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ABSTRACT

In this study, we give different proofs of the Prime Number Theorem which
gives an estimate on the number of primes not exceeding x, for a given real
number x. We first prove the theorem with elementary methods in which
we do not get use of any complex function theory. This proof does not
give an error term but rather gives an asymptotic to the function counting
primes up to x. In the second part we give two analytic proofs of the PNT
with exponential error terms, the last one providing a better error term.
Many of the properties of the Riemann zeta-function are studied since we
use them frequently along the way. Finally we give the PNT for arithmetic
progressions which gives an estimate on the number of primes not exceeding
x belonging to a certain arithmetic progression. The role of the Dirichlet L-
functions serves as an analogue to Riemann zeta-function’s role in the proof
of PNT. So we study the properties of the Dirichlet L-functions as well.
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ÖZET

Bu çalışmada, herhangi bir x sayısına kadar olan asal sayıların kaç tane
olduğuna dair sonuçlar veren Asal Sayı Teoreminin farklı ispatları verilmiştir.
Öncelikle Asal Sayı Teoremini kompleks fonksiyon teorisi kullanmadan, ele-
menter metotlarla ispatlıyoruz. Bu ispatta x’ e kadar olan asalları sayan
fonksiyona, hata terimi içermeyen bir asimptotik buluyoruz. l̇kinci kısımda
ise, Asal Sayı Teoremine üstel hata terimi de içeren iki farklı analitik is-
pat veriyoruz. l̇spatlarda Riemann zeta-fonksiyonun özellikleri sıkça kul-
lanıldığından, bu fonksiyonun birçok özelliği de çalışılmıştır. Son olarak
aritmetik dizilerde Asal Sayı Teoremini ele alıyoruz. Bu teorem ise belirli bir
aritmetik diziye ait, x’ ten büyük olmayan asalların sayısına bir asimptotik
vermektedir. Riemann zeta-fonksiyonunun Asal Sayı Teoreminin ispatında
oynadığı rolü, bu kısımda Dirichlet L-fonksiyonları üstlenmiştir. Bu sebeple
son bölümde Dirichlet L-fonksiyonunun özellikleri çalışılmıştır.
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1 PRELIMINARIES

This chapter includes the basic information needed to understand the text
as we frequently will refer in the following chapters. It consists of four main
sections and in each of them, we will present the functions and some of their
properties that we are going to deal with. We also will introduce some main
formulas and tools that are widely used in Analytic Number Theory. All
these are will be given briefly, without proof, since detailed arguments can
be found in [3] or [2].

1.1 Arithmetic Functions

Definition 1. A real- or complex-valued function defined on the positive
integers is called an arithmetic function.

We introduce some arithmetic functions which play an important role
on distribution of primes.

1. The Möbius function µ is defined as follows:

µ(1) = 1;

If n > 1, write n = pa11 · · · p
ak
k . Then

µ(n) =

{
(−1)k if a1 = a2 = · · · ak = 1,
0 otherwise.

2. If n > 1 the Euler totient φ(n) is defined to be the number of positive
integers not exceeding n which are relatively prime to n; i.e.,

φ(n) =
n∑

m=1
(m,n)=1

1.

3. The Von Mangoldt function Λ(n) is defined as:

Λ(n) =

{
log p if n = pm for some prime p and some integer m ≥ 1,
0 otherwise.

Let f(n) be an arithmetic function. We usually denote by F (x), the
summatory function of f(n)

F (x) =
∑
n≤x

f(n).
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In analytic number theory, we estimate the averages F (x)
x of arithmetic

functions because they are expected to behave more regularly for large x
whereas an arithmetic function may behave beyond prediction when n is
large. So we are interested in tools for evaluating the averages.

Now let us give the partial summation formula which is one of the most
powerful methods for estimating the summatory of arithmetic functions.

Theorem 1.1 (The Partial Summation Formula). Let x and y be real num-
bers with 0 < y < x. Let f(n) be an arithmetic function with summatory
function F (x) and g(t) be a function with a continuous derivative on [y, x].
Then,

∑
y<n≤x

f(n)g(n) = F (x)g(x)− F (y)g(y)−
∫ x

y
F (t)g′(t)dt. (1.1)

In particular, if x ≥ 2 and g(t) is continuously differentiable on [1, x],
then ∑

n≤x
f(n)g(n) = F (x)g(x)−

∫ x

1
F (t)g′(t)dt. (1.2)

This theorem, applied to the functions f(n) = 1 and g(t) = 1/t gives∑
n≤x

1

n
= log x+ E + r(x) where |r(x)| < 1

x
. (1.3)

The number E in (1.3) is called the Euler’s constant. Another applica-
tion of partial summation gives the following estimate which will be used in
the next chapter: ∑

n≤x
log2 x

n
= 2x+O(log2 x). (1.4)

1.2 Distribution of Primes

Let us first introduce Chebyshev’s functions ψ(x) and ϑ(x) which are of
great importance in the study of distribution of primes.

Definition 2. We define Chebyshev’s ψ(x) function to be the summatory
function of Λ(n) by

ψ(x) =
∑
n≤x

Λ(n).

Definition 3. We define Chebyshev’s ϑ(x) function by

ψ(x) =
∑
p≤x

log p,
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where p runs over primes ≤ x.

Chebyshev has showed that the functions ψ(x), ϑ(x) and π(x) log x are
all of order O(x) and their relation gives equivalent forms of the PNT. He
has proved:

Theorem 1.2. There exists positive constants A and B such that for x ≥ 2

Ax ≤ ϑ(x) ≤ ψ(x) ≤ π(x) log x ≤ Bx. (1.5)

Moreover,

lim inf
x→∞

ϑ(x)

x
= lim inf

x→∞

ψ(x)

x
= lim inf

x→∞

π(x) log x

x
≥ log 2, (1.6)

and

lim sup
x→∞

ϑ(x)

x
= lim sup

x→∞

ψ(x)

x
= lim sup

x→∞

π(x) log x

x
≤ log 4. (1.7)

The following theorem states three equivalent forms of PNT (without error
term).

Theorem 1.3. The following relations are equivalent:

π(x) ∼ x

log x
. (1.8)

ϑ(x) ∼ x. (1.9)

ψ(x) ∼ x. (1.10)

Another substantial progress was made by Mertens. He has showed:

∑
n≤x

Λ(n)

n
= log x+O(1), (1.11)

∑
p≤x

log p

p
= log x+O(1), (1.12)

∑
p≤x

1

p
= log log x+A+O(

1

log x
), (1.13)

where A is a constant. These estimates are used frequently in the elementary
proof of PNT.
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1.3 Dirichlet Series

Given an arithmetic function f(n), we define the Dirichlet series associated
by f as

F (s) =

∞∑
n=1

f(n)

ns
.

A Dirichlet series can be regarded as a function of the complex variable
s, defined in the region in which the series converges. We write the variable
s as

s = σ + it, where σ = <s, t = =s,

and we will use this notation throughout the text.
An important result about Dirichlet series is the Euler product identity

when applied to the Dirichlet series.

Theorem 1.4 (Euler Product Identity). Let f be a multiplicative arithmetic

function with Dirichlet series F (s) =
∑∞

n=1
f(n)
ns . Assume F (s) converges

absolutely for σ > σa, then we have

F (s) =
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
for σ > σa. (1.14)

If f is completely multiplicative, then

F (s) =
∏
p

(
1 +

f(p)

ps

)−1

for σ > σa. (1.15)

The most famous Dirichlet series is the one associated with the function
f(n) = 1, so-called the Riemann zeta function ζ(s),

ζ(s) =

∞∑
n=1

1

ns
. (σ > 1)

We initially define ζ(s) for σ > 1 but it has an analytic continuation to
the half-plane σ > 0:

ζ(s) =
s

s− 1
− s

∫ ∞
1
{u}u−s−1du. (1.16)

Moreover, by the Euler product identity (1.15), we have

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

(σ > 1). (1.17)
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Logarithmic derivative of the identity (1.17) gives the Dirichlet series for

− ζ′(s)
ζ(s) ,

−ζ
′(s)

ζ(s)
=
∑
p

∞∑
n=1

log p

pms
=

∞∑
n=1

Λ(n)

ns
=
∏
p

(
1 +

1

ps

)−1

(σ > 1). (1.18)

Another important property of Dirichlet series is that we can relate them
to the summatory functions of arithmetic functions. Not to cause a confu-
sion of notation, let us denote by M(f, x) =

∑
n≤x f(n) the summatory

function (which was denoted by F (x) previously) of f(n). There are inver-
sion formulas relating M(f, x) to F (s) and we will give them in the next
two theorems.

Theorem 1.5 (Mellin Transform Representation of Dirichlet Series). Let
f(n) be an arithmetic function with the summatory function M(f, x) and
the associated Dirichlet series F (s) with finite abscissa of convergence σc.
Then we have

F (s) = s

∫ ∞
1

M(f, x)x−s−1dx σ > max(0, σc). (1.19)

Next, we give Perron’s formula which serves as a converse of Mellin’s
transform in the sense that we express M(f, x) in terms of F (s).

Theorem 1.6 (Perron’s Formula). Let f(n) be an arithmetic function with
the associated Dirichlet series F (s) with finite abscissa of absolute conver-
gence σa. Then we have for any c > max(0, σa),∑′

n≤x
f(n) =

1

2πi

∫ c+i∞

c−i∞
F (s)

xs

s
dx . (1.20)

Here,
∑′

indicates that we take the term f(x) to be halved in the case when
x is an integer.

1.4 Dirichlet Characters and L-functions

Definition 4. An arithmetic function χ(n) is called a Dirichlet character
modulo q if it satisfies
(i) χ(n) = 0 for (n, q) > 1,
(ii) χ(1) 6= 0,
(iii) χ(n)χ(m) = χ(nm) for all integers m,n,
(iv) χ(n) = χ(m) whenever n ≡ m (mod q), i.e. χ(n) is q-periodic.

Multiplicativity entails χ(1) = 1, and consequently χ(n) must be a
(φ(q))-th root of unity for (n, q) = 1. Also, there are φ(q) characters to the

5



modulus q. One of them takes the value 1 for all integers relatively prime
to q and 0 otherwise, this is called the principal character and denoted by
χ0(n).

A character χ(n) modulo q satisfies the following relations:

1

φ(q)

∑
χ(mod q)

χ(n) =

{
1 if n ≡ 1 (mod q),
0 otherwise,

(1.21)

and
1

φ(q)

∑
n(mod q)

χ(n) =

{
1 if χ = χ1,
0 otherwise.

(1.22)

From the relation (1.21), it is possible to deduce a relation which will be
useful when we aim at working on integers belonging to a certain residue
class modulo q. If (n, q) = 1, then for any m we have

1

φ(q)

∑
χ(mod q)

χ(m)χ̄(n) =

{
1 if m ≡ n (mod q),
0 otherwise.

(1.23)

Dirichlet also defined L-functions denoted by L(s, χ) to be the Dirichlet
series of χ(n) for σ > 1,

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

By the Euler product identity we have

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

(σ > 1). (1.24)

As for the function ζ(s), logarithmic differentiation gives that the Dirichlet

series for −L′(s,χ)
L(s,χ)

−L
′(s, χ)

L(s, χ)
=
∑
p

∞∑
n=1

χ(p) log p

pms
=

∞∑
n=1

Λ(n)χ(n)

ns
(σ > 1). (1.25)

A character χ(n) modulo q, when restricted to the values of n with
(n, q) = 1, may have a least period less than q, say q1. Then we say χ(n)
is imprimitive , otherwise if q is the least period itself, we say that χ(n) is
primitive. We leave the principal character unclassified. In the case when
χ(n) is imprimitive, there is a primitive character χ1(n) modulo q1 with
χ1(n) = χ(n) for (n, q) = 1 and we say that χ1(n) induces χ(n). Moreover
there is a relation between L(s, χ1) and L(s, χ) which follows from the Euler
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product formula

L(s, χ) = L(s, χ1)
∏
p|q

(
1− χ1(p)

ps

)−1

(σ > 1). (1.26)

Definition 5. Let χ(n) be a character modulo q. The Gaussian sum τ(χ)
is defined by

τ(χ) =

q∑
n=1

χ(n)e
− 2πin

q . (1.27)

For a primitive character χ(n) modulo q we have

χ(n)
1

τ(χ̄)

q∑
m=1

χ̄(m)e
− 2πimn

q . (1.28)

We end this part with a theorem on the Gaussian sum τ(χ). We will use it
when we construct the functional equation for L(s, χ).

Theorem 1.7. Let χ(n) be a primitive character modulo q. Then we have

|τ(χ)| = √q. (1.29)

Moreover,

τ(χ)τ(χ̄) =

{
q if χ(−1) = 1 ,
−q if χ(−1) = −1.

(1.30)

7



2 ELEMENTARY PROOF OF THE PNT

The study of distribution of primes has been excited mathematicians since
ancient times. The infinitude of the primes was first shown by Euclid. After
about 2000 years, Euler gave a proof of infinitude of primes showing that the
series

∑
p

1
p diverges. His proof, though comes after a very long time, was

essential in the sense that it involved analytical arguments. We will discuss
the analytical aspects of this study on primes in the next chapter. If we
denote by π(x), the number of primes not exceeding x, it was conjectured
first by Gauss and Legendre around 1800 that

π(x) ∼ x

log x
as x→∞,

which is known as the PNT.

Chebyshev experienced the difficulty of working with the function π(x)
and introduced his well-known functions ψ(x) and ϑ(x) which are counting
primes with weights. These functions provided equivalent forms of the PNT
given in Theorem 1.3 and later mathematicians preferred to use these forms
to prove the PNT.

The PNT was first proved by Hadamard and de la Vallée Poussin inde-
pently in 1896. But these proofs had an analytic approach and hence, the
number theorists were still seeking for a proof that was purely elemantary,
means a proof based on number theoretic methods. It was expected that the
elementary proof, if exists, would produce exciting innovations in number
theory. In 1948, Selberg and Erdös indepently gave elementary proofs of
the PNT. The proofs were found to be clever with delicate arguments, but
they were very far form meeting the expectations. They did not bring any-
thing innovative to the theory. But still, the desire for an elementary proof
was satisfied. For historical remarks on the development of the PNT, see [6].

We will prove the PNT of the form ϑ(x) ∼ x. Equivalently, we will
prove R(x) = o(x) where R(x) = ϑ(x)− x. The proof is based on Selberg’s
formula.

Theorem 2.1 (Selberg’s Formula). For x ≥ 1, we have∑
n≤x

Λ2(n) = 2x log x+O(x), (2.1)

where
Λ2(n) = Λ(n) log n+

∑
dk=n

Λ(d)Λ(k).

8



Proof. First we note that∑
d|n

Λ2(d) =
∑
d|n

Λ(d) log d+
∑
d|n

∑
kl=d

Λ(k)Λ(l)

=
∑
d|n

Λ(d) log d+
∑
k|n

Λ(k)
∑
l|n/k

Λ(l)

=
∑
d|n

Λ(d) log d+
∑
k|n

Λ(k) log n/k

= log n
∑
d|n

Λ(d)

= log2(n).

Hence by Möbius inversion we get

Λ2(n) =
∑
dk=n

µ(d) log2(k).

Now we use the above equation and the estimates
∑

n≤x
1
n and

∑
n≤x log2 x

n
which were given by (1.3) and (1.4).

∑
n≤x

Λ2(n) =
∑
n≤x

∑
dk=n

µ(d) log2(k)

=
∑
dk≤x

µ(d) log2(k)

=
∑
d≤x

µ(d)
∑
k≤x/d

log2 k

=
∑
d≤x

µ(d)

(
x

d
log2 x

d
− 2x

d
log

x

d
+

2x

d
+O

(
log2 x

d

))

= x
∑
d≤x

µ(d)

d
log

x

d

(
log

x

d
− 2
)

+ 2x
∑
d≤x

µ(d)

d
+O

(∑
d≤x

log2 x

d

)

= x
∑
d≤x

µ(d)

d
log

x

d

(
log

x

d
− 2
)

+O(x)

= x
∑
d≤x

µ(d)

d
log

x

d

( ∑
m≤x/d

1

m
− E − 2 +O

(
d

x

))
+O(x)

= x
∑
d≤x

µ(d)

d
log

x

d

∑
m≤x/d

1

m
− (E + 2)x

∑
d≤x

µ(d)

d
log

x

d
+O(x).

9



We will estimate the two sums on the right separately. From the first
one we obtain the main term:

x
∑
d≤x

µ(d)

d
log

x

d

∑
m≤x/d

1

m
= x

∑
dm≤x

µ(d)

dm
log

x

d

= x
∑
n≤x

1

n

∑
d|n

µ(d) log
x

d

= x log x
∑
n≤x

1

n

∑
d|n

µ(d)− x
∑
n≤x

1

n

∑
d|n

µ(d) log d

= x log x+ x
∑
n≤x

Λ(n)

n

= 2x log x+O(x)

by (1.11)
For the second sum we again use the estimate (1.3) for

∑
n≤x

1
n .

∑
d≤x

µ(d)

d
log

x

d
=
∑
d≤x

µ(d)

d

( ∑
m≤x/d

1

m
− E +O

(
d

x

))

=
∑
dm≤x

µ(d)

dm
− E

∑
d≤x

µ(d)

d
+O(1)

=
∑
n≤x

1

n

∑
d|n

µ(d) +O(1)

= O(1).

Combining these two estimates we get the result.

In the proof of the PNT, we will use several equivalent forms of Selberg’s
formula. Each of them can be deduced from Selberg’s formula (2.1) easily.
We state these forms as the following lemma:

Lemma 2.2 (Selberg’s Formulae).

