
A Genetic Algorithm with Oscillating Simulated Annealing for

2D HP Model

by

Ömer Kırkağaçlıoğlu

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computational Sciences & Engineering

Koç University

September, 2010

Koç University

Graduate School Engineering

This is to certify that I have examined this copy of a master’s thesis by

Ömer Kırkağaçlıoğlu

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assc. Prof. Ceyda Oğuz

Prof. Atilla Gürsoy

Assc. Prof. Özlem Keskin

Date:

To my wife

and

My parents

iii

ABSTRACT

Protein folding is the process of a linear chain of amino acids folding into a func-

tional 3D native structure. The problem of predicting this 3D native structure given

only the amino acids of a protein is one of the most challenging problems in com-

putational biology and is still rigorously investigated. The Hydrophobic-Polar model

is a simplified model for the protein folding process. This model is based on the

assumption that hydrophobicity is the dominant force that drives the protein folding

process.

In this thesis we propose a meta-heuristic algorithm (GAOSA) that combines

the well known Genetic Algorithm approach with Oscillating Simulated Annealing to

address the protein folding problem in the simplified 2D Hydrophobic-Polar Model.

Our approach makes use of the pull move neighborhood for the mutation operator,

a brute force 1-point crossover operator, a memory component borrowed from Tabu

Search and a problem specific diversification phase. We also provide some insights

about the implications of the Hydrophobic-Polar Model and how these implications

can be utilized in an algorithm.

iv

ÖZETÇE

Protein katlanması lineer bir amino asit zincirinin 3 boyutlu işlevsel öz haline

katlanması sürecidir. Proteinin 3 boyutlu öz yapısını yalnızca amino asit serisini kul-

lanarak bulmak şu anda hesaplamalı biyoloji dalındaki en zor problemlerden biri

olmakla birlikte çok yoğun şekilde araştırılmaya devam edilmektedir. 2 boyutlu

HP modeli protein katlanması problemi için basitleştirilmiş bir modeldir. Bu mod-

elde indirgemeler, protein katlanması sürecindeki baskın gücün hidrofobisite olduğu

varsayımı üzerine yapılmaktadır.

Bu tezde, protein katlanması problemini 2 boyutlu HP modelde çözmek için

Genetik Algoritma ve Benzetilmiş Tavlama algoritmalarının birleşiminden oluşan

üstsezgisel bir metod sunuyoruz. Yöntemimiz literatürde tanımlanmış yerel arama

metodlarından bazı bölümler kullanmaktadır. Tabu Arama’da kullanılan hafıza bölümü,

yeni bir 1-nokta çaprazlama işlemcisi ve probleme özel bir diversifikasyon bölümü

algoritmamızda bulunan parçaları oluşturmaktadır. Algoritmamıza ek olarak, HP

modelin içerdiği bazı bilgiler ve bu bilgilerin bir algoritmada nasıl kullanılabileceğine

dair bazı tartışmalar da tezin son kısmında sunulmaktadır.

v

ACKNOWLEDGMENTS

First, I would like to thank my thesis advisor Assc. Prof. Ceyda Oğuz for her

invaluable guidance and her never ending patience throughout the writing of this

thesis.

I am very grateful to Prof. Atilla Gürsoy and Assc. Prof. Özlem Keskin for taking

the time to be on my thesis comitee and providing me with constructive feedback.

I would also like to thank my office mates for all the support they’ve given me

and for the friendly environment they’ve created during our graduate study, they’ve

made it easier to get through the hard times.

A special thanks to my loving wife for always being there for me with her tender

encouragement. She deserves as much credit as I do.

Finally I would like to thank my family for their endless support, none of this

would be possible without them.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures xi

Nomenclature xiv

Chapter 1: Introduction 1

Chapter 2: The 2D HP Model 5

Chapter 3: Implicit Information in the HP Model 7

3.1 Force Function . 7

3.2 Bond Formation . 8

3.3 Structural Implications . 8

Chapter 4: Solution Approaches for the HP Model 10

4.1 Monte Carlo Methods . 10

4.1.1 Structure of Algorithms . 11

4.1.2 Move Structures . 13

4.1.3 Representations . 20

4.2 Chain Growth Algorithms . 22

4.2.1 Building the Chain . 23

Chapter 5: GAOSA Algorithm 28

5.1 Mutation Operator . 29

5.1.1 Local Search . 29

vii

5.1.2 Diversification Phase . 34

5.2 Crossover Operator . 36

5.2.1 Selection Strategy . 37

5.2.2 Crossover Method . 39

5.2.3 Replacement Strategy . 40

5.3 Parameter Tuning . 41

5.3.1 Parameters of GAOSA . 41

5.3.2 Experimental Results . 42

Chapter 6: Results 58

6.1 Standard Benchmarks . 58

6.2 Z-Structure Benchmarks . 60

6.3 Discussion of Results . 61

Chapter 7: Conclusion 66

7.1 Future Research . 66

Bibliography 69

viii

LIST OF TABLES

5.1 χ and ϕ: Parameter tuning for benchmark problem S 1-5 43

5.2 Tmax : Parameter tuning for benchmark problem S 1-5 43

5.3 Tmin : Parameter tuning for benchmark problem S 1-5 44

5.4 η : Parameter tuning for benchmark problem S 1-5 44

5.5 Π and τ : Parameter tuning for benchmark problem S 1-5 44

5.6 ρ: Parameter tuning for benchmark problem S 1-5 45

5.7 pm: Parameter tuning for benchmark problem S 1-5 45

5.8 pc: Parameter tuning for benchmark problem S 1-5 45

5.9 Cooling Schedules: Parameter tuning for benchmark problem S 1-5 . 46

5.10 Component analysis for benchmark S1-5. Combinations of different

components and run time results for each combination 46

5.11 Tmax : Parameter tuning for benchmark problem S 1-6 47

5.12 Tmin : Parameter tuning for benchmark problem S 1-6 47

5.13 η : Parameter tuning for benchmark problem S 1-6 47

5.14 Π and τ : Parameter tuning for benchmark problem S 1-6 48

5.15 ρ: Parameter tuning for benchmark problem S 1-6 48

5.16 pm: Parameter tuning for benchmark problem S 1-6 48

5.17 pc: Parameter tuning for benchmark problem S 1-6 49

5.18 Cooling Schedules: Parameter tuning for benchmark problem S 1-6 . 49

5.19 Component analysis for benchmark S1-6. Combinations of different

components and run time results for each combination 50

6.1 2D HP Model standard benchmark sequences. a Known optimal energy

value. 59

ix

6.2 Results for the 2D Benchmark Problems. a Known optimal energy value. 60

6.3 Results for the Z Structures. (a Known optimal energy value) 61

x

LIST OF FIGURES

1.1 Linear chain of amino acids (Left). Folded protein in its native struc-

ture (Right) . 1

1.2 Self-avoiding walk on a 2D square lattice 3

4.1 VSHD Moves. Residue positions are shown before the move and im-

mediately after a successful move. T(t) denotes the state of the con-

formation at time t. In 2a there are two possible positions that residue

one could be moved to, denoted by 1’ in gray circles. Each position is

checked in random order for availability. If a position is found to be

free, the residue is moved. 2b shows there to be only one potential new

position for a corner move. 2c shows the case for a crankshaft move.

This figure is borrowed from the paper [23]. 15

4.2 In (b), the simplest case where position C is occupied by residue i - 1

is shown. This move is equivalent to a corner move in the VSHD move

set. In (c), residue i is moved to L and i - 1 to C. The chain is in a

valid conformation and the move is finished. In (d), residues i down to

i - 3 must be pulled until a valid conformation is found. 17

4.3 . 18

4.4 (A) and (B) are parent solution from which the offspring will be gen-

erated. The random residue is selected to be residue 14. (C) The

generated offspring. This figure is borrowed from the paper [19]. . . . 18

4.5 The mutation operator of the GA is applied to the conformation in

(A). The selected random residue is 11, and the conformational angle

is changed from 270o to 90o. This figure is borrowed from the paper [25]. 19

xi

4.6 Representation of conformations using turns of in the sequence 20

4.7 Protein conformation for the given relative representation LSLLRRL-

RLLSLRRLLSL . 21

4.8 Protein conformation for the lattice representation in Figure 4.9 . . . 21

4.9 Lattice representation for the protein in Figure: 4.8 22

4.10 A demonstration of the core (thin solid lines) and the surrounding

layers (dotted lines). A growing chain is shown, the fixed residues are

shown with bold solid bonds. This figure is borrowed from the paper [4]. 24

4.11 Parameters of the heuristic function. This figure is borrowed from the

paper [4]. 26

5.1 Linear annealing schedule with maximum temperature 400 and min-

imum temperature 0 with 100 steps (Left). Exponential annealing

schedule with maximum temperature 400 and minimum temperature

0 with α = 0.95 . 32

5.2 The residue i in the figure above caused -2 decrease in the overall energy

of the protein. Residue i and the 2 H type neighbors shown in the figure

will be put in the memory for | − 2| ∗ η pull moves 33

5.3 (Left) This structure is a local optimum with energy value -22 for the

benchmark S1-5. (Right) This structure is reached after 10 steps of

diversification applied to the structure on the left. 35

5.4 Demonstration of Stochastic Universal Sampling 38

5.5 Demonstration of Roulette Wheel Selection 38

5.6 (Left) The native state structure for benchmark S1-5. (Right) The

native state structure for benchmark S1-6. 42

5.7 Mutation Probability parameters for S1-5 (Left) and S1-6 (Right) . . 51

5.8 Crossover Probability parameters for S1-5 (Left) and S1-6 (Right) . . 52

5.9 Minimum Temperature parameters for S1-5 (Left) and S1-6 (Right) . 53

xii

5.10 Maximum Temperature parameters for S1-5 (Left) and S1-6 (Right) . 54

5.11 Memory Step parameters for S1-5 (Left) and S1-6 (Right) 55

5.12 Parent Percentage parameters for S1-5 (Left) and S1-6 (Right) 56

6.1 Unique Ground State Structure of the Z-8 Protein. 61

6.2 Convergence graphs for problem instances S1-5 (Left) and S1-7 (Right) 64

7.1 Different local structures founded in the ground-state conformation of

the benchmark S1-1 . 67

7.2 A snapshot of the population in the early iterations for the benchmark

S1-1. 68

xiii

NOMENCLATURE

PFP Protein Folding Problem

GA Genetic Algorithm

MC Monte Carlo

GAOSA Genetic Algorithm with Oscillating Simulated Annealing

CGM Chain Growth Method

PERM Pruning and Enriching Rosenbluth Method

REMC Replica Exchange Monte Carlo

FandF Filter and Fan

CG Core Directed Chain Growth

xiv

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The Protein folding problem (PFP) is one of the major challenges in computational

biology. Due to its importance in understanding the inner mechanisms in organisms

and its applications in drug design, this problem is still one of the most rigorously

investigated topics.

