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ABSTRACT

In this thesis, we propose formant position basexghted Mel Frequency Cepstral
Coefficient (WMFCC) features for spontaneous emmtiecognition from speech problem
and compare performance results with commonly @s&iire sets such as Mel Frequency
Cepstral Coefficients (MFCC), Line Spectral FrequerfLSF) features, formants and
prosody. Since, the LSF features are positionedecltm each other around formant
frequencies, we propose normalized inverse harmor@an function to weight critical
band energies for the extraction of MFCC featuk¥s. evaluate both the standard and
weighted MFCC feature sets with left-to-right Hidd®larkov Model (HMM) structures
for the five class emotion recognition task. Expenntal results on the spontaneous FAU
Aibo emotional corpus indicate that WMFCC featupesform significantly better than
standard spectral features. The HMM classifier with standard MFCC features attain
39.43 % unweighted recall rate, whereas proposed FGM features based HMM
classification brings 1.92 % improvement. Anotbentribution of this thesis is the fusion
of classifiers using WMFCC, MFCC and LSF features.



OZETCE

Bu tezde dgal konymadan duygu tanima problemi icin bicimlendirici komu &irlikh
Mel frekans kepstral katsayisi (AMFKK) 6znitelikigr sunuyoruz ve bgarim sonuclarini
sikga kullanilan Mel frekans kepstral katsaylldiFKK), Dogru Spektral frekans (DSF)
katsayilari, bigcimlendiriciler ve burin Oznitelikiebasarimlari ile kagilastiriyoruz. DSF
Oznitelikleri bicimlendirici frekanslari c¢evresindbirbirine yakin konumlandindan,
MFKK 6zniteliklerinin ¢ikariminda kritik bant eneérplegerlerini normallgtiriimis ters
harmonik ortalama fonksiyonu ileg@landiriyoruz.Beg sinifli duygu tanima problemi icin
hem standart hem dezidikli MFKK 6znitelik vektorlerini sol-sg yapili sakli Markov
modeller (SMM) ile gitiyoruz. FAU Aibo duygu yukli kongma veritabani Uzerindeki
deney sonuclari AMFKK 6zniteliklerinin standart kpal 6zniteliklerden daha iyi Barim
saggladigint ortaya koyuyor. Standart MFKK dznitelikleri %9.33 baarim s&larken,
AMFKK 06zniteliklerinin SMM ile siniflandirimasi barimda 1.92 % dgrinde bir ary
saliyor. Bu tezde ayrica AMFKK, MFKK ve DSF 6zniteléa kullanilarak gitilen farkh

SMM siniflandiricilarinin karar kaygiani da inceleniyor.
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Chapter 1

INTRODUCTION

Emerging technological advances are inspiring rebeas for enriching the meaning of
human-computer interaction. The wide use of telenamication services and multimedia
devices will need to have human-centered desigstead of computer centered ones [1].
Consequently, an accurate perception of a usefiéstafe state by computer systems will
become a basic requirement for more natural huroampater interaction process [2] [3].

In this sense, the orientation of emotion rese&deaded towards real, life-like speech-
driven advanced applications which has motivatedoughvestigate spontaneous affect

recognition from speech signals.

Initial efforts for affect-sensitive human-compuiateraction systems include call-center
applications, where problems due to unsatisfactotgraction can be detected and the
frustrated customer can be offered assistance mbhwperators [4][5][6]. Recognition of
emotion largely helps to design more natural conmpation for intelligent automobile
systems [7], interactive game and movie systemsd8]well. Similarly, emotion-aware
tutoring systems can be included into pedagogitategies to improve a student's

performance and learning [9].

Although extensively investigated, computer rectigniof emotions from speech signals
is still an open problem. The emotion categorigsede on the database used. The most

popular description of the basic categorizationude the six emotions in addition to
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neutral state, namehhappiness sadnessfear, anger, disgustand surprise [10]. This
description is also regarded to be cross-cultundicating that humans perceive these basic
emotions in the same way regardless of their ailtbackground [10]. Some researchers
also study cognitive states suchraerest puzzlemenfrustrationandboredomin addition

to these basic emotions [11].

Early research in the affective-computing fieldb&sed on acted datasets, where actors are
asked to speak with a predefined emotion, as ali§icagion of how emotions happen in
real world [12] [13]. This simplification makes éasier to search the acoustic correlation
between features and emotion classes. Such apgsagh to recognitize a small number
of basic emotions. However, there are objectioransg the use of acted emotions. It was
shown that acted and spontaneous samples diffdreirview of features and accuracies
[14]. Emotion classifiers have not been successfutealistic contexts when they are
trained from acted emotions. Some experiments stggbthe opinion that acted emotional
speech is not felt when spoken and is perceivece rawongly than real emotional speech
[15].

On the other hand, spontaneous emotional speeelsatstintroduce difficulties such as
highly imbalanced emotion categories as the distions of recorded emotion samples
depend on the content of the dataset. Moreoveeramtes may match more than one
emotional category given that humans are able poess mixtures of emotions. Thus, it is
hard to detect everyday emotions for both humadscamputers. Usually, human labelers
annotate the spontaneous speech data, sincedt feasible to ask speakers what kind of
emotion they have felt during the recordings. Omwle ffect is that mislabeled samples

may introduce ambiguity for the training procesattmajority vote rule is used in the
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labeling process [16]. Hence, for assessment ofsg@taneous emotion classification

performance, one should consider human performamdke same task as well.

1.1. System Overview and Contribution

The main contribution of this thesis is to inveatgnew speech parameter representations
that carry emotional cues and try to efficiently dabthese features for spontaneous
emotion recognition task. We evaluate the stasktisignificance of recognition
performances of introduced features with those @f-tnown, commonly used ones under

the same test conditions. Our research has threeaoatributions:

0] We propose the use dfine Spectral Frequenc{l SF) features for emotion
recognition which have not been previously emplofggdhis task to the best of
our knowledge.

(i) We introduce Formant Position-based Weighted Mel Frequency Capst
Coefficients (WMFCC), which weights the critical band energies the
computation of MFCC features based on LSF features.

