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ABSTRACT

PDZ domain is a well-conserved, structural protein-protein interaction domain 

found in hundreds of signaling proteins that are otherwise unrelated. PDZ domains can 

bind to the C-terminal peptides of different proteins and they cluster different protein 

complexes together, target specific proteins and route these proteins in many signaling 

pathways. PDZ domains are classified into Class I, II and III, depending on their binding 

partners and the nature of bonds formed. Binding specificities of PDZ domains are very 

crucial in order to understand the complexity of signaling pathways. It is still an open 

question how these domains recognize and bind their partners. 

The focus of this thesis is three folds: 1) predicting to which peptides a PDZ 

domain will bind, 2) classification of PDZ domains as Class I, II or I-II and 3) construction 

of peptide libraries for PDZ domains using genetic algorithm. For the first two parts, 

trigram and bigram amino acid frequencies are used as features in machine learning 

methods. Using 85 PDZ domains and 181 peptides, our model reaches high prediction 

accuracy (91.4%) for binary interaction prediction which outperforms previously 

investigated similar methods. Also, we can predict classes of PDZ domains with an 

accuracy of 90.7%. We propose three critical amino acid sequence motifs that could have 

important roles on specificity pattern of PDZ domains. For the last part, we implemented 

genetic algorithm to generate possible binding peptides for PDZ domains by using the 

sequence of experimentally verified binding peptides of PDZ domains. Then, the 

performance of this generated peptide library is evaluated by PDZ interaction prediction 

model constructed in the first part.
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ÖZETÇE

PDZ yapısal bölgeleri, birbirinden farklı birçok sinyal iletim proteinlerinde 

bulunan, iyi korunmuş yapısal protein etkileşim bölgeleridir. PDZ yapısal bölgeleri 

proteinlerin karboksil ucuna bağlanarak, farklı protein komplekslerini bir araya getirir, 

belli proteinleri hedef alır ve bu proteinleri sinyal iletim yollarına yönlendirir. PDZ yapısal 

bölgeleri, bağlandığı hedef peptitlere ve oluşturduğu bağların niteliğine göre Sınıf I, II, III 

olmak üzere üç sınıfa ayrılır. PDZ yapısal bölgelerinin bağlanma özgünlüğü, sinyal 

iletimlerinin karmaşıklığını anlamak adına çok önemlidir. Bu yapısal bölgelerin, 

hedeflerini nasıl tanıdığı ve hedeflerine nasıl bağlandığı hala açık bir sorudur.

Bu tez, üç odak noktasından oluşmaktadır: 1) PDZ yapısal bölgelerinin hangi 

peptitlere bağlanabileceğini tahmin etmek, 2) PDZ yapısal bölgelerini Sınıf I, II, I-II olarak 

sınıflandırabilmek, 3) genetik algoritma kullanılarak PDZ yapısal bölgeleri için peptit veri 

tabanı oluşturmak. İlk iki kısım için, trigram ve bigram amino asit frekansları 

hesaplanarak, bunlar oluşturulan otomatik öğrenme metodunda özellik olarak 

kullanılmıştır. 85 PDZ yapısal bölgesi ve 181 peptit kullanılarak, modelimiz ikili etkileşim 

tahmininde yüzde 91.4 doğruluğa ulaşarak benzer diğer metotlarından daha üstün

olmuştur. Aynı zamanda, bu metotla PDZ yapısal bölgelerinin sınıfları yüzde 90.7 

doğrulukla tahmin edilmiştir. Ve PDZ yapısal bölgelerinin özgünlüğünde önemli roller 

üstlenebilecek üç kiritk amino asit sekans motifi önerilmiştir. Son kısım için, genetik 

algoritma uygulamasıyla, PDZ yapısal bölgelerine bağlandığı deneysel olarak kanıtlanmış 

peptitlerin sekansları kullanılarak, PDZ yapısal bölgelerine bağlanabilecek olası peptitler 

oluşturulmuştur. Daha sonra, bu oluşturulmuş peptit veri tabanlarının performansları, ilk 

kısımda oluşturulan PDZ etkileşimi tahmin modeli ile test edilmiştir. 
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Chapter 1

1 Introduction

1.1 Literature Review

1.1.1 Protein-Protein Interaction Domains

An increasing body of data suggests that proteins involved in many cellular 

mechanisms are regulated in a modular manner that a protein could contain functionally or 

structurally independent regions (domains). The networks and pathways that connect 

receptors to their targets usually involve a series of protein-protein interactions. Many 

different cellular mechanisms are regulated by protein interaction domains [1]. They 

organize the association of proteins with one another, small molecules, nucleic acids or 

phospholipids. Protein interaction domains can route other proteins to specific cellular 

locations, form signaling multi-complex proteins, secure recognition of post-translational 

modifications, control activity, formation and specificity of enzymes [2]. Therefore, 

protein interaction networks are heavily investigated due to their potential applications in 

drug discovery. They can give key insights about the mechanisms of human diseases. 

Protein-protein interactions play fundamental roles in signal transduction, 

formation of functional protein complexes and protein modification [3]. Many biological 

processes are regulated through the dynamic interactions of modular protein domains (e.g., 

WW, SH3, SH2, PH, and PDZ) and their corresponding binding targets. Investigation of 

the selectivity, specificity, and regulatory mechanisms involved in these protein-protein 

interactions can therefore provide important insights into biological activities.

Protein-protein interaction domains can usually be expressed independently from 

their main proteins, namely they can provide their intrinsic function of binding to their 
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targets without the host protein. Binding pocket and N- and C- terminus of these domains 

are usually on the opposite face [2]. This structural arrangement let these domains insert 

easily into the host protein without blocking their binding pockets.

Protein interaction domains can form hetero/homo-typic domain interactions and

they can also bind to short peptide motifs or small molecules. There is not a clear 

distinction between these types of interactions. For example, PDZ domains generally bind 

to short peptide motifs at the C termini of their target proteins, but they can also form PDZ-

PDZ domain interactions [4-6].

1.1.2 PDZ Domains

One of the most common protein interaction domains in the cell is PDZ domain 

which is a central signaling protein of most species [68]. The PDZ domains, among other 

nearly 70 distinct recognition domains, are crucial because they are involved in 

development of multi-cellular organisms by constructing cell polarity, coordination of 

intercellular signaling system and directing the specificity of signaling proteins [9]. They 

consist of 80 to 90 amino acids and have a compact globular module composed of a core of 

six β strands (βA - βF) and two α helices (αA, αB). By binding the C-terminal motifs of 

their target proteins, PDZ domains target, cluster and route these proteins [10]. However, 

some PDZ domains also can bind to the internal motifs of target proteins, lipids and other 

PDZ domains [6,11]. 

