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ABSTRACT 

 

Proteins act coherently in the cells and their roles span functions as diverse as being 

molecular machines and signaling. The mechanism behind this excellent synchronization is 

still uncovered. However, considerable effort has been centered on identifying of binding 

partners and binding regions, because the vast majority of the chores in the living cell 

involve protein–protein interactions. Proteins interact through their interfaces which 

contain hot spots, the residues contributing more to the binding energy. Hot spots are 

important for drug targeting and interaction specificity. In addition, structural modeling of 

protein interactions and incorporating them into the protein interaction networks are 

prerequisites for understanding cell function. Hence, the focus of this dissertation is 

directed to the question “how do the proteins interact?” rather than the question “which 

proteins interact?” at the top level. Towards this aim, firstly, this dissertation focuses on 

the prediction of hot spots in protein interfaces and their organization. Here, an efficient 

hot spot prediction model is developed and implemented that reaches an accuracy of 70% 

on the experimental data. A web server, namely HotPoint, is constructed based on this 

model. In another aspect, a novel graph-based method based on minimum cut trees 

developed to determine the organization of hot spots which reveal the cooperative relation 

between them. Nature presents a limited number of distinct binding site motifs and 

structurally different protein pairs can use the same binding architectures. Based on this 

origin, secondly, a multi-scale combinatorial strategy is illustrated to model protein 

complexes at proteome-level. This work shows how available structural information can 

help in modeling a pathway by using structural similarity. Here, the sample pathway is the 

tumor suppressor protein p53 pathway. Finally, the multi-partner proteins dataset is 

extracted from Protein Databank. Integration of time notion into protein interaction 

networks is demonstrated on two hub proteins, p53 and Mdm2 using both predictions and 

available structural data.  
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ÖZET 

 

Proteinler hücre içinde birbirleriyle uyumlu şekilde hareket ederler ve rolleri moleküler 

duzenekten sinyal iletimine kadar geniş bir alana yayılır. Bu kusursuz senkronizasyonun 

ardındaki mekanizma henüz tam olarak aydınlatılamamıştır. Ancak, proteinlerin 

bağlandıkları eşlerinin ve bağlanma bölgelerinin belirlenmesi için kaydadeğer çabalar 

harcanmıştır, çünkü yaşayan hücrelerdeki işlerin büyük bir çoğunluğu proteinlerin 

etkileşimleriyle gerçekleşir. Proteinler arayüzey bölgelerinden etkileşirler ve bu bölgedeki 

sıcak nokta denilen bazı aminoasitler bağlanma enerjisine daha fazla katkıda bulunurlar. 

Sıcak noktalar ilaç hedefi olarak ve etkileşim özgünlüğü açısından önemlidir. Buna ek 

olarak protein etkileşimlerinin yapısal olarak modellenmesi ve bunların protein etkileşim 

ağlarıyla birleştirilmesi hücre fonsiyonunun anlaşılması açısından bir başka olmazsa 

olmazdır. Bu yüzden bu tez çalışmasının en üst seviyedeki odak noktası hangi proteinlerin 

etkileştiği sorusundan daha çok proteinlerin nasıl etkileştiği sorusuna yönlendirilmiştir. Bu 

amacla, ilk olarak protein arayüzeylerindeki sıcak noktaların tahmin edilmesi ve 

organizasyonuna yoğunlaşılmıştır. Burada, deneysel bilgi üzerinde %70 doğruluğa ulaşan 

verimli bir sıcak nokta tahmin modeli oluşturulmuş ve bu model kullanılarak HotPoint 

isimli bir ağ sunucusu yapılmıştır. Ayrıca, sıcak noktaların organizasyonuna karar vermek 

için, bunların müşterek ilişkilerini gösteren ağ-tabanlı minimum kesik ağacina dayalı bir 

metot geliştirilmiştir. Doğada sınırlı sayıda farklı bağlanma bölgesi motifi vardır ve yapısal 

olarak farklı protein çiftleri aynı bağlanma yapılarını kullanabilir. Bu esasa dayanarak, 

ikinci olarak protein komplekslerinin proteom seviyesinde modellenmesi için geliştirilmiş 

çoklu ölçekte tümleşik bir strateji gösterilmiştir. Bu çalışma, varolan yapısal bilginin bir 

biyolojik yolun yapısal benzerlik kullanılarak modellenmesine nasıl yardım edebileceğini 

göstermektedir. Buradaki örnek biyolojik yol, tümör baskılayıcı protein p53 biyolojik 

yoludur. En son olarak, Protein Veribankasındaki çoklu-eşe sahip olan proteinlerin veri 

kümesi çıkarılmıştır ve zaman kavramının protein etkileşim ağlariyla birleştirilmesi iki 

merkezcil protein, p53 ve Mdm2, üzerinde tahmin edilen ve bilinen etkileşimlerle 

gösterilmiştir.  
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Chapter 1 

 

INTRODUCTION 

 

Proteins function in several processes varying from transcripton regulation to signaling 

or from being molecular machines like ribosome to enzymatic reactions. Considering their 

unquestionable role in the cell make the researchers focus on the prediction of the protein 

function. The easiest but the most complicated way to do this is identifying interactions 

between proteins which is at the heart of functional genomics; their prediction is crucial for 

drug discovery. Through the network of these interactions we can map cellular pathways, 

their interconnectivities and their dynamic regulation. Besides the question “which proteins 

are interacting with which others?”, “how does the interaction take place?” is more 

challeging towards the elucidation of the complete mechanisms in the cell. The hints for 

the second question is hidden in structural biology.  

Proteins interact through interfaces. Protein interfaces constitute patches of structural 

and energetic components. From an energetic perspective, the residues in protein interfaces 

do not have equal contribution in binding, rather a subset of these residues, called “hot 

spots”, play an exceptional role [1]. Hot spots may also be considered as drug targets and 

the existence of hot spots addresses the question how just a small molecule can disrupt a 

whole interaction having a large binding area. The attacks of the drug molecules can 

damage the undesired interactions by binding and blocking the hot spots. Hence, 

identifying hot spots in protein interfaces and analyzing their organization have a crucial 

importance. 

On the other hand, besides the studies at molecular level, providing the detailed three-

dimensional (3D) global structural network of the organism functional proteome is a 

challenging goal in structural biology [2]. In the passing decades, large-scale experimental 

methods were employed to determine protein interactions for several organisms and 

thousands of interacting proteins were identified [3-7] (reviewed in [8]) presenting new 

challenges, potential interpretation pitfalls, and rewards in translating the data into high 

resolution physical interactions [9]. There has further been an exponential increase in 
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structural information [10] obtained by NMR and crystallography. Nonetheless, the gap 

between the number of known interactions obtained from high-throughput experiments and 

structurally known protein complexes is large. Given experimental limitations, it is crucial 

to develop computational methods to predict the 3D structures of protein complexes. 

Prediction algorithms [11, 12] would provide atomistic details of interactions which are 

important for designing therapeutics and for mapping the cellular network [13]. 

This dissertation, primarily focuses on structural analysis of protein interactions both at 

the molecular and the proteome levels where prediction and organization of hot spots in 

protein interfaces and modeling of protein complexes towards construction of structural 

protein interactions network at large scale are studied. Each chapter is readable on its own 

independent from the other chapters; however, all the chapters attempt to address the 

question “how do the proteins interact?” and serve to functional genomics, drug design 

and pathway analysis at the top level.   

The outline of this dissertation is as follows: 

In Chapter 2, an extended and most recent review focusing on the structural aspects of 

protein interactions is presented. This chapter includes the corresponding works related to 

characteristics and architectures of protein interfaces, hot spots, modularity of protein 

interfaces and structural modeling of protein complexes.  

Chapter 3 includes a new intuitive simple approach in hot spot prediction yet with its 

high accuracy and computational effectiveness. Here, first, the method is illustrated with 

the used dataset and features. Then, distributions of the features, the performance of the 

method and its comparison with other available hot spot prediction methods are presented. 

Also, the prediction power of the method is shown with some case studies. At the end of 

this chapter, the web server HotPoint is introduced which provides a user-friendly interface 

to run this method for online prediction of hot spots. 

In Chapter 4, graph based algorithms are illustrated to analyze and visualize residue 

contact networks of protein interfaces employing minimum cut trees (mincut tree). These 

algorithms are demonstrated on protein complexes having experimental mutation data. 

This chapter shows that the proposed algorithms are useful at the molecular level for both 

identification of critical paths in the protein interfaces and extraction of hot regions by 

clustering of the interface residues. 
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Chapter 5 is designed to introduce multi-scale combinatorial docking of proteome for 

functional predictions. In this chapter, our knowledge-based method combined with 

flexibility and energy calculations to structurally model the protein complexes is explained. 

The rationale of the knowledge-based part of the method argues that if particular surface 

regions of any two proteins are spatially similar to the complementary partners of a known 

interface, in principle these two proteins can interact with each other via these regions. 

Validation of the method, computational time comparisons with docking strategies and 

application of the method on the tumor suppressor protein p53 interaction network are 

included in the results section of this chapter. 

In Chapter 6, the multi-face nature of proteins is illustrated on a structural perspective. 

In the first part, a multi-partner dataset of proteins constructed from PDB is presented with 

some case studies. In the second part, the multi-face structure of two hub proteins – p53 

and Mdm2 – is demonstrated both using experimental and predicted structural data.   

This dissertation ends with a chapter discussing the results, explaining future directions, 

and finally with presenting major conclusions of the study.  
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Chapter 2 

 

LITERATURE REVIEW 

 

In this chapter, a comprehensive review of the studies related to protein interfaces, their 

characteristics, structural modeling of the protein interactions is presented. In the first 

section, general properties and architectures of protein – protein interfaces are explained. 

Then, critical residues in protein interfaces and the modular organization of the hot regions 

are reviewed. Finally, structure based protein interaction prediction algorithms are 

reviewed. 

 

2.1 Proteins Interact Through Their Interfaces 

Protein–protein interactions occur at the surface of a protein and are biophysical 

phenomena, governed by the shape, chemical complementarity, and flexibility of the 

molecules involved as well as the environmental conditions. The physical binding of 

protein structures occur through weak, non-covalent interactions. The particular region 

where two protein chains come into contact is termed a binding site or an interface. As an 

example, Figure 2.1 shows the interface present between - and -globulin of the human 

hemoglobin (PDB ID: 1yhe). Protein interfaces have long been studied at both the protein 

level and the domain level. They have been represented as interface data sets and deposited 

into databases to be used in identification of general properties of them. Some of these 

databases are SCOPPI [14], InterPare [15], 3DID [16, 17], PIBASE [18], ProtCom [19] 

and PRINT [10, 20]. Towards the common goal of understanding how proteins interact, a 

number of studies have characterized the properties of interfaces between proteins [20-26] 

which is crucial to help binding site prediction algorithms. In the continuing parts of this 

chapter, the detailed analysis of interface characteristics is illustrated. 
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Figure 2.1 Illustration of the protein – protein interfaces. The interface region of chain α-globulin 

is shown in orange; the rest of the chain is colored yellow. Similarly, the interface region of β-

globulin is shown in blue as the rest is colored pink. The interface region is enclosed with the 

dashed box. 

 

2.2 From Pairwise Protein Interactions to Structural Networks 

One of the primary objectives of the post-genomic era is the elucidation of the interactome 

in model cellular systems. The detailed knowledge of the full network of protein-protein 

interactions, i.e., the distribution and the number of interactions as well as the presence of 

key nodes in these networks, is expected to provide new insights into the structures and 

properties of biological systems. The availability of interactomes for many organisms will 

continue to provide understanding of the global organization of cellular processes. Still, 

these interactomes will lack structural and chemical characteristics of each interaction. 

With the help of these characteristics, a deeper understanding of the physical phenomena 

taking place in the cells can be appreciated. 

Experimentally, the pairwise interaction data of proteins on large scale can be obtained 

by several methods, such as yeast two-hybrid [7], phage display [27], protein arrays [28], 

affinity purification [29] techniques. The experimental databases – such as DIP [30], 

MINT [31], BIND [32] and IntAct [33]– catalog the data gained by these techniques to 

serve researchers dealing with protein interactions. Several external factors such as post-

translational modifications and disorder generally lead to false positive and false negatives 

in the experimental data, mainly in yeast two-hybrid [34]. In addition, distinct experimental 

information from different resources may conflict with each other resulting in high false 
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positive rates [35]. However, there is a decreasing trend in the false-positive rate of the 

high-throughput experiments [9]. Other methods, such as, mass spectrometry is used to 

identify the components of the protein complexes and site-directed mutagenesis is used to 

identify which residues have critical role in binding. In line, chemical foot-printing is 

utilized to find the buried surface upon complexation. 

 

 

Figure 2.2 The protein interaction network of human taken from DIP. The network picture just 

informs about the pairwise interaction of the proteins; however, when the details are examined, 

structural data incorporates one more dimension into this static network. Here, the 

Rbx1/Cullin1/Skp1/Skp2/p45 complex and some partners of p53 is illustrated.  

 

These techniques just provide which proteins interact with which others and gives a 

static picture excluding relative orientations of the interacting proteins and the residue level 

details. In Figure 2.2, a sample protein interaction map for human taken from DIP is 

illustrated. Incorporation of the residue level details of protein interactions – how they take 

place – can be achieved just by obtaining structural data about them. In Figure 2.2, two 

modules are highlighted and the details are shown with structural data. While the classical 

interaction map says that the 5 proteins in the first module are interacting with each other, 
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the structural information shows that these 5 proteins are actually interacting 

simultaneously and form a large protein complex (Rbx1/Cullin1/Skp1/Skp2/p45 complex) 

which is functioning in ubiquitination pathway. On the other hand, the structural details of 

the second module shows that the DNA binding domain of p53 uses same region to interact 

with Abl, 53BP1 and 53BP2 and these interactions are not simulatenously possible. In this 

way, the classical interaction map gains another dimension with the structural data.  

The structure determination of the protein complexes is achieved by X-ray 

crystallography, NMR spectroscopy [36] and cryo-electron microscopy (EM) [37] at 

several resolutions. X-ray crystallography and NMR spectroscopy provide information at 

atomistic level. X-ray crystallography is the most widely used technique and gives a static 

information about protein structure. NMR data is obtained in solution where several 

structural, thermodynamic and kinetic properties can be analyzed and limited by the size of 

the protein complex. Transient complexes are underrepresented in structural data because 

of their crystallization issues. Therefore, the methods like cryo-EM is useful for 

visualization of transient complexes. The relative positions of the subunits in a protein 

complex and the interacting residues can be obtained at low resolution, but the full details 

are not distinguishable. The limitations of the experimental technique can be 

complemented by each other or by computational techniques. For example, combining the 

electron microscopy data for a large complex with the crystal data of the subunits may 

provide a complete picture for this large complex. The structural and mechnistic models of 

clathrin lattice is obtained by hybrid experimental methods [38]. In another example, Sali 

and his co-workers modeled the structure of the large molecule human-RNAPII by 

combining several experimental resources and computational techniques where 3D atomic 

details of the subunits are from ModBase, the pairwise interaction data of the subunits are 

from BioGrid and the generated model is put into the EM density map with an optimization 

stage [39]. 

As the complete list of pairwise protein-protein interactions and the structures of the 

constituting proteins become available, it will be possible to construct reliable protein-

protein interaction networks with molecular details, such as the structural knowledge of the 

binding sites of the constituting proteins (as illustrated in Figure 2.2). Such approaches and 

novel representations integrating different levels of details (Figure 2.2) will enable 

inferring new knowledge which would be difficult if not possible otherwise. Further, since 
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traditional representation of protein interaction networks signifies each interaction equally, 

combining structure with networks will provide better targets for drug design. These 

models with time series data will be able to explain the dynamic behavior of living 

systems. 

 

2.3 Structural Aspects of Protein – Protein Interactions 

2.3.1 Characteristics of Protein Interfaces 

Several studies incorporating thermodynamic, kinetic and structural information imply that 

proteins interact rapidly and strongly in a specific manner to find their partners in the 

crowd of macromolecules in the cell. Interactions have been studied on a large number of 

complexes by numerous groups [1, 20-23, 25, 40-53]. Some protein interactions are tight 

and long-lived, called obligate interactions while some proteins continuously associate and 

dissociate, called transient interactions [54]. This is probably due to different strength of 

interactions between the proteins, the former relying more on salt bridges and hydrogen 

bonds, whereas the latter rely more on hydrophobic attractions [23, 50]. Also, despite their 

rare occurrence, disulphide bonds have large contribution on stabilization of the binding 

[55]. Transient complexes are underrepresented in structural data because of their 

crystallization issues [56]. So, the general patterns learned from structural information 

generally represent the obligate interactions. In general, interfaces tend to be planar or well 

packed depending on the type of interaction [22, 47]. The residue composition usually 

differs for those complexes that are transient versus those that are obligate. Weak transient 

interfaces are characterized as flat, small and polar contact regions [57]. Interface residues 

of the obligate complexes have tendency to evolve slower when compared to transient 

complexes [58].  

Binding regions of the proteins evolve to optimize the binding affinity for a particular 

function and specificity to its partner. Long-range interactions are predominant in the 

stability and specificity of interfaces. These are electrostatic interactions, hydrogen bond 

interactions, van der Waals attractions and repulsions and hydrophobic forces. In order to 

maximize the effect of these forces, a good shape complementarity is necessary. It is 

known that in order to have a stable complex, both geometric and electrostatic 

complementarity between the two sides of interfaces is necessary [50, 51, 59, 60].   
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Homo-dimers are more hydrophobic and larger in size, when compared to hetero-

complexes. Small interfaces prefer to interact through small pockets to exclude solvent. In 

spite of detecting significant differences, there is not a strict pattern to identify different 

types of protein-protein interactions [61]. Protein interfaces may change in size. Their sizes 

are based on the change in their solvent accessible surface area (ASA) when going from a 

monomeric to a dimeric state. On average, interfaces bury 1600 Å
2
 with the same packing 

density as the protein interior [50]. One-third of the interfaces have a distinguishable large 

hydrophobic core, whereas the remaining interfaces have smaller hydrophobic patches with 

polar contacts and water mediated interactions. All interfaces have buried residues 

containing core region which is surrounded by a rim region.  Core region of the interface is 

similar to interior of the protein in residue frequency. However, rim region is similar to 

protein surface [62]. Amino acid frequencies in the interface region are also an important 

parameter in characterization of these regions [63]. Using only amino acid composition and 

residue-contact preferences, an accuracy of 63-100 % is reached to predict interaction 

types [64]. Additionally, interface regions are rich in aromatic and hydrophobic clusters. 

The residue propensity of the interface regions is found to be similar to the interior of the 

proteins [21].  

Interface residues are more conserved than the rest of the surface by a chance higher 

than random [65]. However, conservation is not enough alone to completely distinguish the 

protein binding sites, but it can be combined with other interface properties [66]. The 

binding site of an unbound monomer (prior to binding) is enclosed by more water 

molecules and has less flexibility as depicted by low temperature factors compared to the 

rest of the surface [55]. Similarly, the interfacial residues are less flexible than the rest of 

the protein surface [67].  

 

2.3.2 Architectures of Protein Interfaces 

Besides these general properties of protein interfaces and interaction types, the structural 

characterization of protein interfaces and analysis of interface architectures are also crucial. 

In a remarkable work of Keskin et al, a structurally non-redundant set of protein – protein 

interfaces is divided into three classes where Type I clusters contain similar interface 

architectures coming from similar global folds, Type II clusters include similar interface 

architectures coming from dissimilar global folds and Type III clusters contain one side of 
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the interface conserved [20]. Type I clusters are expected cases, because the interaction of 

similar pairs with similar architecture is usual; however, Type II clusters are interesting 

cases which implies that nature reuses these favorable architectures for the interaction of 

different proteins. One step forward is that one side of the interface architecture is 

structurally conserved and the partner chain is changing (Type III). This type of interfaces 

is important for the analysis of promiscuous interactions and for addressing the question 

how a given site bind to different binding sites nonspecifically. These types of clusters are 

important because they show the architectural conservation of protein interfaces and the 

specificity of the proteins in their interactions.  

In the extension of this work, the growth trend of the interface dataset and structural 

data in PDB is analyzed [10] and we demonstrate how far we are from the complete 

structural information and where we are currently in structural biology. As a result, we 

found that the number of unique interface architectures continues to grow up, and also the 

population of clusters enlarges. Also, some interface architectures are more favorable and 

frequently used in protein–protein associations. In agreement with the broadly-accepted 

notion that binding and folding are similar processes, we observe that most populated folds 

are structurally similar to the most populated interface architectures. Nature appears to use 

similar preferred fold templates for single chains and for interfaces. 

 

2.3.3 Structural Characteristics of Binding Regions on Hub Proteins 

In protein-protein interaction networks, most proteins have only a few interactions, 

whereas, a small number of „hubs‟ are highly connected [68]. Further they connect many 

crucial cellular processes [69]. Scale-free characteristics of networks make them very 

resilient against accidental failures: even if 80% of randomly selected proteins fail, the 

remaining 20% still continue to carry out the cellular functions [70]. However, protein 

networks with hubs are shown to be vulnerable to systematic attacks at highly connected 

proteins. Removal of such hub proteins is often lethal [71] , which makes these proteins 

essential in the cell [72]. From a structural point of view, structure can help in 

understanding the roles of these hubs in the affinity of the interactions. Since a single 

protein cannot interact with a large number of partners at the same time, they should adapt 

either multiple binding sites on their surfaces where multiple partners may interact through 

these sites simultaneously, or they reuse the same binding site for different partners. The 
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binding region of multi-partner proteins mainly composed of alpha helices and these 

interfaces are not well organized and packed when compared to other proteins [2]. 

Schroeder and his co-workers also similarly stated that hub proteins use different surface 

regions to interact with different partners. Further, they speculated that the ancient 

interfaces are coming from symmetric homodimers, and heterodimers are evolved from 

these complexes [73].  In another work, Aloy et al stated that close homologues interact in 

the same way; however similar folds can interact differently [74]. In an elegant study, Kim 

et al [75] combined structural modeling with network analysis. They used the interfaces in 

protein surfaces and found that for two or more proteins interacting with a common partner 

protein, there are two possibilities: i) they can use the same interface on the partner 

(singlish interface), then they classified the interactions as mutually exclusive. ii) or the 

two proteins can use different interfaces (multi-interface), then they called the interactions 

as simultaneously possible. They found that, most of the mutually exclusive interactions 

were transient, because they cannot occur at the same time. On the other hand, 

simultaneously possible interactions are enriched in permanent associations, connecting 

members of the same complex. 

Our previous analysis highlights that there exist conserved interactions of a given site 

when interacting with multiple partners. This means that even though the partner proteins 

are different there are some critical residues in the binding site that make conserved 

interactions with multiple proteins [47]. Thus, while the patterns of the local interactions 

are similar in multi-partners and in single-partners, the multi-partners have been optimized 

by evolution to accommodate different ligand shapes, sizes and composition. For example, 

crystal structures of the Elongin B/Elongin C/VHL and Elongin B/Elongin C/SOCS2 [76, 

77] complexes provide such clues. The concept of functional switches in transcriptional 

regulation [78] was emphasized by Beckett, focusing on the ability of proteins to bind 

alternative proteins at the same binding site. 

