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ABSTRACT

As the Integrated Circuit (IC) technology scales down to deep sub-micron regime in terms of
sizes of transistors used inside circuits, the IC manufacturing process suffers from circuit parameter
variations, which cause uncertainties in the speed of the chips. The statistical variations of manufac-
turing process have increased to a non-negligible level, which necessitates statistical timing analysis
considering the variations. As a result of the parameter variations, each manufactured chip of the
same circuit has different parameter values and thus a different speed performance. The manufac-
tured chips, which pass the speed tests are packaged for marketing and others that fail the tests are
discarded. One of the main aims of statistical timing analysis is to estimate timing yield, which is
simply the fraction of chips that pass the speed tests. Almost all proposed statistical timing analysis
methods for digital circuits are block (gate) level methods and they are called statistical static timing
analysis (SSTA) methods, as they are direct generalizations of deterministic static timing analysis
(DSTA) to the statistical case. However, block level statistical timing analysis lacks accuracy as
it contains many approximations. In this thesis, we try to fill the gap for accurate statistical tim-
ing analysis based on transistor level circuit simulations. For this purpose, we first propose a new
comprehensive statistical timing analysis tool that combines different techniques in the literature for
modeling variations and extracting the statistically critical paths in a circuit. But our main novel
contribution is timing yield estimation using importance sampling in a novel manner in order to
speed up transistor level Monte Carlo (TL-MC) statistical timing analysis for obtaining both an ac-
curate and efficient timing yield estimation method. We test our method on ISCAS’85 circuits and
the results show that our IS based yield estimation method improves the speed performance two

orders of magnitude on the average.



OZETCE

Tumlesik devre (yonga) teknolojisi, devrelerde kullanilan traddestin boyutu bakimindan
mikron alti rejime indikge imlesik devreuretim islemi, yongalarin hiz performanslarinda belir-
sizlige sebep olan devre parametrelergigkenliklerinden muzdarip hale gelmekteditiretim
islemindeki istatistiksel dskenliklerin @z ardi edilemez seviyelere ulasmasi bgigkenlikleri
hesaba katan istatistiksel zamanlama analizini zorunlu kilmistir. Paramé@igketdiklerinin bir
sonucu olarak ayni devreye ait olaretilmis her yonga farkli parametre@klerine ve dolayisiyla
farkh bir hiz performansina sahiptir. Hiz testinde basarili olan yongalar satis icin paketlenirken
basarisiz olanlar atilitstatiksel zamanlama analizinin ana amaglarindan birisi hiz testlerini gececek
yongalarin orani olan zamanlama verimini tahmin etmektir.Sayisal devreld@sriemmis olan is-
tatiksel zamanlama analizlerinin neredeyse hepsi blok (mantik gegidgychde calisan metot-
lardir ve bunlara istatiksel statik zamanlama analizi ismi verilimigi bu metotlar istatiksel ol-
mayan statik zamanlama analizinin istatiksel durumgrddan genellemeleridir. Ancak blokideyi
istatiksel zamanlama analizi bircok yaklasim ve tahmin icermesi sebebigielldktan yoksun-
dur. Bu tezde, transist dizeyinde devre sifilasyonlarina dayali, dpu istatistiksel zamanlama
analizi boslg@unu doldurmaya calisiyoruz.Bu amagla, ilk olarak, bir devre icindegisttenlikleri
modellemek ve istatistiksel olarak kritik olan yollari belirlemek icin litéraeki farkh teknikleri
birlestiren yeni ve kapsaml bir istatistiksel zamanlama analizi &eniyoruz.Ama bizim esas ori-
jinal katkimiz, zamanlama verimini dou ve hizli bir sekilde tahmin eden bir metot elde etmek icin
onemadrneklemesi §ntemini farkh bir sekilde transist diizeyi Monte Carlo istatiksel zamanlama
analizinin hizini arttirmak icin kullanmaktir. Metodumuzu ISCAS8geattendirme devrelerinde
test ettik ve sonuclar biziinemdrneklemesi tabanl zamanlama verimi tahmin metodumuzun, hizi

ortalama 150 kat arttirdini gosterdi.
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Chapterl: Introduction 1

Chapterl

INTRODUCTION

1.1 Digital Circuits

Digital circuits are based on binary logic (logic-0 and logic-1). They constitute the mainstream of
the electronic market. They are manufacturethéeggrated circuit§IC) or chipson the surface of

a thin substrate of a semiconductor material (silicon). Figure 2.9 shows an example manufactured
and packaged IC that belongs to Nvidia company. Today, digital circuits are almost everywhere.
Processors, micro controllers, most of the computer hardware are examples of digital ICs. They
are used inside cars, all household appliances, cell phones, camcorders, automated production line

systems and almost in any electrical device.

Block (gate) level (BL) and Transistor Level (TL)

——

(a) Gate level representation (b) Transistor level (TL) representation

Figure 1.1: Multiplexor circuit
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Digital circuits are composed of logic gatesvhich are made up of transistors. Using the logic
gates; decoders, encoders, multiplexors, adders, arithmetic logic units (ALU), registers and control
units are designed as basic building blocks of digital ICs. Digital ICs can be analyzed either at
block (gate) level (BL) or, for a more detailed analysis, at transistor level (TL). Figure 1.1 shows a

multiplexor circuit representation both at gate level and at transistor level.

Importance of Speed and The Trends

Speeding up digital circuits is a major optimization task that facilitates the marketing and enables
very complex functions to be implemented by digital circuitry. Timing Analysis (TA) aims to esti-
mate speed performance of circuits before manufacturing even at very early design stages in order
to optimize the circuits accordingly. Therefore, TA of ICs is essential for IC designers. There is an
extreme competition to manufacture faster circuits and the designers and manufacturers work very
hard to accelerate the designs.

As a result of those efforts for the last 50 years, the number of transistors that can be placed
inexpensively on an integrated circuit has doubled approximately every two years, a trend well
predicted by and named after Intel co-founder Gordon E. Mookaase’s law The trend has been
practiced for more than half a century until now. The transistors are getting smaller and smaller and
as a result the speed performance of the ICs and the functionality that can be embedded on an IC
with the same size are increasing with a similar trend. This fast improvement trend has caused the
transistor sizes scale down to 45nm ranges in 2010 from 10,000nm in 1971 (Intel 4004) and more
than half a billion transistors (Intel Core2 Quad, 2006) can be placed in one single chip whereas this
number was only 2300 in 1971 (Intel 4004). Accordingly, the speed of the processors has increased

from 108 KHz in 1971 (Intel 4004) to 3 GHz in 2003 (Intel Pentium 4).

1.2 Statistical Nature of Timing Analysis

Decreasingizes of transistors result in manufacturing of digital ICs to become much more difficult
and prone to variations of parameters like transistor gate length, oxide thickness, doping concen-
tration, supply voltage, temperature and etc. Performance (speed) variability due to the statistical

parameter variations and environmental fluctuations has become more significant. Because of these

1Logic gates have different types like AND gate, OR gate, NAND gate, NOR gate, NOT gate (inverter) and etc. They
are also called cells and the types of logic gates that will be used in the digital IC depends on the utilized cell library.
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variations, each manufactured chip (IC) comes with different properties. Manufactured chips have
to be discarded if they cannot pass the tests including those concerning the speed. A speed test
failure occurs when a manufactured circuit has a speed less than the minimum allowable speed, i.e.
speed constraint. The fraction of manufactured chips that pass the timing (speed) tests is called
timing yieldwhereas the fraction of manufactured chips that fail is cdil®ihg lossas they are
thrown out. Digital IC designers give their designs to a manufacturing company and they have to
pay for each manufactured chip to the manufacturing company. Therefore, they need to estimate
the yield and optimize their design accordingly until it reaches the desired yield before manufactur-
ing. Overestimating the timing yield results in an unexpected loss after manufacturing, whereas an
underestimation of timing yield results in unnecessary design efforts and loss of time that may even
cause marketing failures.

Today, in nanometer regime, the statistical variations have increased to a non-negligible level
with a trend inversely proportional to the gate sizes. For instance, according to International Tech-
nology Roadmap for Semiconductors (ITRS) 2009 report [1], which estimates the trends in semi-
conductor manufacturing technology, threshold voltaggG@tio, whereo is the standard devia-
tion andp is the mean, is expected to increase up to 50% and for now there are no manufacturing
solutions to resolve this.

As aresult, there is an increasing need for comprehensive statistical timing analysis methods that
consider the statistical parameter variations between different chips called inter-die variations and
in the same chip called intra-die variations, topological and spatial correlations, random parameters
with non-normal probability density functions (PDF) and non-linearity of the parameter-speed rela-
tionships. Another issue that must be covered by statistical timing analysis methods is the extraction
of statistically critical paths, which determine the speed performance of the circuit and should be
optimized for better speeds. There are many companies like Intel, IBM, Cadence, Synopsis and
many academic institutions like Berkeley, Massachusetts Institute of Technology (MIT), University
of Minnesota, Carnegie Mellon, which try to develop a statistical timing analysis tool that can esti-
mate timing yield accurately and efficiently. There is a huge amount of research on this topic and
there are hundreds of published papers in journals and top tier conferences under the topics like

statistical timing analysisyield estimationdesign for yield
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1.3 Contributions

In traditional VLSI design methodologies, designers choose to perform fast and approximate timing
analysis called deterministic static timing analysis (DSTA) to estimate the speed of their designs and
optimize accordingly. However, they also prefer detailed transistor level (TL) circuit simulations as
a final verification before timing sign-off because of the accuracy of TL simulations. One would
ideally like to perform a similar transistor-level, but statistical timing analysis for timing yield esti-
mation. Taiwan Semiconductor Manufacturing Company (TSMC), a leading chip manufacturer, has
already announced the insertion of transistor-level statistical timing analysis into its new reference
design flow in order to enhance timing accureacy [62].

We have developed, and describe in Chapter 3, a comprehensive statistical timing analysis
methodology. While some elements of this methodology are borrowed from previous work (such as
the quad-tree model[2] for capturing spatial correlations in modeling intra-die variations) and not
necessarily the most comprehensive implementations, our work presents a statistical timing analysis
tool that employs new gate delay models and addresses some other important open problems (such
as statistically critical path identification) and offers reasonable and practical solutions.

The main, novel contribution of the work described in Chapter 4 is in devising a unique im-
portance sampling scheme for accelerating timing yield computations based on transistor level
Monte Carlo (MC) simulations, which fills a gap in statistical design methodologies and enables
final transistor-level verification before timing sign-off. The technique we propose aims to improve
the accuracy of the yield estimates obtained from a given number of TL simulations. Alternatively,
our improved MC estimator achieves the same accuracy as the standard transistor level Monte Carlo
(TL-MC) estimator but at a cost of much fewer number of TL simulations. This is made possible by
using importance sampling technique that we combine in a novel manner with a cheap-to-evaluate
but approximate gate delay model, which will be explained in Section 3.2. We use the cheap gate
delay model to guide the generation and selection of sample points in the parameter probability
space in a TL simulation based MC method for timing yield estimation.

The approach proposed in this thesis is based on the premise that, given the magnitude of process
parameter variations and the non-linear dependence of gate and circuit speed (or delay) on these
variations, the only sufficiently reliable and accurate method for final timing yield verification before
sign-off is TL timing simulation. However, we realize that transistor level Monte Carlo estimation

of timing yield will never become efficient enough for use in a loop for timing optimizations. As
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such,the Monte Carlo timing yield estimation technique based on TL simulations we propose in
this thesis is meant not as a replacement for fast block level statistical timing analysis methods, but
rather, as a complement to them. In fact, in the timing analysis methodology we describe in this
thesis, the statistically critical paths on which we perform transistor-level Monte Carlo analysis are

identified using a fast but approximate block-based statistical timing analysis technique.

1.4 Outline

Chapter 2 preides an overview of timing analysis with an emphasis on statistical variations and
the Monte Carlo technique. The fundamentals of timing analysis, basic definitions and notation,
theory of Monte Carlo methods given in this chapter are used throughout the ithesis. Chapter 3
proposes a statistical timing analysis methodology, which consists of modeling both inter-die and
intra-die variations with spatial correlations using a quad-tree model [2], performing Monte Carlo
based block level statistical timing analysis using a polynomial gate delay model (PDM) proposed
by us, extracting the statistically critical path candidates and then, in order to determine the true
statistically critical paths, eliminating the false paths using a satisfiability method similarto [3].
Chapter 4 presents the main novel contribution of this thesis, which is a transistor level yield esti-
mation method based on well-known variance reduction technigue called importance sampling (I1S).
IS based yield estimation increases the efficiency without decreasing the accuracy so that it can be
used as a final accurate yield estimation tool before manufacturing. Convergence analysis for the
IS estimator is performed and theoretical expression for the error of the estimator is derived in this
chapter. Chapter 5 applies the IS based yield estimation for ISCAS’85 benchmark circuits to test its
performance in terms of both accuracy and efficiency. Chapter 6 provides the conclusion and a list

of future tasks.
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Chapter 2

OVERVIEW OF TIMING ANALYSIS AND MONTE CARLO METHOD

This chapter reviews both deterministic and statistical timing analysis after providing the fun-
damentals. At the end of this chapter, we provide the preliminaries and a review of Monte Carlo
techniques used for timing yield estimation. Secofinot only presents the fundamentals and the
definitions used by timing analysis but also compares the timing analysis of combinational and se-
guential circuits. SecticB.2 provides the previous work for the deterministic timing analysis where
the parameter variations are ignored. In that section, the transistor level timing simulation and the
static timing analysis methods, which are also at the core of the statistical timing analysis methods,
are explained. Also the false path detection problem and the gate delay models utilized by timing
analysis tools are reviewed. Sect@g clarifies the need for statistical timing analysis by explaining
the manufacturing variations and then gives the literature review for statistical static timing analysis
(SSTA), which constitutes the majority of research in statistical timing analysis topic. S@afion
first provides the preliminaries that consists of the basic definitions and notation used throughout
this thesis, the general Monte Carlo method and the general importance sampling method and then
it explains the standard Monte Carlo estimation of loss due to the parameter variations. 3dction

is especially important as the definitions and notations introduced in it are used by Chapdi:

2.1 Fundamentals of Timing Analysis (TA)

When the input of a logic gate makes a transition, the output requires a nonzero interval called
propagation delayto change accordingly. This is unavoidable because the propagation delay is
required by a logic gate in order to charge or discharge the capacitance at its output. Due to the
overlapping conductive regions inside the gates, there are capacitances at the input(s) and output
of every logic gate, which are calledput capacitanceandload capacitancerespectively. Both

input and load capacitances are modeled by capacitors connected to the ground. As the gates are
connected to each other, the input capacitance of a gate becomes the load capacitance of another

gate, whose output is connected to its input. There is another concept related with load capacitance
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calledfanout which is equal to the normalized load capacitance according to the input capacitance
of the corresponding gate. Load capacitance or fanout is the major component that determines the
propagation delay of a gate and therefore utilized even by the most elementary gate delay models.
Figure2.1 shows the input and the output voltage waveforms of an inverter. As the gate is
an inverter, when the input signal makes a transition from low voltage (logic-0) to high voltage
(logic-1), the output signal makes a transition from high to low and vice versa. The time difference
between the instances when the input and the output signals reach half of the high voltage is called
propagation delayf the corresponding gate gate delay According to the transition of the output
signal, the propagation delay is called low to high propagation defay() or high to low €py2)
propagation delay. Also thiaput slopeis demonstrated in Figui2.1. Input (output) slope is the
time required for the input (output) of a gate to make a transition between 10% and 90% of high
voltage. Similar to the propagation delay, according to the direction of the transition there are low to
high (InS 24), high to low (nSy2.) input slopes and low to higtQutS 1), high to low OutSy2.)
output slopes. These basics are used in the timing analysis of digital circuits and will be referred
throughout the thesis.
There are two types of digital circuitsombinationalandsequential Below, these two types of

circuits are explained and discussed from the perspective of timing analysis.

Combinational Circuits

In combinational circuits or combinational logic, the outputs of the circuit depend only on the cur-
rent inputs of the circuit. There is no loop and no memory element like register or flip flop in
combinational circuits. For this reason they can be represented as directed acyclic graphs (DAG)
as will be referred later in Sectidh2.2 The multiplexor in Figurél.l is a simple example for

combinational circuits.

TA in Combinational Circuits

A combinational circuit generally consists of many logic gatasd the propagation delays of the
gates that are connected to each other accumulate until an output of the circuit is reaph#tinA

a combinational circuit is simply an unbroken route starting from an input of the circuit and ending

1For instance, there are more than a thousand gates on the average for the ISCAS’85 benchmark circuits used in
Chaptels.
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Figure 2.1:Propagation delay and input slope for an inverter

at an output of the circuit. For instance, in Figrd(a) the route fromA to Out is a path of the
multiplexor circuit. It is clear that as there are no loops in combinational circuits there is no path
with infinite number of gates. Similar tg o4 andtpy2. defined above, each path has a high to low
and low to high propagation delay between its input and output. The maximum of these two delays
is calledpath delay The delay for a path that consists of logic gates can be computed by TL timing
simulation described in Secti@h2.1or by simply adding the individual propagation delay of each
gate on the path as explained in Seci®B.2 The delay of a combinational circuitifcuit delay)

is equal to the maximum of its path delays as, practically, there are many paths in a combinational
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circuit. The path having the maximum delay is caltzdical pati# and it determines the delay of

the circuit. The circuit delay limits the speed of the circuit and therefore, designers try to optimize
the critical path in order to speed up the circuit. Timing analysis (TA) of combinational circuits aims
to estimate the circuit delay and extract the critical paths in a circuit in order to optimize the circuit
to obtain better speeds. TA is applied at many different levels of design by automated software tools

developed by Computer Aided Design (CAD) engineers.

Sequential Circuits

Inputs Outputs
COMBINATIONAL '
> LOGIC
Current Next
State State

@)

@)
HFumoHwn—~0o®m
o
A

)

—

Clock

Figure 2.2:Block diagram of a sequential circuit

In sequential circuits, the outputs of the circuit depend not only on the current values of the
inputs but also on the previous values of the inputs. A sequential circuit has different states, and
the current state determines the current response of the circuit to the inputs. The current state of the

circuit is determined according to the past inputs and past states of the circuit. Memory elements

2A more formal definition of critical path will be made in Sect@r2.3
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like registers are used in sequential circuits to store the state of the system. Registers are connected
to an input signal called clock, which determines when the content of the registers will be switched.
Figure2.Z2 shows a general structure for a sequential circuit. The registers store the next state, which
is computed by the combinational circuit according to the current state and the current inputs of
the circuit. When a clock edgeés detected, the value inside the registers is loaded to the output

of the registers as the current state and the registers store the next state value. Then, a new next
state is computed according to the current state and the inputs. The time difference between two
consecutive clock edges that the registers switch their content is called clock period. The clock
frequency, which is equal to the reciprocal of the clock period, represents the speed of sequential
circuits. For instance, a 3 GHz processor has a clock frequency of 3 GHz, which means that the

registers switch their content 3 billion times in one second.

TA in Sequential Circuits

Analyzing the timing of a sequential circuit boils down to analyzing the timing of its combinational
part. Without loss of generality, we can assume that registers switch content at positive clock edges.
In order to operate accurately, registers need the data at their inputs (D in Eigute be stable

for a time period calledsetup timei.e. tserup before the positive edge arrives. Also, there is a
delay, tc ko, between the positive clock edge arrival and the switching of the data at the output
of the register (Q in Figur@.2). In other words, after the positive clock edge arrivgsgtoq time

is required to have the new data at Q output of the register. Thgm,amount of time, which is

equal to the combinational circuit delay, is required for the combinational logic to compute the new
outputs and the next state. This computation should finish b&fgigtime from the next positive

edge. This results in the constraint shownarly

Terk > terktoQ + teomb+ tsetup (2.1)

whereTc k is the period of the clock signal, i.e. the time difference between two consecutive
positive edges as shown in Figl2e& The constraint inZ.1) shows that the main component that
determines the clock period is the combinational circuit delay as the other two delays, kigo

andtsetyp are well-known and already optimized constant delays, which are much smaller than

3Clock edge means a high to low (negative) or low to high (positive) transition of the clock signal. Registers are
triggered either by positive or by negative clock edge.
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tcomb TcLk Solely determines the speed of the circuit, which is simply equal to the maximum clock
frequency, i.e.’L/TCLK“. As a result, TA of a sequential circuit, reduces to TA of the combinational
part in it. For this reason, TA of combinational circuits is focused on throughout this thesis. The
particular problems of sequential circuits like clock slew and skew are outside the scope of this

thesis.

TCLK

AAAAA ORY

tCLKtoQ tcomb tsetup

Figure 2.3:Clock signal and delays in a sequential circuit

2.2 Deterministic Timing Analysis (DTA)

Timing analysis aims to estimate the circuit speed (performance) by computing the worst case de-
lays as explained briefly in the previous section. Until the 1990s, the variations in digital circuit
parameters were relatively small and therefore, they were ignored. All circuit components were as-
sumed to have deterministic parameters, which result in deterministic gate delays and consequently
deterministic circuit delays. As a result, deterministic timing analysis (DTA) was preferred by the
designers for estimating the speed of the circuits when the variations were ignored.