C-terminus of the peptides recognizes and binds to a pocket between carboxylate-

binding loop (βA – βB loop) that contains the conserved GLGF motif, and αB helix of the 

PDZ domain [12-15], this is also called the canonical binding. The ligand binds to the PDZ 

domain as an anti-parallel extension of the β-sheet of the domain and  while ligand 

positions -1 and -3 head towards to the solvent, the positions 0 and -2 point towards to the 
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binding pocket [16] (Figure 1.1). Therefore, it can be suggested that ligand positions 0 and 

-2 are very crucial for recognition and binding to target proteins. The importance of these 

two positions also lead to the general classification of PDZ domains into three classes 

according to short peptide motifs of the last three residues at the extreme C-termini of their 

peptide ligands.  Class I PDZ domains bind to C terminal motifs with the sequence of 

[Ser/Thr-X-Ф COOH], Class II PDZs bind to the sequence of [Ф-X-Ф-COOH] and Class 

III PDZs prefer the sequence of [Asp/Glu-X-Ф-COOH] where Ф is any hydrophobic 

amino acid and X is any amino acid. However, some PDZ domain interactions do not 

satisfy these restrictive types of recognition and so additional classes and additional 

important residues are proposed to exist for ligand specificity of PDZ domains [16-18]. For 

example, Songyang et al. investigated the binding specificities of nine PDZ domains by 

using an oriented peptide library and concluded that additional selection specificities, 

depending on up to -8 position of the peptide ligand, were observed beside the 0 and -2 

positions [19].
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Figure 1.1: Representative structure of a PDZ domain in complex with its ligand (a) The 

common representation of a PDZ domain (α-1 syntrophin) with a peptide (in its stick form) 

in its binding pocket. Peptide positions -1 and -3 (blue) point towards to the solvent, the 

positions 0 and -2 (pink) head towards to the binding pocket (b) The interaction of the 

peptide with αB helix and conserved GLGF segment (here it is GLGI) of the βA-βB loop 

(PDB ID:2PDZ).

Although PDZ domains show selectivity toward their target ligands, they also 

display promiscuity, binding to more than one ligand, and degenerate specificity [2023], so 

interaction prediction of these domains can be challenging. Several studies aimed to 

classify and predict interaction specificity of PDZ domains that could save time-consuming 

and expensive experiments. Chen et al. predicted PDZ domain-peptide interactions from 
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primary sequences of PDZ domains and peptides by using a statistical model and reported 

an area under curve (AUC) value of 0.87 for extrapolations to both novel mouse peptides 

and PDZ domains [24]. Bezprozvanny and Maximov used a classification method based on 

the two critical positions of 249 PDZ domains and they presented 25 different classes of 

PDZ domains [17]. Stiffler et al. also tried to characterize the binding selectivity of PDZ 

domains by training multi-domain selectivity model for 157 mouse PDZ domains with 

respect to 217 peptides and they indicated that PDZ domains are distributed throughout the 

selectivity space contrary to discrete specificity classes [25]. Schillinger et al. used a new 

approach, Domain Interaction Footprint (DIF), to predict binding peptides of SH3 and PDZ 

domains by using only the sequence of the peptides, they reported an AUC value of 0.89 

for PDZ multi-domain model by using the sequence information of binding and non-

binding peptides of four different PDZ domains [26]. Tonikian et al. constructed a 

specificity map consisting of 16 unique specificity classes for 72 PDZ domains and this 

lead to the prediction of PDZ domain interactions [27]. Wiedemann et al. tried to quantify 

specificity of three PDZ domains by relating the last four C-terminal motifs of their ligands 

to the corresponding dissociation constants which can provide selectivity pattern of PDZ 

domains and design of super-binding peptides [23]. Eo et al. used an SVM classifier by 

adapting amino acid contact matrices and physiochemical distance matrix as a feature 

encoding in order to identify PDZ domain ligand interactions [28].

1.1.3 Roles of PDZ Domains in Diseases

Some members of PDZ domain family play considerable roles in neurological 

diseases. They interact with pre-synaptic and post-synaptic proteins and they have crucial 

roles on synaptic neurotransmission and plasticity [29]. It is shown that PICK1, one of the 

PDZ domains, interacts with Glutamate (Glu) receptor family [30]. These Glutamate 
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receptors have roles in excitatory neurotransmission and synaptic functions and it is shown 

that they are related to some neurological diseases such as stroke, neurodegeneration, 

depression, anxiety, epilepsy and schizophrenia. Also, other PDZ domains such as GRIP, 

ABP and PSD95 are observed to have interactions with Glu receptors. In addition, PICK1 

interacts with monoamine plasma membrane transporters (dopamine, neuroepinephrine, 

serotonin) [31]. Any destruction to monoamine neurotransmission could cause 

neurodegenerative diseases (depression, lack of attention, hyperactivity, schizophrenia).

PICK1 also interacts with three proteins which have roles in cancer generation and 

cell growth. These proteins are Neurolignin/ErbB receptors (ErbB/Rs-breast, lung and liver 

cancer) [32], tetradecanoyl phorbol ester-induced main receptor sequences (TIS21-cell 

growth inhibition) [33] and Coxsackie and adenovirus receptors (CAR-its over-expression 

decreases cell growth speed) [34]. PICK1 probably affects PKC-phosphorylation states 

and/or surface expressions and distribution of these proteins.

1.1.4 Methods Overview

Two methods are used in this study. For the first part, interactions and classes of 

PDZ domains are predicted through a machine learning approach. Then, a new method is 

developed by using genetic algorithm to generate peptide libraries specific to PDZ 

domains.

1.1.4.1 Machine Learning and Interaction Prediction

Machine learning methods are used for pattern recognition tasks where data is 

massive and a set of rules can not discriminate the patterns. The main idea behind these 

methods is to learn to discriminate experimentally verified data and obtain learned 
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complex rules to predict probable solutions. Although there are so many different machine 

learning algorithms, they are all driven by the data used to train them [35].

There are several machine learning approaches to predict domain interactions [36-

38]. We chose five classifiers, SVM (Support Vector Machine), Nearest Neighbor, Naïve 

Bayes, J48 and Random Forest which have been commonly used in protein-protein 

interaction prediction problems. In SVM algorithm, feature vectors are non-linearly 

mapped on a high dimensional feature space and a set of hyperplanes are constructed to be 

used for classification or regression [39]. The simplest one among used classifiers is 

Nearest Neighbor which classifies instances according to their closeness to the training 

examples [40].  The basic idea behind Naïve Bayes is to predict the class of an instance by 

learning conditional probability of each attribute [41]. J48, also known as C4.5 grows an 

initial tree by using divide-and-conquer algorithm and then rank test instances [42]. 

Random Forest developed by Breiman generates many classification trees simultaneously 

where each node uses a random subset of the features and outputs the classification based 

on majority voting over all trees in the forest [43]. 

1.1.4.2 Peptide Library Construction

There are many biochemical and structural studies trying to develop small 

molecules to regulate protein-protein interactions. These studies are generally based on the 

modification of existing binding peptides [44,45] or random peptide sequence design [46-

50]. Because many of these studies are experimental, they usually deal with small amount 

of proteins and ligands. The most common problem in these studies is uncharacterized 

binding or regulatory regions of corresponding proteins. PDZ domains are very 

advantageous because binding regions of most of the PDZ domains are known in detail 

[51]. The development of new methods to regulate PDZ domains is very crucial due to the 
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important functions of these domains in cancer and other diseases. Therefore, construction 

of PDZ domain specific peptide database is one of the aims of this study. These 

constructed peptide database could efficiently contribute to novel drug design studies.

1.1.4.2.1 PDZ Domain Peptide Libraries

Peptide library approaches are used for PDZ domain-peptide interactions because 

PDZ domains recognize short linear motifs (C-termini) of their target proteins. There are 

two commonly used experimental peptide library approaches: phage display and SPOT 

synthesis [52].

Phage display is a high-throughput screening of protein-protein interactions. 

