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ABSTRACT

PDZ domain is a well-conserved, structural protein-protein interaction domain
found in hundreds of signaling proteins that are otherwise unrelated. PDZ domains can
bind to the C-terminal peptides of different proteins and they cluster different protein
complexes together, target specific proteins and route these proteins in many signaling
pathways. PDZ domains are classified into Class I, II and III, depending on their binding
partners and the nature of bonds formed. Binding specificities of PDZ domains are very
crucial in order to understand the complexity of signaling pathways. It is still an open
question how these domains recognize and bind their partners.

The focus of this thesis is three folds: 1) predicting to which peptides a PDZ
domain will bind, 2) classification of PDZ domains as Class I, II or I-II and 3) construction
of peptide libraries for PDZ domains using genetic algorithm. For the first two parts,
trigram and bigram amino acid frequencies are used as features in machine learning
methods. Using 85 PDZ domains and 181 peptides, our model reaches high prediction
accuracy (91.4%) for binary interaction prediction which outperforms previously
investigated similar methods. Also, we can predict classes of PDZ domains with an
accuracy of 90.7%. We propose three critical amino acid sequence motifs that could have
important roles on specificity pattern of PDZ domains. For the last part, we implemented
genetic algorithm to generate possible binding peptides for PDZ domains by using the
sequence of experimentally verified binding peptides of PDZ domains. Then, the
performance of this generated peptide library is evaluated by PDZ interaction prediction

model constructed in the first part.
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OZETCE

PDZ yapisal bolgeleri, birbirinden farkli bir¢ok sinyal iletim proteinlerinde
bulunan, iyi korunmus yapisal protein etkilesim bolgeleridir. PDZ yapisal bolgeleri
proteinlerin karboksil ucuna baglanarak, farkli protein komplekslerini bir araya getirir,
belli proteinleri hedef alir ve bu proteinleri sinyal iletim yollara yonlendirir. PDZ yapisal
bolgeleri, baglandig1 hedef peptitlere ve olusturdugu baglarin niteligine goére Sinif I, II, 111
olmak {lizere ii¢ sinifa ayrilir. PDZ yapisal bolgelerinin baglanma o6zgilinligii, sinyal
iletimlerinin karmasikligin1 anlamak adma c¢ok Onemlidir. Bu yapisal bdlgelerin,
hedeflerini nasil tanidig1 ve hedeflerine nasil baglandigi hala agik bir sorudur.

Bu tez, li¢ odak noktasindan olusmaktadir: 1) PDZ yapisal bolgelerinin hangi
peptitlere baglanabilecegini tahmin etmek, 2) PDZ yapisal bolgelerini Sinif I, 11, I-1I olarak
siniflandirabilmek, 3) genetik algoritma kullanilarak PDZ yapisal bolgeleri igin peptit veri
taban1 olusturmak. ilk iki kisim icin, trigram ve bigram amino asit frekanslari
hesaplanarak, bunlar olusturulan otomatik Ogrenme metodunda Ozellik olarak
kullanilmistir. 85 PDZ yapisal bolgesi ve 181 peptit kullanilarak, modelimiz ikili etkilesim
tahmininde yiizde 91.4 dogruluga ulasarak benzer diger metotlarindan daha iistiin
olmustur. Ayni zamanda, bu metotla PDZ yapisal bolgelerinin smniflar1 ylizde 90.7
dogrulukla tahmin edilmistir. Ve PDZ yapisal bolgelerinin 6zgiinliigiinde 6nemli roller
istlenebilecek tli¢ kiritk amino asit sekans motifi Onerilmistir. Son kisim i¢in, genetik
algoritma uygulamasiyla, PDZ yapisal bolgelerine baglandig1 deneysel olarak kanitlanmis
peptitlerin sekanslar1 kullanilarak, PDZ yapisal bolgelerine baglanabilecek olasi peptitler
olusturulmustur. Daha sonra, bu olusturulmus peptit veri tabanlarinin performanslari, ilk

kisimda olusturulan PDZ etkilesimi tahmin modeli ile test edilmistir.
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Chapter 1: Introduction 1

Chapter 1

1 Introduction

1.1 Literature Review

1.1.1 Protein-Protein Interaction Domains

An increasing body of data suggests that proteins involved in many cellular
mechanisms are regulated in a modular manner that a protein could contain functionally or
structurally independent regions (domains). The networks and pathways that connect
receptors to their targets usually involve a series of protein-protein interactions. Many
different cellular mechanisms are regulated by protein interaction domains [1]. They
organize the association of proteins with one another, small molecules, nucleic acids or
phospholipids. Protein interaction domains can route other proteins to specific cellular
locations, form signaling multi-complex proteins, secure recognition of post-translational
modifications, control activity, formation and specificity of enzymes [2]. Therefore,
protein interaction networks are heavily investigated due to their potential applications in
drug discovery. They can give key insights about the mechanisms of human diseases.

Protein-protein interactions play fundamental roles in signal transduction,
formation of functional protein complexes and protein modification [3]. Many biological
processes are regulated through the dynamic interactions of modular protein domains (e.g.,
WW, SH3, SH2, PH, and PDZ) and their corresponding binding targets. Investigation of
the selectivity, specificity, and regulatory mechanisms involved in these protein-protein
interactions can therefore provide important insights into biological activities.

Protein-protein interaction domains can usually be expressed independently from

their main proteins, namely they can provide their intrinsic function of binding to their
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targets without the host protein. Binding pocket and N- and C- terminus of these domains
are usually on the opposite face [2]. This structural arrangement let these domains insert
easily into the host protein without blocking their binding pockets.