(i)  We investigate decision fusion of different clagsg modeling spectral and

prosody features for improved recognition perforoean

The remainder of this thesis is structured as ¥edloIn Chapter 2, the necessary
background and literature review on emotion recigmifrom spontaneous speech are
provided. The commonly used speech features asdifitas are reviewed.
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In Chapter 3, our initial research results obtainedNTERSPEECH 2009 Emotion
Challenge is overviewed, spontaneous speech datadaised feature sets and classifiers

are explained.

In Chapter 4, proposed emotion recognition systeemaew, the employed spectral and
prosody features together with the proposed WMFE&&iuires are presented. HMM based
classifier architecture for emotion recognition atfte decision fusion method are
explained. Experiments to assess the performancéhefproposed system are also

discussed.

Finally, the concluding remarks and future work piresented in Chapter 5.
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Chapter 2

LITERATURE REVIEW

Speech is an important communicative modality iman-to-human interaction that
conveys affective information througdjhguistic andacousticcontent. Similarly, for affect-
sensitive human-computer interaction systems, ittneo& speech emotion recognizer is to
estimate emotional state of the speaker given eactpfragment as an input. Although,
some researchers report improvement in recognigerformance by using linguistic
content in addition to acoustic content such asrimétion on language, discourse or

context, extraction of this information is a chatigng task [17] [18].

Linguistic content based features are extracteduaddn or directly from transcripts.

However, for real life applications, spoken contaeeds to be recognized by automatic
speech recognition (ASR) systems where existingesys cannot reliably recognize the
verbal content of emotional speech. Affective wdidtionaries are prerequisite for the
ASR systems that is a difficult task to build theketionaries as well, since it is hard to
anticipate a speaker’'s word choice associated Wishher affective state. Moreover,

linguistic content conveying emotion, is languagspehdent, which is a drawback for

generalizing from one language to another [19].

Moreover, in phonetics, acoustic parameters arditivaally categorized as prosodic,
spectral and voice quality features. Prosody charatics are mostly defined as pitch

(fundamental frequency, F0), intensity, loudnepsaking rate, duration, pause and rhythm
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[8][20][21]. It is well known that for different eational states, the speech signal carries
different prosodic patterns [22]. Hence, prosodatfires such as pitch and speech intensity
can be used to model different emotions. For exeyrugh values of pitch appear to be
correlated with happiness, anger, and fear, whesadsness and boredom seem to be
associated with low pitch values [22]. Intensitysdé features describe the energy change
of the signal over time. Duration based featureslehthe effect of the speaking style on
the duration of the spoken utterance. Most poptdase quality features are jitter, shimmer
and harmonics to noise ratio (HNR) where jitteraismeasure for the cycle-to-cycle
variation of the period length, shimmer is peakagerage amplitude and HNR is the

measure of periodicity of a sound.

Spectral features describe the characteristias ggeech signal in the frequency domain in
addition to features like harmonics and formantarmhbnics are multiples of the
fundamental frequency and are specified by thesguency and amplitude. Formants are a
representation of the vocal tract resonances. Fusave been used to describe the shape
of the vocal tract during emotional speech produrcti[8][21]. Each formant is
characterized by its center frequency and bandwigikperimental analysis has shown that
the first and second formants are affected by thetienal states of speech more [23] [24]
[25].

Mel frequency cepstral coefficients (MFCC) are atgectral features, widely used for
speech recognition and have been designed to exttzat is being spoken. They have
been successfully used for emotion recognition[1@})26]. Other spectral features useful
for speech recognition such as linear predictiyestral coefficients (LPCC) and mel filter

bank (MFB) features are also used for emotion rettiog [27].
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Acoustic content feature vectors can be represeatddng or short-time ones. Long-time
features are statistical information estimated otle entire utterance length, most
commonly mean, minimum, median, maximum and stahdi@viation values, and less
frequently skewness, a measure of asymmetry artdsis, a measure of the peakedness
of probability density are also used. Short-timatdiees are determined in a smaller time
window, usually 20 to 100 msec. For both of theespntation types, the feature vector is
often extended to include the first (delta) andosecorder (delta delta, acceleration)
derivatives [14].

In addition to the search for applicable featuessgessential aspect of affective-computing
is the classification of emotion patterns. A lotadrk has been done to develop new and to
improve existing automatic classification technig|y27]. Esentially, the percentage of
correctly recognized samples is the standard wnteused when evaluating an automatic
classifier. Emotion classification methods can kenty grouped in two, as those of that
estimate the probability density function of thetftges and those of that discriminate
emotional states without any estimation of theueatistributions for each emotional state
where former models short-time features and théeerlabbng-time features. Popular
classifiers include linear discriminant analysiD@), artificial neural networks (ANN),
support vector machines as well as Gaussian mixta@els (GMMs) and hidden Markov
models [28][29].

Nevertheless, some researchers reject the ideaatefyarizing emotions into discrete
classes. They claim that in real life people mapress combination of emotions with
different levels. So, they adopt the continuousresentation of emotions in three
dimensions, namelyalence activation and dominanceas shown in Fig. 2.1 [30] [31].

Valence describes how negative or positive is a&ipeemotion. For example anger is
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negative and happiness is positive. Activationgnag from being passive to being active,
describes the internal excitation of a speaketh siscanger is active but sadness is passive,
although they have close valence values. Dominarmeging from weak to strong,
represents the apparent strength of the speakennimast to categorical labeling system,
raters need a special training to use dimensitataling system [32] that continuous

representation of emotions is rarely used in piibavailable datasets.

Angry

O r
i : Happy

Dominance

Fig. 2.1.Continuous representation of emotions in threeedsions
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Chapter 3

THE INTERSPEECH 2009 EMOTION CHALLENGE

3.1. Introduction

In comparison to speech processing tasks such &smatic speech and speaker
recognition, there is a lack of common databasest@st-conditions for the evaluation of
emotion recognition specific features and classfieExisting emotional speech data
sources are scarce, mostly monolingual, and smatérims of number of recordings or
number of emotions. Among these sources the Benfintional speech dataset (EMO-DB)
is composed of acted emotional speech recordin@eman those are perceived stronger
than real emotional speech [33]. Other acted datshinclude SUSAS (Speech Under
Simulated and Actual Stress databases), and DESigib&motional Speech) databases
which were seldom made public and the spoken comtas mostly predefined [34][35].
The VAM (Vera am Mittag) database consists of atdsoial recordings of German TV
talk show with spontaneous and emotionally richtenthwhere speech content is labeled in
terms of emotion primitivegalence activationanddominance The portion of this dataset
conveying emotional content well, has unbalanasttidution of emotions and is small in

number of recordings [36].