Protein of interest is expressed on phage surface to be exposed to short randomized peptide 

sequences and if any peptide interact with the protein, it can be analyzed after washing and 

elution [53]. SPOT synthesis allows the parallel synthesis and screening of thousands of 

cellulose membrane-bound peptides. These approaches have been applied to study PDZ-

mediated interactions [44,54,55].

Studies with PDZ peptide libraries and microarrays is usually conducted in order to 

have more information about PDZ-peptide interactions, these studies could lead to 

generation of a key resource to investigate signaling pathways within cells [25,56]. This 

information needs to be comprehensively deposited in publicly available repositories, such 

as iSPOT, DOMINO, and PDZBase [57-60] in order to maximally accelerate the discovery 

of novel PDZ-mediated interactions in cells. PDZBase is a unique database that contains 

information extracted from the literature of all known PDZ domain-mediated protein-

protein interactions obtained from in vivo or in vitro experiments [60].
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1.1.4.2.2 Genetic Algorithm

Genetic algorithm is a population based method which gives a set of solutions 

instead of one solution. It applies a random search with controlled selection. The 

techniques used in genetic algorithm are generally originated from mechanisms of 

evolutionary biology (mutation, cross-over, selection) [61].

Genetic algorithm generally consists of four main steps: 1) initialization, 2) 

selection, 3) reproduction and 4) termination. In the first step, the problem is defined as a 

genetic representation and an initial population with size N is generated. In the second step, 

fitness value of each individual is calculated through an objective function and parents of 

next populations are generated according to their fitness values. In the reproduction step, 

selected parents are paired and genetic operators, crossover and mutation, are applied to 

form a new population. The whole process is repeated until the last step, when the 

termination criterion is met, the algorithm gives the best solution [62]. A representative 

scheme of genetic algorithm is shown in Figure 1.2.
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Figure 1.2: A representative scheme of the genetic algorithm.

1.2 Statement of the Problem

As stated in the literature review section, there are some experimental and 

computational studies investigating the interactions of PDZ domains which play important 

roles in human disease pathways. In this study, we try to figure out interaction specificity 

and different classes of PDZ domains by means of machine learning methods and we also 
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try to generate peptide database which consists of potential binding partners for PDZ 

domains by using genetic algorithm.

We propose a method to predict domain-peptide interactions and classes of PDZ 

domains by using only the sequence information of PDZ domains and their experimentally 

verified binding/nonbinding ligands. In order to construct a numerical feature vector for 

each interaction, trigram and bigram frequencies of each primary sequence of PDZ 

domains and peptides are calculated. We make use of the most commonly used classifiers 

(SVM, Nearest Neighbor, Naïve Bayes, J48, Random Forest). Moreover, we show that our 

method can be efficiently used to distinguish between Class I, Class II and Class I-II PDZ 

domains. After completion of models, we try to find some critical amino acid motifs on 

PDZ domains which contribute their specificity more than other amino acid sequences by 

reducing the dimensions of features. Last, we implemented genetic algorithm to construct 

possible binding peptides for PDZ domains. Generated peptide libraries are trained in our 

interaction prediction model in order to see their performance. These models can be used 

to reduce the search space of experimental studies by giving the most probable candidate 

binding partners of PDZ domains.

1.3 Outline

This thesis is composed of five chapters:

In Chapter 2, construction of PDZ interaction and class prediction models is 

explained with detail. Structure of datasets, feature encoding method, machine learning 

methods and dimensionality reduction process are explained.

In Chapter 3, the genetic algorithm and its implementation to our problem are 

presented. The generation of initial population by constructing amino acid probabilities of 

binding peptides is described in detail.
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In Chapter 4, results obtained from PDZ interaction and class prediction models are 

presented. The selection of used classifier for both models is explained by showing 

performance comparison of five different classifiers. Accuracy and AUC (Area under 

curve) values of interaction prediction and classification models is shown for both 

trigram/bigram frequency encodings. Then, critical sequence motifs for PDZ domains 

found after feature reduction are presented by demonstrating them on the three dimensional 

structures of PDZ domains. Lastly, the results of parameter tuning and method selection 

for genetic algorithm is explained and obtained peptide library for a PDZ domain, α1-

syntrophin, is demonstrated.

In Chapter 5, the findings in this study are summarized, and the future work with 

suggestions is presented.
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Chapter 2

2 Prediction Methods

2.1 Datasets Used in Prediction Methods

The aim of this study is two-fold. First, we try to predict interactions and classes of 

PDZ domains. Second, we try to construct peptide libraries for PDZ domains. For both 

parts, we need experimental data in order to give the input for our algorithm and construct 

our predictive model. The structure of our dataset is explained in the following sections 

and datasets are given in Appendix A.1.

2.1.1 PDZ Domain Interaction Dataset

For interaction prediction part, a positive (binding) and a negative (non-binding) 

dataset are needed in our machine learning model. The PDZ interaction dataset is retrieved 

from the study of Stiffler et al., which is composed of interaction data of 85 mouse PDZ 

domains with respect to 217 mouse genome-encoded peptides [25,26]. They used the 

combination of protein microarrays and fluorescence polarization (FP) methods to identify 

biological interactions of PDZ domains. In the current study, only binding and non-binding 

information that were confirmed by FP is used as the training set due to the fidelity of FP. 

After selection of FP confirmed interactions, we obtained 731 binding and 1361 non-

binding interactions between 85 PDZ domains and 181 peptides.
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2.1.2 PDZ Domain Classification Dataset

For class prediction part, 86 PDZ domains are categorized, resulting in 45 Class I, 

20 Class II and  21 Class I-II PDZ domains. These are retrieved from our interaction 

dataset and PDZBase [60] by looking at their interactions with different classes of 

peptides. PDZ domains are annotated as Class I and Class II according to the C terminus 

sequence of the interacting peptides, [Ser/Thr-X-Φ-COOH] for Class I peptides and [Φ-X-

Φ-COOH] for Class II peptides, respectively. Class I-II PDZ domains are determined if 

they bind to both Class I and Class II peptides. (See Appendix A.1, Table A.1.1)

2.1.3 Validation Dataset

An independent validation dataset is also used in interaction prediction part in order 

to test the predictive performance of our model. The validation dataset is extracted from 

the previous study of Stiffler et al. and it is composed of 27 binding and 62 non-binding 

interactions of 16 PDZ domains and 20 peptides [56].

In order to be consistent in our prediction model, we took the last 10 residues of 

each peptide sequence due to the selection specificities of PDZ domains up to -10 positions 

of peptides. The sequence data of PDZ domains and peptides can be seen in Table A.1.2, 

and Table A.1.3 respectively (Appendix A.1).
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2.2 Feature Encoding

2.2.1 Bigram/Trigram Frequency Model

Frequencies of consecutive three amino acids (trigram) and two amino acids 

(bigram) in the primary sequences are used as features. For instance, a sequence of 

“ABCDE” results in trigram set of “ABC”, “BCD”, “CDE” and bigram set of “AB”, “BC”, 

”CD” and “DE”. In order to reduce the dimension of the features, 20 amino acids are 

clustered into 7 different classes (Table 2.1) according to their dipoles and volumes of the 

side chains which reflect their interaction specificity by giving an insight about their 

electrostatic and hydrophobic natures [63].

Table 2.1: Seven amino acid classes used in our model.