DTA can be classified into two: transistor level (TL) timing simulation and block level (BL)
deterministic static timing analysis (DSTA). Timing simulation at transistor-level provides precise
estimates but it is inefficient to be used incrementally to improve the designs. On the other hand,
DSTA, which is performed at a higher level, i.e. gate (block) level, is a widely adopted method with

linear run time complexity. However, it cannot totally replace the timing simulations due to the lack

4For instance, a processor having 2 GHz clock has a clock period of 2 ns.
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of accuracy when compared with TL timing simulation. As a result, the electronic design automa-
tion (EDA) engineers prefer such a scheme for deterministic timing analysis: They perform DSTA
multiple times at different levels of design in order to optimize the circuit performance accordingly
and to extract the path(s), which are responsible for the slowness of the circuit, i.e. the critical
path(s). Then, before handing over their designs to manufacturing, they apply TL timing simulation
especially for the extracted critical path(s) in order to obtain the most accurate estimation for the
speed performance of the circuit.

The description and details of TL timing simulation are given in Sec@@l and the DSTA
is explained in Sectio.2.2. Sectior2.2.3gives the definitions for critical path and false path and
then focuses on false path problem. Secfidh4reviews gate delay models in deterministic case

and explains the logical effort gate delay model in more detail.

2.2.1 Transistor-Level (TL) Timing Simulation
Nodal Analysis

A digital circuit consists of transistors, resistors, capacitors and inductors at the most elementary
level. Transistor level (TL) circuit simulation directly analyzes such a digital circuit by combining

three types of well-known equations enumerated below into a linear matrix algebra:

1. Kirchhoff Current Law (KCL): The sum of currents leaving a node is zero. If a current is

sinking to the node it has negative value.

2. Kirchhoff Voltage Law (KVL): The voltage around a cycle in the circuit is always equal to

Zero.

3. Device current-voltage relationships: For instance, resistors Viavd x R wherel is the

current passing through that resisMris the voltage over that resistor aRds its resistance.

The most famous TL circuit simulator is called SPICE (Simulation Program with Integrated
Circuits Emphasis), which was written by Larry Nagel and released in 4)7Zdday, SPICE has
become an electronic design automation (EDA) industry standard and large companies still continue
to develop their own proprietary simulato].[ SPICE usesodal analysisvhich solves the three

types of equations given above using linear matrix algebra. For instance, Bidstews a simple
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circuit that consists of only linear elements and two nodes (node 1 and 2) and the corresponding

linear matrix equation for that circuit is shown [2.2).

V1 RZ Vz
MV

I, R, R,

Figure 2.4:A very simple circuit with only linear elements

1 1 -1
= mtr| |V 0 '
R R TR 2

Transient Analysis Flow

If the aim of the circuit simulation is the analysis of the timing (transient) behavior of the circuit,
then itis calledransient analysisTransient analysis is used to detect the voltage waveforms of any
node in the circuit for the desired period of time. From this information the propagation delay of
the circuit can be computed very easily and accurately as described in S&dtibor this purpose,
transient analysis of SPICE first discretizes the time domain and then for each discrete time instance,
it solves the nodal matrix equation iB.p) in order to compute voltages at each node of the circuit.
The overall transient analysis methodology that considers both non-linearities and differential
relationships is shown in Figui25. To perform transient analysis, SPICE discretizes the time
period of interest into time instances according to the fluctuation speed of the voltage signals in
the circuit. If the fluctuation speed is high, it uses smaller time steps in discretization. For each
time instance, SPICE performs the same operation described as follows: It uses numerical inte-
gration methods like Backward Euler or Trapezoid in order to convert differential equations into
non-differential linear/non-linear equations. Then it linearizes the non-linear devices at their cor-
responding points of operation for being able to construct a linear matrix equation of the form in
(2.2). It uses Newton-Raphson method to linearize non-linear equations. The resultant system of

linear equations are solved iteratively until Newton-Raphson iterations converge. At each iteration,
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the system of linear equations is solved by using LU factorization to compute voltages at each node
and currents at each branch of the circuit. This iterative procedure is shown as the smaller loop
in Figure2.5. As the bigger loop in this figure shows, this procedure is performed for each time
instance until the end of the interested time period is readled [

After this transient analysis flow terminates, the propagation delay of the circuit can easily be
computed as the voltage value at each node and for any time instance in the interested time period is
computed. The unknown voltage values between any two time instances can easily be computed by
linear interpolation. There is no significant loss in this interpolation because time steps are adjusted
by SPICE such that they are small if the voltage signal fluctuates fast. In our work, a simple perl
script taking the SPICE program’s output as an input argument is used to perform this interpolation

and determine the propagation delay of the circuit.

Computational Complexity

The number of iterations of a TL timing simulation flow depends on two loops; the bigger loop
and smaller loop in Figur@.5. The number of iterations due to the bigger loop depends on the
number of time instances, which depends on the signal fluctuation speed and the length of the
interested time period. The number of iterations due to the smaller loop depends on the convergence
of Newton-Raphson iterations. Even in some situations, the smaller loop can fail to converge unless
the convergence conditions are relaxed by the user. The most complex operation in the heart of
these two loops is LU factorization used for the solution of the system of linear equations similar
to shown in2.2). LU factorization has a worst case cost@fn®), where n is the total number of
nodes and branches in the circuit. However, empirically in typical circuits, the cost can be at the
order ofO(n*") due to the sparsity of the related matrix. As a result, the computational complexity

of a transient analysis flow can be written as showi2i6)(

O(N x Ny x n®) (2.3)

whereN; is the number of time instances as a result of the discretization performed by SRIEE,

is the average number of Newton-Raphson iterations that is computed by averaging the number of
NR-iterations used for each time instance and the total number of nodes and branches in the
circuit. In typical circuit,Nyg is usually a couple of iterations amd, which is usually in the order

of hundreds, actually depends on the length of the interested time period and the oscillations of the



Chapter 2: Overview of Timing Analysis and Monte Carlo Method

Input: Circuit netlist

differential+nonlinear+linear
equations

The end of time period
is reached?

Simulation completed

4 A

Convert differential equations
to linear/nonlinear equations
using numerical integration
(backward euler, trapezoid, ...)

\ J

:

Linearize nonlinear equations

D EE—

by Newton-Raphson method

\ S
\ 4

( )

Solve linear equations by LU

factorization
\ S/
Yes i New'ton-Raphson No
iterations come to a

convergence ?

Figure 2.5:SPICE transient analysis flow
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voltage waveforms.

Conclusion

The TL timing simulation is the most precise way for solving general circuits. For practical pur-
poses, the results of TL timing simulation are considered to be the exact solution to any circuit
provided that the sophisticated precise models for the circuit devices are ufBiz&kgpite its ac-
curacy, this method is the slowest way of estimating the transient behavior of a digital @y&lit [
Another disadvantage of circuit simulation is the necessity of exactly determining the input signals
to the circuit. The input signal combination that result in a worst case delay should be known in or-
der to detect the worst case delay of the circuit. Otherwise, all input combinations should be tested,

which make2?n simulations whera is the number of inputs.

2.2.2 Deterministic Static Timing Analysis (DSTA) at Gate (Block) Level
Importance of DSTA

DSTA is a powerful method, which has been widely adopted in EDA community for more than
two decades. It estimates the propagation delay of a combinational circuit by utilizing an algorithm
called critical path method (CPM) that is used in project management. Although it is not as accurate
as TL timing simulation, it is a very fast method with linear run time in terms of number of logic
gates and connections in the circuit. The term "static” is used because DSTA does not need any
input vectors, which are needed in TL timing simulation. In time, DSTA has become a mature tool,
which is able to take into account many aspects of timing analysis. As a result, DSTA is in the heart

of almost all timing analysis and optimization tools.

Combinational Circuit— Directed Acyclic Graph (DAG)

DSTA runs at block (gate) level by first converting the circuit into a directed acyclic graph (DAG)
structure. At gate level, a combinational circuit, for it does not have any loops, can be represented
by a DAG as referred in Sectidl. Figure2.6 shows an example circuit schematic and the cor-
responding DAG representation. In this gra@ity, E), each vertex corresponds to a gate and each
edge between the vertices corresponds to a hardwired connection between the gates, whereas the

leftmost edges correspond to the primary inputs and the rightmost edge corresponds to the primary
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output(s). For instance, for the circuit in Figu2eg, the primary inputs are frory to iz and the
primary output is labeled asut. Any route from a primary input to a primary output is called a
path DSTA is applied on this DAG structure, which is very similar to the activity networks in the

project management.

Schematic Directed Acyclic Graph
representation (DAG) representation

Figure 2.6:DAG representation of a combinational circuit

Circuit Delay and Arrival Time from DSTA Perspective

Transitions at the primary inputs of a circuit cause signal transitions to propagate through the circuit
until the propagation reaches the output of the circuit. It was explained in S&fighat each
path has a propagation delay between its input and output. Different than TL timing simulation of
Sectiori2.2.1, DSTA runs at gate level and computes the path delay by simply adding the individual
gate delays on the path. As described in Se@idnthe circuit delay is the maximum of the delays
of all paths in the circuit. In other words, circuit delay is the maximum propagation delay that a
circuit can practice.

Another very important concept utilized by DSTAasrival time. Assuming that the primary
inputs are altered at time is equal to zero, therval time at an edge represents the time when the
voltage signal becomes ready at that edge by reaching the required voltage value, which is the fifty

percent of the high voltage as explained in Secfidi

Operation of DSTA

DSTA computes not only the circuit delay but also the arrival times for all edges in the timing

DAG. Actually it computes the circuit delay by computing the arrival times from left to right in a
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topologically sorted manner, where topological sorting is a method of arranging the vertices in a
DAG, as a sequence, such that no vertex appear in the sequence before its predecessor. As a result,
DSTA not only visits a vertex (gate) only once but also it never visits a vertex before visiting its
predecessor.

DSTA starts from the leftmost vertices connected to the primary inputs and it performs the
following operation for each vertex, until it processes all vertex: it first compares the input arrival
times to the vertex, in order to find the MAXimum of them, then SUMs the gate’s own propagation
delay with this maximum input arrival time to compute the output arrival time for that vertex
DSTA can compute all arrival times in the DAG by performing these MAX and SUM operations for
each vertex in a topologically sorted manner from left to right. After DSTA is performed, the path
having the biggest arrival times is th@pologically longest patin the circuit. DSTA sets the delay
of the topologically longest path as the circuit delay, which is simply the maximum or worst case
propagation delay of the circuit.

In Figure2.6, the numbers inside the vertices of DAG represent the propagation delays of the
corresponding gates. Sect@r?2.4gives the details of gate delay models used to find the propagation
delay of a gate. Bold humbers on the edges represent the arrival times, where all the primary inputs
to the circuit are assumed to make a transition at time is equal to zero. For example, the DSTA
operation on gatg5 can be summarized as follows: DSTA first examines the input arrival times of
g5, takes the MAXimum of them, which iS then SUMs5 with g5's propagation delay, which is
also5. The resultaniOis the output arrival time of5. When DSTA performs the same operation
in a topologically sorted manner for all vertices, all arrival times in the circuit are computed. The
arrival time for the output of the circuit, which 4 in this example, is the circuit delay computed
by DSTA. The path starting from the primary inggt(or i1) and goes through the gatgs gs and
Os respectively is the topologically longest path in this circuit, which determines the propagation
delay of the circuit.

If the desired propagation delay for the circuit is known beforehand, then assigning this desired
circuit delay value to each primary output in the circuit and applying the same algorithm but this time

by reversing the edges of the graph and performing subtraction instead of summatieouihed

5This is true for the most elementary DSTA analysis when the slopes of the input signals are not considered. When
input slopes are considered, first, the SUMmation of each input arrival time with the gate’s own propagation delay
is computed, where the gate’s delay is computed according to the slope of the corresponding input signal. Then, the
MAXimum of the resultant summations should be set as the output arrival time.
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timesat each edge of the graph can be computed easily. The difference between the required times
and the arrival times is calleslack Having positive slacks in the whole graph means that there is

no problem in meeting the timing requirements whereas having paths with negative slacks shows
that the requirements are not met for the corresponding paths in the graph. Then, designers focus

on these paths in order to satisfy the timing requirements.

Conclusion

DSTA is an approximate algorithm, which gives rough circuit delay estimates. It cannot detect
false paths, which will be discussed in the next section. As a result, while DSTA is a successful
and efficient algorithm, which is applied after several different levels of digital design flow like

synthesis, logic optimization or placement, the state-of-the-art still does not allow DSTA to replace

TL timing simulation completely due to its weakness#s [

2.2.3 Critical Path and False Path Detection
True (sensitizable) Path, False (unsensitizable) Path and Critical Path

Each path’s input is a primary input of the circuit and its output is a primary output of the circuit.
A path is called arue (sensitizable) patbr equivalently, it is said to beensitizedf a transition,
either from high to low or from low to high, at its input results in a transition at its output because
of the signal that propagates through that path. The paths, which cannot be sensitized (activated) for
any input assignment, are calledse (unsensitizable) path$here is no signal propagation along
these paths whatever the circuit input assignment is and therefore, they are not responsible for the
delay of the circuit in any case. True and false path concepts can better be realized by the examples
explained below. Detection of the false paths in a circuit is cdlidsk path problemwhich is an
NP-complete probleng].

Circuit delay is defined as the delay of the longest true path, i.e. the true path having the maxi-
mum delay in the circuit. This longest true path is calleddhtecal path of the circuit as it defines
the actual worst case delay of the circuit. As a result, the topologically longest path of a circuit
found by DSTA, is a critical path only if it is a true (sensitizable) path. This critical path definition
is different from the critical path definition in Secti@nl as the sensitization of a path was ignored

in the previous definition.
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True Path Example

For instance, in Figur2.€, the topologically longest pathis— g; — gs — gs — out. Suppose that all
inputs other thamy has a logic value of 1 and is at logic 0. In this case, ip makes a transition

from 0 to 1, the output of both; andgs make a transition from 0 to 1 and the outpuggfimakes a
transition from 1 to 0. Therefore, the transitionigpropagates down through the path— gs — gs

and trigger the output to make a transition, which means that theigath; — g5 — gs — out is a

true (sensitizable) path. As this true path is the topologically longest path, it is also the critical path
and its delay is equal to the maximum propagation delay of the circuit. In this case, the result of
DSTA is correct. However, when the topologically longest path of a circuit is a false path, the result

of the DSTA becomes wrong. FiguBe7 demonstrates such a circuit.

a —_
|7 - g
out
b g3

Figure 2.7:A simple example for a false path{ g1 — g2 — g3 — out)

False Path Example

Figure2.7 shows a very simple example to demonstrate false paths. Assume a delay of 1 ns for each
gate in this circuit. If DSTA was performed for this circuit, it would find the paahsgl — g2 —

g3 — out and equivalenthb — g1 — g2 — g3 — out as the topologically longest paths and therefore,

set the delay of the circuit as 3 ns. However, this would be wrong. Assume thabihpatbecome

logic 0 at time zerot(= 0). Then, the output of gaig3 (out) would become 0 immediately at 1
whatevera is. On the other hand, if input has becomé att = 0, then the output ofi2 becomes

1 att = 1 again whatevea is. Becausé is 1 att = 0 and the output 0§2 is 1 att = 1, the output

of g3 becomesdl att = 2. Actually, the transitions o& do not affect the outpubut. Therefore,

the scenario will be either of the two situations referred above for all possible transitidagpf

pair, which is equal t@l x 4 = 16 asa, b pair can take 4 different valu&sAs a result, the actual

worst case delay for this circuit is 2 ns instead of 3 ns, which was estimated by DSTA. Also the

8These values are 00, 01, 10 and 11.
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pathsa— gl — g2 —g3—out andb — gl — g2 — g3 — out are the false paths, as these paths are not
responsible for the circuit delay. The critical path for this circuib is g» — gz — out, which is the

longest true path.

Notations Used by False Path Detection Methods

As a result, false paths in a circuit should be detected in order not to waste efforts to optimize a
false path and not to overestimate the circuit delay. The methods in false path detection literature
generally label an input of a gate as having eitheoatrolling or anon-controllinglogic value and

being aside-inputor anon-input An input to a gate has a controlling value if it can solely determine

the output of the gate whatever the values of the other inputs to the same gate. Otherwise, the input
has a non-controlling value as the value of the output depends also on the values of the other inputs.
The controlling and non-controlling values for a gate depends on the type of the gate. For instance,
a logic-1 value immediately triggers the output of an OR gate to 1 whatever values the other inputs
to the OR gate have. On the other hand, a logic-0 value cannot trigger the output of an OR gate to
0 unless all other inputs are at logic-0. Consequently, logic-1 is a controlling value and logic-0 is
a non-controlling value for an OR gate. Similarly, logic-1 is a controlling value for NOR gate and

a non-controlling value for AND and NAND gates whereas logic-0 is a non-controlling value for
NOR gate and a controlling value for AND and NAND gates. On the other hand, one input gates
like inverter have no controlling and non-controlling values as the output of these gates always make
a transition if their input makes a transition. Similarly, XOR and XNOR gates have no controlling or
non-controlling values, because any transition (high-to-low or low-to-high) at any input of an XOR

or XNOR gate result in a transition at its output. The second important concept pair used by false
path detection methods is side input and on-input. For each gate on a path; if an input of the gate is

on the path, it is calledn-inputand if it is not on the path, then it is callsitle input

False Path Detection Using Static Sensitization

There has been an extensive research on false path detection problem since 1980s, and several
sensitization conditions had been proposed for detecting whether a path is false, i.e. unsensitiz-
able 9,110,11,112,13]. These methods propose different conditions for a path to be a true (sen-
sitizable) path, which are called sensitization conditions. If a sensitization condition is satisfied

by a path, then this path is called a sensitizable (true) path and otherwise, it is called a false path
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according to that sensitization condition.

One of the oldest and fastest sensitization condition used for false path detestaiicisensi-
tization[9]. It is called "static” as it is a delay independent method ignoring the arrival times of the
signals. For a path to k&atically sensitizablean input vector must exist such that all side inputs
for that path take non-controlling values. There are no conditions for the inverters or XOR/XNOR
gates on the path, because inverter does not have side input and XOR/XNOR gate makes an output
transition whatever the values of its side input(s) are.

For instance, the pai2 — g2 — g4 — g5— g6 — out in Figure2.€is a statically sensitizable path,
because all side inputs take non-controlling values when a logic 1 is applied for all inputs other than
i» to the circuit. For such an input assignmenti4fis toggled from 0 to 1, this transition propagates
throughg2 — g4 — g5 — g6 and the output toggles from 1 to 0. #tatically unsensitizablpath is
a—gl—g2—g3—outin Figure2.7. Side inputs ofgl (AND gate),g2 (OR gate) andy3 (AND
gate) are all connected to the same signal, cddléthe non-controlling value for an AND gate is 1
whereas for an OR gate it is 0 as referred above. Therefore, all side inputs for this path cannot have
non-controlling values at the same time. That violates the static sensitization condition and this path

is detected as a false path under static sensitization condition.

L
a 0
L B J

b

N———

0 = )e>

Figure 2.8:A statically unsensitizable true path-€ g2 — g3 — g4 — out)

Static sensitization condition is a sufficient condition, but it is not a necessary condiflomr|
other words, if a path is statically sensitizable, then it is a true path but, in some situations, a true
path may not be statically sensitizable. For instance, thegatj? — g3 — g4 — out in Figure2.8is
a true path although it is statically unsensitizable. The side-input forggateb and the side-input

for gateg4 is —a.—b, therefore the side-inputs for bog andg4 cannot be at non-controlling values

“Changing one of thi, andis to 0 does not change anything in terms of static sensitization.
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at the same time, which shows that this path is a statically unsensitizable path. However, assuming
a 1 ns delay for each gate and applying high to low input transitions simultaneotiskyCatesults

in a glitch at the output which stabilizes &t 3 , as shown in Figur2.8 Therefore, the path
a—g2—g3—g4—outis a true path as it determines the delay of the circuit as 3 ns although it is

a false path under static sensitization condition. Therefore, static sensitization may underestimate
the delay. Nevertheless, it does not perform bad in most of the practical cases. The re8idfs] in [
indicate that static sensitization does not underestimate the delay for any of the cirtBENE85

benchmark16].
2.2.4 Gate Delay Modeling and Logical Effort

Deterministic Gate Delay Models

Performing DSTA, described in Secti@?2.2requires an approximate gate delay model to deter-
mine gate delays, which were represented as numbers inside vertices inZEgurer the deter-
ministic case, where the gate parameters are fixed, the delay of a gate mainly depends on the input
slope (nS) and output load capacitandg, || of the gate. There are different strategies preferred by

different companies:

- An obvious way of representing gate delays would be a look-up table, which has a delay
value entry for each gate type and under different capacitive loads and input slopes. If a delay
value corresponding to a capacitive load or input slope, which is not represented in the table
is required, linear interpolation can be used. Therefore, the accuracy of utilizing such a delay

look-up table depends on the number of entries.

