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ABSTRACT

As the Integrated Circuit (IC) technology scales down to deep sub-micron regime in terms of

sizes of transistors used inside circuits, the IC manufacturing process suffers from circuit parameter

variations, which cause uncertainties in the speed of the chips. The statistical variations of manufac-

turing process have increased to a non-negligible level, which necessitates statistical timing analysis

considering the variations. As a result of the parameter variations, each manufactured chip of the

same circuit has different parameter values and thus a different speed performance. The manufac-

tured chips, which pass the speed tests are packaged for marketing and others that fail the tests are

discarded. One of the main aims of statistical timing analysis is to estimate timing yield, which is

simply the fraction of chips that pass the speed tests. Almost all proposed statistical timing analysis

methods for digital circuits are block (gate) level methods and they are called statistical static timing

analysis (SSTA) methods, as they are direct generalizations of deterministic static timing analysis

(DSTA) to the statistical case. However, block level statistical timing analysis lacks accuracy as

it contains many approximations. In this thesis, we try to fill the gap for accurate statistical tim-

ing analysis based on transistor level circuit simulations. For this purpose, we first propose a new

comprehensive statistical timing analysis tool that combines different techniques in the literature for

modeling variations and extracting the statistically critical paths in a circuit. But our main novel

contribution is timing yield estimation using importance sampling in a novel manner in order to

speed up transistor level Monte Carlo (TL-MC) statistical timing analysis for obtaining both an ac-

curate and efficient timing yield estimation method. We test our method on ISCAS’85 circuits and

the results show that our IS based yield estimation method improves the speed performance two

orders of magnitude on the average.
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ÖZETÇE

Tümleşik devre (yonga) teknolojisi, devrelerde kullanılan transistörlerin boyutu bakımından

mikron altı rejime indikçe ẗumleşik devreüretim işlemi, yongaların hız performanslarında belir-

sizliğe sebep olan devre parametreleri değişkenliklerinden muzdarip hale gelmektedir.̈Uretim

işlemindeki istatistiksel dĕgişkenliklerin g̈oz ardı edilemez seviyelere ulaşması bu değişkenlikleri

hesaba katan istatistiksel zamanlama analizini zorunlu kılmıştır. Parametre değişkenliklerinin bir

sonucu olarak aynı devreye ait olanüretilmiş her yonga farklı parametre değerlerine ve dolayısıyla

farklı bir hız performansına sahiptir. Hız testinde başarılı olan yongalar satış için paketlenirken

başarısız olanlar atılır.İstatiksel zamanlama analizinin ana amaçlarından birisi hız testlerini geçecek

yongaların oranı olan zamanlama verimini tahmin etmektir.Sayısal devreler içinönerilmiş olan is-

tatiksel zamanlama analizlerinin neredeyse hepsi blok (mantık geçidi) düzeyinde çalışan metot-

lardır ve bunlara istatiksel statik zamanlama analizi ismi verilir, çünkü bu metotlar istatiksel ol-

mayan statik zamanlama analizinin istatiksel duruma doğrudan genellemeleridir. Ancak blok düzeyi

istatiksel zamanlama analizi birçok yaklaşım ve tahmin içermesi sebebiyle doğruluktan yoksun-

dur. Bu tezde, transistör düzeyinde devre sim̈ulasyonlarına dayalı, doğru istatistiksel zamanlama

analizi boşlŭgunu doldurmaya çalışıyoruz.Bu amaçla, ilk olarak, bir devre içindeki değişkenlikleri

modellemek ve istatistiksel olarak kritik olan yolları belirlemek için literatürdeki farklı teknikleri

birleştiren yeni ve kapsamlı bir istatistiksel zamanlama analizi aracıöneriyoruz.Ama bizim esas ori-

jinal katkımız, zamanlama verimini doğru ve hızlı bir şekilde tahmin eden bir metot elde etmek için

önemörneklemesi ÿontemini farklı bir şekilde transistör düzeyi Monte Carlo istatiksel zamanlama

analizinin hızını arttırmak için kullanmaktır. Metodumuzu ISCAS85 değerlendirme devrelerinde

test ettik ve sonuçlar bizim̈onemörneklemesi tabanlı zamanlama verimi tahmin metodumuzun, hızı

ortalama 150 kat arttırdığını g̈osterdi.
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Chapter1

INTRODUCTION

1.1 Digital Circuits

Digital circuits are based on binary logic (logic-0 and logic-1). They constitute the mainstream of

the electronic market. They are manufactured asintegrated circuits(IC) or chipson the surface of

a thin substrate of a semiconductor material (silicon). Figure 2.9 shows an example manufactured

and packaged IC that belongs to Nvidia company. Today, digital circuits are almost everywhere.

Processors, micro controllers, most of the computer hardware are examples of digital ICs. They

are used inside cars, all household appliances, cell phones, camcorders, automated production line

systems and almost in any electrical device.

Block (gate) level (BL) and Transistor Level (TL)

S

B

A

Out

(a) Gate level representation

B

A

Out

S

(b) Transistor level (TL) representation

Figure 1.1: Multiplexor circuit
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Digital circuits are composed of logic gates1, which are made up of transistors. Using the logic

gates; decoders, encoders, multiplexors, adders, arithmetic logic units (ALU), registers and control

units are designed as basic building blocks of digital ICs. Digital ICs can be analyzed either at

block (gate) level (BL) or, for a more detailed analysis, at transistor level (TL). Figure 1.1 shows a

multiplexor circuit representation both at gate level and at transistor level.

Importance of Speed and The Trends

Speeding up digital circuits is a major optimization task that facilitates the marketing and enables

very complex functions to be implemented by digital circuitry. Timing Analysis (TA) aims to esti-

mate speed performance of circuits before manufacturing even at very early design stages in order

to optimize the circuits accordingly. Therefore, TA of ICs is essential for IC designers. There is an

extreme competition to manufacture faster circuits and the designers and manufacturers work very

hard to accelerate the designs.

As a result of those efforts for the last 50 years, the number of transistors that can be placed

inexpensively on an integrated circuit has doubled approximately every two years, a trend well

predicted by and named after Intel co-founder Gordon E. Moore asMoore’s law. The trend has been

practiced for more than half a century until now. The transistors are getting smaller and smaller and

as a result the speed performance of the ICs and the functionality that can be embedded on an IC

with the same size are increasing with a similar trend. This fast improvement trend has caused the

transistor sizes scale down to 45nm ranges in 2010 from 10,000nm in 1971 (Intel 4004) and more

than half a billion transistors (Intel Core2 Quad, 2006) can be placed in one single chip whereas this

number was only 2300 in 1971 (Intel 4004). Accordingly, the speed of the processors has increased

from 108 KHz in 1971 (Intel 4004) to 3 GHz in 2003 (Intel Pentium 4).

1.2 Statistical Nature of Timing Analysis

Decreasingsizes of transistors result in manufacturing of digital ICs to become much more difficult

and prone to variations of parameters like transistor gate length, oxide thickness, doping concen-

tration, supply voltage, temperature and etc. Performance (speed) variability due to the statistical

parameter variations and environmental fluctuations has become more significant. Because of these

1Logic gates have different types like AND gate, OR gate, NAND gate, NOR gate, NOT gate (inverter) and etc. They
are also called cells and the types of logic gates that will be used in the digital IC depends on the utilized cell library.
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variations, each manufactured chip (IC) comes with different properties. Manufactured chips have

to be discarded if they cannot pass the tests including those concerning the speed. A speed test

failure occurs when a manufactured circuit has a speed less than the minimum allowable speed, i.e.

speed constraint. The fraction of manufactured chips that pass the timing (speed) tests is called

timing yieldwhereas the fraction of manufactured chips that fail is calledtiming lossas they are

thrown out. Digital IC designers give their designs to a manufacturing company and they have to

pay for each manufactured chip to the manufacturing company. Therefore, they need to estimate

the yield and optimize their design accordingly until it reaches the desired yield before manufactur-

ing. Overestimating the timing yield results in an unexpected loss after manufacturing, whereas an

underestimation of timing yield results in unnecessary design efforts and loss of time that may even

cause marketing failures.

Today, in nanometer regime, the statistical variations have increased to a non-negligible level

with a trend inversely proportional to the gate sizes. For instance, according to International Tech-

nology Roadmap for Semiconductors (ITRS) 2009 report [1], which estimates the trends in semi-

conductor manufacturing technology, threshold voltage 3σ/µ ratio, whereσ is the standard devia-

tion andµ is the mean, is expected to increase up to 50% and for now there are no manufacturing

solutions to resolve this.

As a result, there is an increasing need for comprehensive statistical timing analysis methods that

consider the statistical parameter variations between different chips called inter-die variations and

in the same chip called intra-die variations, topological and spatial correlations, random parameters

with non-normal probability density functions (PDF) and non-linearity of the parameter-speed rela-

tionships. Another issue that must be covered by statistical timing analysis methods is the extraction

of statistically critical paths, which determine the speed performance of the circuit and should be

optimized for better speeds. There are many companies like Intel, IBM, Cadence, Synopsis and

many academic institutions like Berkeley, Massachusetts Institute of Technology (MIT), University

of Minnesota, Carnegie Mellon, which try to develop a statistical timing analysis tool that can esti-

mate timing yield accurately and efficiently. There is a huge amount of research on this topic and

there are hundreds of published papers in journals and top tier conferences under the topics like

statistical timing analysis, yield estimation, design for yield.
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1.3 Contributions

In traditional VLSI design methodologies, designers choose to perform fast and approximate timing

analysis called deterministic static timing analysis (DSTA) to estimate the speed of their designs and

optimize accordingly. However, they also prefer detailed transistor level (TL) circuit simulations as

a final verification before timing sign-off because of the accuracy of TL simulations. One would

ideally like to perform a similar transistor-level, but statistical timing analysis for timing yield esti-

mation. Taiwan Semiconductor Manufacturing Company (TSMC), a leading chip manufacturer, has

already announced the insertion of transistor-level statistical timing analysis into its new reference

design flow in order to enhance timing accuracy [62].

We have developed, and describe in Chapter 3, a comprehensive statistical timing analysis

methodology. While some elements of this methodology are borrowed from previous work (such as

the quad-tree model [2] for capturing spatial correlations in modeling intra-die variations) and not

necessarily the most comprehensive implementations, our work presents a statistical timing analysis

tool that employs new gate delay models and addresses some other important open problems (such

as statistically critical path identification) and offers reasonable and practical solutions.

The main, novel contribution of the work described in Chapter 4 is in devising a unique im-

portance sampling scheme for accelerating timing yield computations based on transistor level

Monte Carlo (MC) simulations, which fills a gap in statistical design methodologies and enables

final transistor-level verification before timing sign-off. The technique we propose aims to improve

the accuracy of the yield estimates obtained from a given number of TL simulations. Alternatively,

our improved MC estimator achieves the same accuracy as the standard transistor level Monte Carlo

(TL-MC) estimator but at a cost of much fewer number of TL simulations. This is made possible by

using importance sampling technique that we combine in a novel manner with a cheap-to-evaluate

but approximate gate delay model, which will be explained in Section 3.2. We use the cheap gate

delay model to guide the generation and selection of sample points in the parameter probability

space in a TL simulation based MC method for timing yield estimation.

The approach proposed in this thesis is based on the premise that, given the magnitude of process

parameter variations and the non-linear dependence of gate and circuit speed (or delay) on these

variations, the only sufficiently reliable and accurate method for final timing yield verification before

sign-off is TL timing simulation. However, we realize that transistor level Monte Carlo estimation

of timing yield will never become efficient enough for use in a loop for timing optimizations. As
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such,the Monte Carlo timing yield estimation technique based on TL simulations we propose in

this thesis is meant not as a replacement for fast block level statistical timing analysis methods, but

rather, as a complement to them. In fact, in the timing analysis methodology we describe in this

thesis, the statistically critical paths on which we perform transistor-level Monte Carlo analysis are

identified using a fast but approximate block-based statistical timing analysis technique.

1.4 Outline

Chapter 2 provides an overview of timing analysis with an emphasis on statistical variations and

the Monte Carlo technique. The fundamentals of timing analysis, basic definitions and notation,

theory of Monte Carlo methods given in this chapter are used throughout the thesis. Chapter 3

proposes a statistical timing analysis methodology, which consists of modeling both inter-die and

intra-die variations with spatial correlations using a quad-tree model [2], performing Monte Carlo

based block level statistical timing analysis using a polynomial gate delay model (PDM) proposed

by us, extracting the statistically critical path candidates and then, in order to determine the true

statistically critical paths, eliminating the false paths using a satisfiability method similar to [3].

Chapter 4 presents the main novel contribution of this thesis, which is a transistor level yield esti-

mation method based on well-known variance reduction technique called importance sampling (IS).

IS based yield estimation increases the efficiency without decreasing the accuracy so that it can be

used as a final accurate yield estimation tool before manufacturing. Convergence analysis for the

IS estimator is performed and theoretical expression for the error of the estimator is derived in this

chapter. Chapter 5 applies the IS based yield estimation for ISCAS’85 benchmark circuits to test its

performance in terms of both accuracy and efficiency. Chapter 6 provides the conclusion and a list

of future tasks.
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Chapter 2

OVERVIEW OF TIMING ANALYSIS AND MONTE CARLO METHOD

This chapter reviews both deterministic and statistical timing analysis after providing the fun-

damentals. At the end of this chapter, we provide the preliminaries and a review of Monte Carlo

techniques used for timing yield estimation. Section2.1not only presents the fundamentals and the

definitions used by timing analysis but also compares the timing analysis of combinational and se-

quential circuits. Section2.2provides the previous work for the deterministic timing analysis where

the parameter variations are ignored. In that section, the transistor level timing simulation and the

static timing analysis methods, which are also at the core of the statistical timing analysis methods,

are explained. Also the false path detection problem and the gate delay models utilized by timing

analysis tools are reviewed. Section2.3clarifies the need for statistical timing analysis by explaining

the manufacturing variations and then gives the literature review for statistical static timing analysis

(SSTA), which constitutes the majority of research in statistical timing analysis topic. Section2.4

first provides the preliminaries that consists of the basic definitions and notation used throughout

this thesis, the general Monte Carlo method and the general importance sampling method and then

it explains the standard Monte Carlo estimation of loss due to the parameter variations. Section2.4

is especially important as the definitions and notations introduced in it are used by Chapter3 and4.

2.1 Fundamentals of Timing Analysis (TA)

When the input of a logic gate makes a transition, the output requires a nonzero interval called

propagation delayto change accordingly. This is unavoidable because the propagation delay is

required by a logic gate in order to charge or discharge the capacitance at its output. Due to the

overlapping conductive regions inside the gates, there are capacitances at the input(s) and output

of every logic gate, which are calledinput capacitanceand load capacitance, respectively. Both

input and load capacitances are modeled by capacitors connected to the ground. As the gates are

connected to each other, the input capacitance of a gate becomes the load capacitance of another

gate, whose output is connected to its input. There is another concept related with load capacitance



Chapter 2: Overview of Timing Analysis and Monte Carlo Method 7

calledfanout, which is equal to the normalized load capacitance according to the input capacitance

of the corresponding gate. Load capacitance or fanout is the major component that determines the

propagation delay of a gate and therefore utilized even by the most elementary gate delay models.

Figure 2.1 shows the input and the output voltage waveforms of an inverter. As the gate is

an inverter, when the input signal makes a transition from low voltage (logic-0) to high voltage

(logic-1), the output signal makes a transition from high to low and vice versa. The time difference

between the instances when the input and the output signals reach half of the high voltage is called

propagation delayof the corresponding gate orgate delay. According to the transition of the output

signal, the propagation delay is called low to high propagation delay (t pL2H) or high to low (t pH2L)

propagation delay. Also theinput slopeis demonstrated in Figure2.1. Input (output) slope is the

time required for the input (output) of a gate to make a transition between 10% and 90% of high

voltage. Similar to the propagation delay, according to the direction of the transition there are low to

high (InSL2H), high to low (InSH2L) input slopes and low to high (OutSL2H), high to low (OutSH2L)

output slopes. These basics are used in the timing analysis of digital circuits and will be referred

throughout the thesis.

There are two types of digital circuits:combinationalandsequential. Below, these two types of

circuits are explained and discussed from the perspective of timing analysis.

Combinational Circuits

In combinational circuits or combinational logic, the outputs of the circuit depend only on the cur-

rent inputs of the circuit. There is no loop and no memory element like register or flip flop in

combinational circuits. For this reason they can be represented as directed acyclic graphs (DAG)

as will be referred later in Section2.2.2. The multiplexor in Figure1.1 is a simple example for

combinational circuits.

TA in Combinational Circuits

A combinational circuit generally consists of many logic gates1 and the propagation delays of the

gates that are connected to each other accumulate until an output of the circuit is reached. Apath in

a combinational circuit is simply an unbroken route starting from an input of the circuit and ending

1For instance, there are more than a thousand gates on the average for the ISCAS’85 benchmark circuits used in
Chapter5.
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InSL2H

10%

50%

50%

90%

InSH2L

tpH2L tpL2H

Vin

Vout

Vin Vout

Figure 2.1:Propagation delay and input slope for an inverter

at an output of the circuit. For instance, in Figure1.1(a), the route fromA to Out is a path of the

multiplexor circuit. It is clear that as there are no loops in combinational circuits there is no path

with infinite number of gates. Similar tot pL2H andt pH2L defined above, each path has a high to low

and low to high propagation delay between its input and output. The maximum of these two delays

is calledpath delay. The delay for a path that consists of logic gates can be computed by TL timing

simulation described in Section2.2.1or by simply adding the individual propagation delay of each

gate on the path as explained in Section2.2.2. The delay of a combinational circuit (circuit delay)

is equal to the maximum of its path delays as, practically, there are many paths in a combinational
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circuit. The path having the maximum delay is calledcritical path2 and it determines the delay of

the circuit. The circuit delay limits the speed of the circuit and therefore, designers try to optimize

the critical path in order to speed up the circuit. Timing analysis (TA) of combinational circuits aims

to estimate the circuit delay and extract the critical paths in a circuit in order to optimize the circuit

to obtain better speeds. TA is applied at many different levels of design by automated software tools

developed by Computer Aided Design (CAD) engineers.

Sequential Circuits

COMBINATIONAL

LOGIC

R

E

G

I

S

T

E

R

S

Inputs

Current 

State
Next 

State

Outputs

DQ

Clock

CLK

Figure 2.2:Block diagram of a sequential circuit

In sequential circuits, the outputs of the circuit depend not only on the current values of the

inputs but also on the previous values of the inputs. A sequential circuit has different states, and

the current state determines the current response of the circuit to the inputs. The current state of the

circuit is determined according to the past inputs and past states of the circuit. Memory elements

2A more formal definition of critical path will be made in Section2.2.3.
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like registers are used in sequential circuits to store the state of the system. Registers are connected

to an input signal called clock, which determines when the content of the registers will be switched.

Figure2.2shows a general structure for a sequential circuit. The registers store the next state, which

is computed by the combinational circuit according to the current state and the current inputs of

the circuit. When a clock edge3 is detected, the value inside the registers is loaded to the output

of the registers as the current state and the registers store the next state value. Then, a new next

state is computed according to the current state and the inputs. The time difference between two

consecutive clock edges that the registers switch their content is called clock period. The clock

frequency, which is equal to the reciprocal of the clock period, represents the speed of sequential

circuits. For instance, a 3 GHz processor has a clock frequency of 3 GHz, which means that the

registers switch their content 3 billion times in one second.

TA in Sequential Circuits

Analyzing the timing of a sequential circuit boils down to analyzing the timing of its combinational

part. Without loss of generality, we can assume that registers switch content at positive clock edges.

In order to operate accurately, registers need the data at their inputs (D in Figure2.2) to be stable

for a time period calledsetup time, i.e. tsetup, before the positive edge arrives. Also, there is a

delay,tCLKtoQ, between the positive clock edge arrival and the switching of the data at the output

of the register (Q in Figure2.2). In other words, after the positive clock edge arrives,tCLKtoQ time

is required to have the new data at Q output of the register. Then,tcomb amount of time, which is

equal to the combinational circuit delay, is required for the combinational logic to compute the new

outputs and the next state. This computation should finish beforetsetuptime from the next positive

edge. This results in the constraint shown in (2.1)

TCLK > tCLKtoQ+ tcomb+ tsetup (2.1)

whereTCLK is the period of the clock signal, i.e. the time difference between two consecutive

positive edges as shown in Figure2.3. The constraint in (2.1) shows that the main component that

determines the clock period is the combinational circuit delay as the other two delays, i.e.tCLKtoQ

and tsetup, are well-known and already optimized constant delays, which are much smaller than

3Clock edge means a high to low (negative) or low to high (positive) transition of the clock signal. Registers are
triggered either by positive or by negative clock edge.
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tcomb. TCLK solely determines the speed of the circuit, which is simply equal to the maximum clock

frequency, i.e.1/TCLK
4. As a result, TA of a sequential circuit, reduces to TA of the combinational

part in it. For this reason, TA of combinational circuits is focused on throughout this thesis. The

particular problems of sequential circuits like clock slew and skew are outside the scope of this

thesis.

tCLKtoQ tsetuptcomb

TCLK

Figure 2.3:Clock signal and delays in a sequential circuit

2.2 Deterministic Timing Analysis (DTA)

Timing analysis aims to estimate the circuit speed (performance) by computing the worst case de-

lays as explained briefly in the previous section. Until the 1990s, the variations in digital circuit

parameters were relatively small and therefore, they were ignored. All circuit components were as-

sumed to have deterministic parameters, which result in deterministic gate delays and consequently

deterministic circuit delays. As a result, deterministic timing analysis (DTA) was preferred by the

designers for estimating the speed of the circuits when the variations were ignored.

DTA can be classified into two: transistor level (TL) timing simulation and block level (BL)

deterministic static timing analysis (DSTA). Timing simulation at transistor-level provides precise

estimates but it is inefficient to be used incrementally to improve the designs. On the other hand,

DSTA, which is performed at a higher level, i.e. gate (block) level, is a widely adopted method with

linear run time complexity. However, it cannot totally replace the timing simulations due to the lack

4For instance, a processor having 2 GHz clock has a clock period of 2 ns.
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of accuracy when compared with TL timing simulation. As a result, the electronic design automa-

tion (EDA) engineers prefer such a scheme for deterministic timing analysis: They perform DSTA

multiple times at different levels of design in order to optimize the circuit performance accordingly

and to extract the path(s), which are responsible for the slowness of the circuit, i.e. the critical

path(s). Then, before handing over their designs to manufacturing, they apply TL timing simulation

especially for the extracted critical path(s) in order to obtain the most accurate estimation for the

speed performance of the circuit.