Class Amino acid(s) Volume (Å3) Dipole (Debye)

1 Ala, Gly,Val <50 0

2 Ile, Leu, Phe, Pro >50 0

3 Tyr, Met, Thr, Ser >50 <1.0

4 His, Asn, Gln, Trp >50 1.0<Dip.<2.0

5 Arg, Lys >50 2.0<Dip.<3.0

6 Asp, Glu >50 >3.0

7 Cys* >50 <1.0

*Cys is differentiated from class 3 because it can form disulfide bonds

To calculate trigram frequency of the PDZ domains and corresponding peptide 

sequences, the number of occurrence of each subsequent trigram in the sequence is 

counted, and this number is divided by the total number of trigrams in the sequence which 

is (n-2), where n is the sequence length. At the end, we obtain 343 (7x7x7) features for 
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each sequence because amino acids are clustered into seven classes resulting in 7x7x7 

different combination of trigrams. For the interaction prediction part, feature vector space 

is constructed by combining trigram frequency sets of both PDZ domain and 

corresponding peptide which gave 686 features for each interaction (343 for PDZ domain, 

343 for peptide). For bigram frequency calculation, the same procedure was applied and 

we obtained 49 (7x7) features for each sequence and a total of 98 features (49 for PDZ 

domain, 49 for peptide) were constructed for each interaction. Therefore, we obtained a 

feature vector space (X,Y,W) to represent an interaction:

        1 2 343 1 2 343 1 2, , , , ..., , , , ..., , ,X Y W x x x y y y w w

Here, X is the feature vector space of the PDZ sequence, and each feature xi

represents the frequency of each trigram where i=1,2,….,343 or each bigram where 

i=1,2,…,49, Y is the feature vector space of peptide sequence, each feature yi represents 

the frequency of each trigram or bigram, and W is the corresponding label that contains 

binary data (w1:binding, w2:non-binding). Thus, a 686 dimensional vector for trigram part 

and a 98 dimensional vector for bigram part have been constructed to represent each 

binding/non-binding interaction. 

For the class prediction part, the peptide sequences are discarded and only the 

sequences of PDZ domains are used to construct the feature vector space, because peptide 

sequences are used as the label of the dataset. Therefore, a 343 dimensional vector space 

for trigram part and 49 for bigram part with three labels (w1:ClassI, w2:ClassII, w3:ClassI-

II) have been built to represent each class of PDZ domain.
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2.3 Machine Learning Classifiers

2.3.1 Used Classifiers

Five commonly used machine learning classifiers (SVM, Nearest Neighbor, Naïve 

Bayes, J48, Random Forest) are trained for both interaction prediction and classification 

models. After comparison of these different classifiers by using Weka 3.6 [64], it has been 

indicated that Random Forest algorithm outperforms other classifiers which were 

previously shown as the best classification algorithm such as SVM [65].

2.3.2 Comparison of Each Classifiers

Each classifier is trained by using 10-fold cross-validation. Cross-validation 

measures the prediction performance in a stable way by leaving out a few instances (about 

10% for 10-fold cross-validation) to be used as test set during the training process. The 

exclusion is repeated until every instance in the dataset is once among those left-out. In 

comparison to using an independent test set, using cross-validation provide less bias and 

better predictive performance. Parameter selection for each classifier is done by varying 

their parameters step-by-step and their accuracy and AUC values are compared to obtain 

best parameters with highest performance (See Appendix A.2, Table A.2.1). At the end, 

the classifier with the best performance was chosen as a model classifier.

In order to determine classification statistics of used models, the number of true 

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are used 

to calculate true positive rate (also named as recall or sensitivity), TPR=TP/(TP+FN), false 

positive rate, FPR=FP/(FP+TN) and precision, P=TP/(TP+FP). We measure the 

performance of each classifier by using a ROC curve. The ROC curve is drawn as TPR 
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(Sensitivity) versus FPR (1-Specificity). The area under the ROC curve, referred as AUC, 

represents the predictive power: while a random predictive model has AUC=0.5, a perfect 

one has AUC=1.0 so that a larger AUC shows better predictive power. However, ROC 

curves can sometimes be misleading while dealing with highly unbalanced datasets. 

Therefore, Precision versus Recall (PR) curves are also constructed to interpret the 

performance of our model in a more informative manner [66]. PR curves show how many 

true positives are likely to be obtained in a prediction system.

2.4 Prediction Models

2.4.1 PDZ Domain Interaction Prediction

Random forest was chosen to build our model due to the highest AUC and accuracy 

values of this algorithm (see the result section for comparison of classifiers for trigram and 

bigram models). To adjust the parameters of Random Forest algorithm, we evaluated the 

effect of changes in parameters on its prediction performance by measuring out-of-bag 

(OOB) error rate of each model tree. There are two parameters: number of trees (numTree) 

and number of randomly selected features (numFeature). The number of features to be 

used in random selection is rather sensitive and it must be much lower than the total 

number of features [43]. On the other hand, the changes in the number of trees can only 

result in small decreases in OOB error rate). Also, resampling was applied as a pre-process 

in order to balance our imbalanced dataset which could be overwhelmed by the major class 

otherwise and to derive robust estimates of standard errors. Resampling is a supervised 

filter producing a random subset of the dataset. In our study, class distribution was left as-

is and sampling was done with replacement by adjusting the parameters.
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2.4.2 PDZ Domain Class Predictions

There is a multi-classification problem for class prediction because we do not only 

want to discriminate between PDZ domains which bind to Class I or Class II, but also we 

want to classify Class I-II domains whose interaction specificity reflects the promiscuous 

pattern of PDZ domains. All five classifiers are trained on these classification dataset and 

again Random Forest gives the best predictive performance with highest AUC and 

accuracy values (see the result section for comparison of classifiers for trigram and bigram 

models). The parameters of Random Forest algorithm is also adjusted in class prediction 

part as done in interaction prediction model.

2.5 Critical Sequence Motifs

2.5.1 Dimensionality Reduction

In order to make the resulting model faster and extract important features, 

dimensionality of our dataset is reduced by using feature extraction and selection methods. 

Selection of important features can help us to get rid of redundant and/or irrelevant data. At 

this point, there is a need for the correct selection of the features [67]. Feature extraction is 

used to evaluate important features and it precedes feature selection which was used as a 

search method. Correlation-based feature subset selection method is used as a feature 

extraction method which considers the worth of a subset of features by evaluating the 

individual predictive performance of each feature. In this selection method, performance of 

individual features for predicting labels (wi) as well as the level of intercorrelation among 

all features are considered, successful feature subsets include features highly correlated 

with the label, but uncorrelated with each other [68]. For feature selection part, several 
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search algorithms are performed and results of all of them are considered in order to reduce 

features carefully. Used search methods are presented in Appendix A.2, Table A.2.2.

2.5.2 Extraction of Important Sequence Motifs

We analyzed the selected features to understand why they are important to 

distinguish different PDZ interactions and classes. These extracted features might 

correspond to some critical amino acid motifs which may be important for PDZ domain 

interaction specificity. Indeed, one of the obtained features point out the GLGF (Gly-Leu-

Gly-Phe) repeat of PDZ domains which is an important conserved region for peptide 

interaction [19]. This conserved GLGF sequence is located between βA-βB loop and αB 

helix and directly involved in peptide selectivity and binding. In order to obtain these 

important sequence regions from our models, we firstly compare extracted features of 

trigram and bigram models. Consequently, we present these sequence motifs from trigrams 

and bigrams positioned at the similar secondary structure regions of PDZ domains.
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Chapter 3

3 Peptide Library Construction

3.1 Genetic Algorithm

Genetic algorithm is a search heuristic technique which uses natural evolutionary 

process of most organisms. For example, it uses mutation and crossover mechanisms to 

reach better results as most organisms do in their evolution and reproduction. It usually 

starts with a random population and end with a population of potential solutions. Namely,

it simulates the nature to reach better results.