- Alternatively, the delay of a gate can be represented by equations of the@prm [

ap+a1C (2.4)

ap+a1C +axInS (2.5)

ap+a1C. +axInS+asC.InS (2.6)
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(a0+a1CL +aCL%+ ... + amCL™) (b + b1 INS+ bpInS* + ... + brInS") (2.7)

(2.4) is a form of logical effort delay formula, 2(5) is a basic linear equation, which also
includes input slope, 2(€) and @.7) are respectivelyion-linear delay modgINLDM) and

scalable polynomial delay mod¢PDM) used by Synopsy§]|

Logical Effort Formalism

The logical effort formalism is a fast and efficient way of determining the delay of a path in a digital
circuit. The path delay is simply the sum of the delays of the gates on the path, and the delay of a
logic gater is approximated as

d-E =1d (2.8)

where d-F is the absolute delay of a gate measured in seconds,the delay of a parasitic-
capacitance-fremference invertedriving another identical inverter, amtlis the delay of the logic

gate expressed in units of Thed factor in 2.8) models the gate delay and is given by
d=(p+gh) (2.9)

wherep represents the intrinsic (parasitic) delgys the logical effort, andh is the electrical effort

or electrical fan-out. Logical efforg for a logic gate is defined as the (unitless) ratio of its (per)

input capacitance to that of an inverter that delivers the same output current. Thus, logica, effort

is a measure of the complexity of a gate. It depends only on the gate’s topology and is independent

of the size and the loading of the gate. Parasitic dplaypresses the intrinsic delay of the gate due

to its own internal parasitic capacitance, and it is largely independent of the sizes of the transistors in

the gate. Parasitic delgy is also a unitless quantity, it is expressed in units athe electrical effort

his the ratio of the load capacitance of the logic gate to the capacitance of a particuladirjput [
Logical effort model in'2.8) is a very fast model and the linear relationship between the electri-

cal fanout and the gate delay is a reasonable assumption. However, it does not consider the effect of

input slope, which may result in far off delay estimates especially for the cases when the input slope

is too slow or too fast.
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2.3 Statistical Timing Analysis

The impact of manufacturing process variations has increased with current fabrication technologies
in nanometer regime that has scaled down to 45nm scales. These process variations result in phys-
ical parameter variations which cause electrical parameter variations and finally gate and circuit
delay variations. As a result, not all of the manufactured chips can satisfy the timing requirements
where the failing ones are totally discarded. This necessitates timing analysis considering statistical
variations in order to modify the design accordingly until it meets the timing requirements. There
are many methods proposed to fill the gap at statistical timing analysis especially during the last
15 years. Most of these methods concentrate on different statistical versions of DSTA explained in
Sectiori2.2.2

Section2.3.1 explains the parameter variations in detail and investigates the need for statisti-
cal timing analysis. SectidB.3.2gives a literature review for the statistical static timing analysis

(SSTA) methods, which constitute almost all research on statistical timing analysis topic.

2.3.1 The Need for Statistical Timing Analysis
Die and Wafer

The integrated circuit (IC) manufacturing process groups a humber of identical circuits, each of
which is calleddie or chip, onto a singlavafer. After manufacturing process terminates, each die on

the wafer is packaged separately if it can pass all tests and it is discarded otherwise. The tests include
timing verification to decide whether the die satisfies the speed requirements. Egshews the

packaged Nvidia Geforce 8800 die and the corresponding wafer used for its manufacturing.

Manufacturing Process

The transistors are continuously getting smaller because smaller transistors are faster, consume less
power and require less chip area. Even a manufacturing technology is named after the smallest
transistor gate length it is able to produce. For instance, during the last decade, the manufactur-
ing community has switched from 180nm technology to 45nm technology. On the other hand,
manufacturing is a complex gradual process and prone to variations especially when sub-micron
technologies are utilized. It comprises different techniques like lithography, etching, doping or ion

implantation, chemical mechanical polishing (CMP). It is difficult to cope with this fast size re-
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Figure 2.9:Nvidia Geforce 8800 die and its corresponding wafer

duction and improve manufacturing process sufficient for this technology improvement. Although
exotic techniques such as optical proximity correction and other resolution enhancement techniques
have been developedd], the impact of manufacturing process variations have become much more

significant in the nanometer regime used today.

Process Variations

The variations during the procedures like lithography, ion implantation and CMP result in physical
variations like critical dimension (CD), oxide thickness, channel doping, interconnect wire width
and thickness19,20]. Among these, CD and doping variations, which respectively result in gate
length () and threshold voltagey) variations, are the dominant facto/20]. As a result, the

timing behavior of transistors and interconnects are affected and gate delays, interconnect delays
and so the total circuit delay become random variables. According to International Technology
Roadmap for Semiconductors (ITRS) 2009 rept}t from 2009 until 2011, CD or effective gate
length variability Bo/p) is reported to be 12% where¥svariability for typical size logic devices

is reported to be 20%. The report assumes a 5p%ariability in 2018 and there are no known
manufacturing solution for such a high variability. According to the report the resultant circuit

timing performance variability is about 50% for 2009, which is assumed to reach up to 66% in 2018.
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Inter-die and Intra-die Variations

The parameter variations are classified into two according to their spatial properties:

Inter-die Variations:Parameters may vary between two different dies on the same wafer or when
the processed wafer is replaced with the new one or when a new lot of wafers start to be processed.
This variation is a result of unavoidable changes in the calibration of the equipment, alignment of the
wafers and mask patterr&(]. The variation of process parameters between different dies or wafers
or wafer lots are callethter-die or die to dievariations. All devices on the same die are affected
exactly in the same manner from the inter-die variations. For instance, assume that gate length
(L) is a random parameter which has inter-die variation. If there exist only inter-die variations, all
transistors in the same die have the samvalue. The inter-die variation only causes the transistors
in different dies to have differemt values.

Intra-die Variations with Spatial CorrelationThe parameter variations can even exist for the
devices in the same die. These variations are called-die or within dievariations. For instance,
due to intra-die variations, a transistor in a die may have a different gate ldrgthafy another
transistor in the same die although both of them are designed to have same gate lengths. A decade
ago, the intra-die variations had been a negligible portion of total variations. However, shrinking the
technology below 100nm levels, the percentage contribution of intra-die variation to the total varia-
tion has increased above 50%. For instance the percentdgatoé-die variations has increased to
65% from 40% while the technology switches from 250nm to 7Chép [

The intra-die variations exhibit spatial correlation, i.e. the correlation of a device (transistor or
interconnect) parameter depends on the location of that device, because many of the manufacturing
processes that cause intra-die variations change gradually from one location to &2€ithBug
to the spatial correlation, the devices closer to each other are affected similarly whereas the devices
far from each other have more uncorrelated parameters. In other words, the correlation of the cor-
responding parameters of two devices on the same die increases while the distance between them
decreases. There are different models in the literature to capture the spatial corre2:Athshe

model used in our work is based @j],[which is explained in detail in Sectidl

Timing Yield Estimation Problem

As explained in Sectiold.2, the variation of circuit delay as a result of all manufacturing process

variations, described above, causes some of the manufactured dies fail to satisfy the timing con-
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straints and so they are discarded. The fraction of dies that satisfies the timing constraints is called
timing yield Equivalently, timing yield is the probability that a manufactured die satisfies the timing
constraints. Fundamental timing constraint for combinational circuits is basically an upper bound
for circuit delay, i.e. Te, such that the delay of the circuit should be bel@mo satisfy timing
constraint. Figur@.10shows an example probability density function (PDF) for the circuit delay
and the area of the shaded region in this figure corresponds to timing yield, Wheréhe timing
constraint. The main aim of statistical timing analysis is to estimate timing yield before handing
over the designs to manufacturing stage. According to the statistical timing analysis results, the de-
signers make a choice either to improve their designs further or to give up optimizations and initiate
manufacturing.

Circuit Delay

PDF
A

T, Delay

Figure 2.10:Circuit delay PDF

Corner-based Timing Analysis

Traditionally the designers try to cope with statistical parameter variations by casingr based

timing analysis A corner corresponds to a point in the parameter space, where each parameter
gets its maximum or minimum possible value. The worst case timing behavior of the circuit can
be computed by first setting the parameters at their corner Yadusthen by utilizing a deter-
ministic timing analysis scheme as the random parameters are fixed at deterministic corner values.
However, as the sources of variation increase in number, the required number of corners increases

exponentially to an untenable number for a complete corner based ana&ig[ Another weak-

8Generally, the corner values are takemas3o or u+ 30 values, whergi is the nominal value for the corresponding
parameter and is the standard deviation.
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ness of corner based analysis is that it is impossible to effectively take into account the intra die
variations R3] although, the intra die portion of variations has even exceeded the portion of inter
die variations as referred above in this section. Finally, selecting the worst case parameter values for
all devices in a path represents an almost impossible and unrealisti@dhsErerefore, the corner

based analysis gives over-pessimistic yield estimates which result in wasted design efforts and time
loss for unnecessarily optimizing the circu3]25,124,122,120]. As a result of the non-negligible
manufacturing process variations and the inability of the traditional corner based methods in meeting

the requirements, the statistical timing analysis has become a hot and popular research topic.

2.3.2 Statistical Static Timing Analysis (SSTA) Methods
Description of SSTA

After the turn of the millennium, we have witnessed an extensive amount of effort being expended
in statistical timing analysis research. Most of this effort has been aimed at the development of
statistical static timing analysis (SSTA) techniques, as a direct generalization of the deterministic
static timing analysis (DSTA) algorithm, explained in Sec®.2, for the statistical case. A com-
prehensive review of the recent developments in this field that puts all relevant work into perspective
is given in 20]. At this point, the SSTA problem and its key challenges are very well understood.

The fundamental functions in SSTA are SUM and MAX and they are performed for each gate in
the circuit very similar to DSTA. But, due to parameter variations, instead of SUM and MAX of the
deterministic values, SUM and MAX of the random variables are required in SSTA as all gate delays
and arrival times are random variables due to the statistical variations. In DSTA, the deterministic
circuit delay value is available when all gates are traversed by SUM and MAX computations. The
same is true for SSTA but this time, the circuit delay is a random variable (RV) with a corresponding
PDF instead of a deterministic value. After computing PDF of the circuit delay, timing yield can be
computed by calculating the shaded area shown in Fiaidse

A small portion of SSTA literature, particularly the initial research includes path-based meth-
ods [26,27,28,29,30,31]. Differently from block based SSTA that will be described below, the path
based methods do not follow the DSTA algorithm. Instead, these methods first compute the path
delay PDF for each path by adding the individual gate delay PDFs on the path. The paths are drawn
from a path set which include all paths that may affect the circuit delay for some assignments to the

random parameters in the circuit. Then, they take the maximum of these path delay PDFs to obtain
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the circuit delay PDF. Instead of performing the MAX operation for each gate as in the block based
methods, path-based methods are advantageous in the sense that they apply MAX operation only
once and thus they avoid the accumulated errors due to the unavoidable approximations in MAX

operations.

aCo— f\
f=an su—) OISR

gO gl g3 dg4

_/\ g4
a2
CDQ: >

g2

Figure 2.11:A demonstration of SSTA SUM and MAX operations on a sample gate (node)

8o = max@j1 + dga, &2 + dga) (2.10)

Most of the approaches to SSTA are based on what is referred to as the block-based scheme.
The block based SSTA methods run at block (gate) level by following the DSTA algorithm quite
closely. In order to realize the operation of block based SSTA, Fauri:demonstrates the basic
operation performed for gag in the figure. The PDFs inside the gates correspond to the gate
delay RVs.aj; andaj, are the input arrival time RVs for gag anddg, is the gate delay RV for
g4. The output arrival time fogd4, i.e. a,, is computed by SUM and MAX operations as shown
in (2.10. Block based SSTA performs this operation for all gates in the circuit in a topologically
sorted manner similar to DSTA. The block based SSTA methods basically differ by the techniques
they prefer for computing these SUM and MAX operations. These techniques differ according to
the assumptions and approximations they employ in order to perform the SUM and MAX operations
of two RVs. Although the difference between DSTA and block based SSTA may seem slight, SSTA
has many challenges which are very difficult and sometimes impossible to solve without having
exponential run time complexities. Therefore, many approximations and assumptions are involved
in SSTA methods. SSTA literature will be reviewed after the challenges of SSTA are explained

below.
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Challenges in SSTA

One of the major challenges arises fromtitygologicalandspatialcorrelations. This is because the
correlation information between all RVs inside the circuit must be recorded and preserved during
the SUM and MAX operations. Computation of these operations on two correlated RVs are more
complicated than the operations on two independent RVs. Topological correlations occur due to the
reconvergent pathi the circuit. Two paths reconverge if both cross from a common signal and
later rejoin as two distinct inputs of a gate. For instance, in Figuké pathso—g0—gl—g3—g4
andb — g0 — g2 — g4 starts with the same signal (outputgff) and then reconverge at the input of
g4. As aresult, the input arrival times; anda;» are not independent or fully uncorrelated. This
correlation betweeg;; anda;; is called topological correlation and complicates the MAX operation
used to finda,. Second type of correlations is spatial correlation explained in SezZt®&h Spatial
correlation can affect both SUM and MAX operations. For instance, in Figurgé assume that
gatesg2, g3 andg4 are spatially in a close proximity in the final layout. Then, the gate delay RVs
of these gates are spatially correlated. Therefaiega;> anddy, are correlated, which complicates
SUM and MAX operations shown ii2(10). As a result, for accurate statistical timing analysis, both
topological and spatial correlations must be taken into account and the operations must be modified
in order to handle the correlatioriaQ].

Another challenge in SSTA is non-linear parameter delay relationships and non-normal (non-
Gaussian) parameter and delay distributions. It was explained in S@c8idrithat due to the vari-
ations in the physical process parameters like CD and ion implantation, the device parameters like
gate length and threshold voltage and as a result gate delays become random variables. The rela-
tionships of physical process parameters with device parameters and device parameters with gate
delays are non-linear. Therefore, even if the physical parameter variations are approximated by nor-
mal (Gaussian) distributions, it is impossible to model the device parameters and the gate delays
with normal distributions. Despite the assumption of linearity and normality extremely simplifies
the SUM and MAX procedures, these assumptions may result in far off timing yield estimates.

The MAX operation introduces another challenge. Even all gate delays and arrival times are
assumed to have normal PDFs, the maximum of two normal RVs is not a norma0RWHpwever,
the majority of the methods in the literature approximate the MAX result of two normal distributions
with another normal distribution, which results in a loss of accuracy due to accumulated errors.

In the deterministic case, where all gate delays and arrival times are deterministic, the path
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having the worst arrival times is the critical path if it is a true path. However, in the statistical case,
where gate delays are random variables, the critical path of the circuit depends on the values of the
RVs inside the circuit. Each different assignment to RVs may result in a different critical path. The
paths that become critical at least for one assignment to RVs are stdiestically critical paths In

the case of statistical variations, the discovery of the statistically critical paths is another challenge

that must be addressed at least for optimization purposes.

SSTA Literature Review

The block-based SSTA methods in the literature mainly differ according to the SUM and MAX
strategy they propose and the way they handle the above challenges. The literature may be clas-
sified in many aspects: parametric or non-parametric methods, methods that consider correlations
or methods that ignore them, methods according to the utilization of continuous PDFs or discrete
PDFs, normal PDFs or non-normal PDFs, linear or non-linear parameter-delay relationships.

One important classification for the block-based SSTA methods is based on the types of RVs
used in the circuit. In non-parametric methods, gate delays are directly represented as RVs with
some statistical properties like mean and variance, whereas in parametric methods gate delays are
represented in terms of other RVs, which are random device parameters like gate length and thresh-
old voltage.

Initial efforts were more focussed on non-parametric methods. In these methods, the device pa-
rameters are not represented as RVs, only gate delays and arrival times are the fundamental RVs in
the circuit. Until the circuit delay PDF characteristics are obtained, either the delay PDF properties
like mean and variance are propagated or the delay PDFs are first discretized and then propagated
throughout the circuit. In32], a linear run time non-parametric SSTA algorithm propagating only
the mean and variance of the arrival times is proposed. This method ignores correlations and as-
sumes independent normal random variables for all gate delays and arrival tim&8,'34,85],
differently from [32], the topological correlations are taken into account. Normal distribution as-
sumption is relaxed and more efficiency is acquired by the use of discrete PDFs instead of continuous
PDFs in B6,37,38] . Convolution is used for the SUMmation of two discrete PDFs. The papers
in [39,40] add topological correlation support to this discrete framework and compute the upper and
lower bounds for the CDF of the circuit delag]] takes into account the topological correlations

and represents arrival times as CDFs and gate delays as PDFs.
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Parametric SSTA methods represent gate delays and arrival times as a function of random device
parameters. They are suitable to model intra-die parameter variations with spatial correlations.
A linear canonical delay model widely used in parametric SSTA methé2|$8,20] is shown
in (2.13).

N
d = dhom+ Zlairi + dres (2.11)
=

wherednom is the nominal (mean) delay,’s are the independent random variables which are used
to model spatial correlations as is the residual independent variatiay’s are called the sensi-
tivities corresponding tg;'s.

The model is called canonical as it does not change throughout the circuit, i.e. all arrival times,
gate and path delays are represented by the same canonical model. The SUM and MAX operations
are applied to the canonical model such that the results of the operations are also represented by the
same model. The SUM operation on such a canonical form is straightforward whereas the MAX
operation is more complicated for whic#hZ,43] use a method explained id4].

There are different approaches to model the intra-die variations with spatial correlations as a sum
of independent random variablé&3[2]. [43] employs a grid model by dividing the die surface into
equal sized rectangles. For each random device parameter like gate length, there is an associated
random variable with each rectangle. The devices in the same rectangle are assumed to be perfectly
correlated, i.e. they all have the same value for the corresponding random parameter. On the other
hand, the devices in different rectangles have partially correlated parameters such that their correla-
tion decreases as the distance between the rectangles increases. These correlated RVs are converted
into uncorrelated RVs called principal components using the principal component analysis (PCA)
method, which transforms space in order to get the set of uncorrelated RVs from a set of correlated
RVs [6]. Then, the initial correlated RVs associated with each grid (rectangle) are expressed as the
sum of these uncorrelated RVs. This avails the use of independent RVs to model spatial correlations
as shown in2.11). [2] proposes a multilevel quad-tree structure, shown in Fi@utieto model spa-
tial correlations. At each levej, it divides the die surface int2f x 29 rectangles, each of which has
its own independent random variable for each random circuit or transistor parameter. The details of
this model and how it models the spatial correlations are explained in S&ction

The parametric models explained above assume normal random variables and employ linear

canonical models similar t®2(11). There are other papers in the literature, which employ non-
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linear canonical models and handle non-normal distributions to increase the accuracy, yet the re-
laxation of Gaussian and linearity assumptions result in significant computational oveB@ad [
The approaches iE,l46,47] use a quadratic canonical form instead of the simple linear form
in (2.11). [48] uses a linear model but considers non-normal device paramet@fsopsiders both
non-linearity and non-normal parameter distributions.

The collection of statistically critical paths when there are parameter variations is another re-
search topic that is well studied in the literatub®,[51,52,53,54,55]. The probability of a path
being critical, i.e. criticality, is a measure used by these papers. Other than the referred above, there
are many efforts to handle interconnect wire variations, to propose solutions for statistical optimiza-
tion, to perform SSTA in sequential circuits and to find statistical models for gate d@@lys [

Block-based SSTA methods, reviewed above, have been preferred due to their runtime advantage
when compared with other approaches to SSTA. Moreover, block-based SSTA can be performed
in an incremental manner enabling its use in timing yield optimizations and for diagnostic pur-
poses|20,56]. On the other hand, spatial and topological correlations, non-normal process param-
eters and non-linear dependence of gate delay on these parameters, approximation of the maximum
of two random variables (to compute latest arrival time) at every gate (node of the timing graph) are
issues that must be addressed in block-based SSTA methods. In most basic form, SSTA algorithms
ignore correlations, assume that all statistical process parameters and gate delays have a normal dis-
tribution and approximate the maximum of two normal random variables as another normal random
variable. All of these assumptions and simplifications make it possible to obtain very efficient SSTA
algorithms b6]. However, ignoring correlations and the Gaussian assumption have detrimental, and
in some cases, unacceptable effects on the accuracy and meaningfulness of the results obtained by
SSTA 57]. As a result, several extensions of SSTA that take correlations into account, that use
non-linear gate delay models and employ non-normal distributions for the maximum of two random
variables have been propos@i]| These extensions indeed improve the accuracy of SSTA, but at
the same time increase its computational complexity and may render it unusable in timing optimiza-
tions which require very efficient in-the-loop evaluatioBg|[ Nevertheless, block-based SSTA on
an abstract timing graph is widely accepted as a useful tool and is becoming indispensable in current

state-of-the-art statistical design methodologies.
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2.4 Preliminaries and Monte Carlo (MC) Timing Yield/Loss Estimation

In this section, first of all, the preliminaries to understand Monte Carlo (MC) method is given. The
preliminaries part below is particularly important as the basic definitions in that part are referred
many times throughout this thesis and the notation introduced here is used by the methods proposed
in this thesis. Upon these basics, theory of general MC estimators and a well-known variance
reduction technique used to improve estimator accuracy, called importance sampling, are explained.
After the preliminaries section, loss estimation using standard MC (STD-MC) method is explained
by separating STD-MC into two: transistor level MC (TL-MC) and block (gate) level MC (BL-MC).
TL-MC utilizes the transistor level timing simulation, explained in Seco?.1. It is the most

precise and exact way of estimating the timing yield. On the other hand, BL-MC estimators run at
block level and although they are much more accurate than SSTA methods reviewed in&8djon

they are not as accurate as TL-MC estimators.