ϑ(x) log x+
∑
p≤x

log pϑ

(
x

p

)
= 2x log x+O(x). (2.2)

∑
p≤x

log2 p+
∑
pq≤x

log p log q = 2x log x+O(x). (2.3)

10



∑
p≤x

log p+
∑
pq≤x

log p log q

log pq
= 2x+O

(
x

1 + log x

)
. (2.4)

Lemma 2.3. ∑
pq≤x

log p log q

pq log pq
= log x+O(log log x).

Proof. Let l(n) =

{
log n if n is prime,
0 otherwise

We will use partial summation with f(n) = (l∗l)(n)
n , g(t) = 1

log t . First we
estimate

∑
n≤x f(n).

F (x) =
∑
n≤x

f(n) =
∑
pq≤x

log p log q

pq

=
∑
p≤x

log p

p

∑
q≤x/p

log q

q

=
∑
p≤x

log p

p

(
log

x

p
+O(1)

)

= log x
∑
p≤x

log p

p
−
∑
p≤x

log2 p

p
+O(log x).

Here we use Mertens’ estimate (1.12),
∑

p≤x
log p
p = log x+O(1), for the

first sum. For the second sum we use partial summation.

∑
p≤x

log2 p

p
=
∑
n≤x

l(n) log n

n

=

(∑
p≤x

log p

p

)
log x−

∫ x

1

log t+O(1)

t
dt

= log2 x+O(log x)− 1

2
log2 x+O(log x)

=
1

2
log2 x+O(log x).

So F (x) = 1
2 log2 x + O(log x). Applying partial summation suggested

at the beginning we get

11



∑
pq≤x

log p log q

pq
=

(
1

2
log2 x+O(log x)

)
1

log x
+

∫ x

2

1/2 log2 t+O(log t)

t log2 t

=
1

2
log x+O(1) +

1

2

∫ x

2

1

t
dt+O

(∫ x

2

1

t log t
dt

)
= log x+O(log log x).

Lemma 2.4. For x > e,∑
p≤x

log p

p
(
1 + log x

p

) = O(log log x).

Proof. Observe that

∑
p≤x

log p

p
(
1 + log x

p

) =

[log x]+1∑
j=1

∑
x

ej
<p≤ x

ej−1

log p

p
(
1 + log x

p

) .
For every positive integer j, we have by Mertens’ estimate∑

x

ej
<p≤ x

ej−1

log p

p
= log

x

ej−1
− log

x

ej
+O(1) = j − (j − 1) +O(1) = O(1).

Morover, if x
ej
< p ≤ x

ej−1 , then 1
ej
< p

x ≤
1

ej−1 . Hence 1(
1+log x

p

) ≤ 1
j and

we have ∑
x

ej
<p≤ x

ej−1

log p

p
(
1 + log x

p

) ≤ 1

j

∑
x

ej
<p≤ x

ej−1

log p

p
= O(

1

j
).

Hence ∑
p≤x

log p

p
(
1 + log x

p

) =

(log x)+1∑
j=1

1

j
= O(log log x).

Theorem 2.5. For x ≥ 1,

|R(x)| ≤ 1

log x

∑
n≤x

∣∣∣R(x
n

)∣∣∣+O

(
x log log x

log x

)
.

Proof. By Selberg’s formula (2.2) we have,

12



ϑ(x) log x+
∑
p≤x

ϑ
(x
p

)
log p = 2x log x+O(x).

Now replace ϑ(x) by R(x) + x above to get

R(x) log x+ x log x+ x
∑
p≤x

log p

p
+
∑
p≤x

R
(x
p

)
log p = 2x log x+O(x),

Mertens’ estimate in the above equation gives

R(x) log x = −
∑
p≤x

R
(x
p

)
log p+O(x). (2.5)

For p ≤ x, by Selberg’s Formula (2.4) we have

∑
q≤x

p

log q +
∑
qr≤x

p

log q log r

log qr
=

2x

p
+O

(
x

p(1 + log x
p )

)
.

Then∑
p≤x

log pϑ
(x
p

)
=
∑
p≤x

log p
∑
q≤x

p

log q

= 2x
∑
p≤x

log p

p
−
∑
p≤x

log p
∑
qr≤x

p

log q log r

log qr
+O

∑
p≤x

x log p

p
(
1 + log x

p

)


= 2x(log x+O(1))−
∑
qr≤x

log q log r

log qr

∑
p≤ x

qr

log p+O(x log log x)

= 2x log x−
∑
qr≤x

log q log r

log qr
ϑ
( x
pq

)
+O(x log log x), (2.6)

where in the error term we use the estimate given by Lemma 2.4. Now we
substitute the RHS of (2.6) in Selberg’s formula (2.2) to obtain

ϑ(x) log x+2x log x−
∑
pq≤x

log p log q

log pq
ϑ
( x
pq

)
+O(x log log x) = 2x log x+O(x).

Again writing R(x) + x in place of ϑ(x) above we have

R(x) log x+ x log x =
∑
pq≤x

log p log q

log pq
R
( x
pq

)
+ x

∑
pq≤x

log p log q

pq log pq
+O(x log log x).

If we use the estimate in Lemma 2.3 for the second sum
∑

pq≤x
log p log q
pq log pq ,

13



we have

R(x) log x =
∑
pq≤x

log p log q

log pq
R
( x
pq

)
+O(x log log x). (2.7)

Adding (2.5) and (2.7) we obtain

2 |R(x)| log x ≤
∑
p≤x

log p

∣∣∣∣R(xp)
∣∣∣∣+

∑
pq≤x

log p log q

log pq

∣∣∣∣R( xpq)
∣∣∣∣+O(x log log x)

=
∑
n≤x

l(n)
∣∣∣R(x

n

)∣∣∣+
∑
n≤x

l ∗ l(n)

log n

∣∣∣R(x
n

)∣∣∣+O(x log log x)

=
∑
n≤x

(
l(n) +

l ∗ l(n)

log n

) ∣∣∣R(x
n

)∣∣∣+O(x log log x). (2.8)

We deduce the following from the partial summation formula.∑
n≤x

f(n)g(n) =
∑

n≤x−1

F (n)(g(n)− g(n+ 1)) + F (x)g([x]).

Here F (x) =
∑

n≤x f(n) is the summatory function of f . We use this formula

with f(n) = l(n) + l∗l(n)
logn and g(n) =

∣∣R(xn)∣∣.
F (n) =

∑
n≤x

l(n) +
l ∗ l(n)

log n
=
∑
p≤x

log p+
∑
pq≤x

log pq = 2x+O

(
x

1 + log x

)
,

by Selberg’s formula (2.4). And g([x]) =
∣∣∣R( x[x]

)∣∣∣ =
∣∣∣ϑ( x[x]

)
− x

[x]

∣∣∣ = O(1).

So we obtain ∑
n≤x

(
l(n) +

l ∗ l(n)

log n

) ∣∣∣R(x
n

)∣∣∣
=

∑
n≤x−1

(
2n+O

(
n

1 + log n

))(∣∣∣R(x
n

)∣∣∣− ∣∣∣R( x

n+ 1

)∣∣∣)+O(x)

= 2
∑

n≤x−1

n

(∣∣∣R(x
n

)∣∣∣− ∣∣∣R( x

n+ 1

)∣∣∣)︸ ︷︷ ︸
A

+O

( ∑
n≤x−1

(
n

1 + log n

)(∣∣∣R(x
n

)∣∣∣− ∣∣∣R( x

n+ 1

)∣∣∣)︸ ︷︷ ︸
B

)
. (2.9)

14



We evaluate the terms A and B of the above equation seperately.

A = 2
∑

n≤x−1

n
∣∣∣R(x

n

)∣∣∣− 2
∑

n≤x−1

n
∣∣∣R( x

n+ 1

)∣∣∣
= 2

∑
n≤x−1

n
∣∣∣R(x

n

)∣∣∣− 2
∑
2≤x

(n− 1)
∣∣∣R(x

n

)∣∣∣
= 2

∑
n≤x

x
∣∣∣R(x

n

)∣∣∣− 2[x]
∣∣∣R( x

[x]

)∣∣∣
= 2

∑
n≤x

x
∣∣∣R(x

n

)∣∣∣+O(x).

To eveluate B, first observe

∣∣∣R(x
n

)∣∣∣− ∣∣∣R( x

n+ 1

)∣∣∣ =

∣∣∣∣∣ϑ(xn)− x

n

∣∣∣∣∣−
∣∣∣∣ϑ( x

n+ 1

)
− x

n+ 1

∣∣∣∣
≤
∣∣∣∣ϑ(xn)− ϑ( x

n+ 1

)
− x

n
− x

n− 1

∣∣∣∣
≤ ϑ

(x
n

)
− ϑ

( x

n+ 1

)
+
x

n
− x

n− 1

≤ ϑ
(x
n

)
− ϑ

( x

n+ 1

)
+

x

n2
. (2.10)

Now if we use (2.10) in the expression for B,

B ≤
∑

n≤x−1

n

1 + log n

(
ϑ
(x
n

)
− ϑ

( x

n+ 1

))
︸ ︷︷ ︸

C

+x
∑

n≤x−1

1

n(1 + log n)︸ ︷︷ ︸
D

.

C =
∑

n≤x−1

n

1 + log n
ϑ
(x
n

)
−
∑

2≤n≤x

n− 1

1 + log(n− 1)
ϑ
(x
n

)
= ϑ(x) +

∑
2≤n≤x−1

(
n

1 + log n
− n− 1

1 + log(n− 1)

)
ϑ
(x
n

)
≤ ϑ(x) +

∑
2≤n≤x−1

1

1 + log n
ϑ
(x
n

)
= O(x) +O

(
x

∑
2≤n≤x−1

1

n(1 + log n)

)
.
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But ∑
n≤x

1

n(1 + log n)
= O

(∫ x

1

1

t(1 + log t)
dt

)
= O(log log x).

So D = C = O(x log log x) and B = O(x log log x) as well.

Now, substituting our estimates on A and B in (2.9) and then subse-
quently in (2.8), we obtain

2|R(x)| log x ≤
∑
n≤x

(
l(n) +

l ∗ l(n)

log n

) ∣∣∣R(x
n

)∣∣∣+O(x log log x)

= A+O(B)

= 2
∑
n≤x

∣∣∣R(x
n

)∣∣∣+O(x log log x).

Hence the result follows.

Lemma 2.6. Let 0 < δ < 1. There exist c0 ≥ 1 and x1(δ) ≥ 4 such that if
x ≥ x1(δ), then there exists an integer n ∈ (x, ec0/δx] such that

|R(n)| < δn

and the constant c0 does not depend on δ.

Proof. We have∑
n≤x

1

n
= log x+ E + r(x) where |r(x)| ≤ 1

x

If 1 ≤ x ≤ x′, then∑
x<n≤x′

= log
x′

x
+ r′(x) where |r′(x)| < 2

x
(2.11)

Now, as can be deduced from Mertens’ estimate (1.12),
∑

n≤x
ϑ(n)
n2 = log x+

O(1) and this implies∑
n≤x

R(n)

n2
=
∑
n≤x

ϑ(n)− n
n2

= O(1).

So choose c0 ≥ 1 such that∣∣∣ ∑
x<n≤x′

R(n)

n2

∣∣∣ < c0

2
for all x, x′ such that 1 ≤ x ≤ x′. (2.12)
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Let 0 < δ < 1 and ρ = ec0/δ. Then ρx > ex since c0/δ > 1. Choose
x1(δ) ≥ 4 such that

log x < δx for all x ≥ x1(δ). (2.13)

Our claim is that if x ≥ x1(δ), then there exists an integer n ∈ (x, ρx] with
|R(n)| < δn.

There are two cases:
Case 1: Either R(n) ≥ 0 for all n ∈ (x, ρx] or R(n) ≤ 0 for all n ∈ (x, ρx].

Then ∣∣∣ ∑
x<n≤ρx

R(n)

n2

∣∣∣ =
∑

x<n≤ρx

|R(n)|
n2

=
∑

x<n≤ρx

(
|R(n)|
n

)
1

n
.

Let m∗ = min
{
|R(n)|
n : n ∈ (x, ρx]

}
. Then

c0

2
>

∑
x<n≤ρx

|R(n)|
n

1

n
≥ m∗

∑
x<n≤ρx

1

n

> m∗
(

log
ρx

x
− 2

x

)
≥ m∗

(
c0

δ
− 1

2

)
≥ c0m

∗

2δ
,

which implies 0 ≤ m∗ < δ. In the second line of the above inequalities, we
used (2.11).

Hence in this case there exists n ∈ (x, ρx] with |R(n)|
n = m∗. i.e., the

inequality |R(n|) < δn is satisfied.

Case 2: There exist integers n− 1 and n in the interval (x, ρx] such that
R(n− 1)R(n) ≤ 0. Moreover, n− 1 > x ≥ x1(δ) ≥ 4 implies n ≥ 6.

Now, for every integer n ≥ 2 we have

R(n)−R(n− 1) = ϑ(n)− ϑ(n− 1)− 1 =

{
log n− 1 if n is a prime,
−1 if n is not prime.

i)R(n) < R(n−1). Then R(n) ≤ 0 ≤ R(n−1) and R(n)−R(n−1) = −1
and hence |R(n)| ≤ 1 < log n ≤ δn by (2.13).
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ii)R(n − 1) < R(n). Then R(n − 1) ≤ 0 ≤ R(n) and 0 ≤ R(n) ≤
R(n)−R(n−1) = log n−1 < log n < δn and hence again by (2.13) we have
|R(n)| < δn

In all cases, there exists n ∈ (x, ρx] such that |R(n)| < δn and the lemma
is proved.

Lemma 2.7. Let c0 ≥ 1 be the number in Lemma 2.6 and let 0 < δ <
1. There exists a number x2(δ) such that if x ≥ x2(δ), then the interval
(x, ec0/δx] contains a subinterval (y, eδ/2y] such that

|R(t)| < 4δt for all t ∈ (y, eδ/2y].

Proof. We begin with the Selberg’s formula (2.4)∑
p≤x

log p+
∑
pq≤x

log p log q

log pq
= 2x+O

(
x

1 + log x

)
.

For 1 < u ≤ t, we have

0 ≤
∑
u<p≤t

log p ≤
∑
u<p≤t

log p+
∑

u<pq≤t

log p log q

log pq

= 2(t− u) +O

(
t

1 + log t

)
+

(
u

1 + log u

)
= 2(t− u) +O

(
t

1 + log t

)
. (2.14)

Also,

0 ≤
∑
u<p≤t

log p = ϑ(t)− ϑ(u)

= (t− u) +R(t)−R(u).

(2.14) and (2.15) gives

|R(t)−R(u)| ≤ t− u+O

(
1

log t

)
.
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If 1 < t ≤ u ≤ 2t, then

|R(t)−R(u)| ≤ u− t+O

(
u

1 + log u

)
≤ |t− u|+O

(
2t

1 + log 2t

)
≤ |t− u|+O

(
t

1 + log t

)
.

So, in particular, if u > 4 and t/2 ≤ u ≤ 2t, then

|R(t)| ≤ |R(u)|+ |t− u|+O

(
t

log t

)
. (2.15)

By Lemma 2.6, there exists number c0 ≥ 1 such that if 0 < δ < 1 and
x ≥ x1(δ) ≥ 4 there exists an integer n ∈ (x, ec0/δx] such that |R(n)| < δn.

If t ∈ (n/2, 2n], then t/2 ≤ n ≤ 2t and since n > x ≥ 4 we have

log t ≥ log(n/2) > log(x/2) >
log x

2
, (2.16)

and by (2.16)

|R(t)| ≤ |R(n)|+ |t− n|+O

(
t

log t

)
< t

(
δn

t
+
∣∣∣n
t
− 1
∣∣∣+O

(
1

log t

))
≤ t
(

2δ +
∣∣∣n
t
− 1
∣∣∣+

c2

log x

)
,

for some c2 > 0. If x ≥ x2(δ) = max(x1(δ), ec2/δ), then

|R(t)| < t
(

3δ +
∣∣∣n
t
− 1
∣∣∣) . (2.17)

Choose t in the interval e−δ/2n ≤ t ≤ eδ/2n.

Since eδ/2 < e1/2 < 2, we have t ∈ (n/2, 2n). Then (2.17) holds and
there are two cases:

If t
n ≥ 1, then

∣∣n
t − 1

∣∣ = 1− n
t ≤ 1−e−δ/2 < eδ/2−1 < δ since eδ/2 < 1+δ

for 0 < δ < 1.

If t
n < 1, then

∣∣n
t − 1

∣∣ = n
t − 1 ≤ eδ/2 − 1 < δ.
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In both cases from (2.17) we obtain

|R(t)| < 4δt for all t ∈ [e−δ/2n, eδ/2n]. (2.18)

To complete the proof, we must find a subinterval in which the bound
in (2.18) holds. We define y as follows:

If eδ/2n ≤ ec0/δx, let y = n then (y, eδ/2y] = (n, eδ/2n] ⊆ (x, ec0/δx].

If eδ/2n ≥ ec0/δx, let y = e−δ/2n. Then y = e−δ/2n > e−δec0/δx =
ec0/δ−δx > x and hence (y, eδ/2y] = (e−δ/2n, n] ⊆ (x, ec0/δx].

Theorem 2.8 (The Prime Number Theorem). For Chebyshev’s function
ϑ(x),

ϑ(x) ∼ x as x→∞

Equivalently,
R(x) = o(x) as x→∞.

Proof. By (1.6) and (1.7) we have

lim sup
x→∞

R(x)

x
= lim sup

x→∞

ϑ(x)

x
− 1 ≤ log 4− 1 < 0.4,

lim inf
x→∞

R(x)

x
= lim inf

x→∞

ϑ(x)

x
− 1 ≥ log 2− 1 > −0.4.