Protein interaction domains can form hetero/homo-typic domain interactions and
they can also bind to short peptide motifs or small molecules. There is not a clear
distinction between these types of interactions. For example, PDZ domains generally bind
to short peptide motifs at the C termini of their target proteins, but they can also form PDZ-

PDZ domain interactions [4-6].

1.1.2 PDZ Domains

One of the most common protein interaction domains in the cell is PDZ domain
which is a central signaling protein of most species [68]. The PDZ domains, among other
nearly 70 distinct recognition domains, are crucial because they are involved in
development of multi-cellular organisms by constructing cell polarity, coordination of
intercellular signaling system and directing the specificity of signaling proteins [9]. They
consist of 80 to 90 amino acids and have a compact globular module composed of a core of
six P strands (BA - BF) and two a helices (A, aB). By binding the C-terminal motifs of
their target proteins, PDZ domains target, cluster and route these proteins [10]. However,
some PDZ domains also can bind to the internal motifs of target proteins, lipids and other
PDZ domains [6,11].

C-terminus of the peptides recognizes and binds to a pocket between carboxylate-
binding loop (BA — BB loop) that contains the conserved GLGF motif, and aB helix of the
PDZ domain [12-15], this is also called the canonical binding. The ligand binds to the PDZ
domain as an anti-parallel extension of the P-sheet of the domain and while ligand

positions -1 and -3 head towards to the solvent, the positions 0 and -2 point towards to the
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binding pocket [16] (Figure 1.1). Therefore, it can be suggested that ligand positions 0 and
-2 are very crucial for recognition and binding to target proteins. The importance of these
two positions also lead to the general classification of PDZ domains into three classes
according to short peptide motifs of the last three residues at the extreme C-termini of their
peptide ligands. Class I PDZ domains bind to C terminal motifs with the sequence of
[Ser/Thr-X-®@ COOH], Class II PDZs bind to the sequence of [®-X-D-COOH] and Class
IIT PDZs prefer the sequence of [Asp/Glu-X-®-COOH] where @ is any hydrophobic
amino acid and X is any amino acid. However, some PDZ domain interactions do not
satisfy these restrictive types of recognition and so additional classes and additional
important residues are proposed to exist for ligand specificity of PDZ domains [16-18]. For
example, Songyang et al. investigated the binding specificities of nine PDZ domains by
using an oriented peptide library and concluded that additional selection specificities,
depending on up to -8 position of the peptide ligand, were observed beside the 0 and -2
positions [19].
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Figure 1.1: Representative structure of a PDZ domain in complex with its ligand (a) The
common representation of a PDZ domain (a-1 syntrophin) with a peptide (in its stick form)
in its binding pocket. Peptide positions -1 and -3 (blue) point towards to the solvent, the
positions 0 and -2 (pink) head towards to the binding pocket (b) The interaction of the
peptide with aB helix and conserved GLGF segment (here it is GLGI) of the BA-BB loop
(PDB ID:2PDZ).

Although PDZ domains show selectivity toward their target ligands, they also
display promiscuity, binding to more than one ligand, and degenerate specificity [2023], so
interaction prediction of these domains can be challenging. Several studies aimed to
classify and predict interaction specificity of PDZ domains that could save time-consuming

and expensive experiments. Chen et al. predicted PDZ domain-peptide interactions from



Chapter 1: Introduction 5

primary sequences of PDZ domains and peptides by using a statistical model and reported
an area under curve (AUC) value of 0.87 for extrapolations to both novel mouse peptides
and PDZ domains [24]. Bezprozvanny and Maximov used a classification method based on
the two critical positions of 249 PDZ domains and they presented 25 different classes of
PDZ domains [17]. Stiffler et al. also tried to characterize the binding selectivity of PDZ
domains by training multi-domain selectivity model for 157 mouse PDZ domains with
respect to 217 peptides and they indicated that PDZ domains are distributed throughout the
selectivity space contrary to discrete specificity classes [25]. Schillinger et al. used a new
approach, Domain Interaction Footprint (DIF), to predict binding peptides of SH3 and PDZ
domains by using only the sequence of the peptides, they reported an AUC value of 0.89
for PDZ multi-domain model by using the sequence information of binding and non-
binding peptides of four different PDZ domains [26]. Tonikian et al. constructed a
specificity map consisting of 16 unique specificity classes for 72 PDZ domains and this
lead to the prediction of PDZ domain interactions [27]. Wiedemann et al. tried to quantify
specificity of three PDZ domains by relating the last four C-terminal motifs of their ligands
to the corresponding dissociation constants which can provide selectivity pattern of PDZ
domains and design of super-binding peptides [23]. Eo et al. used an SVM classifier by
adapting amino acid contact matrices and physiochemical distance matrix as a feature

encoding in order to identify PDZ domain ligand interactions [28].

1.1.3 Roles of PDZ Domains in Diseases

Some members of PDZ domain family play considerable roles in neurological
diseases. They interact with pre-synaptic and post-synaptic proteins and they have crucial
roles on synaptic neurotransmission and plasticity [29]. It is shown that PICK1, one of the

PDZ domains, interacts with Glutamate (Glu) receptor family [30]. These Glutamate
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receptors have roles in excitatory neurotransmission and synaptic functions and it is shown
that they are related to some neurological diseases such as stroke, neurodegeneration,
depression, anxiety, epilepsy and schizophrenia. Also, other PDZ domains such as GRIP,
ABP and PSD95 are observed to have interactions with Glu receptors. In addition, PICK1
interacts with monoamine plasma membrane transporters (dopamine, neuroepinephrine,
serotonin) [31]. Any destruction to monoamine neurotransmission could cause
neurodegenerative diseases (depression, lack of attention, hyperactivity, schizophrenia).
PICK1 also interacts with three proteins which have roles in cancer generation and
cell growth. These proteins are Neurolignin/ErbB receptors (ErbB/Rs-breast, lung and liver
cancer) [32], tetradecanoyl phorbol ester-induced main receptor sequences (TIS21-cell
growth inhibition) [33] and Coxsackie and adenovirus receptors (CAR-its over-expression
decreases cell growth speed) [34]. PICK1 probably affects PKC-phosphorylation states

and/or surface expressions and distribution of these proteins.