The description and details of TL timing simulation are given in Section2.2.1and the DSTA

is explained in Section2.2.2. Section2.2.3gives the definitions for critical path and false path and

then focuses on false path problem. Section2.2.4reviews gate delay models in deterministic case

and explains the logical effort gate delay model in more detail.

2.2.1 Transistor-Level (TL) Timing Simulation

Nodal Analysis

A digital circuit consists of transistors, resistors, capacitors and inductors at the most elementary

level. Transistor level (TL) circuit simulation directly analyzes such a digital circuit by combining

three types of well-known equations enumerated below into a linear matrix algebra:

1. Kirchhoff Current Law (KCL): The sum of currents leaving a node is zero. If a current is

sinking to the node it has negative value.

2. Kirchhoff Voltage Law (KVL): The voltage around a cycle in the circuit is always equal to

zero.

3. Device current-voltage relationships: For instance, resistors haveV = I ×R whereI is the

current passing through that resistor,V is the voltage over that resistor andR is its resistance.

The most famous TL circuit simulator is called SPICE (Simulation Program with Integrated

Circuits Emphasis), which was written by Larry Nagel and released in 1972 [4]. Today, SPICE has

become an electronic design automation (EDA) industry standard and large companies still continue

to develop their own proprietary simulators [5]. SPICE usesnodal analysiswhich solves the three

types of equations given above using linear matrix algebra. For instance, Figure2.4shows a simple
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circuit that consists of only linear elements and two nodes (node 1 and 2) and the corresponding

linear matrix equation for that circuit is shown in (2.2).

R2

R3R1Is

V2V1

Figure 2.4:A very simple circuit with only linear elements
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 (2.2)

Transient Analysis Flow

If the aim of the circuit simulation is the analysis of the timing (transient) behavior of the circuit,

then it is calledtransient analysis. Transient analysis is used to detect the voltage waveforms of any

node in the circuit for the desired period of time. From this information the propagation delay of

the circuit can be computed very easily and accurately as described in Section2.1. For this purpose,

transient analysis of SPICE first discretizes the time domain and then for each discrete time instance,

it solves the nodal matrix equation in (2.2) in order to compute voltages at each node of the circuit.

The overall transient analysis methodology that considers both non-linearities and differential

relationships is shown in Figure2.5. To perform transient analysis, SPICE discretizes the time

period of interest into time instances according to the fluctuation speed of the voltage signals in

the circuit. If the fluctuation speed is high, it uses smaller time steps in discretization. For each

time instance, SPICE performs the same operation described as follows: It uses numerical inte-

gration methods like Backward Euler or Trapezoid in order to convert differential equations into

non-differential linear/non-linear equations. Then it linearizes the non-linear devices at their cor-

responding points of operation for being able to construct a linear matrix equation of the form in

(2.2). It uses Newton-Raphson method to linearize non-linear equations. The resultant system of

linear equations are solved iteratively until Newton-Raphson iterations converge. At each iteration,
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the system of linear equations is solved by using LU factorization to compute voltages at each node

and currents at each branch of the circuit. This iterative procedure is shown as the smaller loop

in Figure2.5. As the bigger loop in this figure shows, this procedure is performed for each time

instance until the end of the interested time period is reached [6].

After this transient analysis flow terminates, the propagation delay of the circuit can easily be

computed as the voltage value at each node and for any time instance in the interested time period is

computed. The unknown voltage values between any two time instances can easily be computed by

linear interpolation. There is no significant loss in this interpolation because time steps are adjusted

by SPICE such that they are small if the voltage signal fluctuates fast. In our work, a simple perl

script taking the SPICE program’s output as an input argument is used to perform this interpolation

and determine the propagation delay of the circuit.

Computational Complexity

The number of iterations of a TL timing simulation flow depends on two loops; the bigger loop

and smaller loop in Figure2.5. The number of iterations due to the bigger loop depends on the

number of time instances, which depends on the signal fluctuation speed and the length of the

interested time period. The number of iterations due to the smaller loop depends on the convergence

of Newton-Raphson iterations. Even in some situations, the smaller loop can fail to converge unless

the convergence conditions are relaxed by the user. The most complex operation in the heart of

these two loops is LU factorization used for the solution of the system of linear equations similar

to shown in (2.2). LU factorization has a worst case cost ofO(n3), where n is the total number of

nodes and branches in the circuit. However, empirically in typical circuits, the cost can be at the

order ofO(n1.7) due to the sparsity of the related matrix. As a result, the computational complexity

of a transient analysis flow can be written as shown in (2.3).

O(Nt ×NNR×n3) (2.3)

whereNt is the number of time instances as a result of the discretization performed by SPICE,NNR

is the average number of Newton-Raphson iterations that is computed by averaging the number of

NR-iterations used for each time instance andn is the total number of nodes and branches in the

circuit. In typical circuit,NNR is usually a couple of iterations andNt , which is usually in the order

of hundreds, actually depends on the length of the interested time period and the oscillations of the
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Figure 2.5:SPICE transient analysis flow
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voltage waveforms.

Conclusion

The TL timing simulation is the most precise way for solving general circuits. For practical pur-

poses, the results of TL timing simulation are considered to be the exact solution to any circuit

provided that the sophisticated precise models for the circuit devices are utilized [6]. Despite its ac-

curacy, this method is the slowest way of estimating the transient behavior of a digital circuit [6,5].

Another disadvantage of circuit simulation is the necessity of exactly determining the input signals

to the circuit. The input signal combination that result in a worst case delay should be known in or-

der to detect the worst case delay of the circuit. Otherwise, all input combinations should be tested,

which makes22n simulations wheren is the number of inputs.

2.2.2 Deterministic Static Timing Analysis (DSTA) at Gate (Block) Level

Importance of DSTA

DSTA is a powerful method, which has been widely adopted in EDA community for more than

two decades. It estimates the propagation delay of a combinational circuit by utilizing an algorithm

called critical path method (CPM) that is used in project management. Although it is not as accurate

as TL timing simulation, it is a very fast method with linear run time in terms of number of logic

gates and connections in the circuit. The term ”static” is used because DSTA does not need any

input vectors, which are needed in TL timing simulation. In time, DSTA has become a mature tool,

which is able to take into account many aspects of timing analysis. As a result, DSTA is in the heart

of almost all timing analysis and optimization tools.

Combinational Circuit→ Directed Acyclic Graph (DAG)

DSTA runs at block (gate) level by first converting the circuit into a directed acyclic graph (DAG)

structure. At gate level, a combinational circuit, for it does not have any loops, can be represented

by a DAG as referred in Section2.1. Figure2.6 shows an example circuit schematic and the cor-

responding DAG representation. In this graph,G(V,E), each vertex corresponds to a gate and each

edge between the vertices corresponds to a hardwired connection between the gates, whereas the

leftmost edges correspond to the primary inputs and the rightmost edge corresponds to the primary
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output(s). For instance, for the circuit in Figure2.6, the primary inputs are fromi0 to i7 and the

primary output is labeled asout. Any route from a primary input to a primary output is called a

path. DSTA is applied on this DAG structure, which is very similar to the activity networks in the

project management.
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Figure 2.6:DAG representation of a combinational circuit

Circuit Delay and Arrival Time from DSTA Perspective

Transitions at the primary inputs of a circuit cause signal transitions to propagate through the circuit

until the propagation reaches the output of the circuit. It was explained in Section2.1 that each

path has a propagation delay between its input and output. Different than TL timing simulation of

Section2.2.1, DSTA runs at gate level and computes the path delay by simply adding the individual

gate delays on the path. As described in Section2.1, the circuit delay is the maximum of the delays

of all paths in the circuit. In other words, circuit delay is the maximum propagation delay that a

circuit can practice.

Another very important concept utilized by DSTA isarrival time. Assuming that the primary

inputs are altered at time is equal to zero, thenarrival time at an edge represents the time when the

voltage signal becomes ready at that edge by reaching the required voltage value, which is the fifty

percent of the high voltage as explained in Section2.1.

Operation of DSTA

DSTA computes not only the circuit delay but also the arrival times for all edges in the timing

DAG. Actually it computes the circuit delay by computing the arrival times from left to right in a
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topologically sorted manner, where topological sorting is a method of arranging the vertices in a

DAG, as a sequence, such that no vertex appear in the sequence before its predecessor. As a result,

DSTA not only visits a vertex (gate) only once but also it never visits a vertex before visiting its

predecessor.

DSTA starts from the leftmost vertices connected to the primary inputs and it performs the

following operation for each vertex, until it processes all vertex: it first compares the input arrival

times to the vertex, in order to find the MAXimum of them, then SUMs the gate’s own propagation

delay with this maximum input arrival time to compute the output arrival time for that vertex5.

DSTA can compute all arrival times in the DAG by performing these MAX and SUM operations for

each vertex in a topologically sorted manner from left to right. After DSTA is performed, the path

having the biggest arrival times is thetopologically longest pathin the circuit. DSTA sets the delay

of the topologically longest path as the circuit delay, which is simply the maximum or worst case

propagation delay of the circuit.

In Figure2.6, the numbers inside the vertices of DAG represent the propagation delays of the

corresponding gates. Section2.2.4gives the details of gate delay models used to find the propagation

delay of a gate. Bold numbers on the edges represent the arrival times, where all the primary inputs

to the circuit are assumed to make a transition at time is equal to zero. For example, the DSTA

operation on gateg5 can be summarized as follows: DSTA first examines the input arrival times of

g5, takes the MAXimum of them, which is5 then SUMs5 with g5’s propagation delay, which is

also5. The resultant10 is the output arrival time ofg5. When DSTA performs the same operation

in a topologically sorted manner for all vertices, all arrival times in the circuit are computed. The

arrival time for the output of the circuit, which is14 in this example, is the circuit delay computed

by DSTA. The path starting from the primary inputi0 (or i1) and goes through the gatesg1, g5 and

g6 respectively is the topologically longest path in this circuit, which determines the propagation

delay of the circuit.

If the desired propagation delay for the circuit is known beforehand, then assigning this desired

circuit delay value to each primary output in the circuit and applying the same algorithm but this time

by reversing the edges of the graph and performing subtraction instead of summation, therequired

5This is true for the most elementary DSTA analysis when the slopes of the input signals are not considered. When
input slopes are considered, first, the SUMmation of each input arrival time with the gate’s own propagation delay
is computed, where the gate’s delay is computed according to the slope of the corresponding input signal. Then, the
MAXimum of the resultant summations should be set as the output arrival time.
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timesat each edge of the graph can be computed easily. The difference between the required times

and the arrival times is calledslack. Having positive slacks in the whole graph means that there is

no problem in meeting the timing requirements whereas having paths with negative slacks shows

that the requirements are not met for the corresponding paths in the graph. Then, designers focus

on these paths in order to satisfy the timing requirements.

Conclusion

DSTA is an approximate algorithm, which gives rough circuit delay estimates. It cannot detect

false paths, which will be discussed in the next section. As a result, while DSTA is a successful

and efficient algorithm, which is applied after several different levels of digital design flow like

synthesis, logic optimization or placement, the state-of-the-art still does not allow DSTA to replace

TL timing simulation completely due to its weaknesses [7].

2.2.3 Critical Path and False Path Detection

True (sensitizable) Path, False (unsensitizable) Path and Critical Path

Each path’s input is a primary input of the circuit and its output is a primary output of the circuit.

A path is called atrue (sensitizable) pathor equivalently, it is said to besensitizedif a transition,

either from high to low or from low to high, at its input results in a transition at its output because

of the signal that propagates through that path. The paths, which cannot be sensitized (activated) for

any input assignment, are calledfalse (unsensitizable) paths. There is no signal propagation along

these paths whatever the circuit input assignment is and therefore, they are not responsible for the

delay of the circuit in any case. True and false path concepts can better be realized by the examples

explained below. Detection of the false paths in a circuit is calledfalse path problem, which is an

NP-complete problem [8].

Circuit delay is defined as the delay of the longest true path, i.e. the true path having the maxi-

mum delay in the circuit. This longest true path is called thecritical path of the circuit as it defines

the actual worst case delay of the circuit. As a result, the topologically longest path of a circuit

found by DSTA, is a critical path only if it is a true (sensitizable) path. This critical path definition

is different from the critical path definition in Section2.1as the sensitization of a path was ignored

in the previous definition.
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True Path Example

For instance, in Figure2.6, the topologically longest path isi0−g1−g5−g6−out. Suppose that all

inputs other thani0 has a logic value of 1 andi0 is at logic 0. In this case, ifi0 makes a transition

from 0 to 1, the output of bothg1 andg5 make a transition from 0 to 1 and the output ofg6 makes a

transition from 1 to 0. Therefore, the transition ofi0 propagates down through the pathg1−g5−g6

and trigger the output to make a transition, which means that the pathi0−g1−g5−g6−out is a

true (sensitizable) path. As this true path is the topologically longest path, it is also the critical path

and its delay is equal to the maximum propagation delay of the circuit. In this case, the result of

DSTA is correct. However, when the topologically longest path of a circuit is a false path, the result

of the DSTA becomes wrong. Figure2.7demonstrates such a circuit.

a

b

g1
g2

g3
out

Figure 2.7:A simple example for a false path (a−g1−g2−g3−out)

False Path Example

Figure2.7shows a very simple example to demonstrate false paths. Assume a delay of 1 ns for each

gate in this circuit. If DSTA was performed for this circuit, it would find the pathsa−g1−g2−
g3−out and equivalentlyb−g1−g2−g3−out as the topologically longest paths and therefore,

set the delay of the circuit as 3 ns. However, this would be wrong. Assume that inputb has become

logic 0 at time zero (t = 0). Then, the output of gateg3 (out) would become 0 immediately att = 1

whatevera is. On the other hand, if inputb has become1 at t = 0, then the output ofg2 becomes

1 att = 1 again whatevera is. Becauseb is 1 att = 0 and the output ofg2 is 1 att = 1, the output

of g3 becomes1 at t = 2. Actually, the transitions ofa do not affect the outputout. Therefore,

the scenario will be either of the two situations referred above for all possible transitions of(a,b)

pair, which is equal to4×4 = 16 asa,b pair can take 4 different values6. As a result, the actual

worst case delay for this circuit is 2 ns instead of 3 ns, which was estimated by DSTA. Also the

6These values are 00, 01, 10 and 11.
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pathsa−g1−g2−g3−out andb−g1−g2−g3−out are the false paths, as these paths are not

responsible for the circuit delay. The critical path for this circuit isb−g2−g3−out, which is the

longest true path.

Notations Used by False Path Detection Methods

As a result, false paths in a circuit should be detected in order not to waste efforts to optimize a

false path and not to overestimate the circuit delay. The methods in false path detection literature

generally label an input of a gate as having either acontrollingor anon-controllinglogic value and

being aside-inputor anon-input. An input to a gate has a controlling value if it can solely determine

the output of the gate whatever the values of the other inputs to the same gate. Otherwise, the input

has a non-controlling value as the value of the output depends also on the values of the other inputs.

The controlling and non-controlling values for a gate depends on the type of the gate. For instance,

a logic-1 value immediately triggers the output of an OR gate to 1 whatever values the other inputs

to the OR gate have. On the other hand, a logic-0 value cannot trigger the output of an OR gate to

0 unless all other inputs are at logic-0. Consequently, logic-1 is a controlling value and logic-0 is

a non-controlling value for an OR gate. Similarly, logic-1 is a controlling value for NOR gate and

a non-controlling value for AND and NAND gates whereas logic-0 is a non-controlling value for

NOR gate and a controlling value for AND and NAND gates. On the other hand, one input gates

like inverter have no controlling and non-controlling values as the output of these gates always make

a transition if their input makes a transition. Similarly, XOR and XNOR gates have no controlling or

non-controlling values, because any transition (high-to-low or low-to-high) at any input of an XOR

or XNOR gate result in a transition at its output. The second important concept pair used by false

path detection methods is side input and on-input. For each gate on a path; if an input of the gate is

on the path, it is calledon-inputand if it is not on the path, then it is calledside input.

False Path Detection Using Static Sensitization

There has been an extensive research on false path detection problem since 1980s, and several

sensitization conditions had been proposed for detecting whether a path is false, i.e. unsensitiz-

able [9, 10, 11, 12, 13]. These methods propose different conditions for a path to be a true (sen-

sitizable) path, which are called sensitization conditions. If a sensitization condition is satisfied

by a path, then this path is called a sensitizable (true) path and otherwise, it is called a false path
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according to that sensitization condition.

One of the oldest and fastest sensitization condition used for false path detection isstatic sensi-

tization [9]. It is called ”static” as it is a delay independent method ignoring the arrival times of the

signals. For a path to bestatically sensitizable, an input vector must exist such that all side inputs

for that path take non-controlling values. There are no conditions for the inverters or XOR/XNOR

gates on the path, because inverter does not have side input and XOR/XNOR gate makes an output

transition whatever the values of its side input(s) are.

For instance, the pathi2−g2−g4−g5−g6−out in Figure2.6 is a statically sensitizable path,

because all side inputs take non-controlling values when a logic 1 is applied for all inputs other than

i2 to the circuit7. For such an input assignment, ifi2 is toggled from 0 to 1, this transition propagates

throughg2−g4−g5−g6 and the output toggles from 1 to 0. Astatically unsensitizablepath is

a−g1−g2−g3−out in Figure2.7. Side inputs ofg1 (AND gate),g2 (OR gate) andg3 (AND

gate) are all connected to the same signal, calledb. The non-controlling value for an AND gate is 1

whereas for an OR gate it is 0 as referred above. Therefore, all side inputs for this path cannot have

non-controlling values at the same time. That violates the static sensitization condition and this path

is detected as a false path under static sensitization condition.

a

b

c
0

g1

g2 g3

g4
out

Figure 2.8:A statically unsensitizable true path (a−g2−g3−g4−out)

Static sensitization condition is a sufficient condition, but it is not a necessary condition [14]. In

other words, if a path is statically sensitizable, then it is a true path but, in some situations, a true

path may not be statically sensitizable. For instance, the patha−g2−g3−g4−out in Figure2.8is

a true path although it is statically unsensitizable. The side-input for gateg2 is b and the side-input

for gateg4 is¬a.¬b, therefore the side-inputs for bothg2 andg4 cannot be at non-controlling values

7Changing one of thei4 andi5 to 0 does not change anything in terms of static sensitization.
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at the same time, which shows that this path is a statically unsensitizable path. However, assuming

a 1 ns delay for each gate and applying high to low input transitions simultaneously att = 0 results

in a glitch at the output which stabilizes att = 3 , as shown in Figure2.8. Therefore, the path

a−g2−g3−g4−out is a true path as it determines the delay of the circuit as 3 ns although it is

a false path under static sensitization condition. Therefore, static sensitization may underestimate

the delay. Nevertheless, it does not perform bad in most of the practical cases. The results in [8,15]

indicate that static sensitization does not underestimate the delay for any of the circuits inISCAS′85

benchmark [16].

2.2.4 Gate Delay Modeling and Logical Effort

Deterministic Gate Delay Models

Performing DSTA, described in Section2.2.2requires an approximate gate delay model to deter-

mine gate delays, which were represented as numbers inside vertices in Figure2.6. For the deter-

ministic case, where the gate parameters are fixed, the delay of a gate mainly depends on the input

slope (InS) and output load capacitance (CL) of the gate. There are different strategies preferred by

different companies:

- An obvious way of representing gate delays would be a look-up table, which has a delay

value entry for each gate type and under different capacitive loads and input slopes. If a delay

value corresponding to a capacitive load or input slope, which is not represented in the table

is required, linear interpolation can be used. Therefore, the accuracy of utilizing such a delay

look-up table depends on the number of entries.

- Alternatively, the delay of a gate can be represented by equations of the form [6]:

a0 +a1CL (2.4)

a0 +a1CL +a2InS (2.5)

a0 +a1CL +a2InS+a3CL.InS (2.6)
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(a0 +a1CL +a2CL
2 + ...+amCL

m)(b0 +b1InS+b2InS2 + ...+bnInSn) (2.7)

(2.4) is a form of logical effort delay formula, (2.5) is a basic linear equation, which also

includes input slope, (2.6) and (2.7) are respectivelynon-linear delay model(NLDM) and

scalable polynomial delay model(SPDM) used by Synopsys [6].

Logical Effort Formalism

The logical effort formalism is a fast and efficient way of determining the delay of a path in a digital

circuit. The path delay is simply the sum of the delays of the gates on the path, and the delay of a

logic gater is approximated as

dLE
r = τ d (2.8)

where dLE
r is the absolute delay of a gate measured in seconds,τ is the delay of a parasitic-

capacitance-freereference inverterdriving another identical inverter, andd is the delay of the logic

gate expressed in units ofτ. Thed factor in (2.8) models the gate delay and is given by

d = (p+gh) (2.9)

wherep represents the intrinsic (parasitic) delay,g is the logical effort, andh is the electrical effort

or electrical fan-out. Logical effortg for a logic gate is defined as the (unitless) ratio of its (per)

input capacitance to that of an inverter that delivers the same output current. Thus, logical effortg,

is a measure of the complexity of a gate. It depends only on the gate’s topology and is independent

of the size and the loading of the gate. Parasitic delayp expresses the intrinsic delay of the gate due

to its own internal parasitic capacitance, and it is largely independent of the sizes of the transistors in

the gate. Parasitic delayp, is also a unitless quantity, it is expressed in units ofτ. The electrical effort

h is the ratio of the load capacitance of the logic gate to the capacitance of a particular input [17].

