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ABSTRACT 

 

Proteins are indispensible components of cellular functions. Although protein 

structure is determined as a static picture for most of the proteins, the dynamics or the 

time-dependent behavior of proteins act as main contributors to protein function. In 

addition to ligand induced structural motions proteins also bear intrinsic motions arising 

from thermal energy they contain. These ligand-independent motions possess functional 

importance according to experimental evidences for a large number of proteins and a 

link between these motions and functional motions are established both in terms of 

structure and timescale. These intrinsic fluctuations are revealed by low-frequency 

individual modes of proteins which are determined using a simplified version of normal 

mode analysis termed as Anisotropic Network Model (ANM). In this study, we apply 

modal analysis to eleven proteins including enzymes, antibodies and signal proteins. 

We investigate a kinetic relation between modal analysis and protein motions. For this 

purpose we employ eigenvalues of Hessian matrix which carry information about the 

vibrational frequencies of these modes. In ANM studies these eigenvalues are used to 

determine the low and high frequency modes of protein. Our findings imply a 

correspondence between eigenvalues and kinetic/thermodynamic properties of protein 

motions. These intrinsic motions establish a dynamic equilibrium between distinct 

conformers of the protein and as we have proposed eigenvalues of Hessian matrix 

correlate well both with the timescales of these motions and thermodynamics of these 

motions.  
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ÖZET 

 

Proteinler hücresel fonksiyonların vazgeçilmez elemanlarıdırlar. Çoğu protein yapı 

olarak durağan bir resme sahip olmasına rağmen, protein dinamiği, bir başka deyişle 

zamana bağlı protein davranışı protein fonksiyonuna önemli derecede katkıda bulunur. 

Liganda bağlı, yapısal hareketlerin dışında, proteinler içerdikleri termal enerji sayesinde 

kendilerine özgü hareketler gerçekleştirebilirler. Liganda bağlı olmadan proteinde yer 

alan bu yapısal hareketler fonksiyonel olarak önem taşımaktadırlar ve farklı proteinler 

için yapılan deneysel çalışmalara gore bu hareketler ile fonksiyonel hareketler arasında 

yapısal ve hareketin süreci bakımından ilişki bulunmaktadır. Bu içsel salınımlar, normal 

mod analizinin basitleştirilmiş bir versiyonu olan ANM ile belirlenen düşük frekanslı, 

protein modları tarafından açığa çıkarılabilmektedir. Biz bu çalışmada içerisinde enzim, 

antikor ve sinyal proteinlerinin bulunduğu 11 farklı proteine mod analizi uyguladık ve 

mod analizi ile protein hareketleri arasında kinetik olarak herhangi bir bağlantı olup 

olmadığını irdeledik. Bu amaçla Hessian matriksinden elde ettiğimiz özdeğerleri 

kullandık. Bu özdeğerler modların titreşim frekanslarına dair bilgi içermekte ve ayrıca 

ANM çalışmalarında özdeğerler düşük ve yüksek frekanslı modları belirlemektedir. 

Bizim elde ettiğimiz sonuçlar özdeğerler ile protein hareketlerinin kinetik ve 

termodinamik özellikleri arasında bir bağlantıyı işaret etmektedir. Önceden de 

belirtildiği gibi bu içsel hareketler, protein ait farklı yapılar arasında dinamik bir denge 

oluşturmaktadır ve çalışmamızda önerdiğimiz gibi Hessian matriksinin özdeğerleri, 

protein hareketlerinin zaman periyodu ve termodinamik özellikleriyle bağdaşmaktadır.  
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INTRODUCTION 

 

Protein function is highly determined by protein structure and dynamics which are 

linked in an ultimate level. Architecture of a protein provides itself a rigidity and 

elasticity that shapes the functional capability of the protein. This ultimate relation 

between structure and dynamics enable scientists to predict the protein dynamics using 

solely the protein structure. For this purpose several computational efforts emerge 

including molecular dynamics and normal mode analysis. In the former one, protein is 

allowed to follow Newtonian equations of motion in a deterministic way and the protein 

behavior is monitored through molecular dynamics trajectories [1, 2]. In the latter one, 

the normal modes of protein motion are extracted through Harmonic motion 

approximation [3, 4]. Both computational methods help to expand the knowledge about 

protein dynamics.  

The normal mode analysis is simplified by adopting solely Cα atoms of protein 

instead of all-atoms. These new methods, called Elastic Network Models (ENMs) are 

inspired both by normal mode analysis and the elasticity theory of random polymer 

networks [5]. ENMs perform well [6-10] to predict B-factors (also called temperature 

factors, Debye-Waller factors) which store the mean square fluctuation information of 

each atom. Further studies about the protein dynamics accomplished by ENMs indicate 

that the residue fluctuation information stored in global modes correlate well with the 

conformational transitions of the protein [11-14]. Besides, deformation of the open form 

along one of the three low frequency modes, in other words global modes transfer the 

open form to closed form indicating that the conformational transition information is 

encoded in protein structure.  

The previous findings of ENMs actually support preexisting equilibrium model. 

According to preexisting equilibrium model, both open and closed forms of the protein 

preexist together in solution and ligand binding acts as a stabilizer for the closed form 

and eventually, the probability distribution of conformers are altered towards the closed 

form [15-17]. In a more generalized view, these conformers form an ensemble where 
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the ensemble dynamics include fluctuations within the same energy level, termed as fast 

fluctuations [18], and slow scale motions which enable the protein to sample several 

ensemble conformers [18, 19]. ENM modes deal with both fast and slow scale motions 

via predicting B-factors (fast motions) and conformational transitions (slow scale 

motions).  

Gaussian Network Model (GNM) and Anisotropic Network Model (ANM) are two 

types of ENMs. These two methods differ from each other regarding the adopted 

matrices which store inter-residue potentials in which GNM employs an N-by-N matrix 

whilst ANM adopts a 3N-by-3N matrix. The fluctuation information supplied by GNM 

is isotropic (only amplitude) whilst ANM provides both amplitude and direction 

information for observed fluctuations. The so-called individual modes are constructed 

using two outcomes of eigenvalue decomposition of the adopted matrix eigenvectors 

which include mode shapes and eigenvalues which store the frequency information of 

the corresponding mode. Besides, the contribution of each mode is determined based on 

the eigenvalue spectrum of the protein in which low frequency modes would contribute 

much to the overall motion.  

As aforementioned open form encodes the closed or closed-like conformers through 

its thermal fluctuations and these fluctuations can be accessed by low-frequency normal 

modes of the protein. In literature, a structural relation between the normal modes and 

conformational transitions between distinct states of proteins has been established 

through mode analysis of several proteins [12, 13, 20, 21]. In further attempts ANM 

modes of unligated form of a protein have been found to sample conformational space 

accessed by different ligand bound forms of the same protein [14]. However, this 

structural relation between ENM and protein dynamics does not provide any insights 

about the timelines of protein fluctuations since ENM calculations do not possess any 

time dependence. There are several evidences provided by NMR experiments [15, 22-

25] that protein backbone dynamics drive turnover rates or kinetic rates of 

conformational transitions highlighting the role of protein dynamics during protein 

function. 
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In this thesis, we have combined ANM modal analysis and experimental evidences 

about protein kinetics/thermodynamics in order to establish a relation between ANM 

findings and kinetics/thermodynamics of the proteins. As we have stated above ENM is 

already proven to correlate well with the conformational transitions and we have simply 

intended to expand success of modal analysis over thermodynamics and kinetics of 

proteins. For this purpose, we have initially constructed a protein data set that consists 

of eleven different proteins including enzymes, signal proteins and antibodies. All 

proteins within the dataset are proven to co-exist as at least two conformers in solution 

via experimental studies. The thermodynamic/kinetic data regarding transition rates or 

relative populations of these eleven proteins have been retrieved from NMR or single-

molecule FRET studies of these eleven proteins. Therefore, we have a protein dataset 

comprised of 22 PDB structures (two for each protein) and their respective kinetic or 

thermodynamic data.  

We have performed modal analysis on both structures of eleven proteins using 

ANM and determined the similarity between first thirty modes and observed 

experimental displacement via employing two similarity measurements. Mode 

correlation and overlap scores give amplitude and direction similarities of these two 

vectors. Once we have calculated similarity scores of individual modes of each 

conformer, we in further steps determined top three modes considering those similarity 

scores and eigenvalue spectrum of corresponding conformers.  

Modal analysis of eleven proteins have been followed by main emphasize of our 

study. We have proposed a relation between eigenvalues of Hessian matrix and kinetic 

or thermodynamic properties of ensemble conformers. For this purpose we have 

constructed two vectors termed as experimental and computational vectors. 

Experimental vector included either the ratios of kinetic rates of conformational change 

which transfers one conformer to other one or this vector included ratios of relative 

populations of each conformer depending on the data that we have retrieved from 

literature. Second vector included ratios of eigenvalues of inverse Hessian matrix which 

simply corresponds to contribution of each mode. Here, we have iterated top three 
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modes in order to select the significant modes and calculate ratios for computational 

vector. Thus, the results presented in the last part of Results correspond to Pearson 

correlation between these experimental and computational vectors. We have found that 

for both kinetic rates and relative populations, ANM modal analysis produces 

significant results implying a relation between ANM modal analysis and kinetic and 

thermodynamic properties of proteins dynamics.  

Prior to our modal analysis we have also investigated success of five different 

ENMs regarding B-factor predictions. We have employed two GNM methods in which 

one is cutoff-derived (GNM) whilst the other uses a parameter free method (pfGNM). 

We have also adopted three ANM methods, one is cutoff derived (ANM) and two of 

them use parameter free methods (pfANM2 and pfANM4). Parameter free methods 

have been previously found to improve B-factor predictions compared to classic cutoff-

derived methods [26]. We have used a dataset comprised of more than a thousand 

proteins and our prediction results imply similar improvements in B-factor predictions 

in the case of parameter free methods.  

As a future work, the relation between kinetic/thermodynamic data and combined 

modes can be investigated for a larger dataset. Our results strictly require validation 

using a larger dataset including different types of proteins.  
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Chapter 1 

1. LITERATURE REVIEW 

1.1. Energy Landscape Theory 

 

Protein structure and dynamics constitute a major interest within the biological 

studies. Functional importance of proteins such as catalysis, regulation and interactions 

are all directed by protein structure and dynamics. The thermal energy stored in the 

protein enables the protein itself to explore a large ensemble of conformations around a 

well defined energy level. Thus, native structure of the protein does not possess a static 

structure, but represents the average structure of all ensemble structures that are called 

„substates‟. The conformational ensemble of the protein populates several 

conformational states, also called substates in differing amounts within a 

multidimensional energy landscape and the interconversions between these substates 

determine the behavior of the protein.  

Folding funnel hypothesis [27, 28] which has emerged from protein folding studies 

proposes presence of multiple conformational states and folding pathways that protein 

can follow in order to reach its native conformation on contrary to the Levinthal‟s idea 

of unique folding pathway [29] that is later known as „Levinthal‟s paradox‟ [30]. In a 

similar manner, folded proteins also exist as multiple states according to study of 

Frauenfelder et. al for the myoglobin [31]. In this study, they have determined four 

different binding processes and for the interpretation of the data they have proposed that 

protein populates four distinct states that are both temperature and concentration 

dependent. In another study [32], solvent is found as an active participant, equally 

important as the energy landscape of myoglobin.  

The energy landscape theory replaces the Levinthal‟s paradox for both folding and 

folded proteins and proposes a new funnel concept instead of the pathway concept. 

According to funnel landscape model, number of accessible conformations or 

conformational entropy is represented by the lateral area of energy landscape in any 

given depth where the depth indicates progress of folding [33]. As the folding advances 
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number of accessible substates decreases together with degree of freedom and 

eventually protein reaches its native state. Figure 1-1 shows the folding process 

according to two different models; unique pathway model (Fig.1A) and funnel concept 

(Fig 1B). Funnel concept contains multiple pathways that protein can follow and 

conformational entropy narrows down as the folding advances. N is the native state of 

the protein. The lateral area at any given depth defines the conformational entropy or 

number of accessible states [33]. 

 

Figure 1-1 Protein folding according to unique pathway model (A) and funnel concept (B) 

[33]. 

In terms of energy landscape funnels, the protein behavior is related with the 

smoothness of this funnel. Bumpy landscapes can lead protein to be stuck in local 

minima slowing down the folding process. In the case of native state if the landscape 

exhibits a smooth behavior, thermal fluctuations will lead to small structural changes 

within the protein. If landscape contains bumpy regions the small fluctuations in energy 

can lead to large structural changes eventually to “conformational distant relatives” also 

called as excited states of the protein. The energy barriers separating distinct energy 

states determine the transition rates between these conformers and also the relative 

population of each state [33].  

To sum up, conformational ensemble of a folded protein spans its energy landscape 

in a multidimensional manner together with the substates (distinct energy states) and the 

energy walls separating these substates. The transition rates (kinetics) and relative 
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populations (thermodynamics) of each state are largely affected by solvent and 

conditions.  

1.2. Conformational Selection Model 

 

Protein folding and function are all directly related with free energy landscape of the 

protein as aforementioned. The energy landscape theory also has roots in molecular 

recognition mechanisms. „Lock and Key‟ model [34]proposes a recognition mechanism 

with any structural change neither in protein nor in ligand. This model is followed by 

Koshland‟s induced fit model [35] which proposes a ligand based induction within the 

active site of protein. Both models assume the protein to exist as a single, stable 

conformation and fail to reflect dynamic nature of protein. Contrary to these two models 

a new model called “conformational selection model” emerges deriving from energy 

landscape model. Energy landscape of a protein contains distinct energy states 

distinguished by energy walls. Each energy state is populated in different amounts in 

certain conditions and conformational selection model proposes that the substates of 

corresponding energy landscape plays an important role in molecular recognition and 

ligand preferably interacts with any of these substates. Ligand interaction alters the 

population distribution of each substate and leads to a population shift favoring the 

ligand binding form [36].  

This model is supported by several experiments for enzymes [15, 26, 37-41], 

monoclonal antibodies [16, 42, 43] and regulatory proteins [44]. According to enzyme 

studies referred above both the open and closed forms of the enzyme are co-populated 

favoring the open form in the absence of the ligand. Ligand binding simply shifts the 

relative populations of open and closed forms shifting the equilibrium towards the 

closed form. These studies mutually conclude indispensible role of pre-existing 

substates for ligand recognition and binding. 

Two antibody examples, Spe7 [16, 43] and 34E4 Fab Antibody [42] support 

conformational selection model and demonstrate that multiple substates co-exist in 

solution, interconverting between each other as a result of thermal fluctuations. The 
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presence of pre-existing substates in solution provide ligand diversity for these 

antibodies and in the presence of the ligand, the populations are redistributed favoring 

the ligand binding conformation.  

1.3. Protein Motions 

 

Driven by the energy landscape of protein, the timescales and amplitudes of protein 

motion constitute the protein dynamics. The motions which occur in femtosecond to 

nanosecond timescales are termed as fast scale motions and the motions which span a 

timescale of microseconds to milliseconds are termed as slow scale motions. These two 

types of motion lead to different energetic and structural changes within the protein in 

terms of energy landscape [45].  

1.3.1. Fast-Scale Motions 

 

Fast scale motions are coupled to local, small amplitude fluctuations between close 

energy states that has small energy barriers around kT [18]. This type of motions with 

amplitudes of lower than 1.5 Å enables the protein to sample several structurally similar 

states. Side chain rotations and small amplitude backbone fluctuations are examples of 

fast scale motions. NMR relaxation experiments [17, 46] allow investigation of fast 

scale dynamics in terms of bond fluctuations. NMR spectroscopy is also used 

extensively in order to determine entropic contribution of protein to binding. 