1.1.4 Methods Overview

Two methods are used in this study. For the first part, interactions and classes of
PDZ domains are predicted through a machine learning approach. Then, a new method is
developed by using genetic algorithm to generate peptide libraries specific to PDZ

domains.
1.1.4.1 Machine Learning and Interaction Prediction
Machine learning methods are used for pattern recognition tasks where data is

massive and a set of rules can not discriminate the patterns. The main idea behind these

methods is to learn to discriminate experimentally verified data and obtain learned
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complex rules to predict probable solutions. Although there are so many different machine
learning algorithms, they are all driven by the data used to train them [35].

There are several machine learning approaches to predict domain interactions [36-
38]. We chose five classifiers, SVM (Support Vector Machine), Nearest Neighbor, Naive
Bayes, J48 and Random Forest which have been commonly used in protein-protein
interaction prediction problems. In SVM algorithm, feature vectors are non-linearly
mapped on a high dimensional feature space and a set of hyperplanes are constructed to be
used for classification or regression [39]. The simplest one among used classifiers is
Nearest Neighbor which classifies instances according to their closeness to the training
examples [40]. The basic idea behind Naive Bayes is to predict the class of an instance by
learning conditional probability of each attribute [41]. J48, also known as C4.5 grows an
initial tree by using divide-and-conquer algorithm and then rank test instances [42].
Random Forest developed by Breiman generates many classification trees simultaneously
where each node uses a random subset of the features and outputs the classification based

on majority voting over all trees in the forest [43].

1.1.4.2 Peptide Library Construction

There are many biochemical and structural studies trying to develop small
molecules to regulate protein-protein interactions. These studies are generally based on the
modification of existing binding peptides [44,45] or random peptide sequence design [46-
50]. Because many of these studies are experimental, they usually deal with small amount
of proteins and ligands. The most common problem in these studies is uncharacterized
binding or regulatory regions of corresponding proteins. PDZ domains are very
advantageous because binding regions of most of the PDZ domains are known in detail

[51]. The development of new methods to regulate PDZ domains is very crucial due to the
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important functions of these domains in cancer and other diseases. Therefore, construction
of PDZ domain specific peptide database is one of the aims of this study. These

constructed peptide database could efficiently contribute to novel drug design studies.

1.1.4.2.1 PDZ Domain Peptide Libraries

Peptide library approaches are used for PDZ domain-peptide interactions because
PDZ domains recognize short linear motifs (C-termini) of their target proteins. There are
two commonly used experimental peptide library approaches: phage display and SPOT
synthesis [52].

Phage display is a high-throughput screening of protein-protein interactions.
Protein of interest is expressed on phage surface to be exposed to short randomized peptide
sequences and if any peptide interact with the protein, it can be analyzed after washing and
elution [53]. SPOT synthesis allows the parallel synthesis and screening of thousands of
cellulose membrane-bound peptides. These approaches have been applied to study PDZ-
mediated interactions [44,54,55].

Studies with PDZ peptide libraries and microarrays is usually conducted in order to
have more information about PDZ-peptide interactions, these studies could lead to
generation of a key resource to investigate signaling pathways within cells [25,56]. This
information needs to be comprehensively deposited in publicly available repositories, such
as iISPOT, DOMINO, and PDZBase [57-60] in order to maximally accelerate the discovery
of novel PDZ-mediated interactions in cells. PDZBase is a unique database that contains
information extracted from the literature of all known PDZ domain-mediated protein-

protein interactions obtained from in vivo or in vitro experiments [60].
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1.1.4.2.2 Genetic Algorithm

Genetic algorithm is a population based method which gives a set of solutions
instead of one solution. It applies a random search with controlled selection. The
techniques used in genetic algorithm are generally originated from mechanisms of
evolutionary biology (mutation, cross-over, selection) [61].

Genetic algorithm generally consists of four main steps: 1) initialization, 2)
selection, 3) reproduction and 4) termination. In the first step, the problem is defined as a
genetic representation and an initial population with size N is generated. In the second step,
fitness value of each individual is calculated through an objective function and parents of
next populations are generated according to their fitness values. In the reproduction step,
selected parents are paired and genetic operators, crossover and mutation, are applied to
form a new population. The whole process is repeated until the last step, when the
termination criterion is met, the algorithm gives the best solution [62]. A representative

scheme of genetic algorithm is shown in Figure 1.2.



Chapter 1: Introduction 10

Generation of
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Figure 1.2: A representative scheme of the genetic algorithm.

1.2 Statement of the Problem

As stated in the literature review section, there are some experimental and
computational studies investigating the interactions of PDZ domains which play important
roles in human disease pathways. In this study, we try to figure out interaction specificity

and different classes of PDZ domains by means of machine learning methods and we also

10
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try to generate peptide database which consists of potential binding partners for PDZ
domains by using genetic algorithm.