Logical effort model in (2.8) is a very fast model and the linear relationship between the electri-

cal fanout and the gate delay is a reasonable assumption. However, it does not consider the effect of

input slope, which may result in far off delay estimates especially for the cases when the input slope

is too slow or too fast.
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2.3 Statistical Timing Analysis

The impact of manufacturing process variations has increased with current fabrication technologies

in nanometer regime that has scaled down to 45nm scales. These process variations result in phys-

ical parameter variations which cause electrical parameter variations and finally gate and circuit

delay variations. As a result, not all of the manufactured chips can satisfy the timing requirements

where the failing ones are totally discarded. This necessitates timing analysis considering statistical

variations in order to modify the design accordingly until it meets the timing requirements. There

are many methods proposed to fill the gap at statistical timing analysis especially during the last

15 years. Most of these methods concentrate on different statistical versions of DSTA explained in

Section2.2.2.

Section2.3.1explains the parameter variations in detail and investigates the need for statisti-

cal timing analysis. Section2.3.2gives a literature review for the statistical static timing analysis

(SSTA) methods, which constitute almost all research on statistical timing analysis topic.

2.3.1 The Need for Statistical Timing Analysis

Die and Wafer

The integrated circuit (IC) manufacturing process groups a number of identical circuits, each of

which is calleddieor chip, onto a singlewafer. After manufacturing process terminates, each die on

the wafer is packaged separately if it can pass all tests and it is discarded otherwise. The tests include

timing verification to decide whether the die satisfies the speed requirements. Figure2.9shows the

packaged Nvidia Geforce 8800 die and the corresponding wafer used for its manufacturing.

Manufacturing Process

The transistors are continuously getting smaller because smaller transistors are faster, consume less

power and require less chip area. Even a manufacturing technology is named after the smallest

transistor gate length it is able to produce. For instance, during the last decade, the manufactur-

ing community has switched from 180nm technology to 45nm technology. On the other hand,

manufacturing is a complex gradual process and prone to variations especially when sub-micron

technologies are utilized. It comprises different techniques like lithography, etching, doping or ion

implantation, chemical mechanical polishing (CMP). It is difficult to cope with this fast size re-
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Figure 2.9:Nvidia Geforce 8800 die and its corresponding wafer

duction and improve manufacturing process sufficient for this technology improvement. Although

exotic techniques such as optical proximity correction and other resolution enhancement techniques

have been developed [18], the impact of manufacturing process variations have become much more

significant in the nanometer regime used today.

Process Variations

The variations during the procedures like lithography, ion implantation and CMP result in physical

variations like critical dimension (CD), oxide thickness, channel doping, interconnect wire width

and thickness [19, 20]. Among these, CD and doping variations, which respectively result in gate

length (L) and threshold voltage (Vt) variations, are the dominant factors [20]. As a result, the

timing behavior of transistors and interconnects are affected and gate delays, interconnect delays

and so the total circuit delay become random variables. According to International Technology

Roadmap for Semiconductors (ITRS) 2009 report [1], from 2009 until 2011, CD or effective gate

length variability (3σ/µ) is reported to be 12% whereasVt variability for typical size logic devices

is reported to be 20%. The report assumes a 50%Vt variability in 2018 and there are no known

manufacturing solution for such a highVt variability. According to the report the resultant circuit

timing performance variability is about 50% for 2009, which is assumed to reach up to 66% in 2018.
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Inter-die and Intra-die Variations

The parameter variations are classified into two according to their spatial properties:

Inter-die Variations:Parameters may vary between two different dies on the same wafer or when

the processed wafer is replaced with the new one or when a new lot of wafers start to be processed.

This variation is a result of unavoidable changes in the calibration of the equipment, alignment of the

wafers and mask patterns [20]. The variation of process parameters between different dies or wafers

or wafer lots are calledinter-dieor die to dievariations. All devices on the same die are affected

exactly in the same manner from the inter-die variations. For instance, assume that gate length

(L) is a random parameter which has inter-die variation. If there exist only inter-die variations, all

transistors in the same die have the sameL value. The inter-die variation only causes the transistors

in different dies to have differentL values.

Intra-die Variations with Spatial Correlation:The parameter variations can even exist for the

devices in the same die. These variations are calledintra-die or within dievariations. For instance,

due to intra-die variations, a transistor in a die may have a different gate length (L) than another

transistor in the same die although both of them are designed to have same gate lengths. A decade

ago, the intra-die variations had been a negligible portion of total variations. However, shrinking the

technology below 100nm levels, the percentage contribution of intra-die variation to the total varia-

tion has increased above 50%. For instance the percentage ofL intra-die variations has increased to

65% from 40% while the technology switches from 250nm to 70nm [19].

The intra-die variations exhibit spatial correlation, i.e. the correlation of a device (transistor or

interconnect) parameter depends on the location of that device, because many of the manufacturing

processes that cause intra-die variations change gradually from one location to another [20]. Due

to the spatial correlation, the devices closer to each other are affected similarly whereas the devices

far from each other have more uncorrelated parameters. In other words, the correlation of the cor-

responding parameters of two devices on the same die increases while the distance between them

decreases. There are different models in the literature to capture the spatial correlations [2,21]. The

model used in our work is based on [2], which is explained in detail in Section3.1.

Timing Yield Estimation Problem

As explained in Section1.2, the variation of circuit delay as a result of all manufacturing process

variations, described above, causes some of the manufactured dies fail to satisfy the timing con-
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straints and so they are discarded. The fraction of dies that satisfies the timing constraints is called

timing yield. Equivalently, timing yield is the probability that a manufactured die satisfies the timing

constraints. Fundamental timing constraint for combinational circuits is basically an upper bound

for circuit delay, i.e. Tc, such that the delay of the circuit should be belowTc to satisfy timing

constraint. Figure2.10shows an example probability density function (PDF) for the circuit delay

and the area of the shaded region in this figure corresponds to timing yield, whereTc is the timing

constraint. The main aim of statistical timing analysis is to estimate timing yield before handing

over the designs to manufacturing stage. According to the statistical timing analysis results, the de-

signers make a choice either to improve their designs further or to give up optimizations and initiate

manufacturing.

Tc

Circuit Delay 

PDF

Delay

Figure 2.10:Circuit delay PDF

Corner-based Timing Analysis

Traditionally the designers try to cope with statistical parameter variations by usingcorner based

timing analysis. A corner corresponds to a point in the parameter space, where each parameter

gets its maximum or minimum possible value. The worst case timing behavior of the circuit can

be computed by first setting the parameters at their corner values8 and then by utilizing a deter-

ministic timing analysis scheme as the random parameters are fixed at deterministic corner values.

However, as the sources of variation increase in number, the required number of corners increases

exponentially to an untenable number for a complete corner based analysis [20,22]. Another weak-

8Generally, the corner values are taken asµ−3σ or µ+3σ values, whereµ is the nominal value for the corresponding
parameter andσ is the standard deviation.
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ness of corner based analysis is that it is impossible to effectively take into account the intra die

variations [23] although, the intra die portion of variations has even exceeded the portion of inter

die variations as referred above in this section. Finally, selecting the worst case parameter values for

all devices in a path represents an almost impossible and unrealistic case [24]. Therefore, the corner

based analysis gives over-pessimistic yield estimates which result in wasted design efforts and time

loss for unnecessarily optimizing the circuit [23, 25, 24, 22, 20]. As a result of the non-negligible

manufacturing process variations and the inability of the traditional corner based methods in meeting

the requirements, the statistical timing analysis has become a hot and popular research topic.

2.3.2 Statistical Static Timing Analysis (SSTA) Methods

Description of SSTA

After the turn of the millennium, we have witnessed an extensive amount of effort being expended

in statistical timing analysis research. Most of this effort has been aimed at the development of

statistical static timing analysis (SSTA) techniques, as a direct generalization of the deterministic

static timing analysis (DSTA) algorithm, explained in Section2.2.2, for the statistical case. A com-

prehensive review of the recent developments in this field that puts all relevant work into perspective

is given in [20]. At this point, the SSTA problem and its key challenges are very well understood.

The fundamental functions in SSTA are SUM and MAX and they are performed for each gate in

the circuit very similar to DSTA. But, due to parameter variations, instead of SUM and MAX of the

deterministic values, SUM and MAX of the random variables are required in SSTA as all gate delays

and arrival times are random variables due to the statistical variations. In DSTA, the deterministic

circuit delay value is available when all gates are traversed by SUM and MAX computations. The

same is true for SSTA but this time, the circuit delay is a random variable (RV) with a corresponding

PDF instead of a deterministic value. After computing PDF of the circuit delay, timing yield can be

computed by calculating the shaded area shown in Figure2.10.

A small portion of SSTA literature, particularly the initial research includes path-based meth-

ods [26,27,28,29,30,31]. Differently from block based SSTA that will be described below, the path

based methods do not follow the DSTA algorithm. Instead, these methods first compute the path

delay PDF for each path by adding the individual gate delay PDFs on the path. The paths are drawn

from a path set which include all paths that may affect the circuit delay for some assignments to the

random parameters in the circuit. Then, they take the maximum of these path delay PDFs to obtain
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the circuit delay PDF. Instead of performing the MAX operation for each gate as in the block based

methods, path-based methods are advantageous in the sense that they apply MAX operation only

once and thus they avoid the accumulated errors due to the unavoidable approximations in MAX

operations.

c

b

a

g4

g1 g3

g2

dg4

ai1

ai2

ao

g0

Figure 2.11:A demonstration of SSTA SUM and MAX operations on a sample gate (node)

ao = max(ai1 +dg4,ai2 +dg4) (2.10)

Most of the approaches to SSTA are based on what is referred to as the block-based scheme.

The block based SSTA methods run at block (gate) level by following the DSTA algorithm quite

closely. In order to realize the operation of block based SSTA, Figure2.11demonstrates the basic

operation performed for gateg4 in the figure. The PDFs inside the gates correspond to the gate

delay RVs.ai1 andai2 are the input arrival time RVs for gateg4 anddg4 is the gate delay RV for

g4. The output arrival time forg4, i.e. ao, is computed by SUM and MAX operations as shown

in (2.10). Block based SSTA performs this operation for all gates in the circuit in a topologically

sorted manner similar to DSTA. The block based SSTA methods basically differ by the techniques

they prefer for computing these SUM and MAX operations. These techniques differ according to

the assumptions and approximations they employ in order to perform the SUM and MAX operations

of two RVs. Although the difference between DSTA and block based SSTA may seem slight, SSTA

has many challenges which are very difficult and sometimes impossible to solve without having

exponential run time complexities. Therefore, many approximations and assumptions are involved

in SSTA methods. SSTA literature will be reviewed after the challenges of SSTA are explained

below.
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Challenges in SSTA

One of the major challenges arises from thetopologicalandspatialcorrelations. This is because the

correlation information between all RVs inside the circuit must be recorded and preserved during

the SUM and MAX operations. Computation of these operations on two correlated RVs are more

complicated than the operations on two independent RVs. Topological correlations occur due to the

reconvergent pathsin the circuit. Two paths reconverge if both cross from a common signal and

later rejoin as two distinct inputs of a gate. For instance, in Figure2.11, pathsb−g0−g1−g3−g4

andb−g0−g2−g4 starts with the same signal (output ofg0) and then reconverge at the input of

g4. As a result, the input arrival timesai1 andai2 are not independent or fully uncorrelated. This

correlation betweenai1 andai2 is called topological correlation and complicates the MAX operation

used to findao. Second type of correlations is spatial correlation explained in Section2.3.1. Spatial

correlation can affect both SUM and MAX operations. For instance, in Figure2.11, assume that

gatesg2, g3 andg4 are spatially in a close proximity in the final layout. Then, the gate delay RVs

of these gates are spatially correlated. Therefore,ai1, ai2 anddg4 are correlated, which complicates

SUM and MAX operations shown in (2.10). As a result, for accurate statistical timing analysis, both

topological and spatial correlations must be taken into account and the operations must be modified

in order to handle the correlations [20].

Another challenge in SSTA is non-linear parameter delay relationships and non-normal (non-

Gaussian) parameter and delay distributions. It was explained in Section2.3.1that due to the vari-

ations in the physical process parameters like CD and ion implantation, the device parameters like

gate length and threshold voltage and as a result gate delays become random variables. The rela-

tionships of physical process parameters with device parameters and device parameters with gate

delays are non-linear. Therefore, even if the physical parameter variations are approximated by nor-

mal (Gaussian) distributions, it is impossible to model the device parameters and the gate delays

with normal distributions. Despite the assumption of linearity and normality extremely simplifies

the SUM and MAX procedures, these assumptions may result in far off timing yield estimates.

The MAX operation introduces another challenge. Even all gate delays and arrival times are

assumed to have normal PDFs, the maximum of two normal RVs is not a normal RV [20]. However,

the majority of the methods in the literature approximate the MAX result of two normal distributions

with another normal distribution, which results in a loss of accuracy due to accumulated errors.

In the deterministic case, where all gate delays and arrival times are deterministic, the path
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having the worst arrival times is the critical path if it is a true path. However, in the statistical case,

where gate delays are random variables, the critical path of the circuit depends on the values of the

RVs inside the circuit. Each different assignment to RVs may result in a different critical path. The

paths that become critical at least for one assignment to RVs are calledstatistically critical paths. In

the case of statistical variations, the discovery of the statistically critical paths is another challenge

that must be addressed at least for optimization purposes.

SSTA Literature Review

The block-based SSTA methods in the literature mainly differ according to the SUM and MAX

strategy they propose and the way they handle the above challenges. The literature may be clas-

sified in many aspects: parametric or non-parametric methods, methods that consider correlations

or methods that ignore them, methods according to the utilization of continuous PDFs or discrete

PDFs, normal PDFs or non-normal PDFs, linear or non-linear parameter-delay relationships.

One important classification for the block-based SSTA methods is based on the types of RVs

used in the circuit. In non-parametric methods, gate delays are directly represented as RVs with

some statistical properties like mean and variance, whereas in parametric methods gate delays are

represented in terms of other RVs, which are random device parameters like gate length and thresh-

old voltage.

Initial efforts were more focussed on non-parametric methods. In these methods, the device pa-

rameters are not represented as RVs, only gate delays and arrival times are the fundamental RVs in

the circuit. Until the circuit delay PDF characteristics are obtained, either the delay PDF properties

like mean and variance are propagated or the delay PDFs are first discretized and then propagated

throughout the circuit. In [32], a linear run time non-parametric SSTA algorithm propagating only

the mean and variance of the arrival times is proposed. This method ignores correlations and as-

sumes independent normal random variables for all gate delays and arrival times. In [33, 34, 35],

differently from [32], the topological correlations are taken into account. Normal distribution as-

sumption is relaxed and more efficiency is acquired by the use of discrete PDFs instead of continuous

PDFs in [36, 37, 38] . Convolution is used for the SUMmation of two discrete PDFs. The papers

in [39,40] add topological correlation support to this discrete framework and compute the upper and

lower bounds for the CDF of the circuit delay. [41] takes into account the topological correlations

and represents arrival times as CDFs and gate delays as PDFs.
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Parametric SSTA methods represent gate delays and arrival times as a function of random device

parameters. They are suitable to model intra-die parameter variations with spatial correlations.

A linear canonical delay model widely used in parametric SSTA methods [42, 43, 20] is shown

in (2.11).

d = dnom+
N

∑
i=1

air i +dres (2.11)

wherednom is the nominal (mean) delay,r i ’s are the independent random variables which are used

to model spatial correlations anddres is the residual independent variation.ai ’s are called the sensi-

tivities corresponding tor i ’s.

The model is called canonical as it does not change throughout the circuit, i.e. all arrival times,

gate and path delays are represented by the same canonical model. The SUM and MAX operations

are applied to the canonical model such that the results of the operations are also represented by the

same model. The SUM operation on such a canonical form is straightforward whereas the MAX

operation is more complicated for which [42,43] use a method explained in [44].

There are different approaches to model the intra-die variations with spatial correlations as a sum

of independent random variables [43,2]. [43] employs a grid model by dividing the die surface into

equal sized rectangles. For each random device parameter like gate length, there is an associated

random variable with each rectangle. The devices in the same rectangle are assumed to be perfectly

correlated, i.e. they all have the same value for the corresponding random parameter. On the other

hand, the devices in different rectangles have partially correlated parameters such that their correla-

tion decreases as the distance between the rectangles increases. These correlated RVs are converted

into uncorrelated RVs called principal components using the principal component analysis (PCA)

method, which transforms space in order to get the set of uncorrelated RVs from a set of correlated

RVs [6]. Then, the initial correlated RVs associated with each grid (rectangle) are expressed as the

sum of these uncorrelated RVs. This avails the use of independent RVs to model spatial correlations

as shown in (2.11). [2] proposes a multilevel quad-tree structure, shown in Figure3.1, to model spa-

tial correlations. At each levelq, it divides the die surface into2q×2q rectangles, each of which has

its own independent random variable for each random circuit or transistor parameter. The details of

this model and how it models the spatial correlations are explained in Section3.1.

The parametric models explained above assume normal random variables and employ linear

canonical models similar to (2.11). There are other papers in the literature, which employ non-
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linear canonical models and handle non-normal distributions to increase the accuracy, yet the re-

laxation of Gaussian and linearity assumptions result in significant computational overhead [20].

The approaches in [45, 46, 47] use a quadratic canonical form instead of the simple linear form

in (2.11). [48] uses a linear model but considers non-normal device parameters. [49] considers both

non-linearity and non-normal parameter distributions.

The collection of statistically critical paths when there are parameter variations is another re-

search topic that is well studied in the literature [50, 51, 52, 53, 54, 55]. The probability of a path

being critical, i.e. criticality, is a measure used by these papers. Other than the referred above, there

are many efforts to handle interconnect wire variations, to propose solutions for statistical optimiza-

tion, to perform SSTA in sequential circuits and to find statistical models for gate delays [20].

Block-based SSTA methods, reviewed above, have been preferred due to their runtime advantage

when compared with other approaches to SSTA. Moreover, block-based SSTA can be performed

in an incremental manner enabling its use in timing yield optimizations and for diagnostic pur-

poses [20,56]. On the other hand, spatial and topological correlations, non-normal process param-

eters and non-linear dependence of gate delay on these parameters, approximation of the maximum

of two random variables (to compute latest arrival time) at every gate (node of the timing graph) are

issues that must be addressed in block-based SSTA methods. In most basic form, SSTA algorithms

ignore correlations, assume that all statistical process parameters and gate delays have a normal dis-

tribution and approximate the maximum of two normal random variables as another normal random

variable. All of these assumptions and simplifications make it possible to obtain very efficient SSTA

algorithms [56]. However, ignoring correlations and the Gaussian assumption have detrimental, and

in some cases, unacceptable effects on the accuracy and meaningfulness of the results obtained by

SSTA [57]. As a result, several extensions of SSTA that take correlations into account, that use

non-linear gate delay models and employ non-normal distributions for the maximum of two random

variables have been proposed [20]. These extensions indeed improve the accuracy of SSTA, but at

the same time increase its computational complexity and may render it unusable in timing optimiza-

tions which require very efficient in-the-loop evaluations [57]. Nevertheless, block-based SSTA on

an abstract timing graph is widely accepted as a useful tool and is becoming indispensable in current

state-of-the-art statistical design methodologies.
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2.4 Preliminaries and Monte Carlo (MC) Timing Yield/Loss Estimation

In this section, first of all, the preliminaries to understand Monte Carlo (MC) method is given. The

preliminaries part below is particularly important as the basic definitions in that part are referred

many times throughout this thesis and the notation introduced here is used by the methods proposed

in this thesis. Upon these basics, theory of general MC estimators and a well-known variance

reduction technique used to improve estimator accuracy, called importance sampling, are explained.

After the preliminaries section, loss estimation using standard MC (STD-MC) method is explained

by separating STD-MC into two: transistor level MC (TL-MC) and block (gate) level MC (BL-MC).

TL-MC utilizes the transistor level timing simulation, explained in Section2.2.1. It is the most

precise and exact way of estimating the timing yield. On the other hand, BL-MC estimators run at

block level and although they are much more accurate than SSTA methods reviewed in Section2.3.2,

they are not as accurate as TL-MC estimators.

2.4.1 Preliminaries

Basic Definitions and Notation

The random variables that represent the statistical variations in the circuit are collected into ann-

dimensional vectorX, with a joint probability density function (PDF) denoted byf (X) which isnot

necessarily assumed to be Gaussian (normal). We note here that the number of random variables,n,

is dictated by the particular inter and intra-die variations model used and is in general much larger

than the number of statistical process and transistor parameters considered. For instance, in this

thesis we consider only two random transistor parameters (gate length and threshold voltage), but

we employ hundreds of random variables for modeling the statistical variations of the circuit. The

reason for that and the details of the variation model used in our work is explained in Section3.1.

We usedM
π (X) to denote thepath delayfor a path π computed bymethodM. The path delay

naturally depends on the random variables inX, and hence, it is also a random quantity. We then

define thecircuit delaydM
C (X) computed by methodM as themaximumpath delay with

dM
C (X) = maxπ∈Πcrit dM

π (X) (2.12)

where the maximum is computed over the set ofstatistically critical pathsΠcrit . There are many

methods based on SSTA to find the statistically critical paths as mentioned above in Section2.3.2.

It will be explained in Section3.3what we propose to find the set of statistically critical paths.
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We define an indicator random variableIM(Tc,X) as follows

IM(Tc,X) =





1 if dM
C (X) > Tc

0 if dM
C (X)≤ Tc

(2.13)

whereM is the method used for circuit delay computation andTc is the maximum acceptable delay

or timing constraint. This indicator variable “indicates” whether the delay of the circuit meets the

timing constraint for a given realization of the random variables inX. We then defineLosscomputed

with methodM using

LossM =
∫

Ω
IM(Tc,X) f (X)dX (2.14)

as the fraction of the circuits that fail to satisfy the timing constraint. The integral in (2.14), i.e. the

expectation of the indicator variableIM(Tc,X), is computed over the domainΩ of the PDFf (X) of

X. Then,Yield, the fraction of the circuits that fulfill the timing constraint is simply given by

Yield= 1−Loss (2.15)

Therefore, yield estimation and loss estimation are equivalent in the sense that one can be derived

from the other by only subtracting from 1.

One very effective method for computing expectation integrals of the form in (2.14) is the Monte

Carlo technique, which we describe below.