Calmodulin, which binds a variety of target proteins, demonstrates a good example for 

the application of NMR to biomolecular binding. Entropic and enthalpic contributions 

of Ca
2+

-calmodulin differ widely when binding to different peptides although the 

binding free energies are similar for target peptides determined by isothermal 

calorimetry [47-49]. The methyl-order parameters of calmodulin binding to six different 

target peptides were studied [49] in order to question observed differences in entropic 

and enthalpic contribution of the protein. In this study, it was shown that sub-

nanosecond dynamics of methyl-bearing amino acid side chains exhibit significantly 

varying motion depending on the nature of the target peptide. The backbone dynamics 
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on the other hand, are invariant across the complexes [49]. This study concludes that 

fast side chain dynamics of calmodulin are employed in order to tune its affinity for 

targets.  

X-ray diffraction data supplies information about the average three dimensional 

structure together with the fast scale fluctuations around this conformation, commonly 

known as X-ray crystallographic B-factors [50]. The information supplied by X-ray B-

factors provides insights about the mean square fluctuations of atomic displacement 

[51] in an isotropic manner. The directionality information about these fast scale 

motions can be obtained using higher resolution X-ray technology in sub-angtrom scale 

[52]. Infrared or fluorescence correlation spectroscopy can also provide insights about 

local fluctuations [18]. 

Fast-motions between the ranges of femtoseconds to nanoseconds are within the 

scope of molecular dynamics (MD), quantum mechanics and molecular mechanics. As 

stated above the fluctuations within the same energy state can be determined by the 

experimental methods. However, still an understanding about the exact nature of the 

motions and the underlying forces driving these motions remain as unknowns. MD 

simulations cover these questions and help the literature to improve in two ways, first 

by complementing readily available knowledge about the dynamics and second by 

inspiring new experimental studies. Since the mid-seventies MD simulations became an 

integral part of protein dynamics studies through advances in computational power and 

improvements in accuracy of mathematical models. Now, MD simulations reach up to 

tens of microseconds scale with a common system of 10
4
-10

6 
atoms [53].  

1.3.2. Slow-Scale Motions 

 

Slower scale motions ranging between microseconds and milliseconds are 

collective, including large-amplitude motions of secondary structure elements, subunits 

or domains fluctuating between energetically distinct substates separated by energy 

barriers of several kT [18, 19]. These slow-scale fluctuations enable a protein to 

resemble relatively more stable states in which inter-conversions between these states 
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carry importance about the protein function including enzyme catalysis, signal 

transduction and biomolecular interactions. Consistent with the energy landscape idea 

these states form the conformational ensemble of the protein with different attributes 

based on the energy profile such as interconversion rates and relative populations.  

NMR spectroscopy and X-ray crystallography are primarily used in order to 

elucidate the substate structures in atomic resolutions and further information about the 

kinetics and thermodynamics of protein dynamics can be elucidated using NMR 

methods. The slow motions as aforementioned in microseconds to seconds scale lead to 

conformational exchange between kinetically distinct states. In an NMR experiment, 

these transitions between different magnetic environments lead to a [23, 54] 

contribution in the transverse relaxation rate (termed as R2). From this term, three 

properties of the system can be extracted; chemical shifts between exchanging sites 

(Δω), transition rates between two states (kex, kinetics) and relative populations of sites 

A and B (pA and pB). The observed Δω does not necessarily indicate a structural change, 

however it refers that the electronic environment around an atom differs between two 

states [23]. Further information about the protein dynamics depend on the interpretation 

of these NMR findings.  

Cyclophilin A (CypA), which is a cis-trans isomerase, [55] is a good example about 

NMR spectroscopy studies for conformational change. Eisenmesser et. al. studied CypA 

dynamics using NMR spectroscopy [22] and this study elucidated a relation between 

enzyme flexibility and catalysis. The conformational changes taking place during the 

turnover were found to pre-exist in the free enzyme with frequencies similar to catalytic 

turnover rates implying the catalysis to be an inner property of the free protein [22]. In 

the same study authors concluded that CypA dynamics associated with catalysis is a 

built-in property of the enzyme that is also apparent in the free CypA. For the 

cytochrome P450 the ensemble dynamics and interconversion rates were determined by 

crystallographic techniques [26] and within the same study the interconversion rates 

between corresponding substates have been presented.  
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NMR relaxation and dispersion experiments provide knowledge also about the 

relative populations of the ensemble substates and chemical shift differences between 

corresponding substates. Characterization of catalytic motions of free RNase [56] 

revealed three substates that pre-exist together in conformational ensemble including 

free enzyme, enzyme-substrate complex and enzyme-product complex. Such studies 

established the innate slow scale motions to be relevant to functional motions indicating 

the effect of the ligand to be relatively small for these motions. The ligand binding acts 

to stabilize the pre-existing conformer, altering the probability distribution.  

Single molecule FRET (Flourescence Resonance Energy Transfer) is another strong 

technique to observe different state of the proteins. This technique depends on the 

energy transfer between the donor and acceptor [57]. The changes in the fluorescence 

intensity and excited-state lifetimes of both donor and acceptor supply evidences about 

single-molecule dynamics. Two-state behavior of the proteins can be elucidated in time-

resolved FRET by determining the relative distributions in which, each conformational 

state will demonstrate a different FRET value. FRET also performs well in order to 

detect conformational transitions [57]. Study of Diez and colleagues [58] about F0F1-

ATP synthase is an illustrative example about the applicability of single-molecule 

FRET. This enzyme performs ATP catalysis from ADP and phosphate, in bacteria, 

mitochondria and chloroplast, through converting electrochemical energy supplied by 

transmembrane electrochemical proton gradient into chemical energy. The authors 

employ single-molecule FRET in order to monitor rotations in the γ-subunit of the F1 

part taking place during the ATP synthesis using intact protein complex in liposomes 

that allows measurements up to hundred of miliseconds. The distances between rotating 

γ-subunit and static β subunit were determined by attaching two fluorophores to each 

subunit. The study monitored three distinct distances between two subunits and also 

capturing rotations between these three states. According to this study, the direction of 

rotation is reversed during the ATP synthesis compared to ATP hydrolysis. The single-

molecule FRET experiments allow studying consecutive and progressive dynamics 
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which is only possible by employing single-molecule experiments due to 

synchronization problems.  

As aforementioned slow motions reach up to milliseconds exceeding accessibility of 

conventional MD simulations. However, these motions contain biologically important 

processes such as protein folding, conformational transitions between distinct states and 

catalysis. Several simplifications to force fields have been developed including normal 

mode analysis [4, 59, 60]], elastic network models (will be emphasized in next chapter) 

[6-9] and the simplified version of MD simulations order to reach microsecond 

timescales. These simplifications of molecular dynamics include acceleration of system 

dynamics by employing external forces and the most familiar ones are targeted, steered 

and accelerated molecular dynamics [53, 60, 61].  

The molecular dynamics study about the native state ensemble of ubiquitin [62] 

exemplifies the ability of molecular dynamics simulations in order to sample slow 

motions. According to that study, together with the fast dynamics of ubiquitin, slower 

motions on nanosecond to microsecond timescales occur during the simulations and the 

observed structural heterogeneity overlaps with the variability observed in different 

crystal structures of ubiquitin. As we have explained before this behavior of the protein 

is related with energy landscape theory which enables the protein to populate different 

substates within an ensemble of conformers together with interconversions between 

each conformer. In a similar study, Henzler-Wildman et. al. [18] combined both NMR 

methods and single molecule-FRET experiments together with molecular dynamics 

simulations and the MD results elucidated that free form of the protein samples the 

partially closed form in smaller timescales (about nanoseconds) compared to results of 

NMR and FRET experiments (microseconds to miliseconds).  

Molecular dynamics have been also adopted for protein folding studies [63, 64] in 

microsecond time scales and both studies concluded that the period of protein folding is 

largely related with the initial structure used in simulations. Selection of force-field is 

also another contributor to success of simulations since finding accurate force fields that 

would best suit to the folding process possesses problems [65, 66]. Protein folding is 
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studied also by adapting energy landscape model [67] through using a simplified model 

called umbrella sampling [68] in order to determine the equilibrium population 

distribution of the protein. Initial structures for umbrella sampling are obtained by 

unfolding simulations and at the end of folding simulations driven by umbrella 

sampling the density of conformational states are calculated, and subsequently free 

energy landscape is determined.  
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Chapter 2 

2. COMPUTATIONAL METHODS 

 

In the previous chapter, protein dynamics, together with timescales of motions have 

been presented in terms of energy landscape theory. Several experimental studies 

provide evidences for this theory making it applicable to both protein folding and folded 

proteins. Computational efforts also produce significant results in agreement with 

experimental results providing insights about the nature of fluctuations. Molecular 

dynamics simulations perform well for the fast timescale fluctuations of proteins, but 

require simplifications in order to deal with slower motions which carry functional 

importance because of computational limitations.  

As proposed in previous chapter several coarse-grained methods have been 

developed in order to eliminate limitations of molecular dynamics simulations. Full 

atomic, empirical force fields are replaced with coarse-grained models in order to 

determine functional motions of proteins. Normal mode analysis (NMA) [4, 59, 60] 

adopts a simplified version of potential or conformational energy of the protein in order 

to determine the vibrational motions assuming that thermal fluctuations of the protein 

are harmonic neglecting any anharmonicity in calculations. Bond angles and lengths are 

fixed only permitting bond rotations thus only dihedral angels are taken into 

consideration. “The conformational energy is approximated by the multidimensional 

parabola characterized by second-derivative matrix at the minimum [4].” Eigenvalue 

decomposition of second-derivative matrix produces normal modes of vibration and 

their frequencies. Superposition of computed normal modes approximates the dynamics 

of protein and the calculations presented in paper about the globular protein is in good 

agreement with B-factors of the same protein obtained by X-ray crystallography [4].  

Tirion [11] replaced the detailed parameters which are used to express potential 

energy by Hookean pairwise potential between two interacting pairs and the potential 

energy is defined as the sum of pairwise potentials. Tirion adopted a cutoff distance in 

order to determine number of pairwise interactions which will define the size of 
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computation. The author further discusses the applicability of this simplified model and 

concludes that the details neglected in the calculations do not contribute much to the 

slow vibrations which are collective motion driven by a large number of atoms. So the 

simplifications perform well for slow motions and reduce the computational cost 

considerably compared to the cost of molecular dynamics simulations of NMA. The 

calculations of Tirion including theoretical temperature factors calculated by using 

lowest 30 modes produce successful results with the temperature factors for G-actin. 

2.1. Gaussian Network Model 

 

Inspired by normal mode analysis and elasticity theory of random polymer networks 

[5, 69, 70] another simplified method has emerged based on the inter-residue potentials 

of Cα atoms different from normal mode analysis which adopts coarse-grained approach 

[6, 7]. This method, called Gaussian Network Model (GNM), treats proteins in their 

native states as three-dimensional elastic networks (EN) in which residues and bonds 

are represented as nodes and springs respectively. Residue fluctuations follow Gaussian 

distribution and are determined by the interaction potentials between residue itself and 

closely located neighbor residues. As in normal mode analysis, GNM also assumes 

residue fluctuations to follow harmonic behavior.  

Inter-residue potentials for interacting pairs are independent from the residue types 

and are determined based solely on the inter-residue distances. The distances are 

calculated using atomic coordinates of Cα supplied in X-ray crystals or NMR structures. 

The Kirchoff (Γ) matrix, which is a symmetric N-by-N dimensional matrix, includes 

information about the interaction potential of each residue pair and is determined as in 

Eq. 2.1: 
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In Eq. 2.1 Γij is the interaction potential between i
th

 and j
th

 residues, γ is the 

empirical normalization constant, counterpart of the single-parameter in the Hookean 

potential of Tirion‟s work [11], Rij is the distance between i
th

 and j
th

 residues and rc is 

the cutoff value which determines interacting residue pairs. If the inter-distance between 

two residue pair is below defined cutoff rc, then these residues are connected with a 

spring and the interaction potential for these residues are stored in Γ as –γ. If the 

residues are located far from the cutoff value (rc), no interaction potential is assigned 

between them. The diagonal elements of the Kirchoff matrix store the total number of 

bonded and nonbonded interactions for corresponding residue indices.  

The potential energy (V) of the protein associated with fluctuations of Cα atoms can 

be computed using Kirchoff matrix (Γ) and N dimensional fluctuation vector (ΔR) 

whose elements are the fluctuation vector of each residue as presented in Eq. 2.2:  

                   

The configurational partition function of a network with N nodes (ZN) which defines 

the statistical attributes of the system in terms of thermodynamics can be expressed as 

in Eq. 2.3 with an analogy to the studies about the random Gaussian networks [5, 69, 

70]: 

         
              

The cross-correlations between residue fluctuations of ith and jth residues can be 

written as in Eq. 2.4 and consequently takes form as in Eq. 2.5: 

             
 

  
             

                    

            
   

 
                  

Here, k is the Boltzmann constant and T is the temperature. Γ
-1 

is the inverse of the 

Kirchoff matrix. If the Γ
-1 

is written in terms of eigenvectors and eigenvalues of Γ the 

cross-correlations take form as shown below in Eq. 2.6: 
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The equation tells us that the total cross-correlations can be expressed as 

superposition of fluctuations distributed to each individual mode of peptide (termed as k 

here). An elastic network with N residues contains N-1 nonzero eigenvalues and the 

same number of modes. λk is the eigenvalue of k
th

 mode and uk is the corresponding 

eigenvector. Eq. 2.6 signifies the computational efficiency of GNM which requires only 

eigenvalue decomposition of Γ matrix and the matrix depends solely on the Cα atom 

positions of residues extracted from X-ray crystal or NMR structures.  

From Eq.6 one can also find mean square fluctuations of each residue using Γ 

matrix. The fluctuation amplitudes determined in GNM are isotropic, containing no 

direction information. As in the work of Tirion [11], the GNM findings are validated 

using Debye-Waller factors which are calculated using Eq.2.7: 

      
         

 
          

Here Bk is the B-factor of k
th

 atom and ΔRk is the fluctuation amplitude of k
th

 atom. 

The results between theoretical findings and experimental B-factors exhibit good 

agreement indicating that GNM performs well in order to determine the fluctuation 

pattern of the protein. In this model only coordinates of Cα atoms are used thus any 

interactions involving sidechain atoms are ignored within the GNM calculations. Thus, 

GNM fail to predict the motion successfully within the regions where the stability is 

provided by interactions involving sidechain atoms.  

The cutoff value adopted in GNM is 7.0 Å and includes all neighbors of the 

corresponding residue within the first coordination shell. Another empirical parameter γ 

is the normalization factor determined by normalizing theoretical mean-square 

fluctuations with respect to the experimental ones and depends on the secondary 

structure content and the size of the protein [6]. The proteins with a large content of 

secondary structures exhibit larger γ values. The adopted cutoff value is also important 

in order to determine γ value. Adoption of larger cutoff values will increase the 

interaction strength subsequently increasing constraints over atomic fluctuations. 

Increase in constraints over atomic fluctuations lead to increase in γ value. This value 
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does not affect the distribution of the fluctuations of each residue, but rescales the 

amplitude of fluctuations uniformly. As aforementioned, the value of force constant γ 

does not exhibit differences for different amino acid pairs.  

Despite the simplicity of the model, GNM still performs well and exhibits good 

agreement with experimental findings. The main reason behind success of the GNM is 

that vibrational motions are largely dominated by collective motions in the native state 

of the protein and these low-frequency, collective motions contribute much more than 

the other according to their eigenvalues (Eq. 2.6).  

