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ABSTRACT  

 

 

3D shape segmentation is a key step for processing and understanding of digitally 

acquired mesh models of 3D objects and has numerous applications in computer graphics 

and vision such as skeleton extraction and model deformation, mesh morphing, gesture 

recognition, shape retrieval, compression and collision detection. While most of the 

existing 3D shape segmentation methods consider only static meshes, dynamic shape 

models of moving objects are becoming more and more commonplace with the recent 

advances in 3D acquisition techniques. A typical example of this trend is the use of fixed 

connectivity mesh sequences to represent human actors with articulated motion. 

In this thesis, we present a method to segment an articulated shape given in the form of 

a dynamic mesh sequence by incorporating motion information so as to further improve the 

segmentation results obtained by static segmentation methods. We assume that the 

articulated shape is given in the form of a mesh sequence with fixed connectivity so that the 

interframe vertex correspondences, hence the vertex movements, are known a priori. We 

use different postures of an articulated shape in multiple frames to constitute an affinity 

matrix which encodes both temporal and spatial similarities between surface points. The 

shape is then decomposed into segments in spectral domain based on the affinity matrix 

using one of the merge-cluster algorithm or the standard K-means clustering algorithm. 

The performance of the proposed segmentation method is demonstrated on various mesh 

sequences. 
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ÖZETÇE 

 

 

3B biçimlerin kesimlemesi, 3B nesnelerin sayısal olarak elde edilmiş örgü modellerinin 

anlaşılması ve işlenmesinde önemli bir basamak olmakla beraber, iskelet özütleme, model 

deformasyonu, örgülerin şeklini değiştirme, hareket tanıma, biçimlerin geri kazanımı, 

sıkıştırma ve çarpışma sezimi gibi bilgisayar grafiği ve bilgisayarla görme konularında da 

birçok uygulamaya sahiptir. Mevcut 3B biçim kesimleme yöntemlerinin büyük 

çoğunluğunun yalnızca durağan örgüleri göz önünde bulundurmasına karşın, hareketli 

nesnelerin devingen biçim modelleri, 3B edinim yöntemlerinin yakın zamandaki 

gelişimiyle beraber hızla yaygınlaşmaktadır. Bu akımın tipik bir örneği de, insan aktörlerin 

eklemli hareketini gösteren, değişmez bağlanırlık sahibi örgü dizilerinin kullanımıdır.  

Bu tezde, hareket bilgisi ekleyerek devingen örgü dizisi olarak verilmiş 3B eklemli 

şekillerin kesimlemesinde kullanılmak üzere ve durağan kesimleme yöntemleriyle elde 

edilen sonuçları iyileştirecek bir kesimleme yöntemi tanıtılmaktadır. Eklemli şeklin 

değişmez bağlanırlığa sahip bir örgü dizisi olarak verildiği, bu yüzden tepe noktalarının 

çerçeveler arası karşılıklarının ve dolayısıyla hareketlerinin önceden bilindiği 

varsayılmaktadır. Tepe noktaları arasındaki hem zamansal hem de uzamsal benzerlikleri 

kodlayan bir ilginlik matrisi oluşturmak için eklemli şeklin birden fazla çerçevedeki duruşu 

kullanılmaktadır. Daha sonra biçim, standart K-means ya da merge-cluster gruplandırma 

algoritmalarından birisi kullanılarak ilginlik matrisine dayalı olarak spektral alanda 

kesimlere ayrılır. İleri sürülen kesimleme yönteminin başarımı çeşitli örgü dizileri üzerinde 

gösterilmiştir. 
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Chapter 1 

 

INTRODUCTION 

 

3D shape segmentation is a key step for processing and understanding of digitally 

acquired mesh models of 3D objects. 3D shape segmentation not only divides a mesh into 

semantic pieces but also reduces various analysis problems into smaller and simpler-to-

solve pieces. The information obtained using 3D shape segmentation can be used in 

numerous applications in computer graphics and vision such as skeleton extraction and 

model deformation [8], mesh morphing [15], gesture recognition, compression [6] and 

collision detection [10]. While most of the existing 3D vision methods consider only static 

meshes, dynamic shape models of moving objects are becoming more and more 

commonplace with the recent advances in 3D acquisition techniques. A typical example of 

this trend is the use of fixed connectivity mesh sequences to represent human actors or 

animals with articulated motion. In this thesis, we present an automatic method to segment 

the articulated shape embedded in a dynamic mesh sequence by incorporating the motion 

information so as to further improve the segmentation results obtained by static 

segmentation methods. 

Many algorithms have been proposed to decompose a static 3D mesh into meaningful 

segments, as surveyed and comparatively evaluated by Chen etal. in [3]. The method 

proposed by Lai et al. [9] for instance utilizes Grady’s random walks method which was 

initially introduced for segmentation of images [16]. The algorithm first asks for manual 

selection of a user specified number of seed faces (or automatically selects them) as in 
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Grady’s seed pixel selection, and then assigns each non-seed face to the seed for which it 

has the highest probability to reach after a random walk on the dual graph.  

The method of fitting primitives, which is an effective segmentation method proposed 

by Antenne et al. [1], is based on the hierarchical face clustering method described in [17]. 

The method initially puts each face in a separate cluster and then hierarchically clusters 

faces by iteratively merging them according to the best fitting primitive shape (planes, 

spheres etc.). Another hierarchical decomposition method, suggested by Golovinskiy et al. 

[4], uses a randomized approach to find minimum cuts. In this method, a decimated version 

of the mesh is set to be the initial single cluster as a whole and then hierarchically divided 

into parts with binary segmentations at each iteration using the best of a set of randomized 

cuts, i.e., the one with the minimum normalized cut cost.  

Shlafman et al. [15] describe a decomposition algorithm for morphing polyhedral 

surfaces, which applies K-means clustering to the matrix of pairwise face distances 

composed of angular and Euclidean distances.  Katz et al. [8] improve this idea by 

replacing Euclidean distances with geodesic distances between adjacent faces, by 

differentiating the relative weight of convex and concave dihedral angles, and by avoiding 

jaggy boundaries with the use of fuzzy clustering instead of K-means. Liu et al. [11] 

simplify the problem computationally using spectral clustering, where the basic idea is to 

embed the data into a lower dimensional space by using the same distance matrix as Katz et 

al. [8] and then to perform K-means clustering.  

Certainly, there are many other methods beside the ones evaluated in [3]. Yamauchi et 

al. [20] for example use a Gaussian curvature driven segmentation algorithm, while Chen et 

al. [21] propose a watershed-based algorithm combining Gaussian curvature with concavity 

estimation in order to compensate Gaussian curvature’s lack of ability to differentiate 

convex and concave corners. Yu et al. [22] extract parallel slices from the 3D model, and 

then divide the model based on the contours of slices.     
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All the aforementioned segmentation technşques apply only to static meshes. However, 

in a number of cases, especially for articulated shapes, depending on the posture of the 

model, it becomes almost impossible to extract sufficient information to identify some of 

the cut regions. When the benchmark results obtained in [3] are investigated for example, 

one can observe various segmentation failures. In Figure 1.1 we see an example of how the 

algorithms compared in [3] may fail to locate some parts of the given surface mesh, e.g., 

the elbows on the arms, due to the straight stance of the arm and the resulting smooth 

surface from wrist to shoulder, or even some fail to separate the torso from the legs.  

 

 

Figure 1. 1 Segmentation results for a static human model extracted from [3]. From left to right, Randomized 

Cuts [4], Shape Diameter Function [14], Normalized Cuts [4], Core Extraction [7], Random Walks [9], 

Fitting Primitives [1] and K-Means [15]. 
 

 

In this thesis, we propose to incorporate the motion information, whenever available, to 

circumvent the problems encountered in segmentation of static meshes such as the one 

demonstrated above. To this effect, we describe a segmentation method that is applicable to 

mesh sequences with articulated motion. By analyzing multiple postures of an articulated 

shape and positions of different parts of the mesh in multiple frames, we deduce 

information about the semantic relations between different parts of the shape. We assume 

that semantically different parts of an articulated object exhibit different rigid motions. So 
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far this idea has been exploited for mesh segmentation only a few times, such as in [19] and 

[18].  

Lee et al.[19] use a distance metric based on the deformation between faces to define 

boundary regions. The idea originates from the fact that the distance between two 

neighboring faces changes over time and the amount of this change is maximum at the 

joints. Therefore, regions of large deformation, where the distance, defined as a 

combination of geodesic and deformation distances, between two adjacent faces is greater 

than an experimentally set threshold, are regarded as boundary regions.  

Arcila et al. [18] use displacement vectors to segment a mesh into clusters. One of the 

strengths of the algorithm is that it can be applied to mesh sequences with varying number 

of vertices. The first step of the technique is to find approximate displacement vectors 

between two frames. The second step is to perform an initial segmentation using the 

displacement vectors. The mesh is divided into clusters within which vertices either stay 

static, or move rigidly, or are stretched in a uniform fashion. At the third step, the initial 

segmentation is refined iteratively with each incoming frame, that gives the algorithm the 

ability to segment on the fly.  