A protein is a polypeptide that is made up of a linear chain of 20 different types

of amino acids. Independent from their type every amino acid contains a carboxyl

group, an amino group and a side chain that varies between different types of amino

acids. The amino acids in a protein are joined together with the formation of peptide

bonds between the carboxyl and amino group of adjacent amino acids. A protein

in nature begins its life cycle as a linear chain of amino acids and then folds into a

functional 3D native state. A native state is characteristic for a protein however a

protein can have different native states under different conditions. An example 3D

native structure is given in figure 1.1

Figure 1.1: Linear chain of amino acids (Left). Folded protein in its native structure
(Right)

Chapter 1: Introduction 2

The PFP is defined as the task of predicting the native 3D structure of a protein

given its sequence of amino acids. Each 20 type of amino acid differs from each other

by the properties of their side chains. A side chain of an amino acid can be:

1. Positively or negatively charged

2. Uncharged polar

3. Hydrophobic

The side chains of amino acids have different sizes and structures. The structure

of a side chain is determined by its rotational angles. These rotational angles are

continuous between 0◦and 360◦. With continuous distribution of rotational angles

within amino acids and different forces that act upon the protein based on the afore-

mentioned properties of the side chains creates a very large solution space even for

proteins with small sizes. Searching this solution space for the native structure of a

protein is an NP-Hard problem [24, 11, 7, 3].

The native state structure of the protein is closely related to its function, and

thus to determine the function of an existing protein using only the knowledge of its

sequence or to be able to engineer a protein that functions in a certain way, the 3D

native state structure of the protein must be known. Current experimental methods

that are used to determine the 3D structure of the proteins are X-Ray crystallography

and Nuclear Magnetic Resonance, also known as NMR. These methods are used

widely to create databases of protein structures with minimal errors. However, the

application of these methods is both expensive and time consuming; thus, there is a

need for a robust, fast, and cheap computational approach. Due to the failure of exact

computational methods in solving the protein folding problem, heuristic methods are

widely used to find approximate (close to native) structures.

The challenges that this problem present can be divided into two parts. The

first part is to understand the inner forces that act upon the particles during protein

folding resulting in the native structure. The second part is devising an efficient

Chapter 1: Introduction 3

search strategy for finding the conformation with the minimal free energy in the large

and complex space of possible configurations. The number of possible conformations

of a protein that has 150 amino acids is estimated to be 10300 [18], thus explaining

the size of the solution space.

For the second part of the problem, models that simplify the search and sequence

space are developed [16]. These simplified models for the PFP aims to provide a

framework that decreases the size of the search space without losing the main proper-

ties of the problem. Among these models the most widely studied is the 2D HP Model

[8, 16]. The 2D HPModel represents a protein as a linear chain of n amino acids. Each

amino acid can be one of two types: H (Hydrophobic) or P (Polar). Within the scope

of this model a valid conformation is defined to be a self-avoiding walk on a 2D square

lattice. A sample valid conformation for the sequence PPPPPPPPHHHHPPPP

is given in Figure 1.2.

Figure 1.2: Self-avoiding walk on a 2D square lattice

In this thesis, we analyze in depth the best performing methods in the litera-

ture that are developed to solve the PFP in the 2D HP Model. We also propose a

meta-heuristic algorithm, Genetic Algorithm with Oscillating Simulated Annealing

(GAOSA), that combines the Genetic Algorithm (GA) framework with Simulated

Annealing (SA). It can be seen from the results that GAOSA is competitive with

some of the state of the art algorithms in the literature. The remainder of this thesis

is organized as follows. Chapter 2 includes description of the 2D HP Model. Chapter

Chapter 1: Introduction 4

3 introduces the problem definition and short comings of the current implementations.

Chapter 4 analyzes the state of the art methods in the literature by comparison of

their individual components and their contributions. Chapter 5 explains the details

of the GAOSA algorithm analyzing each component and its effect on the final re-

sults. Chapter 6 provides the results for GAOSA together with the results of the best

performing methods in the literature.

Chapter 2: The 2D HP Model 5

Chapter 2

THE 2D HP MODEL

The HP model [8, 16] is a highly simplified version of the PFP problem and still

captures the basic dynamics of the original protein folding problem. The model bases

the simplification of the real problem onto the assumption that hydrophobicity is the

dominant force that drives the proteins’ folding process. In the real problem there

are 20 different types of amino acids that can be part of a protein sequence. Each

type has different properties but they can be separated into two classes: Hydrophobic

and Hydrophilic. The HP model reduces each 20 different types of monomer, to

a hydrophobic or polar type monomer. Hydrophobic (H) type monomers interact

poorly with water and tends to stay close to other hydrophobic type monomers and

form a hydrophobic core to minimize the contact with solvent, whereas the polar (P)

type monomers favor interacting with water molecules and thus stay on the surface

of the folded protein where interaction with the solvent is maximized. By decreasing

the types of monomers from 20 to 2, the HP Model reduces sequential complexity of

the problem. Although the reduction of the sequential complexity simplifies the real

problem, this simplification doesn’t effect the size of the search space which is the

real bottleneck for the PFP as stated in Chapter 1.

To be able to reduce the size of the search space, the HP model discretizes the

search space with a 2D square lattice. Since each lattice site has z=4 neighbors, where

z is the coordination number of the lattice, and the distance between two lattice sites

is fixed, number of different bond orientations in the sequence becomes z-1=3. And

thus a valid conformation of H and P type monomers on a 2D lattice becomes a self-

avoiding and a connected path on the lattice, meaning no monomer can occupy the

same lattice site, and each consecutive monomer should be unit-length apart. The

Chapter 2: The 2D HP Model 6

assumption of hydrophobicity being the dominant force also leads to a very simple

energy function to calculate the free energy of a given conformation.

To be able to model the favorable packing of the H type monomers, the energy

function for this model rewards a conformation for each of the non-bonded H-H con-

tacts. A single H-H contact contributes -1 to the total energy of the protein and other

possible contacts P-P and H-P contributes 0. Therefore, the aim of the problem can

be seen as a maximization of the number of H-H contacts or minimization of the total

energy of the protein.

The 2D HP Model attracted many researchers and different algorithms are intro-

duced in the literature for solving the model. In the next chapter some of the best

performing methods will be investigated in detail.The investigated methods here are

the genetic algorithm (GA) [25], the Core-directed chain Growth algorithm (CG) [4],

a variant of the ant colony optimization algorithm (ACO-3) [22], the Pruned Enriched

Rosenbluth Method (PERM) [14], The Evolutionary Hill Climbing Algorithm (EHC)

[5], the Filter and Fan algorithm (FandF) [21] and the Replica Exchange Monte Carlo

algorithm (REMC) [23] which is currently the best performing algorithm in both the

2D and 3D HP Model. Also the GTabu algorithm [17] due to the move structure it

proposes will be mentioned, however the details will be limited with the move struc-

ture utilized. Although some are extensions of previous work, these methods used

different representations, move structures and components. In the following Chapter

further discussion about the HP Model will be presented with a focus of its implica-

tions.

Chapter 3: Implicit Information in the HP Model 7

Chapter 3

IMPLICIT INFORMATION IN THE HP MODEL

The PFP in HP Model is a course-grained and a highly simplified version of

the original PFP. Most the simplifications that is employed by this model uses the

underlying assumption that the Hydrophobic interactions are the dominant driving

force that guides protein folding process. Using this assumption 20 different types

of amino-acids are reduced to 2 simple types Hydrophobic (H) and Polar (P), and a

highly complex energy function is reduced to a function where each unbonded H-H

contact in the lattice contributes a -1 to the total energy of the protein. These two

reduced and explicit properties are the only properties that are used in the state of

the art algorithms described above. However given the assumption the model is based

on, there are certain principles that are implied by the model. Detailed explanation

of these principles is given below.

3.1 Force Function

In the original PFP, there is a force acting on each residue that drives their move-

ments. This force function is very complicated taking into account the charge of the

residue, long range interactions with other residues, side chain structure and size, and

hydrophobicity of the residue. In the HP Model this force function is not explicitly

defined and yet it is implied by the model that the hydrophobicity of the residue is

the only driving force for the folding process. Therefore each H type residue has a

force a exerted on it that drives it away from the solvent that surrounds the protein.

However in none of the methods described in Chapter 4 there are not any mechanisms

that incorporates this information into their local search phase.

Chapter 3: Implicit Information in the HP Model 8

3.2 Bond Formation

Another principle that is borrowed from the original PFP is the means by which

stabilization of a local or a global structure occurs. In the original PFP different

types of bond formations with different energy values are formed which stabilizes

a structure. In the HP Model the stabilization of a structure depends only on the

hydrophobic interactions which is implemented in the given energy function, namely

a protein is assumed to be more stable as the energy value decreases or the number of

unbonded H-H contacts increases. Although this implies that performing a move that

breaks a H-H contact should be harder than a move that doesn’t affect or disrupt a

H-H contact, none of the algorithms uses this information. In all of the algorithms

that uses a Monte-Carlo approach, both the move location and the residue to be

moved are selected at random which implies that the algorithm is indifferent between

moving a residue away from a local structure.

3.3 Structural Implications

The HP Model also contains information about the structure of a solution which is

also inherited from the original problem. This information is implied by the energy

function. The energy function in the HP Model can be comprehended in two different

ways. The first and mostly used way is each H-H contact contributes -1 to the total

energy of a structure thus making the problem a minimization problem. However

problem can also be seen as a maximization of the number of H-H contacts. This

second point has an implication on the structure of a solution. Which means that

given only the structure of a solution we can infer whether it is a promising solution.

A good solution is bounded by the energy function to have a high number of H-H

contacts which results in compactness and one or multiple cores which contains large

number H type residues. This information can be utilized in the diversification phase

of the local search algorithm. If a given solution that is prematurely converged can

be identified, then it can be diversified by reducing its compactness.

Chapter 3: Implicit Information in the HP Model 9

Using the above mentioned information that is contained in the HP Model, it is

possible to create more problem specific and thus more efficient guiding strategies for

algorithms. In the next chapter influential algorithms created for the HP Model will

be investigated . Moreover in the Chapter 5 the specific components of the GAOSA

algorithm and how these components make use of the information that is discussed

in this chapter are explained in detail.

Chapter 4: Solution Approaches for the HP Model 10

Chapter 4

SOLUTION APPROACHES FOR THE HP MODEL

Different approaches are used to tackle the PFP in the 2D HP Model. These

approaches varied in the components they used. These components are: Local search

neighborhood, representation of solutions, search guidance strategies, and acceptance

of solutions. Although a mutually exclusive separation of these algorithms in all these

components is not possible, they can be divided into two classes according to their

global structure;

1. The first class is the so called Chain-Growth methods. This class of algorithms

start from a subset of the sequence, and grows the chain by adding small parts of

the sequence to the initial subset until they fold the complete sequence. Several

of the algorithms mentioned in the previous chapter falls into this category.

2. The second class of algorithms starts with the complete chain, and changes it

using a specific move structure until a certain stopping criteria is reached. This

type of algorithms will be called Monte-Carlo extended algorithms in the rest

of this thesis.

Each class of algorithms is explained in detail in the following sections.

4.1 Monte Carlo Methods

In this section algorithms that extends the MC approach are explained in detail in the

context of their extension and their improvement over the classical MC approach. The

flow of the algorithms, move structures and the problem representations are explained

in their dedicated subsections.