Hence there exist numbers M and u1 such that

|R(x)| < Mx ∀x ≥ 1 (2.19)

|R(x)| < δ1x ∀x ≥ u1 where δ1 = 0.4 (2.20)

Our aim is to contruct sequences of positive real numbers {δm}∞1 and
{εm}∞1 such that δ1 > δ2 > · · · and limm→∞ εm = 0.

We inductively define δm and um as follows. Let m ≥ 1 and suppose
we have constructed δm. If c0 > 1 is the constant in Lemma 2.6, choose εm
such that

0 < εm < 1
m and (1 + εm)

(
1− δ2m

256c0

)
< 1,

and define

δm+1 = (1 + εm)

(
1− δ2

m

256c0

)
δm. (2.21)
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Then 0 < δm+1 < δm for all m and limm→∞ εm = 0.

We shall prove for all m, there exists um such that

|R(x)| < δmx for all x ≥ um. (2.22)

Our claim is that this sufficient is to show PNT.

The sequence {δm} is decreasing, so it converges to some nonnegative
number δ < 1. Then if we take m→∞ in (2.21), we obtain

δ =

(
1− δ2

256c0

)
δ.

But we know
(

1− δ2

256c0

)
< 1. Hence δ must be equal to 0. So (2.22) implies

that R(x) = o(x).
Let us construct um inductively. We know by (2.20) there exists u1 such

that

|R(x)| < δ1x for all x ≥ u1.

Suppose that we determined um. We shall prove that there exists um+1

satisfying

|R(x)| < δm+1x for all x ≥ um+1. (2.23)

Define

δ′m =
δm
8
,

ρ = ec0/δ
′
m ,

x3(m) = max(x2(δm), um),

where x2(δm) is the number in Lemma 2.7 Then by Lemma 2.7 each
interval (x, ρx] contains a subinterval (y, eδ

′
m/2y] such that

|R(t)| < 4δ′mt for all t ∈ (y, eδ
′
m/2y] .

Now let k be the greatest integer such satisfying ρk ≤ x
x3(m) . Then

k ≤ log(x/x3(m))

log ρ
< k + 1,
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so that

k =
log(x/x3(m))

log ρ
+O(1)

=
δ′m
c0

log x+O(1) (2.24)

By Theorem 2.5,

|R(x)| ≤ 1

log x

∑
n≤x

∣∣∣R(x
n

)∣∣∣+O

(
x log log x

log x

)
=

1

log x

∑
n≤ρk

∣∣∣R(x
n

)∣∣∣+
1

log x

∑
ρk<n≤x

∣∣∣R(x
n

)∣∣∣+ o(x)

≤ 1

log x

∑
n≤ρk

∣∣∣R(x
n

)∣∣∣+
Mx

log x

∑
ρk<n≤x

1

n
+ o(x)

=
1

log x

∑
n≤ρk

∣∣∣R(x
n

)∣∣∣+ o(x) (2.25)

where we use (2.9) in the third line and the last line (2.25) follows by
noting x

ρx3(m) < ρk and by∑
x

ρx3(m)
<n≤x

1

n
≤

∑
ρk<n≤x

1

n
= log(ρx3(m)) +O

(
1

x

)
= O(1).

Now if 1 < n ≤ ρk, then x
n ≥

x
ρk
≥ x3(m) ≥ um and by the definition of

um we have ∣∣∣R(x
n

)∣∣∣ ≤ δmx

n

For j = 1, 2, . . . , k, we have

x

ρj
≥ x

ρk
≥ x3(m) ≥ x2(δ′m),

so that Lemma 2.7 applies. Hence each interval
(
x
ρj
, x
ρj−1

]
contains a subin-

terval Ij = (yj , e
δ′m/2yj ] such that

|R(t)| < 4δ′mt =
δmt

2
for all t ∈ Ij .
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Therefore,∑
n∈(ρj−1,ρj ]

∣∣∣R(x
n

)∣∣∣ =
∑

n∈(ρj−1,ρj ]\Ij

∣∣∣R(x
n

)∣∣∣+
∑
n∈Ij

∣∣∣R(x
n

)∣∣∣
< δmx

∑
n∈(ρj−1,ρj ]\Ij

1

n
+
δmx

2

∑
n∈Ij

1

n

= δmx
∑

n∈(ρj−1,ρj ]

1

n
− δmx

2

∑
n∈Ij

1

n
. (2.26)

Then

∑
n≤ρk

∣∣∣R(x
n

)∣∣∣ = R(x) +
k∑
j=1

∑
n∈(ρj−1,ρj ]

∣∣∣R(x
n

)∣∣∣
≤ δmx+

k∑
j=1

(
δmx

∑
n∈(ρj−1,ρj ]

1

n
− δmx

2

∑
n∈Ij

1

n

)

= δmx
∑
n≤ρk

1

n
− δmx

2

k∑
j=1

∑
n∈Ij

1

n
. (2.27)

For the first sum on the RHS of the above inequality we have

δmx
∑
n≤ρk

1

n
= δmx

(
k log ρ+O

(
1

ρk

))
= δmx log x+O(x), (2.28)

since k log ρ ≤ log(x/x3(m)) = log x+O(1).

For the second sum, we first note that∑
n∈Ij

1

n
=

∑
n∈(yj ,eδ

′
m/2yj ]

1

n
=
δ′m
2

+O

(
1

yj

)
=
δ′m
2

+O

(
ρj

x

)
.

Therefore, if we use the expression (2.24) in place of k and recall the
definition of δ′m, we have
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k∑
j=1

∑
n∈Ij

1

n
=
δ′mk

2
+O

 k∑
j=1

ρj

x


=
δ′mk

2

(
δ′m
c0

log x+O(1)

)
+O(1)

=
δ2
m

128c0
log x+O(1),

since
k∑
j=1

ρj

x
=
ρ(ρk − 1)

x(ρ− 1)
<

2ρk

x
≤ 2

x3(m)
= O(1).

Thus we obtain

δmx

2

k∑
j=1

∑
n∈Ij

1

n
=

δ3
m

256c0
x log x+O(x). (2.29)

Combining the estimates (2.28) and (2.29) we obtain from (2.27), for
x ≥ x3(m),

∑
n≤ρk

∣∣∣R(x
n

)∣∣∣ =

(
1− δ2

m

256c0

)
δmx log x+O(x). (2.30)

Now we substitute (2.30) in (2.25) to get

|R(x)| ≤ 1

log x

∑
n≤ρk

∣∣∣R(x
n

)∣∣∣+ o(x)

=

(
1− δ2

m

256c0

)
δmx+ o(x).

We choose um+1 sufficiently large that for all x ≥ um+1 we have

o(x) < εm

(
1− δ2

m

256c0

)
δmx.

Then,

|R(x)| < (1 + εm)

(
1− δ2

m

256c0

)
δmx = δm+1x,

so that we found um+1 such that for all x ≥ um+1,

|R(x)| < δm+1x
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which means that (2.23) is satisfied and we have proved the PNT.
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3 ANALYTIC PROOF OF THE PNT

The PNT was first proved independently, and simultaneously, by Jacques
Hadamard and Charles de la Vallée Poussin at the end of 19th century. The
proofs of Hadamard and de la Vallée Poussin both used an analytic approach
that was originated by the work of Riemann in 1859. We will give an outline
of the original proof of the PNT with classical error term in the second part
of this chapter. In the first part, we will give an analytic, but less technical
proof which requires complex analysis in a modest level.

3.1 An Analytic Method for the PNT with Exponential
Error Term

Theorem 3.1 (The Prime Number Theorem). For x ≥ 2 we have

ψ(x) = x+O(x exp(−c(log x)α)), (3.1)

where c is a positive constant and α = 1/10.

Before we pass to the proof of the PNT, we will establish results on the
Riemann zeta function ζ(s). The following theorems and lemmas include
several results on ζ(s).

Theorem 3.2 (Upper bounds for ζ(s) and ζ ′(s)).

(i) |ζ(s)| ≤ 4|t|1−σ0
1− σ0

(|t| ≥ 2, 1/2 ≤ σ0 < 1, σ ≥ σ0)

(ii) |ζ(s)| ≤ A1 log |t| (|t| ≥ 2, σ ≥ 1− 1
4 log |t|)

(iii) |ζ ′(s)| ≤ A2 log2 |t| (|t| ≥ 2, σ ≥ 1− 1
12 log |t|)

where Ai denote positive constants.

To prove this theorem we need some lemmas.

Lemma 3.3. For σ > 0 and N ∈ N,

ζ(s) =

N∑
n=1

1

ns
− N1−s

1− s
− s

∫ ∞
N

{u}
us+1

du. (3.2)

Proof. Given N ∈ N, we apply Mellin transform (1.19) of Theorem 1.5 to
the Dirichlet series

F (s) =
∞∑

n=N+1

1

ns

This is the Dirichlet series of the function f(n) =

{
1 if n > N ,
0 otherwise.

where

the summatory function is given by
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M(f, x) =
∑
n≤x

f(n) =

{
[x]−N if x ≥ N ,
0 otherwise

Hence the Mellin transform gives for σ > 1

F (s) = s

∫ ∞
1

M(f, x)

xs+1
dx = s

∫ ∞
N

[x]−N
xs+1

dx

= s

∫ ∞
N

[x]

xs+1
dx− sN

∫ ∞
N

1

xs+1
dx

= s

∫ ∞
N

1

xs
dx− sN

∫ ∞
N

1

xs+1
dx− s

∫ ∞
N

{x}
xs+1

dx

= −N
1−s

1− s
− s

∫ ∞
N

{x}
xs+1

dx.

ζ(s) = F (s) +
∑N

n=1
1
ns , so that (3.2) is satisfied in the half-plane σ > 1.

The integral
∫∞
N
{x}
xs+1dx is uniformly convergent, hence analytic in any

half-plane σ ≥ δ with δ > 0. Hence the RHS of (3.2) is analytic in σ > 0
except at the simple pole at s = 1. So (3.2) remains valid in σ > 0 as
well.

Lemma 3.4. For σ > 0, N ∈ N, and t 6= 0 we have

|ζ(s)| ≤
N∑
n=1

1

nσ
− N1−σ

|t|
+
|s|
σ
N−σ. (3.3)

Proof. For σ > 0,∣∣∣∣s ∫ ∞
N

{x}
xs+1

dx

∣∣∣∣ ≤ |s|∫ ∞
N

1

xσ+1
dx =

|s|
σ
N−σ.

Also, ∣∣∣∣N1−s

1− s

∣∣∣∣ ≤ N1−σ

|t|
and ∣∣∣∣∣

N∑
n=1

1

ns

∣∣∣∣∣ ≤
N∑
n=1

∣∣∣∣ 1

ns

∣∣∣∣ =
N∑
n=1

1

nσ
.

Hence (3.3) follows from (3.2) taking the absolute values of each term
and using the bounds given above.
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Lemma 3.5. For N ∈ N, 1/2 < σ0 < 1, σ ≥ σ0 > 0, and t 6= 0 we have

|ζ(s)| ≤ N1−σ0

1− σ0
+
N1−σ0

|t|
+

(
1 +
|t|
σ0

)
N−σ0 . (3.4)

Proof. We begin with (3.3) and show the three terms on RHS are bounded
with the corresponding terms in (3.4).

N∑
n=1

1

nσ
≤

N∑
n=1

1

nσ0
≤ 1 +

∫ N

1

1

xσ0
dx = 1 +

N1−σ0 − 1

1− σ0
≤ N1−σ0

1− σ0
,

since σ ≥ σ0 and σ0 < 1. Moreover N1−σ ≤ N1−σ0 and

|s|N−σ

σ
≤ (1 + |t|)N−σ

σ
≤
(

1 +
|t|
σ0

)
N−σ0 .

Proof of Theorem 3.2.

(i) We apply Lemma 3.5 with N = [|t|]. Since 0 < σ0 < 1 we have N1−σ ≤
|t|1−σ0 . So Lemma 3.5 gives

|ζ(s)| ≤ |t|
1−σ0

1− σ0

(
1 +

1− σ0

|t|
+

1− σ0

[|t|]
+

(1− σ0)|t|
σ0[|t|]

)
.

For |t| ≥ 2 and 1/2 ≤ σ0 < 1,

1− σ0

|t|
≤ 1− σ0

[|t|]
≤ 1

4
and

(1− σ0)|t|
σ0[|t|]

≤ 2,

so that (
1 +

1− σ0

|t|
+

1− σ0

[|t|]
+

(1− σ0)|t|
σ0[|t|]

)
≤ 1 +

1

4
+

1

4
+ 2 < 4,

and thus we obtain (i).

(ii) Set σ0 = 1 − 1
4 log |t| . Since |t| ≥ 2, we obtain 1/2 ≤ σ0 < 1 and we

can apply part (i) to have

|ζ(s)| ≤ 4
|t|1−σ0
1− σ0

=
4e1/4

1/(4 log |t|)
= 16e1/4 log |t|,

which is the desired result with A1 = 16e1/4.

(iii) For σ ≥ 2 the Dirichlet series of ζ ′(s) gives
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|ζ ′(s)| =

∣∣∣∣∣
∞∑
n=1

log n

ns

∣∣∣∣∣ ≤
∞∑
n=1

log n

n2
.

So the asserted bound holds for σ ≥ 2. ζ(s) is analytic in the region
{s : σ > 0, s 6= 1}. Hence |ζ ′(s)| is uniformly bounded in any compact
rectangle contained in this region. Thus the bound also holds in the range
2 ≤ |t| ≤ 3, σ ≥ 1/2.

It remains to show that the bound holds when |t| ≥ 3. Let s be given in
the range σ ≥ 1− δ where δ = 1

12 log |t| . Since |t| > e we have

σ > 1− 1

12
and 0 < δ <

1

12
.

So the disk {s′ ∈ C : |s−s′| ≤ δ} is contained in the region of analyticity
of ζ(s). By Cauchy’s theorem

|ζ ′(s)| =

∣∣∣∣∣ 1

2πi

∮
|s′−s|=δ

ζ(s′)

(s′ − s)2
ds′

∣∣∣∣∣ ≤ 1

δ
max
|s′−s|=δ

|ζ(s′)|.

To estimate further we show that for |s′ − s| ≤ δ, ζ(s′) is bounded by a
constant multiple of log |t|.

Let s′ = σ′ + it′ with |s′ − s| ≤ δ. By hypothesis we have |t| ≥ 3 and
σ ≥ 1− δ and these imply

|t′| ≥ |t| − δ ≥ |t| − 1

12
> 2,

|t′| ≤ |t|+ δ ≤ |t|+ 1

12
≤ 13

12
|t| ≤ |t|3/2.

Thus,

σ′ ≥ σ − δ ≥ 1− 1

6 log |t|
≥ 1− 1

6 log |t′|2/3
= 1− 1

4 log |t′|

which implies that s′ satisfies the conditions of (ii) so that we obtain

|ζ(s′)| ≤ A1 log |t′|.

Hence

|ζ ′(s)| ≤ 1

δ
max
|s′−s|=δ

|ζ(s′)| ≤ 12 log |t|A1 log |t′| ≤ 12.
3

2
A1 log2 |t| = A2 log2 |t|.

�
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Theorem 3.6 (Zero-free region for ζ(s) and upper bound for 1/ζ(s)). (i)
ζ(s) has no zeros in the closed half-plane σ ≥ 1.

(ii) There exist constants c1 > 0 and A3 > 0 such that ζ(s) has no zeros
in the region σ > 1− c1, t ≤ 2. In this region∣∣∣∣ 1

ζ(s)

∣∣∣∣ ≤ A3.

(iii) There exist constants c2 > 0 and A4 > 0 such that ζ(s) has no zeros
in the region σ > 1− c2

(log |t|)9 , t ≤ 2. In this region∣∣∣∣ 1

ζ(s)

∣∣∣∣ ≤ A4 log |t|)7.

The proof of this theorem is based on the so-called 3-4-1 inequality

2(1 + cos θ)2 = 3 + 4 cos θ + cos 2θ ≥ 0

applied to the ζ(s) function. We state this as the following lemma:

Lemma 3.7 ( The 3-4-1 inequality for ζ(s)). We have for σ ≥ 1

|ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| ≥ 1.

Proof. For σ > 1,

log |ζ(s)| = log

∣∣∣∣∣∏
p

(
1− 1

ps

)−1
∣∣∣∣∣ = −<

∑
p

log

(
1− 1

ps

)
= <

∑
p

∑
m≥1

1

mpms

=
∑
p

∑
m≥1

cos(t log pm)

mpmσ
.

We apply this to σ, σ + it, σ + 2it to obtain

log |ζ(σ)| =
∑
p

∑
m≥1

1

mpmσ
,

log |ζ(σ + it)| =
∑
p

∑
m≥1

cos(t log pm)

mpmσ
,

log |ζ(σ + 2it)| =
∑
p

∑
m≥1

cos(2t log pm)

mpmσ
,

30



and thus

log |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| = 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)|

=
∑
p

∑
m≥1

3 + 4 cos(t log pm) + cos(2t log pm)

mpmσ

≥ 0.

The proof is finished once we take exponential of the above inequality.

Proof of theorem 3.6.

(i) By the Euler product formula (1.17), ζ(s) has no zeros in the half-plane
σ > 1. So it remains to show that ζ(s) has no zeros on the line σ = 1.

For a contradiction assume ζ(1 + it0) = 0 for some t0 ∈ R. ζ(s) is ana-
lytic for σ > 0 with a simple pole at σ = 1. So clearly t0 6= 0.

We consider the behaviors of the functions ζ(σ), ζ(σ+it0) and ζ(σ+2it0)
as σ → 1+.

� ζ(σ)(σ − 1) is bounded as σ → 1+ since ζ(s) has a simple pole at
σ = 1.