3.1.1 Implementation

The population used in this study contains the sequences of binding peptides of a 

PDZ domain (Ddesired). Each individual in the population consists of 10 amino acid 

sequences. Initial population (Dgenerated) is generated randomly by the algorithm and the 

objective function below (least square function) is used to quantify the difference between 

desired and generated amino acid probability distributions. The construction of amino acid

distributions and generation of populations is shown in Figure 3.1.

2( )[ ( ) ( )]desired generatedn
S wt n D n D n 

Here, n represents each amino acid positions of the individuals in the population, 

Ddesired (7x10) is the desired amino acid probability distribution matrix, Dgenerated (7x10) is 
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the generated amino acid probability distribution matrix, wt is the weight function and S 

gives the optimized fitness values [69].

Weight function is used to discriminate the importance of each amino acid position 

of PDZ domain. As stated in literature review part, peptide positions 0 and -2 are very 

crucial for recognition and binding to target proteins because the positions 0 and -2 point 

towards to the binding pocket of PDZ domain during PDZ domain-peptide interaction [16].

Therefore, a weight function which gives more weight to these two positions (0 and -2) 

among other 8 amino acid positions is used in our objective function. Here, wt is a row-

matrix which gives double weight to these two positions compared to other remaining 

positions in the peptide of 10 amino acids. Namely, a change in these two positions affect 

obtained fitness value more than others.
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Figure 3.1: The construction of amino acid distributions and generation of populations for 

genetic algorithm.

Here, we try to minimize Ddistance which is the difference between Ddesired and 

Dgenerated. Firstly, we have sequences of amino acids in string form as a population; the 

string form has to be converted into the numeric form in order to be processes in the 

genetic algorithm. Therefore, 20 amino acid types are represented in 7 amino acid classes 
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as seen in Table 2.1 and amino acid probability distribution of these sequences are 

calculated by the equation of ( ) / ( )a a
b

P b P b . Here, a is the amino acid position, b is seven 

amino acid classes and Pa(b) is the number of occurrence of amino acid b in position a.

Therefore, by this equation, we calculate frequency of each amino acid in a specific 

position and we name it as amino acid probability distribution. At the end, an amino acid 

distribution matrix with a size of 7x10 is obtained to be used as populations for genetic 

algorithm.

3.1.2 Parameter Tuning

Parameter adjustment of the genetic algorithm is very crucial in order to obtain 

optimum results and the parameters have to be customized according to the nature of the 

problem. 

First, there are many methods for selection (best, roulette, tournament, percent and 

random) which have to be selected according to the problem. We tried some different 

selection methods and compared them according to their fitness and accuracy values.

Second, crossover and mutation rates must be optimized carefully. To obtain a 

successful result, crossover rate is usually larger than the mutation rate. In this study, we 

tuned crossover and mutation rates to obtain best solution. 

Third, features of the individuals has to be consistent with their importance in the 

problem, namely some weight function could be applied to the objective function. In this 

study, a weight function is used to highlight the importance of positions 0 and -2 of the 

peptide sequences which play crucial roles on PDZ domain specificity as stated in the 

introduction. Therefore, weight of these positions are kept higher than other positions and 

results of weighted and unweighted objective functions are compared to see the difference.
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Lastly, termination criteria and generated population size which could considerably 

effect the performance of the algorithm is also tuned. All parameter tunings and found 

results are explained and shown in the result section. 

3.1.3 Construction of Binding Peptides for a Given PDZ Domain

This implemented genetic algorithm can be used for each PDZ domain. The only 

necessary thing is to change desired amino acid probability matrix which consists of 

interested PDZ domain binding peptide sequence information. 

Here, we analyzed and obtained results for α1-syntrophin as a representative 

manner. The desired amino acid probability matrix is generated with 20 peptide sequences 

which bind to α1-syntrophin. Genetic algorithm with optimized parameters is applied to 

this population and the resultant population is trained with PDZ interaction prediction 

model. The population with lowest fitness value and highest prediction accuracy is 

obtained. This population can be used for further experimental studies. 
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Chapter 4

4 Results and Discussion

4.1 Performance Evaluation for Each Classifier

All five classifiers (SVM, Nearest Neighbor, Naïve Bayes, J48 and Random Forest) 

are trained for both interaction prediction and classification trigram/bigram models and 

Random forest was chosen to build our models due to the highest AUC and accuracy 

values of this algorithm. The high performance of Random Forest algorithm for interaction 

prediction and classification trigram models can be seen in Figure 4.1 and Figure 4.3 

respectively. Random forest also gives the best performance for interaction prediction and 

classification bigram models as seen in Figure 4.2 Figure 4.4 respectively.
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Figure 4.1: Comparison of all classifiers used in interaction prediction trigram model (a) 

Accuracy values with 95% confidence intervals (b) ROC curves and AUC values.
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Figure 4.2: Comparison of all classifiers used in interaction prediction bigram model (a) 

Accuracy values with 95% confidence intervals (b) ROC curves and AUC values.
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Figure 4.3: Comparison of all classifiers used in classification trigram model (the result of 

multi-classification to discriminate between Class I, Class II and Class I-II). (a) Accuracy 

values with 95% confidence intervals (b) ROC curves and corresponding AUC values.



Chapter 4: Results and Discussion 28

28

a

RF KNN SVM J48 Bayes

A
c
c
u
ra

c
y
 (

%
)

0

20

40

60

80

100

RF     : 88,4
kNN   : 86 
SVM  : 76,7 
J48    : 76,7 
Bayes: 65,1 

Accuracy comparison
b

ROC curve

False Positive Rate

0,0 0,2 0,4 0,6 0,8 1,0

T
ru

e 
P

os
iti

ve
 R

at
e

0,0

0,2

0,4

0,6

0,8

1,0

RF,       AUC=0,97
SVM,    AUC=0,82
kNN,     AUC=0,87
J48,      AUC=0,84
Bayes,  AUC=0,68

Figure 4.4: Comparison of all classifiers used in classification bigram model (the result of 

multi-classification to discriminate between Class I, Class II and Class I-II). (a) Accuracy 

values with 95% confidence intervals (b) ROC curves and corresponding AUC values.

Random Forest grows many classification trees. Each tree gives a classification, 

and votes for a class. The forest chooses the classification having the most votes over all 

the trees in the forest. Each tree is grown as follows: (i) if the number of instances in the 

training set is N, sample N is selected randomly with replacement from the original data. 

This sample will be the training set for growing the tree, (ii) if there are M features in an 

instance, a number m<<M is specified such that at each node, m features are selected

randomly out of M features and the best split on these m is used to split the node, (iii) each 

tree is grown to the largest extent possible, namely there is no pruning. 
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4.2 PDZ Domain Interaction Prediction Statistics

To tune the parameters of Random Forest algorithm, we evaluated the effect of 

changes in parameters on its prediction performance by measuring out-of-bag (OOB) error 

rate of each model tree. There are two parameters for Random Forest: number of trees 

(numTree) and number of randomly selected features (numFeature). The lowest OOB error 

rate was obtained when numTree=200 and numFeature=30 as seen in Figure 4.5.
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Figure 4.5: Parameter selection of Random Forest algorithm for interaction prediction.