Our approach differs from existing methods in that we use both spatial information and 

temporal information at the same time for dynamic mesh segmentation as in our previous 

work [28]. In other words, we aim to take benefit of static mesh segmentation methods as 

well as the information that we can extract by analyzing the motion in a dynamic mesh 

sequence. To this effect, we generate a distance matrix based on a blend of angular 

distances, geodesic distances and variances of Euclidian distances between vertices. The 

block diagram depicting our algorithm is given in Figure 1.2. We compute the blending 

components of the overall distance matrix after downsampling the vertices to a number of 

uniformly distributed base vertices. The overall distance matrix is then transformed into an 

affinity matrix encoding the likelihood of the vertices belonging to the same cluster, 
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followed by calculation of the Laplacian of the affinity matrix, hence implying reduction in 

dimensionality and simplification of the clustering problem. The last step is clustering the 

base vertices in the spectral domain using K-means algorithm, which results in a pre-

determined number of clusters, or using merge-cluster algorithm which automatically 

selects the number of clusters.  
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Figure 1. 2 The block diagram depicting the algorithm. 
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Chapter 2 

 

THE PROPOSED SEGMENTATION ALGORITHM 

 

We assume that the mesh sequence to be segmented is of fixed connectivity, meaning 

that the number of vertices and mesh connectivity do not change through the frames of the 

sequence. If the sequence is not of fixed connectivity, there exist a vast number of methods 

in the literature, such as [23, 24] and [30], to find vertex-to-vertex shape correspondences 

that can be used prior to our segmentation method. Analyzing multiple frames of a time-

varying mesh model is time and memory consuming. Therefore, we sought for a way to 

reduce this vast resource demand. The high computational cost and the big memory 

requirement is a result of the huge matrices we use to encode vertex-to-vertex distances for 

each frame of the mesh sequence. Because we employ such matrices, doubling the number 

of vertices in a mesh quadruples the size of matrices. To lower the resource amount needed, 

as a first step, we downsample the vertices of the mesh sequence to a desired number of 

vertices, called base vertices. The base vertices, computed by using the Dijkstra's shortest 

paths algorithm as suggested in [5], are enforced to be distributed equally on the surface of 

the mesh (see Figure 2.1).  
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Figure 2. 1 Base vertices. 
 

Every base vertex has its own base area, called a patch. The number of base vertices 

generated by the algorithm, hence the size of the resulting patches, can be controlled by 

adjusting the patch radius r using ( )Marearr ⋅= & , where ( )Marea  is the surface area of 

the mesh M. In order to adjust the radius r, we change the value of coefficient r& , and in our 

experiments we always set r&  such that the number of base vertices is around 1000. The 

patch of a base vertex is composed of faces nearby. Each face is assigned to the patch of 

the base vertex that is closest to its center. After each base vertex is clustered, faces 
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residing within its patch are assumed to be in the same cluster with it. In Figure 2.2, we 

display the patches for a model. 

 

 

Figure 2. 2 Patches. Each surface segment is the patch of a base vertex. 
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2.1 Distance Matrices 

 

Our algorithm is based on clustering base vertices according to their likelihood of being 

together. In order to determine the likelihood of two base vertices i and j to be in the same 

cluster, we first constitute a distance matrix ( )jiD , , which is based on the matrix used by 

Katz et al. [8] and the one used in [11]. The overall distance matrix D  is a blend of four 

separate distance matrices encoding different distance associations between base vertices. 

These four matrices are two geodesic distance matrices, an angular distance matrix and a 

motion distance matrix, denoted by aGg DDD ,,  and mD  respectively. 

 

2.1.1 Geodesic Distance Matrix 

 

In order to incorporate geodesic distance information into our method, we constitute 

two different geodesic distance matrices. Our first geodesic distance matrix is simply the 

matrix where each entry, ( )jiDg , , encodes the geodesic distance between adjacent base 

vertices ib  and jb . If ib  and jb  are not adjacent, the corresponding value is set to zero. The 

second geodesic distance matrix GD  encodes the geodesic distances between all base 

vertices regardless of their adjacency. We calculate geodesic distances using Dijkstra’s 

shortest path algorithm [27]. The basic assumption in using this matrix is that the 

probability of two base vertices being in the same cluster decreases as the distance between 

them increases. 
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2.1.2 Angular Distance Matrix 

 

The angular distance matrix aD  encodes the distances between the normals of the 

adjacent base vertices. The normal of a base vertex is computed as the area-weighted 

average of the normals of the faces within the individual patch of that base vertex. The 

angular distance ( )jiDa ,  between two adjacent base vertices ib  and jb  is calculated as 

follows: 

( ) ( )( )∑ −=
l

a lji
L

jiD ,,cos1
1

, θη                                           (1.1) 

where ( )lji ,,θ  is the angle between the normals of the base vertices ib  and jb  in frame l, 

and L is the total number of frames in the sequence. If ib  and jb  are not adjacent the 

corresponding value is set to zero. When ib  and jb  are coplanar, they have the highest 

probability of being in the same cluster so they have the minimum distance between. When 

ib  and jb  are facing the opposite directions, they have the lowest probability of being in the 

same cluster so they have the maximum distance between. Note that the range of values for 

( )jiDa ,  is so that ( ) 2,0 ≤≤ jiDa , and when θ  is 0, i.e. ib  and jb  are coplanar, its value 

becomes minimum and when θ  is π , i.e. ib  and jb  are facing towards exactly the opposite 

directions, its value becomes maximum. Another fact, based on [8] and [11], is that a 

concave angle between two base vertices indicates a higher probability of belonging to a 

cut region than a convex angle. Therefore, η =1 is used for concave angles to express their 

property of being better candidates to be on a boundary, whereas η =0.01 is used for 

convex angles. These values have been experimentally set and as long as η is a smaller 

positive value for convex angles, many other values can be tried. 



 

 

Chapter 2: The Proposed Segmentation Algorithm   12 

 

In addition to ( )jiDa , , another matrix, that we denoted by 
′

aD , is also calculated as 

shown in Equation 1.2. The difference between two matrices is that ( )jiDa ,  encodes the 

average angular distances calculated over all frames whereas ( )jiDa ,
′

 encodes the angular 

distances calculated on the first frame of a sequence. As we will discuss in Chapter 3, we 

use ( )jiDa ,  and ( )jiDa ,
′

 interchangeably to show the effect of using multiple frames in 

angular distance calculation. Therefore, ( )jiDa ,  can be replaced with ( )jiDa ,
′

 wherever 

we use it in this chapter: 

( ) ( )( )jijiDa ,cos1, θη −=
′

                                         (1.2) 

 

2.1.3 Motion Distance Matrix 

 

In the case of articulated motion, the Euclidian distance between two surface points 

belonging to the same segment is expected to remain almost constant. Thus, if the distance 

between two base vertices significantly varies with time, we say, they do not exhibit the 

same rigid motion so that they are unlikely to be in the same segment. In order to 

incorporate the motion information, we introduce a motion distance term, denoted by 

( )jiDm ,
′

, which holds the variance of pairwise Euclidian distances of the base vertices ib  

and jb  over the mesh sequence, calculated as follows: 

( ) =
′

jiDm , var ( )( )ljid E ,,                                              (1.3) 

where ( )ljid E ,,  is the Euclidian distance between ib  and jb  in frame l  and var denotes 

the variance over multiple frames. During variance calculation, only some equal number of 

smallest and largest Euclidian distances are taken into account so as to eliminate the frames 
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in which the pairs of base vertices stay relatively stationary. We denote the number of 

smallest and largest Euclidian distances used by frame-cut. The overall motion distance 

matrix mD  is then calculated as a blend of 
′

mD  and GD : 

( )
( )

( )
( )

)(

,
1

)(

,
,

′

′
−+=

m

m

G

G

m

mean

jiD

mean

jiD
jiD

DD
αα                               (1.4) 

where mean is the average value calculated over all entries of the corresponding matrices. 

 

2.1.4 Spatial Distance Matrix 

 

The spatial distance matrix, that we denote by sD , is computed based on gD  and aD . 

We assign a weight, ( )jiw , , to each edge of the mesh, that is, for each adjacent base vertex 

pair ib , jb : 

( )
( )

( )
( )

a

a

g

g

D

jiD

D

jiD
jiw ~

,
1~

,
, αα −+=                                      (1.5) 

where gD
~

 and aD
~

 are the average values computed over the nonzero entries of the 

corresponding distance matrices, and the value of the blending ratio α is set to be the same 

as the value of α used for motion distance term. Each entry of the spatial distance matrix, 

( )jiDs , , is then given by the length of the shortest path computed on the resulting 

weighted graph between base vertices ib  and jb  For this purpose, we employ Dijkstra's 

shortest path algorithm [27].  
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2.1.5 Overall Distance Matrix 

 

Given the above definitions the overall distance matrix D  is computed by the following 

weighted summation: 

 

( )
( )

( )
( )s

s

m

m

mean

jiD

mean

jiD
jiD

DD

,
1

),(
),( ββ −+=                               (1.6) 

 

where β  value is the weight used to adjust the relative importance of the motion distance 

and the spatial distance values and mean is the average of all entries of the corresponding 

matrices. As previously mentioned, our distance matrix is based on the one used by Katz et 

al. [8] and Liu et al. [11]. However, unlike our approach, their distance matrices are based 

on the distances between face centers. Because we use base vertices, which are located at 

the centers of patches formed of faces, we use the positions and normals of base vertices 

analogously to using the positions of face centers and face normals, respectively. Since we 

stick to their distance matrix to some extent, we set the value of α  based on their 

experimental results and adjusted only β , which will be mentioned in detail in the next 

chapter. 

 

2.2 Affinity Matrix  

 

Before starting to cluster base vertices with respect to their similarity, we construct an 

affinity matrix, which encodes the likelihood of base vertices to be in the same segment. 