� The assumption ζ(1 + it0) = 0 and the analyticity of ζ(s) implies

ζ(σ + it0)

σ − 1
=
ζ(σ + it0)− ζ(1 + it0)

(σ + it0)− (1 + it0)

stays bounded as σ → 1+.

� the analyticity of ζ(s) at 1+2−t0 guarantees ζ(σ+2it0) stays bounded
as σ → 1+.

Hence the expression

|ζ(σ)3ζ(σ+ it0)4ζ(σ+2it0)| = (σ−1)|ζ(σ)(σ−1)|3|ζ(σ+2it0)|
∣∣∣∣ζ(σ + it0)

σ − 1

∣∣∣∣4
is of order O(σ − 1) as σ → 1+. But by Lemma 3.7, it is bounded by 1,
hence we get a contradiction.

(ii) In the half-plane σ ≥ 2 the bound on 1/ζ(s) holds trivially. In fact

|ζ(s)| =

∣∣∣∣∣∣1 +
∑
n≥2

1

ns

∣∣∣∣∣∣ ≥ 1−

∣∣∣∣∣∣
∑
n≥2

1

ns

∣∣∣∣∣∣ ≥
∑
n≥2

1

n2
= 2− π2

6
> 0
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so that ∣∣∣∣ 1

ζ(s)

∣∣∣∣ < 6

12− π2
(σ ≥ 2). (3.5)

Therefore it remains to show that 1/ζ(s) is uniformly bounded in the
compact rectangle 1 − c1 ≤ σ ≤ 2, |t| ≤ 2. By (i), ζ(s) has no zeros on
the half-plane σ ≥ 1, then 1/ζ(s) is analytic for σ ≥ 1 and bounded in any
compact region contained in this region. In particular is bounded in the
rectangle 1 ≤ σ ≤ 2, |t| ≤ 2. It follows by compactness that 1/ζ(s) remains
bounded in any sufficiently small neighborhood of this rectangle. i.e. in
1− c1 ≤ σ ≤ 2, |t| ≤ 2 for some constant c1.

(iii) For σ ≥ 2 the bound holds by (3.5). So we may assume σ ≤ 2,
|t| ≥ 2. We fix a constant A (to be determined later) and consider the range

1 +
A

(log |t|)9
≤ σ ≤ 2. (3.6)

By Lemma 3.7 we have σ ≥ 1

|ζ(σ + it)| ≥ 1

|ζ(σ)|3/4
1

|ζ(σ + 2it)|1/4
. (3.7)

Since ζ(s) has a simple pole at s = 1, there exists an absolute constant
c3 such that

ζ(σ) ≤ c3

σ − 1
. (1 ≤ σ ≤ 2)

Moreover by theorem 3.2 (ii) we have

|ζ(σ + 2it)| ≤ A1 log |2t| ≤ 2 log |t|. (|t| ≥ 2)

Using these bounds in (3.7) and the bounds on σ in the region (3.6) we
obtain

|ζ(σ + it)| ≥ c3
−1/4(σ − 1)3/4(2A1)−1/4(log |t|)−1/4

≥ c4(A)3/4(log |t|)−7,

where c4 = c3
−1/4(2A1)−1/4 is an absolute constant.

We have proved the asserted bound in the range (3.6) for a constant A.
To complete the proof we show that if A is chosen sufficiently small, then
the bound of the above type holds also in the range

1− A

(log |t|)9
≤ σ ≤ 1 +

A

(log |t|)9
.
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Write

σ1 = 1− A

(log |t|)9
and σ2 = 1 +

A

(log |t|)9
.

For σ1 ≤ σ ≤ σ2 we have

|ζ(σ + it)| =
∣∣∣∣ζ(σ2 + it)−

∫ σ2

σ
ζ ′(u+ it)du

∣∣∣∣
≥ |ζ(σ2 + it)− (σ2 − σ1) max

σ1≤u≤σ2
|ζ ′(u+ it)||.

For |ζ(σ2 + it)|, we have the bound

|ζ(σ2 + it)| ≥ c4(A)3/4(log |t|)−7

since σ2 + it falls into the range (3.6). Moreover by Theorem 3.2 (iii) we
have

|ζ ′(s)| ≤ A2(log |t|)2. (σ ≥ 1− 1
12 log |t|)

If the constant A is chosen small enough, then the range σ ≥ 1− A
(log |t|)9

is contained in the range σ ≥ 1− 1
12 log |t| and the bound for ζ ′(s) is valid in

this range. Hence we obtain

|ζ(σ + it)| ≥ c4(A)3/4(log |t|)−7 − 2A(log |t|)−9A2(log |t|)2

= (A)3/4(c4 − 2(A)1/4A2)(log |t|)−7.

Now choosing A so that c4 − 2(A)1/4A2 > 0, we obtain

|ζ(σ + it)| ≥ c5(log |t|)−7.

Setting c2 = A and A4 = 1/c5 provides us the asserted estimate.

�

Theorem 3.8 (Upper bounds for ζ ′(s)/ζ(s)). There exist absolute positive
constants 0 < c6 < 1/2 and A5 such that for all s satisfying

σ ≥ 1− c6

(log |t|)9
, |t| ≥ 2 (3.8)

we have ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ A5(log |t|)9;

and for all s satisfying

σ ≥ 1− c6, |t| ≤ 2, s 6= 1
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we have ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ A5 max

(
1,

1

|σ − 1|

)
.

Proof. Combining the bounds for 1/ζ(s) and ζ ′(s) found in Theorem 3.2
and Theorem 3.6 and choosing the constant c6 sufficiently small we obtain

the asserted bound for ζ′(s)
ζ(s) in the range (3.8).

Since 1/ζ(s) is analytic in σ ≥ 1 and ζ(s) is analytic for σ > 0 except at

s = 1, the logarithmic derivative ζ′(s)
ζ(s) is analytic in σ ≥ 1 except for a simple

pole s = 1. Therefore ζ′(s)
ζ(s) (s − 1) is analytic for σ ≥ 1 . By compactness,

the analyticity extends to a region σ ≥ 1 − c6, |t| ≤ 2 provided c6 is small
enough. So this function is bounded in the compact region and∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ = O

(
1

|s− 1|

)
= O

(
1

|σ − 1|

)
in this region.

Moreover, for σ ≥ 2∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ =

∣∣∣∣∣−
∞∑
n=1

Λ(n)

ns

∣∣∣∣∣ ≤
∞∑
n=1

Λ(n)

n2
<∞,

so that we obtain the second estimate.

Now, as we establish the necessary background, we may prove the Prime
Number Theorem given by Theorem 3.1.

Proof of theorem 3.1.
We define the function ψ1 by

ψ1(x) =

∫ x

0
ψ(y)dy =

∑
n≤x

Λ(n)(x− n).

We apply Perron’s formula (1.20) of Theorem 1.6 with f(n) = Λ(n)

where the corresponding Dirichlet series is F (s) = ζ′(s)
ζ(s) which converges

absolutely in σ > 1. Hence Perron’s formula gives

ψ1(x) =
1

2πi

∫ a+i∞

a−i∞
F (s)

xs+1

(s)(s+ 1)
ds, (3.9)

for any a > 1 and x ≥ 2.
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We fix x ≥ e and let e ≤ T ≤ x be a parameter which will be determined
later as a function of x. Set

a = 1 +
1

log x
and b = 1− c6

(log T )9
,

where c6 is the constant in Theorem 3.8. Note that since c6 < 1/2 and
e ≤ T ≤ x we have

1 < a ≤ 2, 1/2 < 1− c6 < b < 1.

Now we replace the path of integration in (3.9) which is a vertical line
by L =

⋃5
i=1 Li where

L1 = (a− i∞, a− iT ],

L2 = [a− iT, b− iT ],

L3 = [b− iT, b+ iT ],

L4 = [b− iT, a+ iT ],

L5 = [a+ iT, a+ i∞).

So we have

ψ1(x) = M +
1

2πi

5∑
j=1

Ij ,

where M is the contribution of the residues in the region enclosed by L2,
L3, L4 and [a− iT, a+ iT ] and Ij denotes the integral over the path Lj .

First we will calculate the main term M . The region is the rectangle
with vertices

a∓ iT = 1 +
1

log x
∓ iT, b∓ iT = 1− c6

(log T )9
∓ iT,

which falls within the zero-free region of ζ(s) given by Theorem 3.6. Thus

the integrand − ζ′(s)
ζ(s)

xs+1

(s)(s+1) has only one singularity generated by the pole

of − ζ′(s)
ζ(s) at s = 1 with residue 1. So residue of the integrand function is

Res

(
−ζ
′(s)

ζ(s)

xs+1

(s)(s+ 1)
, 1

)
=

1

2
x2.

Hence

M =
1

2
x2. (3.10)
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This M will be the main term of ψ1(x). It remains to estimate the con-
tribution of the integrals Ij .

Estimates of I1 and I5.
The integrals I1 and I5 are along the vertical segments (a− i∞, a− iT ]

and [a+ iT, a+ i∞). On these segments we have

σ = a = 1 +
1

log x
, |t| ≥ T.

Therefore ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ ∞∑
n=1

Λ(n)

na
= −ζ

′(a)

ζ(a)
� 1

a− 1
= log x

and ∣∣∣∣ xs+1

(s)(s+ 1)

∣∣∣∣ ≤ xa+1

t2
=
ex2

t2
.

Hence we obtain

I1, I5 �
∫ ∞
T

log x
x2

t2
dt� x2 log x

T
. (3.11)

Estimates of I2 and I4.
These integrals are along the horizontal segments [a − iT, b − iT ] and

[b− iT, a+ iT ]. On these segments we have

1− c6

(log T )9
= b ≤ σ ≤ a = 1 +

1

log x
, t = T.

Hence by Theorem 3.8 we have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣� (log T )9,

and ∣∣∣∣ xs+1

(s)(s+ 1)

∣∣∣∣ ≤ xa+1

|s||s+ 1|
� x2

T 2
.

Thus we obtain

I2, I4 �
∫ b

a
(log T )9 x

2

T 2
dσ � x2(log T )9

T 2
. (3.12)

Estimate of I3.
This integral is along the vertical segment [b − iT, b + iT ] and on this

segment we have

σ = b = 1− c6

(log T )9
, |t| ≥ T.
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Again by Theorem 3.8 we have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣� max

(
(log T )9,

1

1− b

)
� (log T )9.

Also, since ∣∣∣∣ xs+1

(s)(s+ 1)

∣∣∣∣ =
xb+1

|s||s+ 1|
� xb+1 min

(
1,

1

t2

)
,

we obtain

I3 �
∫ T

−T
xb+1(log T )9 min

(
1,

1

t2

)
dt� xb+1(log T )9. (3.13)

Now we have estimated all of the integrals and we substitute the esti-
mates (3.10)- (3.13) into (3.9) to get

ψ1(x) =
1

2
x2 +R(x, T ),

where

R(x, T )� x2

(
log x

T
+

(log T )9

T 2
+ xb−1(log T )9

)
� x2

(
log x

T
+ (log T )9 exp

(
−c6

log x

(log T )9

))
Now we choose T as

T = exp((log x)1/10).

Since x ≥ e, this choice of T satisfies e ≤ T ≤ x. Substituting T in the
above estimate we obtain

R(x, T )�
5∑
j=1

|Ij | � x2
(

log x exp(−(log x)1/10) + (log x)9/10 exp(−c6(log x)1/10)
)

� x2 exp(−c7(log x)1/10),

with a suitable constant c7 > 0. Hence finally we have for x ≥ e

ψ1 =
1

2
x2 +O(x2 exp(−c7(log x)1/10)). (3.14)

Transition to ψ(x).
Now we will pass to the estimate for ψ(x) to prove the PNT.
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Recall that these two functions are related by

ψ1(x) =

∫ x

0
ψ(y)dy.

We fix x ≥ 6 and a number 0 < δ < 1/2 to be chosen later as a function
of x. Note that we have

ψ1(x)− ψ1(x(1− δ)) =

∫ x

x(1−δ)
ψ(y)dy ≤ δxψ(x),

since ψ(x) is nondecreasing. Now we apply the result (3.14) to ψ1(x) and
ψ1(x(1− δ)) to get

δψ(x) ≥ 1

2
x2 +O(x2A)− 1

2
x2(1− δ)2 +O(x2A′)

= δx2 +O(x2(δ2 +A+A′)), (3.15)

where

A = exp(−c7(log x)1/10) and A′ = exp(−c7(log x(1− δ))1/10).

Since x(1− δ) ≥ x/2 ≥
√
x we have

(log x(1− δ))1/10 ≥ (log
√
x)1/10 ≥ 1

2
(log x)1/10

and hence A′ ≤ A1/2 ≤ 1. Now (3.15) yields

ψ(x) ≥ x+O

(
x

(
δ +

√
A

δ

))
.

Now define δ by

δ = min(1/2, A1/4).

Putting δ in the above equation we obtain

ψ(x) ≥ x+O(xδ) = x+O(x exp(−c8(log x)1/10)),

with c8 = c7
4 .

For the reverse inequality we start from the inequality

ψ1(x(1 + δ))− ψ1(x) ≥ δxψ(x),
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and similarly get

ψ(x) ≤ x+O

(
x

(
δ +

A

δ
+
A′

δ

))
,

where

A = exp(−c7(log x)1/10), A′ = exp(−c7(log x(1 + δ))1/10).

From this we easily obtain (with the same choice of δ and noting that
A′ ≤ A) the reverse side. Hence we obtained the estimate :

ψ(x) = x+O(xδ) = x+O(x exp(−c8(log x)1/10))

in the range x ≥ 6. The estimate holds trivially for 2 ≤ x < 6. So we
have completed the proof of PNT in the form given in Theorem 3.1.

Transition to π(x).
Now we will derive

π(x) = li(x) +O(x exp(−c(log x)1/10)), (3.16)

from the equation (3.1) by partial summation.

Consider the function defined as

π1(x) =
∑
n≤x

Λ(n)

log n
.

We relate π1(x) to π(x) as follows:

π1(x) =
∑
pm≤x

log p

m log p
= π(x) +

1

2
π(x1/2) +

1

3
π(x1/3)

= π(x) +O(
√
x), (3.17)

since π(x) = O(x) by (1.5).

Now we apply partial summation and have
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π1(x) =
ψ(x)

log x
+

∫ x

2

ψ(t)

t log2 t
dt

=
x

log x
+O(x exp(−c8(log x)1/10 − log log x))

+

∫ x

2

dt

log2 t
+O

(∫ x

2

exp(−c8(log x)1/10

log2 t
dt

)
, (3.18)

where we used (3.1). We have, by integrating by parts,

li(x) =

∫ x

2

dt

log t
=

x

log x
− 2

log 2
+

∫ x

2

dt

log2 t
. (3.19)

Also,

∫ x

2

exp(−c8(log t)1/10)

log2 t
dt =

∫ √x
2

exp(−c8(log t)1/10)

log2 t
dt+

∫ x

√
x

exp(−c8(log t)1/10)

log2 t
dt.

The first integral on the right of the last equation is O(
√
x). For the

second one we have (log t)1/10 ≥ 1
2(log x)1/10 since t ≥

√
x and hence

exp(−c8(log t)1/10)

log2 t
� exp(−c8/2(log x)1/10)

log2 x
.

So we obtained

∫ x

2

exp(−c8(log t)1/10)

log2 t
dt = O(x exp(−c8/2(log x)1/10)). (3.20)

Therefore combining (3.17) - (3.20) we obtain (3.16) with c = c8/2.

3.2 Refined Analytic Techniques, de la Vallée Poussin Error
Term

In this part, we will show that the de la Vallée Poussin-type error term
x exp(−c(log x)α), which was given in the previous section with α = 1/10,
can be made better up to α = 1/2. We will not fully prove this result,
instead we will give references in some places and emphasize the main steps
of the proof.

The number α in the error term is closely related to the breadth of
the zero-free region of the function ζ(s). Actually it is determined by the
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exponent a of the function log t in the zero-free region

σ ≥ 1− c

(log t)a
, |t| ≥ 2. (3.21)

We have proved in Theorem 3.6 (iii) that a can be 9. But using the func-
tional equation of ζ(s) and complex function theory we are able to enlarge
the region (3.21) to the one with a = 1 so that we obtain the error term
with α = 1/2.

The functional equation of ζ(s).
Riemann made the greatest contribution to the study of distribution of

primes with his memoir in 1859. In his paper he showed that

� The function ζ(s) satisfies the functional equation

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s), (3.22)

where Γ(s) is the so-called Gamma function which is analytic in the
half plane σ > 0 with the integal representation Γ(s) =

∫∞
0 e−xxs−1dx.

� ζ(s) can be continued analytically over the whole plane and ζ(s) is
meromorphic with the simple pole at s = 1 with residue 1.

The second can be deduced from the functional equation regarding the
properties of the Γ(s) function.

To use the functional equation effectively we define the function

ξ(s) =
1

2
s(s− 1)π−

s
2 Γ
(s

2

)
ζ(s). (3.23)

The function ξ(s) is an entire function since it has no pole for σ ≥ 1
2 and

satisfies ξ(s− 1
2) = ξ(1

2 − s). Moreover ξ(s) has the product representation

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ (3.24)

where A and B are constants and ρ runs through the zeros of ζ(s) in the
critical strip 0 < σ < 1. This was proved by Hadamard and lead to im-
provements in enlarging the zero-free region of ζ(s). Logaritmic derivative
of the equations (3.23) and (3.24) gives

ζ ′(s)

ζ(s)
= B − 1

s− 1
+

1

2
log π − 1

2

Γ′( s2 + 1)

Γ( s2 + 1)
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
. (3.25)
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A zero-free region for ζ(s).
To establish the zero-free region

σ ≥ 1− c

log t
, |t| ≥ 2, (3.26)

we start with employing the 3-4-1 inequality for < ζ
′(s)
ζ(s) and get

3

[
−ζ
′(σ)

ζ(σ)

]
+ 4

[
−<ζ

′(σ + it)

ζ(σ + it)

]
+

[
−<ζ

′(σ + 2it)

ζ(σ + 2it)

]
≥ 0. (3.27)

This constitute the main inequality leading to a bound for the abscissa
of a zero of ζ(s). We will give bounds for each of the three terms on the left.