2.2. Anisotropic Network Model 

 

The GNM model provides fluctuation information in an isotropic manner without 

any further direction information. However, together with the amplitude information, 

directions of these modes are equally important. Anisotropic Network Model (ANM) 

has emerged as another elastic network model in order to determine atomic fluctuations 

with both amplitude and direction information.  

ANM [8, 9] also depends on the theory of elastic networks like GNM. The residues 

are still represented as nodes using atomic coordinates of Cα atoms connected by 

springs. Like GNM, ANM also adopts a single-parameter force constant γ for all 

residue pairs with no discrimination done between different residue types. ANM 

employs Hessian matrix that is counterpart of the Kirchoff matrix used in GNM. 

Different from GNM Hessian matrix is N-by-N matrix composed of super elements of 

3-by-3 matrices. The interaction potential between residue pairs are defined as second 

derivatives of potential energy with respect to X, Y and Z components of residue pairs 

as presented in Eq. 2.8:  

      

                              

                              

                              

           

 



Chapter 2: Computational Methods  19 

 

    

          
          

   
      

           

Hessian matrix is a 3N-by-3N matrix and eigendecomposition of this matrix yields 

3N-6 non-zero eigenvalues and same number of eigenvectors. In ANM, the cross-

correlations between residue pairs is defined as in Eq. 2.10 as modified version of Eq. 

2.6 

                          

 

   

 
        

  

 

    
                

Here, k defines the indices of modes and Hessian matrix contains 3N-6 non-zero 

individual modes and the cross-correlations of each residue pair is determined by taking 

the trace of 3-by-3 matrix that is trace of H
-1

ij. The eigenvectors in ANM are comprised 

of N-dimensional elements with each element containing 3-dimensional vector in which 

fluctuation information in three Cartesian coordinates are determined.  

The adopted cutoff value in ANM is relatively larger than one adopted in GNM. 

Studies [9] show that adoption of a cutoff about 7.0 Å leads to calculation of more than 

six zero eigenvalues not as expected. Also, small cutoff values favor large fluctuations 

in one direction for particular residues. In order to remove these inconveniences ANM 

adopts relatively larger cutoff values and a spring constant of 1.0 ± 0.5 kcal/(mol.A
2
) is 

determined for cutoff values between 12-15 Å.  

Both elastic network models vibrational frequency (ωi) of each motion can be 

calculated as ωi =(γλi)
1/2

. Like in GNM, the atomic fluctuations determined in ANM are 

largely dominated by low-frequency, collective motions. EN models do not require any 

minimization or equilibration since it depends on the pure harmonic motions of the 

protein that are extracted using eigenvalue decomposition making it an analytical tool.  

2.3. Previous Studies 

 

Elastic Network Models immediately have become a useful technique to study 

protein dynamics due to their simplicity and no requirement for molecular dynamics 
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simulations. GNM and its anisotropic counterpart ANM have initially been adopted for 

studying correlations between experimental B-factors (also called Debye-Waller 

factors) and mean square atomic fluctuations determined by EN models [6-9]. Doruker 

et. al. [7] investigated efficiency of GNM, ANM and MD over experimental findings of 

α-amylase inhibitor. According to this study dispersion of modes within the slow, 

intermediate and fast scales differ for each method such that slow modes of MD 

contribute most to the determined fluctuations. ANM becomes intermediate at this scale 

between MD and GNM however, matches GNM within the intermediate scale. At the 

fast regimes, the relative importance of GNM and MD is inverted and contribution of 

fast modes diminishes for MD simulations logarithmically where contributions for 

ANM and GNM fast modes decrease linearly.  

The same study also concludes that GNM follows a smooth pattern for mode shapes, 

where others, ANM and MD exhibits relatively sharper mode shapes. GNM fails to 

determine high mobility regions, on the other hand ANM and MD performs this task 

accurately. The correlated and anti-correlated residue fluctuations are also determined 

for each mode using EN models [7] together with the collectivity of each mode. In 

another study [9] authors employed ANM to investigate dynamics of RBP protein and 

characterized the highly coupled motions of two loop regions which they propose to 

have functional roles for both gating of cavity and recognition, consistent with the MD 

simulations of the same protein.  

Large conformational changes between open and closed forms of 20 proteins have 

been studied using normal mode analysis [20]. Low-frequency collective modes of 

proteins have been adopted in order to define conformational change observed between 

open and closed forms of the protein. These transitions have essential roles for protein 

function such as catalysis, regulation and binding. According to this study, one of the 

low-frequency normal modes of the open form performs well to define the transitions 

between open and closed form. In this, study the authors employ overlap which 

determines the similarity between directions of normal modes and corresponding 

experimental displacement. Success of the normal mode analysis depends on the 
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collectivity of the experimental displacement according to the study of Tama and 

Sanejouand [20] and they conclude that the motions with a collectivity larger than 0.18 

can be defined by one of the three lowest-frequency modes with an overlap value higher 

than 0.50. These implications further suggest that distinct forms of the protein can be 

encoded by the normal modes of the open form and protein sequence is evolved such 

that favoring a single normal mode.  

Further studies of EN models [12, 13, 71] emphasize over the low-frequency 

collective modes determined by ANM and GNM. Bahar and Tobi [12] elucidated that 

Cα displacements observed between unbound and bound forms of four different protein 

pairs which exhibit substantial conformational changes upon ligand binding can be 

explained using one of the lowest three individual modes which are also called as global 

modes. These findings of Bahar and Tobi provide evidence for the pre-existing 

equilibrium model which adopts energy-landscape theory of proteins favoring presence 

of distinct conformers. Keskin [13] studied antibody diversity in terms of pre-existing 

equilibrium model using ANM modal analysis. She investigated flexibility of two 

antibodies using normal modes of the corresponding proteins in their unbound states. 

The results of this study imply the importance of the intrinsic flexibility of the 

antibodies for recognition and binding process of antibodies and ANM performs well in 

order to extract these functional fluctuations through normal modes of the unbound 

form.  

Another attempt for studying large conformational transitions was performed by 

Sternberg et. al [21] for a large benchmark of proteins which exhibit different scale of 

conformational changes using EN models. They investigated the effect of several 

parameters like amplitude of observed conformational change, collectivity and length of 

protein over success of normal modes. The authors determined the first 20 low 

frequency modes for each protein and revealed that the proteins with experimentally 

known as undergoing large conformational changes produce eigenvalues with lower 

frequencies corresponding to more rigid ones. They have found that protein size can 

also predict extent of conformational change less reliably than mode frequency. The 



Chapter 2: Computational Methods  22 

 

authors‟ results imply that the unbound form of the protein sample bound-like 

conformations through their low-frequency modes and normal modes can be used 

efficiently in order to predict the extent of conformational change. Still, bound 

conformations differ slightly from predicted structures due to final arrangements 

induced by ligand. This study also concentrates over the importance of normal modes 

for the docking studies by predicting candidate target conformational subspaces.  

Normal mode analysis stands as a powerful analytical tool for investigation of 

functional protein motions as can be seen in above described studies providing 

evidences for the pre-existing equilibrium model. Bakan and Bahar [14] expanded 

normal mode studies of conformational changes to the conformational spaces that 

protein occupy in their bound forms and investigated the role of global normal modes 

for the corresponding motions. The authors have adopted three proteins p38 MAP 

kinase, HIV-1 reverse transcriptase and cyclin-dependent kinase including their 

unbound forms and the inhibitors binding to them, totally involving 292 structures. 

They have determined conformational space accessed upon ligand binding for each of 

three proteins and extracted dominant functional motions through principal component 

analysis of experimental data. They have also analyzed subsets of protein-inhibitor 

interactions in order to understand dominant motions based on the type of the inhibitor 

and binding sites. The study emphasizes mainly over the relation between first two 

principal components of functional variations and normal modes of unbound form of 

each protein. The results are promising and imply that there are individual modes that 

correlate well with these two principal components and generally the corresponding 

individual mode is among the collective modes of unbound form. The authors conclude 

that the collective normal modes determined by ANM are thermodynamically favorable 

in terms of entropic considerations and the close correspondence between normal 

modes and experimentally determined functional variations imply the entropic effects as 

a driving force for the observed conformational transitions during ligand binding. ANM 

also acts as predictive to form representative ensemble of conformers by determining 

global modes.  
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Elastic network models depend on a pre-defined cutoff value and interacting pairs 

are defined using this cutoff distance. Jernigan et. al. [10] investigates the presence of 

this cutoff value and proposes a new model which discards the requirement for a pre-

defined cutoff value. As aforementioned the matrices containing inter-residue potentials 

are classically constructed using some empirical cutoff values which considers only the 

interactions within the range of the cutoff-value and ignores the out of-range 

interactions. However, definition of a cutoff value is not a straightforward process and 

depends on the architecture of the protein, showing differences from protein to protein. 

Also, the inter-residue potential is determined independent from the distances between 

interacting residue pairs. Jernigan and his collegues propose a new method called 

parameter-free model in order to assign inter-residue potentials to each residue pair. 

According to this model, all residue pairs are accepted as interacting and the inter-

residue potential between this residues are determined using inter-distances between 

these pairs independent from a cutoff value. In such way, the authors take also the long 

range interactions into considerations within calculations of the EN models. This model 

is inspired from recent studies of Lin et. al [72] which defines a weighted contact 

number model for prediction of B-factors differing from previous contact number-based 

models by discarding the cutoff value, and instead weighting the interactions in a 

distance dependent manner. The same theory is adopted in EN models by Jernigan and 

his group and the interaction potential between i
th

 and j
th

 residue is determined as in Eq. 

2.11: 

        
 

       
         

Here, W is the interaction potential between i
th 

and j
th

 residues and d(i,j) is the 

distance between two residues. So, the determination of Kirchoff and Hessian matrices 

take the form as in Eq. 2.12 and Eq. 2.13 respectively: 
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Here, Hij defines the each super-element of Hessian matrix.  

The authors in the same study compare the success of B-factor predictions for each 

EN model including cutoff employed and parameter free GNM and ANM. Results 

imply a significant improvement in the case of parameter free GNM and ANM. They 

also conclude that for larger conformational changes the power of parameter-free 

models can be increased.  

In a recent work, Liu et. al [19] compared the accuracy of molecular dynamics and 

GNM over experimental data using a designed sugar-binding peptide. The mean-square 

residue deviations of the protein derived from NMR and B-factors of x-ray 

crystallography have been compared with GNM and MD predictions. The comparison 

results exhibit that GNM yielded a better correlation with experimental data compared 

to MD predictions. Individual modes determined by GNM or molecular dynamics 

exhibit similarities and differences in terms of contributions to fluctuation. These modes 

extracted by each technique are comparable and the low-frequency modes of MD 

simulations contribute much to the observed motion whereas in GNM the contribution 

of higher modes to the fluctuation is higher compared to MD. Thus, the modes 

calculated by each technique differ mainly in terms of high frequency modes. 

Moreover, the GNM performed better agreement with NMR findings compared to X-

ray crystallography. The mean square deviations obtained from an ensemble of 

conformations rather than considering only the calculations of B-factors using just a 

single crystal structure is preferable for GNM that improves the agreement observed 

between NMR and GNM findings. Also, the B-factors calculated by X-ray 

crystallography can be influenced by crystal packing effects due to the interactions 

between the crystal molecule and its neighbors subsequently affecting equilibrium 

motions.  
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2.4. Available Online Tools 

 

The normal mode analysis and EN models presented here are also available as 

online tools developed by different groups. MoViES server developed by Chen and 

colleagues [73], determine vibrational normal modes by using AMBER molecular 

mechanics force fields in terms of a self-consistent harmonic approximation method. 

NOMAD-Ref [74], another online tool that performs normal mode analysis in a full-

atomic manner and this tool enables the computed normal modes to be graphically 

accessed and utilized by different programs for several purposes such as refinement of 

structures against experimental data, calculating overlaps between eigenvectors and 

eigenvalues of different conformations of the same molecule. ProMode database [75] 

performs full-atom NMA calculations using dihedral angels of the structure instead of 

Cartesian coordinates differing from previous tools. ProMode is also capable of 

representing properties of normal modes graphically in more detail. WEBnm [76] 

computes slowest non-zero normal modes in a residue level with the animations of 

corresponding modes presented in the web-browser together with calculation of 

normalized squared atomic displacements and vector field representation. AD-ENM 

[http://enm.lobos.nih.gov] developed by Zheng and his colleagues [77] is a simplified 

ENM tool and deal with low-frequency spectrum of normal modes calculating the 

contribution of each slowest normal mode to conformational change between different 

conformers of same protein, determining the deformation of the whole structure 

according to a given conformation for a subset of residues. AD-ENM also enables 

detection of hot-spots through calculating fluctuations of a given functional site by 

means of normal modes. ElNemo [78] determines slowest 100 normal modes at the 

residue level without any size limits due to its 'rotation-translation-block' (RTB) 

approximation method. Parameters and visualizations such as residue mean-square 

fluctuations, degree of collectivity and correation between predicted and experimental 

B-factors are presented. If the protein has two available structures, ElNemo identifies 

the normal modes that contribute most to the conformational transition. iGNM database 
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[79] performs GNM calculations for the protein structures deposited in PDB database 

and the results are available for users with the graphical analysis such as cross-

correlations between residues and fluctuations according to each mode enabled. oGNM 

server [80] is developed by the same group for online GNM calculations for a broad 

range of cutoff value (7.3-15Å). ANM calculations are also provided as an online tool 

[81] with flexible options that enable user to control model parameters and the output 

formats. This ANM server presents collective modes as interactive animations with the 

computed parameters available for download.  

2.5. Comparison of EN models 

 

In the first part of our study we have compared accuracy of five different EN models 

over prediction of experimental B-factors. Two of these models are GNMs and the 

remaining three methods are ANMs. One of GNM methods compute theoretical B-

factors using a predefined cutoff value of 7.3 Å. The other GNM method adopts a 

parameter free approach and as aforementioned weights the interactions based on the 

inter-distances between interacting residue pairs. In our calculations we have employed 

a power of 2 as done in the work of Jernigan and colleagues [10]. Two out of three 

ANMs constructed in our study depend on parameter free calculations and differ only in 

the defined powers that weight the strength of interactions. These methods are called as 

pfANM2 and pfANM4 with respective powers of two and four. One of ANMs depends 

on the classical calculations for Hessian matrix with a pre-defined cutoff value of 13.0 

Å.  

The proteins used for accuracy comparisons are retrieved from PDB database using 

PDB-REPRDB [82] which determines representative protein chains according to user-

defined input parameters. We have retrieved 1171 proteins restricting the X-ray 

resolution of these structures below 2.0 Å and with a length shorter than 300 residues. 

All of these proteins contained experimentally determined B-factors with no missing 

residues. We have accomplished the Pearson correlation calculations using a MATLAB 

script that determines the theoretical B-factors through utilizing all normal modes of the 
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protein computed for each five different EN models including two GNM and three 

ANM calculations.  

2.6. Modal Analysis 

 

This part constitutes the main focus of our study. Here, we had a postulate and 

performed our further calculations in order to test this hypothesis. According to pre-

existing equilibrium model the two conformers (substates) of a protein are at 

equilibrium with forward and reverse rate constants as k1 and k-1. If transition free 

energies of two substates are G1 and G2, then  

           
   
  

                 
   
  

            

where A1 and A2 are pre-exponential factors and R and T are the gas constant and 

absolute temperature. 