2.4.1 Preliminaries
Basic Definitions and Notation

The random variables that represent the statistical variations in the circuit are collected mto an
dimensional vectoX, with a joint probability density function (PDF) denoted b{X) which isnot
necessarily assumed to be Gaussian (normal). We note here that the number of random vgriables,
is dictated by the particular inter and intra-die variations model used and is in general much larger
than the number of statistical process and transistor parameters considered. For instance, in this
thesis we consider only two random transistor parameters (gate length and threshold voltage), but
we employ hundreds of random variables for modeling the statistical variations of the circuit. The
reason for that and the details of the variation model used in our work is explained in Sition

We used¥ (X) to denote thepath delayfor a path it computed bymethodM. The path delay
naturally depends on the random variableXijrand hence, it is also a random quantity. We then

define thecircuit delayd (X) computed by methol as themaximunpath delay with
A (X) = madgreny, drf (X) (2.12)

where the maximum is computed over the sestatistically critical pathslgi;. There are many
methods based on SSTA to find the statistically critical paths as mentioned above in e&&on

It will be explained in Sectiol8.2 what we propose to find the set of statistically critical paths.
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We define an indicator random variah®(T;, X) as follows

1if dM(X)>Te

IM(Te,X) =
0 if d¥(X)<Te

(2.13)

whereM is the method used for circuit delay computation dpé the maximum acceptable delay
or timing constraint. This indicator variable “indicates” whether the delay of the circuit meets the
timing constraint for a given realization of the random variables.ilVe then definéosscomputed
with methodM using
Los$! = /QIM(TC,X)f(X)dX (2.14)

as the fraction of the circuits that fail to satisfy the timing constraint. The integrali4)( i.e. the
expectation of the indicator variabl¥ (T, X), is computed over the domafd of the PDFf (X) of

X. Then,Yield, the fraction of the circuits that fulfill the timing constraint is simply given by
Yield=1-Loss (2.15)

Therefore, yield estimation and loss estimation are equivalent in the sense that one can be derived
from the other by only subtracting from 1.
One very effective method for computing expectation integrals of the forgh 1d)(is the Monte

Carlo technique, which we describe below.

General Monte Carlo Method

Monte Carlo (MC) techniques can be used to compute expectation integrals of the form

G:/Qg(X)f(X)dX (2.16)

whereQ is the domain of the PDIF(X), with f(X) > Ofor all X and [, f(X)dX = 1. MC estimation
of Gin (2.1€) is accomplished by drawing a set of independent random samdplis, ..., Xy from
f(X) and by using
N
Gu = (1/N) 3 g(X) (2.17)
1=
The estimatofGy above is itself a random variable. The theorems below show the mean (expecta-

tion) and the error for the general MC estim&tg.

Theorem 2.4.1.The general MC estimator ii2(17) is an unbiased estimator as its mean is equal

t0 G, i.e. E{GN} =G.
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Proof. As X;'s are independent identically distributed (i.i.d.) random variables

E{Gn} = §E{ZIL19(X)} = 1-N.E{g(X)} = [oa(X) f(X)dX =G (2.18)

O

Theorem 2.4.2. With 95% confidence, the error of the general MC estimatoraril{) is as shown
in (2.19:

2
IError| ~ \/% — 2 /NVAR[G\} (2.19)

Proof. According to Theorer2.4.], the mean of MC estimator is equal to the intedeathat it is
trying to estimate, i.eE{Gy} = G. As X's are i.i.d. RVsthe variance oGy isVAR{Gy} = 0°/N,

wherea? is the variance of the random varialgex) given by
o’ :/ () F(X)dX — G2 (2.20)
Q

The standard deviation @y can be used to assess its accuracy in estim&infN is sufficiently
large, due to the Central Limit Theore@‘;\ﬁﬁ has an approximate standard normé(, 1)) dis-
tribution. Hence,

P(G-196%; <Gy <G+1965) =095 (2.21)

whereP is the probability measure. The equation above meansGRawill be in the interval
[G— 1.96%,G+ 1.96%} with 95% confidence. Thus, one can use the error measu21§)(in
order to assess the accuracy of the estimator.

O

Several techniques, callegriance reduction techniqugsxist for improving the accuracy of
MC evaluation of expectation integrals. In these techniques, one tries to construct an estimator with
a reduced variance for a given, fixed number of samples, or equivalently, the improved estimator
provides the same accuracy as the standard MC estimator but with considerably fewer number of
samples. This is desirable because computing the valggXof is typically computationally or
otherwise costly. Next, a well-known variance reduction technique called importance sampling will

be described.
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General Importance Sampling (IS) Technique

One MC variance reduction technigue is importance sampling 8858]. IS improves upon the
standard MC approach described above by drawing samplésffom another distributiorf (X).

Gin (2.16) is first rewritten as below

G- /Q (W) £(X)dX (2.22)

If X1,Xo,..., XN are drawn fromf instead off, the improved estimatdgy takes the form
~ 1 N f(X)
Gn=— 2 X)) =——= 2.23
N=N 2 a( )f(xi) ( )

where the factorf (X;)/f(X;) has been used in order to compensate for the use of samples drawn
from the biasing distributiorf. As can be seen by observirig.22), in order for the improved

estimator above to be well-defined and unbiased, two requirements must hold:

1. f(X) must be nonzero for every for which f(X)g(X) is nonzero. We refer to this as the

safety requirement

2. f(X) must be a regular normalized PDF such that its integral over the whole space must be

equal to 1, i.e[ f(X)dX = 1. This is referred agegularity requirement

The ideal choice for the biasing distributidris

faea(x) = ST 2.2

which results in an exact estimator with zero variance with a single sample! Howigugrobvi-

ously cannot be used in practice since the valu& @ not known a priori. Instead, a practically
realizablef that resemblegigea is used. The key (and also the challenge) in using IS in practical
problems is the determination of an effective biasing distribution that results in significant variance

reduction.

2.4.2 Standard MC (STD-MC) Loss Estimation

After the description of general MC estimation above, standard MC (STD-MC) estimator for loss

with integral in 2.14), is straightforward. EquatioB.14is obtained by replacing(X) in (2.16)
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with IM(T¢, X). Thus, for estimating.os$" shown in 2.14), by using MC techniqueg(X;) in (2.17)
must be replaced with" (T, X;). The resultant STD-MC estimator fapns$” is written as in/2.25).

Los§ = (1/N)_§1IM(TC,X5) (2.25)

whereM is the method used to compulg' (X) in (2.12), X;'s are the drawn samples according to

f(X) in (2.19 and T, is the timing constraint. Provided that the methddutilized by STD-MC
estimator is a very accurate method, if the number of saniplissabig enough numbethen the
estimator in'2.25) gives very accurate results. In order for standard MC analysis to be affordable,
the number of samples in probability space one has to work with needs to be limited. This, however,
adversely affects the accuracy of the STD-MC estimator, which has a large error for a small number
of samples. The computational cost is the weakness of the STD-MC method and has prevented it
from finding widespread use for practical yield estimation, even though it is widely used as a golden
reference in assessing the accuracy of other timing yield estimation techniques.

STD-MC loss estimation can be divided into two: transistor level Monte Carlo (TL-MC) and
block (gate) level Monte Carlo (BL-MC). Both use the STD-MC loss estimator equati@i2E) to
estimate loss but they differ in the methidicthey prefer to compute the indicator variab(Te, %)
in (2.29. As it is shown in[2.13), the circuit delayd¥ (X) must be computed in order to compute
this indicator variable. Thus, TL-MC and BL-MC basically differ in the methddthey prefer to
compute circuit delay, i.ed¥ (X).

For each drawn samplg, TL-MC loss estimation employs TL simulation method, explained in
Sectior2.2.], in order to compute the path delays and circuit delaithd). The indicator variables
for all drawn sample points are collected usi@gl@). At the end, loss estimate is computed us-
ing (2.25. Because of the high computational cost of TL simulations for each sample, it is generally
believed that TL-MC analysis cannot be used in practice for estimating timing yield, even though
there are some arguments to the contr&}.|

BL-MC loss estimation, differently from TL-MC, uses DSTA method, explained in Sec-
tion2.2.2, to compute the circuit delay for each drawn sample poi)t BL-MC is computationally
much cheaper than TL-MC as DSTA is much cheaper than TL simulation, which was explained in
Sectiori2.2.1and2.2.2. This cheaper block-based, gate-level Monte Carlo timing analysis scheme is
in fact calledgolden methoas it is used to verify the accuracy of various block-based SSTA meth-

ods which employ many assumptions and approximations. Recently, variance reduction techniques
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such as Latin hypercube samplir@d] were used to improve the efficiency of BL-MC statistical
timing analysis techniques.

We believe that sufficient accuracy and reliability in final timing yield estimation cannot be ob-
tained even by applying Monte Carlo simulations at a high-level using a block-based scheme. We
believe that accurate final verification of timing yield must have TL circuit simulation as its basis,
in line with the common practice in traditional VLSI design where critical paths are simulated at
transistor-level in order to verify that the circuit indeed satisfies the timing constraints. We demon-
strate in this thesis that Monte Carlo transistor-level simulation in conjunction with a novel variance
reduction technique can serve as an accurate yet computationally viable timing yield estimation
method, to be used for final verification before timing sign-off. Next section explains further the

contributions of this thesis.

Related Work

There are several works in the literature that uses importance sampling (IS) or other variance reduc-
tion techniques in order to increase the efficiency, or improve the accuracy of Monte Carlo analysis
of statistical phenomena in electronic circuits. In fact, IS based Monte Carlo analysis has been
used in order to estimate the yield of analog circué®][ perform failure analysis for SRAM cir-

cuits [64,/65,66], for statistical interconnect analysig{], and even for the statistical timing analysis

of digital circuits 68]. The use of simple, cheap-to-evaluate gate delay models (linear, quadratic
or more sophisticated response surface models) in statistical analysis is also prevalent in the litera-
ture 69,70,71,72]. Moreover, the idea of using path-based transistor-level analysis for statistical
performance verification has also been explored. However, the challenge and key in using IS to
achieve significant variance reduction is the non-costly determination of a useful biasing distribu-
tion. The technique we propose in Chapdeis novel in the sense that a cheap-to-evaluate gate
delay model and approximate path-based statistical timing analysis are used in a unique way to (in
effect) construct an effective biasing distribution for IS that indeed results in significant variance
reduction/speed-up. Furthermore, an adaptive/automated algorithm we propose makes it possible
to apply this IS technique in practice with negligible overhead. 6§, [the outline and a simple
analysis for an 1S-like technique (called sectional weighting) that resembles the technique we pro-
pose in this thesis was given. [63], the authors are not very encouraging regarding the use of this

technique due to the insignificant speed-ups (over standard Monte Carlo) predicted by their simple
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analysis and due to the potentially high computational cost of forming the biasing distribution. The
computational complexity of the construction of the biasing distribution we propose in this paper is
not dependent directly on the dimension of the random parameter space, resulting in negligible over-
head. Moreover, we achieve significant (two-orders of magnitude) speed-ups over standard Monte

Carlo.
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Chapter 3

STATISTICAL TIMING ANALYSIS METHODOLOGY

The statistical timing analysis methodology we propose in this chapter features the following:

e Section3.1: Modeling of inter and intra-die statistical variations based on a quad-tree model

that captures spatial correlations,

e Section3.2: An approximate, polynomial gate delay model (PDM) that captures delay de-

pendence on random transistor parameters, gate load and input slope,

e Section3.3and 3.4 Identification of a set of statistically critical paths for a circuit, based
on a block level Monte Carlo (BL-MC) statistical timing analysis that uses PDM and a path

sensitization test to identify false paths,

3.1 Quad-tree Based Parameter Variation Model

In this section, we present the statistical model we use for inter and intra-die variations in pro-
cess and transistor parameters, which are explained in S&8dh The inter-die variations are
perfectly spatially correlated throughout the circuit. In order to model intra-die variations and the
resulting (partial) spatial correlations in the circuit, we use the quad-tree model that was proposed

by Agarwal et. al.2].

General Parameter Modeling

A statistical process or transistor parameter can be modeled as sh@u),iwbereP e represents
inter-die variation andP;4 represents intra-die variation component. TherefBfgy is the same
throughout a single die but varies between different dies, whétgasvaries even between two
transistors in the same die. Due to spatial correlation, the correlation beRyggrnomponents of
two transistors decreases while the distance between them incr&ggdas the nominal value

of the corresponding statistical parameter as its mean wh&gashas zero mean. ABner and
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Pntra are independent from each other, the total variance of a statistical transistor parameter can be

written as in8.2).
P= Pinter + I:)lntra (3-1)

2

2 2
0" = Ojnter t Ointra (3-2)

is the variance oP,.er ando?, .. is the variance oPpra.

whereg? 2 ra

inter

Quad-tree Model for Both Inter and Intra-die Variations

The quad-tree model can be used to model both inter-die variation and intra-die variation with spatial
correlation. In the quad-tree model, the area of a die is partitioned into rectangles forming a grid
structure. For each level, of the quad-tree model, the die area is divided Rftx 29 rectangles.
Figure3.1shows the quad-tree model that is used in our work.

The top level ¢ = 0) is associated with the random varialfger, in (3.1) and its mean is equal
to the nominal value of the parameter Other than the top level, each level, in a quad-tree
model is associated with a probability density function with mpg@and standard deviationi.
Each grid rectangle at each level of a quad-tree is associated with an independent random variable,
Rintra(X,Y)q, With the PDF of the corresponding level, whepey)q shows the coordinate of the
corresponding rectangle at levael Figure3.1 shows thgx,y)q pairs up to level 2. Therefore, each
level is associated with a PDF so that all random variables at the same level has the same PDF,
which is associated with that level. The mean of the PDF of every level other than the top level is
zero, i.e.yg=0forg=1,2,...,Q— 1 whereQ is the number of levels. The sum of the variance of
the PDF of each level other than the top levie0) is equal to the intra-die variance as shown in

3.3

o-1
Oﬁnra = z 0(21 (3.3)
g=1

whereQ is the number of levels amﬁ is the variance of the PDF corresponding to layéh the
quad-tree model.

In this model, a statistical process or transistor parankegerch as channel length is expressed
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as follows
Q-1
P = Pinter + qzl Rintra(X,¥)q (3.4)

where the random variabRer models the perfectly correlated inter-die variatidRgua (X, y)q are
layout position(x,y) dependent random variables that are assigned todefehe quad-tree model,
andQ is the total number of levels in the model for both intra and inter-die variations. In most of
the previous wWorkPinter and Rintra (X, ¥)q are assumed to be independent random variables with a
Gaussian distribution. In our approach, the basic statistical process and transistor parameters and
the random variables i1B(4) can have arbitrary (joint) PDFs.

An example can be given for clarification. Suppose we have a gate that resi{8e3)atvhere
the model in Figur3.1is utilized. A statistical parameter corresponding to that gate may be written

as

P= P|nter + Rintra(za 1)1 + Rintra(3> 2)2 + Rintra(5> 3)3 (3-5)

As aresult, in a Q-level quad-tree modE&l 22(0-1) = &3*1 random variables are needed for
every basic process or transistor parameiéter drawing and assigning a number to each random
variable (grid) according to its corresponding PDF, a random transistor parameter is computed ac-
cording to the location of the transistor as shown in the example abo\&%)yDrawing a random
sample and determining the transistor parameters accordingly will be clarified more at the end of

this section.

Can Quad-tree Model Capture Spatial Correlation?

As explained in Sectio.3.], spatial correlation in statistical timing literature means that the gates
closer to each other have more correlated random parameters than the gates far away from each

other. Below the ability of the quad-tree model to capture this spatial correlation is investigated.

Proposition 3.1.1. The quad-tree model captures the spatial correlation such that the gates or
transistors in closer grids have more correlated parameters than the gates in grids far away from

each other.

Proof. The aim is to show that the correlation between two instances of the same statistical pa-

rameter corresponding to two different gates in the circuit increases if the distance between them
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decreases. Assume thtandP; are the two parameter instances of the same parameter corre-
sponding to gateand gatg respectively. If a quad-tree model with Q levels is us¢dp; and their

correlation can be written as

o-1
P = Pinter + Z Rintra(xi,yi)q (3.6)
g=1
o-1
Pj = Pinter + z Rintra(xj7Yj)q (3-7)
g=1
CovR,P;
Corr(R,P)) = OuR, 7)) (3.8)

-~ /VAR[P}VARP;}
wherePira = zc?;ll Rintra(X,Y)q, Corr(R, P;) is the correlation an@ov(R, P;) is the covariance of
R andP;. Therefore,
VAR{P} = VAR(P}} = 02¢; + O2ra = 07 (3.9)
As all Rintra(X,Y)q's andPiter's are independenGov(R, Pj) becomes,
0-1
Cov(R,Pj) = VAR{Pnter} + qu Eq-VAR{Rintra(Xi,¥i)q} (3.10)

whereEgq is 1 if (X;,Yi)q = (Xj,Yj)q and otherwisd is 0. ThenCorr(R, P;) becomes,

O2rer+ Y oot Eq VAR Ritra (X, ¥i)a}
0-2

Corr(R,P}) = (3.11)

In the quad-tree model, the gates in grids closer to each other, have more c&tpmony)q's,
thereforeE, is equal to one for more levels. Considering the fact that in the quad-tree model,
VAR{Rintra(Xi,Yi)q} depends only on the level and is equal tmé, the numerator of3.11) will
always be a bigger value for the gates residing in grids closer to each other. For instance, if the two
gates reside in the same grid even at the bottom level, Ejes one for all levels. As a result of
this, Corr(R, P;) reaches its maximum value, 1, which means that the random parameters of two
gates are fully correlated. The correlation decreases while the number of common grids of two gates

decreases, i.e. the distance between two gates increases.
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Random Sample Generation Using Quad-tree Model

Before starting timing analysis, a variation model must be constructed in order to determine the
values of the random parameters like gate length and threshold voltage of each gate in the circuit.
For this purpose, we use the quad-tree model, explained above. The random parameter values of
each gate depends on its grid location and each random parameter is compute8.dsiAgifawn
random sample poirX is basically a realization for the random values of each grid location in
the quad-tree model. Random sample generation using quad-tree model is best explained with an
example:

For instance assume that there is only one random parameter gate |&raytld & 4-level quad-
tree model shown in Figu®1is used. As explained above, for level 0, the mean of the correspond-
ing PDF is the nominal gate length and its varianoces, as level 0 represents inter die variation.
For other levels, the mean is equal to O and the variance is equél Biven the total variance of
gate length, i.ecrtzotal, the variance of each Ieveg is determined in consistence witB.g) and B.3).
Drawing a sample means that for each grid in the 4-level quad-tree model, a random value is gen-
erated according to the PDF of the corresponding layer in the quad-tree model. As we assumed a
4-level quad-tree model, a total é%—l = 85 grids and s@5 random variables should be generated
for one sample drawing operation. As a result of this drawing, a 85 dimensional sampleXector
is obtained. Using thiX vector and the location of the gates, the gate lengths of all gates can be
computed as shown il8{4). For each gate, only four random variables are added as sho&rEin (
because there are only 4 levels. However, we still neeX thector, because different gates residing
in different grids require different random variables selected fron8%@ndom variables stored in
X. If another random parameter had existédyould have been 2 x 85= 170dimensional vector
and for each gate two random parameters usd) (vould have to be computed.

The random sample generation explained here is used not only for the extraction of the statisti-
cally critical paths explained in Secti@i2but also for IS based Monte Carlo explained in Chagter
In our work, we consider two basic statistical parameters: the gate channel lengttu the thresh-
old voltage ¥4). We use four levels in the quad-tree model including a top level covering the whole
area of the circuit with one grid rectangle. As a result, a total of 170 random variables exist in our

circuit, as explained in the previous paragraph.
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3.2 Gate Delay Models

In the timing yield estimation methodology proposed in this work, an approximate but cheap (in
terms of evaluation cost) gate delay model is used as the key tool in devising an effective biasing
distribution for importance sampling in a unique manner to accelerate Monte Carlo yield analysis.
The gate delay model is also used for the detection of statistically critical paths, which is explained
in Section3.3 Up to now, two approximate but fast gate delay models have been proposed by us.
In previous work 73], we have employed a stochastic version of the logical effort gate delay model
introduced in Sectiof.2.4 for this purpose. SectidB.2.1.explains this model. Because this model

does not consider the effect of input slope and thus not accurate enough, we have later proposed a
more advanced polynomial gate delay model (PDM), which is explained in S&#dh Concepts

like input slope, load capacitance used in this section are introduced in S2dion

3.2.1 Stochastic Logical Effort (SLE)
From Logical Effort (LE) to Stochastic Logical Effort (SLE)

Equation 2.9) in Section2.2.4provides a way of decomposing the effects of statistical parameter
variations on gate delays. In a different context, Sutherland efl 7hlghalyzed different semi-
conductor processes with varying supply voltages, and observed that almost all of the effect of
process parameters and supply voltage on gate delay is captured by the reference inverter delay (
in (2.8)), even when the parameters vary over a large range spanning different fabrication processes.
The logical effortg and the unitless parasitic delgyof a gate exhibit relatively little variation with
process parameters. Exploiting this observation in the context of timing yield analysi] ia [

stochastic logical effort (SLE) model was proposed where the delay of a gate was modeled as
dr=(X) =1(X) (p+gh) (3.12)

whereX is a vector of random variables as explained in Se@idandt(X) is the reference inverter
delay when the parameters are giveryp is the parasitic componerd,is the logical effort and

h is the fanout, which are described in detail in SecBdh4 As is apparent in this equation, in the
stochastic logical effort approximation, all process and environmental variations are captured by the
statistical variable while g, p and thereforel = (p+ gh) are assumed to be independent of process

parameters. If only inter-die variations are modeled as it was assuriéd],inf equivalently, if the
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quad-tree model with only its top levds used, then statistical parameters on the chip at all locations

are perfectly correlated arXl has a dimension equal to the number of random device parameters.
For instance, if only gate length and threshold voltage are assumed to be random parameters, then
X is a two dimensional vector. In this case, using the stochastic characterizatidoraghe same
reference inverter for all of the logic gates on the die captures this perfect statistical correlation
among gates. We refer to the approximation giverBii?) asfirst-degree stochastic logical effort
(abbreviated aSLEd1).