We propose a method to predict domain-peptide interactions and classes of PDZ
domains by using only the sequence information of PDZ domains and their experimentally
verified binding/nonbinding ligands. In order to construct a numerical feature vector for
each interaction, trigram and bigram frequencies of each primary sequence of PDZ
domains and peptides are calculated. We make use of the most commonly used classifiers
(SVM, Nearest Neighbor, Naive Bayes, J48, Random Forest). Moreover, we show that our
method can be efficiently used to distinguish between Class I, Class II and Class I-11 PDZ
domains. After completion of models, we try to find some critical amino acid motifs on
PDZ domains which contribute their specificity more than other amino acid sequences by
reducing the dimensions of features. Last, we implemented genetic algorithm to construct
possible binding peptides for PDZ domains. Generated peptide libraries are trained in our
interaction prediction model in order to see their performance. These models can be used
to reduce the search space of experimental studies by giving the most probable candidate

binding partners of PDZ domains.

1.3 Outline

This thesis is composed of five chapters:

In Chapter 2, construction of PDZ interaction and class prediction models is
explained with detail. Structure of datasets, feature encoding method, machine learning
methods and dimensionality reduction process are explained.

In Chapter 3, the genetic algorithm and its implementation to our problem are
presented. The generation of initial population by constructing amino acid probabilities of

binding peptides is described in detail.

11
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In Chapter 4, results obtained from PDZ interaction and class prediction models are
presented. The selection of used classifier for both models is explained by showing
performance comparison of five different classifiers. Accuracy and AUC (Area under
curve) values of interaction prediction and classification models is shown for both
trigram/bigram frequency encodings. Then, critical sequence motifs for PDZ domains
found after feature reduction are presented by demonstrating them on the three dimensional
structures of PDZ domains. Lastly, the results of parameter tuning and method selection
for genetic algorithm is explained and obtained peptide library for a PDZ domain, al-
syntrophin, is demonstrated.

In Chapter 5, the findings in this study are summarized, and the future work with

suggestions is presented.

12
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Chapter 2

2 Prediction Methods

2.1 Datasets Used in Prediction Methods

The aim of this study is two-fold. First, we try to predict interactions and classes of
PDZ domains. Second, we try to construct peptide libraries for PDZ domains. For both
parts, we need experimental data in order to give the input for our algorithm and construct
our predictive model. The structure of our dataset is explained in the following sections

and datasets are given in Appendix A.1.

2.1.1 PDZ Domain Interaction Dataset

For interaction prediction part, a positive (binding) and a negative (non-binding)
dataset are needed in our machine learning model. The PDZ interaction dataset is retrieved
from the study of Stiffler et al., which is composed of interaction data of 85 mouse PDZ
domains with respect to 217 mouse genome-encoded peptides [25,26]. They used the
combination of protein microarrays and fluorescence polarization (FP) methods to identify
biological interactions of PDZ domains. In the current study, only binding and non-binding
information that were confirmed by FP is used as the training set due to the fidelity of FP.
After selection of FP confirmed interactions, we obtained 731 binding and 1361 non-

binding interactions between 85 PDZ domains and 181 peptides.

13



Chapter 2: Prediction Methods 14

2.1.2 PDZ Domain Classification Dataset

For class prediction part, 86 PDZ domains are categorized, resulting in 45 Class I,
20 Class II and 21 Class I-Il PDZ domains. These are retrieved from our interaction
dataset and PDZBase [60] by looking at their interactions with different classes of
peptides. PDZ domains are annotated as Class I and Class II according to the C terminus
sequence of the interacting peptides, [Ser/Thr-X-®-COOH] for Class I peptides and [D-X-
®-COOH] for Class II peptides, respectively. Class I-II PDZ domains are determined if
they bind to both Class I and Class II peptides. (See Appendix A.1, Table A.1.1)

2.1.3 Validation Dataset

An independent validation dataset is also used in interaction prediction part in order
to test the predictive performance of our model. The validation dataset is extracted from
the previous study of Stiffler et al. and it is composed of 27 binding and 62 non-binding
interactions of 16 PDZ domains and 20 peptides [56].

In order to be consistent in our prediction model, we took the last 10 residues of
each peptide sequence due to the selection specificities of PDZ domains up to -10 positions
of peptides. The sequence data of PDZ domains and peptides can be seen in Table A.1.2,
and Table A.1.3 respectively (Appendix A.1).

14
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2.2 Feature Encoding

2.2.1 Bigram/Trigram Frequency Model

Frequencies of consecutive three amino acids (trigram) and two amino acids
(bigram) in the primary sequences are used as features. For instance, a sequence of
“ABCDE” results in trigram set of “ABC”, “BCD”, “CDE” and bigram set of “AB”, “BC”,
”CD” and “DE”. In order to reduce the dimension of the features, 20 amino acids are
clustered into 7 different classes (Table 2.1) according to their dipoles and volumes of the
side chains which reflect their interaction specificity by giving an insight about their

electrostatic and hydrophobic natures [63].

Table 2.1: Seven amino acid classes used in our model.