 

2.3.4 Artificial interfaces from crystal complexes 

If two proteins interact with each other in vivo, then they form a biological complex, and 

their interaction is formed through a biological contact. However, sometimes, the entries in 

the Protein Data Bank (PDB) have artifacts of crystallization meaning that some of the 



 

Chapter 2: Literature Review  12 

 
 

complexes there would not occur in solution or in the physiological state. Determining 

which contacts are biological and which are not is often difficult [79]. 

There are some ways to differentiate biological contacts from non-biological ones. 

Several groups have successfully used conservation scores to predict biological protein–

protein binding sites  [79, 80]  which conclude that conservation in combination with other 

factors can accurately discriminate homodimers from crystal contacts. Further, interface 

size is an important characteristic in distinguishing crystal and biological complexes [21, 

79, 81]. A threshold of 400 A
2
 was used in PQS for identifying biological complexes [82]. 

Similarly, when the number of interface residues was less than 10, the interface was 

considered to result from the crystal packing rather than biological inter-subunit 

interactions [20, 52]. Shoemaker et al. (2006) generated a set of conserved domain–domain 

interactions by structural alignment to distinguish the biologically relevant interactions. 

According to these conserved modes, they reached an accuracy of 90% on all globin 

interacting pairs without false positives [83]. Another significant factor to distinguish 

artificial interfaces is amino acid frequency on the interaction site. If the binding site amino 

acid composition is similar to the rest of the surface of that protein, then this interaction is 

possibly crystal packing [84].  In addition, multiple features (interface area, interface area 

ratio, amino acid composition, correlation between surface and interface regions, gap 

volume index, and conservation score) can be also combined for predicting biological 

complexes using machine learning approaches as in NOXclass [85]. The contact 

frequencies of buried residues in protein interfaces used as the feature set and it performed 

well to discriminate artificial interfaces [86].  

 

2.3.5 Cooperativity and Allostery in Protein Interactions 

Analysis of the interaction between two proteins supplies useful information; however, the 

effect of a third protein to the binding process, in words, “cooperativity”, is also important. 

Here, the association of two proteins is dependent on the third protein. Experimentally, 

there are some evidences that binding affinity of a specific protein increases to its partner 

during the occurrence of a third protein although they do not interact directly. For example, 

the interaction between the transcriptional co-activator CREB binding protein (CBP) and 

its transcriptional activator partners is cooperative. The binding affinity of pKID increases 

two fold when it binds to KIX-MLL complex; however, the interaction between pKID and 
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KIX monomer is weaker [87]. Besides the cooperativity between proteins, there is also 

cooperation between domains in protein interactions. As an example, Klemm et al found 

the cooperative binding of POU-specific domain and the POU homeo domain in protein 

Oct-1 [88]. Different patches in protein interfaces are not completely additive, rather they 

significantly cooperate [89].  

 Allostery is defined as regulation of a protein through a change in its quarternary 

structure induced by a small molecule [90]. Kuriyan and Eisenberg broaden this definition 

as the change induced by a small molecule or another protein [91]. Nussinov and her 

collegues argued that all proteins are potentially allosteric [92]. Evolutionarily some 

regions of proteins are very sensitive to mutations whereas some regions are robust to 

mutations. Ranganathan and his co-workers present a statistical approach which considers 

evolutionary data of the targeted protein family and calculate the pairwise energetic 

coupling of the residues [93]. They found sparse but connected network of residues passing 

through the protein core and connecting the active site with distant sites. In contrast to this 

work, Chi et al found that spatially close residues are coupled energetically, instead of 

distant residues. [94].  Nussinov and her co-workers approach allostery from graph 

theoretic perspective and they represent proteins as residue contact networks. They 

identified the centrally conserved residues which are important for long range interactions 

and these residues are correlated with the experimentally suggested residues which are 

important for allostery [95].  

 

2.4 Critical Residues in Protein Binding: “Hot Spots” 

Studies on protein interfaces have revealed that energies are not uniformly distributed. 

Instead, there are certain critical residues called hot spots comprising only a small fraction 

of interfaces yet accounting for the majority of the binding energy [1, 42]. Experimentally, 

a hot spot can be found by evaluating free energy change upon mutating it to an alanine, 

playing key roles on the stability of the protein association. Thorn and Bogan [96] 

deposited hot spots from alanine scanning mutagenesis experiments, in the Alanine 

Scanning Energetics Database (ASEdb). Binding Interface Database (BID) [97] presents 

experimentally verified hot spots at interfaces collected from literature.  
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2.4.1 Characteristics of Hot Spots 

Analysis of amino acid composition of hot spots shows that some residues are more 

favorable. The most frequent ones, Tyr, Arg, and Trp, are critical due to their size and 

conformation in hot spots [1]. In addition, Bogan and Thorn reported that hot spots are 

surrounded by energetically less important residues that most likely serve to occlude bulk 

solvent from the hot spots (O-Ring hypothesis) [1]. Occlusion of solvent is found to be a 

necessary condition for highly energetic interactions [1, 98, 99]. It is observed that hot spot 

residues prefer to sit in complemented pockets, and are disfavored in unfilled pockets [24]. 

Predicted clefts using physicochemical properties and conservation of protein surfaces may 

correspond to binding hot spot regions [100]. Another study has illustrated that there is a 

correlation between energy change and decrease in the accessible surface area of individual 

residues as a consequence of complexation [101]. Moreira et al have supported that 

hotspots are protected from solvent by a rim region; however, they concluded that more 

computational analysis should be applied to elucidate this theory [102]. Hot spots are 

usually found in strong obligate complexes. In a recent work, Volkov et al found that 

transient complexes also have binding energy hot spots [103]. There are several studies 

focusing on the detection of hot spots based on conservation: Correlation between hot spot 

residues and structurally conserved residues were found to be remarkable [104]. However, 

hot spots are marginally more conserved than the rest of the interface in sequence [98, 99]. 

Hot spots in interfaces are found to be less flexible compared to the rest of the protein 

surface and interface residues [105-107]. These residues are highly packed and form 

clusters among themselves [44]. They are observed to form pre-organized binding motifs at 

protein interfaces even in the unbound cases. This organization might be to minimize the 

entropic cost upon complex formation. 

 

2.4.2 Prediction of Hot Spots in Protein Interfaces 

Hot spot information from experimental studies are available only for a very limited 

number of complexes, therefore, there is a need for computational methods to identify hot 

spots of protein interaction sites [108]. Several research groups developed learning based, 

energy based models [109, 110] learning based models [98, 99, 111-116], molecular 

dynamics based models [106, 117, 118] and graph based models [119, 120] to predict hot 

spot residues computationally.  
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In a pioneering work, Kortemme and Baker [121] proposed a physical model (Robetta) 

to detect hot spots at protein-protein interfaces accounting for energies of packing 

interactions, hydrogen bonds and solvation. Computational hot spots, the residues they 

identified computationally based on their model, show accordance with experimental hot 

spots in ASEdb. Similarly, Gao et al. used non-covalent interactions to estimate energetic 

contribution of interfacial residues to binding. They reported an 88 % success rate for 

predicting hot spots obtained from alanine scanning mutagenesis experiments [114]. 

Another energy based model developed by Serrano and co-workers [109] was used to 

predict the energetic effect of mutations on protein complexes. The calculated energy 

change of mutations agreed well with the experimental results. Their method is applicable 

to hot spot predictions as well. 

Molecular dynamics (MD) simulations can provide detailed analysis of protein 

interfaces at the atomic level for more accurate prediction of hot spots [117]. Rajamani et 

al. [106] studied 11 protein complexes and found that anchoring residues in protein 

interfaces show restricted mobility and may act as hot spots.  Kollman and co-workers 

[118] applied MD to find computational alanine scanning of 1:1 human growth hormone-

receptor complex and reported a good agreement with the experimental data. Although 

these energy and MD based methods are successful to identify hot spots of individual 

protein complexes, they are not applicable, in practice, for large scale hot spot predictions 

due to their computational cost. 

A neural network based approach using various features of interfaces such as sequence 

profiles, solvent accessibility and evolutionary conservation is employed in computational 

hot spot prediction [98]. The method has advantage of using only sequence; thus, it is 

applicable when the structure is not available and also when the binding partner is 

unknown. A hybrid computational model combining decision tree (using atomic contacts, 

physicochemical properties and shape specificity contributions) with computational alanine 

scanning method is proposed to predict hot spots [111]. A neural network-based approach 

using interface features such as sequence profiles, solvent accessibility and evolutionary 

conservation has been employed in computational hot spot prediction (an adaptation of 

ISIS) [98]. In another work, Grosdidier et al [122] predict hot spots by using docking 

methods without protein complex knowledge. Their performance on a subset of 

Kortemme‟s dataset reached a precision value of 0.78 and sensitivity 0.46.  
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Graph/network-based algorithms are also frequently utilized to study the identification, 

organization, and packing of hot spots. Brinda et al. [119] used graph representation of 

homodimeric protein complexes and applied spectral analysis to the residue networks to 

predict hot residues. del Sol and O‟Meara [120] used the small-world network approach to 

predict hot residues in protein-protein interfaces. In their work, highly central residues are 

considered and they stated that 77% of the predicted residues, conserved and buried ones, 

are either experimental hotspot or in direct contact with an experimental hotspot. Haliloglu 

et al.[123]  applied Gaussian Network Model (GNM) on several antigen-antibody and 

enzyme-inhibitor complexes to predict anchoring residues.   

Although these methods are successful to identify hot spots of individual protein 

complexes, molecular dynamics based and energy based methods are not applicable, in 

practice, for large scale hot spot predictions due to their computational cost. Also, machine 

learning based methods perform well to predict binding hot spots and these methods are 

computationally very effective [98, 111]. Most machine learning based hot spot prediction 

methods learn complex relations between training data and hot spots; however, it is very 

difficult to translate these relations into simple, intuitive rules [98]. 

 

2.4.3 Hot Regions: Modular Nature of Protein – Protein Interfaces 

As stated in the previous section, energy distribution is not uniform along the interfaces. 

Further, there are pockets and cavities in the interface. Chakrabarti and Janin stated that 

small binding sites are composed of single continuous patch; however, larger interfaces 

may be composed of several patches which are distant to each other [21]. Hot spots come 

together and form tightly packed regions, called hot regions [44] resulting in densely 

packed clusters of networked hot spots. Contribution of distinct hot regions to stability is 

additive whereas contribution is cooperative within clusters [44]. Schreiber and his co-

workers also analyzed the modular architecture of protein interfaces. They stated that 

protein interfaces are composed of individual residue clusters where residues within 

clusters are strongly connected whereas individual clusters are weakly connected to each 

other. They showed the modular architecture of TEM1-β-lactamase and its inhibitor 

protein (BLIP) experimentally using multiple mutations and checked whether the 

intracluster mutations are additive or cooperative [124]. On the other hand, Moza et al 

(2006) declare the necessity of long distance interactions for protein – protein interactions 



 

Chapter 2: Literature Review  17 

 
 

and showed the cooperativity between distinct hot regions which are 20Å far-away from 

each other. Using combinatorial mutagenesis, they showed the cooperative energetics 

between two hot regions in the interface of T cell receptor and a bacterial superantigen. As 

a result, in contrast to Schreiber‟s work, they stated that mutations both within and between 

hot regions are energetically cooperative [89]. On one hand, some works state that protein 

interfaces are composed of energetically independent subregions; on the other hand, some 

others propose that there should be cooperativity between distinct regions for long distance 

communication. At a large scale, structure based computational study of Carbonell et al, 

the binding specificity and affinity of the protein interactions are examined using modular 

distribution of hot spots in the binding site. As expected, they found that interaction 

strength of specific interactions is stronger than the promiscuous ones and hot spots in 

different modules interact with different partners [125]. In a recent work, the organization 

of hot regions is analyzed for hub proteins and hot spots are found to be more organized in 

date hubs when compared to party hubs [126].  

 

2.5 Structure-Based Modeling of Protein-Protein Interaction  

Combination of all knowledge about the characteristic of protein interactions helps to 

design high performance prediction algorithms to model the protein interactions. In this 

section, structure-based prediction algorithms are reviewed in two classes; docking 

strategies and template-based approaches, respectively. 

 

2.5.1 Docking Strategies 

From the structural point of view, modeling of the protein complexes is frequently 

achieved via „docking‟. The aim of docking is to find the best match for a given 3D 

coordinates of receptor and ligand proteins. Several docking algorithms are developed 

throughout the years [127-132]. Docking strategies are composed of a fast search algorithm 

to obtain the candidate conformations and a high quality scoring function for the ranking of 

these conformation towards finding the near native model. Geometric and chemical 

complementarity, electrostatic, van der Waals forces or knowledge-based potentials [133] 

are mainly considered in scoring functions. For the performance assessment of docking 

strategies, Critical Assessment of Predicted Interactions (CAPRI) is usually used where at 

every round several docking methods are used to predict the complex states of the given 
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unbound protein structures [134, 135]. CAPRI is useful to see the situation of current 

docking strategies and improvements throughout the years [136].  Also, the bound and 

unbound forms of protein structures deposited in Docking Benchmarks are another source 

for testing [137, 138]. From past to now, the performances of docking strategies are 

improved [135, 139]. However, scoring functions are still not fully optimized; hence, the 

correct assessment of the modeled protein complexes with these scoring funcions is still an 

important issue [140]. While docking is very useful to find the 3D model of the protein 

complexes it is very challenging, especially at large scale. First of all, in the lack of the 

additional information about the interaction of two proteins, they give several false positive 

binding orientations. In addition, docking is computationally very expensive at large-scale. 

Recently, the first large-scale docking effort is performed and 3,000 putative protein 

complexes are modeled for yeast protein network [141]. Another issue in docking is 

flexibility. While two proteins are interacting, they are exposed to conformational change; 

both side-chain and backbone. To accurately find the native state of the protein complexes, 

flexibility should also be incorporated to the rigid body docking algorithms. Towards this 

aim, refinement algorithms are developed to re-assess the rigid-body docking solutions and 

to re-rank the modeled interactions [142-144].  

In recent years, docking is directed from blind testing to combination of binding site 

prediction approaches to restrict the wide range of solution space. As an example, all 

binding modes of a targeted protein (PSD-95) and its homologs are extracted and this 

information is used to limit the solution space for docking purposes [145].  In another 

work, binding site prediction algorithms are first applied to filter the candidate 

conformations and then the docking procedure is applied which improves the performance 

of the method on docking benchmark proteins [146].  

 

2.5.2 Template-Based Modeling of Proteins Interactions 

Nature presents a limited number of protein folds [147]; hence, the number of distinct 

binding site motifs are also limited [13]. With the growth of the structural data for protein 

complexes, template-based methods take more attention where a protein complex is 

modeled using sequence or structural similarity to a known protein complex. We can 

analyze template-based methods in two classes: homology-based (sequence-homology and 

structure homology) and interface-based (see Figure 2.3).  
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Figure 2.3 Classification of template-based approaches. In sequence homology-based prediction, 

protein complexes having sequence similarity with target proteins are the templates. Here, 

chymotrypsin/ovomucoid complex is predicted from the trypsinogen/pancreatic trypsin inhibitor. In 

structural-homology, independent from sequence similarity, overall structure of the template and 

target proteins are similar as in the interaction between matripase and trypsin inhibitorI predicted 

from Elastase-1/hybrid squash inhibitor complex. In interface-based prediction, just the interface 

region of the protein complexes are used to search similarity with target proteins. Rap1-A/Gadd45 

complex is modeled using the interface between exoenzyme S and human Rac. 

 

Homology-based methods are first appeared in the content of template-based prediction 

approaches. The basis depends on that proteins associate in a similar way if their sequence 

similarity is as high as 30% [74], while exceptional cases are available [148]. Aloy and 

Russell [149] searched the sequence homologues of the known protein complexes and 

scored the predicted interaction between homolog proteins using empirical potentials 

derived from known protein interactions. These potentials are usually used to assess the 

predicted complex, because implementation and computation of knowledge-based 

potentials is simple and their success is proven previously in fold recognition [150, 151]. If 

the score of a predicted complex is high enough, the homologous protein pair associates in 

a similar way with the template complex. This method is utilized to model protein 

complexes in yeast interaction network and fibroblast growth factor/receptor system. Later 

on, InterPreTS is designed as a web server to predict protein interactions using this method 

for a given set of protein sequences which uses Blast2 search tool to find the homologues 

[152]. Skolnick and his co-workers spend pioneering efforts on homology-based prediction 

of protein interactions. Their method, Multiprospector is based on multimeric-threading 
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[153]. It uses a template library composed of protein complexes besides monomers. The 

algorithm is composed of two phases; in the first phase, each target sequence is assigned to 

a protein structure in the template library. In the second phase, single chain threading is 

extended to multi-chain threading and each target protein pair is assigned to a group of 

quaternary structures. The quality of the predictions is assessed by the interfacial potentials 

and Z-scores. The knowledge-based statistical potentials are shown to discriminate native 

interactions from artificial ones with an accuracy of 90% [154]. Multiprospector exceeds 

the previous methods by its functionality in the lack of sequence similarity between target 

proteins and template complex. Multiprospector is applied on a large scale to yeast 

interaction network and 7321 interactions are modeled. The quality of the predictions are 

assessed with co-localization and molecular function [155]. The drawbacks of this 

algorithm are presented as that it cannot consider the conformational changes upon binding 

and also it cannot correctly balance the relative position of the proteins. M-Tasser is 

developed to solve these problems and it explicitly combines backbone flexibility with the 

threading to find predictions [156]. In another template-based approach, structural 

homology is considered to form the template set with complexes between single domain 

containing proteins. Also, weakly binding complexes are eliminated from this dataset. By 

superimposition of the target domains onto template complexes, models for protein 

complexes are generated and the models are ranked according to an energy function [157]. 

Alexov and his co-workers also used sequence homology to predict 3D structures of 

protein complexes [158]. Recently, Kundrotas et al constructed the GWIDD database 

composed of the experimental and homology-based models for several species towards the 

structural representation of all genome [159]. Homology-based protein modeling can just 

cover at most 20% of the overall protein networks. The advantage of homology-based 

prediction is that many proteins are unstructured in their unbound state and this method can 

produce prediction for these proteins.   

Besides the homology, the structural similarity of overall protein structures, mainly the 

domain information, is also integrated to search putative protein complexes. Sali and his 

co-workers used matching of the overall domains to predict protein interactions. Scoring of 

these putative complexes are performed again using statistical potentials. The potentials 

derived from side chain-side chain contacts are found to distinguish the non-native contacts 

with an accuracy of 0.993 [160]. This method is later applied to a target dataset composed 
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of host and pathogen proteins to model the interactions between them [161]. Aloy et al., 

considered overall structural fold similarity besides sequence similarity to make more 

complete the structural interaction network of yeast [13]. 

As implied in the previous sections, the structure of the protein is evolutionarily more 

conserved than the sequence; further the interface of the protein is more conserved than the 

overall structure [66][ref]. Based on the recognition that binding and folding are similar 

processes with similar underlying principles, we proposed that interface structural 

similarity exists not only between homologous protein pairs; different protein fold-pairs 

can also interact via similar interface architectures and these architectures are similar to 

those observed in single chain proteins [20, 52]. Hence, the illustration of this concept 

inspired the idea that just using the interface region - independent from sequence similarity 

or global fold similarity of protein pairs – can produce promising models for protein 

complexes. PRISM [162, 163] is the first algorithm presenting this concept to model 

protein complexes where if two complementary partners of a template interface are similar 

to the surface of two target proteins, these two proteins are principally interact with each 

other using this template architecture.  This method is used to generate a structural 

interaction map of cancer proteins [164] and to show the multi-face nature of the hub 

proteins [99]. This method was utilized to characterize the human cancer proteins 

interaction network [164] and to predict interactions for multimeric hub proteins states 

with shared binding sites [165]. Similar methods appeared following this idea [166-168]. 

One of them is ISearch which depends on the same basis with PRISM with one exception 

where the template interfaces in this method are domain-domain interfaces [166]. In a most 

recent work, Vakser and his colleagues implies the necessity of template-based docking 

independent from sequence homology and global fold similarity [169]. The predicted 

models are ranked according to a score coming from matching which changes between 0 

and 1. Their results show that local structural alignments give more accurate models than 

global structural alignments. If the sequence similarity between target and template is very 

low, homology-based methods fail to find any similarity; hence, interface templates are 

useful to detect interaction even for the dissimilar target and template sequences.  

In all template-based methods, the procedure is very smart and straightforward: select a 

high quality non-redundant template dataset composed of known protein complexes, 

extrapolate the known structural data to identify unknown interactions by using the 
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sequence or structural similarity, rank the predictions according to a scoring function i.e. 

statistical potentials or energy functions. When we look at all these template-based 

methods in a comparative manner, we notice that the most critical step is the choice of the 

template for all of them to model an interaction, because mistaken templates can produce 

false positive binding regions. In addition, template-based methods mainly decrease the 

solution space and helps docking approaches by limiting the possible orientations. In this 

way, these methods are computationally more efficient than the docking strategies and 

easily applicable at proteome scale. The most important issue in all of them is the 

optimized scoring of the models. The accuracy of the template-based methods are also 

sufficient for proteome-scale studies [170]. 

The limitation of these template-based methods is the availability of the similar 

templates in the dataset. If there is no similar template available it is not expected to find a 

prediction. However, if there are similar templates in the dataset, to find a prediction is 

very fast and reliable. With the exponential growth of the number of protein complexes in 

PDB, template-based prediction methods will take much more attention in the near future.  

 

2.5.3 Construction of a Non-redundant Template Set for High-Quality Predictions 

As implied in the previous section, the construction of a non-redundant template set is the 

most challenging part of the template-based prediction methods. Hence, each template-

based prediction method has different approaches to generate a non-redundant template set.  

In Dockground, the representative set of the protein complexes is obtained by the 

elimination of sequence and structural similarities and for the remaining the highest 

resolution one is selected as representative. For the modeling of protein complexes, 11,932 

protein complexes are considered whose resolution is less than 3 Å and the sequence 

similarity is less 90%. Also, the interface definition (the distance cutoff between any two 

atoms) is varied from 6 Å to 16 Å and 12 Å is found to be optimal cutoff. In another study, 

the template dataset is generated from domain-domain interfaces with a resolution of less 

than 3.5 Å. Further, domain-domain interfaces are clustered at superfamily-superfamily 

level. Interfaces in the clusters are ranked according to the interface size, resolution and 

domain size and the first ranking interfaces are selected as representative. However, it is 

stated that just clustering according to the overall domain superfamily is not enough to 

illustrate the structurally similar interfaces. In a homology-based method, the protein 



 

Chapter 2: Literature Review  23 

 
 

complexes from the ProtCom database [19] is filtered according to a sequence similarity 

threshold to form the template set. Protein complexes having sequence similarity less than 

40% is considered and crystal artifacts are not considered resulting in 463 protein 

complexes in the template set [158]. SCOPPI [14] and PIBASE [18] are two of the domain 

level interface databases used to generate template set for structural modeling of protein 

complexes. Clustering of the protein interfaces in SCOPPI database is achieved by the 

angle between two domains and structural alignment of the domains [14]. Protein 

interfaces in PIBASE is clustered according to the topology of the secondary structure 

elements [18].  