Let‟s say, the relative populations of these substates, depicted from experiments, are 

P1 and P2. The energy barrier between the two states (G2-G1) will be proportional to 

the relative probability (and thus the population) of each state. We hypothesize that 

these pre-existing substates can be studied by modal analysis and there exist some 

modes that will drive conformer 1 to conformer 2 (say i
th

 mode of conformer 1), and the 

associated weight of this mode is wi, and conformer 2 to conformer 1 (say j
th

 mode of 

conformer 2), and the associated weight of this mode is wj; then there exist a relation 

between the weights of the modes and the relative populations of these conformers:  

  
  

  
   
  

 
  
  
            

In order to investigate our hypothesis in the second part of our study we have 

employed pfANM4 to extract normal modes of pre-existing conformers of each protein. 

We have retrieved eleven different proteins (mentioned in Chapter 3) that each exhibits 

a conformational change between two conformers which are generally termed as open 

and closed forms. The experimental displacement vector for each protein stores the 
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isotropic displacement of each residue between the open and closed forms calculated 

after superposition of these structures. As explained in several studies in this chapter 

individual modes resemble the observed experimental displacement between different 

conformers of the same protein. The main idea behind the superposition that we have 

employed is to maximize the performance of individual modes over the mobile regions 

of the protein.  

The experimental data about the thermodynamics/kinetics of the protein elucidate 

presence of at least two conformers for each one of the eleven proteins that we have 

adopted in our modal analysis calculations. EN model calculations depend on a crystal 

structure which stores the atomic coordinates of Cα atoms. However, low stability and 

fast conversion to majorly populated conformers stand as a problem for the 

crystallization of minorly populated conformers. For some of our proteins we encounter 

these difficulties since they do not have any corresponding structure in PDB database. 

Thus, in order to overcome this drawback we have adopted PDB structures that are 

structurally similar to experimentally proposed conformers for Cholesterol oxidase, 

DHFR and Fab Antibody. Experimental data about the cholesterol oxidase [24] 

proposes an interconversion between the (E-FAD.S) and E-FADH2 form. In the former 

conformer substrate is bound to enzyme together with FAD and in the latter one only 

FADH2 is bound to enzyme. We have adopted the PDB structure (1coy) that includes 

the cholesterol oxidase and a steroid substrate bound together with FAD to enzyme. 

However, for the FADH2 bound form, the exact structure was not deposited in the PDB 

database thus, we have adopted PDB structure (3cox) that includes enzyme complexed 

with FAD. For DHFR [37] experimental data describes an interconversion between two 

free forms of the enzyme which are capable to bind only NADPH or only H2F. We have 

adopted only NADPH (1rx1) and only H2F (1rx7) bound forms of the enzyme in order 

to resemble unbound forms of the enzyme. Fab Antibody has two forms, one non-

binding form and the other one ligand binding form (3cfj) of the antibody. Structure of 

non-binding form of the antibody is not deposited in PDB database thus, we have 
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adopted the hapten bound closed form of the enzyme (1y0l) in order to represent non-

binding closed form of the antibody.  

Except DHFR, Fab Antibody and cholesterol oxidase, remaining proteins including 

Adenylate Kinase (4ake, 1ake), RNAse (7rsa, 1u1b), TIM (1ypi, 7tim), NtrC (1dc7, 

1dc8) and Cytochrome P450 (EryK; 2wio, 2jjn) include both open and closed structures 

deposited in PDB database. Monoclonal antibody Spe7 includes two distinct free 

conformers that are determined by X-ray crystallography. Maltose Binding Protein 

(MBP; 2v93) includes open and partially closed forms of the protein that are determined 

using paramagnetic NMR. For Thrombin we have retrieved Na
+
 free (1sgi) and Na

+
 

bound form (1sg8) of the enzyme. Our eleven dataset proteins for modal analysis have 

been presented in Table 1 and Table 2 in Chapter 4 together with the PDB ids for each 

conformer, the retrieved chain and information about the experimental data used for 

further investigations. 

The PDB structures have been pre-processed before employing modal analysis 

because of the presence of missing residues. Two conformers of each protein need to 

have equal residue length. Thus, if one of two structures contains missing residues, 

these residues have to be discarded from the second conformer.  

One of the PDB structures of EryK starts from 19
th

 residue (2WIO), the other (2JJN) 

starts from 17
th
 residue. Thus the residues 17 and 18 have been excluded from 2JJN. 4

th
 

residue of 1COY, 148
th
 residue of 1SG8 (chain E) and residues 232, 233 have been 

removed from 1Y0L (chain H) for ANM calculations. For MBP both open and closed 

structure coordinates have been derived from the same structure (PDB id: 2V93) which 

contains atomic coordinates of both open and closed structures of MBP.  

Experimental displacement between two conformers has been determined by 

calculating the displacement of each residue between two different conformers. We 

have superimposed Adenylate Kinase, 34E4 Fab Antibody and NtrC using the 

secondary structures that is common in both substates. The secondary structure 

information is extracted from PDB file itself which presents residues with helical or β-
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sheet content. Two structures for EryK have been superimposed using conserved 

regions of the protein that spans helices D, L, I and E [26]. Spe7 antibody contains three 

loop regions that are responsible for antigen binding thus we have adopted remaining 

parts of the protein which comprises regions between residues Q1-S25, W36-R50, K67-

R98 and W110-S120 for superimposition of two isomers of Spe7. RNase interacts with 

the substrate through B1 (loop between residues D14-N24) and B2 (loop residues 

between A64-N71) subsites so that the enzyme structures were superimposed using the 

residues except B1 and B2 subsites [83]. Active site of the TIM is comprised of loop 6 

region and overall motion of the protein is restricted to the motion of this loop region 

which contains the residues between V167 and T177 [39]. Structural matching of two 

conformers of the TIM has been accomplished using the regions except loop 6 region. 

Superimposition of the MBP structures has been done by using the whole residues of 

the Maltose Binding Protein. Similar to the behavior of TIM, the major conformational 

changes of DHFR also includes motion of an active site loop region (residues A9 to 

L24) which is named as Met
20

. This loop is closed when the enzyme is bound to 

substrate [25]. We have considered flexibility of this loop region and superimposed two 

DHFR structures using the remaining residues. For Thrombin we have performed 

superposition using all residues of the protein. For cholesterol oxidase we have adopted 

SCOP domain information and superimposed two structures using residues R4-W318 

and G451-I506 which constitute cholesterol oxidase of GMC family.  

The collectivity (K) of the experimental displacement for each protein has also been 

calculated. This value defines the collectivity of the motion according to amount of 

participating residues within the observed motion. The motion which spans a large 

number of residues as participants will have a higher collectivity than the local motions 

which span a major motion restricted to a small region. Collectivity of the experimental 

displacement is determined using Eq. 2.16 [20] where K is the collectivity, N is the 

length of the experimental displacement vector, α is the normalization factor that makes 

     
  

  equal to 1, ΔRi
2
 is the mean square displacement of the ith residue.  
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We have analyzed the correlation between individual modes and experimental 

displacement in both isotropic and anisotropic manner. For this purpose we have 

adopted two parameters, one is the mode correlation (C) and the other is the Overlap (I). 

Mode correlation (C) determines the isotropic amplitude similarity between 

experimental displacement and individual normal mode vector that stores residue 

fluctuations. The experimental displacement and normal modes initially calculate the 

mean square fluctuations of each residue thus we have calculated the square roots of 

both experimental displacement and normal mode vectors. The Pearson correlation (r) is 

calculated as in Eq. 2.17 where Mi is the ith individual mode, ΔRi is the isotropic 

experimental change vector and N is the number of nodes.  

   

        
       

 
 

     
   

     
 

           
   

      
 

   

           

Overlap (I) on the other hand calculates the direction similarity between the 

experimental displacement and normal modes. The eigenvalues calculated by ANM 

include fluctuation information in three dimensions. The anisotropic experimental 

vector is determined by calculating the displacements of each residue in all three 

dimensions between the two structures of the same protein. Once these two vectors have 

been determined the overlap is calculated as in Eq. 2.18: 

    
     

  
  Δ   

     
  
 

 
 Δ  
  
 

 
 
              

Here, uj is the j
th

 eigenvector, composed of 3N elements in which each residue is 

represented as fluctuations in x,y and z directions respectively. Δr is the experimental 

displacement of the protein containing displacements in the x,y and z directions in the 
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same manner with uj and has the same dimensions as uj. Ij is the overlap between the 

directions of the j
th

 eigenvector and experimental displacement.  

We have employed pfANM4 calculations to both conformers of all eleven proteins 

and determined the amplitude and direction similarity between experimental 

displacement and individual modes through mode correlation and overlap calculations.  

The individual mode predictions have been validated through random mode 

analysis. As we have stated above we had two displacement vectors the first one is N 

dimensional (isotropic displacement of each entry) and the second one is 3N 

dimensional (containing displacement of each residue in x, y, z coordinates). We have 

adopted these vectors for mode correlation and overlap calculations respectively. In 

random mode analysis part, we have investigated success of randomly created modes in 

terms of mode correlation and overlap scores for each protein. For this purpose, we 

have produced two sets of random vectors which contain N-dimensional and 3N-

dimensional vectors. Each entry of N-dimensional random vector has been assigned 

with a random value between a range of minimum and maximum amplitudes of 

experimental displacement. In the case of 3N-dimensional vector, three N-dimensional 

vectors have been created separately and combined in further steps. Here the aim is to 

define the amplitude ranges of each entry according to each three directional 

components (displacements in x, y, z) which differ according to their maximum and 

minimum values. For each protein we have produced 5000 random mode vectors using 

a uniform MATLAB function „rand‟. 

2.7. Mode Selection and Investigating Relation between 

Thermodynamics/Kinetics and Mode Contributions 

 

Our study is followed by the analysis of eigenvalues of individual modes which 

exhibit considerable similarity with the observed experimental displacement. For this 

purpose we have selected top three modes based on the mode correlation and overlap 
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scores together with the visual inspection of individual modes and termed these modes 

as „significant modes‟.  

Eigenvalues of these modes have been processed with the formula given below that 

gives the normalized contribution of each mode with respect to the whole spectrum of 

eigenvalues to obtain mode weights (also called as weighted eigenvalues): 

   

 
  
 

  
  
     

 

            

Here Wi is the mode weight of the i
th

 mode and λi is the raw eigenvalue of the i
th 

mode.  

We have constructed two vectors in order to investigate the relation between the 

mode weight and kinetic rates/relative populations called computational (C) and 

experimental (E) vectors. These two vectors, C and E, contain ratios of mode weights 

and ratios of kinetic rates/relative populations of the proteins respectively. Each entry of 

the C represents computational findings of each protein and is determined with 

following formula: 

    
     

     
           

Here wi,m1 and wj,2m are the mode weights of the first and second conformers of the 

m
th 

protein respectively which were determined by Eq. 2.19.  

Based on the type of the experimental data, whether it contains relative populations 

of conformers or the kinetic conversion rates between these states we construct our E 

using following formulas: 
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By above formula we construct our experimental vector for proteins with population 

data. Here p1j and p2j are the relative populations of the first and second conformer 

respectively.  

For the proteins with kinetic rates we determine each entry of E by following 

formula:  

    
     

     
           

Following construction of C and E for dataset proteins with kinetic rates or 

populations, we have calculated the similarity between C and E using Pearson 

correlation.  

We have provided a depiction of our study in Figure 2-1. We have constructed three 

different experimental vectors, one containing ratios calculated using kinetic rates, one 

containing ratios of relative populations and the last one containing combined data of 

ratios of kinetic rates and relative populations. First two of these vectors contained six 

proteins and the last one contained whole dataset of eleven proteins where for Spe7 

(both kinetic rates and relative populations present) we have adopted ratios determined 

via kinetic rates. In the same manner computational vector has been constructed three 

times each of them including different proteins with the last one containing whole 

dataset proteins.  
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Figure 2-1: Depiction of our thesis study 
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Chapter 3 

3. DATASET PROTEINS 

 

In this chapter, the proteins we have used for modal analysis are presented together 

with their structural and kinetic properties. Consistent with the aim of our study, these 

proteins exhibit behaviors that comprise pre-existing equilibrium model and perform 

conformational changes in different scales from loop motions to collective domain 

motions. This chapter is dedicated to present brief knowledge about structural properties 

and dynamics of the adopted proteins.  

 

3.1. Adenylate Kinase 

 

Adenylate Kinase (AK) performs reversible catalysis of ATP and AMP into ADP 

via transferring phosphoryl group in solvent excluded environment. The protein 

interconverts between open and closed conformation directed by the motions of two 

ligand binding domain, the ATP lid and AMP binding domain. The substrate binding 

leads to closure of both the ATP lid and the AMP binding regions over the core region. 

The solvent is excluded from the active site by the closure providing a hydrophobic 

environment for phosphoryl transfer between ATP and AMP. Once the catalysis is 

accomplished the enzyme releases its products and converts into the open form [23, 40]. 

The crystal structures of AK from several organisms have been determined both in free 

and in complex forms [84]. 

Both experimental and computational efforts contribute much to the knowledge 

about the structure, dynamics and catalysis together with behavior of the AK enzyme. 

NMR study of Kern and colleagues [15] about the opening and closing dynamics of AK 

enzyme in two organisms, one mesophilic and the other thermophilic, elucidate the 

catalysis of the enzyme. Authors initially compared the catalytic activities of the 

enzyme in these two organisms as a function of temperature and found that the optimum 

temperatures that enzyme exhibits maximal activities differ considerably and in the 20 
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ºC activity of the thermophilic enzyme is reduced significantly compared to activity of 

mesophilic enzyme. In further steps authors concentrated over the rate-limiting steps for 

catalysis of enzyme and determined the opening and closing rates of the enzyme for 

both organisms. The findings of this study indicate that reduced activity of the 

thermophilic enzyme is related with lid-opening rate of the thermophilic enzyme.  

Henzler-Wildman et. al. [85] have adopted the kinetic rates of opening and closing 

and found that these slow motions of the enzyme are facilitated by faster, in pico-to 

nano second timescale, local atomic fluctuations of the enzyme that are located in the 

hinge regions of the enzyme. Computational study of Lu and Wang [86] have 

determined the pathway of transition between open and closed conformations of the 

enzyme together with transition state ensembles and this computational study also 

calculated similar kinetic rates with those of Kern et. al [15]. In another computational 

attempt [87], the fluctuations of the open enzyme have been studied using principal 

component analysis and varimax rotation analysis that employs determined principal 

components to a certain subset of residues. The results of this study inplies that the open 

form encodes the holo-like conformations through fluctuations of a certain subset of 

residues.  

 

3.2. Monoclonal Antibody: Spe7 

 

The behavior of Spe7 is a good example about the antibody diversity. This antibody 

is shown to follow a pre-existing equilibrium model co-existing in solution as two 

distinct conformations, dubbed as Ab
1
and Ab

2
 and the structures of these conformations 

in their free and complexed forms with four different antigens are determined using X-

ray crystallography [43]. In three of four hapten complexes (haptens are DNP-Ser, Az 

or Fur) Spe7 is determined in another conformation which is termed as Ab
3
. When 

complexed with the fourth protein antigen (Trx-Shear) Spe7 exhibits another 

conformation termed as Ab
4
. The architecture of binding sites of Spe7 is different 

between these four distinct conformations. These four distinct conformations 
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distinguish from each other mainly by the orientations of H3 and L3 loops. Having 

different backbone orientations, these four conformers also exhibit distinct side-chain 

rotamers. Apparent conformational diversity of Spe7 enables recognition and binding of 

a diversity of ligands including haptens and antigens.  