Moreover, partitioning of the existing datasets &waluation with cross-validation or

percentage splits  prevents exact reproducibilinly Leave-One-Subject-Out cross
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validation or cross-corpora tests would ensure speaker indepence. The spontaneous
FAU Aibo Emotion Corpus as distributed in the INTEREECH 2009 Emotion Challenge,
has clearly defined training and test partitionghwguaranteed speaker independence and
different room acoustics as needed in most realddttings [37]. Further information on
existing databases is detailed in [1] and [2].

3.2. The INTERSPEECH 2009 Emotion Challenge Overwie

The FAU Aibo corpus was collected during interactiof 51 children (ages 10-13, 21
male, 30 female, totally 9.2 hours of speech withmauses) with the pet robot Aibo. The
robot was actually controlled by a human operattrereas children were made to believe
that the robot was responding to their instructiovisere obedient or disobedient responses
evoked children’s emotional reactions. The corpas wecorded at two different schools:
data of one school was used for training and therdor testing purposes in the challenge
[28].

The INTERSPEECH 2009 Emotion Challenge introduced find two class emotion
classification tasks. The five-class classificatmoblem covers emotioranger, empathy
neutral positive and rest with distributions as summarized in Table 3.1eTtvo-class
classification task consists of classe=gative (anger and emphatic) andle (all non-
negative states). Table 3.2 shows the two claagpgrg of the same dataset. As the classes
were unbalanced, the evaluation of the challenge pramarily based on unweighted
average recall value (UA) that is the average remfabll classes, and secondly, on the
weighted average (WA) recall value (accuracy). baseline results were produced by the

challenge organizers with dynamic and static modebf low level descriptors of pitch,
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energy, etc.
67.7%, respectively [37].

UA rates for the five and two classk$ were determined as 38.2%

Anger | Emphatic | Neutral | Positive | Rest | Total
Train | 881 2093 5590 674 721 995
Test 611 1508 5377 215 546 825
Total | 1492 3601 10967 889 126218216

Table 3.1.FAU AIBO dataset instances for the five-class eomtiecognition task in the

INTERSPEECH 2009 Emotion challenge

Negative| Idle | Total
Train 3358 6601| 9959
Test 2465 5792| 8257
Total 5823 12393 18216

Table 3.2.FAU AIBO dataset instances for the two-class enmot&cognition task in the

INTERSPEECH 2009 Emotion challenge

3.3. Feature Extraction and Classification Methodg$or the Challenge

and

We investigated various spectral and prosody featwgarly fusion of different features and
late fusion of different classifiers for the INTERSECH 2009 Emotion Challenge. In this

investigation, we used GMM based emotion classiftermodel the color of spectral and

prosody features, and HMM (Hidden Markov Model) dzh&motion classifiers to model

temporal emotional prosody patterns. Spectral featwe used for the challenge consist of

mel-frequency cepstral coefficients (MFCC), lineesjpal frequency (LSF) features and
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their derivatives, whereas prosody-related featemssist of mean normalized values of

pitch, first derivative of pitch and speech intéysi

Although some of these features have been recentptoyed for emotion recognition, our
investigation included the following novelties: (i)e used LSF features, which are good
candidates to model prosodic information since tlaeg closely related to formant
frequencies [39], (ii) we employed a novel multich HMM structure to model temporal
prosody patterns of emotion classes, and (iii) weestigated data fusion of different

features and decision fusion of different clasesfie

3.3.1. Prosody Features

The speech signal carries different prosodic padtdor different emotional states [22].
Hence, prosodic features such as pitch and speeaisity can be used to model different
emotions. For example, high values of pitch appedre correlated with happiness, anger,

and fear, whereas sadness and boredom seem tedmgated with low pitch values [22].

The pitch features of the emotional speech arenagtd using the autocorrelation method
[38]. Since pitch values differ for each person #mel system ideally should be speaker-
independent, speaker normalization is applied.demh window of speech with non-zero
pitch values, the mean pitch value of the windowresnoved to achieve speaker
normalization. The regions between utterances witthe valid pitch (zero-value pitch

segments) are filled with zero-mean and unit-vagaiGaussian noise to avail proper
training of the HMM classifiers. Thepijtch, 1* derivative of pitchandintensityvalues are

used as normalized prosody features, which willéreoted aé- .
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3.3.2. Mel Frequency Cepstral Coefficient Features

The mel-frequency cepstral coefficie(MFCC) parametric representation is among the
most widely used spectral features for emotion gaitmn [12][26]. MFCCs are expected
to model the varying nature of speech spectra adifferent emotions. We extract MFCC
features using a 25 msec Hamming window at intereal10 msec and cover frequency
range from 300 Hz to the Nyquist frequency. 12 trepsoefficients with the log-energy is

represented ds.
3.3.3. Line Spectral Frequency Features

Another spectral feature is thi@e spectral frequencyLSF) representation of the linear
prediction filter, that was introduced by Itakurg,closely related to formant frequencies

[39]. Linear prediction analysis of speech assuthasa short stationary segment of speech

can be represented by a linear time invariante filter of the formH (z)=i, which

A2)

is ap™ order model for the vocal tract.

The LSF decomposition refers to expressingphk order inverse filteA(2) in terms of
two polynomialsP(2) = A7) - Z7'A(Z Y andQ(2) = A@) + Z"A(Z 1), which are used to
represent the LP filter as,

1 2

M2 A2)+Q(?)

H(z)= (3.1)

The polynomiald(z) andQ(z) each have/2 zeros on the unit circle, which are interleaved
in the interval [Qz]. Thesep zeros form the LSF feature representation for tRemodel.
Note that the formant frequencies correspond taénes ofA(z). HenceP(2) andQ(2) will
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be close to zero at each formant frequency, whiplies that the neighboring LSF

features will be close to each other around fornfie@guencies. This property relates the
LSF features to the formant frequencies [40], arakes them good candidates to model
emotion related information in the speech spedWa. represent the LSF feature vector,
estimated over 20 msec frames centered on eachs86 amalysis window of speech as a

p = 16 dimensional vectdr.