Chapter 4: Solution Approaches for the HP Model 11

A Monte Carlo simulation is done by making very small random perturbations on

a solution C changing it to C ′. After each perturbation the newly created solution

C ′ replaces solution C if it improves it otherwise it is passed through an acceptance

criteria called Metropolis criteria which is given below:

P (C ′) = e
(E−E′)

τ (4.1)

where P (C ′) is the probability of accepting the newly created solution C ′ and τ

is the system temperature. After the probability is calculated a random number r

between 0 and 1 is selected. If r is smaller than P (C ′) then C ′ replaces C, otherwise

C stays unchanged and enters the MC stage again.

4.1.1 Structure of Algorithms

The main flow is very identical in the all the Monte-Carlo extended algorithms and

the Metropolis acceptance criteria is included in all of them, proving the generality

and the strength of the MC approach.

Until 1993, simulating protein folding on the 2D lattice with Monte Carlo (MC)

simulations alone was the most successful approach to PFP [6]. However in the later

years, although algorithms borrowed certain components from the MC approach, the

main algorithms varied in a wide range. Most of the algorithms that extended the MC

approach borrowed similar components, the Metropolis like criteria in the acceptance

of solutions and random changes in the lattice.

This non-deterministic approach to acceptance of solutions, combined with ran-

dom changes in conformations, theoretically will converge to the global optimum value

based on the underlying Markov Chain hypothesis. However, when this MC method

is used alone, this convergence may take a large number of iterations, theoretically

more than the number of iterations necessary to enumerate all of the search space [25]

the MC approach after 1990 has been usually used together with other approaches

such as Genetic Algorithms (GA).

The GA by Unger and Moult [25] borrowed some components of the previous MC

Chapter 4: Solution Approaches for the HP Model 12

approaches through the mutation operator and the acceptance of solutions; however,

the main flow of the algorithm was rather dominated by the ideas of evolutionary

programming. A population with size N is initialized with extended sequences. Each

individual in the population is subject to a number of mutation steps similar to the

MC approach and then passed through the Metropolis criteria that is explained above.

At the end of the MC stage however, a crossover operator is applied at which point

the GA deviates from the general MC flow. The crossover operator is applied to

two conformations selected based on a selection strategy S1, S2 and an offspring S ′

is created. The newly created S ′ is accepted if its energy value E ′ is better than

the average energy Eij = (E1+E2)
2

of its parents, or if the energy value is worse it is

accepted with Metropolis criteria.

The contributions of the GA algorithm was to combine the components from the

evolutionary algorithms such as mutation, crossover and parent selection strategy

with the MC approach. The improvements of this combination are visible from their

results. The GA outperformed the previous MC methods, both in the quality of the

solutions and computational time. The method found better solutions and found

them ≥ 10 times faster than the previous MC methods.

Another method that extends the MC approach is the REMC algorithm [23].

This algorithm is currently the best performing algorithm in both the 3D and 2D

HP Model in the literature. The main flow of REMC is again very similar to the

classical MC approach. Being a population based method REMC algorithm maintains

χ independent replicas of a conformation. However different than both the GA and

the classical MC, a different temperature value is kept for each of the replicas. The

algorithm performs a MC search for each of the replicas and applies the Metropolis

criteria given in equation (4.1) using the replicas’ individual temperature. After

the MC search stage is completed, a replica exchange stage is started. The replica

exchange state consists of exchanging the individual temperature values of adjacent

replicas C and C ′ based on the following measure:

Chapter 4: Solution Approaches for the HP Model 13

PC′→C =

1 if ∆ ≤ 0 ,

e−∆ otherwise.

(4.2)

The value of ∆ is the product of the energy difference and the inverse temperature

difference.

∆ = (βj − βi)× (E(ci)− E(cj)) (4.3)

where βj =
1
Tj

is the inverse of temperature of replica j.

This replica exchange criterion aims to assign lower temperatures to promising

solutions for better intensification and assign higher temperatures to unfit solutions

for diversification.

4.1.2 Move Structures

There are two different types of moves that are used widely by the methods that are

developed for the HP model. Local Moves, and Long-ranged or Global Moves. They

differ in the amount of modification they cause on a given conformation. In some of

the methods these two types are coupled in different operators of the algorithm such

as crossover and mutation operator of the GA.

Local Moves

A local move is a move that is performed on a small number of residues thus causes

changes on the local neighborhood of the selected residues. Among the most widely

used moves there are VSHD neighborhood [12, 26, 10] which is combined neighbor-

hood from three different papers and the so-called Pull-Move neighborhood proposed

by [17].

VSHD Moves The VSHD neighborhood contains 3 types of local moves;

1. End Move

Chapter 4: Solution Approaches for the HP Model 14

End Move can only be applied to the first or the last residue in the sequence. The

residue is pivoted relative to its connected neighbor to a free position adjacent

to that neighbor, if more than one free positions are available than one is chosen

at random.

2. Corner Move

Corner Move can be applied to any of the residues except for the start and end

residues. To be able to apply the corner move to a given residue, a position to

which both the residue’s connected neighbors are adjacent to, must be available.

See Figure 4.1 (b) for reference.

3. Crankshaft Move

Crankshaft Move requires that a residue i is part of u-shaped bend in the se-

quence. Referring to Figure 4.1 (c), it can be applied if the positions i’ and i’+1

are available.

Chapter 4: Solution Approaches for the HP Model 15

Figure 4.1: VSHD Moves. Residue positions are shown before the move and immedi-
ately after a successful move. T(t) denotes the state of the conformation at time t. In
2a there are two possible positions that residue one could be moved to, denoted by 1’
in gray circles. Each position is checked in random order for availability. If a position
is found to be free, the residue is moved. 2b shows there to be only one potential new
position for a corner move. 2c shows the case for a crankshaft move. This figure is
borrowed from the paper [23].

Pull Moves Among the local move structures that are used in above mentioned

methods, the Pull-Move structure [17] is the most effective neighborhood structure

which is also used by REMC [23], FandF [21], EHC [5], GAOSA our own method. In

the original article the move structure is demonstrated using a simple Tabu Search

algorithm called GTabu and gets competitive results.

A pull move consists of an initial single pull event and a following series of correc-

tions if the initial pull breaks the chain. Thus the result of a pull move is always a

valid conformation. Another powerful feature of the pull move neighborhood is that

it is complete over all of the possible conformations in the lattice. This means that

given any two different states of a conformation P and P ′, there is a set of pull moves

Chapter 4: Solution Approaches for the HP Model 16

that leads from P → P ′. With this property of the pull moves an algorithm that

employs this neighborhood can theoretically reach every solution in solution space.

For a single pull move to happen consider a vertex i at time t in the position

(xi(t), yi(t)). Suppose that a free location L that is adjacent to location

(xi+1(t), yi+1(t)) and diagonally adjacent to vertex i exist. (This explanation of the

pull move refers to Figure 4.2). Then these three locations constitutes the three

corners of a square. Let the fourth corner be the location C. For a pull move to occur

location C must either be free or be occupied by vertex i-1. When location C is

occupied by vertex i-1, then the pull move consists of moving vertex i to location

L, otherwise this initial pull move breaks the chain and then a series of correction

moves are done. The correction moves starts with moving vertex i-1 to location

C. Then the following procedure is applied: starting from vertex j = i − 2 down

to vertex 1, set (xj(t + 1), yj(t + 1)) = (xj+2(t), yj+2(t)). Which means shifting the

residues by two up the chain until a valid conformation is reached. The strength

of the pull move neighborhood besides the above mentioned completeness, and valid

conformation output properties, it forms a square shape namely a u-bend in the

sequence which is smallest building block of a folded protein. The moves in the

VSHD neighborhood provides only superficial change to the conformation and thus

they are dependent on the rest of the conformation to be able create any improvement.

However a single pull move can create -1 energy improvement from an extended

sequence because it tries to form the u-bend shapes.

Chapter 4: Solution Approaches for the HP Model 17

Figure 4.2: In (b), the simplest case where position C is occupied by residue i - 1
is shown. This move is equivalent to a corner move in the VSHD move set. In (c),
residue i is moved to L and i - 1 to C. The chain is in a valid conformation and
the move is finished. In (d), residues i down to i - 3 must be pulled until a valid
conformation is found.

Global Moves

Global moves are defined as the moves that cause changes in the overall conformation

of the protein instead of changing a small number of monomers. In most genetic

algorithms and some population based methods there are two different structures

called the crossover operator and the mutation operator.

The so-called crossover operator is used to create new solutions from other promis-

ing solutions. The promising solutions selected to create the new solution are called

parent solutions and the newly created solutions are called the offspring solutions. A

general implementation for the crossover operator is the k-point crossover method.

In k-point crossover k random points are chosen for the parent solutions. Each alter-

Chapter 4: Solution Approaches for the HP Model 18

nating part is switched between parents to create two offspring solutions. A demon-

stration for a 2-point crossover is given in Figure 4.3.

Figure 4.3:

The mutation operator is applied on a single selected solution and is usually im-

plemented to cause smaller changes compared to the crossover operator.

In the above mentioned methods there are moves used in the crossover operator

of EMC [19] and GA [25], the mutation operator of GA and the replica exchange of

REMC [23] algorithm that can be seen as global moves.

Crossover operators of EMC and the GA are k-point crossover operators explained

above. These moves have a large effect on the overall configuration of the protein,

thus can be considered as a global move. A demonstration of a 1-point crossover

operator of EMC algorithm is given in Figure 4.4.

Figure 4.4: (A) and (B) are parent solution from which the offspring will be generated.
The random residue is selected to be residue 14. (C) The generated offspring. This
figure is borrowed from the paper [19].

Chapter 4: Solution Approaches for the HP Model 19

Another global move that is mentioned above is in the mutation operator of the

GA. A random point on a given conformations is chosen and the rotational angle

between the parts that this point divides is changed randomly. Again this changes

the overall conformation and thus can be considered a global move. A demonstration

is given in Figure 4.5.

Figure 4.5: The mutation operator of the GA is applied to the conformation in (A).
The selected random residue is 11, and the conformational angle is changed from 270o

to 90o. This figure is borrowed from the paper [25].

Among these global moves the most subtle move is the replica exchange process

in the REMC algorithm. This move although does not change the position of any

residue, by changing the temperature value of a given replica it either enables diver-

sification or intensification of the replica, which leads to a more extended and a more

compact conformation respectively, thus causing a global change in the structure of

the conformation.

Another new method that can be categorized as a Global Move, is the diversifica-

tion method employed in the EHC [5]. In this method at each generation a structural

similarity check between the individuals with the same energy values is done. If two

Chapter 4: Solution Approaches for the HP Model 20

given individuals’ similarity is over a threshold, than one of the individuals is changed

by applying consequent pull moves until the similarity decreases. The structural sim-

ilarity check is a very powerful idea to tackle the premature convergence problem

that are inherent in combinatorial optimization problems. Structural implications

are discussed in Section 3.3.

4.1.3 Representations

Representation of a problem can be both problem specific or implementation specific.

In these methods there are 2 different representation schemes. The natural and most

straight-forward way of representing a conformation is to assign values to different

turns that each monomer can take. These different turns are demonstrated in Figure

4.6.

