the best feature to identify the driver characteristics. We also apply the same 

identification method on a group of few drivers to achieve more realistic results. The best 

identification result is obtained as 85.21% with the fusion of gas and brake pedal pressure 

signals among 3 drivers by using 16 mixtures of GMM and 8 minutes of decision windows, 

which have been proved to achieve higher performance rates in the earlier experiments. 

 

In this study we also try to develop a distraction detection module based on driving 

behavior signals. Distraction detection is an important issue because cognitive/stress 

conditions have a great influence on driving behavior. We achieve 93.2% of success in 

detecting the driver behavior signals under no specific task while the random rate is about 

52% among 10 drivers. In our database nearly half of the driving sessions are done under 

specific task. Among these tasks dialog on mobile phone, conversation with passenger on 

board, sign reading and license plate reading are the most effective ones. We evaluate 

identification rates of these tasks individually and observe that these rates are slightly 

higher than random values. Because of time and computational constraints we can only 

transcribe 10 drivers’ datasets. The results suggest that relatively more efficient 

transcription methods could yield better performance rates on more drivers’ data. 

 

Warning drivers about future incidents is an important application area because many of 

the traffic accidents are caused by drivers. In this study we propose a method of predicting 

driving behavior based on gas pedal pressure, brake pedal pressure and vehicle velocity 

signals. These behavior signals are employed for our model with Hidden Markov Models. 

Estimation method is concerned with past driving movements since human’s behavior is 

strongly related to past actions. Preliminary findings show us that 3 states of HMM, 6 past 

samples of velocity and 1 past sample of each pedal operation signals are adequate for our 

purpose. Predicting a single sample by using past samples yield us encouraging results 
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while predicting more than one sample fails to achieve our aim. We did this experiment on 

both dependent and independent of drivers. Considering the results we can come to a 

conclusion that though prediction errors for driver independent experiment is slightly 

higher than the driver dependent one, drivers’ behavior can be predicted by using other 

drivers’ samples with sufficient error rates. Earlier findings have shown us that distractive 

conditions have a great influence on driving behavior. Prediction results are also supporting 

this finding. Prediction of driving behavior signals under distractive conditions is 20% 

more erroneous than prediction under no secondary task. Also road conditions are 

influential on predicting samples. 
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