3.3.4. Dynamic Features

Temporal changes in the spectra play an importdatin human perception of speech. One
way to capture this information is to use dynanaatéires, which measure the change in
short term spectra over time. The dynamic feattith@i™ analysis window is calculated

using the following regression formula,

i+ fi-K)k
2y, K

where the number of analysis windows in the regpassomputation is set @K + 1 = 5.

A (i) (3.2)

The MFCC feature vectofe, is extended to include the first and second od#dgivative

features, and the resulting dynamic feature vectts represented as

fCA=[fC' Af AAfC']'Where prime represents vector transpose. Likewike, LSF

feature vector with dynamic features is denotefi as

We also combine the pitch-intensity and the MFC&uees to form the feature vectpg,
and when the first and second order derivativethisfcombined feature are also included,

we have the feature vectipiz, for non-zero pitch segments.
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3.3.5. HMM-based Features

We employed a novel multi-branch HMM structure todal temporal prosody patterns for
emotion recognition. Under different emotions, deoptter with different intonations,
which create different temporal prosody patterng &hployed unsupervised training of
parallel multi-branch HMM structures through spatct&nd prosody features. The HMM
structure4 with B parallel branches is shown in Fig. 3.1, where daahch had left-to-
right states. One can expect that each branch sagelain emotion dependent prosody
pattern after an unsupervised training processchlwimcludes utterances from different
emotional states. After the unsupervised trainingc@ss we can split the multi-branch
HMM 4 into single branch HMM structures, 1o, ... ,As. Let us define the likelihood of a

speech utterandg for thei™ branch HMM as,

p=PUI|A) (3.3)

Fig. 3.1 Paralel-branch HMM structure
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Then the sigmoid normalization is used to map ille®d values to the [0, 1] range for all
utterances [9]. This new set of likelihoods for thiteranceU define an HMM-based

emotion feature sé,

(3.4)

where p andc are the mean and the standard deviation of tledilikod p; over all the

training data, respectively. The HMM based emotieature sefy is a B dimensional
vector. We refer to two possible set of featdrgsandfypc when the multi-branch HMM is

trained overfp andfpc, features, respectively.

We experimented the HMM structure with differentrgraeters: we set the number of
branches to five and evaluated performance of tbdeinfor number of states per branch
from 3 to 10 and number of Gaussian componentsstse up to 12. Since prosody
features are extracted every 10 msec, we considgeimr@chum event size from 30 msec to
100 msec for number of states from 3 to 10, respdgt Then, for the 2 and 5-class
recognition problems we trained GMM classifiersngsthe HMM-recognition scores as

features.
3.3.6. Gaussian Mixture Model based Emotion Reitiogn
In the GMM based classifier, probability densitydtion of the feature space is modeled

with a diagonal covariance GMM for each emotiorofbility density function, which is

defined by a GMM, is a weighted combinatiorkoEomponent densities given by
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p(1)= 3 wenl 1K) ks

wheref is the observation feature vector amds the mixture weight associated with e

Gaussian component. The weights satisfy the cantdra
K
Osw,sland) w, =1 3.6)
k=1

The conditional probabilitp(f |k) is modeled by Gaussian distribution with the cormgrd

mean vectoyy, and the diagonal covariance matXix

The GMM for a given emotion is extracted througk #xpectation-maximization based
iterative training process using a set of trairfeafure vectors representing the emotion. In
the emotion recognition phase, posterior probabihit the features of a given speech
utterance is maximized over all emotion GMM demsitiGiven a sequence of feature
vectors for a speech utterance, F 5 {§, . . ., f}, let’'s define thelog likelihood of this
utterance for emotion clagsvith a GMM density modey. as,
T

P =10g p(F y2)= 2 log plf, | 1.) 3.7)
where p(Rje) is the GMM probability density for the emotioraste as defined in (3.5).
Then, the emotion GMM density that maximizes pasterobability of the utterance is set
as the recognized emotion class,

U= argmaxp, (3.8)

whereE is the set of emotions ard is the recognized emotion.
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3.3.7. Decision Fusion

Decision fusion is used to compensate for possitiselassification errors resulting from a
given feature set decision with other availabletuss set decisions hence resulting in a
more reliable overall decision. In decision fusi@epres resulting from each unimodal
classification are combined to arrive at a condusDecision fusion is especially effective
when contributing modalities are not correlated aedulting partial decisions are

statistically independent.

We considered a weighted summation based decisgarf technique to combine different
classifiers [41]. The GMM based classifiers outlikelihood scores for each emotion and
utterance. Likelihood streams need to be normaléat to the decision fusion process.
First, for each utterance, likelihood scores ofhbotassifiers are mean-removed over
emotions. Then, sigmoid normalization is used t Mileelihood values to the [0, 1] range
for all utterances [41]. After normalization, wevieatwo score sets for each GMM based
classifier composed of likelihood values for eachoBon and utterance. Let us denote

normalized log-likelihoods of GMM based classifias o, and p, respectively, for the

emotion clase. The decision fusion then reduces to computinghgles set of joint log-
likelihood ratios pe, for each emotion clags Assuming the two classifiers are statistically

independent, we fuse the two classifieys[] A,, by computing the weighted average of

the normalized likelihood scores

p. = Bp, + - )P, 3.9)

where the valug weighs the likelihood of the first GMM classifieand it is selected in the

interval [0, 1] to maximize the recognition rate.
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3.4. THE INTERSPEECH 2009 Emotion Challenge Results

INTERSPEECH 2009 Emotion challenge participantsribtd have access to the labels of
the test data, and all model selection and traimiag based only on the training data. Each
participant could upload instance predictions tceinee the confusion matrix and results

from the test data set up to 25 times.

In this section, we present the experimental resuding all of the features described in
section 3.3. The GMM mixture components and theisttat fusion parametef are
optimally selected to maximize emotion recall ratea part of the training corpus where
GMMs have mixtures up to 50 armitlis in the range [0, 1]. We used one third of the
training set as validation set for model selectmmposes. Then, based on the selected
parameters, we retrained models using all the @vailtraining data. In fact, leave-one-
speaker-out cross validation strategy would be npuederable for model selection, but
concerning the time limit in challenge, we chosesimpler and faster approach.
Recognition rates for the uni-modal GMM classifiare given in Table 3.3pcx GMM
andfcaGMM classifiers have the highest UA rate as 66.3ar¥ 39.94 % for the two and

five-class recognition problems, respectively.