Figure 4.6: Representation of conformations using turns of in the sequence

With this representation the problem is invariant to rotational or translational

changes, thus the initial and final turns can be fixed without loss of generality. For

instance the representation of the conformation given in Figure 4.7 would be: LSLL-

RRLRLLSLRRLLSL

Chapter 4: Solution Approaches for the HP Model 21

Figure 4.7: Protein conformation for the given relative representation LSLLRRLR-
LLSLRRLLSL

The above mentioned algorithms except for REMC along with many in the lit-

erature use this representation, due to its simplicity. However in the case of the

algorithms that uses the Pull Move structure this representation cannot be used. For

the amount of information the Pull Move structure requires this representation is

not sufficient. To be able to implement the move structure efficiently, the coordinate

system of the 2D lattice must be represented with the 1-level adjacent neighbors for

each monomer kept in this representation. An example to this type of representation

for the conformation with sequence HHHPPHPPHHHHHP in Figure 4.8 is given

in Figure 4.9

Figure 4.8: Protein conformation for the lattice representation in Figure 4.9

Chapter 4: Solution Approaches for the HP Model 22

Figure 4.9: Lattice representation for the protein in Figure: 4.8

As can be seen from the table in Figure 4.9 each node has seven properties. These

properties are index specifying where in the chain is the node, type specifying ”H” or

”P” type residue, coordinates specifying its place in the lattice and the indexes of the

four neighbors of the node. All this information contained in a node is necessary for

the implementation of the pull move neighborhood. Representation of the solutions

has a large effect on efficiency and simplicity of the implementation, which in turn

has a big influence in the performance of the algorithm.

4.2 Chain Growth Algorithms

Besides the MC extended methods other types of approaches are also used to attack

the protein folding problem. One of these types of methods is the chain growth method

(CGM). The basic idea in CGMs is that each conformation is created starting from

a given initial point by adding monomers one by one, instead of starting with an

extended chain and modifying it with certain moves. This approach is also coupled

with the Metropolis criteria in the literature such as in the case of PERM.

Among the investigated methods three of them falls into this category; ACO-3

Chapter 4: Solution Approaches for the HP Model 23

[22], PERM [14] and CG [4]. Each of these three algorithms contributed substantial

ideas to the literature and they received competitive results.

4.2.1 Building the Chain

In all these three algorithms there is some form of chain building process due to the

nature of the algorithms.

In the ACO-3 algorithm the chain construction is done by the so-called ants. Each

ant starts from a random point in the chain and starts building the chain in both

directions by adding a monomer with a certain relative direction. This is the same

relative representation scheme explained in Section 4.1.3.

More specifically each ant adds a monomer at the ith position with a relative

direction d with probability Pi,d where d ∈ (S, L,R). The probability function for

this construction is based on τi,d which is called the pheromone values, and a heuristic

function ηi,d = e−
hi,d
T where hi,d is the number of new H-H contacts achieved by

placing residue i with direction d. The pheromone values τi,d are used to calculate a

desirability of a certain relative direction for the residue i. Then the function for Pi,d

becomes as follows:

Pi,d =
[τi,d]

α[ηi,d]
β∑

e∈(S,L,R)[τi,e]
α[ηi,e]β

(4.4)

where α and β are constants between 0 and 1, that determine the importance of

pheromone values and the number of H-H contacts that will be added to the confor-

mation.

During this construction phase of the ACO-3 just like all the CGMs, an infeasible

conformation can be encountered. To be able to overcome this problem every CGM

implements a certain type of mechanism. ACO-3 deals with this issue by a back-

tracking mechanism. When an infeasible conformation is encountered, the half of the

sequence leading up to the point of infeasibility is unfolded. Then the last unfolded

residue is inserted back such that its relative direction value differs from what it had

been when the infeasibility occur

Chapter 4: Solution Approaches for the HP Model 24

Among the CGMs mentioned in this chapter the CG [4] algorithm contributes

ideas from the biological properties of the proteins and incorporates these ideas into

its chain building process. The CG algorithm starts by estimating a core based on the

number of H type monomers in the sequence. After this theoretical core is formed the

space inside and outside the core is arranged into shells of layers. A demonstration is

given in Figure 4.10.

Figure 4.10: A demonstration of the core (thin solid lines) and the surrounding layers
(dotted lines). A growing chain is shown, the fixed residues are shown with bold solid
bonds. This figure is borrowed from the paper [4].

The chain building process is initialized by selecting any of the H type monomers

that has a connected neighbor which is also of type H. The first residue is placed in the

outermost shell of the core at random, and all the subsequent additions to the chain

are made in segments not only in monomers. When adding a segment to the chain

every possible placement is searched exhaustively, and invalid placements are pruned.

One placement of the segment is chosen among the remaining valid conformation

according to a heuristic function fh given below:

Chapter 4: Solution Approaches for the HP Model 25

fh =
∑

H∈segments

Sfield
H +

∑
P∈segments

Sfield
H +

∑
HHcontacts

SHH

+
∑

PPcontacts

SPP +
∑

HPcontacts

SHP (4.5)

The main purpose of the heuristic function is to drive the formation of a hydrophobic

core. The first 2 terms in the function are unitary weights for both type of residues

that scores their position on the chain layers. The values of the parameters are given

in the following Figure 4.11.

Chapter 4: Solution Approaches for the HP Model 26

Figure 4.11: Parameters of the heuristic function. This figure is borrowed from the
paper [4].

In the CG algorithm chain is grown in segments instead of single monomers, thus

the length of the segment to be added next is also a parameter in the chain growth

process. This parameter is set to be the distance to the next H residue due to the

H type monomer strong effect on the formation of the core. However if this distance

exceeds a certain cutoff value than this cutoff value is set to be the segment length.

The idea of estimating a hydrophobic core and constraining the search space is unique

to the CG method. Although this method is not applied to the larger sequences its

Chapter 4: Solution Approaches for the HP Model 27

performance on sequences up to size 64 is very competitive in the literature.

From the above mentioned methods, the best performing algorithm is the PERM

algorithm [14]. PERM employs a chain growth process where after nth monomer is

added to the chain, a weight Wn is calculated. If this weight value is below a certain

threshold the chain is pruned. PERM also uses an enriching process. The enriching

process is done by calculating a predicted weight W pred
n before the nth monomer is

added. If the calculated weight is larger than a specified threshold the population

is enriched with the k different continuations of the chain, where 2 ≤ k ≤ kfree.

PERM algorithm has 2 variations that calculates the W pred
n using different meth-

ods: nPERMss and nPERMis. However nPERMis outperforms nPERMss in every

test case, thus it will be the only variation investigated here. When calculating the

predicted weight two factors are incorporated in the formula: The number of free

neighbors and energy values after the addition of the nth monomer. Thus an impor-

tance factor qα for each possible continuation α becomes:

qα = (kα
free +

1

2
)e−βEn,α (4.6)

Given this importance factor for a given continuation α, the predicted weight W pred
n

becomes:

W pred
n = Wn−1

∑
α

qα (4.7)

The PERM algorithm although is one of the best performing algorithms in the

literature, has some shortcomings on a special subset of the problems as stated by

their research [14]. For a CGM to be able to reach the symmetric ground-state with

interacting C and N-termini, the algorithm needs the pass through high energy states

and keep folding in the same direction until it reaches the ground state, thus creating

a challenge for any CGM to find the ground-state energy of this subset of benchmarks.

Chapter 5: GAOSA Algorithm 28

Chapter 5

GAOSA ALGORITHM

The GAOSA algorithm is a combination of the widely studied genetic algorithms

[13] and simulated annealing [15]. These major parts are modified to include a memory

component borrowed from Tabu search [9] and a problem specific diversification phase.

The main flow of our algorithm is very similar to a generic genetic algorithm. It

includes a mutation operator and a crossover operator. The pseudo code for the main

flow of the algorithm is given in Algorithm 1.

Algorithm 1: Main Flow of GAOSA Algorithm

input : χ : Population Size

E∗ : Optimum energy for the given sequence

begin

Population← Initialize();

E← 0;

while E < E∗ do

for i← 0 to χ do

Ci ← Population[i];

Mutate(Ci);

ParentList← ParentSelect(Population);

ParentPairs← CreatePairs(ParentList);

foreach Pair ∈ ParentPairs do

Crossover(Pair);

Chapter 5: GAOSA Algorithm 29

In the following sections a detailed explanation of main components of the algo-

rithm will be given, then the methodology for parameter optimization for this final

component set will be reviewed and the strategies that improved the algorithm will

be discussed.

5.1 Mutation Operator

In genetic algorithms, the mutation operator is generally a function that makes small

changes on a given solution. In our implementation the mutation operator is a com-

plex function that is made up of a local search phase employing simulated annealing,

a memory component and a diversification phase. Each of these subcomponents will

be explained in detail in the following sections. The pseudo code for the mutation

operator is given in Algorithm 2.

Algorithm 2: Mutation Operator

input : C : Solution to be mutated

ϕ : Local search iteration size

begin

LocalSearch(C, ϕ);

Diversify(C);

UpdateTemperature(C);

5.1.1 Local Search

In the local search phase of the algorithm, there are two different components that

attempts to address the issues discussed in Chapter 3. One of these components

is borrowed from the Simulated Annealing (SA) algorithm and the other involves a

memory component similar to the Tabu List from Tabu Search algorithm [9]. The

pseudo code for the local search phase is given in Algorithm 3.

Chapter 5: GAOSA Algorithm 30

Algorithm 3: Local Search Phase

input : N : Number of local search steps

C : Conformation to be modified

begin

Memory← getMemory(C);

for i← 1 to N do

residue← getRandomFreeResidue(Memory);

location← getRandomFreeLocation();

C
′ ← PullMove(residue, location);

∆E ← E(C
′
)− E(C);

if ∆E ≤ 0 then

C ← C
′
;

UpdateMemory(Memory, residue, ∆E);

if E(C
′
) ≤ E∗ then

E∗ ← E(C
′
);

else

r ← Uniform(0,1);

T ← getTemperature(C);

if r < e
−∆E
T×Kb then

C ← C
′

UpdateNotImprovedCount(C);

Simulated Annealing

Each solution in the population has an internal temperature, and this internal tem-

perature value sets the probability of accepting a worse solution. The temperature

component enables the algorithm to simulate a bond formation which refers to the

issue defined in 3.1 given in Chapter 3. When a move that breaks one or more H-H

contacts is made, the temperature value sets the difficulty of accepting this solution

into the population, as the temperature value increases the energy of each residue in-

Chapter 5: GAOSA Algorithm 31

creases and the energy necessary to break the bonds is obtained, thus the probability

of accepting a worse solution increases. The acceptance probability given the temper-

ature value is calculated using the equation given in equation (4.1). The parameters

for the temperature values and annealing schedules are explained in the following

section.

Parameters for Simulated Annealing:

There are three different parameters involved in the SA component:

1. MaxTemp: The maximum temperature

2. MinTemp: The minimum temperature

3. Annealing Schedule

These three parameters set the lower and the upper bounds for the acceptance proba-

bilities and define the transition from one temperature to the other respectively. The

bound probabilities are calculated as the minimum and maximum probabilities that

is necessary to accept a solution with +1 energy than the current solution. We also

borrow the usage of the Gas Constant R = 0.0019872 from the REMC source code

that is used to normalize the temperatures for reasonable probabilities. Experimental

results and the effects of different values of these temperature values are given in

detail in section 5.3. Each solution is initialized with the maximum temperature and

an annealing schedule described below is applied after every local search. When a

solution’s internal temperature drops below the given minimum temperature it is set

to the maximum temperature.