This is basically the transformation of the distance matrix D encoding the unlikelihood of 

base vertices to be in the same segment into a matrix doing just the opposite. The 
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transformation of the distance matrix into the affinity matrix W is achieved the following 

exponential kernel: 

( ) 22

),(

, σ
jiD

ejiW
−

=                                                   (1.7) 

This kernel normalizes the affinity values into [0,1] interval. In order to properly set the 

parameter σ , we use the following equation:  

)(Dstd
e

−=σ                                                            (1.8) 

where std(D) is the standard deviation computed over the all entries of the matrix D. 

 

2.3 Spectral Clustering 

 

 In order to achieve clustering based on the affinity matrix, there exist various schemes 

in the literature, among which we favor spectral clustering for its simplicity and 

computational efficiency [2, 11, 12]. Spectral clustering is the general name of many 

clustering methods utilizing dimensionality reduction on the spectrum of the affinity 

matrix. We reduce the dimensionality of our NxN  affinity matrix, embedding the shape 

coordinates into a lower K -dimensional space. For this purpose we calculate the 

normalized symmetric Laplacian L of the affinity matrix W by 2/12/1 WΛΛL −= , where Λ  

is a diagonal matrix whose th
i  diagonal element is the sum of the th

i row of W. Next step is 

applying a spectral decomposition, i.e., eigenvalue decomposition on L. Let Kvvv ,...,, 21  

be the first K  eigenvectors of L corresponding to the K  largest eigenvalues Kλλλ ,...,, 21 . 

We then compute the NxK  matrix V containing the eigenvectors Kvvv ,...,, 21  as columns. 

The rows of V, normalized so as to have unit norm, provide us with the K  dimensional 

points in the spectral domain. Following the common practice, as also in [11, 25, 26], we 

set the number of eigenvectors to be used as K, i.e., the same as the number of clusters we 

desired. 
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Polarization theorem [2] states that the projection of data points to a lower rank K  

amplifies the unevenness in the point distribution on the K  dimensional sphere. Truncating 

the dimensions corresponding to the smallest eigenvalues creates an embedding which 

distorts the large angles more than the small angles between vectors. This implies that the 

points of high affinity, i.e. the points whose corresponding vectors have small angles 

between, will be grouped together on the K  dimensional sphere while the points of low 

affinity, i.e. the points whose corresponding vectors have large angles between, will move 

apart. Therefore, clustering of the data embedded on lower dimensional space will be 

simple enough to obtain by employing basic clustering techniques. In order to perform 

clustering, we utilize two methods, which are K-means clustering and merge clustering.  

 

2.3.1 K-Means Clustering 

 

K-means clustering is a well known and simple clustering algorithm. The algorithm is 

an iterative one which, at each iteration, assigns each data point to one of the K  clusters 

whose mean is closest to that point, and updates the cluster means at the end of each 

iteration. Although, the cluster means are updated at each iteration, before the first iteration 

they have to be set somehow. This initialization of the cluster means is an important 

problem for all K-means clustering techniques, since the bad choice of initial centers may 

lead to undesired clustering results. In our K-means scheme, for the sake of starting with 

good initial centers and having better clustering results, we initially find K  base vertices 

scattered as evenly as on the mesh surface by utilizing the same method that we use to find 

the base vertices. A standard K-means clustering is then performed on the points in spectral 

domain, using the rows of V corresponding to the indices of these K  base vertices as initial 

cluster centers. However, this method has a drawback, which is the necessity of setting the 

number of clusters manually. Since the high number of hyper-parameters that are set 
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manually is undesirable, we also employ a second method which chooses the number of 

segments automatically. 

 

2.3.2 Merge Clustering 

 

In order to increase the degree of automation of our algorithm, we utilize a basic 

merging based clustering algorithm similar to the Isodata clustering algorithm [31]. In this 

method, instead of choosing K  initial centers out of N points in spectral domain, we 

initially regard each of N  points as individual centers, and start with N  clusters. At each 

iteration, the distances between the cluster centers are calculated and if the distance 

between the centers of two clusters is below a certain threshold, these two clusters are 

merged. Iterations continue until all cluster means are apart enough from each other so that 

we cannot find a center-to-center distance value smaller than the threshold. The mentioned 

threshold T is not constant and adaptively calculated at each iteration as follows: 

( )( ) ( ))(var ,, jiji cdistcdistmeanT µ−=                                   (1.9) 

where ( )( )
jicdistmean ,  is the mean of the distances between centers Nccc ,...,, 21  and 

var ( )( )
jicdist ,  is the variance of the distances between them. The value of µ  is set 

5.35.2 ≤≤ µ . This range has been experimentally found to work properly. When µ  is 

larger than 3.5, T  becomes smaller and the centers need to be closer to each other in order 

to be merged leading to an over-segmentation of the mesh with too many segments. When 

µ  is smaller than 2.5, T  becomes larger and more of the centers will be interpreted as 

belonging to the same segment and will be merged leading to an under-segmentation of the 

mesh. The overall merge cluster algorithm is as follows:   
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One drawback of this algorithm, as compared to standard K-means clustering, is that, 

although we can force the K-means algorithm to produce the exact number of segments we 

favor, there is no way of knowing the number of segments beforehand when we use merge-

cluster. If the information carried by the affinity matrix is fuzzy for some regions, merge-

cluster may fail to keep two segments apart and mistakenly merge them, although K-means 

may keep them separated if it is forced to produce two different segments in that region. 

 

 

 

1. Set each row of V as an individual center ic . 

2. Calculate the threshold T using: 

( )( ) ( ))(var ,, jiji cdistcdistmeanT µ−=  

3. For every ji cc ,  pair, if Tccdist ji <),( , then 

merge all points belonging to ic  and jc  to form 

a single cluster. If such a pair cannot be found, 

jump to step 7.  

4. Update the clusters and the number of clusters. 

5. Update the cluster centers by taking the means of 

the coordinates belonging to each point. 

6. Return to step 2.   

7. Apply K-means clustering to refine the result 
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Chapter 3 

 

EXPERIMENTS AND RESULTS 

 

 

We have tested our method with experiments conducted on four different mesh 

sequences, three of which are acquired by 3D surface tracking methods, therefore real 

sequences, whereas the fourth one is constructed artificially, therefore a synthetic sequence. 

For each sequence, we assume that mesh connectivity is fixed and does not change through 

frames. Therefore, prior to calculating distance matrices, the vertex-to-vertex 

correspondences are given. For further information on 3D shape correspondence problem 

one can refer to [23, 24] and [30]. 

All four meshes are segmented using varying values of hyper-parameters, which can 

not be selected automatically and adaptively by the algorithm, in order to find an optimum 

blend of the parameters. These parameters include: 

- The blending ratio β of the motion distance. 

- The number of frames taken into account for each base vertex while calculating the 

variance of Euclidian distance in order to maximize the effect of motion, which we 

call frame-cut. 

- µ value which is used to calculate the distance threshold utilized to decide on which 

clusters will be merged at each iteration of our merge-cluster algorithm. 
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Note that the parameter α, which is the blending ratio of the geodesic distance, is set as 

05.001.0 ≤≤ α  by Liu et al [11]. In our experiments, we have used the mean of this 

interval, that is 03.0=α . 

For each sequence, we have prepared a ground truth segmentation. Our ground truth 

segmentations are based on human generated segmentations given in [3] as well as on how 

we perceive each model. The quality of the mesh is also a factor affecting our ground truth 

segmentation. For instance, we do not divide the hands of the Jumping Man model (see 

Fig. 3.11) because both hands are not constructed well enough to be distinguished from the 

rest of the arm. Each ground truth segmentation is shown in their respective sections. We 

post-process the ground truth segmentations, which we initially obtain, to prepare them for 

evaluation of our segmentation results. Since our segmentation algorithm is based on base 

vertices and the information for each base vertex comes from the faces belonging to its 

patch, we first downsample the ground truth mesh by finding corresponding segment for 

each base vertex and then upsample the model by assigning each face to the segment of the 

base vertex it is claimed by. 

 

3.1 Error Metrics  

 

Besides evaluating the performance of our algorithm by providing visual segmentation 

results, we also assess the performance quantitatively based on a set of error metrics. To 

measure the deviation of a segmentation result from the ground truth segmentation, we 

utilize the four different error metrics described by Chen et al. [3], including one boundary 

and three region based methods. We use all four of these metrics since the error 

information provided by each is about a different aspect of segmentation results. Each 

metric algorithm is explained in the sequel. 
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Executable files, source codes, mesh and segmentation data are provided by the authors 

on the project web site
†
. The executables we use for error calculation are also fetched from 

the project web site. 

For each mesh we provide visual segmentation results as well as plots showing metric 

errors. We expect both the visual and the metric results match. 

 

3.1.1 Cut Discrepancy 

 

The first metric, Cut Discrepancy, basically measures the distances between resulting 

segmentation boundaries and the closest cuts in the ground truth segmentation. The error, 

denoted by CD, between segmentations 1S  and 2S  is calculated as the mean of each 

directional cut discrepancy DCD as follows: 

( )
( ) ( )

avgRadius

SSDCDSSDCD
SSCD 1221

21,
⇒+⇒

=                            (3.1) 

where avgRadius is the mean of the distances of the points to the centroid of the mesh. 

Directional cut discrepancy from 1S  to 2S is given by 

( ) ( ){ }112121 ,, CpCpdmeanSSDCD G ∈∀=⇒                             (3.2) 

where ( )21 ,CpdG  is calculated using: 

( ) ( ){ }222121 ,,min, CpppdCpd GG ∈∀=                                 (3.3) 

( )21 , ppdG  denotes the geodesic distance between the points 1p  and 2p , and 1C  and 

2C are the sets of points on the boundaries of  1S  and 2S , respectively. 