Structural alignment of the protein interfaces is another approach to generate a non-

redundant set. Geometric hashing is one of the very powerful methods to align interfaces 

and to find structural similarity between them. All available protein interfaces are clustered 

by geometric hashing using just Ca atoms at different time periods [10, 20, 52]. In these 

datasets, all interfaces are compared to each other iteratively and if they are structurally 

similar, they go to the same cluster. The structural similarity within clusters is very high 

while the similarity is very low between clusters. I2ISiteEngine [171] also uses geometric 

hashing for interface alignment; however, it considers the physicochemical properties of 

atoms (donor, acceptor etc.) besides their spatial arrangements. Another program 

specialized in the alignment of protein interfaces is Galinter [172]. This method represents 

the van der Waals interactions and hydrogen bonds within the interface as vectors and 

aligns these vectors with each other to find similarity between two interfaces. When 

compared to I2ISiteEngine, despite the different features used, their performances are 

similar. The most recent work about alignment of protein interfaces is iAlign [173] which 

uses heuristics techniques and iterative dynamic programming. The performance 

comparison of iAlign with I2ISiteEngine on the same test set shows that the accuracy of 

iAlign is higher than the accuracy of I2ISiteEngine; further, the computational time 

comparison points out that iAlign algorithm is faster.  

When the template generation methods are examined, we see that the differences come 

from interface definitions, sequence similarity thresholds, clustering methods, and 

domain/chain level interfaces. Also, for high quality predictions the template set should as 

structurally diverse as possible to be able to cover most of the interactions. Hence, the 

structural alignment of the interfaces – independent from their sequence and global fold – 
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has essential role in template generation. Before the scoring of the predicted interactions, 

optimization of the parameters to generate a diverse and non-redundant template set is 

crucial for high-quality modeling of the interactions.  
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Chapter 3 

 

IDENTIFICATION OF COMPUTATIONAL HOT SPOTS IN PROTEIN 

INTERFACES 

 

Hot spots are residues comprising only a small fraction of interfaces yet accounting for the 

majority of the binding energy as reviewed in Chapter 2. In this chapter, a new intuitive 

efficient method is presented to determine computational hot spots based on conservation 

(C), solvent accessibility (ASA) and statistical pairwise residue potentials (PP) of the 

interface residues. Combination of these features is examined in a comprehensive way to 

study their effect in hot spot detection. The predicted hot spots are observed to match with 

the experimental hot spots with an accuracy of 70% and a precision of 64% in Alanine 

Scanning Energetics Database (ASEdb), and accuracy of 70% and a precision of 73% in 

Binding Interface Database (BID). Several machine learning methods are also applied to 

predict hot spots. Performance of our empirical approach exceeds learning based methods 

and other existing hot spot prediction methods. Residue occlusion from solvent in the 

complexes and pairwise potentials are found to be the main discriminative features in hot 

spot prediction. Our empirical method is a simple approach in hot spot prediction yet with 

its high accuracy and computational effectiveness.  

 

3.1 Methodology for Identification of Computational Hot Spots 

3.1.1 Training Set 

Proteins that have experimental hot spot data and available crystal structures are used in 

developing a scoring formula. Alanine scanning data was obtained from the ASEdb, and a 

previously compiled data set from Robetta. The redundancy in this data set is removed 

using PISCES sequence culling server [174] with no sequence identity more than 35% as 

in the procedure of Darnell et al. [111]. In the training part, we have used only hot spots 

and non-hotspots to be more discriminative. The interface residues whose observed 

binding free energies are greater than or equal to 2.0 kcal/mol are considered as hot spots. 

Also, the interface residues whose binding free energy is smaller than 0.4 kcal/mol are 
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labeled as non-hot spots in a similar way with Gao et al [114]. Other residues having 

binding free energy between 0.4 and 2.0 are not included in the training to discriminate 

better. Actual training set used during 2-class (hot spot, non-hot spot) prediction model 

construction consists of 150 residues, for which both conservation and solvent accessibility 

information is available, of which 58 residues are hot spot and 92 residues are non-hot 

spot.  

 

3.1.2 Test Set 

A test set, used for assessing performance of proposed prediction models, is taken from 

Binding Interface Database (BID) [97]. BID contains binding free energy strengths of 

monomers. The test set is filtered for identical sequences in a similar fashion to the training 

set. The resulting set shrinks to 112 residues on 25 monomers (54 hot spots and 58 non-hot 

spots) when residues with known conservation scores and accessibility are considered. Hot 

spot residues are labeled as the ones with “strong” interaction strengths and others are 

tagged as non-hot spot. The data originating from training and test sets are mutually 

exclusive. The list of training and test sets are available as supplementary at; 

http://prism.ccbb.ku.edu.tr/hotpoint/supplement.doc   

 

3.1.3 Features 

Accessibility: The accessible surface area (ASA) of each residue in monomer state and in 

complex state in the training and test sets are calculated by using Naccess [175]. These 

ASAs are then converted into relative accessibility: 

100
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
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


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where “relCompASAi” is the relative ASA in complex of i
th

 residue and “relΔASAi” is the 

relative difference ASA between complex and monomer state of i
th

 residue; in other words, 

the ASA change of the residue upon complexation. “maxASAi” is the maximum ASA of a 

residue in a tri-peptide state [176].  

http://prism.ccbb.ku.edu.tr/hotpoint/supplement.doc
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Conservation: Residue conservations are found by Rate4Site (R4S) algorithm [177]. R4S 

makes use of topology and branch lengths of the phylogenetic trees constructed from 

multiple sequence alignments (MSA) of proteins and estimates conservation rates of the 

amino acids based on the empirical Bayesian rule. MSAs of proteins are taken from HSSP 

(Homology-Derived Secondary Structure of Proteins, [178]) database. All MSAs obtained 

from HSSP are converted to FASTA format to be used in R4S step. Conservation scores 

obtained by R4S are scaled between 1 and 9. The scaled conservation score of residue i 

(between 1 to 9) is called Scorei.   

 

Pair Potentials: The knowledge-based potentials have been shown to be useful in many 

threading, folding and binding problems [179-181]. Residue specific, non-bonded 

interactions taking place between sequentially distant but spatially close amino acid 

residues (neighbors) are recognized to play a dominant role in the stabilization of globular 

proteins and complexes [180, 182-187]. A practical way to obtain these potentials is to 

extract them from frequencies of contacts between different residues in proteins with 

known three-dimensional structures. Knowledge based solvent mediated inter-residue 

potentials [151], extracted from protein interfaces, are used in this work. Although these 

potentials are not very different from the potentials extracted from overall proteins, subtle 

changes might be important to detect interface hot spot residues. 210 distinct potentials (all 

possible pairs of 20 amino acids) in RT unit (R universal gas constant, T is temperature) 

for contacting residue pairs are supplied in the Supplementary Material. Contact potential 

between two residues i and j is found as;  



 


otherwise                          0                    

4 j-i and 7.0  j)d(i, if    j)  type(i,of potentialcontact 
 j)Pair(i,

  (3.3)

 

where Pair(i,j) is the contact potential of residues i and j and d(i,j) is the distance between 

two residue centers [150]. We extracted the neighbors around the residues whose side 

chain center of mass are closer than the cutoff (7.0 Å). Overall contact potential of residue 

i is defined as the absolute of sum of its pair potentials: 
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Computational Alanine Scanning (Robetta): Robetta [110, 121] is a server which 

includes computational alanine scanning. Robetta server gives changes in the binding free 

energy (ΔΔG) values based on an atomic energy function including Lennard Jones 

interactions, solvation interactions and hydrogen bonding. The calculated ΔΔG is named 

“Robetta” throughout our work. Robetta ≥ 1.0 kcal/mol is the default cutoff in the hot spot 

predictions in all models.  

 

3.1.4 Assessment of the Prediction Performance 

Accuracy is the ratio of number of correctly predicted residues to number of all predicted 

residues, formulated as; 

  
FNTN  FPTP

 TN  TP
 Accuracy 






       (3.5)
 

where TP, FP, TN, FN stands for number of true positives (correctly predicted hot spot 

residues), number of false positives (non-hot spot residues incorrectly predicted as hot 

spots), number of true negatives (correctly predicted non-hot spot residues) and number of 

false negatives (hot spot residues incorrectly predicted as non-hot spots) respectively.  
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where Recall is the proportion of number of correctly classified hot spot residues to the 

number of all hot spot residues; Specificity is the proportion of number of correctly 

predicted non-hot spot residues to the number of all non-hot spot residues; Precision is the 

ratio of number of correctly classified hot spot residues to the number of all residues 

classified as hot spots. Also by using F-measure we check the balance between precision 

and recall which is formulated as follows: 

Precision  Recall

Precision  Recall  2
   Measure-F






      (3.9)
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3.1.5 Determination of Computational Hotspots 

Size of the experimental hot spot data is small to be used in learning based methods with 

large number of features to determine the hot spot characteristics. We prefer to construct 

our model incrementally first examining single features (base cases), and then improving 

our model by addition of other significant features. In the base models we use only one 

feature, such as relative ASA in complex, relative difference ASA, conservation, pair 

potentials to discriminate hot and non-hot residues. These features are selected considering 

following criteria: hot spots are buried [1], structurally more conserved, highly packed 

[163], known to be mostly of specific residue types, i.e. aromatic [1]. The performance of 

the base models is used as lower bounds to assess the performance of our model and 

several machine learning based prediction approaches.  

1) Base Cases: 

a. Scorei ≥ tscore   

b. relΔASAi ≥ trelΔASA   

c. relCompASAi ≤ trelCompASA  

d. PairPotentiali ≥ tPairPotential   

e. Robetta ≥ tRobetta 

where tscore, trelΔASA,  trelCompASA, tpairPotential  and  tRobetta are thresholds, and currently the 

default values are set to 7, 30%, 20% , 18.0, and 1 respectively. The explanation and 

justification for these default values are given in the results section.  

2) Combination of two features: 

We have tested the performance of some possible two features:  

Scorei + relCompASAi,  

Scorei + PPi,  

relCompASAi + PPi, 

 relCompASAi + Robetta.  

3) Addition of a third feature: 

relCompASAi ≤ trelCompASA & (Scorei ≥ tpScore or  Robetta ≥ tRobetta),  

relCompASAi ≤ trelCompASA & (Scorei ≥ tpScore or  PPi ≥ tPairPotential)   

 

Further, we have used machine learning techniques to predict hot spots using the 

training set for learning. Several algorithms are employed for classification: Decision tree 
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(J48), decision table, SVM, BayesNet, Naïve Bayes, RBFNetwork, and Majority Voting. 

The features for each residue (for the learning algorithm) consist of the same ones that we 

have used in the formulations above, relCompASAi, Scorei, and PPi. The results and 

comparison of these formulations are discussed in the results section. 

 

3.2 Results 

3.2.1 Distribution of features of hot spots and non-hot spots 

In order to decide on the threshold values, we have prepared histograms of relative 

complex ASA (relCompASA), relative change in ASA upon complexation (relΔASA), 

conservation score, and pair potentials for the hot spot and non-hot spot residues in ASEdb 

as shown in Figure 3.1. The mean and standard deviations of each feature are calculated 

for hot and non-hot residues. Further, t-tests are performed to determine if the difference 

between two distributions of hot and non-hot spots is statistically significant for each 

feature. For significant ones, we evaluate the formulas (in the Methods) by trying several 

threshold values between the two mean values.   

Figure 3.1A shows the distribution of relCompASA. Though many of the hot spot 

residues have similar relCompASA values with non-hot spot residues, they have different 

mean values (hotspots: 11.9%, non-hotspots: 26.4%). The p-value for relcompASA is 

found as 4.7x10
-7

 (<0.05) which implies the significance between the means of the hot and 

non-hot distributions. There are significantly more non-hot spot residues which have 

relative complex ASA greater than 20% (trelCompASA = 20.0). This is also consistent with 

previous studies indicating that hot spots are buried [1, 24, 163].  

Figure 3.1B shows the distribution of change in ASA upon complexation. The means 

are found as 34.8 for hot spots and 26.4 for non-hot spots for relΔASA. This feature is also 

discriminative with a p-value 5x10
-3

 (<0.05). The threshold is determined as 30% for 

relΔASA which is between the two mean values (trelΔASA = 30.0). 
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Figure 3.1 Distribution of hot spot and non hot spot residues in the available data set with respect 

to their (A) relCompASA, (B) relDiffASA, (C) conservation, (D) pair potential. 

 

Figure 3.1C shows conservation score distribution which does not have a clear 

distinction between hot and non-hot spots. The mean value for hot residues is 4.2 and for 

non-hot residues 3.9. The difference between two sets is insignificant (p-value = 0.22). 

This indicates that conservation may not be a good discriminating factor by itself.  

However, to check this slight difference, we select the threshold for conservation score as 

7.0 (tScore= 7.0) and test the performance of conservation in hot spot prediction. 
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Figure 3.1D displays the histogram for knowledge-based pair potentials of residues. 

The means for hot spots and non-hot spots are found as 20.3 and 12.7, respectively. This 

feature is statistically significant to discriminate hot spots and non-hot spots (p-

value=5.4x10
-6

). A threshold of 18.0 (tpairPotential = 18.0) is chosen since a residue with pair 

potential more than 18.0 has a higher tendency to be a hot spot.  

We further performed ANOVA analysis and determined the most important features to 

distinguish hot spots from non-hot spots. relCompASA, relΔASA and pair potentials were 

found to be significantly discriminative consistent with our histogram analysis (see Figure 

3.1 and Table 3.1). 

 

  

  
 

Figure 3.2 The comparison of hot spots and non-hot spots for each feature (relCompASA, 

conservation, pair potential, relDiffASA) plotted by ANOVA. 

 
Table 3.1 The results of each features computed by ANOVA. 

 p-Value Mean (non-hotspot) Mean (hot spot) Mean (overall) 

relCompASA 5.62 x 10
-6

 26.64 11.96 20.96 

Conservation 0.4979 3.88 4.21 4.00 

Pair Potential 4.27 x 10
-6

 12.70 20.30 15.64 

relDiffASA 0.0088 26.39 34.76 29.62 
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3.2.2 Comparison of Emprical Hot Spot Detection Formulations 

We have evaluated prediction performance of our models (formulations) and assessed the 

success of the formulations by comparing accuracy (A), recall (R), precision (P), 

specificity (S) and f-measure (F1). In our study, recall and specificity bear importance, 

since we emphasize predicting both hot spots and non-hot spots. However, precision 

strikes as a key determinant in quantifying how accurate the positive predictions are. The 

models are comprehensively tested on an independent test set (BID), and their statistical 

performances are presented in Table 3.2.  

 
Table 3.2 Performance values of various emprical prediction methods used to identify hot spots in 

the protein interfaces. 
 Model Dataset Precision Recall Spec. Acc. F1 

Single Feature 

Performances on 
ASEdb and BID 

datasets 

(EMPRICAL 

FORMULAS) 

Score ≥ 7.0 
Training Set 0.50 0.33 0.79 0.61 0.40 

Test Set 0.52 0.46 0.60 0.54 0.49 

relCompASA ≤ 20.0 
Training Set 0.55 0.81 0.58 0.67 0.65 

Test Set 0.60 0.67 0.59 0.63 0.63 

relΔASA ≥ 30.0 
Training Set 0.50 0.57 0.64 0.61 0.53 

Test Set 0.50 0.55 0.48 0.52 0.53 

Robetta ≥ 2.0 
Training Set 0.82 0.47 0.93 0.75 0.59 

Test Set 0.64 0.26 0.86 0.57 0.37 

Robetta ≥ 1.0 
Training Set 0.63 0.72 0.73 0.73 0.67 

Test Set 0.63 0.57 0.69 0.63 0.60 

PP ≥ 18.0  
Training Set 0.56 0.55 0.73 0.66 0.56 

Test Set 0.69 0.70 0.71 0.71 0.70 

 

Two Features 

Performances on 
ASEdb and BID 

datasets 

 

relCompASA ≤ 20.0 and Score 

≥ 7.0 

Training Set 0.61 0.29 0.88 0.65 0.40 

Test Set 0.71 0.32 0.88 0.61 0.44 

PP ≥ 18.0 and Scorei ≥ 7.0 
Training Set 0.57 0.14 0.94 0.63 0.22 

Test Set 0.75 0.33 0.90 0.63 0.46 

relCompASA ≤ 20.0 and 

Robetta ≥ 1.0 

Training Set 0.72 0.62 0.85 0.76 0.67 

Test Set 0.75 0.50 0.85 0.68 0.60 

relCompASA ≤ 20.0 and PP ≥ 

18.0 

Training Set 0.64 0.52 0.82 0.70 0.57 

Test Set 0.73 0.59 0.79 0.70 0.65 

Multiple Features 

Performances on 

ASEdb and BID 

datasets 

relCompASA ≤ 20.0 and 

(Score ≥ 7.0 or Robetta ≥ 1.0) 

Training Set 0.64 0.69 0.75 0.73 0.66 

Test Set 0.73 0.59 0.79 0.70 0.65 

relCompASA ≤ 20.0 and 

(Score ≥ 7.0 or PP ≥ 18.0) 

Training Set 0.63 0.67 0.75 0.72 0.65 

Test Set 0.67 0.63 0.71 0.67 0.65 

 

The first part of the table compares single feature models. Among them, conservation is 

observed to have no significant effect on its own. It gives the least successful results (F1 

scores and accuracies, 0.40 and 0.61 on training  set,  0.49  and  0.54  on test set, 

respectively) compared to other features both on ASEdb and BID. This is expected 

according to the histogram which states hot spots are marginally conserved (Figure 3.1C) 

in line with the results of Ofran & Rost, 2007. However, conservation was found to 

improve predictions substantially [98] which is not the case in our results. Interface 
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residues are found to be more conserved than the rest of the surface residues [65, 188]; 

further, central interface residues were more conserved than peripheral ones [189]. Caffrey 

et al. analyzed interfaces using surface patches, they found that the difference between the 

patches and the rest was even less pronounced [66]. Here, our results suggest sequence 

conservation is not a discriminative characteristic of hot spots (P=0.50, R=0.33 on training 

set; P=0.52, R=0.46 on test set). However, we observe that the totally conserved residues 

(with top score 9 in our conservation scoring) are found to be substantially buried in the 

middle regions of the interfaces. On the other hand, not all buried residues are necessarily 

conserved.  

Occlusion of a residue from solvent in complex state is indicated by a small 

relCompASA. Our results show that low relCompASA is critical for a residue to be a hot 

spot. Bogan and Thorn (1998) indicated that hot spots located near the center of the 

interface are a general property of the interfaces; and for a residue to be a hot spot, it must 

be largely protected from bulk solvent (corresponding to low relcompASA). Even if a 

residue was exposed to solvent prior to binding, it might lose a high percentage of its 

surface area and become protected from the solvent. This scenario is consistent with what 

Li et al. suggested: hot spots are either found on the complemented pockets or on the 

protruding surfaces [24]. Complemented pockets and their corresponding protruding 

residues bind to each other, eventually, to protect each other from the solvent. relΔASA 

indicates the change in the solvent accessibility of a residue. The rationale for choosing 

relΔASAi > 30% in our formulation is to be able to find the protruding residues based on 

this fact. However, probably due to the small number of protruding hot spot residues, this 

parameter (P=0.50, R=0.55, A=0.52, F1= 0.53) does not perform better than relCompASA 

(P=0.60, R=0.67, A=0.63, F1=0.63). As a result, relCompASA seems to discriminate better 

hot spots from non-hot spots. Both of the energetic models (the knowledge based pair 

potentials and full atomistic energy terms of Robetta) seem to be quite successful to find 

the hot spots. Robetta‟s recall, precision and   accuracy   are   higher   in   ASEdb   (0.63,   

0.72,   and   0.73, respectively) but lower in BID (0.63, 0.57, and 0.63, respectively). On 

the other hand, pair potential performs better in BID (0.69, 0.70, and 0.71, respectively) 

compared to Robetta. Note that ASEdb is the training set and BID is our independent test 

set. As stated by Janin and his group, protein interfaces also have core and rim regions and 

hot spots are usually located in the cores of the interfaces [21, 62]. A residue in the core 
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with favorable contacts has a higher chance to be a hot spot. This could be the reason why 

pair potential works well. Furthermore, using full atomistic energy parameters, Robetta has 

computational disadvantage for large-scale predictions. In addition, the performance 

differences of the two models on the two distinct datasets indicate the different nature of 

the two datasets. The hot spots in ASEdb are defined by a single threshold of 2 kcal/mol; 

however, in BID, there is no single threshold but rather hot spots are divided into strong, 

intermediate, and neutral interactions. Thresholds change from one case to another.  

We have further tested the effect of combining features. First, we combined two 

features: (relCompASA + Score), (PP + Score), (relCompASA + Robetta), and 

(relCompASA + PP). We observe that in all these cases, adding a second feature increases 

the precision, specificity and accuracy but decreases the recall. In other words, fewer 

positive hot spot predictions are made with higher percentage of true cases; in addition, 

non-hot predictions improve compared to single feature models. On ASEdb, (relCompASA 

+ Robetta)  model has the highest F1 score (0.67) whereas on BID, (relCompASA + PP) 

has the highest F1 score (0.65). Compared to the single feature performances, adding the 

relCompASA in the Robetta model increases the precision from 0.63 to 0.75 and in the PP 

model from 0.69 to 0.73 in BID. Similarly, specificity increases from 0.69 to 0.85 (for 

Robetta) and 0.71 to 0.79 (for PP) in BID. The model starts to pick the hot spots and non-

hot spots with higher specificity and precision. Further, adding relCompASA improves the 

performance of pair potentials on ASEdb with respect to pair potentials only while 

maintaining the BID performance. Similarly, relCompASA improves performance of 

Robetta on BID compared to using Robetta only. Our results indicate that hot spots are 

mostly buried and form a network of favorable interactions with other residues as reported 

by Nussinov and her colleagues [163]. When conservation score is added to these two-

feature models, both the precision and specificity decrease. We should note that, we tried 

many other features, combinations and thresholds, but listed only the high scoring ones. As 

a result, our prediction based on relCompASA and pair potentials demonstrated 0.70 

accuracy and 0.73 precision, 0.59 recall, and 0.79 specificity on the independent test set. It 

performed better than the base models and the machine learning based models (discussed 

in the next section). We predict 32 of the hot spots correctly with 12 false positives. On the 

other hand, 46 of the non-hot spots are correctly classified with 22 false negatives (Table 

3.3).  
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Table 3.3 Prediction results for the structures in test set (BID). 