Featureg Recall (%)

2-class 5-class
UA | WA | UA | WA

fea 66.36 | 62.09 | 39.94 | 41.29
fia 66.05| 60.24 | 39.10 | 41.78
fL 63.36 | 65.25 | 33.68 | 40.39

66.39 | 60.70 | 39.10 | 46.66




Chapter 3: The Interspeech 2009 Emotion Challenge 20

fup 2456 | 21.30

fupc 50.82 | 57.43 | 29.53 | 27.48

Table 3.3.Emotion recognition rates with unimodal GMM basé&aksifiers

Decision fusion of different classifiers has beealized as defined in Section 3.3.7. The
highest recognition rates for each decision fusignlisted in Table 3.4. Decision fusion of
classifiers provides statistically significant irogement over unimodal classifiers. Among
the decision fusion of GMM based classifidig, andf , fusion yields the highest 5-class
recognition rate, 40.90 %, wih= 0.57, wheres is the weight of the first classifier in the
fusion. In addition, fusion ofc, andf, has 67.52 % UA rate for the 2-class recognition
problem whern = 0.64. We observe that thec feature set with 3 states per HMM branch
and 12 Gaussian components per state yields thedsedts with a classification accuracy
of 59.82 % and 29.53 % for 2 and 5-class classifinaasks respectively. When we apply
a second stage decision fusiorigoandf, fusion results with HMM-based featufig-c, we
obtain 67.90 % and 41.59 % recognition rates, ctsmdy.

Classifier Recall (%)
Fusion > ciass T
UA | WA | UA | WA
RE) 67.49 | 64.44 | 4047 | 42.07
i) 0 Mf,) 6752 | 62.58 | 40.76 | 43.71
foe) O M(FL) 67.44 | 61.64 | 40.00 | 47.83
Wfe) O A fip) - 4022 4137
fer) O A frpe) - -~ [4010] 4150




Chapter 3: The Interspeech 2009 Emotion Challenge

21

(A fen) O AFL)) O Af0) - -~ [4069 4333

()0 AL )0 A pe) | 6790 | 6303|4150 | 4417

Table 3.4.Emotion recognition rates after the decision fusion

We summarize all paper submissions accepted tohéléenge in Table 3.5 for comparison

of selected methods. Most popular feature setsidecimel frequeny cepstral coefficients,

harmonics to noise ratio, pitch, energy and zemssing rate, whereas most popular

classifiers are Gaussian Mixture Models and Supp@ttor Machines. Almost every

participant applied decision fusion method subsefjue classification. Our emotion

recognition system ranked second and fourth fofitteeand two-class classification tasks,

respectively.

Best UA (%)
. - rank)
Paper Title & Authors Feature Set & Classifier
2-class 5-class
1 | Brno University of RASTA applied MFCC AA parameters are
TechnologySystem for modeled with JFA (Joint factor analysis) to cope
Interspeech 2009 with speaker session variability for the 2-class
Emotion Challenge problem. For the 5-class problem this feature set-
model pair is fused with SDC (shifted delta 68.3 41.65
cepstra) features modeled with JFA based| on (3) (1)

reported that voice activity recognition with
Hungarian phone recognizer is applied prior

Kockmann, Burget and Cernockly feature extraction process.

multiclass linear regression fusion. It is al

SO
a
to

2 | Improving Automatic Emotion
Recognition from Speech Signal

Bozkurt, Erzin, E. Erdem and
Erdem

MFKK AA and Line spectral frequency (LS

(HMM) based emotion features are extracted

modeled with GMMs. Recognition results wi
the score score from the first stage decision fu
are fused with the best HMM-based feature

GMM structure.

)

sfeature vectors are modeled with Gausgian
mixture models (GMM) and then first stage
decision fusion is applied. Hidden Markov model 67.9

and (4)
th

5i0

set-

41.59
@)
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GTM-URL Combination to

thelnterspeech 2009 Functionals of features zero crossing rate (ZQR),

Emotion Challenge RMS energy, FO, HNR (harmonics to noise ratio) - 41.16
and MFCCs are modeled with Naive Bayes (5)

Planet, Iriondo, Socoro, Monzo | classifier.

and Adell

Acoustic Emotion Recognition

Using Dynamic Bayesian Multispace distribution (MSD) approach s

Networks applied for FO voiced/unvoiced segments prior to

and Multi-space Distributions | feature extraction. MFCQA, Log FOAA, Log | 67.06 38.24
Energy AA features are modeled with Dynamic (7) (8)

Chicote, Fernandez, Lutfi, Bayesian network.

Cuesta, Guarasa, Montero,

Segundo and Pardo

Emotion Recognition Using A | Z-normalization and binary logistic regressipn

Hierarchical Binary Decision with forward selection as feature selection are

Tree Approach applied to functionals of features zero crossjng - 41.57
rate (ZCR), RMS energy, FO, HNR (harmonics|to 3)
noise ratio) and MFCCs. Then, selected featyres

Lee, Mower, Busso, Lee and are modeled with multi-stage Bayesian logigtic

Narayanan regression.

Combining Spectral and Firstly, Mel scale short time log frequency power

Prosodic Information for coefficients withAA parameters are modeled with

Emotion recognition in the GMMs wit 32 mixtures. Secondly, for non-pause

Interspeech 2009 Emotion segments statistics for intonation, power, rhythm,67.19 41.38

Challenge regression, voice quality, sentence end features(6) (4)
are ranked with LDA (linear discriminant
analysis) and modeled with RBF-based (radlial
basis funcion) SVMs (support vector machines).

Luengo, Navas and Hernaez Finally, these results are fused using SVMs.

Emotion Classification in An automatic speech recognizer is used| to

Children’s Speech Using transcribe words based on degree of emotional

Fusion of Acoustic and salience. Next, information gain filter is applied 67.55

Linguistic Features for feature selection of functionals of features (5) -
intensity, FO, MFCC, Formants, ZCR, duratian,

Polzehl, Sundaram, Ketabdar, | HNR. Both acoustic and linguistic features are

Wagner and Metze modeled with RBF-SVMs and then fused.