The bound for − ζ′(σ)
ζ(σ) in 1 < σ ≤ 2 comes from the simple pole of ζ(s)

at s = 1. For a positive constant A1 we have

−ζ
′(σ)

ζ(σ)
<

1

σ − 1
+A1.

The bounds for the remaining two terms comes from taking the real part
of the equation (3.25). The Γ term there is less than A2 log t if t ≥ 2 and
1 < σ ≤ 2. Hence in this region

−<ζ
′(s)

ζ(s)
< A2 log t−

∑
ρ

<
(

1

s− ρ
+

1

ρ

)
. (3.28)

Since <
(

1
s−ρ + 1

ρ

)
≥ 0 for any ρ, for s = σ+ 2it we write (3.28) ommit-

ting the whole sum and obtain

−<ζ
′(σ + 2it)

ζ(σ + 2it)
< A2 log t.

For s = σ + it, we choose t to coincide with the ordinate γ of a zero
ρ = β + iγ with γ ≥ 2. We take just one term 1

σ−β (the corresponding term
to our choise of ρ) and obtain from (3.28)

−<ζ
′(σ + it)

ζ(σ + it)
< A2 log t− 1

σ − β
.

Now we substitute these bouns in the main inequality (3.27) and derive
an inequality for the abscissa βof a zero

4

σ − β
<

3

σ − 1
+A3 log t

where A3 is a positive constant.
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Taking σ = 1 + δ
log t with δ > 0 and solving for β we get

β < 1 +
δ

log t
− 4δ

(3 +A3δ) log t
= 1− c

log t
(3.29)

choosing δ suitable in relation to A to obtain a constant c > 0. Hence the
zero-free region (3.26) is established.

The explicit formula for ψ(x).
In the first analytic proof we gave, we worked with the function ψ1(x)

and relate the result to ψ(x). Here, we will work with ψ0(x) which is ψ(x)
when x is not a prime power and ψ(x)− Λ(x)/2 when it is.

As in the first proof Perron’s formula gives

ψ0(x) =
1

2πi

∫ a+i∞

a−i∞
−ζ
′(s)

ζ(s)

xs

s
ds. (a > 1)

But this time we start with an integral from a− iT to a+ iT and regard
this as one side of a rectangle extending to the left. We choose T so that the
horizontal sides of the rectangle shall avoid the zeros of ζ(s) in the critical
stript. We replace the vertical line of integration a− iT to a+ iT by other
three sides of the rectangle with vertices

a− iT, a+ iT, −U − iT, −U + iT. (U is an odd integer)

The sum of the residues of the integrand at its poles is

x−
∑
|γ|<T

xρ

ρ
− ζ ′(0)

ζ(0)
−

∑
0<2m<U

x−2m

−2m
.

The pole at s = 1 contributes to x; the pole at s = 0 contributes − ζ′(0)
ζ(0) ;

each trivial zero −2m contributes −x−2m

−2m and each non-trivial zero ρ con-

tributes −xρ

ρ .
After the estimates of the integral on horizontal and vertical lines has

been done, we let U → ∞ and have the explicit formula (also called the
Riemann- Von Mangoldt formula)

ψ0(x) = x−
∑
|γ|<T

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2). (3.30)
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The Prime Number Theorem.

We shall now deduce PNT from (3.30). The main estimate to be done
is the sum

∑
|γ|<T

xρ

ρ . We have by (3.39)

|xρ| = xβ < exp

(
−c log x

log T

)
for large T and |γ| < T .

For γ > 0, |ρ| ≥ γ and it remains to estimate
∑

0<γ<T
1
γ .

Let N(t) denote the number of zeros in the critical strip with ordinates
less than t. Then∑

0<γ<T

1

γ
=

∫ T

0

dN(t)

t
=
N(T )

T
+

∫ T

0

dN(t)

t2
.

N(t)� t log t for large t and hence∑
0<γ<T

1

γ
� log2 T

so that ∑
|γ|<T

∣∣∣∣xρρ
∣∣∣∣� x log2 T exp

(
−c log x

log T

)
.

All we have to do is now to choose T as a function of x as

log2 T = log x.

Using this choice of T in the explicit formula, we have for some c > 0

|ψ(x)− x| � x exp(−c(log x)1/2).

Transition to π(x) is done in the same way as in the previous part and
gives

π(x) = li(x) +O(x exp(−c(log x)1/2)).
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The Error Term in the PNT
After the PNT had been proved, the main problem has become obtaining
the PNT with an error term as good as possible. Riemann, in his paper
in 1859 has conjectured the Riemann Hypothesis which states that all non-
trivial zeros of the Riemann zeta-function have real part 1/2. As the error
term is related to the zero-free region of ζ(s), the Riemann hypothesis is
equivalent to the PNT of the form

ψ(x) = x+Oε(x
1/2+ε),

for any ε > 0. Moreover, this is the best possible error term. Unfortunately
this problem is still wide open we are very far from getting what is conjec-
tured. The last progress about the error term has been made by Vinogradov
and Korobov in 1958. They have enlarged the zero-free region to 1− ca

(log t)a

for any a > 2/3 which resulted in the error term

ψ(x) = x+O(x exp(−c(log x)3/5−ε).
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4 THE PNT ON ARITHMETIC PROGRESSIONS

The study of primes in arithmetic progressions startes with Dirichlet’s the-
orem. In his theorem, Dirichlet proved the infinitude of primes belonging to
a given arithmetic progression, say integers which are ≡ a (mod q) where
necessarily (a, q) = 1. His was firstly tended to mimick Euclid’s proof on the
infinitude of primes but the method failed in some cases. Then he attempted
to prove his theorem using Euler’s mehtod, showing the divergence of the se-
ries

∑
p≡a(mod q)

1
p . The tools that Dirichlet introduced and which are now

named after him, are the Dirichlet characters and Dirichlet L-functions.
Certain properties such as (1.23) of Dirichlet characters are useful when we
want to extract terms belonging to a given arithmetic progression. Hence
Dirichlet characters and Dirichlet L-functions constitute the key tools for
the study of primes in arithmetic progressions.

If we denote the number of primes ≡ a (mod q) where (a, q) = 1 by
π(x; q, a), the PNT for arithmetic progressions gives

π(x; q, a) =
li(x)

φ(q)
− χ1(a)li(xβ1)

φ(q)β1
+O(x exp(−c(log x)1/2)).

The factor 1
φ(q) is not surprising, if we assume that the primes are dis-

tributed approximately equally among the residue classes of q. The proof is
done following the same procedures in the proof of PNT. But we work with
L(s, χ) instead of ζ(s). Moreover, the PNT was proved in the form (3.1)
which is an estimate of the function ψ(x). Hence as an analogue of ψ(x),
we define

ψ(x; q, a) =
∑
n≤x

n≡a(mod q)

Λ(n),

and give an equivalent form of the PNT for arithmetic progressions.

Theorem 4.1 (The Prime Number Theroem For Arithmetic Progressions).
There exists an absolute constant c > 0 such that if x ≥ 2 and (a, q) = 1,
then

ψ(x; q, a) =
x

φ(q)
− χ̄1(a)xβ1

φ(q)β1
+O(x exp(−c(log x)1/2)). (4.1)

where χ1 denotes the single character modulo q,if it exists, having the ex-

ceptional zero β1; if such χ1 with β1 does not exist then the term − χ̄1(a)xβ1

φ(q)β1
should be omitted.

We will introduce some lemmas and theorems before proving the PNT for
arithmetic progressions. All the work done for Riemann zeta function ζ(s)
in the previous section has analogues for the Dirichlet L-function L(s, χ).
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Now we will give these analogues starting from the functional equation.

4.1 The Functional Equation of L(s, χ)

Theorem 4.2 (Functional Equation of L(s, χ)). Let χ be a primitve char-
acter modulo q with q > 1.

If χ(−1) = 1, then L(s, χ) satisfies

q
s
2

τ(χ)
π−

s
2 q

s
2 Γ
(s

2

)
L(s, χ) = π−

1−s
2 q

1−s
2 Γ

(
1− s

2

)
L(1− s, χ̄). (4.2)

If χ(−1) = 1, then L(s, χ) satisfies

iq
s
2

τ(χ)
π−

s+1
2 q

s+1
2 Γ

(
s+ 1

2

)
L(s, χ) = π−

2−s
2 q

2−s
2 Γ

(
2− s

2

)
L(1− s, χ̄).

(4.3)
Here Γ(s) is the Gamma function and τ(χ) is the Gaussian sum.

Proof. First assume χ(−1) = 1. Beginning with definition of the Γ(s)

Γ
(s

2

)
=

∫ ∞
0

e−tt
s
2
−1dt . (σ > 0)

Put t = n2πx
q ,

Γ
(s

2

)
=

∫ ∞
0

e
−n

2πx
q

(
n2πx

q

) s
2
−1

nπ

q
dx = ns

(
π

q

) s
2
∫ ∞

0
e
−n

2πx
q x

s
2
−1dx.

Rearrengement gives(
π

q

)− s
2

Γ
(s

2

) 1

ns
=

∫ ∞
0

e
−n

2πx
q x

s
2
−1dx.

Multiplying the above equality by χ(n) and summing over n we get for σ > 1(
π

q

)− s
2

Γ
(s

2

)
L(s, χ) =

∫ ∞
0

x
s
2
−1

( ∞∑
n=1

χ(n)e
−n

2πx
q

)
dx. (4.4)

Define the function

ψ(x, χ) =

∞∑
n=−∞

χ(n)e
−n

2πx
q

when χ(−1) = 1. Hence the right handside of the equation (4.4) becomes
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1

2

∫ ∞
0

x
s
2
−1ψ(x, χ)dx.

Now we will derive a functional equation that relates ψ(x, χ) to ψ(x−1, χ̄).
Consider

τ(χ̄)ψ(x, χ) =
∞∑

n=−∞
χ(n)e

−n
2πx
q τ(χ̄).

Replacing χ(n) by 1
τ(χ̄)

∑q
m=1 χ̄(m)e2πimn/q by (1.28) in the above equality

we obtain

τ(χ̄)ψ(x, χ) =

q∑
m=1

¯χ(m)
∞∑

n=−∞
e
−n

2πx
q

+ 2πimn
q . (4.5)

Here we will use the identity (8)in [1], §8

∞∑
n=−∞

e
−(n+α)2 π

x
+ 2πimn

q = x1/2
∞∑

n=−∞
e−n

2πx+2πinα. (4.6)

where α ∈ R and x > 0. Employing the equality (4.6) with x replaced by
x/q and α = m/q, (4.5) becomes

τ(χ̄)ψ(x, χ) =

q∑
m=1

χ̄(m)
( q
x

)1/2
∞∑

n=−∞
e
−(n+m

q
)2 πx

q (write l = nq +m)

=
( q
x

)1/2
∞∑

n=−∞
χ̄(l)e

− l
2π
xq

=
( q
x

)1/2
ψ(x−1, χ̄)

Now we turn back to (4.4) and split the integral into two parts as(
π

q

)− s
2

Γ
(s

2

)
L(s, χ) =

1

2

∫ ∞
1

x
s
2
−1ψ(x, χ)dx+

1

2

∫ 1

0
y
s
2
−1ψ(y, χ)dy

(take y = 1
x)

=
1

2

∫ ∞
1

x
s
2
−1ψ(x, χ)dx+

1

2

∫ ∞
1

x−
s
2
−1ψ(1/x, χ)dx

=
1

2

q1/2

τ(χ̄)

∫ ∞
1

x−
s
2
− 1

2ψ(x, χ̄)dx+
1

2

∫ ∞
1

x−
s
2
−1ψ(1/x, χ)dx.

(4.7)
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Replacing s by 1− s and χ by χ̄ in (4.7) we get(
π

q

)− 1−s
2

Γ

(
1− s

2

)
L(1− s, χ̄) =

1

2

q
1
2

τ(χ)

∫ ∞
1

x
s
2
−1ψ(x, χ)dx

+
1

2

∫ ∞
1

x
−s−1

2 ψ(x, χ̄)dx.

=
q

1
2

τ(χ)

1

2

∫ ∞
1

x
s
2
−1ψ(x, χ)dx

+
q

1
2

τ(χ)

1

2

q
1
2

τ(χ̄)

∫ ∞
1

x
−s−1

2 ψ(x, χ̄)dx.

=
q

1
2

τ(χ)

(
π

q

)− s
2

Γ
(s

2

)
L(s, χ).

Above, in the first line we used the functional equation relating ψ(x, χ) to
ψ(x−1, χ̄), in the second line we used the fact that τ(χ)τ(χ̄) = q by (1.30)
and finally in the third line we used (4.7) so that we have obtained (4.2).

Now we pass to the case when χ(−1) = −1.
The previous argument fails since ψ(x, χ) vanishes in this case. Hence,

for this case, we define

ψ1(x, χ) =

∞∑
n=−∞

nχ(n)e
−n

2πx
q .

We begin with Γ
(
s+1

2

)
and similarly get( q

π

) s+1
2

Γ

(
s+ 1

2

)
L(s, χ) =

1

2

∫ ∞
0

x
s−1
2 ψ1(x, χ)dx. (4.8)

We appeal to the relation

∞∑
n=−∞

ne
−n

2πx
q

+ 2πimn
q = i

( q
x

)3/2
∞∑

n=−∞

(
n+

m

q

)
e
−π

(
n+m

q

)2
q
x , (4.9)

which can be deduced from (4.6) by differentiating with respect to α and
writing x/q in place of x, and m/q in place of α.
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As before we use the relation (1.28) and have

τ(χ̄)ψ1(x, χ) =

q∑
m=1

χ̄(m)
∞∑

n=−∞
ne
−n

2πx
q

+ 2πimn
q

= i
q1/2

x3/2

q∑
m=1

χ̄(m)

∞∑
n=−∞

(qn+m)e
−π(qn+m)2

xq

(write l = nq +m)

= i
q1/2

x3/2

∞∑
n=−∞

lχ̄(l)e
− l

2π
xq

= i
q1/2

x3/2
ψ1(x−1, χ̄) (4.10)

Hence we derived the functional equation for ψ1(x, χ).

As in the previous case we split the integral in (4.8) into two parts and
use (4.10) to have( q
π

) s+1
2

Γ

(
s+ 1

2

)
L(s, χ) =

1

2

∫ ∞
1

x
s−1
2 ψ1(x, χ)dx+

1

2

iq1/2

τ(χ̄)

∫ ∞
1

x
−s
2 ψ1(x, χ̄)dx.

(4.11)
Replacing s by 1− s and χ by χ̄ in (4.11) we obtain( q
π

) 2−s
2

Γ

(
2− s

2

)
L(1− s, χ̄) =

1

2

∫ ∞
1

x
−s
2 ψ1(x, χ̄)dx

+
1

2

iq
1
2

τ(χ)

∫ ∞
1

x
s−1
2 ψ1(x, χ̄)dx.

=
iq

1
2

τ(χ)

iq
1
2

τ(χ̄)

1

2

∫ ∞
1

x
−s
2 ψ1(x, χ̄)dx

+
iq

1
2

τ(χ)

1

2

∫ ∞
1

x
s−1
2 ψ1(x, χ̄)dx

=
iq

1
2

τ(χ)

( q
π

) s+1
2

Γ

(
s+ 1

2

)
L(s, χ).

Above we used (4.10) in the first line and in the second line we used
τ(χ)τ(χ̄) = −q by (1.30). Hence we have proved (4.3).

It is more convenient, for future reference, to put these two forms of
functional equations into a single one in the following lemma. We will do
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this by introducing a number a, defined as

a =

{
0 if χ(−1) = 1,
1 if χ(−1) = −1.

Lemma 4.3. Let χ be a primitive character modulo q. If

ξ(s, χ) =
( q
π

) s+a
2

Γ

(
s+ a

2

)
L(s, χ), (4.12)

then

ξ(1− s, χ̄) =
iaq1/2

τ(χ)
ξ(s, χ). (4.13)

From the functional equation, regarding the properties of the Γ function,
we can deduce the following for L(s, χ) when χ modulo q is primitive:

� The zeros of ξ(s, χ) (if any exist) are all situated in the critical strip
0 ≤ σ ≤ 1, with neither s = 0 or s = 1 being a zero. These zeros are
placed symmetrically about the line σ = 1

2 .

� The zeros of L(s, χ) are identical (in position and order of multiplic-
ity) with those of ξ(s, χ), except that L(s, χ) has a simple zero at
each point s = −a,−a− 2,−a− 4, . . . coming from the simple poles of
Γ
(
s+a

2

)
.

� In conclusion, L(s, χ) has no zeros in the half-plane σ > 1 (can be seen
from the Euler product formula as well), has possible critical zeros
which we usually denote by ρ = β + iγ in the critical strip 0 ≤ σ ≤ 1,
and simple zeros −a− 2m in the halfplane σ ≤ 0. The zeros of L(s, χ)
in σ < 0 and s = 0 in the case when a = 0 are called the trivial zeros
of L(s, χ).