 

 

                                                 
†
 http://segeval.cs.princeton.edu 
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3.1.2 Hamming Distance 

 

The second metric, Hamming Distance, measures the regional differences between 

segmentations. For two mesh segmentations 1S  and 2S , the Hamming Distance is the 

average of the missing rate mR  and the false alarm rate fR , which are given by: 

( )
( )

S

SSD
SSR H

m

21

21 ,
⇒

=                                             (3.4) 

( )
( )

S

SSD
SSR H

f

12

21 ,
⇒

=                                             (3.5) 

where S  is the overall surface area and the Directional Hamming Distance ( )21 SSDH ⇒  

is the sum of the differences between the best corresponding segments in 1S  and 2S . By 

sum of the differences, we mean the sum of the areas of each missegmented face. 

 

3.1.3 Rand Index 

 

The third metric, Rand Index, measures the number of agreements between 

segmentations 1S  and 2S  in terms of face pairs without the need for finding segment 

correspondences. If a pair of faces i and j are in the same segment in 1S , ijC  is set to 1, 

otherwise it is set to 0, and if they are in the same segment in 2S , ijP  is set to 1, otherwise 

it is set to 0. The function encoding the dissimilarity between 1S  and 2S in terms of ijC  and 

ijP , where N is the number of faces, is as follows 

( ) ( )( )( )∑
<

−

−−+







−=

jiji

ijijijij PCPC
N

SSRI
,,

1

21 11
2

1,                          (3.5) 
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3.1.4 Consistency Error 

 

Consistency Error, the forth error metric, is also based on regional differences. The 

method first computes the Local Refinement Error ( )ifSSE ,, 21  for each face if  for 

segmentations 1S  and 2S  using 

( )
( ) ( )

( )
i

ii

i
fSR

fSRfSR
fSSE

,

,\,
,,

1

21

21 =                                         (3.6) 

where x  is the total area of faces in set x , \""  is the set difference operator and ( )ifSR ,  

is the cluster which if  resides in S . Using the Local Refinement Error, two error types, 

Global Consistency Error (GCE) and Local Consistency Error (LCE), are calculated as 

follows 

( ) ( ) ( )








= ∑∑
i

i

i

i fSSEfSSE
n

SSGCE ,,,,,min
1

, 122121                       (3.7) 

( ) ( ) ( ){ }∑=
i

ii fSSEfSSE
n

SSLCE ,,,,,min
1

, 122121                           (3.8) 

The main disadvantage of this metric is that it tends to produce higher scores when the 

numbers of segments in 1S  and 2S  are different. Although they may be misleading, 

especially for the results of merge-cluster since the number of segments produces by the 

algorithm is unpredictable, we will provide Consistency Error values besides other metrics. 
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3.2 Segmentation Results 

 

3.2.1 Sequence 1 

 

Our first mesh sequence, Horse Gallop, was made available by Robert Sumner and 

Jovan Popović from the Computer Graphics Group at MIT
‡
. The sequence consists of 48 

frames of a galloping horse model. In Figure 3.1 we display sample frames from the 

sequence to give an idea on the motion exhibited by the mesh.  The particularity of this 

model is that, it contains a pretty smooth surface for each different segment and sharp 

edges at segment borders, which we expect helps segmentations obtained without 

incorporating any motion information. Furthermore, it exhibits clear, rigid and distinct 

motions for each segment, which we expect helps segmentations obtained using motion 

information. The mesh is composed of 8431 vertices and 16843 faces. The number of 

vertices subsampled to 995 base vertices by setting r&= 0.00065. 

                                                 
‡
 http://people.csail.mit.edu/sumner/research/deftransfer/data.html 
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Figure 3. 1 Four frames of Horse Gallop sequence depicting the motion of the model. 
 

We test our segmentation algorithm under six different settings of the parameters. 

These settings are: 

1) 5.2=µ  and frame-cut=10  

2) 5.2=µ , frame-cut =10 and average angular distances are used. 

3) 5.2=µ  and frame-cut =20 

4) 5.3=µ  and frame-cut =10 

5) 5.3=µ , frame-cut =10 and average angular distances are used. 

6) 5.3=µ  and frame-cut =20 
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In Figure 3.2, we plot the segmentation errors obtained using different metrics and 

different parameter settings for varying values of β , i.e., the motion information blending 

factor (with 0.05 increments in the interval 10 ≤≤ β ), The segmentation error in each case 

is computed as the sum of the two errors, one obtained with K-means clustering and the 

other obtained using merge-cluster algorithm. 

The number of segments resulting from each parameter setting is given in Table 3.1. 

Moreover, average error values of each parameter set for each error type calculated over β 

are provided in Table 3.2. 

 

β 

Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Set 
6 

0 10 10 10 21 24 21 

0.05 10 15 11 23 22 22 

0.10 12 10 11 23 18 20 

0.15 16 15 11 20 21 21 

0.20 10 12 10 18 21 19 

0.25 12 10 13 18 18 17 

0.30 12 11 13 18 21 20 

0.35 11 12 12 20 19 19 

0.40 12 12 10 19 18 19 

0.45 12 10 12 19 16 20 

0.50 12 12 12 18 18 19 

0.55 10 11 11 17 18 17 

0.60 12 11 11 16 15 16 

0.65 11 10 10 16 15 17 

0.70 11 10 11 16 14 15 

0.75 11 11 10 14 16 14 

0.80 10 11 11 15 14 14 

0.85 11 10 11 13 14 15 

0.90 9 11 10 16 14 15 

0.95 11 11 11 16 16 16 

1.00 12 12 10 16 16 16 

 
Table 3. 1 Number of segments resulting from each parameter set for the Horse Gallop sequence. 
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Figure 3. 2 Segmentation errors obtained for the Horse Gallop sequence under different parameter settings. 
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  CD HD RI GCE LCE 

Set 1 0.30197 0.74112 0.15738 0.65637 0.45827 

Set 2 0.29086 0.73716 0.14876 0.63949 0.44912 

Set 3 0.29337 0.7416 0.16248 0.65477 0.45683 

Set 4 0.24758 0.74029 0.14015 0.66612 0.48772 

Set 5 0.24564 0.74917 0.13789 0.67229 0.48805 

Set 6 0.24602 0.75033 0.14054 0.67496 0.49709 

 
Table 3. 2 Average total error values calculated over β for the Horse Gallop sequence 

 

 

3.2.1.1 Metric Results 

 

Since merge-cluster algorithm may produce different number of segments, we favor the 

Rand Index the most as this error metric does not need to find segment correspondences. 

With this assumption, when we look at the plots in Figure 3.2, and the values given in 

Table 3.2 we see that the best result is produced by the segmentation using the parameter 

set 5. In order to provide a more detailed look to the results of this parameter set, in Figures 

3.3, 3.4, 3.5 and 3.6, we display the plots of each error metric both for K-means and merge-

cluster algorithms.  

In Figure 3.3, Cut Discrepancy error results are plotted. Since Cut Discrepancy 

measures the distances between cuts, we expect K-means to produce better results than 

merge-cluster due to the fact that merge-cluster algorithm does not produce the exact 

number of segments as defined in the ground truth segmentation whereas K-means 

algorithm can be forced to do that as verified by the given plot.  
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Figure 3. 3 Horse Gallop Cut Discrepancy error plot for the parameter set 5. 
 

 

Figure 3. 4 Horse Gallop Hamming Distance error plot for the parameter set 5. 
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Figure 3. 5 Horse Gallop Rand Index error plot for the parameter set 5. 
 

We expect the merge-cluster algorithm to produce better results than K-means in terms 

of Hamming Distance and Rand Index, which are plotted in Figure 3.4 and Figure 3.5 

respectively, as they measure the regional differences. The difference between the results 

of K-means and merge-cluster algorithms is anticipated to be larger for Rand Index, since 

Rand Index algorithm does not need to find segment correspondences as opposed to 

Hamming Distance algorithm. Again, our expectation is confirmed by these two plots. 
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Figure 3. 6 Horse Gallop Consistency Error plot for the parameter set 5. 
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3.2.1.2 Visual Segmentation Results 

 

In Figure 3.7, we display the initial ground truth segmentation and the ground truth 

segmentation after the faces are distributed to their respective patches, the latter of which is 

used for metric evaluation.  

 

 

Figure 3. 7 Ground truth segmentations. Top row: The initial ground truth segmentation. Bottom row: The 

ground truth segmentation used for error calculation. 

 

We expect the metric results and the visual results to match, i.e., the lower the error is, 

the better the visual result must be. According to the plots shown above, the lowest error is 

received when 95.0=β  and the error tends to be higher when β  gets closer to zero. β=0 

means that only spatial information is used. When β=1, spatial information is almost not 
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used and all information comes from temporal term. In Figure 3.8 and in Figure 3.9, we 

display the resulting segmentations for β=0 and β=1, respectively. Looking at these figures, 

we can deduce that the best visual results, in other words the results closest to the ground 

truth segmentation, are the ones obtained by setting β  to 0.95. The visual segmentation 

results obtained at β=0.95 are shown in Figure 3.10. As also can be predicted looking at the 

error plots previously given, merge-clustering produces a better segmentation for this set of 

parameters. Metric error results with β values, which we have displayed the visual results 

for, are given in Table 3.3. 