Cepstral and Long-term FeaturesOnly voiced parts of speech is used to extfact

for Emotion Recognition MFCC AA features. For the 5-class task these
features are modeled with MAP adapted UBM-*69.72
GMMs*, For the 2-class task in addition o (2) 39.4
adaptation, training with SVMs is applied. Then}*70.29 (6)
best scores of adaptation and SVM-baged (1)

Dumouchel, Dehak, Attabi, recognition results are fused with linear logistic

Dehak and Boufaden regression fusion**.

Exploring the Benefits of Feature selection with CFS (correlation based

Discretization of Acoustic subset selection) is applied to functionals of FO0, 66.4 39.4
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Features for Speech Emotion
Recognition

Vogt and Andre

energy, spectral, cepstral voice segments, v
quality, jitter, shimmer and modeled with Nai
Bayes classifier.

pice (8)
e

@)

Table 3.5.The INTERSPEECH 2009 Emotion Challenge results
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Chapter 4

FORMANT POSITION BASED WEIGHTED SPECTRAL FEATURES F OR
SPONTANEOUS EMOTION RECOGNITION

4.1. Introduction

In this section, we introduce formant position lthseeighted Mel frequency cepstral
coefficients (WMFCC) to attack the emotion recogmt problem. Emotion has a
considerable influence on formant positioning [22/d the LSF features are known to
concentrate around formant positions [40]. Howevennant features are hard to track
accurately and LSF's are easy to compute. Basethese facts, we propose a spectral
weighting function based on LSF features to weithte critical band energies in the
computation of MFCC features. We derive WMFCC featufrom the weighted critical

band energies, and employ them for improved ema#oagnition task.

4.2. System Overview

A block diagram of our automatic speech driven emmotecognition system is given in
Fig. 4.1. Speech is the only input modality thaves the emotion recognition system. The
overall system is trained and tested on the FAUoAtmotional dataset which contains
speech utterances reflecting the five emotions,etaranger, emphatic, neutral, positive

andrest In the training part of our system, which is sinow the upper half of Fig. 4.1,
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first the emotional speech data is parameterizeéd the short-term acoustic features.
Features extracted include: spectral features, aadhel-frequency Cepstral Coefficients
(MFCC), Line Spectral FrequencyLSF) features,formants formant position based
weighted MFCC featureand their dynamic parameters (i.e., the first a®tond
derivatives), as well as the prosody-related femtwoonsisting ofmean normalized pitgh
first derivative of pitchandintensity Then, we use Hidden Markov Model (HMM) -based
emotion classifiers for modeling the temporal e speech patterns of each feature set
[45].

Classifier Training Training
Prosody-related
Emotional Feature Features ;
Speech | Extraction | HMM
Database Spectral !
Features |
% Emotion classifier models
Emotion Recognition Mel Frequency __ T = = =
Cepstral Coefficients | for HMM
(MFCC) | ca v
Feat LSF weighted | 55 5s Recognized
eature weighte L fur HMM > 2% » 2 | ;
“* Extraction MFCC : wa 8 é 8 L% Emotion
—L—'i [a} [a}
) Line Spectral r fla HMM
Emotional speech Frequency Parameters L |
(LSF) e
Recognition Recognition
Log-likelihood

scores

Fig. 4.1.Proposed emotion recognition from speech systesnvieiw.

The emotion recognition part of the system is tlated in the bottom half of Fig. 4.1.
Similar to the classifier training part of our syt first input speech is parameterized as
spectral and prosody-related features. Then, spéodn emotion recognition is carried

out using the previously trained HMM classifierseX¥| decision fusion of classifiers is
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applied and at the end of the fusion step, the iematiass with the highest recognition

score is accepted to be the recognized emotion.

4.3. Feature Extraction

Two types of information sources are available &ednine the emotional status of a
speaker from his/her speech, the acoustic contehttee linguistic content of the speech.
In this study, we only consider the acoustic conbgnusing both prosody-related features
and spectral features. The features that areedil@nd the proposed formant position based

weighted MFCC feature set are defined in the foihgasub-sections.

fp | Mean normalized pitch, derivative of pitch and ity

fra | First two formants F1 and F2 with dynamic features

fc | MFCC features

fca | MFCC and dynamic features

f. | LSF features

fia | LSF and dynamic features

fwa | WMFCC and dynamic features

Table 4.1.Feature set representations.

The notation that we use to represent the feamnesummarized in Table 4.1. We denote

prosody-related features withwhereas, represent spectral features like MF@QI.8Fs
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with fc and f, respectively. MoreoverA symbol in the representations, stands for the
dynamic features such as first and second dergstivirst two formant frequency features
with dynamic parameters are expressedrasSpectral features, extended to include the
dynamic features are symbolized witg, and f.., respectively. Finally, the proposed

formant position-based weighted MFCCs with dynafeatures are symbolized ..

4.3.1. Prosody-related Features

Prosody-related features are extracted as defail®dction 3.3.1.
4.3.2. Formants

Formants are the resonant frequencies of the \toaet! filter. Emotion has a considerable
influence on formant positioning, especially on gh@cement of first two formants F1 and
F2 [23]. We employ the first two formant frequerxciavith delta and acceleration

parameters (first and second derivatives), andtéghem asg,.

Formants are extracted using the PRAAT speech sisadpftware with standard settings
[42]. The maximum number of formants are trackéeeffand the maximum frequency of
the highest formant is set to 8000 Hz for all spesk The time step between two
consecutive analysis frames is selected as 10 miglein an analysis window of size 25

msec. The default value for amount of pre-emph@&§idiz) is used.

4.3.3. Mel Frequency Cepstral Coefficients

Mel frequency cepstral coefficient features areaested as detailed in Section 3.3.2.

4.3.4 Line Spectral Frequency Coefficients

Line spectral frequency coeffcient features areaexed as detailed in Section 3.3.3.
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4.3.5 LSF weighted MFCC Features

In Section 3.3.3, we noted that neighboring LSFuess will be close to each other around
formant frequencies. Using this fact, inverse harimonean (IHM) weighting function was
introduced for weighted quantization of LSF paraer®{43]. The IHM weighting function

is defined as,
;_ i=1
-
W, =9— ! — + _+11 - i=23..,p-1 (4.2)
fi-f= f7-f
1 i=p
-t

Where f/' is thei-th line spectral frequency fgrth order filter andy; is the corresponding

IHM weight. In order to normalize and further cattthe weight of the high frequency
spectral contributions, we define a normalized IM#&lighting function as,

— [ w _
V\/,—[—ZJWJ] i=12,...,p (4.2)

wherea is the control parameter.