We defined ξ(x, χ) in the previous theorem to use the functional equation
more effectively. That is because ξ(x, χ) is entire and the zeros of ξ(x, χ)
coincide exactly with the non-trivial (or critical) zeros of L(s, χ). Also,

|ξ(x, χ)| < eC|s| log |s| as |s| → ∞, for some constant C > 0,

but
|ξ(x, χ)| < eC

′|s|

does not hold for any constant C ′ > 0 when |s| is large. Hence ξ(x, χ) is of
order at most 1. (Remember that an entire function f(z) is said to be of
finite order if there is a number α > 0 such that f(z) = O(e|z|

α
) as |z| → ∞.)

Since ξ(x, χ) satisfies these, then by Lemma 10.11 of [2], the next theorem
follows.
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Theorem 4.4 (Product Formula for ξ(s, χ)). Let χ be a primitive character
modulo q. The function ξ(s, χ) necessarily has the form

ξ(s, χ) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ (4.14)

where A and B are constants and ρ runs over the critical zeros of L(s, χ).

The product formula is useful when we construct the zero-free region for

L(s, χ). We need estimates on L′(s,χ)
L(s,χ) and the product formula provides an

expression for L′(s,χ)
L(s,χ) via logarithmic differentiation as follows:

We first take the logaritmic derivative of (4.12) to obtain

ξ′(s, χ)

ξ(s, χ)
=

1

2
log
( q
π

)
+

Γ′
(
s+a

2

)
2Γ
(
s+a

2

) +
L′(s, χ)

L(s, χ)
. (4.15)

Then we take the logaritmic derivative of (4.13).

ξ′(s, χ)

ξ(s, χ)
= B(χ) +

∑
ρ

(
1

s− ρ
+

1

ρ

)
. (4.16)

Combining these two gives us the following theorem:

Theorem 4.5. If χ is a primitive character modulo q and B(χ) is the
number in Theorem 4.4, then we have

L′(s, χ)

L(s, χ)
= −1

2
log
( q
π

)
−

Γ′
(
s+a

2

)
2Γ
(
s+a

2

) +B(χ) +
∑
ρ

(
1

s− ρ
+

1

ρ

)
. (4.17)

In the next lemma we will try to give an expression for B(χ) in (4.17).

Lemma 4.6. Let χ be a primitive character modulo q and B(χ) be the
number in Theorem 4.4. Then

B(χ) = −1

2
log
( q
π

)
−−L

′(1, χ̄)

L(1, χ̄)
+

1

2
E + (1− a) log 2. (4.18)

Moreover,

<B(χ) =
1

2

∑
ρ

(
1

1− ρ
+

1

ρ

)
=
∑
ρ

<1

ρ
. (4.19)

Here, E is the Euler’s constant.

Proof. Taking s = 0 in (4.16) we get

B(χ) =
ξ′(0, χ)

ξ(0, χ)
= −ξ

′(1, χ̄)

ξ(1, χ̄)
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by the functional equation (4.13) of ξ(s, χ). Now taking s = 1 and χ = χ̄ in
(4.15) we obtain

B(χ) = −1

2
log
( q
π

)
− L′(1, χ̄)

L(1, χ̄)
−

Γ′
(

1+a
2

)
2Γ
(

1+a
2

) .
Since

Γ′( 1+a
2 )

2Γ( 1+a
2 )

= −1
2E− (1− a) log 2 (given by (C.14) in [2]) we have proved

(4.18).

From (4.18) it can be seen that B(χ̄) = ¯B(χ) since L(1, χ̄) = ¯L(1, χ).
Taking s = 1 in (4.16)

B(χ) +
∑
ρ

(
1

1− ρ
+

1

ρ

)
=
ξ′(1, χ)

ξ(1, χ)
= −ξ

′(0, χ̄)

ξ(0, χ̄)
= −B(χ̄) = − ¯B(χ),

so that

<B(χ) = −1

2

∑
ρ

(
1

1− ρ
+

1

ρ

)
= −1

2

∑
ρ

(
< 1

1− ρ
+ <1

ρ

)
.

Since for a critical zero ρ, we have 0 ≤ <ρ ≤ 1 and ρ /∈ {0, 1} we see that

< 1

1− ρ
≥ 0, <1

ρ
≥ 0

so that
∑

ρ<
1

1−ρ and
∑

ρ<
1
ρ both converge absolutely.(Since their sum con-

verges and they both consist of nonnegative terms. )
Also, the map ρ 7→ 1− ρ̄ merely permutes the zeros of L(s, χ) so we write

1 − ρ̄ in place of ρ in the sum and this would not change the sum because
of absolute convergence. Hence

<B(χ) = −1

2

∑
ρ

< 1

1− ρ
− 1

2

∑
ρ

<1

ρ

= −1

2

∑
ρ

<1

ρ̄
− 1

2

∑
ρ

<1

ρ

=
∑
ρ

<1

ρ
.

4.2 A Zero-free Region for L(s, χ)

The next lemma can be regarded as the key to establish the zero-free region.
As in the proof of zero-free region for ζ(s), it is based on the 3-4-1 inequality
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and is an analogue of the eqn (3.27) for L(s, χ). Throughout this section, ci
is a positive absolute constant for each i.

Lemma 4.7. For any Dirichlet character χ modulo q and σ > 1 we have

3

[
−L

′(σ, χ0)

L(σ, χ0)

]
+ 4

[
−<L

′(σ + it, χ)

L(σ + it, χ)

]
+

[
−<L

′(σ + 2it, χ2)

L(σ + 2it, χ2)

]
≥ 0. (4.20)

Proof. Recall the Euler product formula for L(s, χ) for σ > 1

L(s, χ) =
∏
p

(
1− χ(p)

ps

)
.

Logarithmic differentiation gives

−L
′(s, χ)

L(s, χ)
=
∑
p

∞∑
m=1

log pχ(pm)

pms

=
∞∑
n=1

Λ(n)χ(n)

ns

=
∞∑
n=1

Λ(n)χ(n)e−it logn

nσ
.

If we set <χ(n)e−it logn = cos θ, then <χ2(n)e−2it logn = cos 2θ and hence

−<L
′(σ + it, χ)

L(σ + it, χ)
=

∞∑
n=1

Λ(n) cos θ

nσ
,−<L

′(σ + 2it, χ2)

L(σ + 2it, χ2)
=

∞∑
n=1

Λ(n) cos 2θ

nσ
.

So the RHS of the equation (4.20) becomes

∞∑
n=1

Λ(n)

nσ
(3 + 4 cos θ + cos 2θ). (4.21)

Since 3 + 4 cos θ+ cos 2θ = 2(1 + cos θ)2 ≥ 0, each term in the sum (4.21) is
≥ 0 and we are done.

Lemma 4.8. Let χ be a primitive character modulo q and 1 ≤ σ ≤ 2. Then

−<L
′(s, χ)

L(s, χ)
< −

∑
ρ

< 1

s− ρ
+ c1L (4.22)

where L = log q + log(|t|+ 2) and c1 is a positive absolute constant.

Proof. Using (4.17) of Theorem 4.5 we have
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L′(s, χ)

L(s, χ)
= −1

2
log
( q
π

)
−<

Γ′
(
s+a

2

)
2Γ
(
s+a

2

) + <B(χ) + <
∑
ρ

(
1

s− ρ
+

1

ρ

)
.

By (4.19) we have <B(χ) =
∑

ρ<
1
ρ where the series is absolutely convergent

with nonnegative terms and hence any part of can be omitted. Noting that
the Γ term is O(log |t|+ 2) by Theorem C.1 in [2] for 1 ≤ σ ≤ 2, we obtain
(4.22).

We are ready to give the zero-free region for L(s, χ). We will consider
the cases when χ is complex and when χ is real seperately.

Theorem 4.9. For any complex character χ modulo q, L(s, χ) has no zero
in the region

σ ≥

{
1− c5

log q|t| if |t| ≥ 1,

1− c5
log q if |t| ≤ 1.

where c5 is a positive absolute constant.

Proof. We will WLOG assume t ≥ 0, for the zeros of L(s, χ) with t < 0 are
the complex conjugates of the zeros of L(s, χ̄) since L(s, χ) = L(s, χ̄).

First assume χ is primitive. We will use Lemma 4.7 and find bounds for
each of the three terms on LHS of equation (4.20). The bound on the first

term follows easily from the bound on − ζ′(σ)
ζ(σ) . (Since it has a simple pole at

s = 1).

−L
′(σ, χ0)

L(σ, χ0)
=

∞∑
n=1

χ0(n)Λ(n)

nσ
≤
∞∑
n=1

Λ(n)

nσ
= −ζ

′(σ)

ζ(σ)
<

1

σ − 1
+ c2 (4.23)

for 1 ≤ σ ≤ 2 and an absolute constant c2 > 0 . Now we choose t to be
the imaginary part of a nontrivial zero ρ = β + iγ of L(s, χ). Then by
(4.22) in Lemma 4.8, where in the sum we omit the terms other than the
one corresponding to the zero ρ we chose, we have for 1 ≤ σ ≤ 2

−<L
′(σ + it, χ)

L(σ + it, χ)
< − 1

σ − β
+ c1L . (4.24)

To estimate the last term we cannot always apply Lemma 4.8 since χ2 may
not be primitive. Instead, if χ1 is the primitive character modulo q1 inducing
χ2 (χ is complex so that χ2 is nonprincipal so is χ1.) then Lemma 4.8 is
valid for χ1 and omitting the whole sum in (4.22) we have

−<L
′(σ + 2it, χ1)

L(σ + 2it, χ1)
< c1(log q1 + log(t+ 2)). (4.25)

55



Recall the relation

L(s, χ2) = L(s, χ1)
∏
p|q

(
1− χ1(p)

ps

)
.

Lograithmic differentiation of the above equality gives

∣∣∣∣L′(s, χ2)

L(s, χ2)
− L′(s, χ1)

L(s, χ1)

∣∣∣∣ =

∣∣∣∣∣∣
∑
p|q

χ1(p)p−s log p

1− χ1(p)p−s

∣∣∣∣∣∣
≤
∑
p|q

p−σ log p

1− p−σ

≤
∑
p|q

log p

≤ log q.

Combining this with (4.25) we conclude

−<L
′(σ + 2it, χ2)

L(σ + 2it, χ2)
< c3L . (4.26)

The estimates (4.23), (4.24) and (4.26) when substituted in the main
inequality (4.20) gives

4

σ − β
<

3

σ − 1
+ c4L . (4.27)

Here we take σ = 1 + δ
L for some constant δ > 0. Then solving for β in

(4.27)

β < 1 +
δ

L
− 4δ

(3 + c4δ)L
,

and if δ is chosen suitably in relation to c4 we obtain

β < 1− c5

L

for a constant c5 > 0.

It remains to consider the case when χ is not primitive. Let χ1 modulo
q1 be the primitive character inducing χ. Since χ is complex so is χ1 and
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the above result applies to χ1. i.e., L(s, χ1) has no zero in the region

σ ≥

{
1− c5

log q|t| if |t| ≥ 1,

1− c5
log q if |t| ≤ 1.

But the relation L(s, χ) = L(s, χ1)
∏
p|q

(
1− χ1(p)

ps

)
implies that the only

zeros of L(s, χ) other than the zeros of L(s, χ1) are on σ = 0. So L(s, χ) has
no zero in the above region as well.

Theorem 4.10. For any real nonprincipal character χ modulo q, L(s, χ)
has at most one zero in the region

σ ≥

{
1− c14

log q|t| if |t| ≥ 1,

1− c14
log q if |t| ≤ 1

where c14 is a positive absolute constant.

Proof. Again we may assume t ≥ 0. the argument in the previous proof

works but needs modification for −<L
′(σ+2it,χ2)
L(σ+2it,χ2)

since this time χ2 is the

principal character.

So we have (4.23) and (4.24) as well, and for −<L
′(σ+2it,χ2)
L(σ+2it,χ2)

we use the

expression (3.25) for ζ′(s)
ζ(s)

ζ ′(s)

ζ(s)
= B − 1

s− 1
+

1

2
log π − 1

2

Γ′( s2 + 1)

Γ( s2 + 1)
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
.

The Γ term is O(log t) for t ≥ 2 and 1 ≤ σ ≤ 2 (Theorem C.1 of [2]) and in
this region

−<ζ
′(s)

ζ(s)
< < 1

s− 1
−<

∑
ρ

(
1

s− ρ
+

1

ρ

)
+ c6 log t.

The sum over the critical zeros can be neglected since it is positive. Hence
for t ≥ 0, 1 ≤ σ ≤ 2 we have

−<ζ
′(s)

ζ(s)
< < 1

s− 1
+ c6 log(t+ 2).
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The relation between ζ′(s)
ζ(s) and −<L

′(σ+2it,χ2)
L(σ+2it,χ2)

can be set up via the rela-

tion L(s, χ0) = ζ(s)
∏
p|q

(
1− 1

ps

)
. Again, logarithmic differentiation gives

∣∣∣∣L′(s, χ0)

L(s, χ0)
− ζ ′(s)

ζ(s)

∣∣∣∣ =

∣∣∣∣∣∣
∑
p|q

p−s log p

1− p−s

∣∣∣∣∣∣ ≤
∑
p|q

log p ≤ log q.

Hence

−<L
′(σ + 2it, χ2)

L(σ + 2it, χ2)
< < 1

σ − 1 + 2it
+ c7L . (4.28)

The estimates (4.23), (4.24) and (4.28) when substituted in the main
inequality (4.20) gives

4

σ − β
<

3

σ − 1
+ < 1

σ − 1 + 2it
+ c8L ,

where now t = γ ≥ 0, the imaginary part of some critical zero ρ = β + iγ of
L(s, χ). Here if we take σ = 1 + δ

L for some constant δ > 0, we obtain

4

σ − β
<

3L

σ
+

L δ

δ2 + 4t2L 2
+ c8L .

Subject to the condition t = γ ≥ δ
L where now L = log q + log(γ + 2),

we obtain
4

σ − β
<

3L

σ
+

L

5δ
+ c8L .

whence

β < 1− 4− 5c8δ

16 + 5c8δ

δ

L
.

If we choose δ sufficiently small in relation to c8 and note that γ ≥ δ
log q

implies γ ≥ δ
L , we have proved the following:

There exists a positive absolute constant c9 such that if 0 < δ < c9 and
χ is a real nonprincipal character modulo q, then any zero β + iγ of L(s, χ)
for which

|γ| ≥ δ

log q

satisfies

β < 1− δ

5L

where L = log q + log(γ + 2).
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We have omitted ( and also will omit) the requirement that χ should be
primitive since the case when χ is not primitive can be treated similarly as
in the previous theorem.

To complete the proof, it remains to consider the zeros with 0 ≤ γ <
δ

log q .We shall show that there is at most one zero with β > 1 − δ′

log q for a

suitable constant δ′ and if there is one, it must be real.

We consider L′(σ,χ)
L(σ,χ) . We have the bound for 1 < σ ≤ 2

−L
′(σ, χ)

L(σ, χ)
=
∞∑
n=1

χ(n)Λ(n)

nσ
≥ −

∞∑
n=1

Λ(n)

nσ
=
ζ ′(σ)

ζ(σ)
> − 1

σ − 1
− c10. (4.29)

On the other hand χ is real and the zeros of L(s, χ) occur in conjugate pairs.
Hence Lemma 4.8 gives

−L
′(σ, χ)

L(σ, χ)
< −<

∑
ρ

1

σ − ρ
+ c11 log q.

If we fix two complex conjugate zeros ρ and ρ̄ and omit the rest of the sum
above we get

−L
′(σ, χ)

L(σ, χ)
< − 2(σ − β)

(σ − β)2 + γ2
+ c11 log q. (4.30)

Combining (4.29) and (4.30) we have

2(σ − β)

(σ − β)2 + γ2
<

1

σ − 1
+ c12 log q, (4.31)

with an appropriate choice of c12 for σ > 1.(This hold trivially for a suitable
choice of c12 for σ > 2 too.)

Now we take σ = 1 + 2δ
log q . Then our assumption that |γ| < δ

log q implies

|γ| < δ

log q
=

1

2
(σ − 1) <

1

2
(σ − β).

This, with the inequality (4.31) implies that

− 1

σ − 1
< c12 log q − 8

5(σ − β)
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and thus solving for β above

β < 1− 6− 20c12δ

1 + 2c12δ

δ

log q
.

If δ is chosen sufficiently small in relation to c12 we can have

β < 1− δ

log q
.

This argument for two complex conjugate zeros also works when there are
two real zeros or a double real zero. Hence we have proved:

There exists a positive absolute constant c13 such that if 0 < δ < c13 and
χ is a real nonprincipal character modulo q, then the only possible zero of
L(s, χ) satisfying

|γ| < δ

log q
, β > 1− δ

log q

is a simple real zero.

Combining the results of two cases, we obtain the statement of the the-
orem.

For future reference we bring together the Theorem 4.9 and Theorem
4.10 and state the result as follows:

Theorem 4.11 (Zero-free Region for L(s, χ)). There exists a positive ab-
solute constant c15 with the following property. If χ is a complex character
modulo q, then L(s, χ) has no zero in the region

σ ≥

{
1− c15

log q|t| if |t| ≥ 1,

1− c15
log q if |t| ≤ 1.

(4.32)

If χ is a real nonprincipal character, the only possible zero of L(s, χ) in this
region is a real simple zero.

4.3 On the Zeros of L(s, χ)

Definition 6. Let c = c15 <
1
4 be the constant in Theorem 4.11 (we may

take it to be < 1
4 ). For a nonprincipal character χ modulo q we call a zero

ρ = β + iγ exceptional if it satisfies

|γ| < 1 and β > 1− c

log q
.
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By Theorem 4.11 if it exists, then it is real and unique, so we denote it by
β1.

Actually, if there exist values of q for which L(s, χ) has an exceptional
zero, then such values of q are very rare. This is a result due to Landau and
Page has deduced that if q belongs to a positive set of integers which are
bounded, then there is at most one real primitive χ modulo q for some q
such that L(s, χ) has a possible exceptional zero. We will prove these results
in the next lemma.