 

 

Figure 3. 8 Segmentation results for β=0. Top row: K-means. Bottom row: Merge-cluster 
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Figure 3. 9 Segmentation results for β=1. Top row: K-means. Bottom row: Merge-cluster 
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Figure 3. 10 Segmentation results for β=0.95. Top row: K-means. Bottom row: Merge-cluster 

 

 

  β CD HD RI GCE LCE 

0 0.13103 0.43201 0.087819 0.37788 0.26339 

1 0.1237 0.29174 0.046893 0.28449 0.15592 

K
-m

e
a
n

s
 

0.95 0.1614 0.30191 0.04541 0.27013 0.12832 

0 0.13621 0.43509 0.085252 0.33151 0.27096 

1 0.12118 0.20485 0.051298 0.21912 0.13994 

M
e
rg

e
-

c
lu

s
te

r 

0.95 0.11131 0.22894 0.050094 0.24223 0.16122 

 
Table 3. 3 Metric error results for β values, which the visual results are shown for. 
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3.2.2 Sequence 2 

 

Our second mesh sequence, Jumping Man, was acquired by Peter Sand, Leonard 

McMillan and Jovan Popović [13], and is the reconstruction of a real scene in which an 

actor jumps forward and back. The length of the sequence is 221 frames and the mesh is 

formed of 15830 vertices and 31660 faces. Sample frames demonstrating the motion of the 

model are shown in Figure 3.11. We have reduced number of vertices to 1000 base vertices 

by setting 0.000819=r& . The ground truth segmentation contains 13 segments and is 

displayed in visual results section. 

Likewise the other sequences, we have performed segmentations using six different 

parameter sets on this sequence. These sets are: 

1) 5.2=µ  and frameCut =10  

2) 5.2=µ , frameCut =10 and average angular distances are used. 

3) 5.2=µ  and frameCut =20 

4) 3=µ  and frameCut =10 

5) 3=µ , frameCut =10 and average angular distances are used. 

6) 3=µ  and frameCut =20 
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Figure 3. 11 Six frames of the Jumping Man sequence depicting the motion of the model. 
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3.2.2.1 Metric Results 

 

In Figure 3.12, we plot the segmentation errors for each parameter set and for each 

error metric for varying values of β , with 0.05 increments in the interval 10 ≤≤ β . Recall 

that the segmentation error in each case is computed as the sum of the two errors, one 

obtained with K-means clustering and the other obtained using merge-cluster algorithm. In 

Table 3.3, we provide the number of segments produced by our merge-cluster algorithm for 

each parameter set and for each β value. Recall that the number of clusters is fixed for K-

means. 

We observe that low metric error values do not always necessarily imply good visual 

segmentation results. For example, one can clearly see that, for parameter sets 4,5 and 6, 

the resulting numbers of segments are unacceptably high. However, the corresponding 

error values do not indicate that the segmentation results for these sets are poor. Although 

Hamming Distance values stand as an evidence of these poor results, other error metric 

values fail to do so. The main reason of these unsuccessful results is that clusters cannot 

simply merge because of the low threshold value we set as µ=3. Therefore, we can discard 

the parameter sets 4,5 and 6 from further analysis. In Table 3.4, we provide the average 

error values computed over β for the rest of the parameter sets. 
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Figure 3. 12 Segmentation errors obtained for the Jumping Man sequence under different parameter settings. 
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β 

Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Set 
6 

0 999 9 999 999 250 999 

0.05 999 9 999 999 232 999 

0.10 9 10 9 999 251 999 

0.15 9 9 9 999 246 999 

0.20 9 10 8 999 226 999 

0.25 9 9 9 691 293 739 

0.30 12 9 9 593 308 613 

0.35 10 9 9 515 328 556 

0.40 9 9 9 461 264 545 

0.45 11 9 10 450 252 498 

0.50 9 11 10 377 251 411 

0.55 10 8 10 332 256 318 

0.60 9 9 10 245 190 226 

0.65 9 10 10 203 204 261 

0.70 9 9 10 230 201 266 

0.75 9 10 9 183 200 246 

0.80 9 10 9 213 218 234 

0.85 10 10 10 206 191 173 

0.90 8 9 8 147 148 163 

0.95 8 9 9 148 145 108 

1.00 8 8 10 10 10 10 

 
Table 3. 4 Number of segments resulting from each parameter set for the Jumping Man sequence. 

 

 

 CD HD RI GCE LCE 

Set 1 0.30286 0.48676 0.19142 0.42753 0.36523 

Set 2 0.28581 0.48361 0.17185 0.48454 0.42113 

Set 3 0.30066 0.49074 0.19235 0.43387 0.36997 

 
Table 3. 5 Average total error values calculated over β for the Jumping Man sequence. 

 

For all three parameter sets, average error values are very close to each other. We 

choose to proceed with set 2, which is the winner of Cut Discrepancy, Hamming Distance 

and Rand Index, and which produces reasonable numbers of segments for β=0 and β=0.05, 

unlike sets 1 and 3.  
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In Figure 3.13, we plot the Cut Discrepancy error results. We observe that, since merge-

cluster algorithm may not generate the exact number of segments given by the ground truth 

segmentation, Cut Discrepancy values come out to be significantly higher for merge-

clustering results than they are for K-means clustering. 

 

Figure 3. 13 Jumping Man Cut Discrepancy error plot for the parameter set 2. 
 

We show Hamming Distance and Rand Index error values in Figure 3.14 and in Figure 

3.15, respectively. As we have already discussed in Chapter 2, K-means clustering is 

sensitive to the choice of initial cluster centers. When each initial center is placed in 

proximity of a different segment, K-means clustering tends to produce better results. In the 

case of Jumping Man, our initial center selection is successful enough to distribute the 

centers in a semantically reasonable way as shown in Figure 3.16, and thus, K-means 

clustering yields better segmentations in terms of both Hamming Distance and Rand Index 

metrics. 
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Figure 3. 14 Jumping Man Hamming Distance error plot for the parameter set 2. 

 

 

Figure 3. 15 Jumping Man Rand Index error plot for the parameter set 2. 
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Figure 3. 16 Jumping Man. Distribution of initial centers used by K-means. 
 

Figure 3.17 shows the Consistency Error plots. This metric is sensitive to the number 

of segments and is expected to produce better results when the numbers of segments of the 

compared segmentations are different. Table 3.3 shows that the number of segments 

yielded by merge-cluster is always different than the number of ground truth segments. 

This is the reason why merge-cluster seems to have done a better job than K-means. 

Therefore, we will not use this metric to compare K-means and merge-clustering but to 

compare segmentation results for different β values. 
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Figure 3. 17 Jumping Man Consistency Error plot for the parameter set 2. 
 

 

3.2.2.2 Visual Segmentation Results 

 

In Figure 3.18, we exhibit the initial ground truth segmentation along with the ground 

truth segmentation which is used for error metric calculation. Recall that the ground truth 

segmentation used for metric evaluation is obtained by distributing faces to their respective 

patches. 

In Figure 3.19 and 3.20, we display the results for two extreme cases where β=0 and 

β=1, i.e., when we make use of only spatial information and when we make use of only 

temporal information, respectively. Error plots indicate that, for β=0.4 and β=1, K-means 

clustering yields very close error values, which are also the lowest error values achieved. 

For merge-clustering, the lowest error values on average are received when β=0.5. For the 
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mentioned β values, the visual results are displayed in Figure 3.21 and the metric error 

results for β=0, β=1, β=0.4 and β=0.5 are given in Table 3.5. 

 

 

Figure 3. 18 Ground truth segmentations. Left: The initial ground truth segmentation. Right: The ground 

truth segmentation used for error calculation. 
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Figure 3. 19 Segmentation results for β=0. Left: K-means. Right: Merge-cluster. 

 

 

Figure 3. 20 Segmentation results for β=1. Left: K-means. Right: Merge-cluster. 
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Figure 3. 21 Segmentation results. Left: K-means with β=0.4. Right: Merge-cluster with β=0.5. 

 

 

  β CD HD RI GCE LCE 

0 0.1179 0.24823 0.070067 0.33402 0.2723 

1 0.061222 0.1507 0.048577 0.23058 0.18714 

K
-m

e
a
n

s
 

0.4 0.089517 0.16173 0.046754 0.23419 0.1878 

0 0.18534 0.31956 0.12602 0.20467 0.19006 

1 0.13179 0.19826 0.083807 0.19986 0.18209 

M
e
rg

e
 

c
lu

s
te

r 

0.5 0.1439 0.23343 0.071478 0.16162 0.1578 

 
Table 3. 6 Metric error results for β values, which the visual results are shown for. 
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3.2.3 Sequence 3 

 

Our third sequence, Dancing Woman, is reconstructed by the authors of [29] from a real 

scene showing a woman exhibiting dance figures. A number of sample frames depicting 

the motion of the woman are displayed in Figure 3.22. The sequence has 217 frames. 

Throughout the frames, 15002 vertices and 30000 faces are in fixed and known 

connectivity. The number of vertices is reduced to 996 base vertices using 0.000719=r& . 

The mesh is divided into 15 segments manually to form the ground truth segmentation. The 

particularity of this sequence is that it does not have a smooth surface and possesses many 

concavities due to its extremely realistic surface details. Without motion information 

incorporated into the segmentation process, we expect these cavities to aggravate the 

segmentation process. 

We have tested our algorithm using six different parameter sets, which are: 

1) 5.2=µ  and frameCut=10  

2) 5.2=µ , frameCut =10 and average angular distances are used. 