Interface ID Monomer ID TP FP TN FN Total Accuracy (%) 

1cdlAE 1cdlA 1 2 0 0 3 33 

1cdlAE 1cdlE 3 1 2 0 6 83 

1ddmAB 1ddmA 2 0 3 2 7 71 

1ddmAB 1ddmB 0 0 3 5 8 38 

1dfjEI 1dfjE 0 0 0 1 1 0 

1dvaHX 1dvaH 2 5 6 1 14 57 

1dvaHX 1dvaX 4 1 2 0 7 86 

1dziAC 1dziA 1 0 5 2 8 75 

1ebpAC 1ebpA 2 0 1 1 4 75 

1ebpAC 1ebpC 0 0 2 1 3 67 

1es7AB 1es7A 0 1 0 0 1 0 

1fccAC 1fccC 3 0 4 0 7 100 

1foeAB 1foeB 0 0 1 0 1 100 

1gl4AB 1gl4A 3 0 2 2 7 71 

1jatAB 1jatA 1 0 0 0 1 100 

1jatAB 1jatB 1 0 0 0 1 100 

1k4uSP 1k4uP 1 1 2 1 5 60 

1lqbCD 1lqbD 0 0 2 0 2 100 

1mq8AB 1mq8B 1 0 0 0 1 100 

1nfiBF 1nfiF 1 0 1 0 2 100 

1ub4AC 1ub4C 1 0 1 1 3 67 

2hhbAD 2hhbD 0 0 1 0 1 100 

2nmbAB 2nmbA 1 0 0 1 2 50 

2nmbAB 2nmbB 0 1 1 0 2 50 

3sakAC 3sakA 4 0 7 4 15 73 

 Total 32 12 46 22 112 70 

 

3.2.3 Machine Learning Based Approaches 

The machine learning (ML) methods fail to create a distinctive improvement over our 

proposed model. Performance of ML based models is illustrated in Table 3.4 with the 

details of the classifiers on 10-fold cross-validation and on test set. In general, ML based 

models do not exceed our empirical formula (A=0.70). The main reason for this relative 

failure is probably deficiency of training data. Nevertheless, decision trees play an 

indispensable role in determination of relative importance of the features. We have applied 

decision tree for three features; relative compASA, pair potential and conservation score. 

The decision tree model determines pair potential as the most discriminating feature 

followed by relCompASA in accordance with our model. Testing on BID dataset gives an 

accuracy of 0.63 with a recall of 0.52. We have also applied other classifiers and their 

combination by majority voting. Best classifier among them is BayesNet based on F1-

score. Its accuracy is 0.68 on 10-fold cross validation test and 0.64 on BID test set.  
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Table 3.4 Machine learning based models Results. These are the corresponding implementations 

from  Weka [190] 

Classifier Testing  Pre. Rec. Spec. Acc. F1 

BayesNet 

 

10 – fold  0.58 0.64 0.71 0.68 0.61 

Test set  0.64 0.63 0.67 0.65 0.64 

Naïve Bayes 
10 – fold  0.57 0.66 0.69 0.67 0.61 

Test set  0.63 0.67 0.64 0.65 0.65 

RBFNetwork 
10 – fold  0.59 0.55 0.76 0.68 0.57 

Test set  0.67 0.48 0.78 0.63 0.56 

SVM 
10 – fold  0.57 0.36 0.83 0.65 0.44 

Test set  0.73 0.44 0.85 0.65 0.55 

Decision Tree 

 (J48) 

10 – fold  0.47 0.59 0.59 0.59 0.52 

Test set  0.65 0.52 0.74 0.63 0.58 

Decision 

Table 

10 – fold  0.58 0.64 0.71 0.68 0.61 

Test set  0.64 0.63 0.67 0.65 0.64 

Majority 

Voting (all 

except SVM) 

10 – fold  0.56 0.62 0.70 0.67 0.59 

Test set 0.64 0.63 0.67 0.65 0.64 

 

3.2.4 Comparison with Other Hot Spot Prediction Methods 

Robetta is designed to find the computational alanine scanning mutagenesis and gives ΔΔG 

values for individual residues. In their work, interface residues whose experimental ΔΔG 

value is greater or equal to 1.0 kcal/mol are considered as experimental hot spots [121]. 

Also, if predicted ΔΔG values are greater or equal to 1.0 kcal/mol, the corresponding 

residues are labeled as computational hot spots. The predictive performance of Robetta on 

BID (with ΔΔG ≥ 1.0 kcal/mol) is as follows; P=0.63, R=0.57, S=0.69, A=0.63, and 

F1=0.60. Our empirical formula achieved a slightly better success rate compared to 

Robetta with its precision of 0.73, accuracy of 0.70 and F1 score of 0.65 (as shown in 

Table 3.5).  A recently described method, KFC shows a precision of 0.51 and a recall of 

0.36 with 0.42 F1-score on BID (performance data are taken from Darnell et al). KFCA is 

a hybrid method which combines KFC with Robetta. KFC is trained on a bunch of features 

such as residue size, atomic contacts, hydrogen bonds, chemical type etc. Our method – 

comprising relCompASA and pair potentials – performs better than both KFC and KFCA 

with its precision of 0.73 and recall of 0.59 with 0.65 F1-score compared to KFC (0.51, 

0.36 and 0.42) and KFCA (0.53, 0.48 and 0.41) (Table 3.5). We further applied ISIS, a 

sequence based approach, on BID giving following performance: P=0.48, R=0.70, 

F1=0.57. Although the precision of ISIS is low we should note that the method is not 
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designed for hot spot prediction but rather finding binding site residues and it does not use 

structure information. Therefore, it is not fair to compare it with the structure based 

methods. 

 

 

 

Figure 3.3 The distribution of hot spot and non-hot spot residues with the empirical formula and 

discriminant functions.   

We also performed discriminant analysis (both linear and quadratic), trained on ASEdb 

and tested on BID, resulting in comparable performance.. The distribution of the data 
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points are illustrated in Figure 3.3 both for training set and for test set. The performance 

values of linear and quadratic discriminant functions are given in Table 3.6. LDA results 

in comparable performance (see Table 3.5). However, our method has advantages of 

presenting a simple and intuitive rule relating physical properties to hot spots. 

 
Table 3.5 Hot spot prediction performances on test set (BID). 

Method Precision Recall F1 

Robetta 0.63 0.57 0.60 

KFC 0.51 0.36 0.42 

KFCA 0.53 0.48 0.51 

LDA 0.72 0.57 0.64 

Our Formula 0.73 0.59 0.65 

 

When we analyze overall performances, we noticed that our results are similar to 

Robetta; however, it outperforms any machine learning based predictions including KFC. 

Besides its high prediction performance, another advantage of our method over Robetta is 

its computational effectiveness and applicability to the large scale datasets.   

 
Table 3.6 Performance values of linear and quadratic discriminant functions. 

 Dataset Precision Recall Specificity Accuracy F1-Score 

Linear 
Training set 0.61 0.47 0.82 0.68 0.53 

Test set 0.72 0.57 0.79 0.69 0.64 

Quadratic 
Training set 0.58 0.60 0.73 0.68 0.59 

Test set 0.68 0.63 0.72 0.68 0.65 

 

3.2.5 Case studies 

Erythropoietic Receptor (EPOR) – EPO Mimetic Peptide  

Erythropoietin (EPO) is a hormone participating in the regulation of proliferation and 

differentiation of immature erythroid cells. EPO mimetic peptide (EMP1) functions as a 

mimetic of EPO. There is a competition between EMP1 (pdbID:1ebp, chainC) and EPO to 

bind the EPOR (pdbID:1ebp, chainA) [191]. Despite the unrelated sequences of EMP1 and 

EPO, both can bind to the EPOR stimulating biological activity. Experimentally defined 

hot spots in 1ebpAC interface are F93_A, M150_A, F205_A and W13_C. In addition, 

T151_A, L11_C, T12_C are found experimentally to be non-hotspots (in BID). Our 

empirical method predicts two of the four hot spots correctly which are F205_A and 

M150_A. Despite their high contact potentials, because F93_A and W13_C are exposed to 
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solvent, they are predicted as non-hot spots. Also, all of the 3 non-hot spots are predicted 

correctly. In total, 5 of the 7 residues are correctly predicted (Figure 3.4). KFC predicts all 

seven residues as non-hot spots. Robetta identifies M150_A and W13_C as hot spots 

correctly and the rest as non-hot spots. 

 

 

Figure 3.4 A case study of computational hot spot prediction using our empirical model. The 

complex formed between erythropoietin (EPO) receptor (chain A, colored white) and  EPO 

Mimetics peptide (chain C, colored gray) (PDB ID: 1ebp, interface ID: 1ebpAC) is visualized 

(using VMD [192]). Red residues are experimental hot spots and correctly predicted. Yellow 

residue indicates the residue that the residue is an actual hot spot predicted as non-hot spot. Blue 

residues are non-hot spots which are also predicted as non-hot spots. In this case, 5 of the 7 

residues are predicted correctly by our proposed model.  

 

 

Streptococcal Protein G – Mammalian Immunoglobulin 

Streptococcal protein G (pdbID: 1fcc, chain C) is a cell wall protein which binds 

mammalian immunoglobulin (pdbID: 1fcc, chain A) [193]. Protein G has experimentally 

determined 3 hot, 4 non-hot spots in its binding site to immunoglobulin. Mutations of 
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residues E27_C, K31_C and W43_C in protein G strongly affect its binding to 

immunoglobulin. These hot spots are located in the middle of the binding site of protein G 

to immunoglobulin and form a cluster of hot spots. Our method labels all these residues as 

hot spots. Also, non-hot residues are distributed the edges of binding site and more 

accessible to the solvent and they have less contact to other residues. All of them are 

predicted as non-hot by our model (Figure 3.5). Robetta and KFC perform similar. They 

identify E27_C and W43_C as hot spots correctly and the rest as non-hotspots. These two 

cases are selected from BID randomly; however, when other cases are examined we 

noticed that our predictions correlate with Robetta. 

 

 

 

Figure 3.5 Streptococcal Protein (pdbID: 1fcc, chain C). Chain A is not shown. Red residues are 

actual hot spots predicted correctly; blue residues are actual non-hot spots predicted correctly. Hot 

residues form hot region and this region is located in the middle of the binding site of 1fccC.   

 

3.3 HotPoint: Hot Spot Prediction Server for Protein Interfaces 

Here, we present HotPoint web server, which provides a user-friendly interface to run the 

method explained in the previous sections [99] for online prediction of hot spots in protein 

interfaces. Our aim is to provide an efficient server at a single location for analysis of any 

protein-protein interface which can be utilized by researchers interested in protein binding 
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sites. The method principally considers the solvent accessibility and the total contact 

potential of the interface residues. The output tabulates the interface residues with the 

highlighted hot spots and their features. Additionally, it provides an interactive 3D 

visualization of the submitted protein-protein interface with the predicted hot spots for 

observing their localization. Distinct features of HotPoint from existing servers (Robetta 

and KFC server) are the improved efficiency and accuracy. The calculation of solvent 

accessibility and pair potentials of residues are faster than atomic level computations 

performed by Robetta, and the prediction accuracy is higher than both Robetta and KFC 

server. The HotPoint web server is available at http://prism.ccbb.ku.edu.tr/hotpoint. Server 

interface is coded in PHP. The code to predict hot spots is written in Python. 

 

3.3.1 Input for the Server 

Input data is the protein structure in PDB formatted coordinate file, two chain identifiers 

forming the interface and the interface definition. User can either run the server with 

default distance thresholds to extract interface residues or can change the interface 

definition by submitting a distance threshold. There are two options to submit a structure 

file. User can enter the four letter PDB code of a protein which is directly downloaded 

from the ftp site of PDB. The second option is uploading a structure file that is in the PDB 

format. HotPoint requires two chain identifiers which confine to a protein interface. Server 

does not work for PDB files containing only one chain and returns an error. For NMR 

structures, it uses the first model in the prediction and gives results for the first model. 

HotPoint is specific to protein-protein interfaces; chains corresponding to DNA structures 

return a warning in the web server.  

When there is not enough input data, the server informs the users of what is missing. 

The HotPoint web server is free and open to all users and there are no login requirements. 

 

3.3.2 Output of the Server 

When a protein structure with its chain identifiers is submitted, HotPoint server starts the 

calculation of three consecutive steps: extraction of interface residues, calculation of the 

features, prediction based on empirical model. During the processing, the server informs 

users about the steps it is performing. The output of the server is a table consisting of the 

interface residues with their features (Figure 3.6). The interface residues are tabulated with 

http://prism.ccbb.ku.edu.tr/hotpoint
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chain names, one letter residue names, residue numbers, their relative ASA in complex, 

relative ASA in monomer and total pair potentials. In the last column of the table, the 

prediction is presented as H (hot spot) or NH (non-hot spot). Background of the predicted 

hot spots is highlighted with red color. The prediction results as a text file and interface 

residue coordinates in PDB file format are also downloadable by the user. In this way, the 

results can be visualized in any visualization tool. Besides the downloadable files, overall 

complex, the interface residues and hot spots can be visualized interactively using the Jmol 

[194] applet window in the HotPoint server. 

 

 

Figure 3.6 The output page of HotPoint for the p53 DNA binding domain/53BP2 protein complex 

(pdb:1ycs, chain A and B). Interface residues of this complex are shown in the table with hot spot 

predictions. 1. The coordinates of interface residues can be downloaded, 2. Hot spot prediction 

results are also downloadable, 3. Interface with predicted hot spots can be visualized by JMol.  

 

3.3.3 An independent case study: Interleukin-2 and its receptor complex 

Interleukin-2 (IL-2) is a cytokine immune system signaling molecule. IL-2 gets functional 

when it associates with the IL-2 receptor. To find the residues necessary for binding, 

several residues (K35, R38, M39, T41, F42, K43, F44, Y45, E62, P65, V69 and L72) on 
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IL-2 are mutated to alanine. Among these residues, F42, Y45 and E62 reduce binding 

affinity of IL-2 to its receptor more than 100 folds. Further, small inhibitor molecule 

SP4206 also targets these hot spots of the receptor [195].    

 

Figure 3.7 IL-2 receptor complex. The PDB code for this complex is 1z92. The red colored 

residues are correctly predicted hot spots. The blue colored ones are correctly predicted non-hot 

spots. The yellow colored residues represent non-hot spot residues which are incorrectly predicted 

as hot spots. 

 

HotPoint predicts all three experimental hot spots (F42, Y45 and E62) correctly for the 

IL-2/IL-2 receptor complex (PDB code: 1z92, chain A is IL-2 and chain B is IL-2 

receptor). According to our interface definition, M39 cannot be found in the interface 

residues. So, for the remaining eight residues, HotPoint labels five residues (K35, R38, 

T41, K43 and P65) as non-hot spot, correctly. However, three residues come as false 

positives (F44, V69 and L72) from HotPoint prediction. As a result, 8 out of 11 alanine 

mutations are correctly predicted. This protein complex is independent from the training 

and test sets. The predictions are illustrated in Figure 3.7 in 3D using the output files 

obtained from HotPoint. 
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3.4 Concluding Remarks 

In this chapter, a new efficient method to determine computational hot spots based on pair 

potentials and solvent accessibility of interface residues is presented. We note that solvent 

occlusion is a necessary factor to define a hot spot, but not sufficient itself. Conservation 

has not a significant effect in hot spot prediction as a single feature. Residue occlusions 

from solvent and pairwise potentials are found to be the main discriminative features in hot 

spot prediction. The predicted hot spots are observed to match with the experimental hot 

spots with an accuracy of 70%. We also compared our empirical methods to several 

machine learning methods and other hot spot prediction methods. Our method outperforms 

them with its high performance. Further, the model outperforms other existing approaches. 

This method is used to construct the HotPoint server which allows online calculation for all 

protein interfaces within practical running times. It tabulates residue level features and 

prediction results for a given protein complex which are also downloadable.  
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Chapter 4 

 

ANALYSIS AND NETWORK REPRESENTATION OF HOT SPOTS IN PROTEIN 

INTERFACES USING MINIMUM CUT TREES 

 

Protein interfaces can be represented as networks, where nodes are residues and edges are 

the contact between residues. Typical residue contact networks have a complex structure 

consisting of many residues (nodes) and interactions (edges). Hence, it is difficult to 

identify which of these residues and interactions are critical in terms of stability and 

function of protein complexes. We propose a novel approach to generate a simple, yet 

informative representation of residue contact networks of protein interfaces. We assign 

knowledge-based potentials as edge weights of the network. Our approach constructs a 

minimum cut tree (mincut tree) from the weighted residue contact network. We propose 

algorithms to extract hot spots and their organization from the mincut tree. Based on the 

minimum cut/maximum-flow theorem, the residues identified by our approach points out 

the residues with maximal energetic flow. Mutating such residues would change the energy 

flow significantly. In this method, the residue contributing to several mincuts is the most 

important one in terms of energy. Computational tests on a nonredundant dataset of protein 

complexes, having experimental mutation data, indicate that the most connected residue in 

the mincut tree generally corresponds to an experimental hot spot and other critical 

residues are observed to form a subtree. This method does not focus only on hot spot 

prediction and it cannot identify all hot spots, rather it is used for the analysis of the 

organization of interface residues and the connection between residues.  Further, we show 

how to use mincut trees to cluster residues corresponding to hot regions in protein 

interfaces.  

 

4.1 Methodology 

4.1.1 Dataset of Experimental Hotspots 

Experimentally, a hot spot can be identified by evaluating the change in binding free 

energy upon mutating it to an alanine residue [42]. Alanine Scanning Energetics Database 
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(ASEdb) is an information source for the hotspots obtained via alanine scanning 

mutagenesis experiments [96]. Another database, namely the Binding Interface Database 

(BID), contains experimentally verified hot spots in interfaces collected from the literature 

[97]. In this work, we use the protein complexes deposited in these two databases. For the 

complexes in ASEdb, the residues whose change in binding free energy is at least 2.0 

kcal/mol are considered as hot spots. For the complexes in BID, the residues whose 

interaction is “strong” are considered as hot spots. Thus, totally a non-redundant set of 38 

protein complexes are examined. 

 

4.1.2 Construction of Weighted Residue Contact Graph and Minimum Cut Tree of 

a Protein Complex 

An undirected weighted residue contact graph G(N,E) consists of a node set N and an edge 

set E, with positive weights we, for all    . In this graph, nodes represent interface 

residues and edges between them represent the contacts between pairs of residues. Two 

residues, one from each chain, are in contact if the distance between any two atoms 

belonging to two residues is smaller than the sum of their van der Waals radii plus a 0.5 Å 

tolerance. Also, two residues, within one chain, are in contact if the distance between the 

C
α
 atoms of these residues is smaller than 6 Å.   

The weights of the edges in the graph are obtained from knowledge-based solvent-

mediated potentials derived by Keskin et al. in 1998 [151], which are in good agreement 

with the residue frequencies obtained in a recent work [196]. The knowledge-based 

potentials have been shown to be useful in many threading, folding and binding problems 

[150, 179, 180]. These potentials represent the interaction parameters between two residues 

in native proteins. A practical way to obtain these potentials is to extract them from 

frequencies of contacts between different residues in proteins with known three-

dimensional (3D) structures [183]. We provide 210 distinct potentials (all possible pairs of 

20 different aminoacids) in RT unit (R universal gas constant, T is temperature) for 

contacting residue pairs in the Supplementary Material. All of the entries in this matrix are 

negative valued. In the residue contact network, the absolute value of the corresponding 

entry in the pair potential matrix is used as the edge weight (we). 

A cut in a connected graph is defined by a partition of the node set into two sets, and 

consists of all edges that have one endpoint in each partition. Clearly, the removal of the 
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cut disconnects the graph. The weight of a cut is the sum of the weights of the edges 

crossing the cut. For s,t  N, an s-t cut is defined as a cut which puts s and t into different 

node sets of the partition. A minimum weight s-t cut (min s-t cut) is a subset of edges with 

minimum total weight that separates the network into at least two disconnected sets of 

nodes. The problem of finding a min s-t cut can be efficiently solved using a maximum 

flow algorithm [197]. In the residue contact graph, the minimum weight cut between two 

residues illustrates the minimum total contact potential to separate these two residues into 

two disconnected subgraphs. Furthermore, min s-t cuts for all pairs of nodes can be 

represented by a minimum cut (mincut) tree in a compact way so that both the weight of a 

min s-t cut in the graph and the corresponding partition is the same in the tree. Gomory and 

Hu showed that a mincut tree can be computed using only n-1 min s-t cut computations 

(that finds the maximum flow from s to t), where n is the number of nodes [198]. To 

construct a mincut tree, G should be a connected network. If this is not the case, we take 

the largest connected component in G and perform our calculations on this graph. The 

algorithm to construct a mincut tree can be found in [198], and alternatively in [199, 200]. 

Here, we only demonstrate it with a simple example shown in Figure 4.1. First, all nodes 

are considered as a single node. Then, two nodes of N are picked to initialize the algorithm 

(here, nodes 1 and 2) and the minimum weight cut that separates 1 and 2 is found to split 

the node set N into subsets  S1 = {1} and S2 = {2, 3, 4, 5}, and has total weight 5. Next, 

another pair of nodes (nodes 4 and 5) are picked from S2 and a minimum weight 4-5 cut is 

found which has total weight 6. The algorithm continues until all subsets contain only one 

node. As a result, using (n-1) mincut calculations; the mincut tree is constructed (shown in 

part B4 in Figure 4.1). We note that a mincut tree always exists for a connected graph but 

it does not need to be unique (due to the choice of nodes s,t in the s-t cut). However, we 

observed our procedure to be robust to different mincut trees in our computations.  
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Figure 4.1 Illustration of construction steps of mincut tree with an example. Model network is 

shown in left panel (part A). (1) to (3) in part (B) are the intermediate steps to construct a mincut 

tree. The last column illustrates which node pairs are selected at each step. Here, nodes 1 and 2 are 

picked first, and a minimum cut 1-2 is found as 5. Then, from the remaining supernode, nodes 4 

and 5 are selected and a mincut 4-5 is found as 6.  (4) in part B is the resulting mincut tree of the 

network in part A. 

 

4.1.3 Algorithm I: Determining the Critical Residue Subtree 

To understand the interconnections among hotspots, we identify a critical residue subtree 

in the mincut tree. In the initial step of the algorithm, the seed node, S, is chosen as the 

node with maximum total weight on edges incident on it in the tree. Then, we look at the 

neighbors of this residue and we take a neighbor if it has at least a degree of δ and at least a 

weighted degree of Wt. We set the degree threshold as δ = 3 and the weight threshold as 

average weighted degree 
1-n

W

  W

1-n

1

e

t


  in our computations, where We is the weight of the 

edges in the mincut tree and n is the number of nodes in the graph. The weighted degree of 

a node i is dW(i)=ΣeϵE‟We , where E‟ is the set of edges incident on i. Then, we check an 

adjacent node j in T if it exists. If dW(j) ≥ Wt and degree(j) ≥ δ,  then the next node is j and 
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it is added to the node list, L. Next, we go forward recursively by scanning the neighbors 

of the neighbors. At the end of the algorithm, if we cannot find any adjacent node passing 

the thresholds, then we output the node list, L, which corresponds to a subtree of the 

mincut tree. The simple steps of the algorithm are shown in Algorithm 4.1.   

 

Algorithm 4.1 Critical subtree extraction algorithm. 