Lemma 4.12. (i) There exists an absolute constant c1 > 0 such that for
any two distinct real primitive characters to the moduli q1, q2 respectively;
if the corresponding L-functions have real zeros β1, β2, then

min(β1, β2) < 1− c1

log q1q2
.

(Note that the possibility q1 = q2 is not excluded.)

(ii) For a suitable constant c2, there is at most one real primitive char-
acter modulo q ≤ z, (z ≥)3 such that L(s, χ) has an exceptional zero with
β > 1− c2

log q .

(iii) There is an absolute constant c3 such that if χ is a real nonprincipal
character modulo q and L(s, χ) has an exceptional zero β1, then β1 satisfies

β1 ≤ 1− c3

q1/2 log2 q
.

Proof. See [2] §11.2.

Let us now give some results concerning the zeros of L(s, χ) and the
number of zeros of L(s, χ). We will use them when we prove the explicit
formula and the PNT for arithmetic progressions.

Lemma 4.13. If ρ = β + iγ runs through all nontrivial zeros of L(s, χ),
then for any real number t∑

ρ

1

1 + (t− γ)2
= O(L ),

where L = log q + log(|t|+ 2).

Proof. We start with the inequality (4.22) in lemma 4.8 for 1 < σ ≤ 2

−<L
′(s, χ)

L(s, χ)
< −

∑
ρ

< 1

s− ρ
+O(L ).
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Take s = 2 + it above. Since L′(2,χ)
L(2,χ) ≤

ζ′(2)
ζ(2) = O(1), we can conclude

∑
ρ

< 1

s− ρ
= O(L ).

Moreover,

< 1

s− ρ
=

2− β
(2− β)2 + (t− γ)2

≥ 1

4 + (t− γ)2
≥ 1

4

1

1 + (t− γ)2
.

So the result follows.

Lemma 4.14. (i) The number of zeros in t− 1 < γ < t+ 1 is O(L ) for all
t ∈ R.
(ii) For every t ∈ R, ∑

ρ
|t−γ|≥1

1

(t− γ)2
= O(L ).

(iii) For all s satisfying −1 ≤ σ ≤ 2, |t| ≥ 2 and L(s, χ) 6= 0, we have

L′(s, χ)

L(s, χ)
=

∑
ρ

|t−γ|<1

1

(s− ρ)
+O(L ).

Here L = log q + log(|t|+ 2).

Proof. (i) and (ii) are immediate from the lemma. For (iii), we apply theo-
rem 4.5 to s and 2 + it and subtract to have

L′(s, χ)

L(s, χ)
−L

′(2 + it, χ)

L(2 + it, χ)
= −

Γ′
(
s+a

2

)
2Γ
(
s+a

2

)+
Γ′
(

2+a+it
2

)
2Γ
(

2+a+it
2

)+
∑
ρ

(
1

s− ρ
+

1

2 + it− ρ

)
.

By Stirling’s formula (5) in [1], §10,

−
Γ′
(
s+a

2

)
2Γ
(
s+a

2

) +
Γ′
(

2+a+it
2

)
2Γ
(

2+a+it
2

) = O

(
1

|t|

)
.

Furthermore, L′(2+it,χ)
L(2+it,χ) = O(1). Hence

L′(s, χ)

L(s, χ)
= O(1) +

∑
ρ

(
1

s− ρ
+

1

2 + it− ρ

)
.

Now for the terms in the sum above with |γ − t| ≥ 1, we have∣∣∣∣ 1

s− ρ
+

1

2 + it− ρ

∣∣∣∣ =
2− σ

|(s− ρ)(2 + it− ρ)|
≤ 3

|γ − t|2
,
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and by (ii)

∑
ρ

|t−γ|≥1

(
1

s− ρ
+

1

2 + it− ρ

)
= O

(∑
ρ

3

|γ − t|2

)
= O(L ).

For the terms with |γ − t| < 1 we have |2 + it − ρ| ≥ 1 and by (i), number
of such terms is O(L ). Hence the result follows.

Lemma 4.15. Let H be the half-plane σ ≤ −1, when circles of radius say
1/2 around trivial zeros are excluded. Then∣∣∣∣L′(s, χ)

L(s, χ)

∣∣∣∣� log(q|s|), (∀s ∈ H)

where the constant is absolute.

Proof. We use the relation
Γ( s2)

Γ( 1−s
2 )

= π−1/221−s cos sπ2 Γ(s) from [1],§10 in

the functional equations (4.2) and (4.3) and obtain the unsymmmetric form
of the functional equation

L(1− s, χ) = ε(χ)π−s21−s cos
(s− a)π

2
Γ(s)L(s, χ̄),

where |ε(χ)| =
∣∣∣ iaq1/2τ(χ̄)

∣∣∣ = 1. Taking the logarithmic derivative and replacing

s by 1− s we obtain

−L
′(s, χ)

L(s, χ)
= log q − log 2π − 1

2
π cot

(
π(s+ a)

2

)
+

Γ′(1− s)
Γ(1− s)

+
L′(1− s, χ̄)

L(1− s, χ̄)
.

If s ∈ H, then <1 − s ≥ 2 and thus L′(1−s,χ̄)
L(1−s,χ̄) = O(1). Also, Γ′(1−s)

Γ(1−s) =

O(log 2|s|) and cot
(
π(s+a)

2

)
= O(1). These bounds substituted in the above

equality give the result.

Definition 7. For a Dirichlet character χ modulo q and T > 0, we define
N(T, χ) to be the number of zeros of L(s, χ) in the rectangle 0 < σ < 1, |t| <
T .

We can give estimates on N(T, χ) using the argument principal method
from complex analysis. Here we are goning the state the result in the next
theorem. For details and the proof see [1], §16.
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Theorem 4.16 (The Number N(T, χ)). For any primitive Dirichlet char-
acter χ modulo q ≥ 3 and T ≥ 2 we have

1

2
N(T, χ) =

T

2π
log

qT

2π
− T

2π
+O(log T + log q). (4.33)

For a nonprimitive character χ modulo q induced by χ1 modulo q1, then the
above estimate holds for N(T, χ) with q1 in place of q.

4.4 The Explicit Formulae

As an analogue of Chebyshev’s ψ function we define ψ(x, χ)

ψ(x, χ) =
∑
n≤x

χ(n)Λ(n),

and set ψ0(x, χ) = ψ(x, χ) when x is not a prime power, and ψ0(x, χ) =

ψ(x, χ)− χ(x)Λ(x)
2 when x is a prime power.

Also, as we will use in the next proofs, let us denote by b(χ) the 0th

coefficient in the Laurent expansion of L′(s,χ)
L(s,χ) at s = 0, and < x > denotes

the distance from x to the nearest prime power.

Theorem 4.17 (The Explicit Formula for ψ0(x, χ)). For any primitive
Dirichlet character χ modulo q ≥ 3, x ≥ 2 and T ≥ 2 we have

ψ0(x, χ) = −
∑
|γ|<T

xρ

ρ
− (1− a) log x− b(χ) +

∞∑
m=1

xa−2m

2m− a
+R(x, T ) (4.34)

where ρ = β + iγ runs through all nontrivial zeros of L(s, χ) with |γ| < T
and

R(x, T )� x

T
log2(qxT ) + log xmin

(
1,

x

T < x >

)
(4.35)

where the implied constant is absolute.

In the proof of Theroem 4.15, we make use of the discontinuous integral

1

2πi

∫ c+i∞

c−i∞

ys

s
ds =


0 if 0 < y < 1,
1/2 if y = 1,
1 if y > 1.

The following lemma gives a more precise statement about this integral. For
the proof see the Lemma in [1], §17.
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Lemma 4.18. If

I(y, T ) =
1

2πi

∫ c+iT

c−iT

ys

s
ds, δ(y) =


0 if 0 < y < 1,
1/2 if y = 1,
1 if y > 1,

then for y > 0, c > 0 and T > 0 we have

|I(y, T )− δ(y)| =

{
ycmin

(
1, 1

πT | log y|

)
if y 6= 1,

c
πT if y = 1.

Now let us define

J(y, T ) =
1

2πi

∫ c+iT

c−iT

[
−L

′(s, χ)

L(s, χ)

]
ys

s
ds.

Lemma 4.19. For any x > 2 and T > 0, if we take c = 1 + 1
log x , then

|J(x, T )− ψ0(x, χ)| � x log2 x

T
+ log xmin

(
1,

x

T < x >

)
. (4.36)

Proof. For σ > 1 we have

J(x, T ) =
1

2πi

∫ c+iT

c−iT

∞∑
n=1

χ(n)Λ(n)

ns
xs

s
ds =

∞∑
n=1

χ(n)Λ(n)
1

2πi

∫ c+iT

c−iT

(x/n)s

s
ds,

where the change of order is permitted since the series
∑∞

n=1
χ(n)Λ(n)

ns is
uniformly convergent in the path of integration. Now applying lemma 4.17
with y = x/n we obtain∣∣∣∣∣J(x, T )−

∞∑
n=1

χ(n)Λ(n)δ
(x
n

)∣∣∣∣∣ ≤
∞∑
n=1
n 6=x

Λ(n)

∣∣∣∣ 1

2πi

∫ c+iT

c−iT

(x/n)s

s
ds− δ

(x
n

)∣∣∣∣
<

∞∑
n=1
n 6=x

Λ(n)
(x
n

)c
min

(
1,

x

T | log(x/n)|

)
+
c

T
Λ(x).

Since
∑∞

n=1 χ(n)Λ(n)δ
(
x
n

)
= ψ0(x, χ) the above inequality becomes

|J(x, T )− ψ0(x, χ)| <
∞∑
n=1
n 6=x

Λ(n)
(x
n

)c
min

(
1,

x

T | log(x/n)|

)
+
c

T
Λ(x).

(4.37)
We will divide the terms of the series in (4.37) into three groups and find

their contributions to the sum seperately.
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The terms with n ≤ 3
4x or n ≥ 5

4x. For these | log(x/n)| has positive
lower bound and hence their contribution is

�
∞∑
n=1

Λ(n)
(x
n

)c
=
xc

T

(
−ζ
′(c)

ζ(c)

)
� xc

T (c− 1)
=
ex log x

T
.

The terms with 3
4x < n < x . If we denote by x1 the largest prime

less than x, then we can take 3
4x < x1 < x since otherwise the terms would

vanish. For the term n = x1,

log
(x
n

)
= − log

(
1− x− x1

x

)
≥ x− x1

x
,

since log(1− y) ≥ y for 0 ≤ y < 1. Hence the term n = x1 contributes

� Λ(x1) min

(
1,

x

T (x− x1)

)
� log xmin

(
1,

x

T (x− x1)

)
.

For the remaining terms of this group, we put n = x1−ν where 0 < ν < 1
4x.

Then we have

log
(x
n

)
> log

(x1

n

)
= − log

(
1− ν

x1

)
≥ ν

x1
.

Hence these terms contribute

�
∑

0<ν< 1
4
x

Λ(x1 − ν)
x1

Tν
� x1 log x

T

∑
0<ν< 1

4
x

1

ν
� x log2 x

T
.

The terms with x < n < 5
4x These terms are dealt with similary

but instead of x1 we use x2, the least prime power greater than x. The
contribution of these terms is

� log xmin

(
1,

x

T (x2 − x)

)
+
x log2 x

T
.

So, collecting all estimates and noting that c
T Λ(x) � x log2 x

T the lemma
follows.

Now we are in a position to prove the explicit formula (4.34).
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Proof of Theorem 4.17. The first thing to be done is to replace the
vertical line [c− iT, c+ iT ] of integration in J(x, T ) by other three sides of
the rectangle with vertices at

c− iT, c+ iT, −U − iT, −U + iT,

where U is a large integer ≡ 1+a (mod 2) and c = 1+ 1
log x as in the previous

lemma. So the vertical segment [−U − iT,−U + iT ] passes halfway between
two trivial zeros of L(s, χ).

Let us compute the residues of the integrand at its poles in the rectangle.

L(s, χ) has no poles so that the integrand −L′(s,χ)
L(s,χ)

xs

s has poles at the zeros of

L(s, χ) and at s = 0. Res
(
L′(s,χ)
L(s,χ) , s = ρ

)
= 1 for any simple zero of L(s, χ)

whether trivial or not. Hence the sum of the residues in the rectangle is

−
∑
|γ|<T

xρ

ρ
−

∑
0<2m−a<U

x−(2m−a)

−(2m− a)
−Res

(
L′(s, χ)

L(s, χ)

xs

s
, s = 0

)
.

The situation differs according to the value of χ(−1). If χ(−1) = −1,

then L(0, χ) 6= 0 and s = 0 is a simple pole. In this case, Res
(
L′(s,χ)
L(s,χ) , s = 0

)
= L′(0,χ)

L(0,χ) = b(χ) if we recall that b(χ) was the 0th coefficient of the Laurent

expansion of L(s, χ).

However, if we assume χ(−1) = 1, then it has a double pole at s = 0.
Now, since L(s, χ) has asimple pole at s = 0, its Laurent expansion near
s = 0 is of the form

L′(s, χ)

L(s, χ)
=

1

s
+ b(χ) + . . . .

Also,
xs

s
=

1

s
+ log x+ . . . .

Hence the Laurent expansion of L′(s,χ)
L(s,χ)

xs

s is of the form

L′(s, χ)

L(s, χ)

xs

s
=

1

s2
+ (log x+ b(χ))

1

s
+ . . . ,

which gives us the residue Res
(
L′(s,χ)
L(s,χ)

xs

s , s = 0
)

= log x+ b(χ).
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Thus, assuming that there is no zero with γ = T , we obtain

J(x, T ) =
1

2πi

∫
L

(
−L

′(s, χ)

L(s, χ)

)
xs

s
ds−

∑
|γ|<T

xρ

ρ
− (1− a) log x− b(χ)

−
∑

0<2m−a<U

x−(2m−a)

−(2m− a)
. (4.38)

Here the integral is over the path L = L1 ∪ L2 ∪ L3 where

L1 = [−U + iT, c+ iT ],

L2 = [−U − iT,−U + iT ],

L3 = [c− iT,−U − iT ].

Now we are going the estimate the integral on these segments seperately:

Estimates along the horizontal lines L1 and L3.
In order to have good bounds on the integrand on thes lines, we wish to stay
away from the zeros of L(s, χ). This is possible with an appropriate choice
of T . Let T ≥ 2, then by Lemma 4.13 (iii) there are at most O(log(qT ))
zeros with |γ − T | < 1. Among the ordinates of these zeros, there must be
a gap of length� 1

log(qT ) . So if we change T by a bounded amount, we can
ensure that

|γ − T | � 1

log(qT )
, (4.39)

for all zeros ρ = β + iγ.

We also recall the Lemma 4.14(iii) which implies

L′(s, χ)

L(s, χ)
=

∑
|γ−T |<1

1

s− ρ
+O(log(qT )),

for all s = σ+iT with −1 ≤ σ ≤ 2. With our choice of T satisfying (4.39),we
have 1

s−ρ ≤
1

|γ−T | � log(qT ) and number of terms is also � log(qT ). Hence

L′(σ + iT, χ)

L(σ + iT, χ)
� log2(qT ), (4.40)

for −1 ≤ σ ≤ 2.

Hence the contribution from L1 ∩ {−1 ≤ σ ≤ 2} = [−1 + iT, c + iT ] to
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∫
L

(
−L′(s,χ)
L(s,χ)

)
xs

s ds is (remember c = 1 + (log x)−1)

�
∫ c

−1
log2(qT )

xσ

T
dσ =

xc log2(qT )

T log x
� x log2(qT )

T log x
. (4.41)

For L1 ∩ {σ < −1} = [−U + iT,−1 + iT ) we use the bound on L(s, χ)
in Lemma 4.15 ∣∣∣∣L′(s, χ)

L(s, χ)

xs

s

∣∣∣∣� log(q|s|)xσ

|s|
� log(qT )xσ

T
(4.42)

since T ≥ 2. Hence the contribution from L1 ∩ {σ < −1} is

�
∫ −1

−U

xσ

T
dσ =

log(qT )

Tx log x
− log(qT )

TxU log x
� log(qT )

Tx log x
. (4.43)

Combining (4.41) and (4.43), the total contribution along L1 is

� x log2(qT )

T log x
+

log(qT )

Tx log x
� x log2(qT )

T log x
. (4.44)

Along L3, we have s = σ − iT where on L1 we had s = σ + iT . Thus,
the bounds in (4.40) and (4.42) also hold on L3 is again (4.44).

Estimates along the line L2 .
On the vertical part L2 = [−U − iT,−U + iT ], we are in {σ ≤ −1} and

the bound in (4.42) holds with a slight modification.∣∣∣∣L′(s, χ)

L(s, χ)

xs

s

∣∣∣∣� log(qU)x−U

U
.

Thus the contribution from L3 is

� log(qU)

UxU

∫ T

−T
dt� T log(qU)

UxU
. (4.45)

We have completed the estimation of the integral over the horizontal
and vertical sides of L. Combining the estimates (4.44) and (4.45), we have
proved that∫

L

(
−L

′(s, χ)

L(s, χ)

)
xs

s
ds = O

(
x log2(qT )

T log x
+
T log(qU)

UxU

)
.
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Now we will use the above estimate in (4.38) and let U → ∞ which

makes T log(qU)
UxU

→ 0. We obtain

J(x, T ) = −
∑
|γ|<T

xρ

ρ
− (1− a) log x− b(χ) +

∞∑
m=1

x−(2m−a)

−(2m− a)
. (4.46)

We finally use (4.46) in (4.36) of Lemma 4.19 and obtain the statement
of the theorem.