3) 5.2=µ  and frameCut =20 

4) 3=µ  and frameCut =10 

5) 3=µ , frameCut =10 and average angular distances are used. 

6) 3=µ  and frameCut =20 
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Figure 3. 22 Six frames of the Dancing Woman sequence depicting the motion of the model. 
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3.2.3.1 Metric Results 

 

In Figure 3.23, we display the plots of segmentation errors obtained using different 

parameter sets and error metrics for varying β with 0.05 increments in the interval 

10 ≤≤ β . As observed from Table 3.7 the merge-cluster algorithm produced very 

reasonable results in terms of resulting segment numbers, therefore we will consider all 

parameter sets for further evaluation. We present the average error values calculated over β 

for each parameter set and each error metric in Table 3.8. Looking at the error plots and the 

average error values, we can conclude that the best results are obtained using the parameter 

set 5. 

β 

Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Set 
6 

0 11 14 11 19 18 19 

0.05 12 14 14 19 21 21 

0.10 14 14 14 22 14 21 

0.15 16 9 13 16 16 16 

0.20 10 8 8 13 12 13 

0.25 9 12 13 15 13 14 

0.30 12 13 12 14 16 17 

0.35 12 13 10 13 14 15 

0.40 11 10 12 13 13 14 

0.45 11 9 12 13 14 13 

0.50 12 13 12 14 14 14 

0.55 12 9 11 15 14 14 

0.60 12 9 9 13 15 15 

0.65 10 10 13 13 14 13 

0.70 13 11 13 14 14 14 

0.75 13 9 14 14 14 13 

0.80 12 10 11 12 13 13 

0.85 11 10 12 13 13 12 

0.90 10 10 9 11 11 12 

0.95 11 9 12 13 12 14 

1.00 10 10 10 12 12 13 

 
Table 3. 7 Number of segments yielded by each parameter set for the Dancing Woman sequence. 
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Figure 3. 23 Segmentation errors obtained for the Dancing Woman sequence under different parameter 

settings. 

 

  CD HD RI GCE LCE 

Set 1 0.27946 0.69255 0.17575 0.76718 0.64133 

Set 2 0.30322 0.68578 0.19207 0.72919 0.60855 

Set 3 0.27989 0.68547 0.1735 0.76427 0.63629 

Set 4 0.25039 0.67611 0.159 0.76874 0.63832 

Set 5 0.24999 0.65985 0.15995 0.74976 0.61376 

Set 6 0.25972 0.70278 0.16642 0.79115 0.65758 

 
Table 3. 8 Average error values calculated over β for the Dancing Woman sequence. 
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In Figure 3.24, Cut Discrepancy error plot for parameter set 5 is given. For this model 

and parameter set, the performance of merge-cluster algorithm is observed to be successful 

in terms of the produced cluster number, hence the error values for both K-means and 

merge-cluster stay in close proximity.  

 

Figure 3. 24 Dancing Woman Cut Discrepancy error plot for the parameter set 5. 
 

Hamming Distance and Rand Index error plots are shown in Figure 3.25 and Figure 

3.26, respectively. Looking at these plots, we observe an unstable behavior for the 

performance of the merge-cluster algorithm in terms of error values. In Figure 3.27, we 

display the Consistency Error plot, which shows a similar behavior as the plots of the other 

metrics.. 
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Figure 3. 25 Dancing Woman Hamming Distance error plot for the parameter set 5. 

 

 

 

Figure 3. 26 Dancing Woman Rand Index error plot for the parameter set 5. 
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Figure 3. 27 Dancing Woman Consistency Error plot for the parameter set 5. 

 

 

3.2.3.2 Visual Segmentation Results 

 

We first display, in Figure 3.28, the initial ground truth segmentation and the ground 

truth segmentation obtained after the faces are distributed according to their patches. 

Two extreme cases for β=0 and β=1 are shown Figure 3.29 and Figure 3.30. Looking at 

the Hamming Distance, Rand Index and Consistency Error plots, we see that the minimum 

error values are achieved at β=0.8. For this β value we show the visual results in Figure 

3.31. In order to provide a better sight, in Table 3.9, the error values for β=0, β=1 and 

β=0.8 are given.  

 



 

 

Chapter 3: Experiments and Results    55 

 

 

Figure 3. 28 Ground truth segmentations. Left: The initial ground truth segmentation. Right: The ground 

truth segmentation used for error calculation. 

 

 

Figure 3. 29 Segmentation results for β=0. Left: K-means. Right: Merge-cluster. 
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Figure 3. 30 Segmentation results for β=1. Left: K-means. Right: Merge-cluster. 

 

 

Figure 3. 31 Segmentation results for β=0.8. Left: K-means. Right: Merge-cluster. 
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  β CD HD RI GCE LCE 

0 0.13272 0.39543 0.084432 0.44584 0.35639 

1 0.1515 0.27068 0.064216 0.31723 0.24025 

K
-m

e
a
n

s
 

0.8 0.10948 0.23013 0.058634 0.2657 0.16628 

0 0.12727 0.41155 0.082503 0.41529 0.35425 

1 0.14597 0.17689 0.054315 0.20188 0.17713 

M
e
rg

e
-

c
lu

s
te

r 

0.8 0.12313 0.1459 0.049475 0.15925 0.11045 

 
Table 3. 9 Metric error results for β values, which the visual results are shown for. 
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3.2.4 Sequence 4 

 

Our fourth and last sequence, Dancing Man, was made available by the authors of [29] 

from a real scene, showing the dancing moves of an actor. A number of sample frames out 

of 250 frames demonstrating the motion of the actor are shown in Figure 3.32. The mesh is 

composed of 19988 vertices and 39972 faces and the model is of fixed and known 

connectivity. We have downsampled the model to 1000 base vertices by setting 

0.00078=r& . The number of segments in the ground truth segmentation is 16. Dancing 

man and dancing woman sequences have quite similar features in terms of surface 

structure. The wavy nature of the surface of the mesh is expected to cause the 

segmentations performed with only spatial information to yield unsuccessful results.  

We tested our algorithm using six different parameter sets, which are: 

1) 5.2=µ  and frameCut=10  

2) 5.2=µ , frameCut =10 and average angular distances are used. 

3) 5.2=µ  and frameCut =20 

4) 3=µ  and frameCut =10 

5) 3=µ , frameCut =10 and average angular distances are used. 

6) 3=µ  and frameCut =20 
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Figure 3. 32 Six frames of Dancing Man sequence depicting the motion of the model. 

 

 

 

 



 

 

Chapter 3: Experiments and Results    60 

 

3.2.4.1 Metric Results 

 

In Figure 3.33, we display the segmentation error plots for different error metrics and 

for different parameter sets with varying β in the interval 10 ≤≤ β , where the error values 

are the sum of K-means and merge-cluster error values. We provide the resulting segment 

number for each parameter set in Table 3.10. For this specific sequence, it is difficult 

choose a winner parameter set by looking at the error values and the average error values 

given in Table 3.11, since the error values are very close to each other. Therefore, we will 

continue to our evaluation using parameter set 2 since the best visual results are produced 

by this set.  

β 

Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Set 
6 

0 14 8 14 18 15 18 

0.05 13 9 13 16 15 15 

0.10 9 12 14 15 14 15 

0.15 14 14 9 16 14 16 

0.20 12 9 14 15 14 15 

0.25 10 15 10 16 14 15 

0.30 14 14 10 16 14 15 

0.35 9 14 9 15 14 14 

0.40 9 14 10 15 14 15 

0.45 9 14 13 14 14 13 

0.50 8 13 14 14 14 12 

0.55 14 14 9 13 14 13 

0.60 10 14 9 14 16 14 

0.65 10 13 11 14 16 13 

0.70 9 10 10 14 14 13 

0.75 10 9 10 14 15 12 

0.80 11 9 11 13 17 12 

0.85 10 12 11 13 16 13 

0.90 10 9 8 14 14 18 

0.95 11 10 9 16 16 17 

1.00 12 12 11 15 15 15 

 
Table 3. 10 Number of segments yielded by each parameter set for Dancing Man sequence. 
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Figure 3. 33 Segmentation errors obtained for the Dancing Man sequence under different parameter settings. 

 

  CD HD RI GCE LCE 

Set 1 0.24126 0.82489 0.17016 0.89883 0.8055 

Set 2 0.25157 0.80998 0.16591 0.89453 0.80202 

Set 3 0.24994 0.81962 0.16799 0.89152 0.79651 

Set 4 0.22294 0.82036 0.15358 0.94815 0.83252 

Set 5 0.22712 0.8193 0.15366 0.94973 0.83317 

Set 6 0.22403 0.82823 0.15565 0.95032 0.83759 

 
Table 3. 11 Average error values calculated over β for Dancing Man sequence. 
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In Figure 3.34, 3.35, 3.36 and 3.37, we display Cut Discrepancy, Hamming Distance, 

Rand Index and Consistency Error plots for the parameter set 2, respectively. In terms of 

Cut Discrepancy and Rand Index, K-means results in better segmentations on the average 

while for Hamming Distance error values are close to each other.  

 

 

Figure 3. 34  Dancing Man Cut Discrepancy error plot for the parameter set 2. 
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Figure 3. 35 Dancing Man Hamming Distance error plot for the parameter set 2. 

 

 

 

Figure 3. 36 Dancing Man Rand Index error plot for the parameter set 2. 
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Figure 3. 37 Dancing Man Consistency Error plot for the parameter set 2. 