Class Amino acid(s) Volume (A*) Dipole (Debye)
1 Ala, Gly,Val <50 0

2 Ile, Leu, Phe, Pro  >50 0

3 Tyr, Met, Thr, Ser >50 <1.0

4 His, Asn, Gln, Trp  >50 1.0<Dip.<2.0

5 Arg, Lys >50 2.0<Dip.<3.0

6 Asp, Glu >50 >3.0

7 Cys* >50 <1.0

*Cys is differentiated from class 3 because it can form disulfide bonds

To calculate trigram frequency of the PDZ domains and corresponding peptide
sequences, the number of occurrence of each subsequent trigram in the sequence is
counted, and this number is divided by the total number of trigrams in the sequence which

is (n-2), where n is the sequence length. At the end, we obtain 343 (7x7x7) features for

15
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each sequence because amino acids are clustered into seven classes resulting in 7x7x7
different combination of trigrams. For the interaction prediction part, feature vector space
is constructed by combining trigram frequency sets of both PDZ domain and
corresponding peptide which gave 686 features for each interaction (343 for PDZ domain,
343 for peptide). For bigram frequency calculation, the same procedure was applied and
we obtained 49 (7x7) features for each sequence and a total of 98 features (49 for PDZ
domain, 49 for peptide) were constructed for each interaction. Therefore, we obtained a

feature vector space (X,Y,W) to represent an interaction:

(XY ) ={(x. %5000 X353 ) (D1, Yasees Yaas ) (Wi W, )}

Here, X is the feature vector space of the PDZ sequence, and each feature x;
represents the frequency of each trigram where i=1,2,....,343 or each bigram where
1=1,2,...,49, Y is the feature vector space of peptide sequence, each feature y; represents
the frequency of each trigram or bigram, and W is the corresponding label that contains
binary data (w:binding, w,:non-binding). Thus, a 686 dimensional vector for trigram part
and a 98 dimensional vector for bigram part have been constructed to represent each
binding/non-binding interaction.

For the class prediction part, the peptide sequences are discarded and only the
sequences of PDZ domains are used to construct the feature vector space, because peptide
sequences are used as the label of the dataset. Therefore, a 343 dimensional vector space
for trigram part and 49 for bigram part with three labels (w;:Classl, w,:ClasslI, ws:Classl-

IT) have been built to represent each class of PDZ domain.

16
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2.3 Machine Learning Classifiers

2.3.1 Used Classifiers

Five commonly used machine learning classifiers (SVM, Nearest Neighbor, Naive
Bayes, J48, Random Forest) are trained for both interaction prediction and classification
models. After comparison of these different classifiers by using Weka 3.6 [64], it has been
indicated that Random Forest algorithm outperforms other classifiers which were

previously shown as the best classification algorithm such as SVM [65].

2.3.2 Comparison of Each Classifiers

Each classifier is trained by using 10-fold cross-validation. Cross-validation
measures the prediction performance in a stable way by leaving out a few instances (about
10% for 10-fold cross-validation) to be used as test set during the training process. The
exclusion is repeated until every instance in the dataset is once among those left-out. In
comparison to using an independent test set, using cross-validation provide less bias and
better predictive performance. Parameter selection for each classifier is done by varying
their parameters step-by-step and their accuracy and AUC values are compared to obtain
best parameters with highest performance (See Appendix A.2, Table A.2.1). At the end,
the classifier with the best performance was chosen as a model classifier.

In order to determine classification statistics of used models, the number of true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are used
to calculate true positive rate (also named as recall or sensitivity), TPR=TP/(TP+FN), false
positive rate, FPR=FP/(FP+TN) and precision, P=TP/(TP+FP). We measure the

performance of each classifier by using a ROC curve. The ROC curve is drawn as TPR

17
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(Sensitivity) versus FPR (1-Specificity). The area under the ROC curve, referred as AUC,
represents the predictive power: while a random predictive model has AUC=0.5, a perfect
one has AUC=1.0 so that a larger AUC shows better predictive power. However, ROC
curves can sometimes be misleading while dealing with highly unbalanced datasets.
Therefore, Precision versus Recall (PR) curves are also constructed to interpret the
performance of our model in a more informative manner [66]. PR curves show how many

true positives are likely to be obtained in a prediction system.

2.4 Prediction Models

2.4.1 PDZ Domain Interaction Prediction

Random forest was chosen to build our model due to the highest AUC and accuracy
values of this algorithm (see the result section for comparison of classifiers for trigram and
bigram models). To adjust the parameters of Random Forest algorithm, we evaluated the
effect of changes in parameters on its prediction performance by measuring out-of-bag
(OOB) error rate of each model tree. There are two parameters: number of trees (numTree)
and number of randomly selected features (numFeature). The number of features to be
used in random selection is rather sensitive and it must be much lower than the total
number of features [43]. On the other hand, the changes in the number of trees can only
result in small decreases in OOB error rate). Also, resampling was applied as a pre-process
in order to balance our imbalanced dataset which could be overwhelmed by the major class
otherwise and to derive robust estimates of standard errors. Resampling is a supervised
filter producing a random subset of the dataset. In our study, class distribution was left as-

is and sampling was done with replacement by adjusting the parameters.

18
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2.4.2 PDZ Domain Class Predictions

There is a multi-classification problem for class prediction because we do not only
want to discriminate between PDZ domains which bind to Class I or Class II, but also we
want to classify Class I-II domains whose interaction specificity reflects the promiscuous
pattern of PDZ domains. All five classifiers are trained on these classification dataset and
again Random Forest gives the best predictive performance with highest AUC and
accuracy values (see the result section for comparison of classifiers for trigram and bigram
models). The parameters of Random Forest algorithm is also adjusted in class prediction

part as done in interaction prediction model.