General Monte Carlo Method

Monte Carlo (MC) techniques can be used to compute expectation integrals of the form

G =
∫

Ω
g(X) f (X)dX (2.16)

whereΩ is the domain of the PDFf (X), with f (X)≥ 0 for all X and
∫

Ω f (X)dX = 1. MC estimation

of G in (2.16) is accomplished by drawing a set of independent random samplesX1,X2, ...,XN from

f (X) and by using

GN = (1/N)
N

∑
i=1

g(Xi) (2.17)

The estimatorGN above is itself a random variable. The theorems below show the mean (expecta-

tion) and the error for the general MC estimateGN.

Theorem 2.4.1.The general MC estimator in (2.17) is an unbiased estimator as its mean is equal

to G, i.e. E{GN}= G.
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Proof. As Xi ’s are independent identically distributed (i.i.d.) random variables

E{GN}= 1
NE{∑N

i=1g(Xi)}= 1
N .N.E{g(X)}=

∫
Ω g(X) f (X)dX = G (2.18)

Theorem 2.4.2.With 95%confidence, the error of the general MC estimator in (2.17) is as shown

in (2.19):

|Error| ≈ 2σ√
N

= 2
√

VAR{GN} (2.19)

Proof. According to Theorem2.4.1, the mean of MC estimator is equal to the integralG that it is

trying to estimate, i.e.,E{GN}= G. As Xi ’s are i.i.d. RVs,the variance ofGN isVAR{GN}= σ2/N,

whereσ2 is the variance of the random variableg(X) given by

σ2 =
∫

Ω
g2(X) f (X)dX−G2 (2.20)

The standard deviation ofGN can be used to assess its accuracy in estimatingG. If N is sufficiently

large, due to the Central Limit Theorem,GN−G
σ/
√

N
has an approximate standard normal (N(0,1)) dis-

tribution. Hence,

P(G−1.96 σ√
N
≤GN ≤G+1.96 σ√

N
) = 0.95 (2.21)

whereP is the probability measure. The equation above means thatGN will be in the interval

[G−1.96 σ√
N
,G+1.96 σ√

N
] with 95% confidence. Thus, one can use the error measure in (2.19) in

order to assess the accuracy of the estimator.

Several techniques, calledvariance reduction techniques, exist for improving the accuracy of

MC evaluation of expectation integrals. In these techniques, one tries to construct an estimator with

a reduced variance for a given, fixed number of samples, or equivalently, the improved estimator

provides the same accuracy as the standard MC estimator but with considerably fewer number of

samples. This is desirable because computing the value ofg(Xi) is typically computationally or

otherwise costly. Next, a well-known variance reduction technique called importance sampling will

be described.
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General Importance Sampling (IS) Technique

One MC variance reduction technique is importance sampling (IS) [58,59]. IS improves upon the

standard MC approach described above by drawing samples forX from another distributioñf (X).

G in (2.16) is first rewritten as below

G =
∫

Ω

(
g(X) f (X)

f̃ (X)

)
f̃ (X)dX (2.22)

If X1,X2, ...,XN are drawn fromf̃ instead off , the improved estimator̃GN takes the form

G̃N =
1
N

N

∑
i=1

g(Xi)
f (Xi)
f̃ (Xi)

(2.23)

where the factorf (Xi)/ f̃ (Xi) has been used in order to compensate for the use of samples drawn

from the biasing distributioñf . As can be seen by observing (2.22), in order for the improved

estimator above to be well-defined and unbiased, two requirements must hold:

1. f̃ (X) must be nonzero for everyX for which f (X)g(X) is nonzero. We refer to this as the

safety requirement.

2. f̃ (X) must be a regular normalized PDF such that its integral over the whole space must be

equal to 1, i.e.
∫

f̃ (X)dX = 1. This is referred asregularity requirement.

The ideal choice for the biasing distributioñf is

f̃ideal(X) =
g(X) f (X)

G
(2.24)

which results in an exact estimator with zero variance with a single sample! However,f̃ideal obvi-

ously cannot be used in practice since the value ofG is not known a priori. Instead, a practically

realizable f̃ that resembles̃fideal is used. The key (and also the challenge) in using IS in practical

problems is the determination of an effective biasing distribution that results in significant variance

reduction.

2.4.2 Standard MC (STD-MC) Loss Estimation

After the description of general MC estimation above, standard MC (STD-MC) estimator for loss

with integral in (2.14), is straightforward. Equation2.14 is obtained by replacingg(X) in (2.16)
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with IM(Tc,X). Thus, for estimatingLossM shown in (2.14), by using MC technique,g(Xi) in (2.17)

must be replaced withIM(Tc,Xi). The resultant STD-MC estimator forLossM is written as in (2.25).

LossMN = (1/N)
N

∑
i=1

IM(Tc,Xi) (2.25)

whereM is the method used to computedM
C (X) in (2.12), Xi ’s are the drawn samples according to

f (X) in (2.14) andTc is the timing constraint. Provided that the methodM utilized by STD-MC

estimator is a very accurate method, if the number of samplesN is abig enough number, then the

estimator in (2.25) gives very accurate results. In order for standard MC analysis to be affordable,

the number of samples in probability space one has to work with needs to be limited. This, however,

adversely affects the accuracy of the STD-MC estimator, which has a large error for a small number

of samples. The computational cost is the weakness of the STD-MC method and has prevented it

from finding widespread use for practical yield estimation, even though it is widely used as a golden

reference in assessing the accuracy of other timing yield estimation techniques.

STD-MC loss estimation can be divided into two: transistor level Monte Carlo (TL-MC) and

block (gate) level Monte Carlo (BL-MC). Both use the STD-MC loss estimator equation in (2.25) to

estimate loss but they differ in the methodM they prefer to compute the indicator variableIM(Tc,Xi)

in (2.25). As it is shown in (2.13), the circuit delaydM
C (X) must be computed in order to compute

this indicator variable. Thus, TL-MC and BL-MC basically differ in the methodM, they prefer to

compute circuit delay, i.e.dM
C (X).

For each drawn sampleXi , TL-MC loss estimation employs TL simulation method, explained in

Section2.2.1, in order to compute the path delays and circuit delay in (2.12). The indicator variables

for all drawn sample points are collected using (2.13). At the end, loss estimate is computed us-

ing (2.25). Because of the high computational cost of TL simulations for each sample, it is generally

believed that TL-MC analysis cannot be used in practice for estimating timing yield, even though

there are some arguments to the contrary [60].

BL-MC loss estimation, differently from TL-MC, uses DSTA method, explained in Sec-

tion 2.2.2, to compute the circuit delay for each drawn sample point (Xi). BL-MC is computationally

much cheaper than TL-MC as DSTA is much cheaper than TL simulation, which was explained in

Section2.2.1and2.2.2. This cheaper block-based, gate-level Monte Carlo timing analysis scheme is

in fact calledgolden methodas it is used to verify the accuracy of various block-based SSTA meth-

ods which employ many assumptions and approximations. Recently, variance reduction techniques
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such as Latin hypercube sampling [61] were used to improve the efficiency of BL-MC statistical

timing analysis techniques.

We believe that sufficient accuracy and reliability in final timing yield estimation cannot be ob-

tained even by applying Monte Carlo simulations at a high-level using a block-based scheme. We

believe that accurate final verification of timing yield must have TL circuit simulation as its basis,

in line with the common practice in traditional VLSI design where critical paths are simulated at

transistor-level in order to verify that the circuit indeed satisfies the timing constraints. We demon-

strate in this thesis that Monte Carlo transistor-level simulation in conjunction with a novel variance

reduction technique can serve as an accurate yet computationally viable timing yield estimation

method, to be used for final verification before timing sign-off. Next section explains further the

contributions of this thesis.

Related Work

There are several works in the literature that uses importance sampling (IS) or other variance reduc-

tion techniques in order to increase the efficiency, or improve the accuracy of Monte Carlo analysis

of statistical phenomena in electronic circuits. In fact, IS based Monte Carlo analysis has been

used in order to estimate the yield of analog circuits [63], perform failure analysis for SRAM cir-

cuits [64,65,66], for statistical interconnect analysis [67], and even for the statistical timing analysis

of digital circuits [68]. The use of simple, cheap-to-evaluate gate delay models (linear, quadratic

or more sophisticated response surface models) in statistical analysis is also prevalent in the litera-

ture [69,70,71,72]. Moreover, the idea of using path-based transistor-level analysis for statistical

performance verification has also been explored. However, the challenge and key in using IS to

achieve significant variance reduction is the non-costly determination of a useful biasing distribu-

tion. The technique we propose in Chapter4 is novel in the sense that a cheap-to-evaluate gate

delay model and approximate path-based statistical timing analysis are used in a unique way to (in

effect) construct an effective biasing distribution for IS that indeed results in significant variance

reduction/speed-up. Furthermore, an adaptive/automated algorithm we propose makes it possible

to apply this IS technique in practice with negligible overhead. In [63], the outline and a simple

analysis for an IS-like technique (called sectional weighting) that resembles the technique we pro-

pose in this thesis was given. In [63], the authors are not very encouraging regarding the use of this

technique due to the insignificant speed-ups (over standard Monte Carlo) predicted by their simple
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analysis and due to the potentially high computational cost of forming the biasing distribution. The

computational complexity of the construction of the biasing distribution we propose in this paper is

not dependent directly on the dimension of the random parameter space, resulting in negligible over-

head. Moreover, we achieve significant (two-orders of magnitude) speed-ups over standard Monte

Carlo.
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Chapter 3

STATISTICAL TIMING ANALYSIS METHODOLOGY

The statistical timing analysis methodology we propose in this chapter features the following:

• Section3.1: Modeling of inter and intra-die statistical variations based on a quad-tree model

that captures spatial correlations,

• Section3.2: An approximate, polynomial gate delay model (PDM) that captures delay de-

pendence on random transistor parameters, gate load and input slope,

• Section3.3 and 3.4: Identification of a set of statistically critical paths for a circuit, based

on a block level Monte Carlo (BL-MC) statistical timing analysis that uses PDM and a path

sensitization test to identify false paths,

3.1 Quad-tree Based Parameter Variation Model

In this section, we present the statistical model we use for inter and intra-die variations in pro-

cess and transistor parameters, which are explained in Section2.3.1. The inter-die variations are

perfectly spatially correlated throughout the circuit. In order to model intra-die variations and the

resulting (partial) spatial correlations in the circuit, we use the quad-tree model that was proposed

by Agarwal et. al. [2].

General Parameter Modeling

A statistical process or transistor parameter can be modeled as shown in (3.1), wherePinter represents

inter-die variation andPintra represents intra-die variation component. Therefore,Pinter is the same

throughout a single die but varies between different dies, whereasPintra varies even between two

transistors in the same die. Due to spatial correlation, the correlation betweenPintra components of

two transistors decreases while the distance between them increases.Pinter has the nominal value

of the corresponding statistical parameter as its mean whereasPintra has zero mean. AsPinter and
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Pintra are independent from each other, the total variance of a statistical transistor parameter can be

written as in (3.2).

P = Pinter +Pintra (3.1)

σ2 = σ2
inter +σ2

intra (3.2)

whereσ2
inter is the variance ofPinter andσ2

intra is the variance ofPintra.

Quad-tree Model for Both Inter and Intra-die Variations

The quad-tree model can be used to model both inter-die variation and intra-die variation with spatial

correlation. In the quad-tree model, the area of a die is partitioned into rectangles forming a grid

structure. For each level,q, of the quad-tree model, the die area is divided into2q×2q rectangles.

Figure3.1shows the quad-tree model that is used in our work.

The top level (q= 0) is associated with the random variable,Pinter, in (3.1) and its mean is equal

to the nominal value of the parameterP. Other than the top level, each level,q, in a quad-tree

model is associated with a probability density function with meanµq and standard deviationσq.

Each grid rectangle at each level of a quad-tree is associated with an independent random variable,

Rintra(x,y)q, with the PDF of the corresponding level, where(x,y)q shows the coordinate of the

corresponding rectangle at levelq. Figure3.1shows the(x,y)q pairs up to level 2. Therefore, each

level is associated with a PDF so that all random variables at the same level has the same PDF,

which is associated with that level. The mean of the PDF of every level other than the top level is

zero, i.e.µq = 0 for q = 1,2, ...,Q−1 whereQ is the number of levels. The sum of the variance of

the PDF of each level other than the top level (q = 0) is equal to the intra-die variance as shown in

(3.3).

σ2
intra =

Q−1

∑
q=1

σ2
q (3.3)

whereQ is the number of levels andσ2
q is the variance of the PDF corresponding to levelq in the

quad-tree model.

In this model, a statistical process or transistor parameterP such as channel length is expressed
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Figure 3.1:4-level quad-tree model
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as follows

P = Pinter +
Q−1

∑
q=1

Rintra(x,y)q (3.4)

where the random variablePinter models the perfectly correlated inter-die variations,Rintra(x,y)q are

layout position(x,y) dependent random variables that are assigned to levelq of the quad-tree model,

andQ is the total number of levels in the model for both intra and inter-die variations. In most of

the previous work,Pinter andRintra(x,y)q are assumed to be independent random variables with a

Gaussian distribution. In our approach, the basic statistical process and transistor parameters and

the random variables in (3.4) can have arbitrary (joint) PDFs.

An example can be given for clarification. Suppose we have a gate that resides at(5,3)3 where

the model in Figure3.1is utilized. A statistical parameter corresponding to that gate may be written

as

P = Pinter +Rintra(2,1)1 +Rintra(3,2)2 +Rintra(5,3)3 (3.5)

As a result, in a Q-level quad-tree model,∑Q
q=122(q−1) = 4Q−1

3 random variables are needed for

every basic process or transistor parameter.After drawing and assigning a number to each random

variable (grid) according to its corresponding PDF, a random transistor parameter is computed ac-

cording to the location of the transistor as shown in the example above by (3.5). Drawing a random

sample and determining the transistor parameters accordingly will be clarified more at the end of

this section.

Can Quad-tree Model Capture Spatial Correlation?

As explained in Section2.3.1, spatial correlation in statistical timing literature means that the gates

closer to each other have more correlated random parameters than the gates far away from each

other. Below the ability of the quad-tree model to capture this spatial correlation is investigated.

Proposition 3.1.1. The quad-tree model captures the spatial correlation such that the gates or

transistors in closer grids have more correlated parameters than the gates in grids far away from

each other.

Proof. The aim is to show that the correlation between two instances of the same statistical pa-

rameter corresponding to two different gates in the circuit increases if the distance between them
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decreases. Assume thatPi andPj are the two parameter instances of the same parameter corre-

sponding to gatei and gatej respectively. If a quad-tree model with Q levels is used,Pi , Pj and their

correlation can be written as

Pi = Pinter +
Q−1

∑
q=1

Rintra(xi ,yi)q (3.6)

Pj = Pinter +
Q−1

∑
q=1

Rintra(x j ,y j)q (3.7)

Corr(Pi ,Pj) =
Cov(Pi ,Pj)√

VAR{Pi}.VAR{Pj}
(3.8)

wherePintra = ∑Q−1
q=1 Rintra(x,y)q, Corr(Pi ,Pj) is the correlation andCov(Pi ,Pj) is the covariance of

Pi andPj . Therefore,

VAR{Pi}= VAR{Pj}= σ2
inter +σ2

intra = σ2 (3.9)

As all Rintra(x,y)q’s andPinter’s are independent,Cov(Pi ,Pj) becomes,

Cov(Pi ,Pj) = VAR{Pinter}+
Q−1

∑
q=1

Eq.VAR{Rintra(xi ,yi)q} (3.10)

whereEq is 1 if (xi ,yi)q = (x j ,y j)q and otherwiseEq is 0. ThenCorr(Pi ,Pj) becomes,

Corr(Pi ,Pj) =
σ2

inter +∑Q−1
q=1 Eq.VAR{Rintra(xi ,yi)q}

σ2 (3.11)

In the quad-tree model, the gates in grids closer to each other, have more commonRintra(x,y)q’s,

thereforeEq is equal to one for more levels. Considering the fact that in the quad-tree model,

VAR{Rintra(xi ,yi)q} depends only on the levelq and is equal toσ2
q, the numerator of (3.11) will

always be a bigger value for the gates residing in grids closer to each other. For instance, if the two

gates reside in the same grid even at the bottom level, thenEq is one for all levels. As a result of

this, Corr(Pi ,Pj) reaches its maximum value, 1, which means that the random parameters of two

gates are fully correlated. The correlation decreases while the number of common grids of two gates

decreases, i.e. the distance between two gates increases.



Chapter 3: Statistical Timing Analysis Methodology 47

Random Sample Generation Using Quad-tree Model

Before starting timing analysis, a variation model must be constructed in order to determine the

values of the random parameters like gate length and threshold voltage of each gate in the circuit.

For this purpose, we use the quad-tree model, explained above. The random parameter values of

each gate depends on its grid location and each random parameter is computed using (3.4). A drawn

random sample pointX is basically a realization for the random values of each grid location in

the quad-tree model. Random sample generation using quad-tree model is best explained with an

example:

For instance assume that there is only one random parameter gate length (L) and a 4-level quad-

tree model shown in Figure3.1is used. As explained above, for level 0, the mean of the correspond-

ing PDF is the nominal gate length and its variance isσ2
inter as level 0 represents inter die variation.

For other levels, the mean is equal to 0 and the variance is equal toσ2
q. Given the total variance of

gate length, i.e.σ2
total, the variance of each levelσ2

q is determined in consistence with (3.2) and (3.3).

Drawing a sample means that for each grid in the 4-level quad-tree model, a random value is gen-

erated according to the PDF of the corresponding layer in the quad-tree model. As we assumed a

4-level quad-tree model, a total of44−1
3 = 85 grids and so85 random variables should be generated

for one sample drawing operation. As a result of this drawing, a 85 dimensional sample vectorX

is obtained. Using thisX vector and the location of the gates, the gate lengths of all gates can be

computed as shown in (3.4). For each gate, only four random variables are added as shown in (3.5),

because there are only 4 levels. However, we still need theX vector, because different gates residing

in different grids require different random variables selected from the85random variables stored in

X. If another random parameter had existed,X would have been a2×85= 170dimensional vector

and for each gate two random parameters using (3.4) would have to be computed.

The random sample generation explained here is used not only for the extraction of the statisti-

cally critical paths explained in Section3.3but also for IS based Monte Carlo explained in Chapter4.

In our work, we consider two basic statistical parameters: the gate channel length (L) and the thresh-

old voltage (Vt). We use four levels in the quad-tree model including a top level covering the whole

area of the circuit with one grid rectangle. As a result, a total of 170 random variables exist in our

circuit, as explained in the previous paragraph.
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3.2 Gate Delay Models

In the timing yield estimation methodology proposed in this work, an approximate but cheap (in

terms of evaluation cost) gate delay model is used as the key tool in devising an effective biasing

distribution for importance sampling in a unique manner to accelerate Monte Carlo yield analysis.

The gate delay model is also used for the detection of statistically critical paths, which is explained

in Section3.3. Up to now, two approximate but fast gate delay models have been proposed by us.

In previous work [73], we have employed a stochastic version of the logical effort gate delay model

introduced in Section2.2.4, for this purpose. Section3.2.1explains this model. Because this model

does not consider the effect of input slope and thus not accurate enough, we have later proposed a

more advanced polynomial gate delay model (PDM), which is explained in Section3.2.2. Concepts

like input slope, load capacitance used in this section are introduced in Section2.1.

3.2.1 Stochastic Logical Effort (SLE)

From Logical Effort (LE) to Stochastic Logical Effort (SLE)

Equation (2.9) in Section2.2.4provides a way of decomposing the effects of statistical parameter

variations on gate delays. In a different context, Sutherland et. al [17] analyzed different semi-

conductor processes with varying supply voltages, and observed that almost all of the effect of

process parameters and supply voltage on gate delay is captured by the reference inverter delay (τ

in (2.8)), even when the parameters vary over a large range spanning different fabrication processes.

The logical effortg and the unitless parasitic delayp of a gate exhibit relatively little variation with

process parameters. Exploiting this observation in the context of timing yield analysis, in [74] a

stochastic logical effort (SLE) model was proposed where the delay of a gate was modeled as

dLE
r (X) = τ(X) (p+gh) (3.12)

whereX is a vector of random variables as explained in Section3.1andτ(X) is the reference inverter

delay when the parameters are given byX. p is the parasitic component,g is the logical effort and

h is the fanout, which are described in detail in Section2.2.4. As is apparent in this equation, in the

stochastic logical effort approximation, all process and environmental variations are captured by the

statistical variableτ while g, p and therefored = (p+gh) are assumed to be independent of process

parameters. If only inter-die variations are modeled as it was assumed in [74], or equivalently, if the
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quad-tree model with only its top level1 is used, then statistical parameters on the chip at all locations

are perfectly correlated andX has a dimension equal to the number of random device parameters.

For instance, if only gate length and threshold voltage are assumed to be random parameters, then

X is a two dimensional vector. In this case, using the stochastic characterization ofτ for the same

reference inverter for all of the logic gates on the die captures this perfect statistical correlation

among gates. We refer to the approximation given in (3.12) asfirst-degree stochastic logical effort

(abbreviated asSLE.d1).

A further refinement of this approximation is described by the following equation

dLE
r (X) = τ(X) (p(X)+g(X)h) (3.13)

where the dependency ofp andg on X is also modeled. We call this modelsecond-degree stochas-

tic logical effort (SLE.d2). SLE.d2 is more accurate as it considers the variations ofp andg but

computationally it is more expensive.

In both versions of SLE, in order to compute the delay of a pathπ in a circuit, we simply add

the delays of the gates onπ:

dLE
π (X) =

k

∑
r=1

dLE
r (X) (3.14)

HeredLE
r (X) is the delay of ther-th gate on the pathπ. dLE

r (X) is computed by evaluating (3.12)

for SLE.d1and (3.13) for SLE.d2. For this evaluation, a full transistor-level simulation of the whole

circuit containing the logic path is not necessary. However, the values ofτ(X) (for both SLE.d1

and forSLE.d2), andp(X) andg(X) (for SLE.d2) at a givenX are needed. These derivations are

explained below.