 

 

3.2.4.1 Visual Segmentation Results 

 

The segmentation maps obtained at two extreme cases with β=0, which means only 

spatial information is used, and β=1, which means only temporal information is used, are 

displayed in Figure 3.39 and Figure 3.40. Looking at the error plots, we see that the best 

results are obtained by using β=0.95, which are as shown in Figure 3.41. The 

corresponding error values for these β values are given in Table 3.12. 
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Figure 3. 38 Dancing Man ground truth segmentations. Left: The initial ground truth segmentation. Right: 

The ground truth segmentation used for error calculation. 

 

 

Figure 3. 39 Dancing Man segmentation results for β=0. Left: K-means. Right: Merge-cluster. 
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Figure 3. 40  Dancing Man segmentation results for β=1. Left: K-means. Right: Merge-cluster. 
 

 

Figure 3. 41 Dancing Man segmentation results for β=0.95. Left: K-means. Right: Merge-cluster. 
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  β CD HD RI GCE LCE 

0 0.1031 0.43177 0.07711 0.50472 0.44214 

1 0.13701 0.37658 0.070047 0.44931 0.3449 

K
-m

e
a
n

s
 

0.95 0.11651 0.33727 0.064895 0.41803 0.32804 

0 0.12898 0.47003 0.12012 0.46844 0.46246 

1 0.17595 0.3652 0.075123 0.37364 0.35452 

M
e
rg

e
-

c
lu

s
te

r 

0.95 0.18332 0.25558 0.084202 0.2144 0.20782 

 
Table 3. 12 Metric error results for β values, which the visual results are shown for. 

 

 

3.3 Discussion 

 

In this section we will discuss and analyze the results presented in the previous section. 

In Table 3.13, a summary of the metric results for the used parameter sets is given. 

At the beginning of our work, we were expecting to improve the segmentation results 

by introducing a motion distance term, instead of using spatial information single handedly. 

Looking at the error plots, for all parameter sets used and for almost all error metrics and 

for each sequence, we managed to find a β value where the error is smaller than the error 

received by using only spatial information. We also anticipated the spatial information and 

the temporal information to compensate each other so that the best result will not be 

received with either β=0 or β=1 but with a β value between. Jumping Man is a fine 

example of this situation. In this sequence the relative motion of right and left thighs is very 

small that the merge-cluster algorithm fails to keep both limbs separated when temporal 

information is used alone. However, with β=0.5, in other words, when both temporal and 

spatial information are used, merge-cluster manages to keep both limbs apart. In this 

particular case, since initial centers are distributed well enough, K-means divides right and 

left thigh into different clusters for both β=0.4 and β=1. However, it fails to separate the 

hip from the left leg when β =1 as a result of the faint relative motion between, although 
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the separation of the two is accomplished by K-means with β=0.4. Furthermore, 

segmentation using only spatial distance information in the form of angular distance is 

prone to fail when the cut regions and the regions with concavities do not match. For 

example, our segmentation results for Jumping Man are semantically good even with β=0 

due to the fact that the surface of the mesh is smooth on average and concave regions do 

match with the cut regions. Nonetheless, the surface of Dancing Woman mesh is messy and 

has many concavities leading to semantically poor segmentation results far from the ground 

truth segmentation when only spatial information is used. 

We have chosen each sequence for a specific reason. Jumping Man is an easy model to 

segment using only spatial information due to its smooth surface and cut regions placed at 

sharp edges generally. On the contrary Dancing Woman and Dancing Man sequences are 

difficult to segment using only spatial information due to their jaggy and wavy surfaces. 

Horse Gallop has an average difficulty in terms of surface structure. We showed that in all 

four cases our algorithm generates improved results with the incorporation of temporal 

information. 
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Table 3. 13 Summary of metric errors 
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β CD HD RI GCE LCE N
u

m
b

e
r 

o
f 

s
e
g

m
e
n

ts
 

0 0.13103 0.43201 0.087819 0.37788 0.26339 17 

0.95 0.1614 0.30191 0.04541 0.27013 0.12832 17 K-means 

1 0.1237 0.29174 0.046893 0.28449 0.15592 17 

0 0.13621 0.43509 0.085252 0.33151 0.27096 24 

0.95 0.11131 0.22894 0.050094 0.24223 0.16122 16 

 H
o

rs
e
 G

a
ll
o

p
 

3
 

Y
es

 

1
0
 

Merge-cluster 

1 0.12118 0.20485 0.051298 0.21912 0.13994 16 

0 0.1179 0.24823 0.070067 0.33402 0.2723 13 

0.4 0.089517 0.16173 0.046754 0.23419 0.1878 13 K-means 

1 0.061222 0.1507 0.048577 0.23058 0.18714 13 

0 0.18534 0.31956 0.12602 0.20467 0.19006 9 

0.5 0.1439 0.23343 0.071478 0.16162 0.1578 9 

J
u

m
p

in
g

 M
a
n

 

2
.5

 

Y
e
s
 

1
0
 

Merge-cluster 

1 0.13179 0.19826 0.083807 0.19986 0.18209 8 

0 0.13272 0.39543 0.084432 0.44584 0.35639 15 

0.8 0.10948 0.23013 0.058634 0.2657 0.16628 15 K-means 

1 0.1515 0.27068 0.064216 0.31723 0.24025 15 

0 0.12727 0.41155 0.082503 0.41529 0.35425 18 

0.8 0.12313 0.1459 0.049475 0.15925 0.11045 13 

D
a
n

c
in

g
 W

o
m

a
n

 

2
.5

 

Y
e
s
 

1
0
 

Merge-cluster 

1 0.14597 0.17689 0.054315 0.20188 0.17713 12 

0 0.1031 0.43177 0.07711 0.50472 0.44214 16 

0.95 0.11651 0.33727 0.064895 0.41803 0.32804 16 K-means 

1 0.13701 0.37658 0.070047 0.44931 0.3449 16 

0 0.12898 0.47003 0.12012 0.46844 0.46246 8 

0.95 0.18332 0.25558 0.084202 0.2144 0.20782 12 
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2
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1
0
 

Merge-cluster 

1 0.17595 0.3652 0.075123 0.37364 0.35452 10 
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Recall that the number of segments n must be fed into the K-means clustering as well 

as n initial centers. K-means’ sensitivity to the choice of initial centers affects its reliability 

when these centers are not distributed well enough. In order to overcome this problem we 

also introduced a way to choose initial centers so that they are distributed evenly on the 

surface of the mesh and therefore they are expected to be placed at desired locations which 

will yield the best clustering. Nevertheless, when sizes of limbs differ notably, this method 

fails to locate an initial center at each limb. Horse Gallop and Jumping Man are the two 

opposite examples demonstrating this fact. The huge size difference between the hooves 

and the torso of the horse model, K-means clustering fails to separate hooves as it divides 

the torso to many pieces. However, the ground truth segmentation of Jumping Man 

sequence has almost equal sized segments in terms of surface area. Thus, K-means 

clustering performs better than merge-cluster algorithm for Jumping Man. 

The main advantage of merge-cluster algorithm against K-means clustering is that it 

removes the necessity of knowing the number of segments beforehand. Discarding the 

necessity of manual tuning of one hyper-parameter is an important step towards a more 

automated system. However, looking at the error plots, we conclude that merge-cluster 

algorithm is unstable and although it results in very promising segmentations for specific β 

values, it is difficult to give an interval which will guarantee its success all the time. The 

reason behind the instability of merge-cluster algorithm in terms of metric error values is 

the unpredictable number of clusters it produces. On the contrary, although K-means 

clustering yields higher error values for many β, it is more stable.  

When we use K-means, for each of the four sequences, we managed to find an interval, 

95.05.0 ≤≤ β , in which, we guarantee that almost all of the error values for each error 

metric is smaller than the error values of the segmentation results obtained with β=0, with 

the exceptions of Cut Discrepancy values for Dancing Man and Consistency Error values 

of Jumping Man. In other words, in terms of the sequences we have experienced on, we 
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have found an interval for β so that incorporating the motion information enhances the 

segmentation results against the case only spatial information is used. In Table 3.14, 

maximum and average decline ratios for error values calculated over 95.05.0 ≤≤ β  when 

K-means clustering is used are given. Note that the negative values belong to the 

mentioned exceptions. Looking at Table 3.14, we see that, for this interval of β, 

incorporation of temporal information enhances the results by up to %27 on average and up 

to %52 at maximum in terms of metric error results. 

 

Horse Gallop Jumping Man Dancing Woman Dancing Man 

  avg max avg max avg max avg max 

CD %10.76 %42.72 %3.11 %12.37 %7.72 %16.77 %-8.69 %-0.29 

HD %15.33 %30.11 %-0.71 %9.12 %20.69 %38.29 %9.77 %20.82 

RI %12.51 %48.29 %17.73 %23.53 %14.33 %28.34 %5.24 %12.68 

GCE %22.28 %51.28 %-21.89 %-11.80 %27.60 %51.98 %7.97 %22.80 

LCE %14.96 %28.51 %-15.87 %-7.15 %22.29 %37.69 %5.41 %13.48 

 
Table 3. 14 Average and maximum declines in K-means error values within the interval 95.05.0 ≤≤ β  

 

The improvements obtained are also partly due to the use of average angular distances 

instead of using the angular distances obtained using a single frame. This is because, most 

of the time, a single frame does not carry enough information as we mentioned in the 

introduction chapter and showed in Figure 1.1. 

The most important drawback of our algorithm is that it is not fully automated and 

adaptive. We have failed to find a value for β where the algorithm’s performance is at its 

peak for all cases, although we can give an interval where the results are always improved. 