Input: G(N,E) ← a weighted undirected graph with weights we 

Output: L, a list of nodes corresponding to a subtree in the mincut tree 

T ← mincut tree of G 

δ ← 3, degree threshold 

1-n

W

  W

1-n

1e

e

t


 , weighted degree threshold 

S ← the node with maximum weighted degree 

L ← (S) 

K ← (S) 

while K ≠ Ø 

    i ← remove first node from K 

   for all neighbors j of t 

        if dW(j) ≥ Wt and degree(j) ≥ δ and j is not in L 

            append j to K 

            append j to L 

        end if 

    end for 

end while 

return L 
 

4.1.4 Algorithm II: Iterative Clustering of the Interface Residues 

For clustering of the interface residues, we apply the iterative clustering algorithm in the 

work of Mitrofanova et al. to our problem [201]. Mitrofanova et al. use this algorithm to 

cluster unweighted network of protein-protein interactions in yeast; in this way, they aim to 

identify protein complexes. In our work, our purpose is to generate residue clusters in 

protein interfaces, to see how residues are separated from each other along the iterations 

and to identify the relation between hot regions. For this purpose, we construct the bipartite 

residue graph of the interfaces. A bipartite graph is defined as a graph whose nodes can be 

divided into two disjoint sets such that every edge is between two nodes, one from each 

set. In the bipartite residue graph, G(N,E) where N = U∪V, U represents the set of 

contacting residues from one chain, whereas V represents the set of contacting residues 

from the other chain. So, only inter-chain contacts are represented in G(N,E). We assign 
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edge weights, we, as the absolute value of statistical residue contact potentials, as before. 

To find residue clusters, we follow an iterative procedure. After the construction of a 

mincut tree of the graph, we find the minimum value of the edge weights in the mincut tree 

(Wmin) and remove the edges whose weight is equal to Wmin from the mincut tree. Removal 

of an edge in the mincut tree corresponds to removal of a cut set from the residue contact 

network; in other words, separating the original network into at least two disjoint sets. At 

the i
th

 iteration, the set of the connected components is represented as Gsub
i
 = {G

i,1
, G

i,2
,…. 

G
i,j

} and the set of the subtrees is represented as Tsub
i
 = {T

i,1
, T

i,2
,…. T

i,j
} where j is the 

number of the subnetworks and subtrees. Next, we find the minimum edge weight for each 

tree Wmin
i
 = {W

i,1
, W

i,2
,…. W

i,j
} and remove all minimum weight edges from the mincut 

trees in Tsub
i
. Then, we reconstruct the contact network for all of the remaining sub-trees 

and find mincut tree for each network. This iterative procedure continues until all subtrees 

have at least k connected residues where k = 5 in our computations. The simple steps of the 

algorithm are shown in Algorithm 4.2.   

 

Algorithm 4.2 Clustering of the interface residues using a mincut tree. 

Input: a weighted undirected bipartite graph, G(N,E) with the edge weights we 

Output: Node sets at the end of each iteration 

Construct a mincut tree T of G 

Find the minimum edge weight (Wmin) and remove the edges whose weight is equal to  

Wmin from T     

while the size of each subgraph in Gsub
i
 ≥ k where k = 5 

      Tsub
i
 = {T

i,1
, T

i,2
,…. T

i,j
} is the set of subtrees after removal of the edges 

      Gsub
i
 = {G

i,1
, G

i,2
,…. G

i,j
} is the set of subnetworks after removal of the cut edges 

      Construct the mincut tree of the subgraphs in  Gsub
i
;Tsub

i+1
 = {T

i+1,1
, T

i+1,2
,…. T

i+1,j
} 

      Find minimum edge weight of each tree in Tsub
i+1

 ; Wmin
i+1

 = {W
i+1,1

, W
i+1,2

,…. W
i+1,j

} 

      Remove all minimum weight edges from the mincut trees in Tsub
i+1

  

      i = i+1 

end while  

return the set of subgraphs, Gsub
i-1

 

 

4.2 Results 

Significant interactions between residues are represented by highly weighted edges using 

pairwise contact potentials. A mincut tree represents the weakest connections with 

minimum absolute contact energy in a compact structure. Thus, the complex structure of 

the contact network of the residues containing n nodes and m edges is simplified and 
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summarized by a tree with n-1 edges. Hence, residue contacts and closely related parts of 

the network can be interpreted and visualized easily.  

As an example, the Erythropoietin (EPO) receptor and EPO mimetic peptide complex 

is analyzed. EPO is a hormone participating in the regulation of proliferation and 

differentiation of immature erythroid cells. EPO mimetic peptide (EMP1) functions as a 

mimetic of EPO. There is a competition between EMP1 (pdbID:1ebp, chainC) and EPO to 

bind the EPOR (pdbID:1ebp, chainA). Despite the unrelated sequences of EMP1 and EPO, 

both can bind to EPOR and stimulate biological activity [191]. Their interface region 

(1ebpAC) is shown in Figure 4.2 both in structural representation (part A) and in graph 

representation (part B) (the edge weights are not shown in the figure.) The nodes in part B 

are colored according to the chains, and also the edges are colored according to the type of 

the contact (inter-chain or intra-chain). Blue colored edges are the inter-chain contacts and 

the red edges are intra-chain contacts. The mincut tree constructed for this residue network 

is illustrated in Figure 4.2 (part C). When we compare the network in part B and the tree in 

part C visually, we observe two advantages of the latter; i. it is much easier to visually 

inspect the organization of the residues in the interface, ii. it is more informative. When we 

check the most connected node in the mincut tree, we notice that this node corresponds to 

an experimental hotspot. Other important residues are consecutive in a path in the mincut 

tree. Experimental data in Binding Interface Database (BID) [97] indicate that residues 

93A, 150A, 205A and 13C are hot residues in the binding of EPO receptor and EPO 

mimetic peptide. In mincut tree of 1ebpAC interface, the most connected node is 150A. 

When we concentrate on the details of this analysis further, we observe that other 

experimentally determined key residues are sequenced in a subtree in this mincut tree. 
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Figure 4.2 Analysis of the Erythropoietin (EPO) receptor and EPO mimetic peptide complex with 

mincut tree. (A) An example of protein interface and (B) its residue interaction network. (C) 

Constructed mincut tree of the 1ebpAC interface. Nodes are colored according to the chains. (D) 

Mapping of the generated subtree on the 3D structure of 1ebpAC interface. 

 

The red arrows in Figure 4.2 show the subtree where experimental hot spots are 

located. The hot residues (205A, 150A, 93A, 13C) form a path in the resulting mincut tree. 

This is an indication of the communication between the hotspots and also shows how 
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information in one chain can be transmitted to another chain. Among the hot spots, 150A 

forms interaction with six residues in chain C and four residues in chain A. So, it is 

expected that this residue should be critical in binding. However, each of 205A and 93A 

interacts with a single residue; 13C interacts with two residues. The rest of their 

interactions are formed within the chain they are involved in. Therefore, it is not clear that 

these residues are hot spots just by looking at the interaction network shown in Figure 

4.2B. Algorithm 4.1 successfully points out these residues by locating them along the 

same subtree of the mincut tree.   

 

4.2.1 Analyzing Mincut Trees for Other Protein Complexes 

We further construct a mincut tree for 38 complexes for which experimental hot spot 

information is available. We noticed a consistent trend that the most connected node in the 

mincut tree usually corresponds to an experimental hot spot. With this method, besides the 

visual compactness, critical residues can be identified as well. In Table 4.1, the most 

connected node in the mincut tree is given for 38 complexes. In this table, the most 

connected residue corresponds to an experimental hot spot in 20 out of 38 protein 

complexes. For the remaining complexes, these residues are either a close neighbor of an 

experimental hot spot (in 2 proteins) or they are computational hot spots predicted by other 

methods such as Hotpoint [99], KFC [111] (in 13 proteins). The largest weighted degree 

node in the residue contact network is the residue with largest energetic contribution. In 27 

out of 38 cases, the residue with largest energy contribution corresponds also to the most 

connected node in the mincut tree. In the remaining 11 cases, the largest weighted degree 

node in the residue contact network does not correspond to the most connected residue in 

the mincut tree. In 6 out of 11 complexes, the mincut tree approach finds the hot spots; but 

in comparison, the largest weighted degree node in the residue contact network is a hot 

spot in only one complex. The advantage of the proposed approach is that besides the most 

connected node, a residue sub-tree is generated and several of the residues in this sub-tree 

either correspond to other hot spots or they are closely related to the residue with maximal 

flow which may act cooperatively and form a continuous path in 3D. In a classical network 

representation, this information is hidden and the mincut tree approach brings it out. 

Furthermore, the original network is too crowded to visualize, whereas the mincut tree 

representation provides essential information in a simpler format. 
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Table 4.1 The most connected node in the mincut tree for several complexes. 

Protein Complex 
Interface 

Name 
The most connected node  

Ribonuclease inhibitor – angiogenin complex 1a4yAB 318A – TRP 

Growth hormone/receptor complex 1a22AB 179A–ILE 
§
 

Immunoglobulin heavy chain – tissue factor complex 1ahwBC 156C – TYR 

Barnase – Barstar Complex 1brsAD 39D – ASP 

E9 DNase – Im9 Complex 1bxiAB 33A – LEU 

Chymotrypsin – BPTI Complex 1cbwCD 15D – LYS 

Soluabl e tissue factor complex 1danTU 19T – PHE
§
    

Immunoglobin heavy chain – peptide complex 1dn2AE 252A – MET
§
  

Fv-Fv idiotope-anti-idiotope complex 1dvfBD 98D – TYR 

Cell division protein ZipA/ FtsZ fragment complex 1f47AB 85B–PHE
§
 

Immunoglobulin FC/Fragment B of protein A complex 1fc2CD 136C–LEU
§
 

GP120/CD4 complex 1gc1GC 28C–TRP  

Interferon gamma receptor/fab fragment complex 1jrhLI 92L–TRP  

TEM1-β-lactamase- inhibitor complex 1jtgAB 142B – PHE 

IGG1-kappa D1.3 FV complex 1vfbAB 36A–TYR
§
 

Beta trypsin/inhibitor complex 2ptcEI 14I – CYS
§
 

HyHEL-10 Fab heavy chain-lysozyme complex 3hfmHY 33H – TYR 

HyHEL-10 Fab light chain-lysozyme complex 3hfmLY 20Y – TYR 

Human Growth Factor – Receptor Complex 3hhrAB 182A – CYS 

Calmodulin – Protein Kinase Complex 1cdlAE 810E – ILE 

Numb Protein Complex 1ddmAB 199A – LEU 

Ribonuclease inhibitor - ribonuclease A complex 1dfjEI 259I – TRP
§
 

DES-GLA factor VIIA – peptide complex 1dvaHX 34H – LEU 

Integrin – collagen complex 1dziAC 220A – LEU 

EPO Receptor – EPO Mimetic Peptide Complex 1ebpAC 150A – MET 

Bone morphogenetic protein-2/ receptor 1A complex 1es7AD 785D – PHE
§
  

Blood coagulation factor VIIA/soluable tissue factor  1fakLT 70L – CYS
§
 

IGG1-Protein G complex 1fccAC 27C – GLU 

Mms2/Ubc13 heterodimer 1jatAB 8B – PHE 

HslUV protease/chaperone complex 1g3iAG 443A – ILE 

Nidogen-1 with IG3 complex 1gl4AB 429A – HIS 

Beta catenin/APC complex 1jppBD 424B – LEU 

Phagocyte  NADPH Oxidase complex 1k4uSP 505S – ILE
§
  

alphaL I domain in complex with ICAM-1 1mq8AB 204B – LEU 

IkappaBalpha/NF-kappaB complex 1nfiBF 254B – VAL
§
  

MazE/MazF Complex. 1ub4AC 458C – LEU 

Numb PTB domain-peptide complex 2nmbAB 199A – LEU
§
  

p53 oligomerization domain complex 3sakAC 23A – PHE 

Bold residues are experimental hot spots. 
§
 Identified as hot spot by other prediction methods such as Hotpoint [99], KFC [111]. 

 

One of the complexes in Table 4.1 is the barnase-barstar complex (pdb ID: 1brs). 

Barnase (chain A) is a ribonuclease enzyme. Barstar (chain D) inhibits barnase by blocking 

its active site. In this way, barstar stops barnase to damage the synthesized RNA [202]. A 
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mincut tree is constructed for the barnase-barstar complex (see Figure 4.3A) and the most 

connected node, 39D, found to be an experimental hotspot.  

 

 

Figure 4.3 Analysis of the barnase/barstar complex with mincut tree (A) Mincut tree for the 

1brsAD interface. Nodes are colored according to the chains. The red colored bold edges represent 

the subtree of critical residues. The critical residues in this subtree are “29D – 39D – 87A – 31A – 

35A”. (B) Spatial illustration of this subtree on the protein complex. 

 

Further, the generated subtree using Algorithm 4.1 consists of the nodes 29D-39D-

31A-35A-87A. Within this subtree, all three residues in the 29D – 39D – 87A path are 

experimental hot spots; they are located closely in the 3D structure and form a region 

(shown in Figure 4.3B). The mincut tree brings these three residues together. When we go 

from the complicated overall residue contact network to the mincut tree, we can examine 

and interpret the organization of the hot spots. To justify the connection between these five 
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residues, we take the single point and double point mutation information available for the 

barnase-barstar complex.[203] The observed change in binding free energy are as follows, 

∆∆G29D = 3.4 kcal/mol, ∆∆G87A = 5.5 kcal/mol, ∆∆G39D = 7.7 kcal/mol, ∆∆G87A/39D = 6.1 

kcal/mol, ∆∆G87A/29D = 8.0 kcal/mol. According to these energy values, the residues 87A 

and 39D are cooperative with each other which causes an energy difference of 7.1 kcal/mol 

(difference between 5.5+7.7 kcal/mol and 6.1 kcal/mol); on the other hand, simultaneous 

mutation of 87A and 29D causes a difference of 0.9 kcal/mol. Since mutation data related 

to the residues 31 and 35 in chain A are not known experimentally, we cannot comment 

about the relation between the distant residues 31A and 35A with the 29D, 39D and 87A. 

However, from literature, we found that the residues 31A and 35A have significant effect 

on folding of barnase.[204, 205] The effect of 31A is 1.1 kcal/mol [205]. The mutation on 

35A decreases more than 70% of the fluorescence intensity of barnase [204]. So, their 

mutations may also have effect on 29D, 39D and 87A.   

 

Figure 4.4 Mincut tree for the 1ahwBC interface and illustration of the extracted subtree on the 3D 

structure. Nodes are colored according to the chains. The red colored bold edges represent the 

subtree. This subtree forms a continuous residue path in 3D. 

 

Another example is the immunoglobulin complex with tissue factor (pdbID:1ahw, 

between chain B and chain C) [206]. The most connected node in the mincut tree is 156C 
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which is also an experimental hot spot defined in Alanine Scanning Database (ASEdb) 

[96]. The subtree identified in the mincut tree is composed of the residues; 59B–50B–

156C–157C (see Figure 4.4). The hot spot (156C) is surrounded by other residues in this 

path as seen in the 3D picture of the immunoglobulin-tissue factor complex and they form 

a region in the binding site. These residues play possibly an important role in binding (For 

further examples, see Table 4.1). 

 

4.2.2 Organization of Hot Regions 

As discussed before, hotspots are clustered into hot regions,[2, 44, 47] and understanding 

the organization of hot spots and hot regions in protein binding sites is a major task for 

protein interaction prediction, as well as the design of therapeutic agents. We have two 

contradicting cases available from the literature. The first one is the TEM1-β-lactamase 

and its inhibitor protein (BLIP) complex which is analyzed by Schreiber and his co-

workers [124]. They stated that distinct residue clusters are energetically additive, but the 

residues within the same cluster are highly cooperative. The other one is the TSST1 – hv-

b2.1 complex whose distinct hot regions are energetically cooperative [89]. To analyze hot 

regions, we construct bipartite graphs of the residues. We apply the iterative clustering 

algorithm (Algorithm 2) to both examples, and analyze the correlation between the results. 

Here, our aim is to cluster the interface residues and to see which residues are important to 

bring clusters together along the iterations.  

The clustering of the interface residues of TEM1-BLIP complex (pdb ID:1jtg, chain A 

and B, respectively), performed by Schreiber and his co-workers, divides the interface 

region into five clusters (namely C1, C2, C3, C4 and C5). Using multiple mutagenesis 

analysis of two clusters (C1 and C2), they stated that these two clusters are energetically 

independent of each other, but the intra-cluster connections are cooperative.  When we 

construct the bipartite graph of the residue network, we see four independent subgraphs. 

Two of the subgraphs correspond to C3 and C5; they are not connected to the largest 

connected component. For mincut tree analysis we focus on the largest connected 

component. The largest connected component in the graph contains the residues in C1, C2 

and C4.  Using the mincut tree approach, we cluster the nodes and check the robustness of 

the clusters to deletion of edges in the minimum cut in the residue network iteratively as 

described in Algorithm 4.2. Here, we notice that 130A, 234A, 235A and 243A are 
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removed at the initial iteration steps (see Figure 4.5, part A) which corresponds to C1. All 

residues in C1, except 49B, are removed in the iterations which imply that the minimum 

cuts connecting these residues to the network are weak within this cluster. When we 

continue the iterations, we end up with two clusters for the largest connected component 

which correspond to C2 and C4, respectively. Further, we notice that two distinct clusters 

are connected to each other using residue 49B. The contact between 216A-49B-237A is 

robust to several edge cuts until the 16
th

 iteration (see Figure 4.5, part A) and this part is 

almost the strongest part of the mincut tree. We hypothesize that the information flow from 

one cluster to another passes through 49B. The importance of this residue is not obvious 

from the original residue interaction network. However, mincut tree shows the critical role 

of 49B by showing that it connects two individual residue clusters. This result is in 

correlation with the experimental mutation data presented by Schreiber and his co-workers. 

The change in binding free energy upon single point mutation of 49B is 7.5 kJ/mol. On the 

other hand, the change is 7.1 kJ/mol upon simultaneous mutation of 49B, 130A, 235A, 

243A and 234A. Both mutations have almost the same effect on binding. Further, the effect 

of single point mutations of 130A, 243A and 234A (1.4, 5.3 and 4.3 kJ/mol, respectively) 

are not as large as the effect of 49B. Probably, the effect of 49B is dominant in 

simultaneous mutations and 49B is the most critical residue in C1. This residue also 

connects two other clusters and furthermore its connection with these clusters is robust to 

the edge removal. Thus, the mincut tree (shown in Figure 4.5, part A) clearly suggests a 

link between C2 and C4 through the residue 49B. Here, we state that the mutation of 49B 

may lead to structural rearrangements in C2 and C4. When 49B is mutated to alanine, the 

connection between C2 and C4 might be broken according to the mincut tree. Thus, we 

suggest for an experimental analysis of the clusters C2 and C4 using multiple mutations. 

Analysis of the cooperativity between these two distinct clusters may be investigated 

further.  
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Figure 4.5 Mincut tree of the bipartite graph of the TEM1 – BLIP complex at first, 15

th
 and 16

th
 

steps of the iteration. Each color represents a cluster and the coloring scheme is the same as in 

Schreiber‟s work.  

 

To check the cooperativity between distinct hot regions, Moza et al. [89] analyzed the 

interaction between hvb2.1 and TSST1. In the hvb2.1-TSST1 complex (pdb ID: 2ij0), there 

are two distinct hot regions on the hvb2.1 (chain E) surface which are 52E and 53E in 

CDR2 loop and 61E and 62E in FR3. They stated that although these two regions are 

distant to each other by more than 20Å, they are highly cooperative. When we apply 

Algorithm 4.2 to the hvb2.1-TSST1 complex, we observe that these two hot regions are 

linked by the residue 17A on the surface of TSST1 (chain A) and this linkage is easily 

distinguished using the mincut tree (see Figure 4.6). Although these two hot regions are 

spatially far away from each other, they are located in the loop regions, at the flexible parts 

of the hvb2.1 and they are connected via residue 17A on the partner protein TSST1. So, 

their cooperativity is expected when we analyze the mincut tree. Another observation is 

that, when we apply iterative clustering algorithm, we obtain only one cluster and along the 

1
st
 Step 

15
th

 Step 

16
th

 Step 
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iterations residues are separated one-by-one from the main mincut tree. This result shows a 

strong connection between two hot regions in the TSST1-hvb2.1 complex.  

 

 

Figure 4.6 The hvb2.1-TSST1 complex (A) Three dimensional structure (B) Mincut tree of the 

bipartite graph.  

 

4.3 Concluding Remarks 

Proteins interact through their binding sites. Several graph based algorithms are used to 

characterize and analyze protein-protein interactions. In this work, we use minimum cut 

trees to visualize and analyze residue contact networks compactly. Edges in the contact 

network are weighted according to an energy function, namely knowledge-based 

potentials. Mincut tree representation highlights some central residues at first glance, 

which cannot be distinguished in classical network representation visually. This 

information provides us the most important node and the critical paths within the interface 

region. As the most connected residue in the tree usually corresponds to an experimental 

hot spot, and hot spots are sequenced along paths on the tree, we give an algorithm to find 

a subtree containing hot spot paths.  
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We also analyzed the dependency of the distinct residue clusters using some known 

protein complexes such as TEM1-BLIP and hvb2.1-TSST1. We found some critical traces 

to explain the cooperativity between distinct residue clusters using a clustering algorithm 

that runs on a mincut tree. As a future direction, one may also analyze how hotspots are 

communicating with each other and how information in one chain is transmitted to another 

chain using the proposed algorithms. 

Briefly, our new approach is useful for basic biological cases at the molecular level. A 

mincut tree simplifies the complex residue network between two interacting proteins 

visually. Using this tree, residue clusters and the critical residues in binding of two proteins 

can be identified computationally by efficient algorithms. 
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Chapter 5 

 

MULTI-SCALE COMBINATORIAL DOCKING OF THE PROTEOME FOR 

FUNCTIONAL PREDICTIONS 

 

Construction of the structural protein interaction network is of crucial importance since it is 

a prerequisite for understanding how the proteome and thus the cell function. Yet, 

predicting, on the proteome scale, which proteins interact and how they interact is a 

daunting task. As reviewed in Chapter 2, structural predictions of protein interactions are 

frequently carried out via „docking‟. However, in the absence of additional biochemical 

data, docking is challenging on the proteome scale because there are many favorable ways 

for proteins to interact. An alternative strategy is knowledge-based, using a protein-protein 

interface dataset. This suggests that using structural alignment of each side of known 

interfaces against the entire surfaces of all monomers can predict protein associations: a 

protein whose surface matches one side of the interface can bind a protein whose surface 

matches the complementary side. Yet, on their own knowledge-based methods may not be 

sufficient for proteome modeling because they disregard flexibility and energetics. 

Here, for the first time, we combine the two approaches on a large scale. We integrate 

large scale rigid body structural alignments with flexible refinement and energy 

minimization of predicted protein-protein interactions. This leads to a powerful 

combinatorial strategy to predict functional associations in the proteome. Different than 

previous methods, the structural alignments are restricted to interface regions rather than of 

entire single chain folds. This strategy, which is based on our earlier observation that the 

number of interface motifs is resticted in nature [10, 20, 46, 52], allows broad proteome 

comparisons since it neglects the requirement that the folds be similar [165]. At the same 

time, from the technical standpoint, it necessitates a technique which is able to compare 

motifs consisting of discontinuous protein fragments, which can have different order in the 

chain [207, 208]. In our strategy, the two complementary parts of the interface of known 

complexes serve as templates in searches for structurally similar target protein surfaces. 