2.5 Ciritical Sequence Motifs

2.5.1 Dimensionality Reduction

In order to make the resulting model faster and extract important features,
dimensionality of our dataset is reduced by using feature extraction and selection methods.
Selection of important features can help us to get rid of redundant and/or irrelevant data. At
this point, there is a need for the correct selection of the features [67]. Feature extraction is
used to evaluate important features and it precedes feature selection which was used as a
search method. Correlation-based feature subset selection method is used as a feature
extraction method which considers the worth of a subset of features by evaluating the
individual predictive performance of each feature. In this selection method, performance of
individual features for predicting labels (w;) as well as the level of intercorrelation among
all features are considered, successful feature subsets include features highly correlated

with the label, but uncorrelated with each other [68]. For feature selection part, several
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search algorithms are performed and results of all of them are considered in order to reduce

features carefully. Used search methods are presented in Appendix A.2, Table A.2.2.

2.5.2 Extraction of Important Sequence Motifs

We analyzed the selected features to understand why they are important to
distinguish different PDZ interactions and classes. These extracted features might
correspond to some critical amino acid motifs which may be important for PDZ domain
interaction specificity. Indeed, one of the obtained features point out the GLGF (Gly-Leu-
Gly-Phe) repeat of PDZ domains which is an important conserved region for peptide
interaction [19]. This conserved GLGF sequence is located between BA-BB loop and aB
helix and directly involved in peptide selectivity and binding. In order to obtain these
important sequence regions from our models, we firstly compare extracted features of
trigram and bigram models. Consequently, we present these sequence motifs from trigrams

and bigrams positioned at the similar secondary structure regions of PDZ domains.
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Chapter 3

3  Peptide Library Construction

3.1 Genetic Algorithm

Genetic algorithm is a search heuristic technique which uses natural evolutionary
process of most organisms. For example, it uses mutation and crossover mechanisms to
reach better results as most organisms do in their evolution and reproduction. It usually
starts with a random population and end with a population of potential solutions. Namely,

it simulates the nature to reach better results.

3.1.1 Implementation

The population used in this study contains the sequences of binding peptides of a
PDZ domain (Dgeireq)- Each individual in the population consists of 10 amino acid
sequences. Initial population (Dgenerarea) 1 generated randomly by the algorithm and the
objective function below (least square function) is used to quantify the difference between
desired and generated amino acid probability distributions. The construction of amino acid

distributions and generation of populations is shown in Figure 3.1.

§= 2 WD 00 (M) = Dy (T

Here, n represents each amino acid positions of the individuals in the population,

D gesirea (7x10) is the desired amino acid probability distribution matrix, Dgenerarea (7%10) is
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the generated amino acid probability distribution matrix, wt is the weight function and S
gives the optimized fitness values [69].

Weight function is used to discriminate the importance of each amino acid position
of PDZ domain. As stated in literature review part, peptide positions 0 and -2 are very
crucial for recognition and binding to target proteins because the positions 0 and -2 point
towards to the binding pocket of PDZ domain during PDZ domain-peptide interaction [16].
Therefore, a weight function which gives more weight to these two positions (0 and -2)
among other 8 amino acid positions is used in our objective function. Here, wt is a row-
matrix which gives double weight to these two positions compared to other remaining
positions in the peptide of 10 amino acids. Namely, a change in these two positions affect

obtained fitness value more than others.
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Figure 3.1: The construction of amino acid distributions and generation of populations for

genetic algorithm.

Here, we try to minimize Dgqnce Which is the difference between Dgegeq and

Degeneratea- Firstly, we have sequences of amino acids in string form as a population; the

string form has to be converted into the numeric form in order to be processes in the

genetic algorithm. Therefore, 20 amino acid types are represented in 7 amino acid classes
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as seen in Table 2.1 and amino acid probability distribution of these sequences are

calculated by the equation of P, (b)/ ZPa(b). Here, a is the amino acid position, b is seven
b

amino acid classes and P,(b) is the number of occurrence of amino acid b in position a.
Therefore, by this equation, we calculate frequency of each amino acid in a specific
position and we name it as amino acid probability distribution. At the end, an amino acid
distribution matrix with a size of 7x10 is obtained to be used as populations for genetic

algorithm.

3.1.2 Parameter Tuning

Parameter adjustment of the genetic algorithm is very crucial in order to obtain
optimum results and the parameters have to be customized according to the nature of the
problem.

First, there are many methods for selection (best, roulette, tournament, percent and
random) which have to be selected according to the problem. We tried some different
selection methods and compared them according to their fitness and accuracy values.

Second, crossover and mutation rates must be optimized carefully. To obtain a
successful result, crossover rate is usually larger than the mutation rate. In this study, we
tuned crossover and mutation rates to obtain best solution.

Third, features of the individuals has to be consistent with their importance in the
problem, namely some weight function could be applied to the objective function. In this
study, a weight function is used to highlight the importance of positions 0 and -2 of the
peptide sequences which play crucial roles on PDZ domain specificity as stated in the
introduction. Therefore, weight of these positions are kept higher than other positions and

results of weighted and unweighted objective functions are compared to see the difference.
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Lastly, termination criteria and generated population size which could considerably
effect the performance of the algorithm is also tuned. All parameter tunings and found

results are explained and shown in the result section.

3.1.3 Construction of Binding Peptides for a Given PDZ Domain

This implemented genetic algorithm can be used for each PDZ domain. The only
necessary thing is to change desired amino acid probability matrix which consists of
interested PDZ domain binding peptide sequence information.