Note that we put some restriction on T to obtain (4.39) but this can ber
removed now. We have changed T by a bounded amount and that effects
the sum

∑
|γ|<T

xρ

ρ by O(log(qT )) terms. Since each term in the sum is
O(x/T ), the total change in the sum is O(x log(qT )/T ) which is covered by
(4.35).

�

This form (4.34) of the explicit formula is of little use with the unknown
b(χ). Moreover, for the terms xρ

ρ , ρ may be too close to 0 or 1. In the
next lemma, we will find an expression for b(χ) and then we will give the
explicit formula for ψ(x, χ) in which the possible problematic zero is visible
explicitely and which is also valid for nonprimitive characters.

Lemma 4.20. The number b(χ) in (4.34) satisfies

b(χ) = O(log q)−
∑
ρ
|γ|<1

1

ρ
,

where ρ runs through all nontrivial zeros of L(s, χ).

Proof. We start with recalling equation (4.17)

L′(s, χ)

L(s, χ)
= −1

2
log
( q
π

)
−

Γ′
(
s+a

2

)
2Γ
(
s+a

2

) +B(χ) +
∑
ρ

(
1

s− ρ
+

1

ρ

)
.

Replacing s by 2 above we obtain

L′(2, χ)

L(2, χ)
= −1

2
log
( q
π

)
−

Γ′
(

2+a
2

)
2Γ
(

2+a
2

) +B(χ) +
∑
ρ

(
1

2− ρ
+

1

ρ

)
.

L′(2,χ)
L(2,χ) = O(1) and

Γ′( 2+a
2 )

2Γ( 2+a
2 )

= O(1), so if we subtract the two equations we
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get
L′(s, χ)

L(s, χ)
= O(1)−

Γ′
(
s+a

2

)
2Γ
(
s+a

2

) +
∑
ρ

(
1

s− ρ
+

1

2− ρ

)
. (4.47)

Now, b(χ) is by definiton the 0th coefficient of the Laurent expansion

of L′(s,χ)
L(s,χ) at s = 0. So we are going to determine b(χ) from the Laurent

expansion of the RHS of (4.47) at s = 0. If χ(−1) = −1, so that a = 1 and
Γ′( s+a2 )
2Γ( s+a2 )

is regular at s = 0 ; if χ(−1) = 1, so that a = 0 and
Γ′( s+a2 )
2Γ( s+a2 )

has the

Laurent expansion

Γ′
(
s+a

2

)
2Γ
(
s+a

2

) = −2

s
+ constant+ . . .

By its definition, in the former case b(χ) = L′(0,χ)
L(0,χ) ; and it is the constant in

the expansion of L′(s,χ)
L(s,χ) in the latter case. Hence it satisfies

b(χ) = O(1)−
∑
ρ

(
1

s− ρ
+

1

2− ρ

)
. (4.48)

We will consider the sum in (4.48). For the terms with |γ| ≥ 1, we have∑
ρ
|γ|≥1

∣∣∣∣ 1

s− ρ
+

1

2− ρ

∣∣∣∣ = 2
∑
ρ
|γ|≥1

∣∣∣∣ 1

ρ(2− ρ)

∣∣∣∣� ∑
ρ
|γ|≥1

1

γ2
= O(log q),

where in the last step we used Lemma 4.13 with t = 0. For the terms with
|γ| < 1, ∑

ρ
|γ|<1

∣∣∣∣ 1

(2− ρ)

∣∣∣∣� ∑
ρ
|γ|<1

1

1 + γ2
= O(log q),

again by using Lemma 4.13 with t = 0. Hence these two bounds when
substituted in (4.48) gives the result.

Theorem 4.21 (The Explicit Formula for ψ(x, χ)). Let χ be a nonprincipal
character modulo q and 2 ≤ T ≤ x. Then

ψ(x, χ) = −

{
xβ1
β1

if β1 exists

0 otherwise

}
−
∑′

|γ|<T

xρ

ρ
+R(x, T ) (4.49)
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where
∑′

denotes the summation over all the zeros ρ = β+iγ of L(s, χ)

with 0 < β < 1, excluding the zeros β1 and 1− β1 if they exists and where

|R(x, T )| � x log2(qx)

T
+ x1/4 log x, (4.50)

where the implied constant is absolute.

Proof. We will first assume that χ is primitive. We may assume x to be an
integer since replacing x by the closest integer effects ψ(x, χ) by an amount
O(log x) and this is covered by the bound in (4.50). Furthermore, since x is
an integer, < x >≥ 1 and the bound in (4.35) can be replaced by

|R(x, T )| � x log2(qxT )

T
.

If we take 2 ≤ T ≤ x then Theorem 4.17 gives

ψ0(x, χ) = −
∑
|γ|<T

xρ

ρ
− (1− a) log x− b(χ) +

∞∑
m=1

xa−2m

2m− a
+O(

x log2(qxT )

T
)

(4.51)
We have the expression for b(χ) from Lemma 4.20:

b(χ) = O(log q)−
∑
ρ
|γ|<1

1

ρ
.

Also we have

∞∑
m=1

xa−2m

2m− a
≤
∞∑
k=1

x−k =
1

x− 1
andψ(x, χ) = ψ0(x, χ) +O(log x).

Substituting these three in (4.51) above and noting that T ≤ xwe obtain

ψ(x, χ) = −
∑
|γ|<T

xρ

ρ
+
∑
ρ
|γ|<1

1

ρ
+O(

x log2(qx)

T
). (4.52)

There are two cases. If L(s, χ) does not have any exceptional zero, then
β < 1 − c

log q holds for all ρ with |γ| < 1. As can be deduced from the

functional equation, zeros are placed symmetrically about the line σ = 1
2 so

that we have β > c
log q . Thus, 1

ρ = O(log q) for all ρ. Moreover, the number
of zeros with |γ| < 1 is O(log q) by Theorem 4.16 with T = 2. All of these
result in ∑

ρ
|γ|<1

1

ρ
= O(log2 q), (4.53)
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which implies that (4.49) and (4.50) hold in this case.

If L(s, χ) has an exceptional zero β1, we denote by
∑′

the summation

over all nontrivial zeros ρ = β + iγ of L(s, χ) excluding the zeros β1 and
1− β1. Then from (4.52) we get

ψ(x, χ) = −
∑′

|γ|<T

xρ

ρ
+
∑′

ρ
|γ|<1

1

ρ
− xβ1 − 1

β1
− x1−β1 − 1

1− β1
+O(

x log2(qx)

T
).

The second sum can be absorbed in the error term as in the previous case.
We keep −xβ1

β1
and omit the term 1

β1
= O(1). For the term x1−β1−1

1−β1 , by mean
value theorem, there exists some σ between 1− β1 and 0 satisfying

x1−β1 − 1

1− β1
= xσ log x < x1/4 log x,

since σ < 1 − β1 < 1/4. Hence (4.49) and (4.50) hold in this case too and
we have proved the theorem for primitive characters.

Now we will extend the proof to the case when χ is not primitive. Let χ1

modulo q1 be the primitive character inducing χ. Then the theorem holds
for χ1 and

ψ(x, χ1) = −

{
xβ1
β1

if β1 exists

0 otherwise

}
−
∑′

|γ|<T

xρ

ρ
+O(

x log2(q1x)

T
+ x1/4 log x).

(4.54)
Above, the summation is over the nontrivial zeros of L(s, χ1) excluding β1

and 1− β1 if they exist. We will relate (4.54) to ψ(x, χ).

The difference between ψ(x, χ) and ψ(x, χ1) is

|ψ(x, χ)− ψ(x, χ1)| ≤
∑
n≤x

(n,q)>1

Λ(n) =
∑
p|q

∑
m≥1
pm≤x

log p

= O(log x)
∑
p|q

log p

= O(log x log q),

and it is covered by the error term in (4.54).

Next, we will explore the relation between zeros of L(s, χ) and the zeros

of L(s, χ1). By the identity L(s, χ) = L(s, χ1)
∏
p|q

(
1− χ1(p)

ps

)
, they have

exactly the same zeros in 0 < σ < 1. Moreover, if L(s, χ) has an exceptional
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zero β1, then it is the unique exceptional zero of L(s, χ1) too since β1 >
1 − c

log q ≥ 1 − c
log q1

. But not necessarily vice versa. L(s, χ1) can have an
exceptional zero where L(s, χ) does not have one. In the former case, we see

that (4.49) and (4.50) holds noting that x log2(q1x)
T � x log2(qx)

T .

In the latter case the term x1−β1
1−β1 appears in the sum

∑′

|γ|<T
xρ

ρ for

L(s, χ) but not in the sum
∑′

|γ|<T
xρ

ρ for L(s, χ1). Since β1 is an excep-

tional zero for L(s, χ1) whereas it is not exceptional for L(s, χ), we have

1− c

log q1
< β1 ≤ 1− c

log q
,

which implies

x1−β1

1− β1
= O(log q) +

x1−β1 − 1

1− β1
= O(log q + x1/4 log x).

Hence, (4.49) and (4.50) is satisfied in this case also.

4.5 The Proof of PNT for Arithmetic Progressions

Finally we are in a position to prove the PNT for arithmetic progressions.
Let us restate the Theorem 4.1 and then prove. ,

Theorem 4.22 (Prime Number Theroem For Arithmetic Progressions).
There exists an absolute constant c > 0 such that if x ≥ 2 and (a, q) = 1,
then

ψ(x; q, a) =
x

φ(q)
− χ1(a)xβ1

φ(q)β1
+O(x exp(−c(log x)1/2)). (4.55)

where χ1 denotes the single character modulo q,if it exists, having the ex-

ceptional zero β1; if such χ1 with β1 does not exist then the term −χ1(a)xβ1

φ(q)β1
should be omitted.

Proof. Recall that we hace defined the function ψ(x; q, a) in the beginning
of this chapter as

ψ(x; q, a) =
∑
n≤x

n≡a(mod q)

Λ(n).

It is immediate from (1.23) that

ψ(x; q, a) =
1

φ(q)

∑
χ

χ̄(a)ψ(x, χ). (4.56)

where the sum is over the characters modulo q.
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The contribution of the principal character to the sum on the right of
(4.56) provides the main term. We have

|ψ(x, χ0)− ψ(x)| =
∑
n≤x

(n,q)>1

Λ(n) =
∑
p|q

∑
m≥1
pm≤x

log p� log x log q.

By de la Vallée Poussin’s form of the PNT, namely

ψ(x) = x+O(x exp(−c1(log x)1/2)),

we obtain

ψ(x; q, a) =
x

φ(q)
+

1

φ(q)

∑
χ 6=χ0

χ(a)ψ(x, χ)

+O

(
1

φ(q)
[x exp(−c1(log x)1/2) + log x log q]

)
. (4.57)

For χ 6= χ0 we have by Theorem 4.21

ψ(x, χ) = −

{
xβ1
β1

if β1 exists

0 otherwise

}
−
∑′

|γ|<T

xρ

ρ
+R1(x, T ) (4.58)

where
∑′

denotes the summation over all the zeros ρ = β + iγ of L(s, χ)

with 0 < β < 1, excluding the zeros β1 and 1− β1 if they exists and where

|R1(x, T )| � x log2(qx)

T
+ x1/4 log x,

provided 2 ≤ T ≤ x. The term xβ1
β1

occurs for at most one real nonprincipal
character, say χ1, modulo q by Lemma 4.12. Since the sum excludes the
possible exceptional zero, by Theorem 4.11, all the zeros in the sum on the
right of (4.58) satisfies

β < 1− c2

log(qT )

for a positive absolute constant c2. Hence

|xρ| = xβ < x exp

(
−c2(log x)

log(qT )

)
,

and thus ∑′

|γ|<T

xρ

ρ
< x exp

(
−c2(log x)

log(qT )

) ∑′

|γ|<T

1

|ρ|
. (4.59)

75



The sum
∑′

|γ|<T
1
|ρ| in the right of (4.58) with terms |γ| ≥ 1 can be

evaluated using the result on N(T, χ). By Theorem 4.16, N(t, χ)� t log(qt)
and hence∑′

1≤|γ|<T

1

|ρ|
=

∫ T

1
t−1dN(T, χ) ≤ N(T, χ)

T
+

∫ T

1
t−2N(T, χ)dt

� log(qT ) +

∫ T

1
t−1 log(qt)dt

� log T log(qT ). (4.60)

For the terms with |γ| < 1 of the sum, we use the argument in (4.53) and
obtain ∑′

|γ|<1

1

|ρ|
� log2 q.

Combining (4.60) and (4.61) we finally get∑′

|γ|<t

1

|ρ|
� log T log(qT ) + log2 q ≤ log2(qT ). (4.61)

Now we substitute (4.59) and (4.62) in (4.58) to obtain

ψ(x, χ) = −

{
xβ1
β1

if β1 exists

0 otherwise

}
+R2(x, T ), (4.62)

where

|R2(x, T )| � x log2(qT ) exp

(
− c2 log x

log(qT )

)
+
x log2(qx)

T
+ x1/4 log x.

Now let us assume q ≤ exp(C(log x)1/2) for any constant C > 0. We
choose also T = exp(C(log x)1/2) to find that the error term R2(x, T ) in
(4.63) is

|R2(x, T )| � x[2C(log x)1/2]2 exp

(
− c2

2C

log x

(log x)1/2

)
+ x log2(x) exp(−C(log x)1/2) + x1/4 log x

� x exp(−c3(log x)1/2), (4.63)

provided c3 > 0 is a constant satisfying c3 < min(c2/2C,C).

Now we put (4.62) with (4.63) in the equation (4.57) to obtain the
statement of the theorem with c = min(c1, c3) under the assumption q ≤
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exp(C(log x)1/2). (We also used that the possible χ1 is real so that χ̄1 = χ1.)
Here, c is only depending on C.

On the other hand if we assume q ≥ exp(C(log x)1/2), the theorem is
still valid, but it is worse than trivial. Because the largest term in ψ(x; q, a)
is ≤ log x, and the number of terms is ≤ x/q + 1 so that

ψ(x; q, a) ≤ log x(x/q + 1)� x exp(−C/2(log x)1/2).

Theorem 4.23. For q ≤ /(log x)1−δ for some δ > 0, we have

ψ(x; q, a) =
x

φ(q)
+O(x exp(−c(log x)1/2)). (4.64)

One of the main difficulties encountered in the theory of distribution of

primes in arithmetic progressions is the possible term −χ1(a)xβ1

φ(q)β1
. The only

universal bound we have for β1 is the one given in Lemma 4.12, that is
β1 ≤ 1− c4

q1/2 log2 q
where c4 > 0 is some absolute constant. With this bound

on β1 we have

−χ1(a)xβ1

φ(q)β1
� x

φ(q)
exp

(
−c4

log x

q1/2 log2 q

)
. (4.65)

This will be of the same order with the error term in (4.55) if we impose a
very severe restriction on q such as

≤ /(log x)1−δfor someδ > 0.

This limitation on q results in the following theorem:

Theorem 4.24. If q ≤ /(log x)1−δ for some 1 > δ > 0 and (q, a) = 1, we
have

ψ(x; q, a) =
x

φ(q)
+O(x exp(−c(log x)1/2)).

where c > 0 and the constant implied by the O term are absolute.

These results, though seem weak, are the only results which are effective
in the sense that the constants c, ci and the ones implied by the symbol O
are computable. There are also results which are stronger, but ineffective.
The best result is due to Walfisz who applied Siegel’s theorem to primes in
arithmetic progressions and obtained [2], Corollary 11.19,

Theorem 4.25 (The Siegel-Walfisz Theorem). Let N be any positive con-
stant. If q ≤ (log x)N and (q, a) = 1, then

ψ(x; q, a) =
x

φ(q)
+ON (x exp(−c(log x)1/2)).
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The various results for ψ(x; q, a) found through this section have ana-
logues for the prime counting function π(x; q, a), the number of primes up
to that are congruent to a (mod q). The transition is made by partial sum-
mation as in the transition in the PNT. We end this section by stating the
result we have for π(x; q, a):

Theorem 4.26. There exists an absolute constant c > 0 such that if x ≥ 2
and (a, q) = 1, then

π(x; q, a) =
li(x)

φ(q)
− χ1(a)li(xβ1)

φ(q)β1
+O(x exp(−c(log x)1/2)). (4.66)

where χ1 denotes the single character modulo q,if it exists, having the excep-

tional zero β1; if such χ1 with β1 does not exist then the term −χ1(a)li(xβ1 )
φ(q)β1

should be omitted.

The Riemann Hypothesis, as in the situation with the PNT, gives the
best possible result on the PNT on arithmetic progressions.It can be ex-
tended to Dirichlet L-functions named the Generalized Riemann Hypoth-
esis which states that all non-trivial zeros of L(s, χ) have real part 1/2.
Assuming the Generalized Riemann Hypothesis, we have for q ≤ x,

ψ(x; q, a) =
x

φ(q)
+Oε(x

1/2+ε), (4.67)

for any ε > 0.

78



References

[1] Davenport, H., Multiplicative number theory, 3rd edition, Springer,
2000.

[2] Montgomery, H. L. and Vaughan R., Multiplicative number theory, I.
Classical theory. Cambridge, 2007.

[3] Apostol, T. M., Introduction to Analytic Number Theory, Springer,
1976.

[4] Nathanson, M. B., Elementary Methods in Number Theory, Springer,
2000.

[5] Tenenbaum, G., Introduction to Analytic and Probabilistic Number The-
ory, Cambridge, 1995.

[6] Goldfeld, D.,The Elementary proof of the Prime Number Theorem, An
Historical Perspective, Pages 179–192 in Number Theory, New York
Seminar 2003, eds. D. and G. Chudnovsky, M. Nathanson, Springer-
Verlag, New York, 2004.

79