Predicted complexes with matching surfaces undergo flexible refinement using a new 
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efficient docking tool [144]. Finally, energy assessments make the prediction more 

physical and provide a way to score the modeled complexes. This powerful approach can 

be utilized to analyze any pathway, as long as structures are available. To demonstrate its 

usefulness and predictive power, we simulate the molecular interaction map of the p53 

pathway. In particular we focus on the nucleotide excision repair (NER) and the cyclin-

dependent kinase subsystems. Structural modeling of the partners of NFκB, p27 and Skp2 

proteins from known interfaces in the p53 pathway are presented as case studies.  

 

5.1 Methods 

The rationale of this method is as follows: if complementary partners of a known protein 

interface are similar to surface regions of any two monomers, these two proteins can 

interact with each other via these regions. The method utilizes structural and evolutionary 

similarity. No sequence similarity is used. Figure 5.1 presents a flowchart of the algorithm. 

 

5.1.1 Datasets 

The method employs two types of datasets: template dataset which is a subset of a 

nonredundant set of known protein interfaces derived from the PDB [10]; and target 

dataset which contains the structures of protein chains in the target pathway. To generate 

the template sets, we utilized the structurally non-redundant interface dataset containing 

49,512 interfaces clustered into 8,205 structurally distinct interface clusters. To extract 

interfaces, two types of residues in each chain are defined: interacting and nearby. If the 

distance between any two atoms belonging to two residues, one from each chain, is less 

than the sum of their van der Waals radii plus a 0.5 Å tolerance, these two residues are 

defined as 'interacting'; if the distance between the C
α
 of a non-interacting residue and an 

interacting residue in the same chain is under 6 Å, the non-interacting residue is flagged as 

a 'nearby' residue. Nearby residues are important for the interface architecture [10, 20, 52]. 

Two different template sets are used: (i) a structurally non-redundant template dataset 

composed of hetero-dimers (1,037 interfaces); and (ii) the p53 pathway template set, 

composed of all currently known and available interfaces in this pathway (59 interfaces). 

Interfaces hot spots, i.e. residues contributing more to the binding energy, are identified 

using the Hotpoint web server [209]. The molecular interaction map (MIM) [210] is used 

to obtain the target protein set for the p53 pathway. Several proteins in the molecular 
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interaction map (MIM) do not have complete structures. For example, the human DNA 

excision protein ERCC1 has 297 residues in full length; however, the available structures 

are for residues 96-227 (PDB: 2a1i, chain A) and 220-297 (1z00, chain A). Both fragments 

are considered in the target set. In this pathway, 77 proteins have structural information but 

when considering all protein fragments, the number of chains increases to 112. 

 

 

 

Figure 5.1 The concept figure of the prediction algorithm. (A) Schematic illustration of the concept 

of the prediction algorithm. If complementary partners (IL and IR) of a template interface are similar 

to surface regions of any two targets (TL and TR), these two targets can interact with each other via 

these regions. The red points are hot spots. These incorporate evolutionary information into the 

matching. (B) The flowchart of the algorithm. There are two datasets in the algorithm: template 

dataset and target dataset. Firstly, the surface of the proteins in the target dataset are extracted. 

Then, each partner of the template interface is aligned with the target surfaces. If the match passes 

the residue and hotspot matching thresholds, these targets are transformed on the template 

interface. If there are colliding residues between the two partner targets, the putative complexes are 

eliminated. Else, they pass to the flexible refinement stage where side chains are optimized, global 

energy of the predicted complexes are calculated and they are ranked based on the energy.  

 

5.1.2 Prediction Phases 

The prediction algorithm is composed of four consecutive phases. Proteins interact via 

surface residues; thus, in the initial phase the surface regions of target proteins are 

extracted. Protein „surface‟ is the shell around the entire monomer surface. The surface 

regions in the target dataset are extracted based on the relative accessible surface area of 

the residues. If the relative accessibility (accessible surface area vs that of the residue in an 

A B 
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extended conformation) of a residue is more than 15%, it is labeled surface residue. 

Residues in its neighborhood are used to provide the structural scaffolds of the protein 

surfaces. A residue is defined as 'nearby' if the distance between its C
α
 atom and that of a 

surface residue is under 5.0 Å. Nearby residues are important in the structural alignment 

phase [10, 20, 52, 163].  

In the second phase, using structural alignments, the occurrences of each side of the 

known interface on monomer surface regions are sought. Specifically, each interface in the 

template dataset is split into its constituent chains. Using the MultiProt engine [208] our 

method searches whether the complementary partners of a template interface are 

structurally similar to any region on target surfaces. MultiProt searches for spatial residue 

similarities disregarding the order of the residues on the chain. Because template interfaces 

and target surfaces may not consist of contiguous chain fragments, MultiProt is particularly 

appropriate for this task. Geometry and residue type (hydrophobic, hydrophilic, aromatic 

or glycine) are considered in the structural alignment. 40% of the residues of template 

chains should match the target surfaces to pass to the next step. This threshold is 60% for 

template chains containing less than 50 residues. At least one hot spot in each template 

partner should correctly match with the target surface. Hot spot filtering incorporates 

evolutionary similarity between target surface and template interface in addition to 

structural similarity.  

In the third phase, the two chains whose surface regions are similar to the two parts of 

the template interface are transformed onto this template and the solution is assessed: if the 

two partners present many spatially-colliding residues the match is eliminated. Side chain 

clashes are not considered at this stage. A more rigorous refinement is performed at the last 

phase of the algorithm. 

The last phase involves flexible refinement of the rigid docking solutions of MultiProt 

to resolve steric clashes, especially of side chains, and ranking putative complexes by the 

global energy. For flexible refinement, we use FiberDock [144] which considers both side 

chain and backbone flexibility. For side-chain flexibility it uses a rotamer library and finds 

optimum combination of rotamers with the lowest total energy. Here, restricted side chain 

optimization is performed where only clashing interface residues are assumed to be 

movable. The backbone flexibility is modeled by normal modes. In our computations, we 

consider the first 50 modes of each protein in the putative complex. 20% of the clashes 
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between the side-chain atoms are allowed. Finally, FiberDock calculates energies, and the 

predicted protein complexes are ranked according to the calculated energies. In this way, 

the geometric complementarity is combined with docking procedures which makes the 

method more physical. 

  

5.1.3 Validation Procedure 

88 rigid body test cases (from 165 protein chains) in Docking Benchmark 3.0 [137] are 

used for validation of the method. The benchmark contains 28 enzyme/inhibitor, 21 

antibody/antigen and 39 other type of complexes. For the benchmarking, two template sets 

are used: i) an optimal template set which is extracted from the bound states of these 

proteins (88 interfaces). Here, a template is a discontinuous sequence subset of the target. 

Using benchmark templates, we first check whether with an optimal template set the 

method can find all „true‟ solutions and no „false‟ ones. ii) A more diverse template dataset 

(1,037 interfaces) which is utilized to model the interactions. With the second template set, 

we aim to see how many interactions the method predicts. All possible pairs of the 165 

target protein chains are searched on the templates and a 165 x 165 interaction matrix is 

constructed to see if the method distinguishes binders from non-binders.  

 

5.2 Results 

5.2.1 Validation of the Method 

The structural alignment of template interface partners with target protein surfaces is 

independent of global chain homology and sequence order. At the validation stage our first 

aim is to examine how the method performs on an optimal template set. Each of the target 

protein surfaces is aligned with the partner chains of those 88 interfaces. The method is 

applied to all possible pairs (165x165) and a matrix of interacting pairs is generated. At the 

matching phase, correct binding regions are found for all 88 protein complexes, except one 

case which is an antibody/antigen complex. Further, these correct protein complex models 

are ranked first by FiberDock. Besides the 87 complex models, 243 protein complexes are 

also modeled at the end of this run. If all 165 nodes would interact with each other, there 

would be 13,530 edges in the network. Our algorithm gives only 243 extra interactions; 41 

of them are modeled as antibody/antigen, 55 as enzyme and inhibitor/substrate complexes, 

74 as one side antibody, and the remaining are between other types of complexes (for 
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details, see Figure 5.2A). Many of these extra interactions arise from antibodies. As an 

example for the extra interactions, the modeled complexes of bovine trypsin are illustrated. 

In addition to the soybean trypsin inhibitor (1ba7), our algorithm predicts that bovine 

trypsin (1qqu) can interact with Bowman-Birk inhibitor (1k9b:A), pancreatic secretory 

trypsin inhibitor (1hpt), bovine pancreatic trypsin inhibitor (9pti), CMTI-1 squash (1lu0:B) 

inhibitor and TDPI from tick (2uux) which are all trypsin inhibitors. Although the overall 

structures and sequences of the partner proteins are dissimilar, they can bind to the bovine 

trypsin on the same surface, and the energy-based rankings of these interactions are high 

(Figure 5.3A).   

 

 
 

Figure 5.2 Illustration of the extra interactions predicted by our method (A) on the benchmark 

templates (88 interfaces) and (B) on the diverse template set (1,037 interfaces). The 165 protein 

chains are categorized into 5 classes in line with Docking Benchmark classification. Each node 

represents one class and each edge represents the number of predicted interactions between two 

classes.    

 

We next compare against a more diverse template dataset containing 1,037 hetero-dimeric 

protein interfaces which are structurally non-redundant. This template set also contains 23 

of the benchmark templates although its construction is not biased to the docking 

benchmark collection. The method is applied to all possible pairs (165x165) on 1,037 

templates. 49 out of 88 are correctly found by the method. For the remaining ones, the 

algorithm can not find any similar templates. On the other hand, 484 extra interactions are 

found by the method of which 41 are enzyme/inhibitor complexes, 43 antibody/antigen 

complexes, and 292 one side antibody (for details, see Figure 5.2B). As an example for the 
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correctly predicted complexes, the interaction between bovine chymotrypsinogen (2cga) 

and pancreatic secretory trypsin inhibitor (1hpt) is found using the interface region in 

human leukocyte elastase/the turkey ovomucoid inhibitor complex (1ppfEI). The sequence 

similarity between elastase and chymotrypsinogen is 32%, between trypsin inhibitor and 

ovomucoid inhibitor is 28%. As illustrated in Figure 5.3B, the template interface matches 

well with target surfaces and the calculated global energy for this interaction is -51.10 

kcal/mol. In another example, the interaction between falcipain 2 (2ghu) and cystatin 

(1cew) is modelled using the interface of papain/stefin B complex (1stfEI) as template. The 

sequence similarity between falcipain and papain is 32%, between cystatin and stefin B is 

15%. This predicted complex gives a calculated global energy of -43.23 kcal/mol (Figure 

5.3C). The subtilisin (2gkr) / ovomucoid (1scn) complex is modeled using the template 

interface between subtilisin/chymotrypsin inhibitor 2 (2sniEI). The sequence similarity 

between ovomucoid and chymotrypsin inhibitor is low (only 8%). Independent of their 

global fold, the structural similarity between the binding regions is very high.  

To show the similarity between the binding regions and dissimilarity in the global folds, 

chymotrypsin inhibitor 2 is superimposed on ovomucoid and the predicted model is 

illustrated in Figure 5.3D. Our method successfully identifies the binding region on 

ovomucoid and correctly models the subtilisin/ovomucoid complex. Overall, the validation 

results show that as long as similar interfaces are available in the template set, our method 

efficiently finds the structurally similar regions on the target proteins, and following 

refinement these modeled protein complexes  are ranked as first, based on energy.  

Our method is knowledge-based; thus, if no similar interface exists in the template set, it 

cannot provide an interaction model. As in any homology, or motif-based prediction 

method, whether global or local, the outcome is a function of the template dataset.  
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Figure 5.3 Some examples found in docking benchmark. (A) Bovine trypsin (colored white) can 

interact with several trypsin inhibitors using the same region and three of these partners are 

superimposed to show the structural similarity in their binding sites only. Although the overall 

structures of Bowman-Birk inhibitor (1k9b:A, yellow), bovine pancreatic trypsin inhibitor (9pti, 

pink), and TDPI from tick (2uux, cyan) are dissimilar, the binding region to bovine trypsin is 

structurally very conserved. (B) The interaction between bovine chymotrypsinogen (2cga, pink) 

and pancreatic secretory trypsin inhibitor (1hpt, white) is modelled on the interface region of 

human leukocyte elastase/the turkey ovomucoid inhibitor complex. Template interface (1ppfEI) is 

colored cyan and green to show the structural matching between target surfaces and template 

partners. (C) The falcipain 2 (2ghu, pink) and  cystatin (1cew, white) interaction is modelled on the 

interface region of papain/stefin B complex (1stfEI). Template interface is colored cyan and green. 

(D) The subtilisin (2gkr, white)/ovomucoid (1scn, cyan) complex is modeled on the template 

subtilisin/chymotrypsin inhibitor 2 (2sniEI). Chymotrypsin inhibitor 2 (pink) is superimposed on 

ovomucoid to show the structural similarity in the interface region between target and template 

chains. 

 

5.2.2 Comparison of Running Times with Docking  

The running time of the method is completely dependent on the structural matching and 

rigid body refinement parts. Structural matching of one target surface with one template 

chain by MultiProt takes less than an alignment of two proteins because target surface and 

template chain are the residue subset of the overall proteins. It takes 1 sec on average 
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including transformation which varies depending on the template and target sizes. On the 

other hand, FiberDock refines a rigid body solution of Multiprot in an average time of 14 

sec which varies depending on receptor size. The total running time of the refinement part 

linearly increases as a function of the number of rigid body solutions. For a target dataset 

composed of i.e. N proteins and a template set composed of ~1,000 interfaces, structural 

matching of all targets with all template interfaces takes 1,000 x 2 x N x 1 sec [O(N)]. On 

the other hand, rigid body docking of a protein pair takes i.e. with Zdock [211] 4 min on 16 

processor, with PatchDock [212] less than 10 min on single processor. Running of all pairs 

of these N targets takes (N x (N–1) / 2) x 10 min [O(N
2
)] in the best case.  

In Figure 5.4A, the comparison of  running times as a function of target dataset size is 

illustrated. As shown in this figure, for small number of target proteins, both methods have 

more or less similar running times. However, on large scale, things change and the 

knowledge-based method dramatically decreases the solution space and as a result the 

running times. As the target dataset increases, the difference between running times gets 

larger and the advantage of template-based method at large scale is obvious. Hence, with 

the fast growth of the PDB the number of distinct interface motifs will increase making 

such fast strategies increasingly popular and useful for the modeling of protein interactions. 

Also, the running time of our method is a function of template dataset size in addition to 

that of the target dataset. In Figure 5.4B, for 50 targets the running time of docking is 

compared to our template-based method. The figure shows that if the template dataset size 

would be composed of 15,000 interfaces, the running times of both methods would be 

same which is 15 fold larger than the current template set.  
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Figure 5.4 Comparison of running times of our template-based method with docking on large 

scale. (A) Running times are plotted as a function of the number of target proteins. The number of 

templates is equal to 1,000 for the template-based method (B) Running time of our template-based 

method is plotted as a function of the number of template interfaces for 50 target proteins. If there 

were 15,000 template interfaces, two methods would have same running times for 50 target 

proteins. 

 

5.2.3 Structural Interaction Network of p53 Pathway 

Following validation, we apply our multi scale combinatorial docking algorithm to the p53 

pathway where interaction data are obtained from the human molecular interaction map 

(MIM) [210]. Additional interactions from other databases such as DIP [30], MINT [31], 

BIND [32] and IntAct [33] enrich this map. Overall, 328 interactions between 104 

molecules are found from MIM and interaction databases. Among them, only for 25 
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interactions the structures of the complexes are available in the PDB. At this point, our 

method intervenes to complete the lacking network parts. By using the template interfaces 

in the p53 pathway with a default matching threshold, 108 interactions between 49 proteins 

are obtained. 46 of these 108 are known experimentally (detailed in Table 5.1). In this 

network, transcription factors such as E2F1-2-3, Max, Myc, Jun and Fos interconnect via 

multiple interactions. As expected, there is also a large number of interactions between 

cyclins and kinases. The template set containing 1037 interfaces gives just 53 interactions 

between 38 proteins with default thresholds, of which 24 interactions have experimental 

evidence. When the matching thresholds are relaxed by 10%, the template set in the p53 

pathway gives 396 putative protein complexes between 68 protein chains of which 88 

interactions are verified by interaction databases. Using the relaxed matching thresholds, 

721 interactions between 71 proteins are found from the 1,037 template interfaces of which 

110 interactions are verified. The results show that using strict matching thresholds give 

more reliable predictions, but also miss true positives. When thresholds are relaxed, true 

positive rate increases; however, false positives also increase.  

 

Table 5.1 Number of predicted interactions and verification on the experimental data. 
Template 

Dataset 

# of predicted 

interactions
a
 

# of verified 

interactions
b
 

Extra 

interactions
c
 

Total # of verified 

interactions 

p53 templates 

(default) 
108 (49) 30 16 46 

1037 templates 

(default) 
53 (38) 18 6 24 

p53 templates 

(relaxed) 
396 (68) 52 36 88 

1037 templates 

(relaxed) 
721 (71) 67 43 110 

a
 numbers in paranthesis represents the number of proteins; i.e. 108 interactions between 49 proteins. 

b
 Experimental interaction data for verification are obtained from the human molecular interaction map, DIP, 

MINT, BIND and IntAct. 
c
 For further evidence for the predicted interactions, we used the String search tool where we considered only 

experimental interactions and databases with medium confidence threshold (0.4). 

 

In MIM, molecular components are clustered into putative subsystems. These 

subsystems are determined by mutual interactions and functional correlations. Here, apart 

from the overall prediction statistics, we describe simulations of two subsystems as case 

studies: the nucleotide excision repair (NER) and Cyclin/CDK subsystems.  
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5.2.4 The Nucleotide Excision Repair (NER) Subsystem in the p53 Pathway 

DNA can be exposed to damaging chemical and physical agents such as UV and free 

radicals. The nucleotide excision repair pathway repairs DNA damage via sequential 

combination of protein complexes rather than a pre-organized protein assembly. The basic 

steps of NER involve DNA damage recognition, damage verification, association of repair 

proteins, excision of the damaged DNA and resynthesis [213, 214]. Several structures of 

proteins involved in NER are available in the PDB such as the ERCC1/XPA, ERCC1/XPF, 

and XPC/Centrin peptide complexes. However, the structural coverage of the NER 

pathway is still far from complete. We aim to assist in the assembly by modeling protein 

complexes in this pathway.  

The „excision-resynthesis‟ reaction begins with damage recognition (see Figure 5.5). 

The HR23B/XPC/Centrin complex is a sensor which identifies the damaged part. The 

crystal structure of the XPC/Centrin heterodimer is available (pdbID: 2a4j). Transcription 

factor complex TFIIH (containing Cdk7, CycH, and XPB, XPD helicases) helps in opening 

the strand around the damaged part. XPA confirms the damage and is essential for the 

following steps. The replication protein A (RPA) functions in the stabilization of the 

opened DNA. RPA interacts with XPA for correct positioning of endonucleases (XPG, 

ERCC1/XPF) [215]. RPA is a heterotrimeric protein composed of 14, 32 and 70 kDa 

subunits. The 70 kDa subunit of RPA (1fgu:A) associates with XPA (1xpa) to function in 

the assembly of the repair complex. RPA and ERCC1 associate with XPA sequentially: 

First RPA binds and then ERCC1 [216]. Residues 98 to 187 of XPA are required for 

binding to the 70 kDa subunit of RPA. XPA uses the residues 67-80 to interact with 

ERCC1 (pdbID: 2jnw). Thus, the binding regions on XPA do not overlap. Using our 

method, the structural model for RPA (70 kDa)/XPA complex is generated. With the 

template set of 1,037 interfaces, the algorithm can not find a similar template for the 

RPA/XPA complex. We then utilized all interfaces including homodimers. The template 

interface tRNA-ribosyltransferase homodimer (2ashCD) gives one hit for this interaction. 

XPA interacts with RPA at XPA's Zn-containing N-terminal (residues 102-129) [217]. The 

predicted region on XPA corresponds exactly to this region and is illustrated in Figure 5.5.  

In the NER subsystem, Rad51 and Rad52 directly interact with each other [218] and the 

RPA/Rad52/Rad51 assembly functions in concert. The highest ranking solution for the 

Rad51/Rad52 complex is found from the template generated from Ras-related protein Rab-
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7/Rab interacting lysosomal protein complex (1yhnAB). RPA 32 kDa/Rad52 complex is 

found using the template exonuclease I/exonuclease II complex (2c38SV). The putative 

trimer of the Rad51, Rad52 and RPA 32 kDA shows that their simultaneous interaction is 

possible. In addition, the binding region on Rad51 includes Phe259 which is essential for 

Rad52 binding [219]. RPA 32 kDa uses a region distinct from the one which interacts with 

14 kDa and 70 kDa subunits.  

Following the RPA/XPA complex formation, the endonucleases (ERCC1/XPF, XPG) 

enter the pathway and function in DNA incisions. The crystal structure of the ERCC1/XPF 

complex is known (1z00). Rad52 can bind to the XPF subunit of the ERCC1/XPF complex 

using its DNA binding domain (N-terminal region, 1h2i:A, residues 1 to 209). 

XPF/Rad52/ERCC1 can interact simultaneously. This assembly stimulates the 

endonuclease activity of XPF/ERCC1 and weakens the DNA strand annealing activity of 

Rad52 [220]. The first ranking solution of the method gives a binding region which does 

not overlap the one where ERCC1 binds to XPF. The structures of ERCC1 and Rad52 do 

not interpenetrate when they interact with XPF. In this way, a hypothetical trimeric 

complex of ERCC1/Rad52/XPF is obtained. Rad52 self-associates and forms a ring 

structure which functions in DNA annealing. Rad52 is also stable on its own [221]. One 

mechanism suggests that Rad52 forms the ring after entering the nucleus [222]. This 

predicted binding region on Rad52 overlaps with the self interacting region. From this 

predicted assembly, we suggest that when Rad52 binds to XPF, it can not form the Rad52 

complex ring which binds to ssDNA, weakening its DNA annealing activity.  

Following removal of the damaged part, DNA repair and resynthesis begin. PCNA, 

described as a „sliding clamp‟, has an essential role. RF-C is required to load PCNA onto 

the DNA. The crystal structure of the yeast PCNA/RF-C complex is in the PDB. Another 

interaction partner of PCNA is Gadd45, considered as a stress sensor. The interaction 

between PCNA and Gadd45 stimulates DNA excision repair and inhibits the entry of cells 

into the S phase [223]. This indicates that Gadd45 may be considered as a link between the 

p53-dependent cell cycle checkpoint and DNA repair. The 94 N-terminal residues of 

Gadd45 contribute to strong interactions with three regions of PCNA (1-20, 61-80 and 

196-215) and weak interaction with one region (121-170) [224].  
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Figure 5.5 The nucleotide excision repair subsystem as a sequence of reactions. It initiates with 

damage recognition by HR23B/XPC/Centrin. Then, the strand around the lesion is opened by the 

TFIIH complex. The replication protein A (RPA) stabilizes the opened DNA and associates with 

XPA for the correct positioning of endonucleases. Following the RPA/XPA complex formation, the 

endonucleases (ERCC1/XPF, XPG) enter the pathway and function in DNA incisions. After that, 

repair and resynthesis process begins. At each step of the NER, structural representation of the 

predicted (XPA/RPA, Rad51/Rad52/RPA, Rad52/XPF/ERCC1, PCNA/Gadd45) are illustrated. 