A further refinement of this approximation is described by the following equation
drE(X) =T(X) (P(X) +g(X)h) (3.13)

where the dependency pfandg on X is also modeled. We call this modgtcond-degree stochas-
tic logical effort (SLEd2). SLEdZ2 is more accurate as it considers the variationg eihd g but
computationally it is more expensive.

In both versions of SLE, in order to compute the delay of a paitha circuit, we simply add

the delays of the gates on
k
diE(X) = Zld,LE(X) (3.14)
r=

Hered-E(X) is the delay of the-th gate on the patit d-F(X) is computed by evaluatin@®(12)
for SLEd1and B3.13) for SLEd2. For this evaluation, a full transistor-level simulation of the whole
circuit containing the logic path is not necessary. However, the valuegxof(for both SLEd1
and forSLEd2), andp(X) andg(X) (for SLEd2) at a givenX are needed. These derivations are

explained below.

Computation of SLE Model Parameters

They can be computed at a givénby running transistor-level circuit simulations on small test
circuits which contain only the reference inverter (igKX)) or the gate under consideration (for
p(X) andg(X)) together with a proper driver and load circuitid/7]. Figure'3.2 shows the test
circuit constructed with only reference inverters to compuft¢). For computingt(X), first the
random parameters of all inverters in the figure are set accordingand then the number of

inverters connected to the output of a previous inverter is iterated from 1 to 3. This meahs that

1t is not rational to call it quad-tree model as the quad-tree model is proposed to model intra-die variations, which
require more than one level.
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is iterated from 1 to 3 ak is equal to the output load capacitance over input capacitance. At each
iteration, by performing TL transient analysis explained in Sec@@hl, the delay of the inverter

between nodes 3 and 4 is recorded. As a result, a plot similar to F3gZire obtained. The x-axis

Delay of A
the gate in
the middle fitted line with
slope = g.7(X)
p.7(X) |

1 2 3 h,'fan-out

Figure 3.2:The fanout f)) vs. delay plot for the gate between nodes 3 and 4 of the test circuit

in the plot is fanouth, and the recorded delays are marked by big black dots. A line is fitted to
the marked dots as shown in the figure. This line has the si0p®. As g is 1 for the reference
inverter by definition, the slope is equalt@X). Also the point where the line intersects the y-axis

is equal tor(X) pif SLEd1is used. IfSLEd2is used, a similar extra test circuit with a similar plot
should be used for each gate tyge computep(X) andg(X). But this time, instead of inverters,

the test circuit in Figur8.3is constructed with the gate type, whqgseX) andg(X) values will be
computed. The slope of the fitted line is used to comp¥€), whereas the point of intersection

with the y-axis is used to computgX) of the corresponding gate type. [A3], we implemented

both SLE versions above and demonstrated the results on two very simple single path circuits while

considering only the inter-die variations.

Disadvantages of SLE

Both SLE versions have some disadvantages in terms of accuracy and efficiency when complex

circuits with intra-die variations are considered. Starting with the accuracy problems, SLE does not

2Gate types refer to different gates with different number of inputs and different functionality like AND, OR, NOR,
NAND, etc.
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h inverters h inverters [ oap

Figure 3.3:Reference circuit for(X) computation

model input signal’s slope, although the input slope directly affects the delay of the gate especially
when unbalanced loads occur in the circuit. In order to observe the lack of efficiency, assume that
gate length I() and threshold voltage/() are the only random process parameters in the circuit.
Then, if the intra-die variations are ignored, each sarXghas two components, one for gate length

and one for threshold voltage. If the intra-die variations are not ignored, each gate on a path may
have a differentl(, \4) pair. In this case, even the gate types of the gates are same, for each gate,
a new costly TL simulation is required to computeX) (for both SLEd1 and forSLEd2), p(X)
andg(X) (for SLEd2), which makes SLE inefficient especially when intra-die variations are not

ignored.

Refinements on SLE

Alternatively, the parametergX), p(X) andg(X) can be modeled by polynomials in terms of
random process parameters like gate length. In this case, a few number of TL simulations can be
enough to construct the polynomial model. As a result, for the assumption of only two random
parameters as above, the delay of a gate transforms into a polynorijak @nd fan-outlf). Using

polynomials increases the efficiency as the only significant cost is the construction of the polynomial
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coefficients and this is done only once for a standard cell lidrakfter computing the coefficients

for each gate type, i.e. characterizing the cell library, the delay of any gate and corresponding to
any X can be computed by a simple polynomial evaluation. Here, it should be noted that similar

pre-characterizations of standard cell libraries are typically performed for designers to be able to
estimate the performance of their designs.

As a result, to overcome the accuracy and efficiency problems of SLE, we advance the SLE
model by using polynomials and taking the effect of input slope into account. In this advanced
model, gate delays are represented as a polynomial of input slope, fanout and random process pa-
rameters. This model, which we use as an approximate delay computation method throughout this

thesis, is callegholynomial delay mod€PDM) and will be explained next.

3.2.2 Polynomial Delay Model (PDM)

The polynomial gate delay model uses third-degree polynomials to express the delay and the output
slope as a function of the random process and transistor parameters, input slope and load (fanout)
of the gate. This polynomial gate delay model (PDM) requires more computational resources to
construct (but still very cheap to evaluate), but it is more accurate than the logical effort delay model
and results in a much more effective biasing distribution for importance sampling, which will be
clarified in Sectior.2.

If the channel lengtlh. and threshold voltagg are considered as the random transistor param-

eters, then the delay and the output slope of a gass be represented with
dPPM(L, V4, he,InS) (3.15)

and

out$PM(L,, V4, hr,InS) (3.16)

whereL; andV;, are the random parameters for the transistors in gdieis the fanout, andnS

is the input slopeOut$™M is the output slope andf® is the delay of gate computed by PDM.
Actually, we have considered high to low, low to high delays and high to low, low to high output
slopes separately, which makes a total of four different polynomial models for each gate type instead
of the two models shown irB(15) and 3.1€). But, for the sake of simplicity, we will explain our

methods and implementations as if we only use the two PDM models in the above equations.

3A standard cell library is a collection of particular logic gates, which is used by designers to construct their digital
circuit designs.
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Path Delay Evaluation with PDM

Using this model, the delay of a pattwith k gates in a circuit can be easily computed as follows.
First, given the input slope of the first gate in the path (dictated by a primary input), the input slopes

of all the other gates are computed usiBdL€) and
InS;1=O0ut$°M(L;, W, hi,InS), i=1,... k-1 (3.17)

Then, the delay of the path is computed with
k
drPM(X) = ZldiPDM(Li,Vti,hi,lnS) (3.18)
i=

whereX is the vector that collects all of the random variable realizations used in the quad-tree model.

The transistor parametetsandV;; are computed using and 3.4) as explained in Sectia®. 1.

Construction of PDM

The polynomial delay models need to be constructed for the standard cell library that is being used.
Delay look-up models for gates are routinely constructed in standard cell characterizations. These
delay models have traditionally been used for static timing analysis. The delay model extraction
needs to be done only once for a standard cell library for a given fabrication process. In order to
construct the gate delay and output slope models for the gates in our library, we run SPICE simula-
tions at suitably chosen sample points and fit third-order polynomials to the simulation data using a
least-squares technique. For the results presented in this thesis, delay models were constructed with
SPICE simulations run per gate at 1700 sample points in the parameter space. These 1700 sample
points were generated as follows. For the two random parameters considaredd/ in this work),

425 sample points were placed non-uniformly in the rectangle ih-eplane bounded by — 3.0

andp+ 3.0 for each parameter, whepeis the mean and is the standard deviation of the param-

eter. The sampling frequency was three times higher in the cgnterto u+ o interval as shown

in Figure3.4. Only two samples (values) for both input slope and load were used due to almost
linear dependence of delay on these parameters. As a result, we end WR28itl2 x 2 = 1700

points at which SPICE simulations are ruRor fanout and input slope only two values are used
because the gate delay versus fanout or input slope relationship is almost linear. This can be seen
from Figures3.5(a)and3.5(b) Figure/3.5(a)is created by iterating the fanout of a 4-input NOR

gate and plotting the corresponding gate delays by blue asterisks whereas35gofis created by
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iterating the input slope of a 5-input AND gate and plotting the corresponding gate delays by blue
asterisk&. In each of these figures, the red dashed line represents a line, passing through the first
and the last asterisks, for reference and the blue lines simply connect two consecutive asterisks. It
can be seen from these figures that both fanout and input slope have almost linear relationships with
gate delay. The linear gate delay versus fanout relationship was also assumed by the SLE model
explained above.

L-Vt space sampling for PDM construction
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Figure 3.4: Sampling df-V; plane for polynomial delay model generation

We should point out that the parameter space sampling scheme describddrhiting and
building the gate delay model is only rudimentary and was considered adequate for the results
we present in this thesis. If a larger number of random transistor parameters are included in the
gate delay model, a more efficient sampling scheme that does not have exponential complexity,
such as Latin hypercube sampling [75], needs to be employed. Efficient and effective design of
experiments [75] (selection of sample points in the parameter space) in statistical model fitting is a

well studied problem in statistics and beyond the scope of this thesis.

4These two gate types are selected randomly as all gate types have similar plots.
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Figure 3.5: The linearity of delay versus fanout and input slope
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Accuracy of PDM

We use PDM to approximate path delays. Therefore, its accuracy should be tested by compar-
ing path delays computed by PDM with the actual path delays computed by TL simulation. In
Figurel3.6, scatter plots that show the accuracy of the polynomial delay model against SPICE TL
simulations is presented. In order to generate the graph in F&i6rthe delay of a complete path
in each circuit in the ISCAS’85 benchmark suite was determined both by TL circuit simulations
(dT-(X)) and by evaluating the polynomial gate delay modtl°M(X)) at a number of sample
points in the parameter spadkéhis plot has 20,000 points that are generated as explained at the end
of Section3.1 considering the intra-die variations with spatial correlation and by using the 4-level
quad-tree model shown in FiguBel. Two random transistor parameters are considered, gate length
(L) and threshold voltage/). The red line in the plots is thhe=y line used to visualize the shifts
and errors of polynomial delay moddlhe polynomial delay model captures the trends and relative
variations in delay as a function of the transistor parameters quite accurately. However, the delay
model is not accurate enough to replace transistor-level simulation in predicting timing yield with
sufficient accuracy as will be seen in ChapieWe use this model in order to detect statistically
critical paths as explained in Secti8rg and to construct an effective biasing distribution to be used
in importance sampling as explained in Secdo? but this model is not meant to be a replacement
for transistor-level simulation in accurately determining the delay of a circuit.

Other than the visual demonstration of the path delay accuracy of polynomial delay model shown
by Figure3.6, the accuracy can be computed by the well-kngaat mean square erro(RMSE)
computation.|8.19 shows the RMSE computation for the path delays computed by polynomial

delay model.

PDMruse = \/ 2 (dELWN_ Lt (3.19)

whered!!(X) is the actual path delay computed by SPICE TL simulations for the giveample

point anddfPM(X;) is the approximate path delay computed by polynomial delay model for the
sameX;. X's are generated as explained at the end of Se&ibhased on 4-level quad-tree model
andN is the number of drawn sample points. The normalized root mean square error (NRMSE)

can be computed through dividing the RMSE by the sample mean of actual path delay as shown
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in (3.20).
PDMgrmse

PDMNRMSE = 3 7x)
N

(3.20)

For the same 20,000 sample points used in Figugethe computed percentage PRMise value

for a path taken from each benchmark circuit is shown in Tadle

Table 3.1:Percentage NRMSE of PDM for a path in each circuit of ISCAS’85 benchmark

Circuit Name | c432 | c499| ¢880| c1355| ¢1908| c2670| ¢3540| c5315| ¢7552
PDMnrMse % | 1.69 | 252 | 1.87 | 1.66 0.42 0.77 1.00 0.44 | 0.46

Discussion

Gate delay models are utilized in almost all statistical timing analysis methodologies. The nature
of the algorithms used in statistical analysis may impose restrictions on the complexity and form
of these models. For instance, in block-based statistical timing analysis (SSTA) schemes based on
PDF algebra/propagation, linear or at most quadratic models are used in order to make the PDF
computations tractable and practical. In our methodology, the only requirement on the delay model
is that it be cheap to evaluate. Otherwise, there is no restriction on the complexity (can use higher-
order polynomials) or form (not restricted to polynomial models) of the delay model. A more
complex delay model may result in a larger construction cost, but again, this is done only once for a
gate library for a given process. The ability to use more accurate and complex gate delay models is

one of the key benefits of our methodology.

3.3 Collection of Statistically Critical Path Candidates

Reminder for Critical and Statistically Critical Paths

Critical path in a circuit is the longest true path which is responsible for the delay of the circuit as
explained in Sectio2.2.3 When the statistical process variations are considered, the circuit may
have different critical paths for different assignments to the random variables in the circuit. A path
which is critical for one assignment may not be critical for another assignment. As a result, the

set ofstatistically critical paths consists of the paths that are critical for at least one assignment to
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random parameters. The collection of statistically critical paths is a hot research topic as explained

in Sectiori2.3.1.

The Purpose of This Section

The purpose of this section is to explain the method we use for the extraction of the statistically
critical pathcandidatesin a circuit with inter and intra-die variations. They are only candidates
because some of them may be false paths and so not responsible from the circuit’s delay as explained
in Sectiori2.2.3 Next section explains how we detect these false paths among these candidates and
eliminate them to form a statistically critical paths set. Below, the overview and the details of the

method used for the detection of statistically critical path candidates will be given.

Overview of The Method

For the extraction of the statistically critical path candidates in a circuit, a block level Monte Carlo
(BL-MC) method based on DSTA as explained in Secfioh2is preferred for our work. A quad-
tree structure explained in SectiBrl is used to model the inter die variations and intra-die varia-

tions with spatial correlation. The BL-MC is applied as follows:

1. According to the quad-tree mod@&l,random sample poin§’s are drawn.

2. For eachX;, the random parameter values, i.e. gate leng}lad threshold voltag&/) in our
case, for all gates in the circuit are computed frignas described at the end of Secti®A.
Then, having. andV; corresponding to each gate, input slopes and gate delays are computed

using PDM as explained in Secti@w.

3. Knowing the gate delays (e.g. numbers inside the nodes of timing DAG in FR&i6rea
DSTA analysis of Sectio.2.2is performed to compute the circuit delay and the topologi-

cally longest path corresponding to the sample pxint

4. Atthe end of DSTA the discovered topologically longest path for sad§gkerecorded to the
statistically critical path candidates set. At the endNaferations, this set has the paths each

of which is the topologically longest path for at least one offtheample points.
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The value ofN can be very high as DSTA with PDM polynomial evaluations is a fast operation
that can be repeated for many times. Below one iteration of this method is explained in detail starting

from the layout representation of a circuit.

Details of the Method

We start with a design exchange file (def) representation of a cifégjit Def file is the output of

layout (place and route) tools and has cell info, layer information, complete net list connectivity,

floor plan specs, physical location of every design instance (gate), routing geometry data and etc.
The def files are converted into a timing DAGV, E), as demonstrated in Figu€. In this

DAG structure, each logic gate has an ID number and important features extracted from the def file.

These features atgpe ancestorsneighborsandfanoutof the logic gate. For instance, a gate with

ID 654 from an example circuit has the following features:

type 'and2’
ID: 654
neighbors [747 742 737 730 725 721 719 714 712]
ancestors[630 645]
fanout 2.42
L: 0.1299
Vi: 0.2032

These features show that this example gate is a 2 input AND gatdviéh4 andfanout2.42.
The gate’s output is connected to 9 gates, whose IDs are showaifplgborsattribute. It has two
inputs connected to the outputs of the gates with IDs 630 and 645 as shaantéstordeature.
The last two features are the random parameters for the gate. As we assume two random parameters,
gate lengthl{() and threshold voltagé/), for each gate, there are two features correspondimg to
andV;.

A random sampleX; is drawn according to the 4-level quad-tree model as explained in Sec-
tion'3.1 before performing a DSTA analysis as the overview of the method suggests. As we assume
two random parameters @nd\;), this results in 170 dimensional sample point veefoas com-
puted in SectioiB.1. After the random sampl¥; is drawn, theL andV; values of each gate are

computed using EqrB.4 given the random sampb§ and the position of the corresponding gate
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extracted from the def file in the quad-tree model as described in S&fior\fter drawing the
random sampl&; and determining the random parametéra(d\;) of all gates according to the
X, DSTA algorithm can be applied as explained below.

Our DSTA implementation on a circuit timing DA®(V, E)) with features explained above is
shown in Algorithnil. The algorithm takes the circuit DAG including the gate features introduced
above and the PDM coefficients as input argumeRtgnarylnSlopdn the algorithm corresponds
to the default input slope for the primary inputs of the circMt|Dnum) expression in the algo-
rithm returns a pointer to the gate (vertex) with IDnum First, the algorithm topologically sorts
the timing DAG such that the ID of every vertex comes after the IDs of all its predecessors and these
topologically sorted IDs of the gates are puSartediDsarray. Then, by the help of this topologi-
cally sorted array, the algorithm processes the gates one by one from leftmost gates connected to the
primary inputs to the rightmost gates connected to the primary outputs. For each gate, it computes
the possible maximum output arrival time and records iaag/altime feature of the gate. The
algorithm also records the corresponding ancestor gate, which causes this maximum output arrival
time asdelayfather As a result, Perform-DSTA algorithm inserts new features dikévaltime,

gatedelayoutputslopedelay fatherfor each gate (vertex) @:

arrivaltime: The computed maximum output arrival time for the corresponding gate.

gatedelay Gate’s own delay computed by PDM method and used in the computation of

arrivaltime,

out putslope The output slope of the gate, which is required for PDM delay and output slope

computation of the gates connected to the output of this gate.

delayfather The ID of the ancestor gate which results in maximum output arrival time for

the corresponding gate.

After this DSTA analysis, it is very easy to find the topologically longest path. This path is
found by first finding the gate having the maximum output arrival time. Such a gate is certainly a
rightmost gate, whose output is a primary output. This gate’s ancestor, which is responsible from its

output arrival time to be such high, can be found by looking at the gd&tay f atherfeature. Then



Chapter 3: Statistical Timing Analysis Methodology 62

all gates in the topologically longest path are traced by iteratively following the 1Dsliay father

features of the succeeding gates until a leftmost gate, whose inputs are primary inputs is reached.
The operation explained above, which consists of drawing a random sample according to quad-

tree model, determining the parameters of the gates inside the circuit according to this random

sample, then performing the algorithm shown by Algand determining the topologically longest

path in the circuit is repeated fbt different sample pointX; and all collected topologically longest

paths constitute the statistically critical path candidates set.

An Alternative Method

Alternatively, DSTA could be performed only once but instead of collecting only the topologically
longest path, all paths having delays closer to the topologically longest path could be collected as
statistically critical path candidates. Because, one can argue that only the paths in a delay prox-
imity to the topologically longest path may become the topologically longest path for a different
assignment to the random values in the circuit. We have implemented this alternative method and
its details are in SectioA. Other than our implementation, there are well known algorithndb [

for extracting the K-most critical paths in the circuit.

Conclusion

For the solution of this problem, instead of BL-MC explained above, effective block-based SSTA
statistically critical path extraction methods (e.qg.[18,[7S]) could have been used as well. In any
case, the extraction of these critical path candidates is very important for both timing analysis and
optimization of digital circuits.

After collecting the statistically critical path candidates, these candidates should be tested by a
sensitization criteria as explained in Seciih@.3 to eliminate the false paths, because false paths
are not responsible for the delay of the circuit in any case. The next section explains the method we

use for detecting and eliminating the false paths in the statistically critical path candidates set.
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Algorithm 1 Perform-DSTAC(V, E), PDM model for delay and output slope)

1. SortedIDs= Topological-Sort(C)

2. for current=1to length(SortedID$ do

3.

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

r =V (SortedIDgcurrent))
if r.ancestors== 0 then
r.outputslope= OutSPM(r.L, r.\4,r. fanout PrimaryInSlopg
r.gatedelay= d°PM(r.L,r.\,r. fanout PrimaryInSlope
r.arrivaltime = r.gatedelay
r.delayfather={ }
else
r.arrivaltime=0
for AncestorInd= 1to lengthr.ancestor$ do
ancestor=V (r.ancestorgAncestoring)
CandidateOut putslope Out$PM(r.L,r\4,r. fanout ancestoout putslopg
CandidateGatedelay d”°M(r.L,r.\;,r. fanout ancestomout putslopg
CandidateArrivaltime= CandidateGatedelay ancestomrrivaltime
if CandidateArrivaltime> r.arrivaltime then
r.arrivaltime = CandidateArrivaltime
r.gatedelay= CandidateGatedelay
r.out putslope= CandidateOutputslope
r.delayfather= ancestoiD
end if
end for

end if

24. end for
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3.4 False Path Detection Using Satisfiability

Overview

In Section3.3, the method we use to collect the statistically critical path candidates is explained

in detail. These candidates should be tested in order to detect the true paths and label them as
the statistically critical paths The method proposed in this section discriminates the statistically
critical path candidates using tilséatic sensitizatiowondition. The false path issue and the static
sensitization are explained in Sect@r2.3 As a reminder, for a path to be statically sensitizable,

all side inputs on this path should be able to take non-controlling values at the same time for at least
one input assignment. If a path is statically sensitizable it is definitely a true (sensitizable) path, thus
a signal can propagate through this path and this path can be responsible from circuit delay. Our
method, similar to/3], converts the problem into laoolean satisfiabilitf SAT) problem and uses

popular SAT solvers in order to decide whether a path is statically sensitizable, i.e. true path.