In order to find the best resulting β value, we still need to perform many segmentations for 

10 ≤≤ β . Setting of µ is another problem. The best results are obtained when 

5.35.2 ≤≤ µ . However, as in the example of Jumping Man with µ=3, even when µ is this 

interval, unfortunately there is no guarantee that the outcome will be acceptable. In the 
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beginning, the use of static angular distances or average angular distances was a hyper-

parameter setting decision but fortunately after the experiments we have learnt that using 

average angular distances yields better results. Frame-cut, which is the number of frames 

with smallest and largest Euclidian distances used in variance calculation in order to boost 

the effect of motion information, was our last manually set parameter. Although, in our 

initial experiments we have observed that using 10 smallest and largest Euclidian distance 

values is always sufficient to boost variances, we demonstrated the effect of increasing this 

number as well. In Table 3.15, we provide the average error values for frame-cut=10 and 

frame-cut=20, where the values for other hyper-parameters are set to the values with the 

best segmentation results. These results indicate that average errors generally increased as 

we increased the frame-cut. 

 

 

  Horse Gallop Jumping Man Dancing Woman Dancing Man 

Frame-cut 10 20 10 20 10 20 10 20 

CD 0.24758 0.24602 0.30286 0.30066 0.25039 0.25972 0.25157 0.24994 

HD 0.74029 0.75033 0.48676 0.49074 0.67611 0.70278 0.80998 0.81962 

RI 0.14015 0.14054 0.19142 0.19235 0.159 0.16642 0.16591 0.16799 

GCE 0.66612 0.67496 0.42753 0.43387 0.76874 0.79115 0.89453 0.89152 

LCE 0.66612 0.67496 0.42753 0.43387 0.76874 0.79115 0.80202 0.79651 

 
Table 3. 15 Average total error values calculated over β for different frame-cut values. 
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Chapter 4 

 

CONCLUSIONS AND FUTURE WORK 

 

 

In this work we have presented a segmentation method which is applicable to mesh 

sequences. We have shown that we can enhance the segmentation results by analyzing 

multiple postures in a time-varying mesh sequence. The proposed algorithm exploits the 

fact that semantically different parts of an articulated shape exhibit different rigid motions. 

In order to utilize this fact, a motion distance term, encoding the variances of Euclidian 

distances between vertices on the surface of a mesh, has been proposed.  

We have tested our algorithm on four mesh sequences under different settings and have 

evaluated the segmentation performance both visually and quantitatively using different 

error metrics.  By combining the motion term with spatial information, we have managed to 

benefit from strong sides of both spatial and temporal information, and to receive better 

results than the case using only spatial information. 

The main drawback of our algorithm is that it lacks the ability to set all the parameters 

automatically. The choice of µ value for merge-clustering and setting the number of 

segments for K-means are important problems preventing our algorithm from being human 

independent. This limitation of our algorithm can be overcome by improving the clustering 

scheme by utilizing a method to choose the number of segments automatically. 

 



 

 

Bibliography    74 

 

 

BIBLIOGRAPHY 

 

 

[1] M. Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical mesh segmentation based 

on fitting primitives,” The Visual Computer, vol 22, no. 3, pages 181–193, 2006. 

[2] M. Brand and K. Huang, “A unifying theorem for spectral embedding and clustering.” 

Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, 

2003. 

[3] X. Chen, A. Golovinskiy and T. Funkhouser, “A benchmark for 3D mesh 

segmentation.” ACM Transactions on Graphics (Proc. SIGGRAPH), 28(3), Aug. 2009. 

[4] A. Golovinskiy and T. Funkhouser, “Randomized cuts for 3d mesh analysis,” ACM 

Trans. Graph., vol. 27, no. 5, pages 1–12, 2008. 

[5] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology matching for fully 

automatic similarity estimation of 3d shapes,” Proceedings of the 28th annual conference 

on computer graphics and interactive techniques, pages 203–212, 2001. 

[6] Z. Karni and C. Gotsman, “Spectral compression of mesh geometry,” Proceedings of 

the 27th annual conference on computer graphics and interactive techniques, pages 279–

286, 2000. 

[7] S. Katz, G. Leifman, and A. Tal, “Mesh segmentation using feature point and core 

extraction,” The Visual Computer, vol. 21, no. 8-10, pages 649–658, 2005. 

[8] S. Katz and A. Tal. “Hierarchical mesh decomposition using fuzzy clustering and cuts.” 

Proceedings of the SIGGRAPH, pages 954–961, 2003. 

[9] Y. K. Lai, S. M. Hu, R. R. Martin, and P. L. Rosin. “Fast mesh segmentation using 

random walks,” Proceedings of the Symposium on Solid and Physical Modeling, pages 

183–191, 2008. 



 

 

Bibliography    75 

 

[10] X. Li, T. W. Woon, T. S. Tan, and Z. Huang, “Decomposing polygon meshes for 

interactive applications,” Proceedings of the Symposium on Interactive 3D graphics, pages 

35–42, 2001. 

[11] R. Liu and H. Zhang, “Segmentation of 3d meshes through spectral clustering,” 

Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, pages 

298–305, 2004. 

[12] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 

4, pages 395–416, 2007. 

[13] P. Sand, L. McMillan, and J. Popović, “Continuous capture of skin deformation,” 

ACM Trans. Graph., vol. 22, no. 3, pages 578–586, 2003. 

[14] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh partitioning and 

skeletonisation using the shape diameter function,” The Visual Computer, vol. 24, no. 4, 

pages 249–259, 2008. 

[15] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of polyhedral surfaces using 

decomposition,” In Computer Graphics Forum, pages 219–228, 2002. 

[16] L. Grady. “Random walks for image segmentation,” IEEE Trans. Pattern Analysis and 

Machine Inbtelligence, vol. 28, no. 11, pages 1768–1783, 2006. 

[17] M. Garland, A. Willmott, and P. S. Heckbert, “Hierarchical face clustering on 

polygonal surfaces,” Proceedings of the Symposium on interactive 3D Graphics I3D,  

pages 49-58, 2001. 

[18] R. Arcila, K. S. Buddha, F. Hétroy, F. Denis and F. Dupont, “A Framework for 

motion-based mesh sequence segmentation,” International Conference on Computer 

Graphics, Visualization and Computer Vision, WSCG, 2010. 

[19] T. Lee, Y. Wang, and T. Chen, “Segmenting a deforming mesh into near-rigid 

components,” The Visual Computer, vol. 22, no. 9, pages 729-739, 2006. 



 

 

Bibliography    76 

 

[20] H. Yamauchi, S. Gumhold, R. Zayer and H.P. Seidel, “Mesh segmentation driven by 

Gaussian curvature,”  The Visual Computer, vol. 21, no. 8-10, pages 659-668. 

[21] L. Chen and N. D. Georganas, “An efficient and robust algorithm for 3D mesh 

segmentation,” Multimedia Tools and Applications, vol. 29, no. 2, pages 109-125. 

[22] X. Ju ,  N. Werghi ,  J. P. Siebert, “Automatic Segmentation of 3D Human Body 

Scans,” Proc. IASTED Int. Conf. on Computer Graphics and Imaging (CGIM), 2000. 

[23] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, E. Boyer, “Articulated shape 

matching using Laplacian eigenfunctions and unsupervised point registration,” Computer 

Vision and Pattern Recognition, CVPR, 2008. 

[24] J. Varun, H. Zhang, “Robust 3D Shape Correspondence in the Spectral Domain,” 

Shape Modeling and Applications, SMI, IEEE International Conference, 2006. 

[25] A. Y. Ng, M. I. Jordan, Y. Weiss, “On Spectral Clustering: Analysis and An 

Algorithm.” In Advances in Neural Information Processing Systems, vol. 14, pages 857–

864, 2002. 

[26] Y. Weiss, “Segmentation Using Eigenvectors: A Unifying View,” Proceedings IEEE 

International Conference on Computer Vision, pages 975–982, 1999. 

[27] J. C. Chen and Y. Nakamura, “The underlying principle of Dijkstra’s shortest path 

algorithm,” Formalized Mathematics, vol. 11, no. 2, pages 143–152, 2003. 

[28] E. Kalafatlar, Y. Yemez, “3D articulated shape segmentation using motion 

information,” 20
th

 International Conference on Pattern Recognition, ICPR, 2010. 

[29] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H. P. Seidel and S. Thrun, 

“Performance capture from sparse multi-view video,” SIGGRAPH, pages 1-10, 2008. 

[30] Y. Sahillioğlu, Y. Yemez, “3D shape correspondence by isometry-driven greedy 

optimization,” Computer Vision and Pattern Recognition (CVPR), pages 453-458, 2010. 

[31] N. B. Venkateswarlu and P. S. Raju, “Fast ISODATA clustering algorithms,” Pattern 

Recogn., vol. 25, no. 3, pages 335-342, 1992. 



 

 

Vita    77 

 

 

VITA 

 

 

Emre Kalafatlar was born in İstanbul, Turkey on August 23, 1983. He graduated from 

Kabataş Erkek Lisesi, İstanbul in 2001. He received his B.S. degree in Electrical and 

Electronics Engineering with a double-major in Computer Engineering from Koç 

University, İstanbul in 2006. After a year of work experience, in 2007, he joined the M.S. 

Program in Electrical and Computer Engineering at Koç University, as a research and 

teaching assistant. Having received the M.S. degree in 2010, he is now working in Nortel 

Netaş as a design engineer. 

 