Computation of SLE Model Parameters

They can be computed at a givenX by running transistor-level circuit simulations on small test

circuits which contain only the reference inverter (forτ(X)) or the gate under consideration (for

p(X) andg(X)) together with a proper driver and load circuitry [17]. Figure3.3 shows the test

circuit constructed with only reference inverters to computeτ(X). For computingτ(X), first the

random parameters of all inverters in the figure are set according toX and then the number of

inverters connected to the output of a previous inverter is iterated from 1 to 3. This means thath

1It is not rational to call it quad-tree model as the quad-tree model is proposed to model intra-die variations, which
require more than one level.
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is iterated from 1 to 3 ash is equal to the output load capacitance over input capacitance. At each

iteration, by performing TL transient analysis explained in Section2.2.1, the delay of the inverter

between nodes 3 and 4 is recorded. As a result, a plot similar to Figure3.2 is obtained. The x-axis

Delay of 

the gate in 

the middle

h, fan-out

p.τ(X)

fitted line with 

slope = g.τ(X)

1 2 3

Figure 3.2:The fanout (h) vs. delay plot for the gate between nodes 3 and 4 of the test circuit

in the plot is fanout,h, and the recorded delays are marked by big black dots. A line is fitted to

the marked dots as shown in the figure. This line has the slopeτ(X)g. As g is 1 for the reference

inverter by definition, the slope is equal toτ(X). Also the point where the line intersects the y-axis

is equal toτ(X)p if SLE.d1 is used. IfSLE.d2 is used, a similar extra test circuit with a similar plot

should be used for each gate type2 to computep(X) andg(X). But this time, instead of inverters,

the test circuit in Figure3.3 is constructed with the gate type, whosep(X) andg(X) values will be

computed. The slope of the fitted line is used to computeg(X), whereas the point of intersection

with the y-axis is used to computep(X) of the corresponding gate type. In [73], we implemented

both SLE versions above and demonstrated the results on two very simple single path circuits while

considering only the inter-die variations.

Disadvantages of SLE

Both SLE versions have some disadvantages in terms of accuracy and efficiency when complex

circuits with intra-die variations are considered. Starting with the accuracy problems, SLE does not

2Gate types refer to different gates with different number of inputs and different functionality like AND, OR, NOR,
NAND, etc.
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Figure 3.3:Reference circuit forτ(X) computation

model input signal’s slope, although the input slope directly affects the delay of the gate especially

when unbalanced loads occur in the circuit. In order to observe the lack of efficiency, assume that

gate length (L) and threshold voltage (Vt) are the only random process parameters in the circuit.

Then, if the intra-die variations are ignored, each sampleX has two components, one for gate length

and one for threshold voltage. If the intra-die variations are not ignored, each gate on a path may

have a different (L, Vt) pair. In this case, even the gate types of the gates are same, for each gate,

a new costly TL simulation is required to computeτ(X) (for both SLE.d1 and forSLE.d2), p(X)

andg(X) (for SLE.d2), which makes SLE inefficient especially when intra-die variations are not

ignored.

Refinements on SLE

Alternatively, the parametersτ(X), p(X) and g(X) can be modeled by polynomials in terms of

random process parameters like gate length. In this case, a few number of TL simulations can be

enough to construct the polynomial model. As a result, for the assumption of only two random

parameters as above, the delay of a gate transforms into a polynomial ofL, Vt and fan-out (h). Using

polynomials increases the efficiency as the only significant cost is the construction of the polynomial
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coefficients and this is done only once for a standard cell library3. After computing the coefficients

for each gate type, i.e. characterizing the cell library, the delay of any gate and corresponding to

any X can be computed by a simple polynomial evaluation. Here, it should be noted that similar

pre-characterizations of standard cell libraries are typically performed for designers to be able to

estimate the performance of their designs.

As a result, to overcome the accuracy and efficiency problems of SLE, we advance the SLE

model by using polynomials and taking the effect of input slope into account. In this advanced

model, gate delays are represented as a polynomial of input slope, fanout and random process pa-

rameters. This model, which we use as an approximate delay computation method throughout this

thesis, is calledpolynomial delay model(PDM) and will be explained next.

3.2.2 Polynomial Delay Model (PDM)

The polynomial gate delay model uses third-degree polynomials to express the delay and the output

slope as a function of the random process and transistor parameters, input slope and load (fanout)

of the gate. This polynomial gate delay model (PDM) requires more computational resources to

construct (but still very cheap to evaluate), but it is more accurate than the logical effort delay model

and results in a much more effective biasing distribution for importance sampling, which will be

clarified in Section4.2.

If the channel lengthL and threshold voltageVt are considered as the random transistor param-

eters, then the delay and the output slope of a gater can be represented with

dPDM
r (Lr ,Vt r ,hr , InSr) (3.15)

and

OutSPDM
r (Lr ,Vt r ,hr , InSr) (3.16)

whereLr andVt r are the random parameters for the transistors in gater, hr is the fanout, andInSr

is the input slope.OutSPDM
r is the output slope anddPDM

r is the delay of gater computed by PDM.

Actually, we have considered high to low, low to high delays and high to low, low to high output

slopes separately, which makes a total of four different polynomial models for each gate type instead

of the two models shown in (3.15) and (3.16). But, for the sake of simplicity, we will explain our

methods and implementations as if we only use the two PDM models in the above equations.

3A standard cell library is a collection of particular logic gates, which is used by designers to construct their digital
circuit designs.
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Path Delay Evaluation with PDM

Using this model, the delay of a pathπ with k gates in a circuit can be easily computed as follows.

First, given the input slope of the first gate in the path (dictated by a primary input), the input slopes

of all the other gates are computed using (3.16) and

InSi+1 = OutSPDM
i (Li ,Vt i ,hi , InSi), i = 1, . . . ,k−1 (3.17)

Then, the delay of the path is computed with

dPDM
π (X) =

k

∑
i=1

dPDM
i (Li ,Vt i ,hi , InSi) (3.18)

whereX is the vector that collects all of the random variable realizations used in the quad-tree model.

The transistor parametersLi andVt i are computed usingX and (3.4) as explained in Section3.1.

Construction of PDM

The polynomial delay models need to be constructed for the standard cell library that is being used.

Delay look-up models for gates are routinely constructed in standard cell characterizations. These

delay models have traditionally been used for static timing analysis. The delay model extraction

needs to be done only once for a standard cell library for a given fabrication process. In order to

construct the gate delay and output slope models for the gates in our library, we run SPICE simula-

tions at suitably chosen sample points and fit third-order polynomials to the simulation data using a

least-squares technique. For the results presented in this thesis, delay models were constructed with

SPICE simulations run per gate at 1700 sample points in the parameter space. These 1700 sample

points were generated as follows. For the two random parameters considered (L andVt in this work),

425 sample points were placed non-uniformly in the rectangle in theL-Vt plane bounded byµ−3.σ

andµ+3.σ for each parameter, whereµ is the mean andσ is the standard deviation of the param-

eter. The sampling frequency was three times higher in the centerµ−σ to µ+ σ interval as shown

in Figure3.4. Only two samples (values) for both input slope and load were used due to almost

linear dependence of delay on these parameters. As a result, we end up with425×2×2 = 1700

points at which SPICE simulations are run.For fanout and input slope only two values are used

because the gate delay versus fanout or input slope relationship is almost linear. This can be seen

from Figures3.5(a)and3.5(b). Figure3.5(a)is created by iterating the fanout of a 4-input NOR

gate and plotting the corresponding gate delays by blue asterisks whereas Figure3.5(b)is created by
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iterating the input slope of a 5-input AND gate and plotting the corresponding gate delays by blue

asterisks4. In each of these figures, the red dashed line represents a line, passing through the first

and the last asterisks, for reference and the blue lines simply connect two consecutive asterisks. It

can be seen from these figures that both fanout and input slope have almost linear relationships with

gate delay. The linear gate delay versus fanout relationship was also assumed by the SLE model

explained above.
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Figure 3.4: Sampling ofL-Vt plane for polynomial delay model generation

We should point out that the parameter space sampling scheme described here for fitting and

building the gate delay model is only rudimentary and was considered adequate for the results

we present in this thesis. If a larger number of random transistor parameters are included in the

gate delay model, a more efficient sampling scheme that does not have exponential complexity,

such as Latin hypercube sampling [75], needs to be employed. Efficient and effective design of

experiments [75] (selection of sample points in the parameter space) in statistical model fitting is a

well studied problem in statistics and beyond the scope of this thesis.

4These two gate types are selected randomly as all gate types have similar plots.
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(b) Gate delay versus input slope

Figure 3.5: The linearity of delay versus fanout and input slope
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Accuracy of PDM

We use PDM to approximate path delays. Therefore, its accuracy should be tested by compar-

ing path delays computed by PDM with the actual path delays computed by TL simulation. In

Figure3.6, scatter plots that show the accuracy of the polynomial delay model against SPICE TL

simulations is presented. In order to generate the graph in Figure3.6, the delay of a complete path

in each circuit in the ISCAS’85 benchmark suite was determined both by TL circuit simulations

(dTL
π (X)) and by evaluating the polynomial gate delay model (dPDM

π (X)) at a number of sample

points in the parameter space.This plot has 20,000 points that are generated as explained at the end

of Section3.1 considering the intra-die variations with spatial correlation and by using the 4-level

quad-tree model shown in Figure3.1. Two random transistor parameters are considered, gate length

(L) and threshold voltage (Vt). The red line in the plots is thex = y line used to visualize the shifts

and errors of polynomial delay model.The polynomial delay model captures the trends and relative

variations in delay as a function of the transistor parameters quite accurately. However, the delay

model is not accurate enough to replace transistor-level simulation in predicting timing yield with

sufficient accuracy as will be seen in Chapter5. We use this model in order to detect statistically

critical paths as explained in Section3.3and to construct an effective biasing distribution to be used

in importance sampling as explained in Section4.2, but this model is not meant to be a replacement

for transistor-level simulation in accurately determining the delay of a circuit.

Other than the visual demonstration of the path delay accuracy of polynomial delay model shown

by Figure3.6, the accuracy can be computed by the well-knownroot mean square error(RMSE)

computation. (3.19) shows the RMSE computation for the path delays computed by polynomial

delay model.

PDMRMSE =

√
∑N

i=1(dTL
π (Xi)−dPDM

π (Xi))2

N
(3.19)

wheredTL
π (Xi) is the actual path delay computed by SPICE TL simulations for the givenXi sample

point anddPDM
π (Xi) is the approximate path delay computed by polynomial delay model for the

sameXi . Xi ’s are generated as explained at the end of Section3.1based on 4-level quad-tree model

andN is the number of drawn sample points. The normalized root mean square error (NRMSE)

can be computed through dividing the RMSE by the sample mean of actual path delay as shown
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in (3.20).

PDMNRMSE =
PDMRMSE

∑N
i=1 dTL

π (Xi)
N

(3.20)

For the same 20,000 sample points used in Figure3.6, the computed percentage PDMNRMSE value

for a path taken from each benchmark circuit is shown in Table3.1.

Table 3.1:Percentage NRMSE of PDM for a path in each circuit of ISCAS’85 benchmark

Circuit Name c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552

PDMNRMSE % 1.69 2.52 1.87 1.66 0.42 0.77 1.00 0.44 0.46

Discussion

Gate delay models are utilized in almost all statistical timing analysis methodologies. The nature

of the algorithms used in statistical analysis may impose restrictions on the complexity and form

of these models. For instance, in block-based statistical timing analysis (SSTA) schemes based on

PDF algebra/propagation, linear or at most quadratic models are used in order to make the PDF

computations tractable and practical. In our methodology, the only requirement on the delay model

is that it be cheap to evaluate. Otherwise, there is no restriction on the complexity (can use higher-

order polynomials) or form (not restricted to polynomial models) of the delay model. A more

complex delay model may result in a larger construction cost, but again, this is done only once for a

gate library for a given process. The ability to use more accurate and complex gate delay models is

one of the key benefits of our methodology.

3.3 Collection of Statistically Critical Path Candidates

Reminder for Critical and Statistically Critical Paths

Critical path in a circuit is the longest true path which is responsible for the delay of the circuit as

explained in Section2.2.3. When the statistical process variations are considered, the circuit may

have different critical paths for different assignments to the random variables in the circuit. A path

which is critical for one assignment may not be critical for another assignment. As a result, the

set ofstatistically criticalpaths consists of the paths that are critical for at least one assignment to
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random parameters. The collection of statistically critical paths is a hot research topic as explained

in Section2.3.1.

The Purpose of This Section

The purpose of this section is to explain the method we use for the extraction of the statistically

critical pathcandidatesin a circuit with inter and intra-die variations. They are only candidates

because some of them may be false paths and so not responsible from the circuit’s delay as explained

in Section2.2.3. Next section explains how we detect these false paths among these candidates and

eliminate them to form a statistically critical paths set. Below, the overview and the details of the

method used for the detection of statistically critical path candidates will be given.

Overview of The Method

For the extraction of the statistically critical path candidates in a circuit, a block level Monte Carlo

(BL-MC) method based on DSTA as explained in Section2.4.2is preferred for our work. A quad-

tree structure explained in Section3.1 is used to model the inter die variations and intra-die varia-

tions with spatial correlation. The BL-MC is applied as follows:

1. According to the quad-tree model,N random sample pointsXi ’s are drawn.

2. For eachXi , the random parameter values, i.e. gate length (L) and threshold voltage (Vt) in our

case, for all gates in the circuit are computed fromXi as described at the end of Section3.1.

Then, havingL andVt corresponding to each gate, input slopes and gate delays are computed

using PDM as explained in Section3.2.

3. Knowing the gate delays (e.g. numbers inside the nodes of timing DAG in Figure2.6), a

DSTA analysis of Section2.2.2is performed to compute the circuit delay and the topologi-

cally longest path corresponding to the sample pointXi .

4. At the end of DSTA the discovered topologically longest path for sampleXi is recorded to the

statistically critical path candidates set. At the end ofN iterations, this set has the paths each

of which is the topologically longest path for at least one of theN sample points.
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The value ofN can be very high as DSTA with PDM polynomial evaluations is a fast operation

that can be repeated for many times. Below one iteration of this method is explained in detail starting

from the layout representation of a circuit.

Details of the Method

We start with a design exchange file (def) representation of a circuit [76]. Def file is the output of

layout (place and route) tools and has cell info, layer information, complete net list connectivity,

floor plan specs, physical location of every design instance (gate), routing geometry data and etc.

The def files are converted into a timing DAGC(V,E), as demonstrated in Figure2.6. In this

DAG structure, each logic gate has an ID number and important features extracted from the def file.

These features aretype, ancestors, neighborsandfanoutof the logic gate. For instance, a gate with

ID 654 from an example circuit has the following features:

type: ’and2’

ID: 654

neighbors: [747 742 737 730 725 721 719 714 712]

ancestors: [630 645]

fanout: 2.42

L: 0.1299

Vt : 0.2032

These features show that this example gate is a 2 input AND gate withID 654 andfanout2.42.

The gate’s output is connected to 9 gates, whose IDs are shown byneighborsattribute. It has two

inputs connected to the outputs of the gates with IDs 630 and 645 as shown byancestorsfeature.

The last two features are the random parameters for the gate. As we assume two random parameters,

gate length (L) and threshold voltage (Vt), for each gate, there are two features corresponding toL

andVt .

A random sampleXi is drawn according to the 4-level quad-tree model as explained in Sec-

tion 3.1before performing a DSTA analysis as the overview of the method suggests. As we assume

two random parameters (L andVt), this results in 170 dimensional sample point vectorXi as com-

puted in Section3.1. After the random sampleXi is drawn, theL andVt values of each gate are

computed using Eqn.3.4 given the random sampleXi and the position of the corresponding gate
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extracted from the def file in the quad-tree model as described in Section3.1. After drawing the

random sampleXi and determining the random parameters (L andVt) of all gates according to the

Xi , DSTA algorithm can be applied as explained below.

Our DSTA implementation on a circuit timing DAG (C(V,E)) with features explained above is

shown in Algorithm1. The algorithm takes the circuit DAGC including the gate features introduced

above and the PDM coefficients as input arguments.PrimaryInSlopein the algorithm corresponds

to the default input slope for the primary inputs of the circuit.V(IDnum) expression in the algo-

rithm returns a pointer to the gate (vertex) with IDIDnum. First, the algorithm topologically sorts

the timing DAG such that the ID of every vertex comes after the IDs of all its predecessors and these

topologically sorted IDs of the gates are put inSortedIDsarray. Then, by the help of this topologi-

cally sorted array, the algorithm processes the gates one by one from leftmost gates connected to the

primary inputs to the rightmost gates connected to the primary outputs. For each gate, it computes

the possible maximum output arrival time and records it asarrivaltime feature of the gate. The

algorithm also records the corresponding ancestor gate, which causes this maximum output arrival

time asdelay f ather. As a result, Perform-DSTA algorithm inserts new features likearrivaltime,

gatedelay, out putslope, delay f atherfor each gate (vertex) ofC:

- arrivaltime: The computed maximum output arrival time for the corresponding gate.

- gatedelay: Gate’s own delay computed by PDM method and used in the computation of

arrivaltime.

- out putslope: The output slope of the gate, which is required for PDM delay and output slope

computation of the gates connected to the output of this gate.

- delay f ather: The ID of the ancestor gate which results in maximum output arrival time for

the corresponding gate.

After this DSTA analysis, it is very easy to find the topologically longest path. This path is

found by first finding the gate having the maximum output arrival time. Such a gate is certainly a

rightmost gate, whose output is a primary output. This gate’s ancestor, which is responsible from its

output arrival time to be such high, can be found by looking at the gate’sdelay f atherfeature. Then
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all gates in the topologically longest path are traced by iteratively following the IDs indelay f ather

features of the succeeding gates until a leftmost gate, whose inputs are primary inputs is reached.

The operation explained above, which consists of drawing a random sample according to quad-

tree model, determining the parameters of the gates inside the circuit according to this random

sample, then performing the algorithm shown by Alg.1 and determining the topologically longest

path in the circuit is repeated forN different sample pointsXi and all collected topologically longest

paths constitute the statistically critical path candidates set.

An Alternative Method

Alternatively, DSTA could be performed only once but instead of collecting only the topologically

longest path, all paths having delays closer to the topologically longest path could be collected as

statistically critical path candidates. Because, one can argue that only the paths in a delay prox-

imity to the topologically longest path may become the topologically longest path for a different

assignment to the random values in the circuit. We have implemented this alternative method and

its details are in SectionA. Other than our implementation, there are well known algorithms [77]

for extracting the K-most critical paths in the circuit.

Conclusion

For the solution of this problem, instead of BL-MC explained above, effective block-based SSTA

statistically critical path extraction methods (e.g. in [78,79]) could have been used as well. In any

case, the extraction of these critical path candidates is very important for both timing analysis and

optimization of digital circuits.

After collecting the statistically critical path candidates, these candidates should be tested by a

sensitization criteria as explained in Section2.2.3, to eliminate the false paths, because false paths

are not responsible for the delay of the circuit in any case. The next section explains the method we

use for detecting and eliminating the false paths in the statistically critical path candidates set.
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Algorithm 1 Perform-DSTA(C(V,E), PDM model for delay and output slope)

1. SortedIDs= Topological-Sort(C)

2. for current= 1 to length(SortedIDs) do

3. r = V(SortedIDs(current))

4. if r.ancestors== /0 then

5. r.out putslope= OutSPDM
r (r.L, r.Vt , r. f anout,PrimaryInSlope)

6. r.gatedelay= dPDM
r (r.L, r.Vt , r. f anout,PrimaryInSlope)

7. r.arrivaltime= r.gatedelay

8. r.delay f ather= { }
9. else

10. r.arrivaltime= 0

11. for AncestorInd= 1 to length(r.ancestors) do

12. ancestor= V(r.ancestors(AncestorInd))

13. CandidateOut putslope= OutSPDM
r (r.L, r.Vt , r. f anout,ancestor.out putslope)

14. CandidateGatedelay= dPDM
r (r.L, r.Vt , r. f anout,ancestor.out putslope)

15. CandidateArrivaltime= CandidateGatedelay+ancestor.arrivaltime

16. if CandidateArrivaltime> r.arrivaltime then

17. r.arrivaltime= CandidateArrivaltime

18. r.gatedelay= CandidateGatedelay

19. r.out putslope= CandidateOut putslope

20. r.delay f ather= ancestor.ID

21. end if

22. end for

23. end if

24. end for
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3.4 False Path Detection Using Satisfiability

Overview

In Section3.3, the method we use to collect the statistically critical path candidates is explained

in detail. These candidates should be tested in order to detect the true paths and label them as

the statistically critical paths. The method proposed in this section discriminates the statistically

critical path candidates using thestatic sensitizationcondition. The false path issue and the static

sensitization are explained in Section2.2.3. As a reminder, for a path to be statically sensitizable,

all side inputs on this path should be able to take non-controlling values at the same time for at least

one input assignment. If a path is statically sensitizable it is definitely a true (sensitizable) path, thus

a signal can propagate through this path and this path can be responsible from circuit delay. Our

method, similar to [3], converts the problem into aboolean satisfiability(SAT) problem and uses

popular SAT solvers in order to decide whether a path is statically sensitizable, i.e. true path.

Boolean Satisfiability Problem

A boolean function consists of logic operations AND, OR and NOT. For the boolean formulas in this

thesis,¬ represents a NOT,∨ represents an OR and∧ represents an AND. Any boolean function can

be represented by using these operators. (3.21) and (3.22) are two examples for boolean functions.

Boolean satisfiability problem is a decision problem and its aim is to detect whether a given

boolean (logic) function issatisfiable. A boolean function is satisfiable if it can evaluate to TRUE

(logic-1) for an assignment to the boolean variables (literals) in boolean function. The detection of

this assignment is also included in the solution of satisfiability problem. Satisfiability is the first

problem that is proven to be NP-complete. For instance, the boolean formula in (3.21) is satisfiable

for the input assignmentA,B = 1,1 as it evaluates to logic-1 (TRUE) for this assignment, whereas

the formula in (3.22) is unsatisfiable, which means that there is no input assignment that makes the

function evaluate to TRUE (logic-1). An assignment that results in boolean function evaluate to

TRUE is said to satisfy the boolean function. Although the problem is proven to be NP-complete,

there are many heuristics called SAT solvers and they are very efficient and successful in determining

whether a given boolean function is satisfiable or unsatisfiable and if it is satisfiable, they can detect

which input assignment satisfies the function. There are even competitions to pick the best SAT

solver of the year [80].
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(a∨¬b)∧ (¬a∨b) (3.21)

(a∨¬b)∧ (¬a∨b)∧¬b (3.22)

Conjunctive Normal Form (CNF)

In boolean logic, a function is inconjunctive normal form(CNF) if it is a conjunction (AND) of

clauses, each of which is a disjunction (OR) of literals (boolean variables) where negative (NOT) lit-

erals are possible. It is also calledproduct of sumsform. Two boolean functions in (3.21) and (3.22)

are written in CNF as the clauses of OR functions are connected by AND operator. All logic func-

tions corresponding to the logic gates in a standard cell library can be converted into a CNF form.