Annealing schedule is one of the most important parameters that affects the per-

formance of the algorithm, thus in our implementation we selected two of the most

widely used annealing schedules, exponential and linear, and tested them with two

sets of different parameters. These four annealing schedules are explained below:

Exponential and linear annealing schedules are widely used [15]. The exponential

annealing schedules use a parameter α and update the temperature according to the

equation (5.1).

Chapter 5: GAOSA Algorithm 32

Ti+1 = Ti × α. (5.1)

This annealing schedule balances diversification and intensification of solutions by

spending less time on higher temperatures to prevent loss of good solutions, however

decreasing the temperature slowly thus preventing premature convergence of solu-

tions.

The linear annealing schedules update the temperature by decreasing it a given

fixed value using the equation (5.2). In our parameters, we use the number of steps

needed to calculate ∆T

Ti+1 = Ti −∆T. (5.2)

Linear annealing schedules distribute the temperature values uniformly over each

level. The plots of each of the annealing schedules are given in Figure 5.1.

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Iterations

T
em

pe
ra

tu
re

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

Iterations

T
em

pe
ra

tu
re

s

Figure 5.1: Linear annealing schedule with maximum temperature 400 and minimum
temperature 0 with 100 steps (Left). Exponential annealing schedule with maximum
temperature 400 and minimum temperature 0 with α = 0.95

In our implementation simulated annealing temperatures oscillate. The internal

temperature of a solution starts from the MaxTemp and decreases to MinTemp.

When it falls below the MinTemp parameter, it is set to the MaxTemp again.

Chapter 5: GAOSA Algorithm 33

Memory Component

Although the SA component facilitates the simulation of bond formations, it does not

directly approach the issue of Bond Formation described in Section 3.2, and it does not

take into account the local interactions between residues. To be able to better address

this issue, a memory component is implemented. Each solution in the population has

a memory that keeps a list of residues that interact locally. This memory component is

updated after every pull move in the local search phase. The approach is very similar

to the Tabu List in the Tabu Seach algorithm [9]. It contains two lists of movable

and non-movable (Tabu) residues for every solution, each with a corresponding time.

The amount of time that a residue will be in the non-movable residues list is directly

proportional to the amount of energy that the residue contributes. The time that a

residue spends in the non-movable list is a parameter of our algorithm η.

ti = ∆Ei × η (5.3)

A demonstration of how the memory component works is given in Figure 5.2.

Figure 5.2: The residue i in the figure above caused -2 decrease in the overall energy
of the protein. Residue i and the 2 H type neighbors shown in the figure will be put
in the memory for | − 2| ∗ η pull moves

After every move the time values of non-movable residues are decreased by 1. The

implemented memory component is used to form a zipper for the structure, fixing the

local stable structures and thus reducing the solution space.

Chapter 5: GAOSA Algorithm 34

5.1.2 Diversification Phase

One of the missing guiding strategy components in the literature is a method to

detect and effectively diversify solutions that are stuck in a local optima. Metropolis

criteria given in equation (4.1) addresses this problem by enabling acceptance of worse

solutions. However it is not specific to a solution that is prematurely converged which

implies that when a worse solution is accepted using Metropolis criteria the replaced

solution can be a promising solution which can be explored further. To be able to

overcome this problem the GAOSA makes use of the structural implications of the

HP Model described in Chapter 3 using the method described in the following section.

Detection of Premature Convergence

As explained above the problem has two independent parts. To be able to effectively

diversify solutions that prematurely converged, first a method should be devised to

detect the solutions that are stuck in a local optima. For this detection the GAOSA

employs a simple approach. A counter is kept within each solution in the population,

that keeps record of the number of moves the given solution could not be improved.

After the local search phase, these counters are queried. If a solution could not

be improved more than 150 moves then the diversification phase is initiated and the

internal temperature of the solution is set to theMaxTemp parameter which is shown

in detail in the pseudo code Algorithm 4.

Diversification Method

The diversification phase uses the structural implication of the HPModel to diversify a

given solution. A solution that is prematurely converged has a very compact structure

as implied by the model. Given this compactness most of the inner residues, number

of which is larger than the outer residues, has low mobility. Therefore most pull move

attempts are failed due to the compact nature of the structure, which hinders the

algorithm’s means to diversify the solution. To be able to overcome this problem a

diversification method should first decrease compactness of the solution and then fold

Chapter 5: GAOSA Algorithm 35

it again. The GAOSA has a straightforward approach to this problem described in

pseudo code Algortihm 4. For every solution, after every pull move and crossover the

gravitational point of the solution is calculated. Using the midpoint coordinates of

the solution during the diversification phase, residues are selected at random and a

comparison is made between the selected residue’s coordinates and the midpoint of

the solution. After the comparison is made the selected residues place in the solution

relative to the midpoint is detected and the residue is moved away from the midpoint.

Given that the pull move neighborhood can cause long range reactions by moving a

large number of residues this method is very effective in opening up compact solutions.

A demonstration of the diversification phase is given in figure 5.3

Figure 5.3: (Left) This structure is a local optimum with energy value -22 for the
benchmark S1-5. (Right) This structure is reached after 10 steps of diversification
applied to the structure on the left.

Chapter 5: GAOSA Algorithm 36

The pseudo code for the diversification method is given in Algorithm 4.

Algorithm 4: Diversification Phase

input : CutOff : Upper limit for the not improved count

C : Conformation to be modified

begin

NotImprovedCount← getNotImprovedCount(C);

MidPoint← getMidPoint(C);

if NotImprovedCount ≥ CutOff then

for i← 1 to 10 do

residue← getRandomResidue();

PullResidueAwayFromMidPoint(residue, MidPoint);

ResetNotImprovedCount();

5.2 Crossover Operator

The pull move neighborhood is a very effective local neighborhood, however in the

HP Model moves that causes more substansial changes in the overall structure of the

protein have been shown to work well in section 4.1.2. The crossover operator can

effect the structure of a solution in 1 move whereas a pull move has to be applied

multiple times to achieve the same structural change. The crossover operator GAOSA

is comprised of the three different strategies:

1. Selection Strategy

2. Creation of Offsprings

3. Replacement Strategy

Chapter 5: GAOSA Algorithm 37

5.2.1 Selection Strategy

Before the application of the crossover operator certain individuals are selected from

the individuals as parent solutions. After every parent solution is selected these

solutions are paired at random and the crossover operator is applied. Number of

parent solutions to be selected is a parameter of our algorithm is given as percentage

ρ of the population size which varies depending on the size of the problem.

For the selection process we implemented three fitness based methods: Roulette

Wheel Selection, Tournament Selection [20] with different tournament sizes and Stochas-

tic Universal Sampling [2]. Each of these methods selects the parent solutions accord-

ing to their fitness function, in the context of PFP this is the energy function. The

type of selection strategy is the parameter Π ∈ {TOUR,RWS, SUS} in our algorithm

Stochastic Universal Sampling (SUS)

This selection strategy is fitness based selection strategy which provides a way of se-

lecting the parent solution without bias and minimal spread compared to the roulette

wheel selection. In SUS, selection is made using one random variable. First a random

number r is selected between 0 and F
N

where F = Total Fitness and N is the number

individuals to be selected as parent solutions. After the value of r is selected, a fixed

number F
N

is added to r (N − 1) times. After every addition, a new number is found

that corresponds to an individual in the population. Thus using only one random

number we can select every parent solution.

Chapter 5: GAOSA Algorithm 38

Figure 5.4: Demonstration of Stochastic Universal Sampling

Roulette Wheel Selection (RWS)

In RWS for each parent a random number is generated unlike SUS. For each of

these random numbers the fitness proportionate buckets are calculated from the start.

This is similar to turning a roulette wheel with larger parts of the wheel assigned

to individuals with better fitness values. Each time the wheel is rolled there is a

higher probability to select the individuals with larger fitness values which creates

a bias towards the strong individuals in the selected parent list. This bias causes

the domination of the population with high fitness individuals leading to premature

convergence.

Figure 5.5: Demonstration of Roulette Wheel Selection

Chapter 5: GAOSA Algorithm 39

Tournament Selection (TS)

TS is the simplest selection strategy among the three. This selection strategy selects

individuals by generating tournaments between randomly selected individuals and

selects the winner of each tournament as a parent. Being very simple this selection

strategy also enables controlling the selection pressure with the use of a tournament

size parameter τ . As the tournament size increases selection pressure increases thus

selection probability for low fitness individuals decreases.

5.2.2 Crossover Method

In GAOSA algorithm a different type of 1-point crossover is implemented. In the stan-

dard 1-point crossover described in section 4.1.2 a residue is selected at random and

a 90 degree turn over that residue is performed, if collusion occurs than the crossover

is rejected. In our implementation given in pseudo code Algorithm 5 a residue is

selected at random and 4 fragments are created from 2 parents. However instead of

choosing certain angle and a direction the crossover operator exhaustively searches

for every possible rotation and symmetric connections between the two fragments.

Among the valid combinations the one with lowest energy is selected.

Chapter 5: GAOSA Algorithm 40

Algorithm 5: CrossOver Operator

input : Pair : Parent Pair to apply the crossover

begin

residue← getRandomResidue();

LeftFragment1← getFragment(0,residue, Pair[1]);

LeftFragment2← getFragment(0,residue, Pair[2]);

RightFragment1← getFragment(residue+1,size, Pair[1]);

RightFragment2← getFragment(residue+1,size, Pair[2]);

Offspring1← Combine(LeftFragment1, RightFragment2);

Offspring2← Combine(LeftFragment2, RightFragment1);

if E(Offspring1) ≤ E(Pair[1]) then

Replace(Pair[1], Offspring1);

if E(Offspring2) ≤ E(Pair[2]) then

Replace(Pair[2], Offspring2);

5.2.3 Replacement Strategy

After the application of the Crossover Method described above 2 offspring are created

from 2 parent solutions. In the HP Model domination of a certain structure can

disrupt the diversification of the algorithm. Because the crossover method changes the

structure in large chunks the structural similarity between the parents and offspring

are conserved. Therefore inserting the offspring in the population without removing

the parents will lead to a population of solutions that are structurally similar. To

tackle this problem the GAOSA replaces the parent solutions with the offspring only

if the offspring’s energy is smaller than or equal to the parent’s energy value. Using

this method a structurally diverse population is conserved.

Chapter 5: GAOSA Algorithm 41

5.3 Parameter Tuning

To be able to control different components of the GAOSA algorithm each component

contains different parameters. In the following sections a list of parameters and their

final values are given as well as the methodology through which the parameter tun-

ing is done. Addition to the parameter tuning, a component wise analysis is done.

The algorithm is run 20 times with and without the memory and the diversification

component and the results are averaged.