The crystal structures of XPF/ERCC1, RPA complex, XPA/ERCC1, XPC/Centrin complexes are 

available in the PDB. 
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The first ranking solution, predicted from the template interface of the signaling protein 

complex YPD1/SLN1 (1oxbAB), finds that residues 138 to 146 of PCNA are in contact 

with Gadd45 which corresponds to a patch in the experimentally known weak interaction 

region on PCNA (residues 121-170).  

 

Table 5.2 The highest ranking solutions in the case studies. 

Target Protein 1  Target Protein 2  
∆Gcalc 

(kcal/mol)
a
 

Template Name 

NER Subsystem 

RPA 70 kDa (1fgu:A) XPA (1xpa) 38.80 tRNA-ribosyltransferase 

homodimer (2ashCD) 

Rad52 (1h2i) Rad51 (1n0w:A) 2.98 Ras-related protein Rab-7/Rab 

interacting lysosomal protein 

complex (1yhnAB) 

Rad52 (1h2i) XPF (1z00:B) -4.55 tyrosyl-tRNA synthetase 

(2cycAB) 

Gadd45 (2kg4) PCNA (1axc:A) -26.58 the signaling protein complex 

YPD1/SLN1 (1oxbAB) 

RPA, 32 kDa (2z6k:A) Rad52 (1h2i) 41.94 Exonuclease I/exonuclease II 

complex (2c38SV) 

Cyclin/Cdk Subsystem 

Cdk1 (1lc9) CycB (2b9r:A) -38.63 Cdk2/CycA complex 

(1vywAB) 

14-3-3 (1ywt:A) Cdk1 (1lc9) 33.20 Cdk5/Cdk5 inhibitor p25 

complex (1unlAD) 

Cdk1 (1lc9) Gadd45 (2kg4) -92.71 pyridoxal kinase complex 

(1lhpAB) 

Other Interactions    

Nfkb, p65 subunit (1nfi:A) ASPP2 (1ycs:B) -45.61 Nfkb p65 subunit/Ikb complex 

(1nfiAF) 

p27 (1jsu:C) Cks1 (1buh:B) -44.06 Cdk2/p27 complex (1jsuAC) 

 Rad52 (1h2i) -55.35 Cdk2/p27 complex (1jsuAC) 

p27 (1jsu:C) Mdm2 -28.87 CycA/p27 complex (1jsuBC) 

p27 (1jsu:C) TFIIH,  

p62 subunit (1pfj) 

-37.51 CycA/p27 complex (1jsuBC) 

p27 (1jsu:C) ERCC1 (2a1i) -29.54 CycA/p27 complex (1jsuBC) 

Skp2 (2ast:B) p19
ink

 (1blx:B) -26.69 Skp1/Skp2 complex (2astAB) 

Skp2 (2ast:B) E2F4 (1cf7:A) -9.32 Skp1/Skp2 complex (2astAB) 

Skp2 (2ast:B) p300 (1p4q:B) -20.53 Skp1/Skp2 complex (2astAB) 

Skp2 (2ast:B) HMG (2e6o) -20.23 Skp1/Skp2 complex (2astAB) 

Skp2 (2ast:B) APC (1m5i) -13.01 Skp1/Skp2 complex (2astAB) 

Skp2 (2ast:B) Plk1 (1q4k:A) -2.84 Skp1/Skp2 complex (2astAB) 
a
 The energy values are calculated by Fiberdock. 

 

In the last step, PCNA anchors polymerases to the replication site. A patch is 

resynthesized, added to the DNA strand by DNA ligase I and the DNA is repaired. The 

events are summarized in Figure 5.5. The list of putative complexes with the calculated 

energies are tabulated in Table 5.2. In this way, we simulated functional associations in the 
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NER pathway using both experimental structural data and our predicted protein complexes, 

illustrating the potential of our approach in prediction of functional associations.  

 

5.2.5 Cyclin/CDK Subsystem 

Cyclin dependent kinases (CDKs) play an essential role in cell cycle progression. 

Deregulation of cell cycle usually causes cancer. Hence, CDKs are drug targets. Here, we 

analyze the CDK interactions and cell cycle G2/M phase from a structural perspective.  

Cell cycle: G2/M Checkpoint prevents cells from entering mitosis (M phase) if the genome 

is damaged. Under normal conditions, Cdc25 is activated by Plk1; Cdk1 (Cdc2) is 

activated by Cdc25. Cdk1 bound to CycB drives the cells from the G2 phase to the M 

phase.  

The structure of the Cdk1/CycB complex is unavailable. To simulate this pathway using 

structures, the Cdk1/CycB complex should first be modelled. Cdk1 (PDB: 1lc9) is 

structurally very similar to other cyclin-dependent kinases. Structurally, CycB (2b9r:A) is 

also similar to other cyclins. The first ranking putative Cdk1/CycB interaction (-38.63 

kcal/mol) is found using the interface between Cdk2 and CycA (1vywAB). Finding the 

binding region of the Cdk1/CycB complex is trivial because the overall structures of the 

target proteins are very similar to the partner chains of the template interface. Using 

sequence order independent alignment of interface partners (which are discontinuous 

segments) with the surface region of the target proteins, we obtain a favorable energy value 

which indicates that our method can successfully model this interaction.     

When DNA is damaged, two cascades get activated. The first halts the G2 to M phase 

process by attacking Cdc25. The second targets Cdk1, keeping it inactive. In the first 

cascade, Chk kinases phosphorylate and inactivate Cdc25. The 14-3-3 protein plays a role 

in the regulation of the signaling pathways and functions in nuclear export. The 

phosphorylated Cdc25 is exported from the nucleus by the 14-3-3 before it interacts with 

Plk1. In the second cascade, p53 dissociates from Mdm2 when it is phosphorylated, binds 

DNA and promotes production of all three proteins, 14-3-3, Gadd45 and p21 which inhibit 

Cdk1. 14-3-3 functions in nuclear export as in the first case, but here the target is Cdk1 to 

be moved out of the nucleus. The first ranked solution of 14-3-3/Cdk1 complex is 

predicted from the template interface between Cdk5/Cdk5 inhibitor p25 complex 

(1unlAD). The predicted region on Cdk1 overlaps with its CycB binding region.  
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Figure 5.6 Structural representation of the G2/M phase checkpoint. In this figure, all interactions 

are modelled using our prediction method, except the p21/Cdk1/CycB complex. Under normal 

conditions, Plk1 activates Cdc25; then, Cdc25 activates Cdk1 which drives the cell into mitosis 

(shown in left panel). DNA damage initiates two parallel cascades to inactivate the Cdk1/CycB 

complex (shown in the right panels). Activations are shown with blue arrows; inhibitions and 

nuclear exports are shown with red oval arrows. 

 

Experimental observations indicate that Gadd45 inhibits the activity of Cdk1/CycB as 

strongly as p21 which is also a Cdk/Cyc inhibitor. In addition, Gadd45 does not associate 

with CycB which indicates two possible mechanisms: either Gadd45 associates with free 

Cdk1 or it displaces CycB from Cdk1/CycB [225]. The inhibitory domain of Gadd45 

includes residues between 65 and 84 [226]. We predict two possible binding orientations 

for the Cdk1/Gadd45 protein pair. The first ranking putative interaction is predicted from 

the template interface in the pyridoxal kinase complex (1lhpAB). The second ranked 

solution comes from the acetylglutamate kinase complex (2ap9AB). The experimentally 

determined region of Gadd45 (residues 65 to 84) matches exactly the predicted region on 

the Gadd45 surface in this solution. In the first solution, the predicted region overlaps with 

the region where Cdk1 interacts with CycB. Thus, this prediction supports the first 

mechanism where Gadd45 associates with free Cdk1 and prevents it from interacting with 
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CycB. In the second solution, the predicted region does not overlap with the CycB 

interacting region of Cdk1 which supports the second mechanism. 

Figure 5.6 illustrates the simulation of this pathway with the predicted interactions 

where all are first ranking solutions. The modelled quarternary structure of the 

Cdk1/CycB/p21/PCNA complex is taken from Ref. [227]. Since only 22 residues of p21 

have available coordinates, p21 cannot serve as a target protein in our algorithm. Table 5.2 

gives the energies and template interfaces for the putative complexes.  

 

5.2.6 Some Promising Interactions Predicted by Our Approach 

NFκB–ASPP2 Interaction 

NFκB is a transcription factor playing a role in the regulation of apoptosis. In the 

cytoplasm it is present in an inactive state. When NFκB gets activated, it passes into the 

nucleus and binds specific DNA fragments [228]. NFκB is composed of two subunits, p65 

and p50 (1nfi, p65: chain A, p50: chain B). Iκb (1nfi, chain F), an ankyrin repeats-

containing protein, keeps NFκB in a resting state in the cytoplasm. Using the interface 

between Ikb and NFκB (1nfiAF) as a template, we predict possible partners of the NFκB 

protein among all target proteins in the p53 pathway. We find a possible interaction 

between NFκB (1nfi:A) and ASPP2 (1ycs:B). ASPP2 is a proapoptotic protein which 

associates with several proteins including the DNA binding domain of p53 (1ycs:A). It 

contains ankyrin repeats like Iκb.  

Figure 5.7 illustrates the structure of the predicted complex. The ASPP2 structure 

matches well the Iκb side of the template. Hence, ASPP2 may be considered an inhibitor of 

NFκB and it may block the DNA binding activity of NFκB in the nucleus. The predicted 

region corresponds to a previous model [229], where two regions were proposed for 

binding of NFκB to ASPP2. The predicted NFκB/ASPP2 complex shows that the 

simultaneous interaction of NFκB subunits and ASPP2 is possible. However, the 

ASPP2/p53 heterodimer cannot interact with the p65 subunit of NFκB in the presence of 

the p50 subunit, because of the geometric clash between them. Further, Iκb and ASPP2 use 

the same region on NFκB; thus, their interaction with NFκB is also mutually exclusive.  
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Figure 5.7 The modeled interaction between NFκB and ASPP2 proteins. (A) The NFκB/Iκb 

complex (1nfiAF). (B) The predicted NFκB/ASPP2 complex, NFκB is in blue, the right partner of 

the template interface is in cyan and ASPP2 is in pink. (C) The NFκB/ASPP2 complex following 

flexible refinement. (D) The possible NFκB/ASPP2/p53 trimer.  

 

The p27 Protein and its Possible Partners 

p27 is a cyclin dependent kinase inhibitor. The trimeric complex of p27/Cdk2/CycA (1jsu) 

generates two interfaces with one side being p27. From these two template interfaces, 

several interaction partners for p27 are found by our method. One of them is Cks1 which is 

similar to the Cdk2 part of the interface between p27 and Cdk2. Four β-sheets match well 

with the β-sheets of Cdk2 (Figure 5.8) which is the highest ranking solution (-44.06 

kcal/mol). Three new interaction partners for p27 are predicted from the interface between 

p27 and CycA: Mdm2, TFIIH (p62 subunit) and ERCC1 (-28.87, -37.51, -29.54 kcal/mol, 

respectively). String [230] provides experimental evidence for the Mdm2/p27 and 

ERCC1/p27 predicted complexes. 
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Figure 5.8 Structural representation of predicted and known partners of the p27 protein. p27 has 

two binding sites, one is shown in red colored dashed box and the other in blue. The edges between 

p27 and its partners are colored in the binding site colors. 

 

The Skp2 Protein and its Possible Partners 

The S-phase kinase-associated protein (Skp2) is an F-box protein. Association of p27 with 

Skp2 is the rate limiting step in ubiquitin-mediated degration of p27 [231]. When we 

compare all target proteins in the template set of the p53 pathway interfaces, we notice that 

Skp2 uses the same region to interact with other proteins. One of these partners is another 

kinase inhibitor, p19
ink

, whose ankyrin repeats match well the Skp1 side of the interface (-

31.11 kcal/mol). We speculate that in addition to p27, p19
ink

 may be a degradation target of 

Skp2. As shown in Figure 5.9, APC, E2F4, HMG, p300 and Plk1 also have structurally 

similar segments on their surfaces and are predicted as interacting partners of Skp2.  
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Figure 5.9 Some possible partners of Skp2 are predicted from the interface between Skp2 and 

Skp1. The template interface is shown in dashed box on the Skp1/Skp2 complex. In the continuing 

part of this figure red colored segments represent the interface part of Skp1. These segments match 

well the surface of other target proteins, E2F4, HBP1, p300, APC, Plk1 and p19
ink

. 

 

5.3 Conclusions 

Here we presented a combinatorial approach to effectively predict the functional 

associations of proteins on a large scale. This approach relies on the expectation that the 

number of protein-protein interface architectures in nature is limited; thus extrapolation of 

the known architecture space on target protein surfaces may help to identify protein 

interactions. This knowledge-based approach is made more physical by combining with 

docking strategies, flexible refinement of the solutions and energy calculations to rank 

them. We show how available structural information can help in modeling a pathway by 

using structural similarity independent from global fold homology and how such a 

knowledge-based approach can be enhanced by filters, flexibility and energy calculations. 

To show its functionality, we modeled the molecular interaction map of the p53 pathway. 

The nucleotide excision repair (NER) subsystem, cyclin-dependent kinase subsystem and 

some promising putative functional associations are illustrated in the p53 pathway.  
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Our strategy models the proteome based on local, sequence-order-independent 

homology to each side of an interface whose structure has been determined experimentally. 

As in any strategy which is motif-based there must be a similar motif in the template set. If 

there is no such motif, we cannot expect the method to find it. As in homology modeling, 

or threading of protein chains, a motif-based strategy is an advantage and a disadvantage: 

the advantage is that if such motif is available, the method is fast and reliable (which is 

why single chain homology modeling is so popular). At the same time it is a disadvatage, 

since the outcome depends on the presence of the motif in the template set. The Structural 

Genomics initiative is widely expected to assist in protein folding via the generation of all 

motifs which could be used for modeling. Similar considerations apply to modeling of 

protein-protein interaction. We expect that with the fast growth of the PDB the number of 

distinct interface motifs will grow making such fast strategies increasingly popular and 

useful for the modeling of protein interactions. 
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Chapter 6 

 

MULTI-PARTNER PROTEINS 

 

In this chapter, the multi-partner proteins are analyzed along their distinct binding sites. 

Adapting of multiple binding sites or reutilizing of a single site by several partners is 

crucial for interaction with many different proteins. Multi-partner proteins can interact with 

their partners at different time periods through the same region (i.e., mutually exclusive 

interactions); or at the same time through different regions (i.e., simultaneous 

interactions), or both. In the first part, the dataset of multi-partner proteins available in 

PDB are presented along some case studies; then, two hub proteins – p53 and Mdm2 – are 

illustrated with PRISM predicted and experimental interactions. 

 

6.1 Structural Dataset of Multi-Partner Proteins  

Datasets of protein-protein interfaces are constructed by considering pairwise contacts of 

protein chains within a single protein complex in PDB. For proteins interacting with many 

other partners, there are different crystal structures containing these multiple partner 

proteins. In the current work, we will follow a new approach to reveal the multi-faced 

structure of proteins in PDB. For this aim, we take all proteins in PDB clustered according 

to their sequence similarity (70% homologous protein chains in each cluster). On the other 

hand, our pairwise interface dataset [10]  is updated with new structures. The interfaces of 

the proteins in each cluster are searched in this chain level interface dataset. One protein is 

fixed and its partners available in the interface dataset transformed on this protein using 

Multiprot [208]. For two interactions to be simultaneously possible, first of all their 

binding sites should not overlap; further, the rest of the structures of two partners of a 

protein should not interpenetrate into each other. For this purpose, we set two thresholds. If 

less than five residues are overlapping of two binding regions and less than 5 residues are 

interpenetrating, these two partners can interact with the center protein simulateously. All 

possible combinations of these simultaneous interactions give the possible multimeric 

states of the proteins. 
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Figure 6.1 Interaction network of multi-partner proteins derived from PDB.  

 

As a result, compact multimeric states of the proteins are obtained. To construct the 

multi-partner proteins dataset, 64,352 protein structures are downloaded from PDB (as of 

April 2010). These protein structures lead to 127,510 two-chain protein interfaces. After 

application of the procedure, we obtain 1,491 multi-partner proteins in the dataset of which 

389 have a binding region re-used several times by their partners and 1,401 use more than 

one region to interact with their partners. This procedure is useful because it collects the 

disorganized data for a specific protein. In this way, all known partners of a targeted 

protein can be easily picked. Also, this dataset shows the overlapping and distinct binding 
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sites on the protein surfaces. These multi-partner proteins can be represented as a network 

to visualize the connectivity of the proteins in PDB. The network contains 3920 protein 

nodes 4915 interaction edges. There is a large connected component and several isolated 

entities which are not connected to the largest one (see Figure 6.1). With the increase in 

the number of protein structures in PDB, this network will get more connected in the 

future. However, still this is a rich source to figure out which interactions can occur 

simultaneously and which are mutually excluded. It assigns implicitly the time 

dimensionality in protein networks and transforms node-and-edge maps into cellular 

processes, and their regulation. 

 

 

Figure 6.2 Two binding sites of actin along its partners available in PDB are shown. The conserved 

helices are colored yellow, green and pink for gelsolin, BNI FH2 domain and vitamin D binding 

protein, respectively.  

 

As an example for multi-partner proteins in PDB, actin is illustrated in Figure 6.2. 

Here, two binding sites of actin are shown. It reuses the same binding site to interact with 

Vitamin D binding protein, gelsolin and BNI1 FH2 domain. On the other hand, 

deoxiribonuclease-1 interacts with actin through the second region. When we examine the 

details of the binding sites, we noticed that an 11-aa long helix is available in the binding 

region of all three partner proteins. The two computational hot spots 143 and 345 are 
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conserved in all three interactions contacting with the mentioned helices and the 

complementary hot spots in the partner proteins form a continuous region in the interfaces. 

The size of the interface between actin and gelsolin (1yvnAG) is 1021 Å
2
, between BNI1 

FH2 domain (1y64AB) is 1343 Å
2
, between vitamin D binding protein (1ma9AB) is 1711 

Å
2
.  Although the overall interface architectures are not completely similar and sizes of the 

interfaces are different, a local similarity mediates the interaction between these proteins.   

 

 

 

Figure 6.3 The available partners of guanine nucleotide binding protein. The first binding site on G 

protein is used by cGMP 3',5'-Cyclic Phosphodiesterase, Regulator of G-Protein Signaling (RGS) 

14, KB752 peptide, KB-1753 phage display peptide, respectively (colored purple). The second 

region is used by G protein beta subunit, the third is used by RGS4, and the fourth one is used by 

RGS8. 

 

In another example, interactions of G protein alpha subunit are shown in Figure 6.3. 

The partners cGMP 3',5'-Cyclic Phosphodiesterase, Regulator of G-Protein Signaling 

(RGS) 14, KB752 peptide and KB-1753 phage display peptide bind to the same region on 

guanine nucleotide binding protein. Hence, their interactions are not simultaneously 

possible. Distinct from this region, there are 3 more binding regions on guanine nucleotide 
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binding proteins where RGS4, RGS8 and G protein beta subunit bind, respectively. 

Although the binding regions of RGS4, G protein beta subunit and cGMP 3',5'-Cyclic 

Phosphodiesterase are not overlapping, the rest of the partner proteins interpenetrate each 

other. Hence, their simultaneous interactions are not possible. The four proteins using the 

same binding region do not share a common interaction hot spot. With the changing 

partners, the hot spots are also changing which may be the result of the small movements 

of G protein and different binding architectures of partner proteins.   

 

 

Figure 6.4 Subtilisin and its inhibitor molecules chymotrypsin inhibitor-2, subtilisin inhibitor and 

eglin C. Subtilisin is shown in surface representation colored white. The predicted hot regions are 

colored red.   

 

 The serine protease subtilisin BPN‟ is another multi-partner protein using the same 

region to interact with different proteins. Streptomyces subtilisin inhibitor (3sic:I), eglin C 

(1sib:I) and chymotrypsin inhibitor 2 (1y34:I) are the binding partners of subtilisin. 

Although their overall structures are dissimilar, their interface regions are structurally very 

similar. We checked the hot spots in the interface region and noticed that hot spots on 

subtilisin remain unchanged while interacting with different partners. These hot spots point 

out two common regions on subtilisin (residues 64, 96, 107, 126, 155, 189 and 220) like 

two clips holding the partners from up and down as shown in Figure 6.4.  



 

Chapter 6: Multi-Partner Proteins 90 

 
 

Falcipain-2 is a cysteine protease and a promising drug target [232]. The falcipain-2 

protein and its inhibitors are shown to illustrate the hot spot distribution in their interfaces 

in Figure 6.5. Computational hot spots are extracted using the HotPoint web server [209]. 

Most of the predicted hotspots on the falcipain-2 side are not changed despite the different 

partner proteins (cystatin and chagasin). Furthermore, the small ligand inhibitor E64 

directly binds to the hot spots where other partners also bind. This is consistent with the 

statement that small molecules target hot spots. 

 

 

Figure 6.5 The cysteine protease Falcipain-2 and its inhibitors (A) Cystatin, (B) Chagasin and (C) 

the inhibitor molecule E64. Falcipain-2 is colored pink and the hotspots are shown in surface 

representation in red. Although the overall structures of the cystatin and chagasin are different their 

interface regions to falcipain-2 are structurally very similar. The intersection of their hot spots show 

that the small inhibitor molecule E64 also directly binds to these hot spots.   

 

As a general trend, the enzyme-inhibitor complexes are more specific to their partners. 

While an enzyme is interacting with its partners, interface regions of the partner proteins is 

structurally very similar to each other. Hence, the hot spots remain unchanged with the 

changing partners and binding hot spots are important for the interaction specificity as in 

the subtilisin and falcipain-2 examples. On the other hand, despite the different overall 
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interface architecture, just a local similarity mediates the interaction with different partners 

as in actin example. In the G protein example, predicted hot spots change with small 

movements of the G protein while changing partner proteins. So we can conclude that if 

the partner proteins are using the similar interface to interact, the interaction hot spots 

remain unchanged; however, if partners associate using different architectures to the same 

region and the center protein make small movements, this leads to the change in the hot 

spot distribution.  However, these statements are shown on limited number case studies; 

hence, this analysis needs a more rigorous and systematic large-scale examination. 

 

6.2 Towards Inferring Time Dimensionality in Protein – Protein Interaction 

Networks by Integrating Structures  

Here, to illustrate the time dimensionality concept we use the predictions obtained by 

PRISM [11, 13, 15] which is the previous version of the method in Chapter 5 without 

flexibility and energy calculations. However, the rationale is the same: the number of 

interface architectures in nature is limited; thus, if two surface regions of two single chain 

proteins are similar to two sides of a crystal (or NMR) complex, they can bind. Via 

PRISM, we are able to predict which interactions can and cannot co-exist at the same time. 

Here, the template set for predictions are composed of 158 non-obligate interfaces and 330 

obligate interfaces which are also subsets of again 49512 interfaces clustered into 8205 

clusters [10].  