Here, we analyzed and obtained results for al-syntrophin as a representative
manner. The desired amino acid probability matrix is generated with 20 peptide sequences
which bind to al-syntrophin. Genetic algorithm with optimized parameters is applied to
this population and the resultant population is trained with PDZ interaction prediction
model. The population with lowest fitness value and highest prediction accuracy is

obtained. This population can be used for further experimental studies.
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Chapter 4

4 Results and Discussion

4.1 Performance Evaluation for Each Classifier

All five classifiers (SVM, Nearest Neighbor, Naive Bayes, J48 and Random Forest)
are trained for both interaction prediction and classification trigram/bigram models and
Random forest was chosen to build our models due to the highest AUC and accuracy
values of this algorithm. The high performance of Random Forest algorithm for interaction
prediction and classification trigram models can be seen in Figure 4.1 and Figure 4.3
respectively. Random forest also gives the best performance for interaction prediction and

classification bigram models as seen in Figure 4.2 Figure 4.4 respectively.

b
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Figure 4.1: Comparison of all classifiers used in interaction prediction trigram model (a)

Accuracy values with 95% confidence intervals (b) ROC curves and AUC values.
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Figure 4.3: Comparison of all classifiers used in classification trigram model (the result of
multi-classification to discriminate between Class I, Class II and Class I-II). (a) Accuracy

values with 95% confidence intervals (b) ROC curves and corresponding AUC values.
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Figure 4.4: Comparison of all classifiers used in classification bigram model (the result of

multi-classification to discriminate between Class I, Class II and Class I-II). (a) Accuracy

values with 95% confidence intervals (b) ROC curves and corresponding AUC values.

Random Forest grows many classification trees. Each tree gives a classification,

and votes for a class. The forest chooses the classification having the most votes over all

the trees in the forest. Each tree is grown as follows: (i) if the number of instances in the

training set is N, sample N is selected randomly with replacement from the original data.

This sample will be the training set for growing the tree, (ii) if there are M features in an

instance, a number m<<M is specified such that at each node, m features are selected

randomly out of M features and the best split on these m is used to split the node, (iii) each

tree is grown to the largest extent possible, namely there is no pruning.
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4.2 PDZ Domain Interaction Prediction Statistics

To tune the parameters of Random Forest algorithm, we evaluated the effect of
changes in parameters on its prediction performance by measuring out-of-bag (OOB) error
rate of each model tree. There are two parameters for Random Forest: number of trees
(numTree) and number of randomly selected features (numFeature). The lowest OOB error

rate was obtained when numTree=200 and numFeature=30 as seen in Figure 4.5.

Parameter tuning for Random Forest

100 trees
200 trees
300 trees
400 trees
500 trees
600 trees
700 trees
800 trees
900 trees
1000 trees

OOB error rate

numFeature

Figure 4.5: Parameter selection of Random Forest algorithm for interaction prediction.

After parameter tuning for Random forest, we trained our interaction model with
numTree=200 and numFeature=30. The accuracy of trigram part (91.4%) is slightly higher
than the bigram part (91.2%) (Table 4.1).
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Table 4.1: Prediction results for interaction prediction of PDZ domains for both trigram

and bigram models.

Training set (10-fold cross Validation set

validation)

TPR FPR  Precision Accuracy TPR FPR  Precision Accuracy
Trigram 0.89  0.075 0.85 91.4 0.61 0.042 0.92 79.8
Bigram 0.844 0.053 0.89 91.2 0.889 0.323 0.545 74.2

As seen in Table 4.1, although precision of trigram model is lower than the
precision of bigram model, its other values (TPR, FPR and accuracy) are better. So, we
design our model according to trigram frequency feature space. In order to see the
performance of trigram model, ROC and PR curves are plotted (Figure 4.6a, b). Our result
of AUC=0.97 for trigram part is high enough to be able to characterize PDZ interaction
specificity.
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Figure 4.6: Performance evaluation of Random Forest trigram model. (a) ROC curve, (b)
precision versus recall curve for interaction prediction part (c) ROC curve, (d) precision

versus recall curve for classification part.
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4.2.1 Interaction Validation Statistics

Also, we validate the power of our model by predicting the interaction of an unseen
validation dataset. After training the model with complete set of PDZ interaction database,
an unseen interaction validation dataset is sent to be classified according to the rules that
are learned from the trained model. The model performs well on the validation set with an
accuracy of 79.8% that it correctly classifies 25 of 27 binding and 46 of 62 non-binding
interactions (Table 4.1). The performance of bigram model is somehow lower in validation
dataset compared to trigrams. This can be due to the fact that bigrams assign more

common features of most of the interactions by masking the discriminative features.

4.3 PDZ Domain Class Prediction Statistics

The Random Forest model is used to discriminate both multi-classes (Class I/Class
II/Class I-II) and binary classes (Class I/Class II, Class I/Class I-II or Class II/Class I-1I)
in order to have an insight about their pair wise classifications.

As seen in Table 4.2, the predictive performance for multi-class learning is a bit
lower than binary-class ones which are very close with each other and the results for
trigram model has still better performance than bigram model. As we are trying to
distinguish all three classes of PDZ domains, we obtained the performance results of
trigram model for multi-class learning (Figure 4.6c, d). The model correctly classified 43
of 45 Class I, 16 of 20 Class II and 19 of 21 Class I-II PDZ domains. The results of binary
comparisons in Table 4.2 show that the highest accuracy is for differentiating Class II
PDZs from Class I-II PDZs and the least successful one is between Class I and Class I-II.

This means that amino acid distribution of Class I-II PDZs is slightly more similar to Class
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I PDZs. To ensure this similarity, amino acid frequency distribution histogram for Class

I/I/I-11 PDZ domains is plotted (Figure 4.7)

Table 4.2: Prediction results for class prediction of PDZ domains for trigram and bigram

models.