Boolean Satisfiability Problem

A boolean function consists of logic operations AND, OR and NOT. For the boolean formulas in this
thesis,— represents a NOT, represents an OR andrepresents an AND. Any boolean function can
be represented by using these operat&21f and 3.22) are two examples for boolean functions.
Boolean satisfiability problem is a decision problem and its aim is to detect whether a given
boolean (logic) function isatisfiable A boolean function is satisfiable if it can evaluate to TRUE
(logic-1) for an assignment to the boolean variables (literals) in boolean function. The detection of
this assignment is also included in the solution of satisfiability problem. Satisfiability is the first
problem that is proven to be NP-complete. For instance, the boolean form@l21ihié satisfiable
for the input assignmem§,B = 1,1 as it evaluates to logic-1 (TRUE) for this assignment, whereas
the formula in8.22) is unsatisfiable, which means that there is no input assignment that makes the
function evaluate to TRUE (logic-1). An assignment that results in boolean function evaluate to
TRUE is said to satisfy the boolean function. Although the problem is proven to be NP-complete,
there are many heuristics called SAT solvers and they are very efficient and successful in determining
whether a given boolean function is satisfiable or unsatisfiable and if it is satisfiable, they can detect
which input assignment satisfies the function. There are even competitions to pick the best SAT

solver of the year8(Q].



Chapter 3: Statistical Timing Analysis Methodology 65

(av-b)A(—avb) (3.21)

(av—b)A(—avb)A-b (3.22)

Conjunctive Normal Form (CNF)

In boolean logic, a function is inonjunctive normal forn{CNF) if it is a conjunction (AND) of
clauses, each of which is a disjunction (OR) of literals (boolean variables) where negative (NOT) lit-
erals are possible. Itis also callpbduct of sum$rm. Two boolean functions ir8(21) and 3.22)

are written in CNF as the clauses of OR functions are connected by AND operator. All logic func-
tions corresponding to the logic gates in a standard cell library can be converted into a CNF form.
CNF is an important standard for satisfiability because almost all SAT solvers accept boolean func-
tions only in CNF form as an input. For this reason, if it is desired to know whether a boolean
function is satisfiable or not, then it should first be converted into a CNF form before testing its

satisfiability by a SAT solver.

Representation of Combinational Circuits as a CNF Satisfiability problem

Table 3.2:Gate type equations and the corresponding CNF formulas

gate type | equation CNF formula
not X=-a (@avx)A(—aV-x)
and x=aAb | (mav-bVvx)A(av-x)A(bv-x)
or x=aVvb (avbv-=x)A(—aVvx)A(—-bvx)

nand | x=-(aAb) | (-aVv-bVv-x)A(aVvx)A(bVx)

nor x==(avhb) | (aVvbVvx)A(-aV-x)A(=bV-x)

A simple boolean equation can be represented as a CNF satisfiability problem3xdiews
the CNF equivalents of the boolean equalities corresponding to different gate types. For each gate
type, the assignments to the variables that make the corresponding CNF formula evaluate to TRUE,
give all allowable values that the variables can get without violating the equation of the correspond-

ing gate type. For instance, for NOT gate, the outpiiig the complement of the inpud; i.e.



Chapter 3: Statistical Timing Analysis Methodology 66

x = —-a. The only allowed assignments f¢a, x) pair are(0,1) and(1,0). These two possible as-
signments are the only assignments that satisfy the corresponding CNF formula. Similarly for AND
gate with equatiorx = aA b the possible assignments fta, b, x) are (0,0,0), (0,1,0), (1,0,0),

(1,1,1) and these four assignments are also the only assignments that satisfy the corresponding
CNF representation of the equation. Using this fact we can also convert a combinational circuit
into a CNF satisfiability instance. In such a case, the variables in the circuit can only take the logic
values that satisfy the corresponding CNF formula. For instance, the simple circuit in Bigure

can be represented as a CNF formula showe@8.25). An assignment to variables, which satisfies

this CNF, has the logic values that the variables in the circuit are able to get.

Qo
|
<

Figure 3.7:Sample combinational circuit

CNF = (-aVv-bVv—-x)A(aVvXx)A(bVXx)
A(=CV -dVY)A(CV-y)A(dV-y) (3.23)
AXVYV =2Z) A (=XVZ) A (Y V 2)

The Satisfiability Based Method to Detect True Paths

We can insert test conditions to the circuit CNF formulas and check whether these conditions are
satisfied. For instance, the static sensitization condition was that all side inputs of the path under
consideration should have non-controlling values. Assume that the static sensitization of the path
a—x—zin Figure3.7 will be tested. The side inputs for this path &randy. Simultaneouslyb

should be 1 ang should beD in order to have non-controlling values for the side inputs of the path
a—Xx—z As explained in Sectio.2.3in detail, this is becaudeis a side input of a NAND gate

andy is a side input of an OR gate. We can insert this condition at the end of the CNF description

of the circuit in 3.23 as shown in[3.24).
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CNRx_z=(—aVv-bVv-x)A(aVvx)A(bVXx)
A(=CV—=dVYy)A(cV=y)A((dV-y) (3.24)
AXVYV =Z) A (=XVZ) A (ZYV2Z)
AbA =y
For the CNF formula in3.24) to be satisfiable, i.e. evaluate to TRUE; obviousishould bel

andy should bed. Alternatively, ifCNF,_yx_; is satisfiable then the side inputs can simultaneously

take non-controlling values and therefore the mathx — z is statically sensitizable, which means

it is certainly a true path. By using this satisfiability based true path detection method, the static

sensitization of a path in the statistically critical path candidates set is checked as follows:

1. First of all, the CNF formula corresponding to the circuit under consideration is generated.

2. Secondly, the non-controlling values for the side inputs of the path under consideration are
determined and these are inserted to the circuit's CNF formula as conditions similar to what

is done in8.24).

3. The satisfiability of the resultant CNF formula is tested by a SAT solver8&E [f the path
is satisfiable then this means the path is statically sensitizable and a true path and thus it is

kept. If it is unsatisfiable, then the path is discarded.

When this operation is applied to all paths in #tatistically critical path candidateset, a new
set calledstatistically critical paths setonsisting of only true paths is obtained.

The next chapter explains a novel timing yield estimation method based on importance sampling
and transistor level Monte Carlo simulations. The method uses the statistically critical paths set,
which is generated as explained in this chapter. The aim of this method is to speed up the transistor
level statistical timing analysis so that an accurate timing yield estimation can be performed as a

final verification before timing sign-off.
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Chapter 4

MC YIELD ESTIMATION WITH IMPORTANCE SAMPLING AND
TRANSISTOR LEVEL SIMULATION

In this chapter, a novel loss estimation method is proposed: an improved loss estimator which
is based on importance sampling (I1S) that significantly accelerates the convergence of the transistor
level Monte Carlo (TL-MC) estimatawithout forfeiting accuracy and enables its use in practice.
Sectiord.1provides the details of transistor level Monte Carlo (TL-MC) loss estimator that is briefly
reviewed in Sectio2.4.2 Sectior4.2 presents the novel importance sampling (IS) loss estimator.
Sectiord.3explains the heuristic algorithm that practically avails the IS loss estimation. Sdcfion
provides theoretical analysis for the means, variances and errors of standard TL-MC and IS estima-

tors and deduces a speed-up expression by comparing the speeds of both estimators.

4.1 Standard Transistor Level Monte Carlo (TL-MC) Loss Estimator

The actual loss can be precisely computed only by detailed transistor level analysis. Therefore,

using Egn2.14 the actual loss can be written as

Loss - = /Q ITH(Te, X) f(X)dX (4.1)

Q is the region, where PDF(X) is defined. The superscrigt- indicates that the value of indicator
random variablé™ (T, X) defined by2.13) is computed based on transistor-level (TL) simulations,
that is, the path delays and hence the circuit delay2itzj are computed with TL simulations.
Computation ofiT-(X) requires that the parameters of the gates inside therpaté set according
to X as explained at the end of Sect’8rd and then a SPICE TL simulation (transient analysis) is
performed as explained in Sectigr.1

However, the integral in4,1) does not have an analytical solution and it requires an infinite
number of TL simulations as it is an integration over a continuQuggion. Monte Carlo (MC)

method is widely used to estimate such complex integratigks shown in 2.25), the standard



Chapter 4: MC Yield Estimation with Importance Sampling and Transistor Level Simulation 69

N-sample MC estimator (TL-MC) fokoss - in (4.]) is given by
1 N
Losgt= =S ITH(Te, %) (4.2)
PR

whereLosg" is the loss estimatel; is the timing constraint that shows the maximum allowed
circuit delay andx; is a random sample point. Indicator variable is the same 4.1, put this
time it is computed only foN times. In @.2) above, theé\ samples for the random variable, i =
1...N, are drawn from the joint PDFF(X) and for every sampl¥;, the random parameters for the
transistors in the circuit are computed as described at the end of S8diidrhen, a TL simulation
with SPICE, reviewed in Sectia®2.], is performed for each path in the set of statistically critical
pathsii; (obtained as described in Secti®f and3.4) to compute the path delagg“(X), finally,
(2.12), (2.139 and @.2) are used to compute the loss estimates,". As Theoren®.4.1proves, the
TL-MC estimator in 4.2) converges to the actual lodspss t. Therefore, ifenougd number of
samples are drawn, TL-MC estimator can precisely estimate loss.

When compared with other methods like SSTA reviewed in Se@ti®i2, TL-MC loss estimator
described above results in accurate yield estimation results, because it is based on TL simulations as
opposed to an approximate gate delay model, and the maximum operai®h2nig not approxi-
mated in any manner. However, the standard TL-MC estimator typically requires too many samples
(N) to converge. For each sample, one needs to perform TL simulations for all of the statistically
critical paths, and hence, the computational cost of the TL-MC estimator could become prohibitive

for practical use.

4.2 Transistor Level Importance Sampling (I1S) Loss Estimator

The Choice for Biasing Distribution

Considering the general IS technique, described in Se2tid, the IS based transistor level Monte

Carlo estimator for loss

LosdS — ;_ilﬂm,m ;&i (4.3)

draws the sampleX from another, biasing distributiof. We propose the following biasing distri-

bution to be used in the IS estimator above

_IPPMTE X) F(X)
(X) = L osgome

(4.4)

1The enough number will be clarified in Sectidrl.
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where the loss estimateos$®M€ and IPPM(T# X) are computed based on the approximate but
cheap gate delay model PDM described in Sec8di without performing any TL simulations.
IPPM(T X) is computed as shown ii2(13 using PDM method for computing the path delays
instead oM. Computation ot.os$®M€ will be described later in this section.

Substituting the biasing distributiohin (4.4) into (4.3), and performing some simplifications
based on the fact that®V(TE, X;) takes the valué for all samples drawn fronfi(X), we arrive at

a simplified form of the IS estimator

Lossy =

Los§ DM,

ZIT'— Te, X% (4.5)

where the samples are drawn fromf(x) in (4.4).

Requirements on Biasing Distribution

For the IS estimator ind(3) and @.5) to be well-defined and unbiased, two requirements introduced

in Sectior2.4.1must be satisfied:

1. Assume tha® represents the region wheféX) is defined and nonzero. Then, thafety
requiremennecessitates th@ region covers the space wheré (T, X) f (X) is non-zero. In

other words, for every samp, f(X;) must be non-zero if" (T, %) f (%) is non-zero.

2. Theregularity requiremenhecessitates that

/f X)dX = /'PDM T O gy 1 (4.6)

Los$DM.e

As Los$PMe is a constant value, this simplifies into

Los$PMe — /e IPPM(TE X) F(X)dX. (4.7)

Safety Requirement

In (4.4) above, the target delay is setTg = T, — € whereg is a margin parameter. This margin
parameter is introduced in order to guarantee fi{xt) is nonzero everywherd “(T., X)) f (X)) is
nonzero, i.e.|PPM(TE, X)) must take the valug everywherd T-(T;, X) is 1. The margin parameter

£ must be large enough so that the indicator variables never assume the V&MERS, %) = 0
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(the timing constrainT,® is satisfied according to the PDM model) ald (T, %) = 1 (the actual

circuit fails to satisfy the timing constraint according to TL simulations) for any of the sample
points,X;. This condition is called thenargin condition We note here that theafety requirement
above dictates that the margin condition is satisfied. In the next section, we present an algorithm for
computingLosi,S. As this algorithm explores a set of sample points, it also gathers the data required
for computing a value of that satisfies the margin condition. For ease of exposition, we continue
the mathematical presentation of our method assfdetermined first, before computihgssy. In

reality, the algorithm carries out trhﬁe)si,S computation and determination concurrently.

Regularity Requirement

As theregularity requirementibove dictatesos$PM# in (4.5), should be computed as id.7).
However, similar to/4.1), Los$PM¢ integration shown in4.7) cannot be computed analytically.

To overcome this problem,os$PM# is estimated using a standard MC (STD-MC) estimator ex-
plained in Sectioi®2.4.2based on the approximate but cheap gate delay model (PDM) described in

Sectiori3.2, without performing any TL simulations as follows
pme 1
Losg oM = < leF’DM(TCS,xi) (4.8)
i=

for which one can afford to use a very large number of samflesince the evaluation of
IPPM(T2 X;) for every sample is very cheap based on the approximate delay model. As MC es-
timators are unbiased, usimgsﬁDM’s with a very largeK instead ofLos$®M# in (4.5) can satisfy

the regularity requirement. The experiments, presented in Chaysthow that satisfying the safety

requirement is more difficult and critical for the efficiency and the accuracy of the IS estimator.

IS Estimator Evaluation

In evaluating the IS estimator, in order to draw a sample ffgi) in (4.4), we first draw a sample
X from f(X) as described at the end of Sect®d. We keep the sample ifPM(T.¢, X;) evaluates
to 1 at the sample point and discard it otherwise. Again, the evaluatidi?¥{ T.¢, %) is performed
cheaply based on the delay model, described in Se@tiénEach kept sample constitutes one of
the X; in (4.5). LossS is then computed by determining whethék (T, X;) = 1 for each such kept

sample, i.e., by performing TL SPICE simulations.
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4.3 e-Margin Detection

This section presents CompLossMC-IS (A2), the algorithm for determiningo_‘%#\,S as described

by Eqn.4.5. To accomplish this, CompLossMC-IS first generates a st&tS$ample pointsy =
{X1,X2,...,Xns} from the distributionf. Each of these sample points is drawn using the 4-level
quad-tree model as shown in Figu8el and described in Sectiadl. The choice oNSwill be
discussed later in this section. Déthe these sample points in decreasing ordel:8M, i.e., X =
{Y1,Y2,...,Yus} such thadfPM(Y;) > dEPM(Y)) if i < j. Using the sample set, CompLossMC-IS

must compute

- the subset = {Y1,Y2,...,Yn} C X consisting of all sample points for whidf®M(T.Y,)

evaluates to 1 (using the gate delay model),
- the subse) C W of sample points for which™ (T, Y;) = 0 (by performing TL simulations),

- the setSafeMargin= {Yn+1, Y42, .-, Yn+sm} (to be defined below) and the corresponding

value ofe, and
- usinge above, the value dfos$PM¢ as in 4.9).

Then, the loss estimateossy will be computed as
Lossy = Los$PM: e W —Q| WT/IQ‘ (4.9)

where| W — Q| shows the size of the set difference®f from Q and|%/| shows the size of set
W. The first factor on the right hand side @.) is the IS biasing factor, and the second factor is
the fraction of points in which result in a loss valuelt can be seen that the numerator of the
second factor|( — Q|) represents the summation #h.E) and the denominatof¢/|) represents
N in (4.5).

The only non-straightforward task that the algorithm must carry out is the determination of the
margin parameteg. € uniquely determined?/, Q, Los§PM#, and thud. ossy. The requirements on

€ are discussed next.
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Algorithm 2 CompLossMC-ISKS SM, T¢)
1. GeneratdNSsample pointg Xy, X, ..., Xns} from f(X).

2. For eachx;, computed®PM(X;).

3. Let X ={Y1, Y2, Y3, ..., Yns} be theNSsamples
in decreasing order @2PM(Y;).

4. i=1, 2= 0, SafeMargin=0

5. while (|SafeMargin < SMandi <N§ do

6. dc=dl"Y)

7. if (dc < T¢) then

8. z=2zU{Y}

9. if SafeMargin== 0 then
10. £ = To— 0.5(cB°M (¥;) + d&PM (Yi_1))
11. end if

12. SafeMargin= SafeMargiru {Y; }

13. else

14. SafeMargin= 0
15.  end if

16. i=i+1

17. end while

18. LetN =i — SM— 1 andSafeMargin= {Yn+1, ..., YN+SM} -

19. Let W ={Y1,....,. \n}

200 Q=WNZz

21. Using a huge set of K samples compltes$PMe = 2 $K | [PPDM(TE X))

22. Los§y = Los$PME | — Q| /| W
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Constraints ore

For importance sampling to provide an unbiased estimator in our appatlst be large enough
to satisfy the safety requirement that for every valu&dhat f (X)IT-(T,, X) is non-zerof(X) is
also non-zero. This translates to the requirementithafle, X)) = 1 = IPPM(T8 X)) = 1. Letus
definegpsto be the smallest value efthat theoretically guarantees the margin conditiygs as a

function of the timing constraink; is given by

€abs(Tc) = Mgyer allx such thatdlL(x)>T, (Te—dg®™ (X))

However, the value dafypsis not known in practice because it requires knowledg%bfthroughout
the entire sample space. Therefore, the algorithm must try to heuristically provide a valclesd#
enough teapsin order to minimize the bias in the estimator.

On the other hand, as seen#h32), the closet.os$PMe is to Loss L, the more speedup th&
estimator achieves over standard TL-MC estimator. Makingg M close toLoss - requires that
€ be kept close to a particular valaethat satisfies 0s$PM€" = Loss L. Thus, to makesS efficient
while preserving correctness, we must chooss close t&* as possible. Similarly to the case in
the paragraph above, the valuegsfis not known in practice, since it requires the entire sample
space to be covered by TL simulations.

To summarize, the algorithm must pick a value af close te* as possible without going below
€abs HoOwever, since neither of these quantities are known a priori, we use the heuristic algorithm
in this section to compute anthat is a good compromise. In the experiments in Chelijteve
demonstrate that our heuristic strikes a good compromise between accuracy and efficiency in all

benchmarks.

Heuristic Criterion fore

CompLossMC-IS explores the sampMsn increasing order of, i.e., in decreasing order of their
ng'V' values. For a given value &M (short for "Safety Margin”), CompLossMC-IS’s goal is to

selecte satisfying the following property:

- There is a sequence 8M sample pointgYn1, ..., Yn+sm} that constitute the safety margin

(called asSafeMarginin the algorithm). For each poiivtin the margin,

deh(Y) < Te
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And ¢ satisfies

g =Te—0.5(dE™™ (Y1) +dEM(Y))

The safety margin (heuristically) provides confidence that the safety condition is satisfied for the
remaining points for which a TL simulation has not been carried out. This is because all of these
remaining samples have a valued3PM less tharl; —e.

In Chapter5, we show that, using a reasonably snilll, the heuristic criterion provides an
estimator with negligible bias. CompLossMC-IS runs o8M additional TL simulations beyond
those needed fdrosgy 2. The computational cost dfos$PM€ determination is unavoidable with

thelS estimator and is not due to the adaptive determinatian of

DeterminingN S

Roughly speaking, the user provides the algorithm with a nuri&=and he expects to carry out
approximatelyNSLossTL simulations. Since the intended use of our proposed approach is accu-
rate, late-stage yield determination, a rough estimatédssshould be available. If not,0s$™
can be used as a rough guides$® can be computed b4(§) whereT? should be replaced by
Te. Itis important to note that the choice NfSis guided by how small one would like the variance
of the Los$S estimator to be. The purpose WSis not to sample the parameter space in order to
determine a safe value ef € is determined heuristically and this heuristic is empirically justified
separatelyN Sis chosen so that roughNNSLossTL simulations are affordable, and the variance of
the IS estimator foNSLosssamples is as small as desired.

Alternatively, the user can start with a very smil§ value and advance this value until he
performs the maximum affordable number of TL simulations. Assuming that the upper bound for
the loss isLos$’® and the maximum affordable number of TL simulations per patiisx, then

the two step process for determiniNgis as follows:

1. Start withNS= Nyax/Los$’B. Perform IS estimation using CompLossMC-IS algorithm.

2The overhead due to the additior&ill simulations is taken into account in the repor&gkeedup results in Chap-
ters.
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2. If number of TL simulations is smaller thadyax. IncrementNSby adding a new sample
point (X;) and perform IS estimation with this neM/'S until the number of TL simulations

becomes equal Ny ax.

As the main source of computational cost is TL simulations, this two step procddStteter-
mination does not introduce a serious additional cost. Because, in the repetitive IS estimations, the
previously computedi™(Te, X)) andIPPM(TE, X)) values are kept and alsms$’PM# is computed
only for once in step 1. When this second suggestior\fSidetermination is compared with the
previous one, it is seen that there is an additional cost in the second suggestion as the algorithm
CompLossMC-IS is repeated more than once in step 2. However, in this second suggestion, the
user performs exactly the maximum affordable number of TL simulations which is not guaranteed
in the previous suggestion. For increasing the efficiency of the second suggestion, the number of
algorithm repetitions can be decreased by adding more than one sample in step 2. But this time the
guarantee to perform exactly the desired number of TL simulations is relaxed. If in $tepr@ples
were added instead of 1 sample, then at worst case, at the end of the process the user would perform

Nwmax +k— 1 TL simulations, whereas the number of algorithm repetitions would deckdases.