In the extraction of MFCC features, each analysime is first multiplied with a Hamming
window and transformed to frequency domain usingt Fourier Transform (FFT). Mel-
scaled triangular filter-bank energies, which are located at critical band frequencigs
are calculated over the square magnitude of thetrgme and represented in logarithmic
scale [44]. Since the first two formant positiorsraye reported to be influential on emotion
recognition [23], we propose an IHM based weightirighe critical band energies. Let’s

consider the critical band frequenay falling between two neighboring line spectrum
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frequenciesf"™ and f". Then the critical band weighting function is f&dwith a linear

interpolation of normalized IHM weightings,

v = wa(m = £77) + woa (£7 - m) 4.3)

an _ an—l

whereNg is the number of critical bands and the boundarg Bpectrum frequencies are
defined as f°= @nd f"*=m. The IHM based critical band weighting function is
normalized to retain a unity sum as,

i i=12..N, (4.4)
Vi

v, =

The proposed weighted MFCC features, WMFCIG,,, are derived using discrete cosine

transform (DCT) over weighted log-scaled filter-kamergies,

Ng _ H
f=— S ve co{(i - o.5)ﬂ] i=12,...N (4.5)
Ng i Ny

whereN is the number of WMFCC features that are extracted.

Sample IHM based critical band weighting functidosa control parameter values in the
range [1, 4], are presented at the bottom parigof42, where four peak points labeled as
F1-F4, denote the predicted first four formant poss. The upper part of the same figure
visualizes the actual speech spectra where undgrlgpeech frame has four visible
formants corresponding to four highest peaks inltigemagnitude representation. From
the figure, it is obvious that the proposed LSFedaweighting function can successfully

locate these formant positions.
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Fig. 4.2. Top Actual speech spectra for a voiced speech frantieelog-magnitude
representatiorBottom Sample IHM based critical band weighting funcidar variousx
values for the same voiced speech frame.

4.4. HMM-based Classification

HMM structures have been deployed with great sucteautomatic speech recognition to
model temporal spectral information; they were alsed similarly for emotion recognition
[29]. We model the temporal patterns of the ematigpeech utterances through HMM
structures. The HMM structures are set to halvéeft-to-right states withM mixture
components per state. One can expect that diffexerdtions define differentiation in
observation probability density functions witli mixtures overN states. Structural

parameterdN and M are determined through a model selection methodewve choose



Chapter 4: Formant Position based Weighted Spegatures for Spontaneous Emotion
Recognition 31

the highest average recognition rate and non-zasition probability as the selection
criteria. In the emotion recognition phase, thelitkood of the features of a given speech
utterance is computed over HMM structures for eaciotion class. Then, the utterance is

classified as expressing the emotion which yidbashighest likelihood score.

4.5. Decision Fusion
The decision fusion is applied as detailed in $ec8.3.7.

4.6. Performance with HMM classifiers
4.6.1 Performance of the Proposed WMFCC Features

We evaluate the proposed formant position weight«CC features with HMM based
classifiers for a range of control parameter,values. Note that, as defined in Chapter
4.3.5,0 = 0 case corresponds i\ features. Whilea 21, asa increases the emphasis of
higher formants decrease in the proposed weigtitingtion. In Table 4.2., we present
recognition performance of WMFCC features modeldth & state HMMs, with mixtures
[8, 120].



Chapter 4: Formant Position based Weighted Spdetiatiures for Spontaneous Emotion Recognition

32
All Training Data UA Recognition Rates (%)
Formant position based weighte MFCCA

¢ | MFCCA (for variousa values)

5

é (0.0) 1.0 15 2.0 2.5 3.0/ 3.0§ 3.1 3.1b 3.2 325 33 3135 3.8.45 35| 375 40
8 39.0z | 39.3¢| 39.5F | 39.2¢ | 38.9¢ | 39.7¢ | 39.4( | 39.0( | 39.5¢ | 38.1¢ | 37.7< | 37.4¢ | 38.2¢ | 37.8( | 39.5( | 39.6( | 39.5( | 38.71
16 39.87 | 39.1F| 39.9( | 39.17 | 40.64 | 39.6¢ | 38.9¢ | 39.17| 39.71 | 38.4« | 39.4( | 39.3¢ | 38.9( | 39.4€ | 39.4% | 39.6¢ | 39.14 | 38.3-
32 39.8¢ | 39.71| 39.87| 38.3¢| 39.6% | 39.4¢ | 39.2¢ | 38.4¢« | 38.1¢ | 38.9Z | 38.4¢ | 39.67 | 39.7% | 39.471 | 38.67 | 38.2¢ | 39.2¢ | 38.4¢
48 39.9C | 38.8( | 38.9( | 38.74| 39.31| 39.41| 39.41 | 39.1¢ | 39.21 | 39.2¢ | 39.4( | 40.4< | 40.0¢ | 40.37 | 39.3¢ | 38.9¢ | 39.91 | 39.4:
64 39.5¢ | 39.71] 40.1¢ | 39.4C | 39.4¢ | 40.5¢ | 39.5¢ | 39.67 | 39.1F | 40.27 | 39.3% | 39.0% | 39.5( | 39.0¢ | 39.3¢ | 40.3t | 39.8Z | 39.9:
80 39.47 | 40.28 | 39.7( | 39.9¢ | 40.671 | 39.6€ | 40.5¢ | 39.8¢ | 40.67 | 40.5( | 41.3% | 40.1¢ | 39.8¢ | 40.87 | 40.2( | 40.2¢€ | 40.4€ | 40.0(
96 39.67 | 39.65| 39.1< | 39.6¢ | 40.171 | 39.2¢ | 40.0¢ | 40.57 | 41.09 | 39.97 | 40.92 | 39.4Z | 40.5¢ | 40.70| 40.7% | 41.2¢ | 41.44 | 39.7:
11z | 39.7¢ | 39.7¢ | 38.3%| 39.4( | 39.97 | 40.4¢ | 40.0¢ | 40.8F | 40.32 | 40.7C | 40.5¢ | 40.0¢ | 40.97 | 41.4¢ | 40.0% | 41.0¢ | 40.8( | 39.6¢
12C| 39.6¢ | 39.5f | 38.4f | 39.1( | 38.4¢ | 40.7F | 40.12 | 39.9C | 39.97 | 40.27 | 40.6Z | 40.1( | 40.2¢ | 4062 | 40.3¢ | 39.9¢ | 40.8€ | 39.7¢