5.3.1 Parameters of GAOSA

χ : Population size(20)

ϕ : Number of local search iterations(250)

Tmax : Maximum temperature value(400)

Tmin : Minimum temperature value(160)

η : The factor by which a residue’s time in the non-movable list is calculated(200)

µ : The number of iterations the diversification phase is applied(10)

τ : Tournament size(7)

ρ : The percentage of parents to be selected(20% of χ)

Π : Type of parent selection strategy {”TOUR”, ”RWS”, ”SUS”}

pm : Mutation Probability

pc : Crossover Probability

To tune the parameters, the problems S1-5 and S1-6 were replicated 20 times

and solved with different possible values of every parameter of the algorithm. These

results were than averaged. The selection of S1-5 and S1-6 is based on the structural

differences between these two structures to tune the parameters without bias. The

difference between the native state structures for problem instance S1-5 and S1-6 is

given in Figure 5.6.

Chapter 5: GAOSA Algorithm 42

Figure 5.6: (Left) The native state structure for benchmark S1-5. (Right) The native
state structure for benchmark S1-6.

5.3.2 Experimental Results

The results in this section are all in terms of seconds of run time unless stated other-

wise.

The experiment values for each parameter are given below:

χ : [20, 30, 50, 75, 100]

ϕ : [50, 100, 250, 350, 500]

Tmax : [200, 250, 350, 400]

Tmin : [50, 100, 160, 200]

η : [10, 50, 150, 200]

τ : [5, 7, 10, 20]

ρ : [10%, 20%, 30%, 40%]

Π : {”TOUR”, ”RWS”, ”SUS”}

pm : [0.5, 0.75, 0.9, 1]

pc : [0.5, 0.75, 0.9, 1]

Given below are the tables for the averaged run times in seconds for each parameter

value.

Chapter 5: GAOSA Algorithm 43

Benchmark S1-5

1. Joint experiment results of the χ and ϕ parameters

I(χ) = [20, 30, 50, 75, 100] (5.4)

I(ϕ) = [50, 100, 250, 350, 500] (5.5)

Table 5.1: χ and ϕ: Parameter tuning for benchmark problem S 1-5

χ

ϕ

20 30 50 75 100

50 - - 1.3 sec 2.8 sec 6.2 sec

100 2.4 sec 4.8 sec - 5.7 sec 6.4 sec

250 4.2 sec 6.1 sec 4.7 sec 5.8 sec 11.2 sec

350 8.4 sec 8.2 sec 22.4 sec 12.1 sec 13.6 sec

500 15.2 sec 15.2 sec 8.3 sec 14.7 sec 16.5 sec

2. Experiments for the Tmax parameter for benchmark S1-5

I(Tmax) = [200, 250, 350, 400] (5.6)

Table 5.2: Tmax : Parameter tuning for benchmark problem S 1-5

Tmax values 200 250 350 400

Run time (s) 59.8 sec 6.6 sec 23.1 sec 22.6 sec

Chapter 5: GAOSA Algorithm 44

3. Experiments for the Tmin parameter for benchmark S1-5

I(Tmin) = [50, 100, 160, 200] (5.7)

Table 5.3: Tmin : Parameter tuning for benchmark problem S 1-5

Tmin values 50 100 160 200

Run time (s) 16.5 sec 17.4 sec 21.9 sec 32.1 sec

4. Experiments for the η parameter for benchmark S1-5

I(η) = [10, 50, 150, 200] (5.8)

Table 5.4: η : Parameter tuning for benchmark problem S 1-5

η values 10 50 150 200

Run time (s) 14.2 sec 23.5 sec 14.1 sec 28.0 sec

5. Experiments for the Π and τ parameters for benchmark S1-5

The results are set up as: [”TOUR” [5, 7, 10, 20], ”RWS”, ”SUS”]

Table 5.5: Π and τ : Parameter tuning for benchmark problem S 1-5

Π and τ values TOUR : 5 TOUR : 7 TOUR : 10 TOUR : 20 RWS SUS

Run time (s) 20.3 sec 12.8 sec 20.6 sec 19.9 sec 18.0 sec 25.7 sec

Chapter 5: GAOSA Algorithm 45

6. Experiments for the ρ parameter for benchmark S1-5

I(ρ) = [10%, 20%, 30%, 40%] (5.9)

Table 5.6: ρ: Parameter tuning for benchmark problem S 1-5

ρ values 10% 20% 30% 40%

Run time (s) 19.8 sec 40.3 sec 44.8 sec 40.1 sec

7. Experiments for the pm parameter for benchmark S1-5

I(pm) = [0.5, 0.75, 0.9, 1] (5.10)

Table 5.7: pm: Parameter tuning for benchmark problem S 1-5

pm values 0.5 0.75 0.9 1

Run time (s) 38.2 sec 19.5 sec 12.3 sec 22.6 sec

8. Experiments for the pc parameter for benchmark S1-5

I(pc) = [0.5, 0.75, 0.9, 1] (5.11)

Table 5.8: pc: Parameter tuning for benchmark problem S 1-5

pc values 0.5 0.75 0.9 1

Run time (s) 30.1 sec 24.8 sec 12.8 sec 13.1 sec

Chapter 5: GAOSA Algorithm 46

9. Experiments for the Exponential and Linear Cooling Schedules for benchmark

S1-5

This experiment was repeated for two different values of the Tmax parameter:

250 and 400 with Tmin fixed at 160

The results are setup in the following structure:

[”ECS” with α = [0.9 , 0.98], ”LCS” with number of steps = [5 , 10]]

Table 5.9: Cooling Schedules: Parameter tuning for benchmark problem S 1-5

Cooling Schedules

Tmax

ECS : 0.9 ECS : 0.98 LCS : 5 LCS : 10

250 37.2 sec 34.0 sec 73.6 sec 16.1 sec

400 30.7 sec 24.0 sec 66.7 sec 71.1 sec

10. Component Experiments for benchmark S1-5

The results are structured as:

With Memory Component with tabu time 10 steps (WM)

Without Memory Component (WOM)

With Diversification of 5 steps (WD)

Without Diversification (WOD)

Table 5.10: Component analysis for benchmark S1-5. Combinations of different com-
ponents and run time results for each combination

Components WM : 10 WOM WD : 5 WOD

Run time (s) 11.75 sec 18.15 sec 66.5 sec 23.75 sec

Chapter 5: GAOSA Algorithm 47

Benchmark S1-6

1. Experiments for the Tmax parameter for benchmark S1-6

I(Tmax) = [200, 250, 350, 400] (5.12)

Table 5.11: Tmax : Parameter tuning for benchmark problem S 1-6

Tmax values 200 250 350 400

Run time (s) 21.0 sec 9.2 sec 20.5 sec 22.3 sec

2. Experiments for the Tmin parameter for benchmark S1-6

I(Tmin) = [50, 100, 160, 200] (5.13)

Table 5.12: Tmin : Parameter tuning for benchmark problem S 1-6

Tmin values 50 100 160 200

Run time (s) 14.3 sec 18.6 sec 39.6 sec 72.2 sec

3. Experiments for the η parameter for benchmark S1-6

I(η) = [10, 50, 150, 200] (5.14)

Table 5.13: η : Parameter tuning for benchmark problem S 1-6

η values 10 50 150 200

Run time (s) 18.7 sec 25.5 sec 33.7 sec 17.5 sec

Chapter 5: GAOSA Algorithm 48

4. Experiments for the Π and τ parameters for benchmark S1-6

The results are set up as:

[”TOUR” [5, 7, 10, 20], ”RWS”, ”SUS”]

Table 5.14: Π and τ : Parameter tuning for benchmark problem S 1-6

Π and τ values TOUR : 5 TOUR : 7 TOUR : 10 TOUR : 20 RWS SUS

Run time (s) 27.5 sec 30.2 sec 17.8 sec 23.8 sec 46.3 sec 52.8 sec

5. Experiments for the ρ parameter for benchmark S1-6

I(ρ) = [10%, 20%, 30%, 40%] (5.15)

Table 5.15: ρ: Parameter tuning for benchmark problem S 1-6

ρ values 10% 20% 30% 40%

Run time (s) 8.3 sec 9.6 sec 11.4 sec 11.4 sec

6. Experiments for the pm parameter for benchmark S1-6

I(pm) = [0.5, 0.75, 0.9, 1] (5.16)

Table 5.16: pm: Parameter tuning for benchmark problem S 1-6

pm values 0.5 0.75 0.9 1

Run time (s) 19.9 sec 19.0 sec 17.0 sec 25.3 sec

Chapter 5: GAOSA Algorithm 49

7. Experiments for the pc parameter for benchmark S1-6

I(pc) = [0.5, 0.75, 0.9, 1] (5.17)

Table 5.17: pc: Parameter tuning for benchmark problem S 1-6

pc values 0.5 0.75 0.9 1

Run time (s) 60.8 sec 55.4 sec 35.9 sec 43.4 sec

8. Experiments for the Exponential and Linear Cooling Schedules for benchmark

S1-5

This experiment was repeated for two different values of the Tmax parameter:

250 and 400 with Tmin fixed at 160

The results are setup in the following structure:

[”ECS” with α = [0.9 , 0.98], ”LCS” with number of steps = [5 , 10]]

Table 5.18: Cooling Schedules: Parameter tuning for benchmark problem S 1-6

Cooling Schedules

Tmax

ECS : 0.9 ECS : 0.98 LCS : 5 LCS : 10

250 11.5 sec 16.8 sec 12.8 sec 9.1 sec

400 79.4 sec 51.6 sec 100.0 sec 93.3 sec

Chapter 5: GAOSA Algorithm 50

9. Component Experiments for benchmark S1-6

(The results are structured as:)

With Memory Component with tabu time 10 steps (WM)

Without Memory Component (WOM)

With Diversification of 5 steps (WD)

Without Diversification (WOD)

Table 5.19: Component analysis for benchmark S1-6. Combinations of different com-
ponents and run time results for each combination

Components WM : 10 WOM WD : 5 WOD

Run time (s) 5.2 sec 9.7 sec 27.6 sec 11.3 sec

Chapter 5: GAOSA Algorithm 51

Comparative Graphs

In this section, graphs are given to show the effects of each parameter value on the

run time of the algorithm. The graphs for the two problem instances, S1-5 and S1-6,

are given side by side for comparison. Further discussion of these results are given in

the next chapter.

0.4 0.6 0.8 1
10

15

20

25

30

35

40
Mutation

0.4 0.6 0.8 1
16

18

20

22

24

26
Mutation

R
un

 ti
m

e
in

 s
ec

on
ds

Figure 5.7: Mutation Probability parameters for S1-5 (Left) and S1-6 (Right)

As it can be observed from Figure 5.7, mutation probability has a substantial

effect on the run time. For both problems, the value 0.9 performs better than the

other values which are experimented with.

Chapter 5: GAOSA Algorithm 52

0.4 0.6 0.8 1
10

15

20

25

30

35
Crossover

0.4 0.6 0.8 1
35

40

45

50

55

60

65
Crossover

R
un

 ti
m

e
in

 s
ec

on
ds

Figure 5.8: Crossover Probability parameters for S1-5 (Left) and S1-6 (Right)

The crossover probability is also a very important factor that affects the run time.

This parameter sets the probability with which a new solution will be created from

two parent solutions. Among the values that are tested, 0.9 gave the best results for

both problem instances (see Figure 5.8).