CNF is an important standard for satisfiability because almost all SAT solvers accept boolean func-

tions only in CNF form as an input. For this reason, if it is desired to know whether a boolean

function is satisfiable or not, then it should first be converted into a CNF form before testing its

satisfiability by a SAT solver.

Representation of Combinational Circuits as a CNF Satisfiability problem

Table 3.2:Gate type equations and the corresponding CNF formulas

gate type equation CNF formula

not x = ¬a (a∨x)∧ (¬a∨¬x)

and x = a∧b (¬a∨¬b∨x)∧ (a∨¬x)∧ (b∨¬x)

or x = a∨b (a∨b∨¬x)∧ (¬a∨x)∧ (¬b∨x)

nand x = ¬(a∧b) (¬a∨¬b∨¬x)∧ (a∨x)∧ (b∨x)

nor x = ¬(a∨b) (a∨b∨x)∧ (¬a∨¬x)∧ (¬b∨¬x)

A simple boolean equation can be represented as a CNF satisfiability problem. Table3.2shows

the CNF equivalents of the boolean equalities corresponding to different gate types. For each gate

type, the assignments to the variables that make the corresponding CNF formula evaluate to TRUE,

give all allowable values that the variables can get without violating the equation of the correspond-

ing gate type. For instance, for NOT gate, the output (x) is the complement of the input (a), i.e.
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x = ¬a. The only allowed assignments for(a,x) pair are(0,1) and(1,0). These two possible as-

signments are the only assignments that satisfy the corresponding CNF formula. Similarly for AND

gate with equationx = a∧ b the possible assignments for(a,b,x) are (0,0,0), (0,1,0), (1,0,0),

(1,1,1) and these four assignments are also the only assignments that satisfy the corresponding

CNF representation of the equation. Using this fact we can also convert a combinational circuit

into a CNF satisfiability instance. In such a case, the variables in the circuit can only take the logic

values that satisfy the corresponding CNF formula. For instance, the simple circuit in Figure3.7

can be represented as a CNF formula showed in (3.23). An assignment to variables, which satisfies

this CNF, has the logic values that the variables in the circuit are able to get.

a
b

c
d

x

y

z

Figure 3.7:Sample combinational circuit

CNF = (¬a∨¬b∨¬x)∧ (a∨x)∧ (b∨x)

∧(¬c∨¬d∨y)∧ (c∨¬y)∧ (d∨¬y)

∧(x∨y∨¬z)∧ (¬x∨z)∧ (¬y∨z)

(3.23)

The Satisfiability Based Method to Detect True Paths

We can insert test conditions to the circuit CNF formulas and check whether these conditions are

satisfied. For instance, the static sensitization condition was that all side inputs of the path under

consideration should have non-controlling values. Assume that the static sensitization of the path

a− x− z in Figure3.7 will be tested. The side inputs for this path areb andy. Simultaneously,b

should be 1 andy should be0 in order to have non-controlling values for the side inputs of the path

a− x− z. As explained in Section2.2.3in detail, this is becauseb is a side input of a NAND gate

andy is a side input of an OR gate. We can insert this condition at the end of the CNF description

of the circuit in (3.23) as shown in (3.24).
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CNFa−x−z = (¬a∨¬b∨¬x)∧ (a∨x)∧ (b∨x)

∧(¬c∨¬d∨y)∧ (c∨¬y)∧ (d∨¬y)

∧(x∨y∨¬z)∧ (¬x∨z)∧ (¬y∨z)

∧b∧¬y

(3.24)

For the CNF formula in (3.24) to be satisfiable, i.e. evaluate to TRUE; obviouslyb should be1

andy should be0. Alternatively, ifCNFa−x−z is satisfiable then the side inputs can simultaneously

take non-controlling values and therefore the patha− x− z is statically sensitizable, which means

it is certainly a true path. By using this satisfiability based true path detection method, the static

sensitization of a path in the statistically critical path candidates set is checked as follows:

1. First of all, the CNF formula corresponding to the circuit under consideration is generated.

2. Secondly, the non-controlling values for the side inputs of the path under consideration are

determined and these are inserted to the circuit’s CNF formula as conditions similar to what

is done in (3.24).

3. The satisfiability of the resultant CNF formula is tested by a SAT solver like [81]. If the path

is satisfiable then this means the path is statically sensitizable and a true path and thus it is

kept. If it is unsatisfiable, then the path is discarded.

When this operation is applied to all paths in thestatistically critical path candidatesset, a new

set calledstatistically critical paths setconsisting of only true paths is obtained.

The next chapter explains a novel timing yield estimation method based on importance sampling

and transistor level Monte Carlo simulations. The method uses the statistically critical paths set,

which is generated as explained in this chapter. The aim of this method is to speed up the transistor

level statistical timing analysis so that an accurate timing yield estimation can be performed as a

final verification before timing sign-off.



Chapter 4: MC Yield Estimation with Importance Sampling and Transistor Level Simulation 68

Chapter 4

MC YIELD ESTIMATION WITH IMPORTANCE SAMPLING AND

TRANSISTOR LEVEL SIMULATION

In this chapter, a novel loss estimation method is proposed: an improved loss estimator which

is based on importance sampling (IS) that significantly accelerates the convergence of the transistor

level Monte Carlo (TL-MC) estimatorwithout forfeiting accuracy and enables its use in practice.

Section4.1provides the details of transistor level Monte Carlo (TL-MC) loss estimator that is briefly

reviewed in Section2.4.2. Section4.2 presents the novel importance sampling (IS) loss estimator.

Section4.3explains the heuristic algorithm that practically avails the IS loss estimation. Section4.4

provides theoretical analysis for the means, variances and errors of standard TL-MC and IS estima-

tors and deduces a speed-up expression by comparing the speeds of both estimators.

4.1 Standard Transistor Level Monte Carlo (TL-MC) Loss Estimator

The actual loss can be precisely computed only by detailed transistor level analysis. Therefore,

using Eqn.2.14, the actual loss can be written as

LossTL =
∫

Ω
ITL(Tc,X) f (X)dX (4.1)

Ω is the region, where PDFf (X) is defined. The superscript·TL indicates that the value of indicator

random variableITL(Tc,X) defined by (2.13) is computed based on transistor-level (TL) simulations,

that is, the path delays and hence the circuit delay in (2.12) are computed with TL simulations.

Computation ofdTL
π (X) requires that the parameters of the gates inside the pathπ are set according

to X as explained at the end of Section3.1 and then a SPICE TL simulation (transient analysis) is

performed as explained in Section2.2.1.

However, the integral in (4.1) does not have an analytical solution and it requires an infinite

number of TL simulations as it is an integration over a continuousΩ region. Monte Carlo (MC)

method is widely used to estimate such complex integrations.As shown in (2.25), the standard



Chapter 4: MC Yield Estimation with Importance Sampling and Transistor Level Simulation 69

N-sample MC estimator (TL-MC) forLossTL in (4.1) is given by

LossTL
N =

1
N

N

∑
i=1

ITL(Tc,Xi) (4.2)

whereLossTL
N is the loss estimate,Tc is the timing constraint that shows the maximum allowed

circuit delay andXi is a random sample point. Indicator variable is the same as in (4.1), but this

time it is computed only forN times. In (4.2) above, theN samples for the random variables,Xi , i =

1. . .N, are drawn from the joint PDFf (X) and for every sampleXi , the random parameters for the

transistors in the circuit are computed as described at the end of Section3.1. Then, a TL simulation

with SPICE, reviewed in Section2.2.1, is performed for each path in the set of statistically critical

pathsΠcrit (obtained as described in Section3.3and3.4) to compute the path delaysdTL
π (X), finally,

(2.12), (2.13) and (4.2) are used to compute the loss estimateLossTL
N . As Theorem2.4.1proves, the

TL-MC estimator in (4.2) converges to the actual loss,LossTL. Therefore, ifenough1 number of

samples are drawn, TL-MC estimator can precisely estimate loss.

When compared with other methods like SSTA reviewed in Section2.3.2, TL-MC loss estimator

described above results in accurate yield estimation results, because it is based on TL simulations as

opposed to an approximate gate delay model, and the maximum operation in (2.12) is not approxi-

mated in any manner. However, the standard TL-MC estimator typically requires too many samples

(N) to converge. For each sample, one needs to perform TL simulations for all of the statistically

critical paths, and hence, the computational cost of the TL-MC estimator could become prohibitive

for practical use.

4.2 Transistor Level Importance Sampling (IS) Loss Estimator

The Choice for Biasing Distribution

Considering the general IS technique, described in Section2.4.1, the IS based transistor level Monte

Carlo estimator for loss

LossISN =
1
N

N

∑
i=1

ITL(Tc,Xi)
f (Xi)
f̃ (Xi)

(4.3)

draws the samplesXi from another, biasing distributioñf . We propose the following biasing distri-

bution to be used in the IS estimator above

f̃ (X) =
IPDM(Tc

ε,X) f (X)
LossPDM,ε (4.4)

1The enough number will be clarified in Section4.4.
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where the loss estimateLossPDM,ε and IPDM(Tc
ε,X) are computed based on the approximate but

cheap gate delay model PDM described in Section3.2, without performing any TL simulations.

IPDM(Tc
ε,X) is computed as shown in (2.13) using PDM method for computing the path delays

instead ofM. Computation ofLossPDM,ε will be described later in this section.

Substituting the biasing distributioñf in (4.4) into (4.3), and performing some simplifications

based on the fact thatIPDM(Tc
ε,Xi) takes the value1 for all samples drawn from̃f (X), we arrive at

a simplified form of the IS estimator

LossISN =
LossPDM,ε

N

N

∑
i=1

ITL(Tc,Xi) (4.5)

where the samplesXi are drawn fromf̃ (X) in (4.4).

Requirements on Biasing Distribution

For the IS estimator in (4.3) and (4.5) to be well-defined and unbiased, two requirements introduced

in Section2.4.1must be satisfied:

1. Assume thatΘ represents the region wherẽf (X) is defined and nonzero. Then, thesafety

requirementnecessitates thatΘ region covers the space whereITL(Tc,X) f (X) is non-zero. In

other words, for every sampleXi , f̃ (Xi) must be non-zero ifITL(Tc,Xi) f (Xi) is non-zero.

2. Theregularity requirementnecessitates that

∫

Θ
f̃ (X)dX =

∫

Θ

IPDM(Tc
ε,X) f (X)

LossPDM,ε dX = 1 (4.6)

As LossPDM,ε is a constant value, this simplifies into

LossPDM,ε =
∫

Θ
IPDM(Tc

ε,X) f (X)dX. (4.7)

Safety Requirement

In (4.4) above, the target delay is set toTc
ε = Tc− ε whereε is a margin parameter. This margin

parameter is introduced in order to guarantee thatf̃ (Xi) is nonzero everywhereITL(Tc,Xi) f (Xi) is

nonzero, i.e.,IPDM(Tc
ε,Xi) must take the value1 everywhereITL(Tc,Xi) is 1. The margin parameter

ε must be large enough so that the indicator variables never assume the valuesIPDM(Tc
ε,Xi) = 0
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(the timing constraintTc
ε is satisfied according to the PDM model) andITL(Tc,Xi) = 1 (the actual

circuit fails to satisfy the timing constraint according to TL simulations) for any of the sample

points,Xi . This condition is called themargin condition. We note here that thesafety requirement

above dictates that the margin condition is satisfied. In the next section, we present an algorithm for

computingLossISN . As this algorithm explores a set of sample points, it also gathers the data required

for computing a value ofε that satisfies the margin condition. For ease of exposition, we continue

the mathematical presentation of our method as ifε is determined first, before computingLossISN . In

reality, the algorithm carries out theLossISN computation andε determination concurrently.

Regularity Requirement

As the regularity requirementabove dictatesLossPDM,ε in (4.5), should be computed as in (4.7).

However, similar to (4.1), LossPDM,ε integration shown in (4.7) cannot be computed analytically.

To overcome this problem,LossPDM,ε is estimated using a standard MC (STD-MC) estimator ex-

plained in Section2.4.2based on the approximate but cheap gate delay model (PDM) described in

Section3.2, without performing any TL simulations as follows

LossPDM,ε
K =

1
K

K

∑
i=1

IPDM(Tc
ε,Xi) (4.8)

for which one can afford to use a very large number of samplesK, since the evaluation of

IPDM(Tc
ε,Xi) for every sample is very cheap based on the approximate delay model. As MC es-

timators are unbiased, usingLossPDM,ε
K with a very largeK instead ofLossPDM,ε in (4.5) can satisfy

the regularity requirement. The experiments, presented in Chapter5, show that satisfying the safety

requirement is more difficult and critical for the efficiency and the accuracy of the IS estimator.

IS Estimator Evaluation

In evaluating the IS estimator, in order to draw a sample fromf̃ (X) in (4.4), we first draw a sample

Xi from f (X) as described at the end of Section3.1. We keep the sample ifIPDM(Tc
ε,Xi) evaluates

to 1 at the sample point and discard it otherwise. Again, the evaluation ofIPDM(Tc
ε,Xi) is performed

cheaply based on the delay model, described in Section3.2. Each kept sample constitutes one of

theXi in (4.5). LossISN is then computed by determining whetherITL(Tc,Xi) = 1 for each such kept

sample, i.e., by performing TL SPICE simulations.
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4.3 ε-Margin Detection

This section presents CompLossMC-IS (Alg.2), the algorithm for determiningLossISN as described

by Eqn.4.5. To accomplish this, CompLossMC-IS first generates a set ofNSsample pointsX =

{X1,X2, ...,XNS} from the distributionf . Each of these sample points is drawn using the 4-level

quad-tree model as shown in Figure3.1 and described in Section3.1. The choice ofNSwill be

discussed later in this section. LetYi be these sample points in decreasing order ofdPDM
C , i.e.,X =

{Y1,Y2, ...,YNS} such thatdPDM
C (Yi)≥ dPDM

C (Yj) if i < j. Using the sample setX , CompLossMC-IS

must compute

- the subsetW = {Y1,Y2, ...,YN} ⊆ X consisting of all sample points for whichIPDM(Tc
ε,Yi)

evaluates to 1 (using the gate delay model),

- the subsetQ ⊆W of sample points for whichITL(Tc,Yi) = 0 (by performing TL simulations),

- the setSafeMargin= {YN+1,YN+2, ...,YN+SM} (to be defined below) and the corresponding

value ofε, and

- usingε above, the value ofLossPDM,ε as in (4.8).

Then, the loss estimateLossISN will be computed as

LossISN = LossPDM,ε.
|W −Q |
|W | (4.9)

where|W −Q | shows the size of the set difference ofW from Q and |W | shows the size of set

W . The first factor on the right hand side of (4.9) is the IS biasing factor, and the second factor is

the fraction of points inW which result in a loss value.It can be seen that the numerator of the

second factor (|W −Q |) represents the summation in (4.5) and the denominator (|W |) represents

N in (4.5).

The only non-straightforward task that the algorithm must carry out is the determination of the

margin parameterε. ε uniquely determinesW , Q , LossPDM,ε, and thusLossISN . The requirements on

ε are discussed next.
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Algorithm 2 CompLossMC-IS (NS, SM, Tc)

1. GenerateNSsample points{X1, X2, ..., XNS} from f (X).

2. For eachXi , computedPDM
C (Xi).

3. Let X = {Y1, Y2, Y3, ..., YNS} be theNSsamples

in decreasing order ofdPDM
C (Yi).

4. i = 1, Z = /0, SafeMargin= /0

5. while (|SafeMargin|< SMandi ≤ NS) do

6. dC = dTL
C (Yi)

7. if (dC < Tc) then

8. Z = Z∪{Yi}
9. if SafeMargin== /0 then

10. ε = Tc−0.5(dPDM
C (Yi)+dPDM

C (Yi−1))

11. end if

12. SafeMargin= SafeMargin∪{Yi}
13. else

14. SafeMargin= /0

15. end if

16. i = i +1

17. end while

18. Let N = i−SM−1 andSafeMargin= {YN+1, ...,YN+SM} .

19. Let W = {Y1, ...,YN}
20. Q = W ∩Z

21. Using a huge set of K samples computeLossPDM,ε = 1
K ∑K

i=1 IPDM(Tc
ε,Xi)

22. LossISN = LossPDM,ε . |W −Q |/ |W |
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Constraints onε

For importance sampling to provide an unbiased estimator in our approach,ε must be large enough

to satisfy the safety requirement that for every value ofX that f (X)ITL(Tc,X) is non-zero,f̃ (X) is

also non-zero. This translates to the requirement thatITL(Tc,Xi) = 1⇒ IPDM(Tc
ε,Xi) = 1. Let us

defineεabs to be the smallest value ofε that theoretically guarantees the margin condition.εabs as a

function of the timing constraintTc is given by

εabs(Tc) = maxover allX such thatdTL
C (X)≥Tc

(Tc−dPDM
C (X))

However, the value ofεabs is not known in practice because it requires knowledge ofdTL
C throughout

the entire sample space. Therefore, the algorithm must try to heuristically provide a value ofε close

enough toεabs in order to minimize the bias in the estimator.

On the other hand, as seen in (4.32), the closerLossPDM,ε is to LossTL, the more speedup theIS

estimator achieves over standard TL-MC estimator. MakingLossPDM,ε close toLossTL requires that

ε be kept close to a particular valueε∗ that satisfiesLossPDM,ε∗ = LossTL. Thus, to makeIS efficient

while preserving correctness, we must chooseε as close toε∗ as possible. Similarly to the case in

the paragraph above, the value ofε∗ is not known in practice, since it requires the entire sample

space to be covered by TL simulations.

To summarize, the algorithm must pick a value ofε as close toε∗ as possible without going below

εabs. However, since neither of these quantities are known a priori, we use the heuristic algorithm

in this section to compute anε that is a good compromise. In the experiments in Chapter5, we

demonstrate that our heuristic strikes a good compromise between accuracy and efficiency in all

benchmarks.

Heuristic Criterion forε

CompLossMC-IS explores the samplesYi in increasing order ofi, i.e., in decreasing order of their

dPDM
C values. For a given value ofSM (short for ”Safety Margin”), CompLossMC-IS’s goal is to

selectε satisfying the following property:

- There is a sequence ofSMsample points{YN+1, ...,YN+SM} that constitute the safety margin

(called asSafeMarginin the algorithm). For each pointY in the margin,

dTL
C (Y) < Tc
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And ε satisfies

ε = Tc−0.5(dPDM
C (YN+1)+dPDM

C (YN))

The safety margin (heuristically) provides confidence that the safety condition is satisfied for the

remaining points for which a TL simulation has not been carried out. This is because all of these

remaining samples have a value ofdPDM
C less thanTc− ε.

In Chapter5, we show that, using a reasonably smallSM, the heuristic criterion provides an

estimator with negligible bias. CompLossMC-IS runs onlySM additional TL simulations beyond

those needed forLossISN
2. The computational cost ofLossPDM,ε determination is unavoidable with

theIS estimator and is not due to the adaptive determination ofε.

DeterminingNS:

Roughly speaking, the user provides the algorithm with a numberNS, and he expects to carry out

approximatelyNS.LossTL simulations. Since the intended use of our proposed approach is accu-

rate, late-stage yield determination, a rough estimate forLossshould be available. If not,LossPDM

can be used as a rough guide.LossPDM can be computed by (4.8) whereTc
ε should be replaced by

Tc. It is important to note that the choice ofNSis guided by how small one would like the variance

of theLossIS estimator to be. The purpose ofNS is not to sample the parameter space in order to

determine a safe value ofε. ε is determined heuristically and this heuristic is empirically justified

separately.NSis chosen so that roughlyNS.LossTL simulations are affordable, and the variance of

the IS estimator forNS.Losssamples is as small as desired.

Alternatively, the user can start with a very smallNS value and advance this value until he

performs the maximum affordable number of TL simulations. Assuming that the upper bound for

the loss isLossUB and the maximum affordable number of TL simulations per path isNMAX, then

the two step process for determiningNSis as follows:

1. Start withNS= NMAX/LossUB. Perform IS estimation using CompLossMC-IS algorithm.

2The overhead due to the additionalSMsimulations is taken into account in the reportedSpeedup results in Chap-
ter5.
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2. If number of TL simulations is smaller thanNMAX. IncrementNSby adding a new sample

point (Xi) and perform IS estimation with this newNSuntil the number of TL simulations

becomes equal toNMAX.

As the main source of computational cost is TL simulations, this two step process forNSdeter-

mination does not introduce a serious additional cost. Because, in the repetitive IS estimations, the

previously computedITL(Tc,Xi) andIPDM(Tc
ε,Xi) values are kept and alsoLossPDM,ε is computed

only for once in step 1. When this second suggestion forNSdetermination is compared with the

previous one, it is seen that there is an additional cost in the second suggestion as the algorithm

CompLossMC-IS is repeated more than once in step 2. However, in this second suggestion, the

user performs exactly the maximum affordable number of TL simulations which is not guaranteed

in the previous suggestion. For increasing the efficiency of the second suggestion, the number of

algorithm repetitions can be decreased by adding more than one sample in step 2. But this time the

guarantee to perform exactly the desired number of TL simulations is relaxed. If in step 2,k samples

were added instead of 1 sample, then at worst case, at the end of the process the user would perform

NMAX +k−1 TL simulations, whereas the number of algorithm repetitions would decreasek times.

4.4 The Convergence Analysis

In this section, we present a precise analysis that quantifies the variance reduction and the speed-up

obtained when we use the IS estimator instead of the standard TL-MC estimator.We start with the

analysis of mean and variance of the TL-MC and IS estimators and then derive error expressions for

both estimators.