Table 4.2. UA recognition rates for HMMs with number of s&t2 and number of mixtures 8-120, modeling MF&Cand formant
position based weighted MFC&A (WMFCC) feature sets. WMFCC feature vectors depgenthea weight value that ranges from 0.0
to 4.0, wherex = 0 case corresponds to standard MFCC definition. énetkperiments all available training data is usedtriaining.
Mixtures are increased 2 by 2 and following eveiytare increment re-estimation of models is appfiadl2 times.
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Fig. 4.3 visualizes the emotion recognition perfantes of WMFCC features for varying
values in Table 4.2. In the figure,value ranges from 1.5 to 4 on the horizantal aRis.
the vertical axis, recognition rates for left-tght HMM classifiers with two states are
presented. From top to bottom, HMM structures H2¥e96 and 112 mixture components,
respectively. For ease of comparison of the perémes, we visualize standard MFCC
features’ recognition rates with a horizantal lioe each mixture component. Since the
distribution of emotional classes in the FAU Aibataket is highly unbalanced, the
performance is measured as unweighted recall (@fsrthat is the average recall of all
classes. We observed significant performance imgr@ants with respect to standard
MFCC features fow values in [3,4] interval. As seen in the figure, while the startt
MFCC feature attains 39.43% recognition rate with 80 mixture HMM classifier, the
proposed WMFCC feature attains 41.35% recognit@@ ato = 3.25 value.

In order to evaluate MFCC and WMFCC based classifwe performed McNemars test,
which is a paired success/failure trial using tiroimial model. The McNemar’'s value is

computed as 136.65, which is significantly largeart statistical significance threshold

X(ioos) = 38414,
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4.6.2. Performance Comparison of Prosody and SpkEEwatures

The spectral and prosody feature sets as defin€thapter 4.3 are used with HMM based
classifiers for the evaluation of emotion recogmti We employ the left-to-right HMM
structure with various number of states and migwsing the FAU Aibo training data for
each feature set. The emotion recognition perfooesiof feature$s fra fla andfc, ,for
increasing number of mixtures and various numbestafes in the HMM structure are
plotted in Fig. 4.4.
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Observing Fig. 4.5 we summarize best performancevblae for each feature set in table
4.3. Prosody features perform best for 3 state HMMbB 120 mixtures as 32.18 %. First
two formant features with dynamic parameters, medlelith single state and 120 mixtures
HMM has UA value 33.89 %. 38.75 % is the highest tite for LSF features with
dynamic parameters when modeled with 3 state anchiXire HMM structure. Finally,
MFCC features with delta parameters has highestédaAll rate 39.90 % for HMMs with 2
state and 48 mixtures per state. WMFCC featurespeviorm all features for HMM
mixture value 80. The highest UA recall rate idiaeed with WMFCC features as
41.35%. The prosody and formant features perfognifstantly lower than other spectral

features.

Feature fp fFA fLA fCA fWA

UA recall rate (%) 32.18| 33.89| 38.75| 39.90| 41.35

Table 4.3.The highest UA recall rates for each feature set.
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Fig. 4.E. Unweighted recall (UA) rates of spectral and pdysfeatures for increasing number
of mixture components per HMM state.

4.7. Performance of the Decision Fusion

Decision fusion of HMM classifiers is performed fWFCC, LSF and WMFCC spectral
features. The highest recognition rates for eadatisitm fusion are listed in Table 4.4.
Among the decision fusion of pair of classifiefgy andfc, fusion yields the highest
recognition rate, 42.63 %, with fusion weight 0.21. We use WMFCC features modeled
with 2 state HMMs and 80 mixtures per state. Theesponding confusion matrix of the

fusion of pair of classifiers is presented in Ta#l®. When this classifier fusion is further
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fused withf 4, based classifier, the UA recall rate improved 328 % with fusion weight
B =0.96.

Decision UA recall
Fusion Rate (%) P
fop O fop 42.63 | 0.21
fop O fL 42.43 | 0.93
(foo Ofe)Of, | 4328 | 0.96

Table 4.4.The highest recognition rates after decision fusio

A E N P R
Anger 292 151 | 83 | 21| 64
Emphatic| 204| 804 | 372| 354 93
Neutral 559 1247| 2557|400 | 614
Positive 7 7 80| 80 4
Rest 72 74 165 86 149

Table 4.5.Confusion matrix for decision fusion of pair oéssifiers withfy, andfc,features.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

We introduced a novel formant position based weightMel Frequency Cepstral
Coefficient (WMFCC) feature set for a speech drivmotion recognition system. The
experiments with the spontaneous emotional speegbus FAU Aibo yield significant
performance improvement with WMFCC features forhhigmber of mixture components
with left-to-right HMM structures. It's expectedata high number of mixture components
do a better job capturing emotion dependent vanatiin the spectral feature space.
Furthermore, decision fusion of classifiers witffetient spectral features yields a 43.28%
UA recall rate, which is significantly above thesbscoring 41.65 % UA recall rate in the
INTERSPEECH 2009 Emotion Challenge.

We investigate the contribution of the line spddirequency (LSF) features to the speech
driven emotion recognition task. The LSF featureslkaown to be closely related to the
formant frequencies, however they have not beewiqusly employed for emotion
recognition to the best of our knowledge. We denrates through experimental results on
FAU Aibo emotional speech database that the LStifes are indeed beneficial and bring
about consistent recall rate improvements for ewnotiecognition from speech. In

particular, the decision fusion of the LSF featuvath the MFCC features results in
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improved classification rates over the state-ofaheMFCC-only decision for both of the
databases.

It is also interesting that in the challenge datgseposed HMM-based features did not
perform as accurate as spectral features. Nevestheafter the two-stage decision fusion
they brought significant improvement. Decision @usistrategy was more succesfull than
unimodal training strategy in our experiments. &iént decision fusion techniques can be
tested for better results.

Further research should include feature pruningtesgies to lower the confusion between
emotional classes in FAU Aibo like spontaneous @&nat speech datasets like FAU Aibo.
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