4.4 The Convergence Analysis

In this section, we present a precise analysis that quantifies the variance reduction and the speed-up
obtained when we use the IS estimator instead of the standard TL-MC estivatstart with the
analysis of mean and variance of the TL-MC and IS estimators and then derive error expressions for

both estimators.

Means of TL-MC and IS estimators

Theorem 4.4.1. The mean of the standard TL-MC estimator4nZj is the actual loss given by the

integral in (4.1). Therefore, the TL-MC estimator is an unbiased estimator.

Proof. As X;’s are independent identically distributed (i.i.d.) random variables ff¢x), mean of
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the TL-MC estimator can be written as

E{Losg‘} = ;_iE{lTL(TC,N)}

= :l_i/QITL(TC,X)f(X)dX

whereQ is the region wherd (X) is defined and nonzero. Froi.1), the integral above is equal to

(4.10)

actual loss, i.eLoss .

E{Losq"} = N Loss -
(4.11)
= Los§L

O

Theorem 4.4.2.The mean of the IS estimator #¥.§) is equal to the actual loss given by the integral

in (4.1), provided that the safety and regularity requirements given in Sedtbare satisfied.

Proof. As f~(X) is a regular probability density function (regularity requirement) Arglare i.i.d.

random variables fronfi(X), the mean of IS estimator can be written as

LostM
ZE{IT'— (Te, %

LOSg’DMs N / i .

E{Losg;} =
(4.12)
(Te, X)F(X)dX

where@ is the region wherd (X) is defined and nonzero. SubstitutifigX) in (4.4) and using the

fact that in@ regionl PPM (T, X) is always 1

| POM(TE, X) f(X)

T
o (Te X Los§PM.e

E{Losg{} = dX

LOS§’DM8 N/

LOS§DM e N (4.13)

TL
d ZLostMs/' (Te, X) £ (X)dX

According to the safety requiremer® region must cover the region wheré- (T, X)f(X) is
nonzero. Therefore, if safety requirement is satisfied, the integration above is equal to the actual

loss, i.e.Loss - given by @.1).

Los$PMe N | osd'L
E{LOS#QS} N N ZI Los$DM.e (4 14)

=Losst
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The analysis of means of both TL-MC and IS estimators shows that both estimators converge
to the actual losd,0ss L. This is a very useful property that approximate loss (or yield) estimation
methods based on many assumptions like SSTA methods do not have. As they both converge to
the actual loss, the most important point is the convergence speed of the TL-MC and IS estimators,
which is directly related with the variances of both estimators for a given number of drawn sample

points for TL simulations.

Variances of TL-MC and IS estimators

Theorem 4.4.3.The variance of the TL-MC estimator iA.p) is given by

LosSLYield™-

VAR (N) =VAR{Losg'} = N

(4.15)

whereYield™s = 1— Loss - andN is the number of drawn samples or equivalently the number of

TL simulations performed per path.

Proof. As X;’s are i.i.d. random variables frof(X) andE{IT-(T;,X)} = Loss !, the variance of

TL-MC estimator can be written as
L 1 N TL
VAR{Losq|"} = W'ZVAR{I (Te, Xi)}
1=

= ,\Tz_iE{(ITL(Tc,Xi) —~Loss H)?} (4.16)

N
- > (BT (TeX))%} ~ (LosS™y?)

Substituting the fact thdt “(T,, X) is either 1 or 0 and s T"(T¢, X))2 = I TH(T¢, X)

VAR{Losg|'} = % i(Losg " —(LossH)?)

1
=V (Loss“(1-Loss ")) (4.17)
_ Losst.Yield™
N N
O

Theorem 4.4.4.The variance of the IS estimator i4.) is equal to

LosS'.(Los$PME — Losst)
N

VARs(N) = VAR{Los$}} = (4.18)
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Proof. As X;’s are i.i.d. random variables froff{X) the variance of IS estimator can be written as

DM,e
VAR{Los$S) — ("05'54 ZVAR{IT'—(TC,X.)}
LOSéDDME 2 N (419)
ZLE{ (ITH(Te, %) — E{1TH(Te, ) 1)}
As X's are drawn fromf,
E{I™(Te,X)} = / ITH(Te, X) F(X)dX (4.20)
©
substitutingf (X) in (4.4) and using the fact that i® regionl PPM(T.¢, X) is always 1,
1
E{I™(Te.X)} = Coggom ,!(TeX)F(X)X »
_ Losst (4.21)
~ Los$PMe
Substituting this to4.19), we get
2
S (LOS§DM’£)2 N TL \\27 LOS§-L
VAR{Los§{} = — i; E{(IT(Te,%))?} CosDie (4.22)
As indicator variable is either 1 or &{(1T-(T¢,X))?} = E{ITY(T,X)} = U&%ﬁjz,
s, (Los$PM&2 2 7 losdt  (Lossh)?
VAR{Losg(} = N2 Los$DMe — (Los$DMe)2
_ (LossPME)2 N (Loss MLos$PME — (Loss H)?) (4.23)
N2 (LOSfDM~£)2
_ LosSh.(Los$PMe —Lossh)
B N
]

The theoremd.4.3and4.4.4prove that for the same number of sample}, ¢he degree of the
variance reduction we get by using the proposed IS estimatdrihdan be written as

VAR (N) Yield™
VARs(N)  Los$#PMe [ osgt

(4.24)

95% Confidence Errors of TL-MC and IS estimators

The error of an estimator is the deviance of the estimator’s result from the actual loss for a general
estimator. The central limit theorem suggests that for sufficiently lakgeboth TL-MC estimator
in (4.2) and IS estimator in4.5) have loss estimates with hormal distribution. Using this fact, the

errors of the standard TL-MC an& estimators are derived and the results are compared below.
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Theorem 4.4.5.The error of the standard TL-MC estimator #h.2) obtained withN samples, where

N is sufficiently large, is

LVi L
Errorri(N) =24/ LossTl.\\I(leId =2/VARrL(N) (4.25)

with more than 95% confidence.

L L
Proof. According to the central limit theorem, whahis sufficiently IargeLosi—wSST has a normal

VAR (N)
distribution withN(0, 1). Hence

P(Losd" ~1.96/ VAR (N) < Losg" < Losd "+ 1.96\VAR((N)) =095 (4.26)
which means thdtosg- is in the intervaI{LossT'- —1.96,/VARr(N), LosS - +1.96,/VAR; L(N)}

with probability 0.95. Therefore, the error of the TL-MC estimator with more than 95% confidence

can be written as

Errorr (N) = 24/VARr(N)

4.27
LosSL.Yield™- (4.27)
=2 \/ N

O

Theorem 4.4.6.The error of the S estimator in'4.3) or (4.5) obtained withN samples, wherhl is

sufficiently large, is given by

L DMe _ L
Err0r|S(N):2\/ Loss (L°S§N f-LosSh) _, NARS(N) (4.28)

with more than 95% confidence.

S L
Proof. According to Central Limit Theorem, wheM is sufficiently Iarge% has a normal
S

distribution withN(0, 1). Hence

P (Losd "~ 1.96y/VARs(N) < Los$§ < Losd - +1.96,/VARs(N) ) =095 (4.29)
which means thatoss is in the interval[Loss'“- —1.96,/VARs(N), LosS - +1.96, /VARS(N)}

with probability 0.95. Therefore, the error of the IS estimator with more than 95% confidence can
be written as
Erroris(N) = 2,/VARs(N)

B 2\/Los§L(Los§D'\"7s —Losd\L)
B N

(4.30)

O
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Discussion

In the derivation of théS estimator error abové,os$®M¢ was assumed to be a known deterministic
quantity. However|.os$PM¢ is estimated using the estimator #.8), and in fact, it is a random
gquantity with a nonzero variance that decreases proportionally to the number of s&nydes!
in (4.8). In order for the error derivation for thks estimator in4.5) to be valid, the estimation
of Los$®M& must be performed by using a large enough number of sampldsgnsp that it has
negligible variance. This would validate its treatment as a deterministic quantity in the derivation
of the error equation for the IS estimator. The use of a large number of sampkes)iis (easily
affordable, because no TL simulations are performed, only simple evaluations of the cheap delay
models are needed. The results we present later show that the theoretical error expressions derived
here are in excellent agreement with experimental data.

The error equations4(25 and @.28 that have been derived with Theoréhd.5and Theo-
rem4.4.6for the standard TL-MC and IS Monte Carlo estimators can be used to compare them. If
the same number of sampllisis used for both methods (meaning an equal number of TL simula-

tions), then the ratio of the errors of the estimators is given by

- ErrorIS(N) - (LostMﬁfLossT'-)

ErrorRatio(N) (4.31)

Alternatively, suppose a bound on the allowable estimation error is given. The ratio of the number
of samples (TL circuit simulations) required by the two approaches to achieve this same error bound
is given by

Nt YieIdTL

Speedup = Nis  Los$DMe _osdt

which is obtained by solvingrrort (Nr.) = Erroris(N;s) for NN—TSL which we callSpeedup, since

(4.32)

the number of samples used in the estimators determines the number of TL simulations that need to
be performed on the statistically critical paths of the circuit. Based@¥)and @.32) above, we

note here thaBpeedup can alternatively be computed with

VA N
Speedup = VNI:FSL((N)) (4.33)

as the ratio of the variances for the standard TL-MC and IS estimators with the same number of
sampleN = Ny = Ng, i.e., the same number of TL simulations.
Finally, we address a question that may arise in the mind of an attentive reaBpedflup in

(4.32) is large, one might conclude that TL simulations are not needetl@s&®"-¢ can simply be
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used as an accurate loss estimate. This conclusion would be based on the observatims P4t

has to be very close ooss & if one can attain a largBpeedup in (4.32). However, this conclusion

is not correctLos$PME is computed usingd.£), whereTE = T, — € with £ as the margin parameter.

The margin parameter is determined by an adaptive algorithm which performs TL simulations in its
search for the correat value. If Los$PM is not computed based on tlevalue found by the
CompLossMC-IS algorithm described in Sect#f, i.e. € is assumed to be zero, then the resultant
Los$’™ will not be close td_oss -. Therefore, attaining a larggpeedup does not mean that the
PDM model is by itself accurate enough for loss estimation. The PDM model needs to be in some
sense “calibrated” or corrected with the TL simulations run at the critical samples in the parameter

space selected using importance sampling.
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Chapter 5

EXPERIMENTAL RESULTS: ISCAS’85 BENCHMARK

5.1 Experimental Setup

We first describe our experimental setup in order to help interpret our results better:

We present results on the ISCAS’85 benchmark suié# in this paper. We use the 0.43
standard cell library provided by Graham Petl8¢][for the transistor-level implementations of the
gates needed in order construct the benchmark circuits. We have added some missing 5-,8- and
9-input gates to this library, as they are needed for some of the circuits in the ISCAS’85 benchmark
suite. The layout information for the circuits, i.e., relative locations of the gates on the layout
for a particular benchmark circuit (needed for the intra-die variation model that captures spatial
correlations), are extracted from the def file provided on the VLSI CAD group web pages at Texas
A&M University [83].

Two random transistor parameters, namely the transistor gate lemgith the threshold voltage
V4, are considered. Both inter and intra-die variations for these parameters are taken into account
and a statistical model as described in Sec8diis constructed. In this model, half of the variation
is allocated to inter-die variations and the other half to intra-die variat@jne/th a total3c /p ratio
of 15% for both of the random parametdrsandV; [84]. In the quad-tree modeP] that captures
spatial correlations, we use four grid levels (layers) as shown in FeulreWe allocate half of
the variation to the top level that covers the whole area of the circuit with one grid rectangle in
order to capture perfectly correlated inter-die variations. The other three levels in the model capture
the spatially correlated intra-die variations and are allocated one sixth of the total variation each.
These allocations are done by appropriately choosing the variances of the grid random variables
in the quad-tree model. As described in Secof) we use 85 random variables in the quad-tree
model per parameter. With two random transistor paramdteasdV;, the random variable vector
X described at the end of Secti8rl has a dimension of 170 in all of our experiments.

For each of the circuits in the ISCAS’'85 benchmark suite, we determine a set of statistically

critical paths using the method described in Sec8dand Sectior8.4. We experiment with two
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timing constraints for each circuil jow and Tehigh that result in roughly 10% and 5% loss, re-
spectively. When we use our improved 1S-based estimator for timing yield, the required margin
parametek that was introduced in Secti@h?2 is computed automatically using the algorithm de-
scribed in Sectiod.3 It is important to note that, as it computshis algorithm carries out all TL
circuit simulations required for computing the IS estimator.

With the results that we present in this section, we compare the accuracy and the efficiency
of our improved Importance Sampling (IS) estimator4cg) against the standard Transistor Level
Monte Carlo (TL-MC) estimator ir4.2). In doing so, we empirically compute the error (variance)
achieved for both of the loss estimators. In order to measure the error of an estimator, we perform
M (to be quantified precisely) independent repetitions of the same experiment (evaluation of the
estimator). In each independent run, we compute the loss estimates with the IS estimator by using
R (to be quantified precisely) independently drawn samples from the BRI in the parameter
space.In other wordsR is equal to theNSshown in CompLossMC-IS of Sectigh3 TheseM
independent runs constitute the samples of the loss estimator, and the variance of the loss estimator
is computed over thesl samples. For the IS estimator, most of fResamples are discarded
as explained in Sectio#.2 and Sectiord.2 based on the evaluation of the PDM equations, and a
reduced numbeiN;s on the average) of TL simulations are performed. All of thdggsimulations
are performed as part of the iterative algorithm for compuginigp other wordsN;s includes all of
the TL simulations required to compute@ndLossy. In evaluating the standard TL-MC estimator,
we chooséNr| = Njs samples randomly among tRessamples in every set. For the standard TL-MC
estimator, the results of TL circuit simulations performed at every one dfithesample points are
used.

The Los$PM# value that is needed for computing the IS estimato#i&)(is computed using
the PDM based estimator id.€) using all of theK = M x R sample points generated during all of
theM runs.

TheSpeedup that we report for the IS estimator over the standard TL-MC estimator represents
the ratio of the number of TL circuit simulations required by the TL-MC and IS estimators to achieve
the same error, as given b¥%.82). Alternatively, Speedup is equal to the amount of variance
reduction, i.e. the ratio of the variances for the loss estimates obtained by the two estimators with

the same number of samples (TL simulations), as givei @82
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5.2 IS Estimator Results

Experiment A: Three statistically critical paths

In this experiment, for each benchmark circuit we choose three most statistically critical paths which
are identified using the scheme described in Se@i@mand Sectior3.4. We then perform the
following:

We constructM sample sets, each wifR samples drawn from the PDHX) as explained in
Section3.1, with a total ofK = M x R samples in the random parameter space. In this experiment,
we have used! = 250andR = 200for both T jow andT¢ high, for a total ofK = 50,000 samples
in each case. For each set, we evaluatd $hestimator. ThdS estimator eliminates most of the
samples in the set without performing TL simulations, as explained in Chdpienss estimates
obtained with thd S estimator and the number of actual TL simulations run per path and for each
set, i.e.N/s for seti, are recorded. All of the sets have the same number of random samples in the
parameter spac®. Nis is equal to the average of tmés’s (Nis= mean{NliS)) and it corresponds
to the number of non-discarded samples at which TL simulations are For. each experiment,
up toSMextra TL simulations that are used in order to heuristically determine a safe vaugef
included inN/g's. This allows a fair comparison with standard TL-MC. The variance of the loss
estimates over th®l sets is computed asARs. The standard TL-MC estimator is evaluated for
every set, usindg\Njs number of samples chosen randomly. Thus, loss with the TL-MC estimator
is evaluated using the same number of TL simulations as the IS estimatoNri.es Nis. The
variance of the loss values computed with the TL-MC estimator is compul¢ARs .

With the construction above, we hadg = Nis = N+ SM whereN is the average number of
samples used for TL simulations excludi@lyladditional TL simulations used for margin detection.
Hence, we substitutdARs andVARr_ in (4.39) in order to quantify thé&Speedup of the IS esti-

mator over the standard TL-MC estimat@ur speed-up computation is reminded below/By)

VAR
VARs

TheSpeedup results, computed as described aboveTigs, andTe high, for the ISCAS’85 bench-

Speedup = with Njs = Ny (5.1

mark suite are presented in Takie and5.2. In these tables, the mean valueslfossS andLoss -
using the same number of TL simulatiomé( = Njs = N + SM) are also shown. Furthermore, we

also report the loss values (labeledLas9 computed using TL simulations at all 50,000 samples,
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Table 5.1:Speedup foil¢ jow, M = 250sets R = 200samples eactgM= 4

Bench.| N+SM | Loss mean mean Errort. (%) | Erroris (%) | Speedup
Losst | Losg®
c432 29 0.1129| 0.1153 | 0.1118 105.5 114 86
c499 31 0.1239| 0.1234 | 0.1237 95.0 6.6 205
c880 29 0.1112| 0.1135 | 0.1107 105.0 11.0 91
c1355 32 0.1297| 0.1286 | 0.1296 93.3 6.9 181
€1908 30 0.1201| 0.1133 | 0.1193 102.3 9.2 124
€2670 30 0.1195| 0.1213 | 0.1190 96.6 7.0 188
c3540 29 0.1135| 0.1105 | 0.1130 104.8 8.5 152
c5315 28 0.1137| 0.1201 | 0.1135 106.2 7.7 191
c7552 26 0.1001| 0.1117 | 0.0995 117.3 8.7 181

Table 5.2:Speedup foflc high, M = 250sets R = 200samples eaclgM= 2

Bench.| N+-SM | Loss mean mean Errorr. (%) | Erroris (%) | Speedup
Losst | Los$®
c432 16 0.0604| 0.0580 | 0.0598 197.1 17.9 121
c499 12 0.0416| 0.0393 | 0.0412 270.7 19.3 196
€880 14 0.0523| 0.0560 | 0.0516 225.7 17.4 169
c1355 16 0.0637| 0.0615 | 0.0636 189.7 12.5 229
c1908 17 0.0680| 0.0671 | 0.0678 178.6 12.5 205
€2670 19 0.0784| 0.0764 | 0.0779 156.1 8.8 314
c3540 19 0.0748| 0.0718 | 0.0744 158.8 10.8 216
c5315 19 0.0776| 0.0829 | 0.0771 157.9 10.2 242
c7552 15 0.0578| 0.0621 | 0.0574 202.0 13.0 241
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which can be regarded as the real loss value. The mean value bbs$g@ estimator was on the
average within 0.57% of the loss value computed using TL simulations at all 50,000 samples. The
mean value of théoss - estimator was on the average within 4.15% of the loss value computed
using TL simulations at all 50,000 samples.
As discussed in Sectidh4, in Tables5.1and5.2, Errorr andError s are computed by
2VVARrL (5.2)

Errorr, =100x —————
i Loss

2/ VA
Error;s = 100x 2VVARs (5.3)
Loss

andSpeedup represents the ratio of the number of TL simulations required by the standard TL-MC
estimator to the number of TL simulations needed by our proposed IS estimator in order to estimate
the loss of the circuit with the same error (accuracy). Alternatively, if the same number of TL
simulations are used for both of the estimators, the estimation variance for loss BSitidaelup

times less for our IS estimator. As seen in TalBet and5.2, our accelerated yield estimator
achieves on the average@o orders of magnitud€l85 on the averagegpeedup over standard

Transistor Level Monte Carlo.

Contrasting Absolute Errors of Estimators

In the method we propose, while computing the loss estimaissS, approximate delay computed
using the PDM method (with amargin) is used by IS in order to achieve a low variance estimator.
The question naturally arises as to how good an estiniatsg’ ™™ is, and whether it itself could be

used for yield estimation. We contrast the absolute errors in the following four estimators:

- Losgt: The Monte Carlo estimator.
- LosdS: The Monte Carlo estimator with importance sampling.
- Los$PM: The PDM estimator with no adjustment

- Los$’PMe: The PDM estimator with the margin (i.e., withT, — € as the timing constraint)

We computed the loss estimated by each approach. The restilsJfpandTc high are presented

in Tables5.3 and5.4 respectively. We have taken thess - value computed from 50,000 samples
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Table 5.3:Loss forTc 0w, four different estimators

Benchmark | Loss | LossS | Los§PME | | os&PM

c432 0.1129| 0.1129| 0.1510 0.0937

c499 0.1239| 0.1239| 0.1304 | 0.0804
c880 0.1112| 0.1112| 0.1280 0.0901
c1355 0.1297| 0.1297| 0.1402 0.0982

€1908 0.1201| 0.1201| 0.1327 0.1154
c2670 0.1195| 0.1195| 0.1272 0.1060
c3540 0.1135| 0.1135| 0.1232 0.0979

c5315 0.1137| 0.1137| 0.1232 0.1055
c7552 0.1001| 0.1001| 0.1112 0.0965

as the reference in each case. These reference loss values are lal@ssim3ables5.2 and5.4
and correspond to the columns with the same label in T&blkand5.2. TheLossS, Los$™™ and
Los$PM£ values were also obtained from a single run on the same 50,000 s&mptesompute
Los$’PME we used the value found during theossS computation. As seen in the tablésssS is
bias-free in all cases. This is to be expected, sirassS is an unbiased estimator in theory — a fact
experimentally demonstrated further in Secttod

The value of the uncorrected PDM estimatas$’®V is too far fromLoss - to be acceptable
for most benchmarks, resulting in errors of 44.3% at most and 16.1% on the average. It is important
to note that, if one had carried out block-level Monte Carlo (BL-¥€gtistical timing analysis
using our polynomial gate delay models, this is the accuracy one would have obtained. While delay
values as computed by the PDM model only correlate well with the actual values, in terms of the
absolute value of delay, they are far off. Thus, while the PDM model may serve as a rough guide for
timing and yield optimization, it is not accurate enough for the numerical prediction of yield. This

is important as it justifies the use of our method as a final pass of yield estimation.