Means of TL-MC and IS estimators

Theorem 4.4.1.The mean of the standard TL-MC estimator in (4.2) is the actual loss given by the

integral in (4.1). Therefore, the TL-MC estimator is an unbiased estimator.

Proof. As Xi ’s are independent identically distributed (i.i.d.) random variables fromf (X), mean of
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the TL-MC estimator can be written as

E{LossTL
N }=

1
N

N

∑
i=1

E{ITL(Tc,Xi)}

=
1
N

N

∑
i=1

∫

Ω
ITL(Tc,X) f (X)dX

(4.10)

whereΩ is the region wheref (X) is defined and nonzero. From (4.1), the integral above is equal to

actual loss, i.e.LossTL.

E{LossTL
N }=

1
N

.N.LossTL

= LossTL
(4.11)

Theorem 4.4.2.The mean of the IS estimator in (4.5) is equal to the actual loss given by the integral

in (4.1), provided that the safety and regularity requirements given in Section4.2are satisfied.

Proof. As f̃ (X) is a regular probability density function (regularity requirement) andXi ’s are i.i.d.

random variables from̃f (X), the mean of IS estimator can be written as

E{LossISN }=
LossPDM,ε

N

N

∑
i=1

E{ITL(Tc,Xi)}

=
LossPDM,ε

N

N

∑
i=1

∫

Θ
ITL(Tc,X) f̃ (X)dX

(4.12)

whereΘ is the region wherẽf (X) is defined and nonzero. Substitutingf̃ (X) in (4.4) and using the

fact that inΘ regionIPDM(Tc
ε,X) is always 1

E{LossISN }=
LossPDM,ε

N

N

∑
i=1

∫

Θ
ITL(Tc,X)

IPDM(Tc
ε,X) f (X)

LossPDM,ε dX

=
LossPDM,ε

N

N

∑
i=1

1
LossPDM,ε

∫

Θ
ITL(Tc,X) f (X)dX

(4.13)

According to the safety requirement,Θ region must cover the region whereITL(Tc,X) f (X) is

nonzero. Therefore, if safety requirement is satisfied, the integration above is equal to the actual

loss, i.e.LossTL given by (4.1).

E{LossISN }=
LossPDM,ε

N

N

∑
i=1

LossTL

LossPDM,ε

= LossTL

(4.14)
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The analysis of means of both TL-MC and IS estimators shows that both estimators converge

to the actual loss,LossTL. This is a very useful property that approximate loss (or yield) estimation

methods based on many assumptions like SSTA methods do not have. As they both converge to

the actual loss, the most important point is the convergence speed of the TL-MC and IS estimators,

which is directly related with the variances of both estimators for a given number of drawn sample

points for TL simulations.

Variances of TL-MC and IS estimators

Theorem 4.4.3.The variance of the TL-MC estimator in (4.2) is given by

VARTL(N) = VAR{LossTL
N }=

LossTL.YieldTL

N
(4.15)

whereYieldTL = 1−LossTL andN is the number of drawn samples or equivalently the number of

TL simulations performed per path.

Proof. As Xi ’s are i.i.d. random variables fromf (X) andE{ITL(Tc,X)} = LossTL, the variance of

TL-MC estimator can be written as

VAR{LossTL
N }=

1
N2

N

∑
i=1

VAR{ITL(Tc,Xi)}

=
1

N2

N

∑
i=1

E{(ITL(Tc,Xi)−LossTL)2}

=
1

N2

N

∑
i=1

(
E{(ITL(Tc,Xi))2}− (LossTL)2)

(4.16)

Substituting the fact thatITL(Tc,X) is either 1 or 0 and so(ITL(Tc,X))2 = ITL(Tc,X)

VAR{LossTL
N }=

1
N2

N

∑
i=1

(
LossTL− (LossTL)2)

=
1

N2N
(
LossTL(1−LossTL)

)

=
LossTL.YieldTL

N

(4.17)

Theorem 4.4.4.The variance of the IS estimator in (4.5) is equal to

VARIS(N) = VAR{LossISN }=
LossTL.(LossPDM,ε−LossTL)

N
(4.18)
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Proof. As Xi ’s are i.i.d. random variables from̃f (X) the variance of IS estimator can be written as

VAR{LossISN }=
(LossPDM,ε)2

N2

N

∑
i=1

VAR{ITL(Tc,Xi)}

=
(LossPDM,ε)2

N2

N

∑
i=1

E
{(

ITL(Tc,Xi)−E{ITL(Tc,Xi)}
)2

} (4.19)

As Xi ’s are drawn fromf̃ ,

E{ITL(Tc,Xi)}=
∫

Θ
ITL(Tc,X) f̃ (X)dX (4.20)

substitutingf̃ (X) in (4.4) and using the fact that inΘ regionIPDM(Tc
ε,X) is always 1,

E{ITL(Tc,Xi)}=
1

LossPDM,ε

∫

Θ
ITL(Tc,X) f (X)dX

=
LossTL

LossPDM,ε

(4.21)

Substituting this to (4.19), we get

VAR{LossISN }=
(LossPDM,ε)2

N2

N

∑
i=1

(
E{(ITL(Tc,Xi))2}−

(
LossTL

LossPDM,ε

)2
)

(4.22)

As indicator variable is either 1 or 0,E{(ITL(Tc,X))2}= E{ITL(Tc,X)}= LossTL

LossPDM,ε ,

VAR{LossISN }=
(LossPDM,ε)2

N2

N

∑
i=1

(
LossTL

LossPDM,ε −
(LossTL)2

(LossPDM,ε)2

)

=
(LossPDM,ε)2

N2 .N .

(
LossTLLossPDM,ε− (LossTL)2

)

(LossPDM,ε)2

=
LossTL.(LossPDM,ε−LossTL)

N

(4.23)

The theorems4.4.3and4.4.4prove that for the same number of samples (N), the degree of the

variance reduction we get by using the proposed IS estimator in (4.5) can be written as

VARTL(N)
VARIS(N)

=
YieldTL

LossPDM,ε−LossTL (4.24)

95% Confidence Errors of TL-MC and IS estimators

The error of an estimator is the deviance of the estimator’s result from the actual loss for a general

estimator.The central limit theorem suggests that for sufficiently largeN, both TL-MC estimator

in (4.2) and IS estimator in (4.5) have loss estimates with normal distribution. Using this fact, the

errors of the standard TL-MC andIS estimators are derived and the results are compared below.



Chapter 4: MC Yield Estimation with Importance Sampling and Transistor Level Simulation 80

Theorem 4.4.5.The error of the standard TL-MC estimator in (4.2) obtained withN samples, where

N is sufficiently large, is

ErrorTL(N) = 2

√
LossTL.YieldTL

N
= 2

√
VARTL(N) (4.25)

with more than 95% confidence.

Proof. According to the central limit theorem, whenN is sufficiently largeLossTL
N −LossTL√
VARTL(N)

has a normal

distribution withN(0,1). Hence

P
(

LossTL−1.96
√

VARTL(N)≤ LossTL
N ≤ LossTL +1.96

√
VARTL(N)

)
= 0.95 (4.26)

which means thatLossTL
N is in the interval

[
LossTL−1.96

√
VARTL(N), LossTL +1.96

√
VARTL(N)

]

with probability 0.95. Therefore, the error of the TL-MC estimator with more than 95% confidence

can be written as

ErrorTL(N) = 2
√

VARTL(N)

= 2

√
LossTL.YieldTL

N

(4.27)

Theorem 4.4.6.The error of theIS estimator in (4.3) or (4.5) obtained withN samples, whereN is

sufficiently large, is given by

ErrorIS(N) = 2

√
LossTL(LossPDM,ε−LossTL)

N
= 2

√
VARIS(N) (4.28)

with more than 95% confidence.

Proof. According to Central Limit Theorem, whenN is sufficiently largeLossISN−LossTL√
VARIS(N)

has a normal

distribution withN(0,1). Hence

P
(

LossTL−1.96
√

VARIS(N)≤ LossISN ≤ LossTL +1.96
√

VARIS(N)
)

= 0.95 (4.29)

which means thatLossISN is in the interval
[
LossTL−1.96

√
VARIS(N), LossTL +1.96

√
VARIS(N)

]

with probability 0.95. Therefore, the error of the IS estimator with more than 95% confidence can

be written as

ErrorIS(N) = 2
√

VARIS(N)

= 2

√
LossTL(LossPDM,ε−LossTL)

N

(4.30)
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Discussion

In the derivation of theIS estimator error above,LossPDM,ε was assumed to be a known deterministic

quantity. However,LossPDM,ε is estimated using the estimator in (4.8), and in fact, it is a random

quantity with a nonzero variance that decreases proportionally to the number of samplesK used

in (4.8). In order for the error derivation for theIS estimator in (4.5) to be valid, the estimation

of LossPDM,ε must be performed by using a large enough number of samples in (4.8) so that it has

negligible variance. This would validate its treatment as a deterministic quantity in the derivation

of the error equation for the IS estimator. The use of a large number of samples in (4.8) is easily

affordable, because no TL simulations are performed, only simple evaluations of the cheap delay

models are needed. The results we present later show that the theoretical error expressions derived

here are in excellent agreement with experimental data.

The error equations (4.25) and (4.28) that have been derived with Theorem4.4.5 and Theo-

rem4.4.6for the standard TL-MC and IS Monte Carlo estimators can be used to compare them. If

the same number of samplesN is used for both methods (meaning an equal number of TL simula-

tions), then the ratio of the errors of the estimators is given by

ErrorRatio(N) =
ErrorTL(N)
ErrorIS(N)

=
√

YieldTL

(LossPDM,ε−LossTL) (4.31)

Alternatively, suppose a bound on the allowable estimation error is given. The ratio of the number

of samples (TL circuit simulations) required by the two approaches to achieve this same error bound

is given by

Speedup =
NTL

NIS
=

YieldTL

LossPDM,ε−LossTL (4.32)

which is obtained by solvingErrorTL(NTL) = ErrorIS(NIS) for NTL
NIS

, which we callSpeedup , since

the number of samples used in the estimators determines the number of TL simulations that need to

be performed on the statistically critical paths of the circuit. Based on (4.24) and (4.32) above, we

note here thatSpeedup can alternatively be computed with

Speedup =
VARTL(N)
VARIS(N)

(4.33)

as the ratio of the variances for the standard TL-MC and IS estimators with the same number of

samplesN = NTL = NIS, i.e., the same number of TL simulations.

Finally, we address a question that may arise in the mind of an attentive reader. IfSpeedup in

(4.32) is large, one might conclude that TL simulations are not needed andLossPDM,ε can simply be
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used as an accurate loss estimate. This conclusion would be based on the observation thatLossPDM,ε

has to be very close toLossTL if one can attain a largeSpeedup in (4.32). However, this conclusion

is not correct.LossPDM,ε is computed using (4.8), whereTc
ε = Tc−ε with ε as the margin parameter.

The margin parameter is determined by an adaptive algorithm which performs TL simulations in its

search for the correctε value. If LossPDM is not computed based on theε value found by the

CompLossMC-IS algorithm described in Section4.3, i.e. ε is assumed to be zero, then the resultant

LossPDM will not be close toLossTL. Therefore, attaining a largeSpeedup does not mean that the

PDM model is by itself accurate enough for loss estimation. The PDM model needs to be in some

sense “calibrated” or corrected with the TL simulations run at the critical samples in the parameter

space selected using importance sampling.
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Chapter 5

EXPERIMENTAL RESULTS: ISCAS’85 BENCHMARK

5.1 Experimental Setup

We first describe our experimental setup in order to help interpret our results better:

We present results on the ISCAS’85 benchmark suite [16] in this paper. We use the 0.13µ

standard cell library provided by Graham Petley [82] for the transistor-level implementations of the

gates needed in order construct the benchmark circuits. We have added some missing 5-,8- and

9-input gates to this library, as they are needed for some of the circuits in the ISCAS’85 benchmark

suite. The layout information for the circuits, i.e., relative locations of the gates on the layout

for a particular benchmark circuit (needed for the intra-die variation model that captures spatial

correlations), are extracted from the def file provided on the VLSI CAD group web pages at Texas

A&M University [83].

Two random transistor parameters, namely the transistor gate lengthL and the threshold voltage

Vt , are considered. Both inter and intra-die variations for these parameters are taken into account

and a statistical model as described in Section3.1is constructed. In this model, half of the variation

is allocated to inter-die variations and the other half to intra-die variations [2], with a total3σ/µ ratio

of 15% for both of the random parametersL andVt [84]. In the quad-tree model [2] that captures

spatial correlations, we use four grid levels (layers) as shown in Figure3.1. We allocate half of

the variation to the top level that covers the whole area of the circuit with one grid rectangle in

order to capture perfectly correlated inter-die variations. The other three levels in the model capture

the spatially correlated intra-die variations and are allocated one sixth of the total variation each.

These allocations are done by appropriately choosing the variances of the grid random variables

in the quad-tree model. As described in Section3.1, we use 85 random variables in the quad-tree

model per parameter. With two random transistor parameters,L andVt , the random variable vector

X described at the end of Section3.1has a dimension of 170 in all of our experiments.

For each of the circuits in the ISCAS’85 benchmark suite, we determine a set of statistically

critical paths using the method described in Section3.3 and Section3.4. We experiment with two
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timing constraints for each circuit,Tc,low andTc,high that result in roughly 10% and 5% loss, re-

spectively. When we use our improved IS-based estimator for timing yield, the required margin

parameterε that was introduced in Section4.2 is computed automatically using the algorithm de-

scribed in Section4.3. It is important to note that, as it computesε, this algorithm carries out all TL

circuit simulations required for computing the IS estimator.

With the results that we present in this section, we compare the accuracy and the efficiency

of our improved Importance Sampling (IS) estimator in (4.5) against the standard Transistor Level

Monte Carlo (TL-MC) estimator in (4.2). In doing so, we empirically compute the error (variance)

achieved for both of the loss estimators. In order to measure the error of an estimator, we perform

M (to be quantified precisely) independent repetitions of the same experiment (evaluation of the

estimator). In each independent run, we compute the loss estimates with the IS estimator by using

R (to be quantified precisely) independently drawn samples from the PDFf (X) in the parameter

space.In other words,R is equal to theNSshown in CompLossMC-IS of Section4.3. TheseM

independent runs constitute the samples of the loss estimator, and the variance of the loss estimator

is computed over theseM samples. For the IS estimator, most of theR samples are discarded

as explained in Section4.2 and Section4.3 based on the evaluation of the PDM equations, and a

reduced number (NIS on the average) of TL simulations are performed. All of theseNIS simulations

are performed as part of the iterative algorithm for computingε. In other words,NIS includes all of

the TL simulations required to computeε andLossISN . In evaluating the standard TL-MC estimator,

we chooseNTL = NIS samples randomly among theRsamples in every set. For the standard TL-MC

estimator, the results of TL circuit simulations performed at every one of theNTL sample points are

used.

The LossPDM,ε value that is needed for computing the IS estimator in (4.5) is computed using

the PDM based estimator in (4.8) using all of theK = M×R sample points generated during all of

theM runs.

TheSpeedup that we report for the IS estimator over the standard TL-MC estimator represents

the ratio of the number of TL circuit simulations required by the TL-MC and IS estimators to achieve

the same error, as given by (4.32). Alternatively, Speedup is equal to the amount of variance

reduction, i.e. the ratio of the variances for the loss estimates obtained by the two estimators with

the same number of samples (TL simulations), as given by (4.33).
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5.2 IS Estimator Results

Experiment A: Three statistically critical paths

In this experiment, for each benchmark circuit we choose three most statistically critical paths which

are identified using the scheme described in Section3.3 and Section3.4. We then perform the

following:

We constructM sample sets, each withR samples drawn from the PDFf (X) as explained in

Section3.1, with a total ofK = M×R samples in the random parameter space. In this experiment,

we have usedM = 250andR= 200 for bothTc,low andTc,high, for a total ofK = 50,000samples

in each case. For each set, we evaluate theIS estimator. TheIS estimator eliminates most of the

samples in the set without performing TL simulations, as explained in Chapter4. Loss estimates

obtained with theIS estimator and the number of actual TL simulations run per path and for each

set, i.e.Ni
IS for seti, are recorded. All of the sets have the same number of random samples in the

parameter space,R. NIS is equal to the average of theNi
IS’s (NIS = mean(Ni

IS)) and it corresponds

to the number of non-discarded samples at which TL simulations are run.For each experiment,

up toSMextra TL simulations that are used in order to heuristically determine a safe value ofε are

included inNi
IS’s. This allows a fair comparison with standard TL-MC. The variance of the loss

estimates over theM sets is computed asVARIS. The standard TL-MC estimator is evaluated for

every set, usingNIS number of samples chosen randomly. Thus, loss with the TL-MC estimator

is evaluated using the same number of TL simulations as the IS estimator, i.e.,NTL = NIS. The

variance of the loss values computed with the TL-MC estimator is computed asVARTL.

With the construction above, we haveNTL = NIS = N+SM, whereN is the average number of

samples used for TL simulations excludingSMadditional TL simulations used for margin detection.

Hence, we substituteVARIS andVARTL in (4.33) in order to quantify theSpeedup of the IS esti-

mator over the standard TL-MC estimator.Our speed-up computation is reminded below by (5.1).

Speedup =
VARTL

VARIS
with NIS = NTL (5.1)

TheSpeedup results, computed as described above forTc,low andTc,high, for the ISCAS’85 bench-

mark suite are presented in Tables5.1and5.2. In these tables, the mean values forLossIS andLossTL

using the same number of TL simulations (NTL = NIS = N+SM) are also shown. Furthermore, we

also report the loss values (labeled asLoss) computed using TL simulations at all 50,000 samples,
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Table 5.1:Speedup forTc,low, M = 250sets,R= 200samples each,SM= 4

Bench. N+SM Loss
mean

LossTL

mean

LossIS
ErrorTL (%) ErrorIS (%) Speedup

c432 29 0.1129 0.1153 0.1118 105.5 11.4 86

c499 31 0.1239 0.1234 0.1237 95.0 6.6 205

c880 29 0.1112 0.1135 0.1107 105.0 11.0 91

c1355 32 0.1297 0.1286 0.1296 93.3 6.9 181

c1908 30 0.1201 0.1133 0.1193 102.3 9.2 124

c2670 30 0.1195 0.1213 0.1190 96.6 7.0 188

c3540 29 0.1135 0.1105 0.1130 104.8 8.5 152

c5315 28 0.1137 0.1201 0.1135 106.2 7.7 191

c7552 26 0.1001 0.1117 0.0995 117.3 8.7 181

Table 5.2:Speedup forTc,high, M = 250sets,R= 200samples each,SM= 2

Bench. N+SM Loss
mean

LossTL

mean

LossIS
ErrorTL (%) ErrorIS (%) Speedup

c432 16 0.0604 0.0580 0.0598 197.1 17.9 121

c499 12 0.0416 0.0393 0.0412 270.7 19.3 196

c880 14 0.0523 0.0560 0.0516 225.7 17.4 169

c1355 16 0.0637 0.0615 0.0636 189.7 12.5 229

c1908 17 0.0680 0.0671 0.0678 178.6 12.5 205

c2670 19 0.0784 0.0764 0.0779 156.1 8.8 314

c3540 19 0.0748 0.0718 0.0744 158.8 10.8 216

c5315 19 0.0776 0.0829 0.0771 157.9 10.2 242

c7552 15 0.0578 0.0621 0.0574 202.0 13.0 241
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which can be regarded as the real loss value. The mean value of theLossIS estimator was on the

average within 0.57% of the loss value computed using TL simulations at all 50,000 samples. The

mean value of theLossTL estimator was on the average within 4.15% of the loss value computed

using TL simulations at all 50,000 samples.

As discussed in Section4.4, in Tables5.1and5.2, ErrorTL andErrorIS are computed by

ErrorTL = 100× 2
√

VARTL

Loss
(5.2)

ErrorIS = 100× 2
√

VARIS

Loss
(5.3)

andSpeedup represents the ratio of the number of TL simulations required by the standard TL-MC

estimator to the number of TL simulations needed by our proposed IS estimator in order to estimate

the loss of the circuit with the same error (accuracy). Alternatively, if the same number of TL

simulations are used for both of the estimators, the estimation variance for loss will beSpeedup

times less for our IS estimator. As seen in Tables5.1 and 5.2, our accelerated yield estimator

achieves on the averagetwo orders of magnitude(185 on the average)Speedup over standard

Transistor Level Monte Carlo.

Contrasting Absolute Errors of Estimators

In the method we propose, while computing the loss estimatorLossIS, approximate delay computed

using the PDM method (with anε margin) is used by IS in order to achieve a low variance estimator.

The question naturally arises as to how good an estimatorLossPDM is, and whether it itself could be

used for yield estimation. We contrast the absolute errors in the following four estimators:

- LossTL: The Monte Carlo estimator.

- LossIS: The Monte Carlo estimator with importance sampling.

- LossPDM: The PDM estimator with no adjustment

- LossPDM,ε: The PDM estimator with theε margin (i.e., withTc− ε as the timing constraint)

We computed the loss estimated by each approach. The results forTc,low andTc,high are presented

in Tables5.3and5.4 respectively. We have taken theLossTL value computed from 50,000 samples
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Table 5.3:Loss forTc,low, four different estimators

Benchmark Loss LossIS LossPDM,ε LossPDM

c432 0.1129 0.1129 0.1510 0.0937

c499 0.1239 0.1239 0.1304 0.0804

c880 0.1112 0.1112 0.1280 0.0901

c1355 0.1297 0.1297 0.1402 0.0982

c1908 0.1201 0.1201 0.1327 0.1154

c2670 0.1195 0.1195 0.1272 0.1060

c3540 0.1135 0.1135 0.1232 0.0979

c5315 0.1137 0.1137 0.1232 0.1055

c7552 0.1001 0.1001 0.1112 0.0965

as the reference in each case. These reference loss values are labeled asLossin Tables5.3and5.4

and correspond to the columns with the same label in Tables5.1and5.2. TheLossIS, LossPDM and

LossPDM,ε values were also obtained from a single run on the same 50,000 samples1 . To compute

LossPDM,ε we used theε value found during theLossIS computation. As seen in the tables,LossIS is

bias-free in all cases. This is to be expected, sinceLossIS is an unbiased estimator in theory – a fact

experimentally demonstrated further in Section5.4.