In a further study of the same group [16] authors emphasize over the isomerization 

process of the antibody. This study has determined the kinetic rates for the distinct steps 

of antigen binding including initial binding and induced fit together with the 

interconversions between the free conformers Ab
1
 and Ab

2
. Existence of two 

conformers as free forms enables the “kinetic discrimination” more than a thousand fold 

from a diversity of ligands which are highly related and also share similar affinities. In 

further stages of recognition only specific ligands provide a “locking in” which helps 

the antibody to convert into another distinct form Ab
3
. The structural similarities of L3 

loop and architecture of similar binding pocket between Ab
2
 and Ab

3
 imply that the 

binding occurs initially by interconversions between pre-existing conformers Ab
1
 and 

Ab
2
 which are populated as 80% and 20% respectively and in the presence of the ligand 

antibody-ligand interactions lead to another distinct conformer of Spe7 [16, 43].  

 

3.3. Ribonuclease A (RNase) 

 

RNase performs the breakdown of RNA in two sequential steps where breakage of 

diester bonds occur initially and this step is followed by hydrolyzing the intermediate to 

pyrimidine 3-phosphate. The enzyme is relatively small, composed of 124 amino acids 

and the stability of the enzyme is provided by four disulfide bonds [56, 88]. Binding site 

of the enzyme comprises highly specific interactions between enzyme and ligand and is 

located within a deep cavity. The active site of the enzyme indicates a high flexibility 

especially for the residues involving H119, K7, K41 and K66. The deep cleft of the 

enzyme that accommodates active site residues is surrounded by two halves of the hinge 

that directs opening and closing of the enzyme [88]. Two subsites of the enzyme termed 

as B1 and B2 are responsible for binding of nitrogen containing groups of the ligand 
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and three other subsites called P0, P1 and P2 are responsible for the binding of 

phosphate groups. Important residues for nitrogen containing group binding of B1 and 

B2 are D83, T45 and N71, E111 respectively. K66 for P0 subsite, Q11, K41 and D121 

together with highly conserved residues H12 and H119 for P1 subsite and K7, R10 for 

P2 subsite are other catalytically important residues [83].  

NMR studies for the motions of RNase [56] have revealed three substates that pre-

exist together in conformational ensemble including free enzyme (E), enzyme-substrate 

complex (ES) and enzyme-product (EP) complex. The backbone alterations observed 

during conformational transition between ligand-free and enzyme-substrate complex 

involve two loop regions as loop 4 and loop 1. Loop 4 is responsible for purine 

specificity and loop 1 is located 20 Å from the active site. In all E, ES and EP 

complexes exchange parameters of NMR experiments do not exhibit considerable 

changes implying a ligand-independent nature for enzyme motions. Similar activation 

barriers for transitions between open and closed forms are observed for both E and ES 

complex. The amount of major conformation of the enzyme which depends on both the 

presence of the ligand and progress of catalysis differ between 93%-%95 with the other 

forms of the enzyme populated in minor amounts. According to these studies the 

functional enzymes motions are readily available even in the absence of the ligand and 

the ligand acts as a stabilizer of ES complex.  

 

3.4. Dihydrofolate Reductase (DHFR) 

 

Dihydrofolate reductase catalyzes the reduction of 7,8-dihydrofolate (DHF) to 

5,6,7,8-tetrahydrofolate (THF) by utilizing NADPH for the hydride transfer. DHFR is 

an important enzyme for purine and thymidylate metabolism that are required for cell 

growth and proliferation and the enzyme is the only source for the production of THF 

[89]. Several crystal structures for the DHFR are deposit in RCSB and previously 

Wright and his colleagues crystallized the intermediates (E:NADPH, E:NADPH:DHF, 
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E:NADP
+
:THF and E:NADPH:THF) during the catalysis of the enzyme together with 

the ligands [25].  

The DHFR enzyme of E. coli is composed of a central eight stranded β-sheet and 

four flanking α-helices and consists of two structural subdomains that are divided by the 

active site of the enzyme. The adenosine binding domain accommodates the adenosine 

region of the cofactor and the second domain called major domain is relatively larger 

compared to the adenosine binding domain dominated by three loops, termed as Met
20

 

(residues 9-24), F-G (residues 116-132) and G-H (residues 142-150) that are facing the 

ligand binding region of the domain. In the presence of the ligand the hinge bending 

motions occur in about K38 and V88 moving the adenosine binding domain over major 

domain [89] leading to closure of active site cleft.  

Crystal structures of DHFR complexes imply that conformation of the Met
20

 loop is 

determined by the presence of ligands and cofactors in corresponding binding sites. In 

the presence of only the substrate, the loop adopts an occluded conformation and in the 

presence of adenosine moiety of the cofactor the Met
20 

loop packs against the 

nicotinamide ring of the cofactor providing closure of active site cleft and protecting it 

from solvent. The closure of Met
20

 loop is required for the catalysis in which the 

cofactor and the substrate are positioned in close proximity within the active site cleft [. 

The closed conformation of the Met
20

 loop is observed in the complexes E:NADPH and 

E:NADPH:DHF, on the other hand the occluded form is adopted in the E:NADP
+
:THF, 

E:THF and E:NADPH:THF [25, 89]. The characterization of intermediate states of the 

enzyme during catalysis together with the kinetic rates of the hydride transfer and 

conformational transitions [25, 90] indicate the importance of the energy landscape of 

the protein in order to drive the enzyme through its catalytically competent 

conformations along a energetically favorable kinetic path.  

Another study of the same enzyme [37] accomplished using single-molecule 

measurements elucidated an interesting interaction mechanism between enzyme-

substrate and enzyme-cofactor. According to this study, two distinct free-forms of the 
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enzyme is present in solution each binding NADPH or DHF with these structures 

interconverting between each other.  

3.5. Maltose Binding Protein (MBP) 

 

Maltose Binding Protein (MBP) belongs to the bacterial periplasmic binding protein 

family [91]. This family of proteins is responsible for transmembrane transport or 

chemotaxis where the ligand binding induces a large conformational transition that 

subsequently facilitates the signal transduction through interactions with the proteins 

responsible for chemotaxis and transport proteins.  

MBP is essential for maltose uptake and consists of two domains termed as amino-

terminal and carboxy-terminal domains, NTDs and CTDs respectively. Two domains of 

the protein are linked via a short helix and two-stranded β-sheet [41]. X-ray 

crystallography studies of the protein elucidate the structure of two domains that shares 

similar secondary structure topologies containing a central β pleated sheet with two or 

three parallel α helices flanking on both sides [92]. The protein cleft accommodates the 

maltose binding site and in the binding site several polar and aromatic groups are 

located providing formation of extensive interactions between substrate and the cleft. 

The maltose is buried in the cleft in the closed form inaccessible by the solvent and in 

the absence of the substrate MBP adopts an open conformation [92].The transition 

between the open form and the closed form of the protein involves a hinge-bending 

motion about the linker region resulting with a rigid body domain reorientation [93, 94].  

Conformational dynamics of the MBP has been studied using paramagnetic NMR 

and results show that in the apo state of the protein a minor conformation (populated 

~%5) is also populated together with the major conformation (populated ~%95) that is 

open form of the protein [41]. Paramagnetic NMR performs well in order to reveal 

minor populated species in the solution even the amount is as low as 0.5-1%. There is a 

rapid transition between major and minor species of the protein according to the 

paramagnetic relaxation enhancement data. The relative of orientations of two domains, 

NTD and CTD differ from the open or closed states of the protein but indicates 
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presence of another structure which is partially closed state of the protein [41]. Findings 

imply the presence of a long-postulated dynamic equilibrium between open and 

partially closed apo states of the protein. The transition between these species is fast 

within the timescales of nano-to-microseconds. The presence of the substrate 

redistributes the populations of open and partially closed states of the protein favoring 

the latter one. Pre-existence of apo and ligand binding conformers even in the absence 

of the ligand facilitates the transition to the holo structure.  

 

3.6. Cytochrome P450 EryK 

 

Cyctochrome P450 proteins comprise one of the largest families of enzyme proteins 

and are diversely found in all known organisms. Although amino acid sequences of 

P450 proteins differ largely with a similarity less than 20% in some cases, the structural 

fold has been conserved throughout evolution. These heme-binding proteins perform 

diverse functions primarily responsible for oxygen chemistry such as biosynthesis of 

hormones and structural components of living organisms [95]. Although EryK exhibits 

a large structural conservation, it also recognizes a wide range of substrates [95]. Due to 

its importance in the oxygen chemistry and drug metabolism, several drug discovery 

studies targeting P450 proteins have been accomplished [96, 97].  

A recent study of Savino et. al. [26] emphasizes over the structural and biophysical 

attributes of EryK through analysis of three crystallized conformers of the protein where 

two of them are in free form and one is the ligand complexed conformer. The protein 

core is highly conserved and is formed by a four-helix bundle, three parallel helices, 

termed as D, L and I and an antiparallel one termed as E. The heme group is positioned 

between the helices I and L and is bound to the C353, highly conserved fifth ligand of 

the heme iron. The high substrate specificity is provided by six „substrate recognition 

sites‟ (SRS) that occupies the active site of the protein. Depending on the salt 

concentration there are two ligand-free structures of this protein crystallized, as open 

and closed and the differences between these two conformers involve the these SRS. 
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The rearrangements taking place in these sites especially in the helices F, G and the B-C 

loop at high salt concentrations prevents access to the active site of the protein, thus this 

form is called as the closed form of the enzyme. The conformational transitions between 

the open and closed forms of the ligand-free enzyme continuously provide a dynamic 

equilibrium for the enzyme. The enzyme was also crystallized as a complex (ErD-

EryK). The structure of this complex again reveals another closed form of the enzyme 

where formation of specific interactions between active site and the substrate contribute 

mainly to the substrate specificity. The substrate is positioned on the active site 

followed by closure of BC loops and the helices F and G. Flexibility of the active site 

provide specificity in the substrate recognition [26].  

 

3.7. Triosephosphate Isomerase (TIM) 

 

TIM performs the catalysis of dihydroxy-acetone phosphate (DHAP) to 

glyceraldehide 3-phosphate in a reversible manner within the fifth step of glycolysis. 

The enzyme is composed of two identical subunits and each subunit has an (α/β)8 fold 

also known as TIM-barrel fold [39, 56, 98].  

The catalysis of TIM is performed by opening and closing motion of a well-

characterized Ω-loop also called as loop 6 located in the active site of TIM. This loop 

comprises the residues between V167 and T177. In the open form of the loop the active 

site of the enzyme is accessible by both solvent and substrate and in the closed form it 

prevents loss of reaction intermediate [56, 98] and the stability of loop 6 is stabilized by 

the hydrogen bonds formed between this loop and the neighbor loop 7 [56]. The overall 

motion of TIM is restricted to this loop 6 region together with the conformational 

transitions observed in two other sites, the residue K84 that is located on helix C and the 

residues of the helix G. The opening closing motions of loop 6 seems to be rate-limiting 

step during the catalysis [39].  

Motion of the loop 6 is dictated by the hinge residues located in the both sides of the 

loop and the loop moves as a rigid body with the loop residues exhibiting a synchronous 
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motion between open and closed conformations [56]. These two functional states of the 

loop 6 is found to co-exist in the solution independent from the presence of the ligand 

supported by both NMR studies and computational studies [39].  

3.8. Thrombin 

 

Thrombin is an important protein in the coagulation cascade. The protein has several 

functions within the coagulation cascade such as acting as a procoagulant through 

performing cleavage of fibrinogen to fibrin and activation of several coagulation factors 

and stimulation of platelet aggregation [99]. After a maturation period of thrombin from 

membrane bound prothrombin, it becomes soluble and is released into the blood vessel 

lumen. The mature thrombin (α-Thrombin) consists of two chains linked with a 

disulfide bridge termed as A and B-chains which differ in amino acid length and 

composition. The A-chain is comprised of 36 residues and B-chain is comprised of 259 

residues and B-chain is organized in two adjacent β-barrels. The junction of these 

barrels accommodates active site residues S195, H57 and D102 and active site cleft lies 

across both barrels as a deep and narrow groove. The charge distribution of thrombin 

surface is an important feature which provides highly positively and highly negatively 

charged fields and these fields bind different substrates [99].  

Thrombin exhibits an allosteric behavior and requires Na
+
 binding as a modulator. 

There are two well characterized allosteric states of the thrombin termed as fast and 

slow forms depending on the absence or presence of the ion [38, 99]. Studies present 

that Na
+
 binding triggers a conformational transition in thrombin involving the 

specificity sites of the enzyme and 148-loop from a more closed and flexible 

conformation (slow form of the enzyme) to a more open and rigid form which is termed 

as the fast form [100]. These findings are consistent with the previous findings [101] 

that proposes enhanced thrombin activity upon Na
+
 binding. Study of Bah et. al [38] 

emphasizes over the kinetics of Na
+
 binding to thrombin. According to this study ion 

binds to thrombin in two step corresponding to slow and fast steps in which former one 

involves the slow transition between the free enzyme and another form of the enzyme 
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that is unable to bind Na
+
. Fast step indicates the formation of enzyme-ion complex. 

These three conformers, non-binding, free and complex forms of the thrombin pre-exist 

together in solution populated in different amounts that are supplied in the same study.  

 

3.9. 34E4 Fab Antibody 

 

Antibodies exhibit a large diversity for antigens and our protein dataset contain two 

different antibodies. First of them is Spe7 as mentioned previously in this chapter and 

second one is 34E4 Fab Antibody. Antibody 34E4 catalyzes the conversion of 

benzisoxazoles to salicylonitriles [102]. Conformational transitions are also present in 

the antibody 34E4 similar to behavior of Spe7. There are two free forms of the enzyme 

in equilibrium and interconverting between each other and only one of these two forms 

is eligible to bind substrate. Thus, these transitions between two forms affect the 

catalytic efficiency of the antibody and are prominent. Comparison between the crystal 

structures of unligated and hapten bound form of the antibody elucidates the structural 

changes taking place in the catalytic antibody upon binding [42, 102]. According to 

these studies the hapten binding does not induce any major movements within the CDR 

(complementary determining regions loops L1-L3 and H1-H3of antibody) loops of the 

antibody or does not alter the relative disposition of VL and VH domains. The most 

important distinction between the unligated and hapten bound forms of the antibody is 

the orientation of Trp
L91

 indole ring. The transition between the different orientations of 

the indole ring alters the architecture of binding site through extending it from a shallow 

indentation to a deep cavity. In the absence of the ligand, in other words in the closed 

state, the indole ring occupies the binding pocket and thereby prevents access. When the 

indole ring moves out of the binding site, the deep cavity becomes eligible to 

accommodate substrate. Two conformations of the ligand, both the substrate binding 

and non-binding forms of the enzyme co-exist together in the solution favoring the non-

binding form in a 3:1 ratio. Debler et. al. [42] concludes that the presence of these two 



Chapter 3: Dataset Proteins  46 

 

conformers of the antibody limit the catalysis of the antibody due to presence of a slow 

transition step between non-binding and ligand-binding form.  

 

3.10. Cholesterol Oxidase 

 

Cholesterol Oxidase is a FAD-dependent enzyme that undergoes oxidation and 

reduction reactions catalyzing isomerization of steroids [103]. Catalysis involves two 

sequential steps: firstly oxidation of cholesterol to cholesterone and reduction of FAD to 

FADH2 followed by reduction of oxygen to H2O2 and oxidation of FADH2 to FAD [24, 

104]. According to its crystal form the enzyme comprises two domains: a FAD-binding 

domain and a steroid binding domain. The active site of the protein is located between 

these two domains where the six-stranded antiparallel beta-sheet of the steroid binding 

domain forms the roof of the active-site cavity. The floor of the enzyme is occupied by 

the flavin ring system of the FAD that is tightly bound to the center of the protein and is 

surrounded by hydrophobic binding pocket for cholesterol [103].  