After parameter tuning for Random forest, we trained our interaction model with 

numTree=200 and numFeature=30. The accuracy of trigram part (91.4%) is slightly higher 

than the bigram part (91.2%) (Table 4.1).
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Table 4.1: Prediction results for interaction prediction of PDZ domains for both trigram 

and bigram models.

Training set (10-fold cross 

validation)

Validation set

TPR FPR Precision Accuracy TPR FPR Precision Accuracy

Trigram 0.89 0.075 0.85 91.4 0.61 0.042 0.92 79.8

Bigram 0.844 0.053 0.89 91.2 0.889 0.323 0.545 74.2

As seen in Table 4.1, although precision of trigram model is lower than the 

precision of bigram model, its other values (TPR, FPR and accuracy) are better. So, we 

design our model according to trigram frequency feature space. In order to see the 

performance of trigram model, ROC and PR curves are plotted (Figure 4.6a, b). Our result 

of AUC=0.97 for trigram part is high enough to be able to characterize PDZ interaction 

specificity.



Chapter 4: Results and Discussion 31

31

Figure 4.6: Performance evaluation of Random Forest trigram model. (a) ROC curve, (b) 

precision versus recall curve for interaction prediction part (c) ROC curve, (d) precision 

versus recall curve for classification part.
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4.2.1 Interaction Validation Statistics

Also, we validate the power of our model by predicting the interaction of an unseen 

validation dataset. After training the model with complete set of PDZ interaction database, 

an unseen interaction validation dataset is sent to be classified according to the rules that 

are learned from the trained model. The model performs well on the validation set with an 

accuracy of 79.8% that it correctly classifies 25 of 27 binding and 46 of 62 non-binding 

interactions (Table 4.1). The performance of bigram model is somehow lower in validation 

dataset compared to trigrams. This can be due to the fact that bigrams assign more 

common features of most of the interactions by masking the discriminative features.

4.3 PDZ Domain Class Prediction Statistics

The Random Forest model is used to discriminate both multi-classes (Class I/Class 

II/Class I-II) and binary classes (Class I/Class II, Class I/Class I-II or Class  II/Class I-II)  

in order to have an insight about their pair wise classifications. 

As seen in Table 4.2, the predictive performance for multi-class learning is a bit 

lower than binary-class ones which are very close with each other and the results for 

trigram model has still better performance than bigram model. As we are trying to 

distinguish all three classes of PDZ domains, we obtained the performance results of 

trigram model for multi-class learning (Figure 4.6c, d). The model correctly classified 43 

of 45 Class I, 16 of 20 Class II and 19 of 21 Class I-II PDZ domains. The results of binary 

comparisons in Table 4.2 show that the highest accuracy is for differentiating Class II 

PDZs from Class I-II PDZs and the least successful one is between Class I and Class I-II. 

This means that amino acid distribution of Class I-II PDZs is slightly more similar to Class 
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I PDZs. To ensure this similarity, amino acid frequency distribution histogram for Class 

I/II/I-II PDZ domains is plotted (Figure 4.7)

Table 4.2: Prediction results for class prediction of PDZ domains for trigram and bigram 

models.

*The first row shows a multi-class learning and remaining rows shows the binary-class 

learning for pair wise combinations of three classes. For multi-class learning, weighted 

average results were shown.

TP Rate FP Rate Precision Accuracy (%)

Trigram Bigram Trigram Bigram Trigram Bigram Trigram Bigram

ClassI, ClassII, 

Class I-II*

0.907 0.895 0.081 0.093 0.911 0.902 90.7 89.5

ClassI, ClassII 0.918 0.956 0 0.200 1 0.915 93.8 90.8

ClassI, ClassI-II 0.900 0.955 0 0.227 1 0.894 92.4 89.4

ClassII, ClassI-II 1 0.813 0.107 0 0.812 1 92.7 92.7
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Amino acid frequency distribution of Class I, Class II 
and Class I-II PDZ domains
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Figure 4.7: Amino acid frequency distribution of Class I/II/I-II PDZ domains.

4.4 Important Sequence Motifs of PDZ Domains

Dimension reduction is applied to both trigram and bigram models because we want 

to observe important common features of both models. For trigram model, we obtained 23 

features for PDZ domain and 23 features for peptide spaces to represent interaction 

prediction part. Also, feature reduction was performed for classification part and we 

obtained 53 features (Data is not shown).

For bigram model, there were 11 features for PDZ domain and 12 features for 

peptide space in order to construct interaction prediction part and we extracted 10 features 
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for classification part. The accuracy values of our model did not increase after feature 

reduction for both interaction prediction and classification parts except trigram 

classification model (Table 4.3). However, reduction in feature space let us analyze these 

extracted important features.

Table 4.3: Prediction results after feature reduction.

TPR FPR Precision AUC Accuracy (%)

Trigram Bigram Trigram Bigram Trigram Bigram Trigram Bigram Trigram Bigram

Interaction 

prediction
0.744 0.786 0.096 0.07 0.798 0.851 0.905 0.948 85 88.1

Classificati

on*
0.942 0.86 0.044 0.096 0.942 0.859 0.994 0.966 94.2 86

*The first row shows a multi-class learning (ClassI, ClassII, Class I-II)

We observe that bigram parts of extracted trigrams are common to extracted 

bigrams, i.e. there are some highly occurring bigrams in both trigram and bigram feature 

sets for interaction prediction and classification parts. After the selection of the most 

occurring ones, we obtained sequence motifs of “12”, “16” and “25” (Figure 4.8). Types of 

amino acids can be seen in Table 2.1. For example, motif “12” corresponds to small 

hydrophobic amino acid (A, G, V) followed by large hydrophobic amino acid (I, L, F, P). 
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Figure 4.8: Critical sequence motifs (a) Aligned sequences of 5 representative PDZ 

domains: α1-syntrophin(1/1) (PDB ID:2pdz), NHERF1(1/2) (PDB ID:1i92), 

Harmonin(2/3) (PDB ID:2kbs), Pick1(1/1) (PDB ID:2pku) and PTP-BL(2/5) (PDB 
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ID:1vj6). While first row indicates the aligned sequence of corresponding PDZ domain, 

second row represents the sequence in seven class amino acid types. Secondary structure 

positions of the PDZ sequences are represented graphically at the top (αA, Αb, βA-βF). 

Three sequence motifs (“12”, “16”, “25”) proposed to account for ligand specificity are 

indicated by yellow highlight. (b) Cartoon diagrams of these PDZ domains, motifs “12”, 

“16” and “25” are colored in red and shown in stick form.

As seen in Figure 4.8, characteristic GLGF repeat of PDZ domains were 

determined by extracting sequence motif of “12” between βA-βB loop and αB helix. Other 

two highly occurring sequence motifs were positioned at the end of the αB (“25”) and at 

the loop between αA and βD (“16”). When these sequence motifs are displayed on the 3D 

structure of PDZ domains, while motif “25” is positioned near the binding groove (at the 

end of the αB), motif “16” is positioned far from the binding groove (at the αA-βD loop).

Extracted motif on αB helix could function in specificity of PDZ domains. Songyang et al.

investigated the importance of αB helix on peptide selectivity of PDZ domains by showing 

high correlation between first residue in the αB helix and peptide position -2 [19].