Chapter 5: GAOSA Algorithm 53

50 100 150 200
15

20

25

30

35
Minimum Temperature

50 100 150 200
10

20

30

40

50

60

70

80
Minimum Temperature

R
un

 ti
m

e
in

 s
ec

on
ds

Figure 5.9: Minimum Temperature parameters for S1-5 (Left) and S1-6 (Right)

The minimum temperature parameter identifies the lower bound on the accep-

tance probability for worsening moves. Therefore high values may result in promising

solutions not being further explored and low values may cause premature convergence.

In our experiments, a value of 50 performs better for both problem instances although

the run time difference between the two parameter values 50 and 100 is very minimal

(Figure 5.9). These values translate to the acceptance probabilities of 0.00004257 and

0.00652, respectively, for a -1 energy worsening move using the equation (4.1).

Chapter 5: GAOSA Algorithm 54

200 250 300 350 400
0

10

20

30

40

50

60
Maximum Temperature

200 250 300 350 400
8

10

12

14

16

18

20

22

24
Maximum Temperature

R
un

 ti
m

e
in

 s
ec

on
ds

Figure 5.10: Maximum Temperature parameters for S1-5 (Left) and S1-6 (Right)

Similar to the minimum temperature parameter, the maximum temperature pa-

rameter is used to set the upper bound on the acceptance probability for worsening

moves, thus it is a very important factor for the run time of the algorithm. If the max-

imum temperature parameter is set too high, the probability of accepting worsening

moves increases which can cause the algorithm to lose valueable solutions. Low values

can cause premature convergence which consequently increases the run time. Figure

5.10 suggests that for both solutions a value of 250 performs best for both problem

instances. A value of 250 translates to an acceptance probability of 0.133603015 for

-1 energy worsening move according to equation (4.1).

Chapter 5: GAOSA Algorithm 55

0 50 100 150 200
14

16

18

20

22

24

26

28
Memory Steps

0 50 100 150 200
15

20

25

30

35
Memory Steps

ru
n

tim
e

in
 s

ec
on

ds

Figure 5.11: Memory Step parameters for S1-5 (Left) and S1-6 (Right)

The memory component aims to preserve local structure by putting the residues

that lower the energy value of the structure into a tabu list. The memory step

parameter sets the amount of time that these residues stay in the tabu list. High

values of this parameter may result in too many residues in the tabu list, which

will hinder the ability of the algorithm to change the structure of a given solution.

Low values can decrease the effectiveness of the memory component by changing a

preserved local structure too quickly. As can be seen from Figure 5.11, a value of 10

steps performs better for both problem instances.

Chapter 5: GAOSA Algorithm 56

0.1 0.2 0.3 0.4 0.5
15

20

25

30

35

40

45
Parent Percentage

0.1 0.2 0.3 0.4 0.5
8

8.5

9

9.5

10

10.5

11

11.5
Parent Percentage

R
un

 ti
m

e
in

 s
ec

on
ds

Figure 5.12: Parent Percentage parameters for S1-5 (Left) and S1-6 (Right)

Before the crossover operator can be applied, a set of parents are selected. Parent

percentage parameter sets what percentage of the population will be selected as parent

solutions. The crossover operator is the most expensive operator in the GAOSA

algorithm, therefore high values for this parameter while increasing the quality of the

parents that are selected will increase the run time of the overall algorithm. However,

lower values may cause the quality of the selected parents to decrease. In the two

problem instances, 10% performs substantially better than other tested values (see

Figure 5.12).

Chapter 5: GAOSA Algorithm 57

The summary of the best performing parameter values are given below.

Tuned Parameters

From the analysis we performed, the best performing parameters for S1-5 and S1-6

are: χ : Population size(20)

ϕ : Number of local search iterations(250)

Tmax : Maximum temperature value(250)

Tmin : Minimum temperature value(100)

η : The factor by which a residue’s time in the non-movable list is calculated(10)

µ : The number of iterations the diversification phase is applied(5)

τ : Tournament size(7)

ρ : The percentage of parents to be selected(10% of χ)

Π : Type of parent selection strategy {”TOUR”, ”RWS”, ”SUS”} (”TOUR”)

pm : Mutation Probability (0.9)

pc : Crossover Probability (0.9)

Chapter 6: Results 58

Chapter 6

RESULTS

In this chapter the results of the GAOSA on 2 different classes of benchmarks will

be discussed and the experimental setup will be explained. Furthermore a discussion

of the results will be given in the end of this chapter.

6.1 Standard Benchmarks

There are eleven benchmark sequences for 2D HP Model. These benchmark sequences

are widely used and thus provides a good basis of comparison between algorithms

created for the 2D HP Model. A table of these sequences and their optimum energies

is given in table 6.1

Chapter 6: Results 59

Table 6.1: 2D HP Model standard benchmark sequences. a Known optimal energy
value.

ID Length E∗a Sequence

S1-1 20 -9 (HP)2PH2PHP2HPH2P2HPH

S1-2 24 -9 H2(P2H)7H

S1-3 25 -8 P2HP2(H2P4)3H2

S1-4 36 -14 P3H2P2H2P5H7P2H2P4H2P2HP2

S1-5 48 -23 P2H(P2H2)2P5H10P6(H2P2)2HP2H5

S1-6 50 -21 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4(PH)4H

S1-7 60 -36 P2H3PH8P3H10PHP3H12P4H6PH2PHP

S1-8 64 -42 H12(PH)2(P2H2)2P2HP2H2PPH2P2HP2(H2P2)2(HP)2H12

S1-9 85 -53 H4P4H12P6(H12P3)3HP2(H2P2)2HPH

S1-10 100 -50 P3H2P2H4P2H3(PH2)2PH4P8H6P2H6P9HPH2PH11P2H3

PH2PHP2HPH3P6H3

S1-11 100 -48 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10PH2PH7

P11H7P2HPH3P6HPH2

To be able to compare GAOSA with respect to the algorithms REMC, ACO-

HPPFP-3, PERM the following experimental protocol is used. For sequences of

size <= 30, 100 independent runs, for sequences with 30 < size <= 60, 50 in-

dependent runs and for size >= 60, 20 independent runs were performed and the

results were averaged. A comparison is given in table 6.1.

Chapter 6: Results 60

Table 6.2: Results for the 2D Benchmark Problems. a Known optimal energy value.

ID E∗a PERMtexp ACO-

HPPFP-3

REMCpm REMCm GAOSA

S1-1 -9 -9(< 1 sec) -9(< 1 sec) -9(< 1 sec) -9(< 1 sec) -9(< 1 sec)

S1-2 -9 -9(< 1 sec) -9(< 1 sec) -9(< 1 sec) -9(< 1 sec) -9(< 1 sec)

S1-3 -8 -8(2 sec) -8(2 sec) -8(< 1 sec) -8(< 1 sec) -8(< 1 sec)

S1-4 -14 -14(< 1 sec) -14(4 sec) -14(< 1 sec) -14(< 1 sec) -14(3 sec)

S1-5 -23 -23(2 sec) -23(1 min) -23(< 1 sec) -23(< 1 sec) -23(8 sec)

S1-6 -21 -21(3 sec) -21(15 sec) -21(< 1 sec) -21(< 1 sec) -21(8 sec)

S1-7 -36 -36(4 sec) -36(20 min) -36(10 sec) -36(13 sec) -36(70 sec)

S1-8 -42 -42(78 hrs) -42(1.5 hrs) -42(5 sec) -42(6 sec) -42(390 sec)

S1-9 -53 -53(1 min) -53(%20 of

runs 1 day)

-53(2 min) -53(38 sec) -53(20 min)

S1-10 -50 -50(20 min) -49(12 hrs) -50(3.5 min) -50(8 min) -50(40 min)

S1-11 -48 -48(8 min) -47(10 hrs) -48(1 min) -48(1.2 min) -48(3 hrs)

6.2 Z-Structure Benchmarks

GAOSA performance is also tested on an artificial benchmark. Z-Structures, proposed

by [1], have the property of having a unique ground-state structure. The Z-Structures

are generated given the following formula:

Zk = (HP)u(PH)d (6.1)

where u = ⌈k/2⌉ and d = ⌊k/2⌋. These structures are shown to have a unique ground-

state structure when k is even [1]. A sample unique ground-state of Z8 is given in

figure 6.1.

Chapter 6: Results 61

Figure 6.1: Unique Ground State Structure of the Z-8 Protein.

The comparison between PERM, REMC and GAOSA algorithms’ performance

on the Z-structures is given in table 6.2.

Table 6.3: Results for the Z Structures. (a Known optimal energy value)

ID E∗a PERMtexp REMCpm REMCm GAOSA

Z-4 -3 -3(< 1 sec) -3(< 1 sec) -3(< 1 sec) -3(< 1 sec)

Z-8 -7 -7(< 1 sec) -7(< 1 sec) -7(< 1 sec) -7(< 1 sec)

Z-12 -11 -11(< 1 sec) -11(< 1 sec) -11(< 1 sec) -11(< 1 sec)

Z-16 -15 -15(3 sec) -15(< 1 sec) -15(< 1 sec) -15(< 1 sec)

Z-20 -19 -19(51 min) -19(< 1 sec) -19(< 1 sec) -19(3 sec)

Z-24 -23 -23(49 hrs) -23(< 1 sec) -23(< 1 sec) -23(1.7 sec)

Z-28 -27 -26 -27(< 1 sec) -27(< 1 sec) -27(2 sec)

Z-32 -31 -29 -31(< 1 sec) -31(< 1 sec) -31(20 sec)

Z-36 -35 -31 -35(< 1 sec) -35(< 1 sec) -35(32 sec)

Z-40 -39 -34 -39(< 1 sec) -39(< 1 sec) -39(2 min)

6.3 Discussion of Results

In the given benchmark sets, GAOSA has a competitive performance and it correctly

identifies every ground-state energy for each sequence. In Section 5.3 effects of differ-

ent parameters are analyzed. The results provide insights on the effectiveness of each

component of the GAOSA algorithms. The mutation operator of GAOSA consists

Chapter 6: Results 62

of a local search phase that is based on simulated annealing. Although there are

multiple parameters in the experiments that are related to the mutation operator,

the most indicative parameter is the mutation probability (pm). The mutation prob-

ability sets the probability with which the mutation operator is applied to a given

solution. High values of this parameter increase the influence of the mutation opera-

tor. Given the results in Tables 5.7 and 5.16, GAOSA performs best when pm = 0.9.

The performance difference between the lower and higher values of the pm parame-

ter is significant, demonstarting the positive effect of our mutation operator on the

performance of GAOSA. However, an interesting result can also be observed when

the influence of the mutation operator is set to higher values. With a value of 1 the

pm parameter causes deterioration of the performance. The reason for the decrease

in the performance, is the preservation of solutions. In the mutation operator, the

Monte Carlo criterion given in equation (4.1) is used to accept moves. According to

this equation, worsening moves are accepted with a certain probability. When the

mutation operator is applied with probability 1, at higher temperature values where

it is more likely to accept worsening moves, the algorithm loses promising solutions

which in turn deteriorates performance. The value of 0.9 provides a balance for this

trade-off. The pm parameter is a good indicator for the influence of the mutation

operator, however our memory component, which is utilized in the mutation oper-

ator, and its influence on the performance cannot be observed from the pm parameter.