Functional motions of the enzyme have been studied using single-molecule 

experiments involving cholesterol oxidase as a case study [24, 104]. These studies 

emphasize over the behavior of the enzyme that is proposed to follow a Michaelis-

Menten (MM) model. This model assumes the enzyme can be found in two distinct 

states and the enzyme activity is related with independent stochastic transitions between 

these states. This model neglects the effect of protein chain and assumes it as only a 

solid support for catalytic center. However, studies of Lerch et. al. [24] revises this 

simple model based on the fluorescence correlation spectroscopy (FCS) data and 

concludes that the conformational motions of the enzyme have prominent roles during 

the turnover cycle and these slow fluctuations of the enzyme modulates the transition 

rates exhibiting differences between several subsequent turnover cycles. Several 

methods for the behavior of the enzyme have been presented in the same study [24] in 

order to interpret FCS data and the kinetic rates according to these models have been 

determined using experimental data.  
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3.11. NtrC 

 

Nitrogen Regulatory Protein C (NtrC) is a signal transduction protein belonging to 

„two-component system‟ signaling family. These proteins mutually switch between two 

states termed as inactive and active states and the activation of protein can be promoted 

by several factors including other proteins, ligands and covalent modifications. In the 

case of NtrC, the allosteric activation is provided by phosphorylation of D54 [44].  

NMR experiments elucidate a pre-existing equilibrium of both inactive and active 

states in the absence of phosphorylation. Inactive conformer dominates the solution but 

inactive state is also populated in minor amounts (differing between 2-10 %) [44]. In 

the case of phosphorylation the stability of active conformer is increased and the 

population distribution is shifted towards the active state together with inactive forms in 

minor populations.  

The protein consists of five α-helices and five-stranded parallel β-sheet [44]. The 

MD simulations of the protein elucidate large movements in helix 4 and loop β3-α3 

[105] during activation. The loop β3-α3 accommodates phosphorylation site and upon 

binding the region termed as 3445 face including secondary structures α3, β4, α4, β5 

moves away from the phosphorylation site with a twist motion. T82 of α4 is another 

important residue and it also exhibits large rearrangements upon phosphorylation and 

eventually a hydrogen bond between the active site and T82 forms. This hydrogen bond 

stabilizes the active conformation and that explains the low stability of active 

conformation in the unphosphorylated state [105]. 
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Chapter 4 

4. RESULTS and DISCUSSION 

 

In this part we present our results which include B-factor comparisons and modal 

analysis of eleven dataset proteins. Second part of this chapter comprises the main focus 

of this study in which we have supplemented mode analysis results for each conformer 

of eleven proteins. 

4.1. B-Factor Comparisons 

 

First part of our studies includes comparison of five different EN models based on 

the Pearson correlations between the experimental and theoretical data. B-Factors, also 

known as temperature factors or Debye-Waller factors define mean square atomic 

displacements. The theoretical B-factors determined by EN models have been found to 

produce significant correlations with experimental counterparts. Here we have analyzed 

performance of five different EN models in order to predict B-factors including two 

GNMs with (GNM) and without cutoff values (pfGNM) and three ANMs including one 

cutoff-dependent (ANM) and two cutoff independent ANMs (pfANM2 and pfANM4) 

(see B-Factor Comparisons Chapter 2).  

The comparison results of a total of 1171 proteins imply that cutoff-independent 

methods called as parameter free methods perform better than cutoff dependent EN 

models in order to predict experimental B-factors. Among the GNM calculations 32.5% 

of all proteins produced better correlations with cutoff dependent GNM but remaining 

67.5% gave the best correlations with pfGNM. Success of cutoff-independent methods 

was even increased if we consider only Anisotropic Network Models. Parameter free 

methods of ANM that adopts a power of two and four respectively for pfANM2 and 

pfANM4 predicted significantly better results than cutoff dependent ANM methods for 

87.4% of all proteins. The ANM predictions of these proteins that are included in 87.4% 

are improved by an average of 45% in the case of parameter free ANMs. Parameter free 

GNM improved cutoff-dependent GNM predictions by an average of 17.5%.  
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If we consider comparison of all these five methods with making no distinction 

between GNM and ANM findings, we observe that pfGNM predictions outperformed 

other four methods for about 36% percent of proteins. Second method was the pfANM2 

and third method was GNM followed by pfANM4 and ANM as fourth and fifth 

methods respectively. Consistent with previous findings [106] we conclude that 

theoretical B-factors predicted by GNM perform better results compared to predictions 

done by ANM.  

Selection of an optimum ANM technique for our further ANM calculations was one 

of the main concerns in these B-factor prediction comparisons. Thus, we have also 

included our dataset proteins for B-factor prediction comparisons and according to these 

calculations supplemented in Appendix 1. pfANM4 produced slightly higher 

correlations amongst all three ANM methods for our dataset proteins. Thus, we have 

adopted a parameter free method with a power of four for our further ANM 

calculations.  

4.2. Modal Analysis 

 

Normal mode analysis has been used to study the collective motions of proteins 

extensively as presented in Chapter 2. Some of these normal modes of several proteins 

were found to be strongly correlated with the large amplitude conformational changes 

of these proteins observed upon ligand or protein binding. 

Advances in biophysical techniques allow investigation of protein dynamics in detail 

together with the timescales of the protein motion. These studies elucidate time-

dependent behavior of proteins enabling scientists to study the so-called energy 

landscape of the protein together with kinetic and thermodynamic properties of the 

landscape. Native state structures of proteins called ensemble conformers have been 

determined using NMR, or X-ray crystallography, together with the relative populations 

of these conformers and amplitudes of interconversions taking place between protein 

conformers. Such studies involving different proteins accumulate in literature supplying 
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findings about the thermodynamics (relative populations of conformers) and kinetics 

(timescales of interconversions between different conformers) of the protein in detail. 

As aforementioned normal mode analysis produce significant results correlating with 

the behavior of the protein resembling conformational changes between conformers of 

the protein.  

In this study we have retrieved thermodynamic/kinetic properties of eleven proteins 

together with their PDB structures. As mentioned in Chapter 3 these proteins mutually 

populate distinct conformers in solution consistent with the pre-existing equilibrium 

model. Table 4-1 lists the dataset proteins, together with the PDB structure of each 

conformer. Because we have employed modal analysis to all protein conformers, we 

have determined conformational change taking place between given PDB structures of 

the protein. Root mean square displacement (rmsd) of this change and the collectivity of 

the protein motion is also listed in Table 1 for each protein. Superposition details for 

each protein are supplemented in methods part in Chapter 2. Listed residue lengths for 

Protein Name # of resid. pdb I pdb II RMSD K 

Adenylate Kinase 214 4ake(A) 1ake (A) 5.55 0.40 

Spe7 121 1oaq (H) 1ocw (H) 1.23 0.32 

DHFR 159 1rx1 (A) 1rx7 (A) 0.50 0.08 

34E4 Fab Antibody 224 3cfj (H) 1y0l (H) 1.79 0.17 

Cholesterol Oxidase 500 1coy (A) 3cox (A) 0.24 0.24 

EryK Cytochrome 411 2jjn (A) 2wio (A) 2.63 0.42 

RNase 124 7rsa (A) 1u1b (A) 0.65 0.34 

TIM 247 1ypi (A) 7tim (A) 0.46 0.07 

Maltose Binding P. 366 2v93o  2v93c 4.97 0.62 

NtrC 121 1dc7(A) 1dc8 (A) 1.78 0.46 

Thrombin 250 1sgi (E) 1sg8 (E) 0.41 0.25 

Table 1 The proteins used in this study.  
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each protein are obtained after discarding the missing residues from both PDB 

structures which subsequently assures two PDB structures to have the same number of 

residues.  

We have constructed our Hessian matrix (mentioned in Chapter 2) using a 

parameter-free method to determine the interaction potentials between different node 

pairs. In parameter free method the interaction potential between each pair is considered 

independent from a cutoff value and is determined based on the inter-distances of each 

residue pair. In this case the potentials between distant pairs have been taken into 

account which was neglected in the classic cutoff derived methods due to presence of a 

cutoff value.  

For each conformer we have extracted lowest non-zero, thirty modes and calculate 

similarity between the experimental displacement and individual mode. For this purpose 

we have employed two similarity scores termed as mode correlation and overlap. Mode 

correlation simply determines the Pearson correlation between the individual mode and 

experimental displacement in an isotropic manner. Overlap, on the other hand defines 

the directional similarity between mode and conformational transition (see Methods).  

In further parts we have presented our modal analysis results for each conformer 

together with supplementing mode correlations, overlaps and mode graphs of top three 

modes as supplementary information in Appendix 2.  

4.2.1. Adenylate Kinase (AK) 

AK performs opening and closing motions during its catalytic cycle through two 

mobile regions, ATPlid and AMP binding site (AMPbd), to provide a suitable 

environment for the catalysis[22, 40, 84]. ATPlid spans residues between G122 and 

D159 and AMPbd comprises a region between T31 and V59. These two regions 

perform hinge motions during opening and closing and remaining parts of the protein 

do not exhibit high mobility compared to ATPlid and AMPbd regions [84]. Collectivity 
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of the AK motion between open and closed forms is calculated as 0.40 which define a 

relatively high collectivity.  

Modal analysis of the open form indicates importance of low-frequency modes 

especially first ten modes. These ten modes resemble the motion of ATPlid and AMPbd 

well according to mode correlations they produce, however if overlaps are considered 

two modes outperform others significantly which are second and fifth modes. Eighth 

modes follow these modes according to overlap calculations. Although first mode 

produces the best mode correlation (0.84), overlap (0.13) of the same mode is lower 

than previously mentioned three modes. As the mode indices increase mode correlations 

and overlaps diminish due to the collective nature of the motion. This sharp decrease is 

also reflected within the eigenvalue spectrum of the protein where the contribution of 

each mode declines after the first ten modes.  

Individual modes of closed form produced relatively lower similarities considering 

the individual modes of open form. The best mode correlation and overlap have been 

calculated by first mode as 0.48 and 0.54 respectively. This mode is followed by the 

second and fourth modes according to similarity calculations. The motion of the open 

form can be defined using the first ten modes; however, higher frequency modes of 

closed form are also important to define its motion completely. According to these 

results we can state that both open and closed forms have intrinsic tendencies to 

resemble each other, but the energy state of the closed form is lower than the open form 

thus, it encounters difficulties in order to resemble a higher energy state (open form). 

This is the main reason behind the low similarity calculations of closed form.  

4.2.2. Spe7 

This antibody exists as two free conformers, Ab
1

 and Ab
2

 (pre-existing equilibrium), 

within the solution and the population distribution of each conformer depends on the 

type of ligand. In the presence of proper ligand this antibody can populate up to four 
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distinct conformers (Ab
3

 and Ab
4
, induced fit) [16, 43]. Here we present modal analysis 

of only free conformers of the antibody (Ab
1
 and Ab

2
). 

RMSD between two structures is 1.23 and the collectivity of the motion is calculated 

as 0.32. The orientation of loop H3 and residues W33 and R50 comprise main 

differences and the experimental displacement between these two conformers exceed 8 

Å within these regions. Except these regions the experimental displacement for most of 

the residues has lower amplitudes below 2 Å. Amplitude of H3 loop displacement is 

best defined by seventh mode with a mode correlation of 0.74 and an overlap of 0.27. 

However, best overlap (0.35) is calculated with the second mode that has a mode 

correlation of 0.58 that is the second best mode correlation. Sixth mode of Ab
1
 follows 

second and seventh modes with a mode correlation of 0.51 and an overlap of 0.19.  

Modal analysis of second conformer defines similar calculations for Ab
2
 also in 

which fifth mode defines the motion of H3 loop with a best mode correlation of 0.70 

and an overlap of 0.28. However, the best overlap is obtained by second mode as 0.34 

(mode correlation 0.49). Third mode follows similarity calculations of second and fifth 

mode with a mode correlation of 0.3 and an overlap of 0.25. These two conformers are 

energetically more close to each other than open and closed forms thus individual 

modes perform similar correlation and overlap calculations. The eigenvalue 

distributions of these two conformers are highly similar to each other indicating that the 

mode contributions of two conformers follow a similar pattern.  

4.2.3. RNase 

RNase performs hydrolysis of RNA molecule into NTP in two sequential steps [83, 

88]. The active site of the enzyme exists in open or closed forms and the experimental 

displacement between these two forms is increased within the loop 1 (residues 14-24) 

and loop 4 (residues 64-71) regions [83]. RMSD between two structures is 0.65 and the 

collectivity of the motion is calculated as 0.34. Modal analysis of open form indicates 

importance of first three modes which is enough to resemble experimental displacement 
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and after these modes the similarity calculations diminish significantly. First mode of 

the open form has the best mode correlation and overlap as 0.69 and 0.62 respectively 

and the similarity can even increase more if we remove the terminal residues. Second 

mode follows first mode with a mode correlation of 0.64 and overlap of 0.40. Third 

mode is also significant with a mode correlation of 0.59 and an overlap of 0.36.  

Individual modes of closed form also exhibit similar behavior in which first three 

modes distinguish from the rest based on their similarity scores. The mode correlations 

are calculated as 0.61, 0.49 and 0.50 and the overlaps are calculated as 0.49, 0.48 and 

0.47 for first, second and third modes respectively. Actually similarity scores can both 

be improved in both structures with the removal of terminal residues. Eigenvalue 

distributions of both conformers share a similar pattern in which lower frequency modes 

simply dominates the motion which is reflected by high collectivity of the motion for 

the enzyme.  

RNase discriminates from the AK if we consider similarity scores of closed states. 

As presented above closed form of AK encounters difficulties because of high RMSD 

between two structures but lower RMSD between two structures of RNase enable the 

closed form to sample open form better. Eigenvalue distributions also differ between 

two proteins. Two structures of RNase share a similar pattern for eigenvalue 

distribution, however the eigenvalue distribution of open and closed structures of AK 

differ significantly.  

4.2.4. 34E4 Fab Antibody 

34E4 Fab Antibody is another antibody adopted in our database and akin to Spe7 

based on their behaviors. Like Spe7, 34E4 also follow a conformational diversity due to 

presence of pre-existing conformers. One of these conformers is unable to bind and 

stays in closed form and another conformer binds ligand with an open architecture for 

binding site. As presented in Chapter 3 antibody do not possess major structural 

changes between free and bound forms except a ring in L chain [42, 102]. Here, we 
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perform modal analysis of non-binding (adopted bound form of the antibody from 

RSCB in order to resemble non-binding form PDB: 1Y0L) and free forms of the 

antibody. RMSD between two structures is 1.79 and collectivity of the motion is 0.17. 

The experimental displacement of the antibody has a peak around the residues 140 and 

148 with amplitude of about 10 Å within a loop region located between two β-sheet 

structures. Except this region, most of the residues have maximum amplitude of 1.5 Å.  

Both open and closed forms of the antibody perform best similarity scores using 

first, second and sixth modes. According to modal analysis results these modes differ 

from the others significantly based on their similarity scores. The mode correlations of 

open form are calculated as 0.53, 0.65 and 0.61 for first, second and sixth modes 

respectively. The first mode gave an overlap of 0.40; where second and sixth modes 

share an overlap of 0.34. The best mode correlation after these modes have been 

calculated as 0.50 (overlap 0.02, mode 10) and the best overlap has been calculated as 

0.16 (mode correlation 0.34, mode 11). Non-binding closed form produced mode 

correlations as 0.44, 0.59 and 0.62 and overlaps 0.45, 0.29 and 0.33 for first, second and 

sixth modes respectively. Mode correlations of that form still produce significant scores 

for some other modes including third and fourth, however overlap scores of these 

modes are fairly lower than these three modes. According to mode contributions of Fab 

antibody lowest frequency modes of both conformers fairly dominate observed motion.  