The value of the uncorrected PDM estimatorLossPDM is too far fromLossTL to be acceptable

for most benchmarks, resulting in errors of 44.3% at most and 16.1% on the average. It is important

to note that, if one had carried out block-level Monte Carlo (BL-MC)2 statistical timing analysis

using our polynomial gate delay models, this is the accuracy one would have obtained. While delay

values as computed by the PDM model only correlate well with the actual values, in terms of the

absolute value of delay, they are far off. Thus, while the PDM model may serve as a rough guide for

timing and yield optimization, it is not accurate enough for the numerical prediction of yield. This

is important as it justifies the use of our method as a final pass of yield estimation.

1For IS estimator, the algorithm CompLossMC-IS is givenNS= 50,000where allNSsamples are not used for TL
simulation as explained in Section4.3

2BL-MC was reviewed in Section2.4.2and explained in detail in Section3.3. The difference from TL-MC is that the
value of the indicator variable is decided by block level DSTA instead of TL simulations.
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Table 5.4:Loss forTc,high, four different estimators

Benchmark Loss LossIS LossPDM,ε LossPDM

c432 0.0604 0.0604 0.0802 0.0501

c499 0.0416 0.0416 0.0444 0.0231

c880 0.0523 0.0523 0.0634 0.0409

c1355 0.0637 0.0637 0.0701 0.0454

c1908 0.0680 0.0680 0.0756 0.0659

c2670 0.0784 0.0784 0.0843 0.0690

c3540 0.0748 0.0748 0.0822 0.0632

c5315 0.0776 0.0776 0.0834 0.0710

c7552 0.0578 0.0578 0.0629 0.0558

Theε-correctedLossPDM,ε is a better estimator for loss. The fact thatLossPDM,ε is in many cases

close toLossTL might appear to suggest that yield prediction using PDM with theε correction is a

sufficiently accurate and cheap method. However, in order to compute theε correction factor, all

the TL simulations required for computingLossIS have to be carried out. Furthermore,LossPDM,ε is

actually not close enough to the actual loss value to be an accurate estimator in its own right. Thus,

it makes more sense to use more accurate and provably unbiased estimatorLossIS.

LossPDM,ε Estimation

The accuracy ofLossPDM,ε used in IS estimation is important in terms of the regularity requirement

explained in Section4.2.

As explained in Section4.2, LossPDM,ε is estimated using (4.8) and a huge number of sam-

ples, i.e. a bigK. In the experiment above 50,000 samples (K = 50,000) are used to estimate

LossPDM,ε and then thisLossPDM,ε
50,000 is used asLossPDM,ε for computingLossISN as shown by algorithm

CompLossMC-IS in Section4.3. Figure5.1shows the estimateLossPDM,ε
K versusK plot for a sam-

ple benchmark circuit (c1908), whereK is iterated from 1 to 500,000. It can be verified from the

figure thatK = 50,000is a reasonable estimate, which can be used instead of actualLossPDM,ε.
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Figure 5.1: Convergence ofLossPDM,ε
K in (4.8) w.r.t. number of samples (K) (belongs to c1908)

VARIS Convergence

The accuracy of the variance of IS estimator used inSpeedup computation is important as it

determines the performance of our IS estimator.

In the experiments above,M = 250 sets are used to compute the variance of the IS estimator, i.e.

VARIS. ThenVARIS value is used to compute theSpeedup acquired by IS method over standard

TL-MC method. Figure 5.2 shows the reason whyM = 250 is picked. Each plot in this figure

corresponds to a different benchmark circuit and shows the computed variance of IS estimator over

M sets whileM is changed from 1 to 250. In other words, the x-axis shows the number of sets used

for variance computation of IS estimator and y-axis shows the variance of IS (VARIS). Although for

some benchmark circuits like c499VARIS converges when 50 or more sets are used, for the general

case, the variance of the IS estimator does not converge until more than 200 sets are used. Therefore,

to have the accurateSpeedup results, we have used 250 sets and corresponding 250 independent

IS estimations and then the variance of the IS estimator is computed over these independent 250 IS

estimations.
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Experiment B: Ten statistically critical paths

In this experiment, we randomly choose one of the ISCAS’85 benchmark circuits, and repeat the

same experiment described above (Tc,low), but with ten most statistically critical paths3. In this case,

we obtain aSpeedup of 147, which is almost the same as the one obtained for the same benchmark

circuit with only three critical paths. The following values were obtained in this experiment:N = 31,

Loss= 0.1244, meanLossTL = 0.1252, meanLossIS = 0.1238, ErrorTL = 99.32 %, ErrorIS =

8.2 %. These results confirm that theSpeedup achieved by our IS estimator is not dependent on

the number of statistically critical paths considered for a circuit. The efficiency of the IS estimator

does not degrade if a large number of critical paths are included in yield estimation, because the

maximum of the path delays in (2.12) for the overall circuit delay is computed exactly, without

employing approximations. This is a key advantage of our technique. If an approximate maximum

operation is employed in computing the circuit delay from path delays, the accuracy will degrade if

a large number of paths are considered.

5.3 Performance of Margin Detection Algorithm

Recall that theε margin involved in the computation ofLossISN is arrived at using a heuristic in the

algorithm CompLossMC-IS. In order to validate the computedε values, we performed the following

checks:

Confirming thatLossISN is unbiased

Results presented in Figure5.4 in Section5.4 below, and Tables5.3 and5.4 indicate that when a

large number of samplesNSis used,LossISN is an unbiased estimator. Of more practical importance

is the fact that whenLossISN is computed with about30samples, the mean ofLossISN is on the average

within 0.45% of theLossvalue computed from 50,000 samples4.

Exploring different values ofε

Recall thatεabs(Tc) = maxX such thatdTL
C (X)≥Tc

(Tc−dPDM
C (X)) is the smallest value ofε that guaran-

tees the margin condition. As the closest practical approximation to the idealεabs, we computedεabs

3We were not able to run this experiment for all of the circuits in the benchmark suite due to the excessive computa-
tional resources required by the standard TL-MC technique against which we compare our proposed estimator.

4This is derived from Table5.1.
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using the equation above and lettingX range over the 50,000 sample points we had for each bench-

mark. In order to investigate the sensitivity of the yield estimator to the safety margin, we carried

out the following experiment. We forced our importance sampling algorithm to use a fixed value of

ε. We varied this value ofε in the range0, 0.1 εabs, 0.2 εabs, ...,0.9 εabs, εabs. We then computed the

percentage bias error in the mean of the IS estimator for each of these values ofε, including the one

our heuristic computes. The results are shown in Table5.5. The last column presents the results for

theε our heuristic finds. The first observation is that, for each benchmark, there is a value ofε below

which the bias in the loss estimator is too high. This value ofε is different for each benchmark, but

is in the 0.5-0.8εabs range. Above this value ofε, the bias is not very sensitive to the particular value

of ε. The second key observation is that the heuristically foundε value for each benchmark always

results in an acceptable bias (error) in the loss computed. This bias is less than 1% of the absolute

loss. Given that larger approximations are probably involved in parameter variation modeling, etc.,

a bias error of 1% of the loss is certainly negligible.

Validating the value of SM used

For each benchmark, we explored values ofSMfrom 1 toNS. We found that even very small values

of SM result in an acceptable error in the loss computation. Larger values of SM result in values

of ε closer toεabs but this results in only very small differences in the actual bias. In order to make

sure that theε value we choose provides a good compromise between accuracy and high speedup,

and to keep the computational cost still low, we pick SM to be 20% of the number of points that we

expect the IS approach to perform TL simulations on. WhenR= 200, this amounts toSM= 4 for

the examples in whichTc,low (approximate loss is 10%) is considered and toSM= 2 in whichTc,high

(approximate loss is 5%) is considered. With this choice, the bias error in each benchmark is within

approximately 1% of the absolute loss.

WhenR= 200, it is difficult to demonstrate the effect ofSM choice because even very small

SMvalues surely result in very small bias errors. Table5.6demonstrates the effect ofSMchoice on

the resultant percentage bias error of the IS estimator. For this table,R= 500samples andM = 100

sets are preferred because a biggerR value is better for demonstrating the effect ofSMchoice. In

this table, theSM value is iterated starting from its smallest value, 1 and the resultant percentage

bias error of the IS estimator for each benchmark and each differentSMvalue is recorded, which is

computed same as the percentage bias errors in Table5.5. We useTc,low as our timing constraint,
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Table 5.6:TheSMvalue used in CompLossMC-IS and the corresponding percentage bias error

SM=1 SM=4 SM=7 SM=10 SM=13 SM=16 SM=19 SM=100

c432 2.63 0.62 0.44 0.36 0.42 0.42 0.42 0.42

c499 0.53 0.39 0.42 0.42 0.42 0.42 0.42 0.42

c880 1.60 0.11 0.24 0.21 0.25 0.25 0.25 0.25

c1355 0.30 0.16 0.18 0.18 0.18 0.18 0.18 0.18

c1908 1.26 0.77 0.83 0.85 0.85 0.85 0.85 0.85

c2670 0.59 0.25 0.29 0.29 0.29 0.29 0.29 0.29

c3540 0.75 0.36 0.39 0.39 0.39 0.39 0.39 0.39

c5315 0.55 0.38 0.43 0.43 0.43 0.43 0.43 0.43

c7552 0.80 0.59 0.59 0.59 0.59 0.59 0.59 0.59

therefore the expected loss is 10%. As explained above, we always use anSM value equal to the

20% of the number of sample points for which IS estimator performs TL simulations, which results

in SM= 500×10%×20%= 10. According to Table5.6, the bias errors corresponding toSM= 10

is same as the bias errors when a very bigSMvalue like 100 is used. The table is stopped at 100

but the bias errors do not change even when biggerSMvalues are used. This is expected because

after some values ofSM, theε margin computed by CompLossMC-IS does not change for any of

the M sets. Another important consequence deduced from Table5.6would be that the bias error is

not intolerable even when very smallSMvalues are used as argued above. For instance, instead of

SM= 10, usingSM= 4 in CompLossMC-IS, results in very similar bias errors for all benchmark

circuits.

5.4 Experimental Convergence Analysis

The purpose of this experiment is to empirically validate the theoretical convergence analysis con-

ducted and the error estimation equations derived in Section4.4for the TL-MC and IS estimators.

The results we present in Figure5.3 experimentally confirm the theoretical error/convergence

equations, (4.25) for the TL-MC and (4.28) for the IS estimators, that were derived in Section4.4.

In this figure, a plot of loss error versus the number of TL circuit simulations is shown for both

estimators. The smooth curves in this plot were obtained using the theoretical error formulas, i.e.
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(4.25) and (4.28). The two other curves were generated by computing loss estimate errors over

250 independent runs (M=250), each of which explore a sample set sizeR (number of samples

drawn from the PDFf (X)) ranging from 1 to 200. As explained before, TL circuit simulations are

performed at all of the sample points for the standard TL-MC estimator, but a reduced number of

simulations are performed for the IS estimator since most of the samples are discarded based on

the evaluation of the PDM equations. We observe the excellent match between the theoretical and

experimental error curves in this plot, validating the1/
√

N dependency of error on the number of

TL simulations for both of the estimators. The significant reduction in error that the IS estimator

provides is also obvious in this graph. The results in Figure5.3 were generated with circuitc3540

in the ISCAS’85 benchmark suite (with similar results for the other circuits). In this case, the

LossPDM,ε value that is needed for computing the IS estimator in (4.5) is computed using the PDM

based estimator in (4.8) using all of the 50,000 sample points generated during all of the 250 runs. In

empirically computing the variances of both of the estimators to generate the curves in Figure5.3,

we use the loss value computed based on the standard TL-MC estimator with TL simulations at

all of the 50,000 sample points in the parameter space. Since the number of samples used here is

very large, we treat this loss value as the actual loss as if it was given to us by an oracle.After

the emprical variances of TL-MC (VARTL) and IS (VARIS) estimators are computed, the errors are

computed as2
√

VARTL and2
√

VARIS respectively.

As discussed in Section4.4, both the standard TL-MC andIS estimators are unbiased and their

means converge to the actual loss if a large number of samples are used. We empirically confirm

this with the plot in Figure5.4. The curves in this plot were generated using the same experiment

described above that was used to generate the error curves in Figure5.3. In order to generate the plot

in Figure5.4, we simply compute the means of the loss estimates obtained by the two estimators

over the 250 independent runs with varying number of samples, whereas variances over these 250

runs were used for Figure5.3. We can clearly observe in Figure5.4 that the IS estimator converges

to the actual loss value much earlier, with only a few number of TL simulations.
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5.5 Discussion

In Chapter5 the standard TL-MC method is compared with the proposed IS method for estimating

timing yield. By Table5.1 and5.2, it is shown that IS method requires on the average 185 times

less (155 times forTc,low and 215 times forTc,high) TL simulations than standard TL-MC in order to

compute the loss with the same accuracy with standard TL-MC method.

Up to now, in computing theSpeedup of IS method, the additional cost for computing

LossPDM,ε
K by using (4.8) was ignored as no costly TL simulations are required in its computation.

Although the computation ofLossPDM,ε
K is implemented onMATLABand we use 50,000 samples

to compute it (K = 50,000), the cost to computeLossPDM,ε
50,000 is much less than the cost required by

TL simulations. Each column of Table5.7 shows respectively from left to right the run times in

seconds that is required for TL-MC, for TL simulations used for IS and for PDM evaluations used

for LossPDM,ε
50,000 computation. The last column shows the newSpeedup results without ignoring

LossPDM,ε
50,000 computation cost. This table is forTc,low, R= 200 andM = 250. For fair comparison,

both TL-MC and IS estimators compared in the table result in loss estimates with the same accuracy

(error). The averageSpeedup has dropped only from 155 to 120. If the polynomial evaluations

used forLossPDM,ε
50,000 were performed in C program, the decrease in theSpeedup would be negligi-

ble. This is why we had ignored additional cost of IS method forLossPDM,ε
50,000 computation.

Table 5.7:Run times for TL-MC and IS estimators consideringLossPDM,ε
50,000 evaluation cost

Benchmarks t(TL-MC) t(IS) for TL sim. t(IS) for PDM eval. Speedup

c432 74468 870 158 72

c499 76236 372 102 161

c880 47524 522 221 64

c1355 115752 640 222 134

c1908 149048 1200 342 97

c2670 271386 1440 275 158

c3540 176002 1160 371 115

c5315 288930 1512 427 149

c7552 164413 910 369 129
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An important result that can be deduced from Tables5.3 and5.4 is that the block level Monte

Carlo (BL-MC) loss estimation is not so accurate. It is referred in Section2.4.2that BL-MC esti-

mators are used as golden reference in order to test the accuracy of statistical static timing analysis

(SSTA) methods. However, the results in these two tables show that the BL-MC method based on

our third order polynomial gate delay model (PDM) results in errors of 44.3% at most and 16%

at the average although all of the 50,000 sample points are used in loss estimation. This shows

the necessity of transistor level simulation based statistical timing analysis for the final verification

stage.

TheSpeedup of IS method increases while the probability of the event decreases. For instance,

in our experiments theSpeedup has increased from 155 to 215 while the approximate loss has de-

creased from 10% to 5%. This can also be seen from the theoretical error expression of IS estimator.

Therefore, if our IS loss estimation method was applied for cases with very small loss probabilities

like SRAM failures, the results would be much better. There are attempts to use different IS methods

in SRAM failure analysis in the literature [65].

The most important and novel parts of our IS loss estimation methodology are the choice of a

good biasing distribution (4.4), estimation ofLossPDM,ε (4.8) and the adaptive detection of theε

margin (CompLossMC-IS). IS method is a big step for availing TL timing analysis in statistical

case and for the final verification stage before manufacturing. On the other hand, it is still slow to

be used in design stages for optimizing the design.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Summary

Designing fast circuits consuming less power and area is the main aim of digital IC (chip) designers.

As a result, timing analysis of digital circuits is essential to estimate the circuit’s speed performance

and optimize the circuit accordingly until the desired performance is reached. When the stochastic

nature of manufacturing and the resulting parameter variations are ignored, the strategy of Electronic

Design Automation (EDA) community is as follows: They first perform deterministic static timing

analysis (DSTA) to detect the critical paths in the circuit, then they perform transistor level timing

simulation on these critical paths to detect the speed performance more accurately.

However, the statistical variations of manufacturing process have increased to a non-negligible

level due to decreasing transistor sizes to have faster circuits covering less area. This necessitates

statistical timing analysis which considers the variations and analyzes the circuits accordingly. As a

result of the parameter variations, each manufactured chip of the same circuit has different parameter

values and thus a different speed performance. The manufactured chips, which pass the speed tests

are packaged for marketing and others that fail the tests are discarded. One of the main aims of

statistical timing analysis is to estimate the timing yield, which is simply the fraction of chips that

pass the speed tests.

Almost all proposed statistical timing analysis methods for digital circuits are block (gate) level

methods and most of them are generalizations of DSTA to the statistical case. However block level

statistical timing analysis lacks accuracy as it inherently contains many approximations like linearity

and normality.

In this thesis, we try to fill the gap for accurate statistical timing analysis based on transistor

level circuit simulations. For this purpose, we first propose a new comprehensive tool that combines

different techniques in the literature for modeling variations and extracting the statistically critical

paths of the circuit. But our main novel contribution is timing yield estimation using importance

sampling in a novel manner in order to speed up transistor level Monte Carlo statistical timing
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analysis. We tested our method on ISCAS’85 circuits and the results show that our IS based yield

estimation method improves the speed performance two orders of magnitude on the average.

Future Work

In order to improve the yield estimation methodology proposed in this thesis, other sources of vari-

ation like supply voltage, temperature, gate oxide thickness can be taken into consideration without

changing any part of the methodology except for building new PDM model considering all of these

parameters. In such cases, the PDM model generation cost must be decreased by the help of latin

hypercube sampling, which avails the model generation by using same number of samples although

the number of parameters are increased. The interconnect (wiring connection between the gates)

width and height are also well known parameters that have non-negligible variations. The effect of

interconnect could be inserted by modeling interconnect delays besides the PDM gate delay model.

Our IS estimator works with any approximate gate or path delay model inside. Therefore, more

advanced gate delay models can increase theSpeedup further. For instance, especially for input

slope and for fanout, second degree polynomials can be fitted instead of first degree preferred for

this thesis.

Different margin detection heuristics than CompLossMC-IS in Section4.3, can be developed to

improve the performance of IS estimation. But we observed that if these methods are conservative

to satisfy the safety requirement given in Section4.2, then the resultant efficiency of IS estimator

decreases and otherwise if they are too loose, then the resultant IS estimator will loose accuracy,

where accuracy is the main goal of IS estimation. Our heuristic gives a good compromise in between

these two extremity.

There are other variance reduction techniques than IS, like control variates, stratified sampling,

latin hypercube sampling and etc., which can be applied in order to increase speed without losing

accuracy. Even some of them, for instance control variates and importance sampling, can be applied

in a combined manner in order to have more efficiency and accuracy.
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Appendix A

EXTRACTION OF TOP LONGEST PATHS

For applying the alternative method explained in Section3.3, a new gate feature called

step f athersis introduced. For a gate r,delay f atherfeature shows the ancestor of gate r, which

causes gate r to have its output arrival time, i.e. it shows the ancestor with maximum output arrival

time. step f athersfeature of gate r should show the ancestors which have output arrival times in

a close proximity of the output arrival time ofdelay f atherof gate r. After running our default

DSTA algorithm shown by Alg.1 in order to modify timing DAGC(V,E) by inserting the features

gatedelay, arrivaltime, delay f ather, the modified timing DAGC̃(V,E) is the input argument of

Alg. 3 below. Alg. 3 inserts the newstep f athersfeature to the gates in the timing DAG̃C(V,E)

structure. It has an input argumentProximityCriteria which simply determines how many of the

ancestors will be set as step fathers.ProximityCriteria is a percentage that shows what percentage

of the delay ofdelay f athershould be at a gate in order for that gate to be astep f athers. It should

be noted that thedelay f atherof a gate is also a member ofstep f athersfeature of the same gate.

After Alg. 1 is run, we obtain a new feature calledstep f athers, which consists of ancestor gates,

which have output arrival times in a proximity of the output arrival time of thedelay f ather, which

is the ancestor that has the maximum delay.

step f athersfeature can be used to collect paths, which have delays in a proximity of maximum

circuit delay. For this purpose, another algorithm (Alg.4) is called with a vertex (gate) connected to a

primary output of the timing DAG and then the algorithm records each step father in thestep f athers

feature of that vertex as a different path. Then, the algorithm recursively continues to perform the

same operation for each step father of the first called vertex (Line6 of Alg. 4). At the end, the

algorithm collects all paths, which passes through step fathers, i.e.PathList. As this algorithm may

collect too many paths, the paths having smaller delays than a desired lower delay bound can be

thrown out after the algorithm finishes.
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Algorithm 3 Insert-StepFathers(C̃(V,E), ProximityCriteria)

1. for GateInd= 1 to number of vertices iñC do

2. r = V(GateInd)

3. DelayFather= r.delay f ather

4. MaxArrivalTime= DelayFather.arrivaltime

5. StepFatherCount= 0

6. for AncestorInd= 1 to length(r.ancestors) do

7. ancestor= r.ancestors(AncestorInd)

8. if (MaxArrivalTime−ancestor.arrivaltime)/MaxArrivalTime< ProximityCriteriathen

9. StepFatherCount= StepFatherCount+1

10. r.step f athers(StepFatherCount) = ancestor

11. end if

12. end for

13. end for

Algorithm 4 Collect-NearCriticalPaths(CurrentGate, CurrentPath)

1. AppendCurrentGateto CurrentPath

2. if CurrentGateis a primary inputthen

3. AppendCurrentPathto PathList

4. else

5. for SFcode= 1 to length(CurrentGate.step f athers) do

6. Collect-NearCriticalPaths(CurrentGate.step f athers(SFcode), CurrentPath)

7. end for

8. end if
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