4.5 Case Studies: Biologically Important Sequence Motifs

Below, we discuss important sequence motifs of some specific PDZ domains:

α1-syntrophin(1/1): The specific interaction property of α1-syntrophin PDZ domain 

is investigated by Schultz et al. and they found that Leu 14, Gly 15 and Ile 16 showed a 

large chemical shift upon binding of ligand [70]. PDZ domain of α1-syntrophin forms 

hydrophobic pocket consisting of Leu 14, Ile 18 and Leu 71 to bury the side chain of Val -

2 of the peptide. Motif “12” corresponds to Gly 15, Ile 16 and “5” of motif “25” 

corresponds to Leu 71 which is an important part of the hydrophobic pocket.
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NHERF(1/2): First PDZ domain of NHERF1 plays important role in cellular 

localization by binding to the cystic fibrosis transmembrane conductance regulator (CFTR) 

[71]. Leu 0 of the ligand forms hydrophobic contact with Phe 26 and Ile 79 and makes  H-

bonds  with  Gly 25,  Phe 26  and Arg  80. These important residues were also extracted by 

using our method: while motif “12” in βB corresponds to Gly 25, Phe 26, motif “25” in αB 

exactly corresponds to Ile 79, Arg 80.

Harmonin(2/3): Pan et al. tried to elucidate structural basis of binding pattern of 

Harmonin(2/3) and found that carboxyl group of cad 23 ligand forms hydrogen bonds with 

Leu 222, Glu 223, Cys 224 (GLGF motif) and is stabilized by Lys 279 [72]. These 

important residues of Harmonin were also observed in our motifs as seen from Figure 3 

(PDZ2 domain of Harmonin includes residues 208-299, but in the 3D structure it is 

between residues 9-100).

Pick1(1/1): The carboxyl group of ligand forms hydrogen bonds with Ile 33, Gly 34 

and Ile 35 of Pick1 PDZ domain [73]. While Gly 34 and Ile 35 constitue motif “12”, we 

observed motif “24” on αB helix instead of motif “25”.

PTP-BL(2/5): Gianni et al. investigated allosteric property of PTP-BL(2/5) domain 

by using structural and dynamical methods and found that binding is regulated by long 

range interactions which showed correlation with ligand-induced structural rearrangements 

[74]. There is a detectable conformational change, dominantly occuring in αB-βB 

interface, L1 loop and hydrophobic core, upon ligand binding to PTP-BL domain. 

Plasticity and selectivity of PTP-BL domain are usually determined by reorientation of 

alpha B helix. Amides of Leu 25, Gly 26 and Ile 27 stabilize the charge of C-terminus of 

the ligand and there is a hydrophobic contact between C-terminal peptide valine and Leu 

85, Val 82 positions. In our study, motif “12” in βB corresponds to the Gly 26, Ile 27 and 

“5” of motif “25” in αB corresponds to Leu 85 as seen Figure 4.8.
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4.6 Constructed Peptide Libraries

4.6.1 Selection and Cross-over Methods

Selection is a genetic operator that chooses an individual from the current 

generation’s population for inclusion in the next generation’s population. Before making it 

into the next generation’s population, selected individuals may undergo crossover and 

mutation in which case the offspring individual(s) are actually the ones that make it into 

the next generation’s population. There are many different methods for selection and cross-

over parts. 

For selection stage, roulette (the chance of an individual selected is proportional to

its fitness), tournament (uses roulette selection N times to produce a tournament subset of 

individuals), top percent (randomly selects an individual from the top N percent of the 

population), best (selects the best individuals according to their fitness value), random are 

commonly used. In this study, best, roulette and random methods are trained and best 

method gives the best fitness and accuracy values as seen in Table 4.4.

For cross-over part, there are also different methods such as one-point (a single 

crossover point on both parents), two point (two points on both parents) and uniform 

(individual bits in the parents are compared between two parents and the bits are swapped 

with a fixed probability) cross-overs. In this study, we tried these three cross-over methods 

and two-point cross-over gives the best result as seen in Table 4.4.
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Table 4.4: Selection and cross-over method selection according to their fitness and 

accuracy values

Selection Cross-over

Method Fitness value % Accuracy Method Fitness value % Accuracy

Best 3.54 63.8 One-point 3.65 63.2

Roulette 3.01 57.4 Two-point 3.54 63.8

Random 3.88 60.7 Uniform 3.87 61.5

4.6.2 Parameter Tuning

In order to construct peptide libraries specific to PDZ domains, we implemented 

the genetic algorithm. A distance matrix is minimized by this algorithm as explained in 

Chapter 4. Distance matrix calculates the difference between desired and generated 

population. To obtain the most successful results, parameters of the genetic algorithm is 

tuned according to our problem. Cross-over rate, mutation rate, iteration number 

(termination) and population size is tuned and obtained results are used in the algorithm. 

The results without weight function are not shown here because its performance is very 

low compared to the weighted one. Then, resultant populations are trained in our PDZ 

domain interaction prediction model. As seen in Figure 4.9, the parameters obtaining 

lowest fitness value and highest accuracy (of interaction prediction model) are selected to 

construct our genetic algorithm. 
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Figure 4.9: Parameter tunings of the genetic algorithm by looking at their fitness value

(obtained from genetic algorithm) and accuracy values (obtained from interaction 

prediction model). Parameters: (a,b) cross-over rate, (c,d) mutation rate, (e,f) iteration 

number, (g,h) population size.
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According to these results in Figure 4.9(a-f), both lowest fitness value and highest 

accuracy are obtained at the same point for cross-over rate, mutation rate and iteration 

number, so the following parameters are used for genetic algorithm: cross-over rate is 0.9, 

mutation rate is 0.01 and iteration number is 10000. However, for the population size 

tuning, while highest accuracy is obtained for population size of 100, lowest fitness value 

is not obtained for that population (Figure 4.9g, h). Rather population size of 200 gives the 

lowest fitness value. We choose the population size as 100 because the difference between 

fitness values of population size of 100 and 200 is smaller than the difference between 

their accuracy values.

4.6.3 Peptide Library for α1-syntrophin

As a representative example, peptide library for α1-syntrophin is constructed. The 

parameters obtaining lowest fitness value and highest model accuracy is used to obtain 

peptide library (cross-over rate: 0.9, mutation rate: 0.01, iteration number: 10000, and 

population size: 100). The resultant peptide library (population size of 100) with a fitness 

value of 3.54 and interaction prediction accuracy of 63.8% is shown in Appendix A.3, 

Table A.3.1.
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Chapter 5

5 Conclusion

5.1 Conclusion

This study includes three inter-correlated aims: prediction of PDZ domain-peptide 

interactions, and classification of PDZ domains as Class I, II and I-II and peptide library 

construction for PDZ domains. A statistical learning model was constructed by using 

interaction dataset of PDZ domains (consist of 85 PDZ domains and corresponding 181 

peptides). To convert primary sequence information into numerical feature input, trigram 

and bigram amino acid frequencies are calculated for each instance. We predicted binary 

interactions and classes of PDZ domains with accuracies of 91.4% and 90.7% respectively. 

After feature extraction, three critical amino acid sequence motifs are proposed to have 

significant roles on PDZ domain specificity. With these highly encouraging results, this 

study could be an important step in the automated prediction of PDZ domain interactions.

Our results for PDZ interaction prediction and classification models are published on June 

2010 [75]. Then, peptide libraries for PDZ domains are constructed by means of genetic 

algorithm and these populations are trained by PDZ domain interaction model and we 

obtained an accuracy of 63.8%. 