TP Rate FP Rate Precision Accuracy (%)

Trigram Bigram Trigram Bigram Trigram Bigram Trigram Bigram

Classl, Classll, 0.907 0.895 0.081 0.093 0911 0.902 90.7 89.5
Class I-1I*

Classl, ClasslI 0.918 0.956 0 0.200 1 0915 93.8 90.8
Classl, ClassI-II ~ 0.900 0.955 0 0.227 1 0.894 924 89.4
Classll, ClassI-II 1 0.813 0.107 0 0.812 1 92.7 92.7

*The first row shows a multi-class learning and remaining rows shows the binary-class
learning for pair wise combinations of three classes. For multi-class learning, weighted

average results were shown.
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Amino acid frequency distribution of Class I, Class Il
and Class I-l1l PDZ domains
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Figure 4.7: Amino acid frequency distribution of Class I/II/I-Il PDZ domains.

4.4 Important Sequence Motifs of PDZ Domains

Dimension reduction is applied to both trigram and bigram models because we want
to observe important common features of both models. For trigram model, we obtained 23
features for PDZ domain and 23 features for peptide spaces to represent interaction
prediction part. Also, feature reduction was performed for classification part and we
obtained 53 features (Data is not shown).

For bigram model, there were 11 features for PDZ domain and 12 features for

peptide space in order to construct interaction prediction part and we extracted 10 features
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for classification part. The accuracy values of our model did not increase after feature
reduction for both interaction prediction and classification parts except trigram
classification model (Table 4.3). However, reduction in feature space let us analyze these

extracted important features.

Table 4.3: Prediction results after feature reduction.

TPR FPR Precision AUC Accuracy (%)
Trigram  Bigram Trigram  Bigram Trigram  Bigram Trigram Bigram Trigram  Bigram
Interaction
o 0.744  0.786 0.096  0.07 0.798  0.851 0.905  0.948 85 88.1
prediction
Classificati
. 0942  0.86 0.044  0.096 0.942  0.859 0.994  0.966 94.2 86
on

*The first row shows a multi-class learning (Classl, ClasslI, Class I-1I)

We observe that bigram parts of extracted trigrams are common to extracted
bigrams, i.e. there are some highly occurring bigrams in both trigram and bigram feature
sets for interaction prediction and classification parts. After the selection of the most
occurring ones, we obtained sequence motifs of “12”, “16” and “25” (Figure 4.8). Types of
amino acids can be seen in Table 2.1. For example, motif “12” corresponds to small

hydrophobic amino acid (A, G, V) followed by large hydrophobic amino acid (I, L, F, P).

35



Chapter 4: Results and Discussion 36

Figure 4.8: Critical sequence motifs (a) Aligned sequences of 5 representative PDZ
domains:  al-syntrophin(1/1) (PDB 1ID:2pdz), NHERFI1(1/2) (PDB 1ID:1i92),
Harmonin(2/3) (PDB ID:2kbs), Pickl(1/1) (PDB ID:2pku) and PTP-BL(2/5) (PDB
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ID:1vj6). While first row indicates the aligned sequence of corresponding PDZ domain,
second row represents the sequence in seven class amino acid types. Secondary structure
positions of the PDZ sequences are represented graphically at the top (aA, Ab, BA-BF).
Three sequence motifs (“127, “16”, “25”) proposed to account for ligand specificity are
indicated by yellow highlight. (b) Cartoon diagrams of these PDZ domains, motifs “12”,

“16” and “25” are colored in red and shown in stick form.

As seen in Figure 4.8, characteristic GLGF repeat of PDZ domains were
determined by extracting sequence motif of “12” between BA-BB loop and aB helix. Other
two highly occurring sequence motifs were positioned at the end of the aB (“25) and at
the loop between aA and BD (“16). When these sequence motifs are displayed on the 3D
structure of PDZ domains, while motif “25” is positioned near the binding groove (at the
end of the aB), motif “16” is positioned far from the binding groove (at the aA-BD loop).
Extracted motif on aB helix could function in specificity of PDZ domains. Songyang et al.
investigated the importance of aB helix on peptide selectivity of PDZ domains by showing

high correlation between first residue in the aB helix and peptide position -2 [19].

4.5 Case Studies: Biologically Important Sequence Motifs

Below, we discuss important sequence motifs of some specific PDZ domains:

ol-syntrophin(1/1): The specific interaction property of al-syntrophin PDZ domain
is investigated by Schultz ef al. and they found that Leu 14, Gly 15 and Ile 16 showed a
large chemical shift upon binding of ligand [70]. PDZ domain of al-syntrophin forms
hydrophobic pocket consisting of Leu 14, Ile 18 and Leu 71 to bury the side chain of Val -
2 of the peptide. Motif “12” corresponds to Gly 15, Ile 16 and “5” of motif “25”
corresponds to Leu 71 which is an important part of the hydrophobic pocket.
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NHERF(1/2): First PDZ domain of NHERF1 plays important role in cellular
localization by binding to the cystic fibrosis transmembrane conductance regulator (CFTR)
[71]. Leu 0 of the ligand forms hydrophobic contact with Phe 26 and Ile 79 and makes H-
bonds with Gly 25, Phe 26 and Arg 80. These important residues were also extracted by
using our method: while motif “12” in BB corresponds to Gly 25, Phe 26, motif “25” in aB
exactly corresponds to Ile 79, Arg 80.

Harmonin(2/3): Pan et al. tried to elucidate structural basis of binding pattern of
Harmonin(2/3) and found that carboxyl group of cad 23 ligand forms hydrogen bonds with
Leu 222, Glu 223, Cys 224 (GLGF motif) and is stabilized by Lys 279 [72]. These
important residues of Harmonin were also observed in our motifs as seen from Figure 3
(P