4.2.5. Maltose Binding Protein (MBP) 

MBP is a periplasmic binding protein composed of two domains, N-Terminus and C-

Terminus domains respectively. A central helix links two domains [41]. We have 

performed our ANM calculations over free and partially closed forms of the protein. 

RMSD between two forms is 4.97 and the collectivity of the motion is calculated as 

0.62. The motion of NTD comprises fluctuations with amplitudes between 2 Å and 10 

Å followed by a more rigid linker and in CTD fluctuation amplitudes again increase up 

to 8 Å. Analysis of individual modes of open form indicated that the overlap scores 

immediately diminish after fourth mode although still we can find higher frequency 
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modes that has mode correlation scores as high as first four modes. These four modes 

produced mode correlations as 0.39, 0.27, 0.32 and 0.33 with overlap scores of 0.46, 

0.61, 0.31 and 0.25 respectively.  

According to similarity scores of the partially closed form the motion is largely 

dominated by first three modes because overlap scores diminish immediately after these 

modes similar to the open form. Mode correlations are similar for the first three modes 

(0.35, 0.31 and 0.3 respectively), but the overlap score of the second mode has the 

highest overlap score of 0.67 followed by first and third modes which share a overlap of 

0.36. Individual modes of both structures resemble mobile regions well but fail to 

resemble the rigid structure of linker region.  

Eigenvalue spectrums of two structures are akin to each other in which the low 

frequency modes become insufficient to determine whole displacement and motion is 

not dominated by a unique mode instead it is distributed amongst a large spectrum of 

eigenvalues implying importance of higher modes.  

4.2.6. Thrombin 

Thrombin which is an important protein in coagulation cascade possess Na
+
 

dependent behavior and pre-exist as a slow (free thrombin) and fast form (Na
+
 bound) 

in solution [38]. The rmsd between these two conformers is 0.41 and the collectivity of 

the experimental displacement is 0.25. Because of low rmsd, the experimental 

displacement of thrombin upon Na
+
 binding is limited to amplitudes lower than 0.5 Å 

for most of the proteins.  

Similarity scores of individual modes for free form indicate importance of four 

modes including first, second, fourth and fifth modes. Mode correlations of these modes 

are calculated as 0.47, 0.50, 0.50 and 0.63 respectively. Overlap scores are 0.20, 0.33, 

0.27 and 0.22 respectively. The discrimination of these four modes among the rest is 

caused overlap scores. While there are modes that produce similar mode correlations 

with these four modes, the overlap scores of the rest fail to produce similar scores.  
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The distinction by the overlap scores is also present in the fast form of the protein. 

Although there are several modes that produce significant mode correlations there are 

only five modes that produce significant overlap scores. These modes are first, second, 

fourth, fifth and eighth with overlaps 0.20, 0.27, 0.23, 0.22 and 0.25 respectively. Mode 

correlations of the same modes are 0.40, 0.42, 0.39, 0.54 and 0.64 respectively.  

According to mode contributions both structures share a similar pattern indicating 

importance of higher frequency modes for determined overall motion. The decline in 

mode contributions is not sharp as in Adenylate Kinase or RNase.  

4.2.7. Trisophosphate Isomerase (TIM) 

The catalytic activity of TIM comprises an opening and closing motion of a well 

defined loop between open and closed states. This loop called as loop 6 consists of the 

residues between V167 and T177. Except the motion of this loop, the protein does not 

possess any major changes between open and closed forms [56]. This case is reflected 

in the collectivity of the enzyme motion which is calculated as 0.07, with an rmsd of 

0.46.  

The low collectivity of the enzyme distinguishes TIM from other proteins presented 

until now. Lowest frequency modes perform well to represent collective motions thus in 

order to represent local motions modes with higher frequencies need to be considered. If 

we investigate the individual modes of the open structure of enzyme, we can see the 

failure of lowest three modes to resemble the local motion. However for the higher 

modes like sixth, seventh or even twentieth mode, the similarity scores are improved 

considerably. For example best mode correlation is produced by twentieth mode as 0.69 

(overlap: 0.22). This mode is followed by sixth mode which has a mode correlation of 

0.68 with an overlap score of 0.37 which is the best overlap score produced amongst the 

first thirty modes.  

The similarity calculations decrease significantly in the case of closed form. Highest 

mode correlation (0.43) and overlap (0.22) is produced by the 26
th

 mode. According to 
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overlap scores this mode is followed by seventh and fourteenth modes with an overlap 

of 0.20 and 0.14 respectively (mode correlations: 0.12 and 0.27 respectively).  

Eigenvalue contributions of open and closed forms mutually indicate that the overall 

enzyme motion cannot be defined by the collective motions solely and require further 

higher frequency modes.  

4.2.8. Dihydrofolate Reductase (DHFR) 

DHFR performs reduction of DHF to THF. According to literature DHFR exists as 

two distinct conformers within the solution with each capable of binding DHF or 

NADPH. Akin to behavior of TIM, DHFR also exhibits a loop motion (termed as Met
20

 

loop) [25, 89]. Collectivity of the motion is 0.08 and the rmsd between two structures is 

calculated as 0.50.  

Modal analysis results of the NADPH binding form of the enzyme indicates that to 

represent observed experimental displacement the structure requires higher modes. The 

best mode correlation (0.48) and overlap (0.27) scores were produced by thirteenth 

mode and this mode was followed by twelfth mode which produced a mode correlation 

of 0.33 and an overlap of 0.20.  

DHF binding form of the enzyme produced its best similarity scores through 24
th

 

mode with a mode correlation of 0.46 and an overlap of 0.24. This mode was followed 

by thirteenth and twenty fourth modes which produced mode correlations of 0.43 and 

0.40 and overlaps of 0.19 and 0.13 respectively. The failure of low frequency modes are 

related with low collectivity of the enzyme similar to similarity scores of TIM, DHFR 

also favored higher modes to define loop motion.  

Contribution spectrum indicates that there is not a unique mode that defines the 

whole motion but the distribution pattern favors a large spectrum of modes in order to 

define the whole motion.  
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4.2.9. Cytochrome P450 

For Cyctochrome P450 EryK literature [26] proposes that binding of protein to the 

ligand (ErD) includes an interconversion between ligand-binding (open) and non-

binding (closed) forms of the enzyme. This protein plays an important role in the 

oxidative metabolism of endogenous compounds such as antibiotics and steroids. The 

rmsd between open and closed forms of the enzyme is calculated as 2.63 and the 

collectivity of the experimental displacement is 0.42.  

As presented in Methods first nineteen residues of EryK was not considered within 

the ANM calculations. Literature implies presence of both core and mobile regions 

within EryK. Motion of helix F (comprising residues W165 and Q173) has the 

maximum amplitude. Together with helix F, BC loop also possesses a major 

displacement between two conformers. Modal analysis of open form indicates 

importance of second, ninth and twelfth modes according to their similarity scores. 

Mode correlations for these modes are 0.31, 0.42 and 0.53 and overlap scores are 

calculated as 0.19, 0.22 and 0.27 respectively.  

For the closed form of the protein, overlap scores are declined below 0.10 for most 

of the proteins. Thus, we have neglected overlap scores for this conformer of the protein 

and just dealt with the mode correlations. According to these results modes 3, 13 and 18 

produced best mode correlations as 0.37, 0.39 and 0.61 respectively.  

Although the collectivity of motion indicates a collective motion for the protein, 

local displacements of BC loop and helix F force the protein to seek for higher modes 

reducing the similarity scores of lower modes.  

According to mode contributions higher modes still preserve their importance for 

both substates, however for the closed form of the enzyme the mode contributions 

diminish faster than the open form which implies that eigenvalues spectrum of open 

form favors higher modes significantly higher than non-binding form.  
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4.2.10. NtrC 

NtrC is a signaling protein switching between inactive and active states during signal 

transduction driven by phosphorylation. According to literature, independent from 

phosphorylation of the protein it can also populate active form together with inactive 

form [44]. The structures of both conformers have been determined by NMR [44] and 

the rmsd between these structures have been calculated as 1.78 with a collectivity of 

0.46.  

Phosphorylation site together with helix α4 exhibited highest displacement after 

superposition and third mode of the inactive form has both the highest correlation and 

the highest overlap scores as 0.42 and 0.24 respectively. Fifth and seventh modes 

followed this mode with mode correlations as 0.23 and 0.35 and overlaps as 0.23 and 

0.16 respectively.  

Inactive form of the protein produces slightly lower similarity scores with the best 

mode found to be the second one based on the overlap scores. The mode correlation and 

overlap of this mode has been calculated as 0.29 and 0.21 respectively. Ninth and 

twelfth modes have also found as significant with a mode correlation of 0.22 and 

overlap score of 0.16 for ninth mode and these scores were determined as 0.35 and 0.19 

for twelfth mode respectively.  

Similar to the behavior of Cytochrome P450 eigenvalue contributions of NtrC also 

diminish faster for the ligand-bound form. Inactive form of the protein favors 

contribution of higher modes much more compared to active form.  

4.2.11. Cholesterol Oxidase 

FAD dependent enzyme cholesterol oxidase performs isomerization of steroids. For 

this purpose cholesterol oxidase utilizes FAD during oxidation reduction reactions 

[103]. We have adopted steroid bound (PDB: 1COY) and FAD bound conformers of the 

enzyme (PDB: 3COX) and performed ANM analysis to both of them. RMSD between 

two structures have been calculated as 0.24 with a collectivity of 0.24.  
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The cholesterol oxidase is a large two domain protein comprising 500 residues. The 

experimental displacement was mostly restricted below 0.4 Å except a region that 

exceeds 1.5 Å. The modal analysis produced fairly low similarity scores below 0.20 for 

mode correlation and with a highest overlap of 0.20 for androgen bound form of the 

enzyme. First mode has given a mode correlation of 0.18 with an overlap 0.14. Best 

overlap score was calculated as 0.20 with the third mode (mode correlation: 0.1).  

The second conformer, only FAD bound form of the enzyme has produced similar 

results with a highest correlation of 0.18 (overlap 0.14) obtained by first mode. The best 

overlap has been obtained by sixth mode as 0.21 (mode correlation 0.07). As can be 

observed from these results individual modes fail to perform well for a limited 

conformational change. Instead a more collective and large-amplitude displacements 

can be well predicted by individual modes.  

Eigenvalue spectrum of both structures of protein highlights the importance of higher 

modes since low frequency modes do not define the experimental displacement 

completely.  

4.3. Mode Selection 

In previous pages we have analyzed modal analysis results of each conformer. The 

results elucidate several dependencies of similarity scores including rmsd, collectivity 

and length of the protein. For example a high rmsd between the open and closed 

conformers of the Adenylate Kinase produces differences between similarity scores of 

open and closed forms in which individual modes of closed form encounter difficulties 

to define the experimental displacement. In the reverse case, when the rmsd is low as in 

the case of cholesterol oxidase, success of individual modes is limited for both 

similarity scores. The size of cholesterol oxidase is another factor affecting the success 

of individual modes together with the low rmsd.  

Modal analysis requires a certain level of collectivity for the conformational 

transition [20]. In the case of low collectivity, for example loop motions of TIM and 
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DHFR, success of individual modes are declined significantly. Global modes which are 

the first three modes of these proteins fail to define these local motions; instead higher 

modes perform better for limited motions.  

We have also investigated the performance of randomly created mode vectors for 

corresponding conformational transitions to check if the success of individual modes 

can be repeated by random modes or they actually carry information about the 

fluctuation pattern. The highest three mode correlations and overlap scores obtained 

from random modes are presented in Appendix 3. As we have stated previously there 

are several modes within our dataset that produces significant similarity results. 

Comparing these ANM produced modes with randomly created mode vectors supply 

evidence about the importance of the corresponding modes. According to the mode 

correlations, most of the selected modes perform higher similarities except NtrC, 

Cholesterol oxidase and TIM. For these proteins random modes give similar mode 

correlations with the selected ones. However, for the selected modes of these proteins 

given in Appendix 2 the overlap scores of each structure still performs fairly better than 

the random modes.  

In further parts we have utilized mode analysis results for selection of the significant 

modes. Our results imply that this process is not straightforward for most of the proteins 

in which several modes exhibit considerable similarities with the experimental 

displacement. According to our results, for most of the proteins, there are three modes 

that produce significant similarities mainly based on their overlap scores. Thus, we have 

selected top three modes for our further analysis.  

Main concentration of this study is focused in the last part. Here, we propose that in 

addition to structurally resembling ensemble conformers modes also carry intrinsic 

relations with thermodynamics and kinetics of the protein through the mode weights. As 

we have presented in first chapter, the energy landscape theory includes several energy 

minimas, in other words substates, distinguished by energy barriers of several kT. 
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Protein populates these distinct substates according to environmental conditions and 

height of these energy barriers.  

The interconversions between distinct substates provide a dynamic nature for the 

protein. ANM is readily found to retrieve intrinsic tendency of different substate 

structures which permits them to resemble each other. Thus, we have investigated 

applicability of modal analysis for the thermodynamics/kinetics of conformational 

ensemble which comprises relative populations and interconversion rates respectively. 

For this purpose we have employed contribution of each mode that is determined by 

using solely eigenvalues. In Table 2 we have supplemented experimental data about the 

kinetic rates or relative populations of proteins conformers, except Spe7 which includes 

Protein Name PDB I PDB II kinetic rates (s
-1

) population 

Adenylate Kinase open closed 1374/286 No population 

data 

Spe7 Ab
1
 Ab

2
 17/58 80 % /20 % 

DHFR NADPH 

binding 

DHF 

binding 

0.034/0.068 No population 

data 

34E4 Fab Antibody Ligand-

binding 

Non-

binding 

1.55/0.51 No population 

data 

Cholesterol Oxidase 1coy (A) 3cox (A) 9.0/1.03 No population 

data 

EryK Cytochrome Non-

binding 

Binding 

form 

1.31/0.51 No population 

data 

RNase Open Closed No kinetic data 93-95% / 5-7% 

TIM Open Closed No kinetic data 4 % / 96 % 

Maltose Binding P. Open  Partially 

closed 

No kinetic data 95% / 5% 

NtrC inactive active No kinetic data 90-98% 2-10% 

Thrombin slow form fast form No kinetic data 40% / 60% 

Table 2 Kinetic rates / relative populations of dataset proteins  
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both kinetic conversion rates and relative populations. These properties are directly 

retrieved from experimental studies. As presented in Table 4-2 six out of eleven 

proteins including Spe7 contained experimental data about the kinetic rates and six 

others together with Spe7 contained population data. The kinetic rates and relative 

populations for each protein have been supplemented sequentially for corresponding 

conformers.  

We have initially considered kinetic rates and relative populations separately. In this 

case we have six proteins containing kinetic rates and six others containing relative 

populations. For each dataset we have constructed computational and experimental 

vectors as told in Chapter 2 by utilizing eigenvalues of the selected modes. After 

construction of these two vectors for each dataset we have calculated the Pearson 

correlation between computational findings and experimental data. For the dataset with 

kinetic rates we have calculated a correlation of 0.97 with the selected modes presented 

in Table 4.3. For the population dataset we have calculated a correlation of 0.95 with 

the selected modes presented in Table 4.4. For each protein selected modes have been 

presented together with the selected mode of second conformer given in brackets. The 

values given in X column indicated experimental ratios and the values in Y indicated 

computational ratios. 