 

6.2.1 p53 and its Binding Partners 

p53 is a central protein, playing a key role in response to a broad range of stress signals 

such as DNA damage and oncogene activation; as such it has a large number of binding 

partners in the cell. p53 consists of five domains: the transactivation domain, the proline-

rich domain, the DNA-binding domain, the tetramerization domain and the regulatory 

domain. A high resolution structure of full-length p53 is unavailable; however, structures 

of several individual domains are. Figure 6.6 illustrates these domains with their 

corresponding structures. On its own, the transactivation domain is unfolded; it is folded 

when bound to the Mdm2 [233] or in a membrane environment [234]. The DNA-binding 

domain is the largest structured p53 domain with 191 residues. The tetramerization domain 
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is structured in the p53 tetramer, forming a single helix. The regulatory domain, to which 

ubiquitin attaches, is unfolded.  

 

 

Figure 6.6 (A) The fragments of the p53 protein and the available crystal structures; (B) p53 DNA-

binding domain interactions. Edges are colored according to the different binding sites; these 

contain both experimental and PRISM-predicted interactions. 

 

To predict the p53 partners and their binding sites, we selected the DNA-binding 

domain (DBD); the helical structure of the tetramerization domain can match many helical 

template interfaces leading to a prediction bias. The structurally known and predicted 

interactions of the DBD clearly show a mechanistic multi-faced, multiple partner 

paradigm.  

Figure 6.6B illustrates known and potential PRISM-predicted p53 DBD binding 

partners. In this small network, predicted interaction partners (Cdk2, Crk, Chk1, RPA, 

Ku70, Ku80, Abl, Casp3, RAP1A, Cdk7, Myc, Skp2, Cks1) and interaction partners 

known from available crystal structures of the p53 DBD complexes (53BP1, 53BP2, sv40, 

A 

B 
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p53 DBD) are drawn, where edges are colored according to their binding sites; protein 

partners binding p53 DBD at the same binding site are depicted by similar-color edges. 

Figure 6.7 presents the detailed picture of this small network by combining the structures 

of the proteins and their binding regions. The p53 DNA binding domain is represented in 

ribbon and colored orange. The binding regions of the p53 interacting proteins are shown 

in ball representation; proteins interacting through the same p53 region are depicted using 

the same color. For example, Chk1, Crk, Cdk2 interact with p53 through the same region. 

They are colored red and their binding sites are colored yellow. Their interaction with p53 

is represented by yellow edge.  

 

 

Figure 6.7 Predicted partners of the p53 DNA-binding domain (left panel), with representation of 

some in the complexed state (right panel). 

 

The first binding site of p53 is the region (B1) where Cdk2, Crk and Chk1 bind. These 

proteins are PRISM-predicted p53 interaction partners. Cdk2 and Chk1 are members of the 

kinase family. Crk is a proto-onco protein and its SH2 domain is available in the target set 

(1ju5:A). The phosphorylation site of p53 is located at the transactivation- and regulatory 
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domains [235-237]. The catalytic site of the Cdk2 contains the residues Asp127, Lys129, 

Gln131, Asn132, Asp145 and Thr165. Also, the catalytic site of Chk1 contains Asp130, 

Asp132, Asn135 and Thr170. Here, we predict that Cdk2 and Chk1, two kinases, bind to 

DBD of p53 using a region different from their catalytic sites. The predicted binding site of 

Cdk2 overlaps partially with the region where Cdk2 binds to CycA. The template interface 

for these interactions is the obligate interface formed between two oligomerization 

domains of the arginine repressor (1b4bAC) which binds to DNA [238] with a 

transcription factor activity protein. Since Cdk2, Crk and Chk1 share the same binding site 

they are mutually exclusive and cannot interact simultaneously. When we compare their 

chemical contacts using MAPPIS (for details of MAPPIS see [239]), we observe seven 

structurally conserved contacts. These are illustrated in Figure 6.8. Thus, even though the 

partners are different, their putative interactions with p53 are conserved structurally and 

chemically [47]. NOXclass labels these interactions as biological and non-obligate, in 

agreement with the characteristics of mutually exclusive interactions.  

 

Figure 6.8 Conserved contacts of Cdk2, Chk1 and Crk with p53 DBD predicted with MAPPIS. 
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Another set of interacting proteins competing for B2, the other region of p53 DBD, are 

the p53 binding protein 1 (53BP1), p53 binding protein 2 (53BP2), simian virus 40 large T 

antigen (sv40), p53 DBD, Casp-3, Cks1, and proto-oncogene tyrosine protein kinase c-Abl 

(2abl). These proteins have overlapping binding sites on the DBD. The structures of the 

complexes of 53BP1 (1gzh:B), 53BP2 (1ycs:B), p53 DBD (2geq:A) and sv40 (2h1l:A) 

with the p53 DBD are available in PDB. The other partners are Prism- predicted 

interactions. The template interface of Casp3 – p53 interaction is the non-obligate interface 

between the acetylcholine receptor and its inhibitor (2br8BG). This interaction between 

Casp3 and p53 DBD is predicted by the human protein interaction prediction server (PIPs) 

[240], consistent with our results. 

For two interactions to be simultaneously possible, it is insufficient that binding sites 

should not overlap; in addition, in the multimeric state there should not be residues 

overlapping between the partners. In our case here, the corresponding partners of B1 

(where Cdk2, Crk, and Chk1 bind) and B2 (where 53BP1, 53BP2, sv40, p53 DBD, Casp3, 

Cks1, and c-Abl bind) do not interpenetrate each other in their trimeric states; 

consequently, simultaneous interactions of these two sets are possible. In the right column 

of Figure 6.7, some predicted multimeric co-interacting states are shown. For example, the 

first complex illustrates the simultaneous interaction of Chk1, RPA and 53BP2 with p53. 

The next complex presents the simultaneous interactions of Cdk2, RAP1A and Casp3 with 

p53. However, we should note that all the possible complexes we list above are derived 

from static structures and dynamics of the proteins are not considered. Proteins undergoing 

minor structural changes such as side chain rotations, can avoid some overlaps. 

c-Abl is a proto-onco protein, necessary for normal growth and development. C-Abl 

regulates several cell cycle control genes. The interaction between c-Abl and p53 enhances 

p21 transcription [241]. Prism predicts the Abl – p53 interaction with their binding regions. 

The template for this interaction is the interface between DBD of p53 and binding protein 

of p53 (53BP2) (1ycsAB). Both 53BP2 and Abl contain SH3 domain and Abl matches well 

with the 53BP2 part of the template interface. The binding site of Abl on p53 overlaps with 

the binding region of 53BP1, 53BP2, sv40 etc. NOXclass classifies this interaction as 

biological (i.e. non-crystal).  

Ku80 is a repair protein which forms a heterodimer with Ku70; this heterodimer binds 

to broken DNA and repairs it; the Ku70-Ku80 heterodimer also has an important role in 
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growth regulation [242]. However, Ku70 and Ku80 also have functions independent from 

each other. Ku80 can move into the nucleus in its monomeric state independent from Ku70 

using its own signals [243] or may transiently interact with a partner. The PRISM results 

lead us to propose that p53 DBD may be a potential partner of Ku80 in the nucleus. 

Deletion of Ku80 leads to an increase in p53-mediated DNA damage response [244]. The 

predicted interaction between Ku80 (1jeq:B) and p53 is shown in the lower right portion of 

Figure 4. This interaction is found to be 99.75% biologically relevant by NOXclass. The 

template interface for this putative interaction is the interface between the homodimer of 

DcoH protein (1dchAB). DcoH protein associates with specific DNA binding proteins. 

Ku80 covers just about the entire DBD surface, blocking the interaction of other proteins. 

Its binding region covers the B1 binding region (where Cdk2, Crk, Chk1 bind), the B2 

(where 53BP1, 53BP2, sv40, p53 DBD, Casp3, Cks1, c-Abl bind) and the B3 (where 

Rap1A, Ku70, Cdk7 bind). Thus, while proteins interacting through B1, B2 and B3 can 

interact with p53 simultaneously, none of these proteins can bind p53 when Ku80 is bound. 

Replication protein-A (RPA) is a single-stranded DNA binding protein which has several 

functions in the cell and contains three subunits. RPA interacts with several transcription 

factors including p53. The 32 Kda subunit of RPA (1z1d:A) matches the template interface 

formed between the homodimer of human Flt3 ligand (1eteAB) [245].  

 

6.2.2 Mdm2 and its Binding Partners 

Mdm2 is a negative regulator of p53. p53 promotes the transcription of Mdm2; in turn, 

Mdm2 binds to p53 and stimulates the ubiquitination of the p53 carboxy terminus, marking 

it for degradation. This negative feedback loop leads to oscillation in the levels of p53 and 

Mdm2 in the cell. Over-expression of Mdm2 leads to attenuation in the p53 response to 

stress signals. While the Mdm2-p53 interaction has been well studied, Mdm2 also has p53 

independent functions [246] and is a multi – interface cellular hub.  

 

Mdm2 – pRb interaction disrupts the pRb – E2F association.  

Like p53, mutated retinoblastoma protein (pRb) is observed in several human cancer types. 

Both p53 and pRb are inactivated in human tumor cells; the loss of their functions leads to 

tumor formation. Several viral groups target and inactivate these two tumor suppressors. 

Apart from the p53 dependent functions, Mdm2 physically and functionally interacts with 
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pRb. Mdm2 negatively regulates pRb, similar to p53, and inhibits its regulatory growth 

function. pRb interacts with the transactivation domain of the E2F family transcription 

factors, which are important regulators of DNA synthesis and cell cycle progression, and 

blocks E2F dependent transcription. The Mdm2 interaction with pRb disrupts the pRb-E2F 

binding leading to an increase in the E2F-dependent transcription [247, 248].  

 

 

Figure 6.9 The Mdm2–pRb complex predicted by PRISM and the E2F1–pRb complex available in 

the PDB. Mdm2 associates with pRb through the same region where E2F1 interacts. 

 

Using the interface of the homodimer of cytokine B10 (1o7zAB) as a template, PRISM 

predicts an Mdm2 – pRb interaction. The crystal structure of the pRb-E2F1 complex is 

available in the PDB (1n4m; the interface is labeled as 1n4mAC) [249]. The pRb region 

interacting with E2F1 matches an Mdm2 region, suggesting that Mdm2 binds to pRb at the 

same region as E2F1, thus blocking its interaction with pRb (shown in Figure 6.9). 

Consequently, the PRISM results suggest that the interactions of E2F1 and Mdm2 with 

pRb are mutually exclusive. Their binding sites on pRb share 16 residues, Glu533, Glu551, 

Glu554, His555, Ile536, Lys530, Lys537, Lys548, Lys652, Lys653, Leu649, Arg467, 

Arg656, Ser534, Thr645, and Val531. 

 

p53 – Mdm2 pocket region 

The transactivation domain of p53 interacts with the Swib domain of Mdm2. The 

interaction site is in a pocket region. When we focused on the PRISM-predicted putative 
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Mdm2 interaction partners in this region, we noticed that PCNA (Proliferating cell nuclear 

antigen), Casp3 (Caspase 3), Abl and TBP (TATA Box Binding Protein) all bind to Mdm2, 

blocking its pocket region. Thus, these proteins may compete with p53. Figure 6.10 part A 

illustrates the interaction between Mdm2 and the transactivation domain of p53 (PDB 

code: 1ycr; 1ycrAB is the PRISM labeled interface). The predicted binding sites of PCNA, 

Casp3, Abl and TBP are shown in part B. This figure clearly illustrates that these putative 

exclusive interactions occur in the pocket region of Mdm2, just where p53 binds.  

From experimental studies we know that Abl neutralizes the Mdm2-mediated 

degradation of p53. Abl binds to p53, enhances its transcriptional activity thus allowing 

p53 to overcome Mdm2-mediated degradation. Abl interacts with Mdm2 in vivo and in 

vitro. This interaction can occur in multiple Mdm2 sites [250]. Here, we predict that Abl 

binds to Mdm2 using the Swib domain of Mdm2. This region also corresponds to the 

pocket region where Mdm2 binds to p53. This scenario may be a mechanism to block the 

Mdm2-p53 interaction decreasing Mdm2-dependent degradation of p53.  

TBP is a transcription factor which binds to specific, TATA box regions of DNA. TBP 

is predicted as a possible partner of Mdm2 protein by PRISM. The predicted binding 

region is illustrated in Figure 6.10. This putative interaction is also available in the IntAct 

database [33].   

 

Mdm2 – Multi-interface Hub Protein 

Mdm2 is a hub protein with multiple binding partners interacting at different binding sites. 

Prism points out two distinct binding sites in the Swib domain of Mdm2. The first is 

detailed above. The second predicted binding site is illustrated in Figure 6.11, where the 

left panel depicts the binding partners with their predicted binding sites. Among these, the 

interaction between PCAF and Mdm2 is verified in the literature. Mdm2 interacts with 

PCAF both in vivo and in vitro [251].  
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Figure 6.10 Predicted partners interacting at the pocket region of Mdm2. (A) Mdm2–p53 complex 

taken from PDB. (B) Possible partners predicted by PRISM. 

 

Skp2 is also an E3 ligase like Mdm2. In several tumors, the expression levels of these 

two ligases are very high. However, inhibition of these ligases has more severe results in 

tumors [252]. Mdm2 displaces Skp2 and in this way the ubiquitination of the transcription 

factor E2F1 is inhibited [253]. The interaction between Skp2 and Mdm2 has also been 

validated experimentally. PRISM proposes a putative interaction between these two E3 

ligases, Mdm2 and Skp2, using the template interface between the homodimer of human 

Flt3 ligand (1eteAB). The right panel shows some combination of interactions which can 

occur simultaneously; the Abl-Skp2-Mdm2, TBP-Ku80-Mdm2 and PCNA-PCAF-Mdm2 

complexes are illustrated in their trimeric states. Here, none of the three proteins in each 

complex overlaps each other. If we find two proteins binding at different interfaces, 

microarray data can help in determining if they actually bind at the same time by looking at 

the correlation of their expression patterns. If their expression is correlated, most likely 

these two interactions can occur simultaneously.  
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Figure 6.11 Predicted partners of the Swib domain of Mdm2 (left panel) and representation of 

some of them in the complex state (right panel). 

 

6.3 Concluding Remarks 

Here, we present a concept integrating time into protein interaction networks using three-

dimensional protein structures and interfaces. The concept is illustrated by the multi-

partner proteins available in PDB and two hub proteins, p53 and Mdm2. To figure out and 

characterize the interactions of the p53 and Mdm2, the PRISM server is used [11, 13, 15]. 

For the p53, we predict four distinct binding sites on the DNA binding domain. These sites 

are utilized to bind to at least 12 different proteins. Some of these interactions can occur at 

the same time while some others cannot. For Mdm2, we propose two binding regions. We 

believe that such a strategy should be immensely useful in the actual comprehension of the 

regulation of cellular processes beyond the common node-and-edge network picture.  
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Chapter 7 

 

CONCLUSION 

 

As implied in the previous chapters, this work is a collage of the studies related to multi-

scale analysis of protein-protein interactions. The “multi-scale” term implies both 

molecular-level and proteome level investigations. For the molecular-level analysis, studies 

related to hot spots are presented. Hot spots are residues comprising only a small fraction 

of interfaces yet accounting for the majority of the binding energy. Hot spots are the targets 

of pharmaceutical agents and they are crucial for interaction specificity. In this dissertation, 

we introduced an efficient, intuitive model to predict computational hot spots in protein 

interfaces. This method uses two features for prediction, namely solvent accessibility and 

total knowledge-based pair potentials of the residues. It reaches an accuracy of 70% on an 

independent test set. When compared to other prediction methods, its performance exceeds 

all of them. Also, the case studies show the predictions. The hot spot analysis gives us the 

strength to incorporate the evolutionary data into protein modeling.  

We believe that the results provide insights for researchers working on characterization 

of protein interaction sites. Such studies provide insights for function when clear 

evolutionary structural relationship between the sequences being compared exists and 

insights into what residues are most important in defining particular protein interface 

signatures. Also, with its simple architecture and visualization tool, HotPoint would be 

useful both for the experimentalists and computational scientist working on protein 

recognition, modeling of protein complexes and drug design.  

In the future, the cooperative behavior of the hot spots can be examined using multiple 

point mutations. If we assume the protein interactions as therapeutic targets, the effect of a 

therapeutic agent on a cooperative hot region will be amplified when compared to an 

additive one.  In Chapter 6, the hot spot distribution and conserved contacts are illustrated 

just for some case studies. In the future, further, hot spot organization for multi-partner 

proteins can be analyzed more systematically at large-scale. 
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For the proteome-level studies, we introduced our combinatorial approach to effectively 

predict the functional associations of proteins. This approach relies on the expectation that 

the number of protein-protein interface architectures in nature is limited; thus extrapolation 

of the known architecture space on target protein surfaces may help to identify protein 

interactions. This knowledge-based approach is made more physical by combining with 

docking strategies, flexible refinement of the solutions and energy calculations to rank 

them. We show how available structural information can help in modeling a pathway by 

using structural similarity independent from global fold homology and how such a 

knowledge-based approach can be enhanced by filters, flexibility and energy calculations. 

To show its functionality, we modeled the molecular interaction map of the p53 pathway. 

The nucleotide excision repair (NER) subsystem, cyclin-dependent kinase subsystem and 

some promising putative functional associations are illustrated in the p53 pathway.  

Our strategy models the proteome based on local, sequence-order-independent 

homology to each side of an interface whose structure has been determined experimentally. 

As in any strategy which is motif-based there must be a similar motif in the template set. If 

there is no such motif, we cannot expect the method to find it. As in homology modeling, 

or threading of protein chains, a motif-based strategy is an advantage and a disadvantage: 

the advantage is that if such motif is available, the method is fast and reliable. At the same 

time it is a disadvatage, since the outcome depends on the presence of the motif in the 

template set. We expect that with the fast growth of the PDB the number of distinct 

interface motifs will grow making such fast strategies increasingly popular and useful for 

the modeling of protein interactions. The structural modeling of the interactions also let us 

to analyze the protein interactions from a different perspective where the time notion is 

implicitly integrated. 

As a future work, for the modeling part, improvements and optimization in the template 

set is crucial. We know that for different types of interactions the characteristics are 

changing. For example, signaling proteins have smaller binding area, while enzyme-

inhibitor interactions have higher affinity when compared to others and antibody-antigen 

interactions are promiscuous. So, target specific template dataset construction is a 

prerequisite for a future work. The classification of template dataset according to the 

interaction type, namely, enzyme-inhibitor complexes, antibody-antigen complexes, 

signaling proteins, cytokines will help to improve the prediction quality.     
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In overall, structural analysis of protein interactions both at molecular level and at 

proteome level where prediction and organization of hot spots in protein interfaces and 

modeling of protein complexes towards construction of structural protein interactions 

network at large scale are studied in this dissertation and substantial information is gained 

towards addressing the question how do protein interactions take place? These studies here 

will serve to functional and structural genomics, drug design and pathway analysis at the 

top level. 
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APPENDIX 

 

A.1. Webservers, Softwares, Tools, Databases 

 

A.1.1. NACCESS 

Naccess is a program used for the calculation of the accessible surface areas of the 

molecules. It basely rolls a solvent probe on the desired molecule. The radius of the solvent 

can be chosen by the user, but the default value is 1.4 Å. The path gained by the center of 

the probe gives the accessible surface area. Naccess takes files in PDB format as input. 

Besides the accessible surface area, the output file of the Naccess gives also relative 

accessible area for each individual residue. Relative accessibility can be described as the 

percent accessibility of a residue relative to the accessibility of it in the tripeptide ALA-X-

ALA. Generally if this value is larger than 5% then, this residue is identified as surface 

residue [15, 162]. In this work, we used Naccess with default values to calculate ASA 

[175].    

 

 A.1.2. MULTIPROT 

Multiprot is fully automated software which identifies multiple structural alignments of 

a given set of protein structures. Structural alignment method is based on the Geometric 

Hashing Algorithm which detects common parts of the given structures in all possible 

ways. This is a sequence-order and directionality independent algorithm. Multiprot 

considers only C
α
 atoms. In the output file, the matched residue pairs, number of them and 

the RMSD value between these residues are present. The algorithm does not force all 

residues to participate in the alignment; on the contrary, it searches the best scored partial 

alignment for the given structures. In parameters file, by changing parameter user can 

change the alignment conditions. Its sequence order independent feature makes Multiprot 

appropriate for protein interfaces analysis. Multiprot is used both in clustering part and in 

cluster type separation part [208]. 
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A.1.3. ClustalW 

ClustalW is a multiple sequence alignment program for protein or DNA sequences. As 

input sequence information of the desired proteins or DNAs are given and in the output the 

multiple sequence alignment of these structures are produced by the program. It calculates 

the best match and shows the similarities, differences and identities. In global alignments 

overall sequences are aligned by using gaps. In local alignments, only particular regions 

are aligned to each other. ClustalW uses global alignment for multiple sequence alignment. 

It has some options like input file format, substitution matrix preference, etc. In the output, 

besides the multiple sequence alignment, pairwise alignments of the sequences and their 

scores are also provided. Phylogenetic trees are also produced by the multiple sequence 

alignment [254].  

 

A.1.4. CytoScape (network visualization and analysis) 

Cytoscape is molecular interaction network visualization software which also 

intergrates biological information such as gene expression profiles, GO annotations etc. 

Additional features like network analyzer, functional enrichment generator, and additional 

file format support can be installed as plugins. Cytoscape user can visualize the protein – 

protein interaction network or other networks by loading .sif file which contains pairwise 

interaction information. Network visualization properties such as node shape, color, edge 

shape, color etc. can be defined by the user. It has also various filtering and selection tools. 

The more, the resulting graph can be organized several layouts such as hierarchical layout, 

spring embedded layout, circular layout etc [255]. Here, we used Cytoscape for 

visualization of functional interaction network of PDB. Cytoscape is downloadable through 

the web page http://www.cytoscape.org/. 

 

A.1.5. VMD (molecule visualization) 

VMD is a molecule visualization and analysis tool. Biological systems such as 

proteins, nucleic acids, lipid bilayer assemblies, etc. can be visualized by the help of VMD. 

VMD can read standard Protein Data Bank (PDB) files and display the contained structure. 

It has various molecular representation methods and an advanced coloring and rendering 

properties. VMD can be used also to animate and analyze the trajectory of molecular 
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dynamics (MD) simulations, and can interactively manipulate molecules being simulated 

on remote computers (Interactive MD) [256]. 

 

A.1.6. FiberDock 

FiberDock [144, 257] is a flexible refinement program for docking. It considers docking 

solution candidates. The method models both side-chain and backbone flexibility and 

performs rigid body optimization on the ligand orientation. The movements of the 

backbone and side-chain are modeled according to the binding van der Waals forces 

between the receptor and ligand. The method uses both low and high frequency normal 

modes and therefore is able to model both global and local conformational changes, such 

as opening of binding sites and loop movement. After refining all the docking solution 

candidates, the refined models are re-scored according to an energy function. FiberDock is 

downloadable at http://bioinfo3d.cs.tau.ac.il/FiberDock/. 

http://bioinfo3d.cs.tau.ac.il/FiberDock/
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