To better understand the effect of our memory component to the overall performance

of GAOSA, a component wise experiment is performed. The results of this experi-

ment for the two problem instances are given in Tables 5.10 and 5.19. The results

suggest that the GAOSA performs better with the memory component. The memory

component’s purpose is to preserve local structures that form throughout the fold-

ing process. The amount of time that a local structure is preserved is set by the

tabu time parameter (η). From Figure 5.11 it can be observed that this parameter

has a significant effect on the performance. The reason for this effect is that after

Chapter 6: Results 63

local structure is fixed by the memory component, it creates a zipper effect and re-

duces the size of the solution space. However if the tabu time parameter is kept too

high then the solution space cannot be explored completely which causes longer run

times. On the other hand if the tabu time parameter is kept too low, local structures

that are identified by the algorithm are not preserved long enough to affect the size

of the solution space. The parameter value that balances this trade-off is found to

be 10 from our experiments, and at this value, GAOSA performed significantly better.

Another parameter that sets the influence of a component is the crossover probability

(pc). Similar to the mutation probability, this parameter is more indicative of the

overall effect of the crossover operator to the performance of the algorithm. As can

be seen from Tables 5.8 and 5.17, in both problem instances the value 0.9 rendered

the best results. This high probability value implies that crossover operator works

well in our implementation.

The crossover operator is used to introduce new individuals to the population using

the properties of the fit solutions in a generation. Thus parent selection is a crucial

part of the crossover operator. During parameter tuning, three different parent selec-

tion strategies were tested: Tournament Selection, Roulette Wheel Selection (RWS)

and Stochastic Universal Sampling (SUS). The outcome for these tests are given in

Tables 5.5 and 5.14. The results suggest that Tournament Selection performs better

among the three parent selection strategies. Tournament Selection provides complete

control over the selection pressure of the parents. This means that by choosing the

tournament size large, the probability of selecting an unfit parent can be decreased

and inversely by choosing the tournament size small, the probability of selecting an

unfit parent increases. The simplicity and control that Tournament Selection provides

cause a more diverse set of parents to be selected, which in turn increase diversifica-

tion of solutions. On the other hand RWS and SUS methods increase the similarity

between the individuals in the population which causes premature convergence to a

Chapter 6: Results 64

structure. Through the usage of Tournament Selection method, GAOSA algorithm

attempts to tackle the problem of local optima, however the crossover operator is not

enough to solve this problem. For this reason, we introduced a diversification phase

in this thesis.

Premature convergence to local optima decreases the performance of the algorithm

drastically. The effect of premature convergence can be seen on the convergence graph

for benchmark S1-5 and S1-7 given in figure 6.2.

0 200 400 600
−24

−22

−20

−18

−16

−14

−12

−10

−8
Convergence Graph for Benchmark S1−5

Generations

B
es

t E
ne

rg
y

0 200 400 600 800
−40

−35

−30

−25

−20

−15

−10
Convergence Graph for Benchmark S1−7

Generations

B
es

t E
ne

rg
y

Figure 6.2: Convergence graphs for problem instances S1-5 (Left) and S1-7 (Right)

The long stabilized lines in the figures above are the stages that our algorithm cannot

improve the best solution found up to that time. To address this problem, first a

solution that has converged to local optima must be detected, diversified and inten-

sified again. To be able to understand the introduced diversification component’s

effectiveness, a component wise analysis is done and the results are given in Tables

5.10 and 5.19. The aim of the diversification component was to make use of the

structural implications of the HP Model given in Section 3.3 to solve the premature

Chapter 6: Results 65

convergence problem structurally. However the result of the experiments showed that

the diversification component did not perform well. In further analysis, the reason

for the poor performance of our diversification component is found to be that during

the detection of prematurely converged solution, our algorithm diversifies the solution

even if the solution’s structure is close to the global optima. Since there are currently

no effective methods to understand whether a given solution is structurally similar to

the global optimum structue or not, our method cannot differentiate the promising

and the prematurely converged solutions.

Chapter 7: Conclusion 66

Chapter 7

CONCLUSION

In this thesis we propose a new meta-heuristic algortihm GAOSA that is based on

the Genetic Algortihm and Simulated Annealing for the 2D HP Model. Compared to

the state of the art, GAOSA manages to get competitive results on a standard set of

benchmarks and gets good results on a second set of artificial benchmarks proposed

in [1]. The GAOSA is outperformed by REMC and PERM which are currently the

best algorithms in the literature in both benchmarks with large sequences. However

it outperforms PERM on S1-8 sequence from the first benchmark and every instance

in the second benchmark problems. The GAOSA currently is able to find the ground-

state conformation of every sequence in the mentioned benchmark sets, however as

sequence sizes grow the reported times increase which implies problems in the di-

versification strategies employed by the algorithm as mentioned in Section 6.3. The

introduced memory component shows promising results and is still open to further

improvement in both the detection of the local structures and the sophistication of

the tabu time. In our study we provide an analysis of the different components found

in the literature and point to certain shortcomings. We also propose new and problem

specific methods to address these shortcomings. The methods we propose are inspired

from the original PFP to address the issues of intensification and diversification of

solutions that are common to any heuristic approach. We show in the research that

some of these methods are simple yet very effective.

7.1 Future Research

The HP Model is a relatively new research area, and there are still unexplored areas

in this Model. One of these areas is local structure detection. Stable local structures

Chapter 7: Conclusion 67

play an important role in Protein Folding by collapsing early in the process and thus

reducing the complexity of the solution space. However currently to our knowledge

no algorithm has proposed a way to effectively and efficiently detect and use possible

local structures in the HP Model. When analyzed the optimal solution of the first

problem instance in the standard benchmark, it can be observed that the structure

is made up of 3 local structures shown in the figure 7.1

Figure 7.1: Different local structures founded in the ground-state conformation of the
benchmark S1-1

These local structures forms in the early iteration of the algorithm however cur-

rently there is no method implemented to detect these structures. If a stable local

structure could be detected successfully, this information can be used to fix these

local structures and confine the solution space. For future work a way of detecting

local structures will be pursued. A possible strategy can keep a count of specific

H-H contacts in a global memory and with the assumption of the most frequently

found contacts are part of a local structure, any move that attempts to break these

contacts could be rejected as a strategy to preserve the local structure. Although this

idea is in its early stages it can be developed in a working model for future work. A

demonstration of the basis of this idea is provided in figure 7.2.

Chapter 7: Conclusion 68

Figure 7.2: A snapshot of the population in the early iterations for the benchmark
S1-1.

After the GAOSA algorithm is further improved, a possible direction for future

work would be to work on a 3D version of the algorithm which is straightforward after

the adaptation of the Pull Move function [23] and the Crossover operator.

Bibliography 69

BIBLIOGRAPHY

[1] Oswin Aichholzer, David Bremner, Erik D. Demaine, Henk Meijer, Vera Sac-

ristán, and Michael Soss. Long proteins with unique optimal foldings in the h-p

model. Comput. Geom. Theory Appl., 25(1-2):139–159, 2003.

[2] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In

Proceedings of the Second International Conference on Genetic Algorithms on

Genetic algorithms and their application, pages 14–21, Hillsdale, NJ, USA, 1987.

L. Erlbaum Associates Inc.

[3] B Berger and T Leighton. Protein folding in the hydrophobic-hydrophilic (hp)

is np-complete. Proceedings of the second annual international conference on

Computational molecular biology, 5(1):27–40, 1998.

[4] T. Beutler and K. Dill. A fast conformational search strategy for finding low

energy structures of model proteins. Protein Sci., 5:2037–2043, 1996.

[5] C. Chira, D. Horvath, and D. Dumitrescu. An Evolutionary Model Based on

Hill-Climbing Search Operators for Protein Structure Prediction. Evolutionary

Computation, Machine Learning and Data Mining in Bioinformatics, pages 38–

49, 2010.

[6] D. G. Covell and R. L. Jernigan. Conformations of folded proteins in restricted

spaces. Biochemistry, 29(13):3287–3294, Apr 1990.

[7] P Crescenzi, D Goldman, C Papadimitriou, A Piccolboni, and M Yannakakis. On

the complexity of protein folding. Proceedings of the second annual international

conference on Computational molecular biology, pages 61–62, 1998.

Bibliography 70

[8] K. Dill. Theory for the folding and stability of globular proteins. Biochemistry,

24(6):1501–1509, Mar 1985.

[9] F. Glover et al. Tabu search-part I. ORSA journal on Computing, 1(3):190–206,

1989.

[10] MT Gurler, CC Crabb, DM Dahlin, and J Kovac. Effect of bead movement rules

on the relaxation of cubic lattice models of polymer chains. Macromolecules,

16(3):398–403, 1983.

[11] W Hart and S Istrail. Robust proofs of np-hardness for protein folding: general

lattices and energy potentials. Journal of Computational Biology, 4:1–22, 1997.

[12] HJ Hilhorst and JM Deutch. Analysis of monte carlo results on the kinetics of

lattice polymer chains with excluded volume. The Journal of Chemical Physics,

63(12):5153–5161, 1975.

[13] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. The

MIT Press, April 1992.

[14] Hsiao-Ping Hsu, Vishal Mehra, Walter Nadler, and Peter Grassberger. Growth-

based optimization algorithm for lattice heteropolymers. Phys Rev E Stat Nonlin

Soft Matter Phys, 68(2 Pt 1):021113, Aug 2003.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, May 1983.

[16] Kit Fun Lau and Ken A. Dill. A lattice statistical mechanics model of the

conformational and sequence spaces of proteins. Macromolecules, 22(10):3986–

3997, October 1989.

Bibliography 71

[17] N Lesh, M Mitzenmacher, and S Whitesides. A complete and effective move set

for simplified protein folding. RECOMB ’03: Proceedings of the seventh annual

international conference on Research in computational molecular biology, pages

188–195, 2003.

[18] C. Levinthal. How to fold graciously. University of Illinois Press, pages 22–24,

1969.

[19] F. Liang and W. H. Wong. Evolutionary Monte Carlo for protein folding simu-

lations. Journal Of Computational Physics, 115:3374–3380, August 2001.

[20] Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selection,

and the effects of noise. Complex Systems, 9:193–212, 1995.

[21] C. Rego, H. Li, and F. Glover. A filter-and-fan approach to the 2d lattice model

of the protein folding problem. 2006.

[22] A Shmygelska and H Hoos. An ant colony optimisation algorithm for the 2d and

3d hydrophobic polar protein folding problem. BMC Bioinformatics, 6:30, 2005.

[23] Chris Thachuk, Alena Shmygelska, and Holger Hoos. A replica exchange monte

carlo algorithm for protein folding in the hp model. BMC Bioinformatics,

8(1):342, 2007.

[24] R. Unger and J. Moult. Finding the lowest free energy conformation of a protein is

an NP-hard problem: proof and implications. Bulletin of Mathematical Biology,

55(6):1183–1198, 1993.

[25] R. Unger and J. Moult. Genetic algorithms for protein folding simulations. J.

Mol. Biol., 231:75–81, 1993.

[26] PH Verdier and WH Stockmayer. Monte carlo calculations on the dynamics of

polymers in dilute solution. The Journal of Chemical Physics, 36:227–235, 1962.