If we repeat this calculation with the modes which produce best mode correlations, 

the similarity becomes 0.65 and 0.27 for kinetic rates and relative populations 

respectively. In the case of the best overlapped modes, we obtain a result of 0.06 and 

0.5 for kinetic rates and relative populations respectively. Still, these modes presented 

in table 3 are significant ones according to their overlap and mode correlation scores 

with the most of them produced whether best overlap or best mode correlation.  

In the case of complete dataset with the kinetic rates and populations data used 

together we have obtained a calculation of 0.94 with the same modes used in Table 3 

and 4 for 22 substates. In these calculations we adopted kinetic rates of Spe7 which 

contained both data. In all three cases including set of kinetic rates, set of population 
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and set of both we have calculated significant correlations between the computational 

findings and the experimental data.  

 

Table 3. Relation between Kinetic Rates and mode weights 

Protein PDB I PDB II Modes X Y 

Adenylate Kinase 4ake 1ake 2(1) 0.208 0.45 

Spe7 1oaq 1ocw 7(5) 3.45 1.21 

DHFR 1rx1 1rx7 13(24) 2 0.70 

Fab Antibody 3cfj 1y0l 2(6 0.32 0.33 

Cholesterol Oxidase 1coy 3cox 1(6) 0.11 0.41 

EryK 2wio 2jjn 12(13) 2.56 0.875 

Correlation 0.97 

Table 3: Selected Modes for proteins with kinetic rates 

Table 4. Relation between relative populations and mode weights 

Protein PDB I PDB II Modes X Y 

Spe7 1oaq 1ocw 7(5) 4.0 1.21 

RNase 7rsa 1u1b 3(1) 15.7 2.29 

TIM 1ypi 7tim 6(7) 0.04 0.8 

NtrC 1dc7 1dc8 3(2) 15.0 2.21 

MBP 2v93o 2v93c 3(1) 19.0 1.95 

Thrombin 1sgi 1sg8 5(8) 0.67 0.77 

Correlation 0.95 

Table 4: Selected modes for proteins with relative populations 
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Chapter 5 

CONCLUSION 

Proteins in their native states possess innate flexibility which enables them to 

sample a space of numerous conformers. Existence of proteins as not a static structure 

instead as distinct conformers in their native states has so many implications in protein 

function and ligand binding. Kinetic conversion rates of pathway intermediates are 

compatible with turnover kinetics of several enzymes implying enzyme dynamics to 

have direct roles during catalysis. Ligand recognition and binding is also related with 

preexisting conformers where ligand specifically selects appropriate conformer. This 

model helps to understand antigen diversity observed in antibodies.  

Together with experimental studies, computational efforts also improve 

knowledge about protein dynamics. The innate flexibility of proteins can be extracted 

through global modes which are determined by coarse-grained EN models. EN models 

which have a history in protein dynamics for more than a decade produce significant 

results for both temperature factor predictions and conformational transitions.  

ANM and GNM have been mostly adopted in protein dynamics to predict 

structural changes providing information about the fluctuation amplitudes; however had 

no implications for the timeline of these fluctuations. Here, we have aimed to reproduce 

success of EN models for fluctuation timelines and thermodynamics of conformers. The 

dataset we have adopted here includes antibodies, enzymes and signaling proteins. 

Modal analysis of eleven proteins or 22 different PDB structures indicated that together 

with collectivity, modal analysis scores depend also on protein length and root mean 

square deviation between distinct states. As in the case of DHFR and TIM which 

perform loop motions the displacement is restricted a small region indicated with a low 

rmsd and collectivity. In these cases, higher modes of the protein become more 

important compared to high frequency modes of proteins with collective motions.  

Our findings indicate a relation between kinetics/thermodynamics of ensemble 

conformers and eigenvalues of Hessian matrix. These eigenvalues are known to 
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determine the effect of each individual mode within the overall motion. According to 

the results of this study eigenvalues do not only carry information about the mode 

contribution, but also have importance about the kinetic and thermodynamic properties 

of the system. This study highlights the importance of protein dynamics in which 

together with the encoded nature of ensemble conformers, kinetic and thermodynamic 

properties of these conformers are also encoded in protein structure. EN models access 

this encoded information through individual modes. 

Our hypothesis is supported by the results of eleven proteins but require further 

enlargement within the dataset via addition of new proteins in order to be validated. 

Since we combine several distinct information including different PDB structures 

(conformers) of the same protein and the kinetic or thermodynamic data about these 

conformers, our study does largely depend on accumulation of these findings. Besides, 

the proteins in their open forms resemble closed-like structures or vice versa. However, 

the exact structures of closed-like or open-like structures are not known, thus, instead 

we adopt open or closed structures in order to represent indicated structures neglecting 

final ligand-induced rearrangements in binding site. Thus, together with addition of new 

proteins our results can be improved via using exact closed-like or open-like structures 

in the presence of structures for corresponding conformers.  

As a future work our study can be extended to combined modes which improve 

similarity scores. The link between eigenvalues and kinetic rates or eigenvalues and 

relative populations can be investigated using results of combined modes.  
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APPENDIX 1  

B-Factor Prediction Comparisons of Dataset Proteins 

B-Factor prediction comparisons of our nine dataset proteins are given in 

following table. Two of dataset proteins have been determined using NMR methods 

thus, B-factors were not presented in PDB file.  

 

PDB Chain Length GNM ANM pfGNM pfANM2 pfANM4 

1AKE A 214 0.48 0.55 0.58 0.55 0.59 

4AKE A 214 0.73 0.79 0.83 0.77 0.80 

1OCW H 120 0.24 0.22 0.21 0.25 0.29 

1OAQ H 120 0.62 0.56 0.73 0.68 0.61 

1RX1 A 159 0.50 0.36 0.53 0.42 0.49 

1RX7 A 159 0.47 0.44 0.49 0.45 0.49 

1Y0L A 216 0.62 0.61 0.62 0.57 0.60 

3CFJ A 215 0.62 0.58 0.62 0.49 0.51 

1COY A 501 0.53 0.52 0.60 0.54 0.58 

3COX A 500 0.70 0.71 0.77 0.73 0.77 

2JJN A 395 0.51 0.14 0.34 0.20 0.39 

2WIO A 393 0.52 0.45 0.57 0.54 0.59 

7RSA A 124 0.64 0.42 0.66 0.66 0.65 

1U1B A 124 0.33 0.11 0.40 0.36 0.39 

1YPI A 247 0.52 0.23 0.54 0.50 0.54 

7TIM A 247 0.51 0.21 0.52 0.53 0.52 

1SGI E 250 0.70 0.55 0.76 0.75 0.70 

1SG8 E 251 0.53 0.50 0.64 0.63 0.59 

Table A. 1 B-Factor prediction comparisons of dataset proteins 
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APPENDIX 2  

Mode Graphs and Contribution Spectrums 

In this part, graphs of significant modes and contribution spectrum of first thirty 

modes are supplemented together with residue fluctuations calculated between two 

structures. In those graphs the residue fluctuations between open and closed form is 

represented by blue color and red color stand for corresponding mode fluctuations. The 

mode fluctuations are weighted such that the areas under both lines become equal. 

Contributions of each mode are given in percentages in contribution spectrums.  

Adenylate Kinase (open form)  

  

  

 
 

Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

2 0.77 0.69 2,93E-05 0,094 

5 0.54 0.36 1,15E-04 0,024 

8 0.47 0.21 1,88E-04 0,015 
Table A.2. 1 Mode Graphs and Contribution Spectrum of first 30 modes for AK (open form) 
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Adenylate Kinase (closed form)  

  

  

 

 
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,48 0,54 1,48E-04 0,027 

2 0,47 0,21 1,83E-04 0,022 

4 0,12 0,29 2,64E-04 0,015 

Table A.2. 2 Mode Graphs and Contribution Spectrum of first 30 modes for AK (closed 

form) 
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Spe7 (Ab
1
 form)   

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

2 0,58 0,35 1,30E-04 0,043 

6 0,51 0,19 2,90E-04 0,02 

7 0,74 0,27 3,00E-04 0,019 

Table A.2. 3 Mode Graphs and Contribution Spectrum of first 30 modes for Spe7 (Ab
1
 

form) 
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Spe7 (Ab
2
 form)  

  

  

  

Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

2 0,49 0,34 1,30E-04 0,043 

3 0,3 0,25 1,90E-04 0,03 

5 0,7 0,28 2,50E-04 0,022 

Table A.2. 4 Mode Graphs and Contribution Spectrum of first 30 modes for Spe7 (Ab
2
 

form) 
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RNase (open form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,69 0,62 6,56E-05 0,076 

2 0,64 0,4 8,81E-05 0,057 

3 0,59 0,36 1,20E-04 0,041 

Table A.2. 5 Mode Graphs and Contribution Spectrum of first 30 modes for RNase (open 

form) 
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RNase (closed form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,61 0,49 5,10E-05 0,096 

2 0,49 0,48 8,55E-05 0,057 

3 0,5 0,47 1,20E-04 0,041 

Table A.2. 6 Mode Graphs and Contribution Spectrum of first 30 modes for RNase (closed 

form) 
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Fab Antibody (open form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,53 0,4 2,35E-05 0,097 

2 0,65 0,34 3,38E-05 0,067 

6 0,61 0,34 1,00E-04 0,023 

Table A.2. 7 Mode Graphs and Contribution Spectrum of first 30 modes for Fab (open 

form) 
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Fab Antibody (closed form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,44 0,45 2,49E-05 0,096 

2 0,59 0,29 3,44E-05 0,07 

6 0,62 0,33 1,00E-04 0,022 

Table A.2. 8 Mode Graphs and Contribution Spectrum of first 30 modes for Fab (non-

binding form) 
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Maltose Binding Protein (open form)  

  

  

 
 

Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,39 0,46 5,92E-05 0,043 

2 0,27 0,61 7,46E-05 0,034 

3 0,32 0,31 1,35E-04 0,019 

Table A.2. 9 Mode Graphs and Contribution Spectrum of first 30 modes for MBP (open 

form) 
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Maltose Binding Protein (partially closed form) 

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,35 0,36 6,68E-05 0,037 

2 0,31 0,67 8,69E-05 0,028 

3 0,3 0,36 1,57E-04 0,016 

Table A.2. 10 Mode Graphs and Contribution Spectrum of first 30 modes for MBP 

(partially closed) 
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Thrombin (slow form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

2 0,5 0,33 1,96E-04 0,018 

4 0,5 0,27 2,50E-04 0,014 

5 0,63 0,22 2,80E-04 0,013 

Table A.2. 11 Mode Graphs and Contribution Spectrum of first 30 modes for Thrombin 

(slow form) 
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Thrombin (fast form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

2 0,42 0,27 2,00E-04 0,018 

5 0,54 0,22 2,99E-04 0,012 

8 0,64 0,25 3,45E-04 0,01 

Table A.2. 12 Mode Graphs and Contribution Spectrum of first 30 modes for Thrombin 

(fast form) 
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Triosephasphate Isomerase (open form) 

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

6 0,68 0,37 2,40E-04 0,015 

7 0,27 0,3 2,80E-04 0,013 

20 0,69 0,22 5,60E-04 0,006 

Table A.2. 13 Mode Graphs and Contribution Spectrum of first 30 modes for TIM (open 

form) 
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Triosephasphate Isomerase (closed form) 

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

7 0,12 0,2 3,20E-04 0,012 

14 0,27 0,14 4,60E-04 0,008 

26 0,43 0,22 7,20E-04 0,005 

Table A.2. 14 Mode Graphs and Contribution Spectrum of first 30 modes for TIM (closed 

form) 
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DHFR (NADPH binding form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

12 0,33 0,2 4,27E-04 0,01 

13 0,48 0,27 4,36E-04 0,01 

21 0,15 0,16 5,76E-04 0,008 

Table A.2. 15 Mode Graphs and Contribution Spectrum of first 30 modes for DHFR 

(NADPH binding form) 
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DHFR (DHF binding form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

13 0,43 0,19 4,33E-04 0,01 

21 0,4 0,13 5,51E-04 0,008 

24 0,46 0,24 5,95E-04 0,007 

Table A.2. 16 Mode Graphs and Contribution Spectrum of first 30 modes for DHFR 

(DHF binding form) 
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EryK cytochrome P450 (open form)  

  

  

  

Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

2 0.23 0.23 1,11E-04 0,019 

9 0.36 0.27 2,13E-04 0,01 

12 0.47 0.32 2,81E-04 0,0075 

Table A.2. 17 Mode Graphs and Contribution Spectrum of first 30 modes for Cytochrome 

P450 (open form) 
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EryK cytochrome P450 (closed, non-binding form) 

  

  

  

Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

11 0,21 0,08 2,8E-04 0,007 

13 0,30 0,10 3,04E-04 0,0066 

16 0,22 0,12 3,69E-04 0,005 

Table A.2. 18 Mode Graphs and Contribution Spectrum of first 30 modes for Cytochrome 

P450 (closed form) 
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NtrC (inactive form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

3 0,42 0,24 2,80E-04 0,024 

5 0,23 0,16 3,10E-04 0,022 

7 0,35 0,13 3,70E-04 0,018 

Table A.2. 19 Mode Graphs and Contribution Spectrum of first 30 modes for NtrC 

(inactive form) 
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NtrC (active form)  

  

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

2 0,29 0,21 9,46E-05 0,052 

9 0,22 0,16 3,20E-04 0,016 

12 0,35 0,19 4,00E-04 0,012 

Table A.2. 20 Mode Graphs and Contribution Spectrum of first 30 modes for NtrC (active 

form) 
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Cholesterol Oxidase (substrate bound form) 

  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,18 0,14 1,23E-04 0,017 

4 0,11 0,18 2,48E-04 0,008 

6 0,09 0,2 2,82E-04 0,007 

Table A.2. 21 Mode Graphs and Contribution Spectrum of first 30 modes for Cholesterol 

Oxidase (substrate bound form) 
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Cholesterol Oxidase (FAD bound form) 

  
  

  
Mode Indice Correlation Overlap Eigenvalue W.Eigenvalue 

1 0,18 0,14 1,24E-04 0,017 

4 0,11 0,17 2,49E-04 0,008 

6 0,07 0,21 2,83E-04 0,007 

Table A.2. 22 Mode Graphs and Contribution Spectrum of first 30 modes for Cholesterol 

Oxidase (FAD bound form) 
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APPENDIX 3  

Random Mode Results 

Similarity calculations of random mode vectors have been supplemented here. For 

each protein, the highest three mode correlation and overlap scores are given in Table 

A.3.1.  

 
 

Table 2. Performance of Random Modes 

Protein Mode Correlation Overlap 

Adenylate Kinase 0.295 0.283 0.237 0.130 0.127 0.123 

Spe7 0.296 0.293 0.288 0.262 0.167 0.163 

TIM 0.202 0.193 0.188 0.094 0.091 0.089 

RNase 0.350 0.312 0.293 0.192 0.182 0.164 

NtrC 0.327 0.325 0.311 0.179 0.171 0.154 

DHFR 0.249 0.235 0.227 0.105 0.100 0.099 

MBP 0.189 0.186 0.169 0.140 0.116 0.102 

Thrombin 0.223 0.216 0.201 0.117 0.116 0.115 

Cholesterol Oxidase 0.151 0.145 0.141 0.077 0.075 0.073 

FAB Antibody 0.231 0.216 0.215 0.119 0.098 0.098 

EryK P450 

Cytochrome 

0.184 0.174 0.158 0.107 0.104 0.102 

Table A.3 1 Performance of Random Modes 
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