1For IS estimator, the algorithm CompLossMC-IS is giweB= 50,000 where allNSsamples are not used for TL
simulation as explained in Sectidn3

2BL-MC was reviewed in Sectid®.4.2and explained in detail in Secti@? The difference from TL-MC is that the
value of the indicator variable is decided by block level DSTA instead of TL simulations.
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Table 5.4:Loss forTg high, four different estimators

Benchmark | Loss | Losd® | Los$PME | | os$’OM

c432 0.0604| 0.0604| 0.0802 0.0501
c499 0.0416| 0.0416| 0.0444 | 0.0231
c880 0.0523| 0.0523| 0.0634 | 0.0409

c1355 0.0637| 0.0637| 0.0701 0.0454
€1908 0.0680| 0.0680| 0.0756 0.0659
€2670 0.0784| 0.0784| 0.0843 0.0690

c3540 0.0748| 0.0748| 0.0822 0.0632
c5315 0.0776| 0.0776| 0.0834 | 0.0710
Cc7552 0.0578| 0.0578| 0.0629 0.0558

Thee-corrected_os$PM¢ s a better estimator for loss. The fact thas$PM# is in many cases
close toLoss - might appear to suggest that yield prediction using PDM withetberrection is a
sufficiently accurate and cheap method. However, in order to computedteection factor, all
the TL simulations required for computingssS have to be carried out. Furthermot®s$®M¢ is
actually not close enough to the actual loss value to be an accurate estimator in its own right. Thus,

it makes more sense to use more accurate and provably unbiased estiosafor

Los$PMe Estimation

The accuracy ofos$’PM€ used in IS estimation is important in terms of the regularity requirement
explained in Sectiod.2.

As explained in Sectio®.2, Los$PM¢ is estimated using4(§) and a huge number of sam-
ples, i.e. a bigk. In the experiment above 50,000 sampl&s=f 50,000) are used to estimate
Los$PME and then thid.osggas is used as.os$PME for computingLos$s as shown by algorithm
CompLossMC-IS in Sectiod.2 Figure5.1shows the estimatieosg~" versusK plot for a sam-
ple benchmark circuit (c1908), whekeis iterated from 1 to 500,000. It can be verified from the

figure thatk = 50,000is a reasonable estimate, which can be used instead of acsg®PM¢.
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Loss EDM’S vs. K for c1908
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Figure 5.1: Convergence bbss"" in (4.8) w.r.t. number of samples (K) (belongs to c1908)

VARs Convergence

The accuracy of the variance of IS estimator use@peedup computation is important as it
determines the performance of our IS estimator.

In the experiments abovl| = 250 sets are used to compute the variance of the IS estimator, i.e.
VARs. ThenVARs value is used to compute ti@peedup acquired by IS method over standard
TL-MC method. Figure 5.2 shows the reason wiy= 250 is picked. Each plot in this figure
corresponds to a different benchmark circuit and shows the computed variance of IS estimator over
M sets whileM is changed from 1 to 250. In other words, the x-axis shows the number of sets used
for variance computation of IS estimator and y-axis shows the variance ¥AR4). Although for
some benchmark circuits like c4%RARs converges when 50 or more sets are used, for the general
case, the variance of the IS estimator does not converge until more than 200 sets are used. Therefore,
to have the accuratspeedup results, we have used 250 sets and corresponding 250 independent
IS estimations and then the variance of the IS estimator is computed over these independent 250 IS

estimations.
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Experiment B: Ten statistically critical paths

In this experiment, we randomly choose one of the ISCAS’85 benchmark circuits, and repeat the
same experiment described aboVigdy), but with ten most statistically critical patfsin this case,

we obtain e&Speedup of 147, which is almost the same as the one obtained for the same benchmark
circuit with only three critical paths. The following values were obtained in this experirieat31,

Loss= 0.1244 meanLoss ' = 0.1252 meanlLos$® = 0.1238 Errorr. = 99.32 %, Error;s =

8.2 %. These results confirm that tispeedup achieved by our IS estimator is not dependent on
the number of statistically critical paths considered for a circuit. The efficiency of the IS estimator
does not degrade if a large number of critical paths are included in yield estimation, because the
maximum of the path delays 1212 for the overall circuit delay is computed exactly, without
employing approximations. This is a key advantage of our technique. If an approximate maximum
operation is employed in computing the circuit delay from path delays, the accuracy will degrade if

a large number of paths are considered.

5.3 Performance of Margin Detection Algorithm

Recall that thee margin involved in the computation &bss is arrived at using a heuristic in the
algorithm CompLossMC-IS. In order to validate the computediues, we performed the following

checks:

Confirming thatLossy is unbiased

Results presented in Figuke4 in Section5.4 below, and Tables.3 and5.4 indicate that when a
large number of sampld$Sis usedj_osﬁ\lS is an unbiased estimator. Of more practical importance
is the fact that whehoss is computed with abo80 samples, the mean bbss is on the average

within 0.45% of thelossvalue computed from 50,000 samies

Exploring different values af

Recall thakabs(Tc) = MaX such thatgt(x)=T.(Te — A6V (X)) is the smallest value afthat guaran-

tees the margin condition. As the closest practical approximation to thesigigale computedps

SWe were not able to run this experiment for all of the circuits in the benchmark suite due to the excessive computa-
tional resources required by the standard TL-MC technique against which we compare our proposed estimator.

4This is derived from Tabl&.1.
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using the equation above and lettiigange over the 50,000 sample points we had for each bench-
mark. In order to investigate the sensitivity of the yield estimator to the safety margin, we carried
out the following experiment. We forced our importance sampling algorithm to use a fixed value of
€. We varied this value of in the rangeD, 0.1 €5ps, 0.2 €4pg, ---, 0.9 €ans, €ans We then computed the
percentage bias error in the mean of the IS estimator for each of these vadyaxhfding the one

our heuristic computes. The results are shown in TaleThe last column presents the results for
thee our heuristic finds. The first observation is that, for each benchmark, there is a valbeloiv

which the bias in the loss estimator is too high. This valueisfdifferent for each benchmark, but

is in the 0.5-0.&,psrange. Above this value @f the bias is not very sensitive to the particular value

of €. The second key observation is that the heuristically faunalue for each benchmark always
results in an acceptable bias (error) in the loss computed. This bias is less than 1% of the absolute
loss. Given that larger approximations are probably involved in parameter variation modeling, etc.,

a bias error of 1% of the loss is certainly negligible.

Validating the value of SM used

For each benchmark, we explored valueSbffrom 1 toNS We found that even very small values
of SM result in an acceptable error in the loss computation. Larger values of SM result in values
of € closer togaps but this results in only very small differences in the actual bias. In order to make
sure that the value we choose provides a good compromise between accuracy and high speedup,
and to keep the computational cost still low, we pick SM to be 20% of the number of points that we
expect the IS approach to perform TL simulations on. WRen 200, this amounts t&M= 4 for
the examples in whicfii jow (@pproximate loss is 10%) is considered an&hkd= 2 in which T hign
(approximate loss is 5%) is considered. With this choice, the bias error in each benchmark is within
approximately 1% of the absolute loss.

WhenR = 200 it is difficult to demonstrate the effect &M choice because even very small
SMvalues surely result in very small bias errors. TédhEdemonstrates the effect 8Mchoice on
the resultant percentage bias error of the IS estimator. For this Ribi&00samples antl = 100
sets are preferred because a biggerlue is better for demonstrating the effect3#l choice. In
this table, theSMvalue is iterated starting from its smallest value, 1 and the resultant percentage
bias error of the IS estimator for each benchmark and each diffSMralue is recorded, which is

computed same as the percentage bias errors in BabléVe useT; 0w as our timing constraint,
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Table 5.6:The SMvalue used in CompLossMC-IS and the corresponding percentage bias error

SM=1 | SM=4 | SM=7 | SM=10 | SM=13 | SM=16 | SM=19 | SM=100

c432 | 263 | 0.62 | 0.44 0.36 0.42 0.42 0.42 0.42

c499 | 053 | 0.39 | 042 0.42 0.42 0.42 0.42 0.42

c880 | 1.60 | 0.11 | 0.24 0.21 0.25 0.25 0.25 0.25

c1355| 0.30 | 0.16 | 0.18 0.18 0.18 0.18 0.18 0.18

c1908| 1.26 | 0.77 | 0.83 0.85 0.85 0.85 0.85 0.85

c2670| 0.59 | 0.25 | 0.29 0.29 0.29 0.29 0.29 0.29

c3540| 0.75 | 0.36 | 0.39 0.39 0.39 0.39 0.39 0.39

c5315| 055 | 0.38 | 043 0.43 0.43 0.43 0.43 0.43

c7552| 0.80 | 0.59 | 0.59 0.59 0.59 0.59 0.59 0.59

therefore the expected loss is 10%. As explained above, we always & adue equal to the
20% of the number of sample points for which IS estimator performs TL simulations, which results
in SM=500x 10%x 20%= 10. According to Tablé&k.€, the bias errors corresponding3M= 10

is same as the bias errors when a very 8 value like 100 is used. The table is stopped at 100
but the bias errors do not change even when bighralues are used. This is expected because
after some values @M the e margin computed by CompLossMC-IS does not change for any of
the M sets. Another important consequence deduced from Bbableould be that the bias error is

not intolerable even when very sm&Mvalues are used as argued above. For instance, instead of
SM= 10, usingSM= 4 in CompLossMC-IS, results in very similar bias errors for all benchmark

circuits.

5.4 Experimental Convergence Analysis

The purpose of this experiment is to empirically validate the theoretical convergence analysis con-
ducted and the error estimation equations derived in Sedtibior the TL-MC and IS estimators.

The results we present in Figu$e2 experimentally confirm the theoretical error/convergence
equations,4.25) for the TL-MC and 4.28) for the IS estimators, that were derived in Secdof
In this figure, a plot of loss error versus the number of TL circuit simulations is shown for both

estimators. The smooth curves in this plot were obtained using the theoretical error formulas, i.e.
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(4.25 and @4.28. The two other curves were generated by computing loss estimate errors over
250 independent runs (M=250), each of which explore a sample seRgzember of samples

drawn from the PDF (X)) ranging from 1 to 200. As explained before, TL circuit simulations are
performed at all of the sample points for the standard TL-MC estimator, but a reduced number of
simulations are performed for the IS estimator since most of the samples are discarded based on
the evaluation of the PDM equations. We observe the excellent match between the theoretical and
experimental error curves in this plot, validating the,/N dependency of error on the number of

TL simulations for both of the estimators. The significant reduction in error that the IS estimator
provides is also obvious in this graph. The results in FidgiBavere generated with circuit3540

in the ISCAS’85 benchmark suite (with similar results for the other circuits). In this case, the
Los$PME value that is needed for computing the IS estimato#if)(is computed using the PDM

based estimator ii7(€) using all of the 50,000 sample points generated during all of the 250 runs. In
empirically computing the variances of both of the estimators to generate the curves inF:Hjure

we use the loss value computed based on the standard TL-MC estimator with TL simulations at
all of the 50,000 sample points in the parameter space. Since the number of samples used here is
very large, we treat this loss value as the actual loss as if it was given to us by an dkéele.

the emprical variances of TL-MG/@ARr) and IS ¥ ARg) estimators are computed, the errors are
computed a&\/VARr_ and2,/VARs respectively.

As discussed in Sectioh4, both the standard TL-MC anl& estimators are unbiased and their
means converge to the actual loss if a large number of samples are used. We empirically confirm
this with the plot in Figurés.4. The curves in this plot were generated using the same experiment
described above that was used to generate the error curves inBigureorder to generate the plot
in Figure5.4, we simply compute the means of the loss estimates obtained by the two estimators
over the 250 independent runs with varying number of samples, whereas variances over these 250
runs were used for Figu®3 We can clearly observe in Figued that the IS estimator converges

to the actual loss value much earlier, with only a few number of TL simulations.
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5.5 Discussion

In Chaptei5the standard TL-MC method is compared with the proposed IS method for estimating
timing yield. By Table5.1 and5.2, it is shown that IS method requires on the average 185 times
less (155 times fol¢ 0w and 215 times follc hign) TL simulations than standard TL-MC in order to
compute the loss with the same accuracy with standard TL-MC method.

Up to now, in computing theSpeedup of IS method, the additional cost for computing
LosézDM’8 by using @.8) was ignored as no costly TL simulations are required in its computation.
Although the computation dfosg”* is implemented oMATLABand we use 50,000 samples
to compute it K = 50,000, the cost to computbos{&&',’g is much less than the cost required by
TL simulations. Each column of Tabl7 shows respectively from left to right the run times in
seconds that is required for TL-MC, for TL simulations used for IS and for PDM evaluations used
for Los 5333 computation. The last column shows the nBpeedup results without ignoring
Los§5%8 computation cost. This table is fdg 0w, R=200andM = 250. For fair comparison,
both TL-MC and IS estimators compared in the table result in loss estimates with the same accuracy
(error). The averag8peedup has dropped only from 155 to 120. If the polynomial evaluations

used forLos 5333 were performed in C program, the decrease inSpeedup would be negligi-

ble. This is why we had ignored additional cost of IS method fuss; o5, computation.

Table 5.7:Run times for TL-MC and IS estimators considerlrrgsgg(';’(')’g evaluation cost

Benchmarks | t(TL-MC) | t(IS) for TL sim. | t(IS) for PDM eval. | Speedup
c432 74468 870 158 72
c499 76236 372 102 161
c880 47524 522 221 64
c1355 115752 640 222 134
€1908 149048 1200 342 97
c2670 271386 1440 275 158
c3540 176002 1160 371 115
c5315 288930 1512 427 149
c7552 164413 910 369 129
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An important result that can be deduced from Ta@l&sand5.4 is that the block level Monte
Carlo (BL-MC) loss estimation is not so accurate. It is referred in Se&iérf.that BL-MC esti-
mators are used as golden reference in order to test the accuracy of statistical static timing analysis
(SSTA) methods. However, the results in these two tables show that the BL-MC method based on
our third order polynomial gate delay model (PDM) results in errors of 44.3% at most and 16%
at the average although all of the 50,000 sample points are used in loss estimation. This shows
the necessity of transistor level simulation based statistical timing analysis for the final verification
stage.

TheSpeedup of IS method increases while the probability of the event decreases. For instance,
in our experiments th8peedup has increased from 155 to 215 while the approximate loss has de-
creased from 10% to 5%. This can also be seen from the theoretical error expression of IS estimator.
Therefore, if our IS loss estimation method was applied for cases with very small loss probabilities
like SRAM failures, the results would be much better. There are attempts to use different IS methods
in SRAM failure analysis in the literatur@5).

The most important and novel parts of our IS loss estimation methodology are the choice of a
good biasing distribution4(4), estimation ofLos$®™¢ (4.8) and the adaptive detection of te
margin (CompLossMC-IS). IS method is a big step for availing TL timing analysis in statistical
case and for the final verification stage before manufacturing. On the other hand, it is still slow to

be used in design stages for optimizing the design.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Summary

Designing fast circuits consuming less power and area is the main aim of digital IC (chip) designers.
As a result, timing analysis of digital circuits is essential to estimate the circuit's speed performance
and optimize the circuit accordingly until the desired performance is reached. When the stochastic
nature of manufacturing and the resulting parameter variations are ignored, the strategy of Electronic
Design Automation (EDA) community is as follows: They first perform deterministic static timing
analysis (DSTA) to detect the critical paths in the circuit, then they perform transistor level timing
simulation on these critical paths to detect the speed performance more accurately.

However, the statistical variations of manufacturing process have increased to a non-negligible
level due to decreasing transistor sizes to have faster circuits covering less area. This necessitates
statistical timing analysis which considers the variations and analyzes the circuits accordingly. As a
result of the parameter variations, each manufactured chip of the same circuit has different parameter
values and thus a different speed performance. The manufactured chips, which pass the speed tests
are packaged for marketing and others that fail the tests are discarded. One of the main aims of
statistical timing analysis is to estimate the timing yield, which is simply the fraction of chips that
pass the speed tests.

Almost all proposed statistical timing analysis methods for digital circuits are block (gate) level
methods and most of them are generalizations of DSTA to the statistical case. However block level
statistical timing analysis lacks accuracy as it inherently contains many approximations like linearity
and normality.

In this thesis, we try to fill the gap for accurate statistical timing analysis based on transistor
level circuit simulations. For this purpose, we first propose a hew comprehensive tool that combines
different techniques in the literature for modeling variations and extracting the statistically critical
paths of the circuit. But our main novel contribution is timing yield estimation using importance

sampling in a novel manner in order to speed up transistor level Monte Carlo statistical timing
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analysis. We tested our method on ISCAS’85 circuits and the results show that our IS based yield

estimation method improves the speed performance two orders of magnitude on the average.

Future Work

In order to improve the yield estimation methodology proposed in this thesis, other sources of vari-
ation like supply voltage, temperature, gate oxide thickness can be taken into consideration without
changing any part of the methodology except for building new PDM model considering all of these
parameters. In such cases, the PDM model generation cost must be decreased by the help of latin
hypercube sampling, which avails the model generation by using same number of samples although
the number of parameters are increased. The interconnect (wiring connection between the gates)
width and height are also well known parameters that have non-negligible variations. The effect of
interconnect could be inserted by modeling interconnect delays besides the PDM gate delay model.

Our IS estimator works with any approximate gate or path delay model inside. Therefore, more
advanced gate delay models can increasesgieedup further. For instance, especially for input
slope and for fanout, second degree polynomials can be fitted instead of first degree preferred for
this thesis.

Different margin detection heuristics than CompLossMC-IS in Se@incan be developed to
improve the performance of IS estimation. But we observed that if these methods are conservative
to satisfy the safety requirement given in Secibg, then the resultant efficiency of IS estimator
decreases and otherwise if they are too loose, then the resultant IS estimator will loose accuracy,
where accuracy is the main goal of IS estimation. Our heuristic gives a good compromise in between
these two extremity.

There are other variance reduction techniques than IS, like control variates, stratified sampling,
latin hypercube sampling and etc., which can be applied in order to increase speed without losing
accuracy. Even some of them, for instance control variates and importance sampling, can be applied

in a combined manner in order to have more efficiency and accuracy.
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Appendix A

EXTRACTION OF TOP LONGEST PATHS

For applying the alternative method explained in Secibg a new gate feature called
stepfatherds introduced. For a gate delay fatherfeature shows the ancestor of gate r, which
causes gate r to have its output arrival time, i.e. it shows the ancestor with maximum output arrival
time. stepfatherdeature of gate r should show the ancestors which have output arrival times in
a close proximity of the output arrival time aofelay fatherof gate r. After running our default
DSTA algorithm shown by Algl in order to modify timing DAGC(V, E) by inserting the features
gatedelay arrivaltime, delay father the modified timing DAGC‘,(V,E) is the input argument of
Alg. 3 below. Alg.l3 inserts the nevstep fatherdeature to the gates in the timing DAG(V,E)
structure. It has an input argumeitoximityCriteriawhich simply determines how many of the
ancestors will be set as step fathdPsoximityCriteriais a percentage that shows what percentage
of the delay ofdelay fathershould be at a gate in order for that gate to tstegp fathersit should
be noted that theelay fatherof a gate is also a member sife p fatherdeature of the same gate.
After Alg. 1is run, we obtain a new feature callstep fatherswhich consists of ancestor gates,
which have output arrival times in a proximity of the output arrival time ofdke&ay f ather which
is the ancestor that has the maximum delay.

stepfatherdeature can be used to collect paths, which have delays in a proximity of maximum
circuit delay. For this purpose, another algorithm (Apis called with a vertex (gate) connected to a
primary output of the timing DAG and then the algorithm records each step fatherstethéathers
feature of that vertex as a different path. Then, the algorithm recursively continues to perform the
same operation for each step father of the first called vertex (&iokAlg. 4). At the end, the
algorithm collects all paths, which passes through step father®aitbList As this algorithm may
collect too many paths, the paths having smaller delays than a desired lower delay bound can be

thrown out after the algorithm finishes.
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Algorithm 3 Insert-StepFathei§(V, E), ProximityCriteria)
1. for Gatelnd= 1 to number of vertices i€ do

2. r=V(Gatelnd

3. DelayFather=r.delayfather
4.  MaxArrivalTime= DelayFatherarrivaltime
5. StepFatherCount 0

6. for Ancestorind= 1tolengthr.ancestorgdo

7. ancestor=r.ancestorgAncestorind
8. if (MaxArrivalTime—ancestomrrivaltime) /MaxArrivalTime< ProximityCriteriathen
9. StepFatherCount StepFatherCount 1

10. r.step father&Ste pFatherCount= ancestor

11. end if

12.  end for

13. end for

Algorithm 4 Collect-NearCriticalPath€urrentGate CurrentPatl)
1. AppendCurrentGateto CurrentPath

2. if CurrentGateis a primary inputhen
3. AppendCurrentPathto PathList
4. else

5. for SFcode= 1to lengthCurrentGatestepfathersdo
6. Collect-NearCriticalPath€urrentGatestep father§SFcod¢, CurrentPath

7. end for

8. end if
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