Combination of these three methods can be effectively used as a virtual screening 

method for PDZ domains. It could predict the binding/non-binding binding partners and 

classes of PDZ domains by giving only the sequence information of PDZ domains and 

corresponding peptides and also it can generate possible target peptide sequences for PDZ 

domains.
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5.2 Future Work

There could be more work to do in order to increase the performance of this study. 

First, feature encoding for primary sequences of known protein interaction pairs could be 

subsequently developed by using other additional features such as binding affinities, 

secondary/tertiary structure information in the learning model. Second, other 

dimensionality reduction techniques (feature extraction and selection methods) can be used 

to determine more critical sequence motifs and improve the performance of prediction 

models. Third, the results of genetic algorithm could be further improved by using 

different objective function(s), weight function(s), and selection/cross-over methods. Also, 

parameter tuning of genetic algorithm could be further improved by increasing time points 

for cross-over/mutation rates, population size and iteration number. By this mean, 

performance of peptide library construction could be increased and more specific putative 

peptides binding to PDZ domains could be obtained.

With this newly developed method, the door is opened to the future identification of 

binding partners for other PDZ domains in addition to derivation of a detailed description 

of their binding specificity. Further protein–peptide interactions where terminal carboxyl 

groups play a role will similarly be open to investigation. Moreover, variations of this 

method will allow the synthesis of peptides with modified C termini, facilitating ways of 

studying the biological function of C-terminal modifications using peptide libraries.

Further improvements on these lines may generate a powerful computational virtual 

screening technique that significantly reduces the search space for putative candidate target 

proteins of PDZ domains. Further, we plan to provide a web server that will predict 

binding peptide candidates for PDZ domains.
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Appendix

A.1 Datasets

Table A.1.1:  Classes of PDZ domains according to their binding/non-binding target peptide 

sequences. 

PDZ domain Organism Class

a1-syntrophin-(1/1) mouse ClassI

b1-syntrophin-(1/1) mouse ClassI

Chapsyn-110-(2/3) mouse ClassI

Chapsyn-110-(3/3) mouse ClassI

Erbin-(1/1) mouse ClassI

g1-syntrophin-(1/1) mouse ClassI

g2-syntrophin-(1/1) mouse ClassI

Interleukin-16-(1/4) mouse ClassI

LIN-7A-(1/1) mouse ClassI

Lin7c-(1/1) mouse ClassI

Lrrc7-(1/1) mouse ClassI

Magi-1-(2/6) mouse ClassI

Magi-1-(4/6) mouse ClassI

Magi-2-(2/6) mouse ClassI

Magi-2-(5/6) mouse ClassI

Magi-3-(2/5) mouse ClassI

Mals2-(1/1) mouse ClassI

MUPP1-(12/13) mouse ClassI

MUPP1-(13/13) mouse ClassI

NHERF-1-(1/2) mouse ClassI

NHERF-2-(2/2) mouse ClassI

nNOS-(1/1) mouse ClassI

OMP25-(1/1) mouse ClassI

PAR6B-(1/1) mouse ClassI

Pdlim5-(1/1) mouse ClassI

Pdzk1-(1/4) mouse ClassI

Pdzk1-(3/4) mouse ClassI

Pdzk11-(1/1) mouse ClassI

PSD95-(1/3) mouse ClassI

PSD95-(2/3) mouse ClassI

PSD95-(3/3) mouse ClassI

SAP102-(2/3) mouse ClassI

SAP102-(3/3) mouse ClassI

SAP97-(1/3) mouse ClassI

SAP97-(2/3) mouse ClassI

SAP97-(3/3) mouse ClassI

Scrb1-(1/4) mouse ClassI

Scrb1-(2/4) mouse ClassI

Scrb1-(3/4) mouse ClassI

Semcap3-(1/2) mouse ClassI

Shank3-(1/1) mouse ClassI

Shroom-(1/1) mouse ClassI

SLIM-(1/1) mouse ClassI

TIP-1-(1/1) mouse ClassI

Whirlin-(3/3) mouse ClassI

ABP-(3/7) rat ClassII

ABP-(5/7) rat ClassII

ABP-(6/7) rat ClassII

AF-6-(1/1) human ClassII

ASIP/PAR3-(1/3) mouse ClassII

CASK-(1/1) human ClassII

ZO-1-(2/3) human ClassII

p55-(1/1) mouse ClassII

Cipp-(5/10) mouse ClassII

Cipp-(9/10) mouse ClassII

D930005D10Rik-

(1/1)

mouse ClassII

Dlgh3-(1/1) mouse ClassII

Grip1-(6/7) mouse ClassII
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Harmonin-(2/3) mouse ClassII

Mpp7-(1/1) mouse ClassII

MUPP1-(1/13) mouse ClassII

MUPP1-(5/13) mouse ClassII

MUPP1-(11/13) mouse ClassII

PAR-3-(3/3) mouse ClassII

ZO-1-(2/3) mouse ClassII

Cipp-(3/10) mouse ClassI-II

Cipp-(8/10) mouse ClassI-II

Cipp-(10/10) mouse ClassI-II

Dvl1-(1/1) mouse ClassI-II

Dvl2-(1/1) mouse ClassI-II

Dvl3-(1/1) mouse ClassI-II

GRASP55-(1/1) mouse ClassI-II

HtrA1-(1/1) mouse ClassI-II

HtrA3-(1/1) mouse ClassI-II

Lnx1-(2/4) mouse ClassI-II

Magi-1-(6/6) mouse ClassI-II

Magi-2-(6/6) mouse ClassI-II

Magi-3-(1/5) mouse ClassI-II

Magi-3-(5/5) mouse ClassI-II

MUPP1-(10/13) mouse ClassI-II

PDZ-RGS3-(1/1)- mouse ClassI-II

PTP-BL-(2/5) mouse ClassI-II

ZO-1-(1/3) mouse ClassI-II

ZO-2-(1/3) mouse ClassI-II

PICK1-(1/1) human ClassI-II

Syntenin-(2/2) mouse ClassI-II

Table A.1.2: PDZ domain sequence IDs

PDZ domain Sequence ID

a1-syntrophin-(1/1) Q61234

b1-syntrophin-(1/1) Q99L88

Chapsyn-110-(2/3) Q91XM9

Chapsyn-110-(3/3) Q91XM9

Cipp-(3/10) Q63ZW7

Cipp-(5/10) Q63ZW7

Cipp-(8/10) Q63ZW7

Cipp-(9/10) Q63ZW7

Cipp-(10/10) Q63ZW7

D930005D10Rik-

(1/1)

Q69Z89

Dlgh3-(1/1) O88910

Dvl1-(1/1) P51141

Dvl2-(1/1) Q60838

Dvl3-(1/1) Q61062

Erbin-(1/1) Q80TH2

g1-syntrophin-(1/1) Q925E1

g2-syntrophin-(1/1) Q925E0

Gm1582-(2/3) UPI0000D670BC (196-

264)

GRASP55-(1/1) Q99JX3

Grip1-(6/7) Q925T6

Grip2-(5/7) UPI00001E3EA7 (431-504)

Harmonin-(2/3) Q9ES64

HtrA1-(1/1) Q9R118

HtrA3-(1/1) Q9D236

Interleukin-16-(1/4) Q9QZP6

LARG-(1/1) UPI0000D63612 (296-364)

LIN-7A-(1/1) Q8JZS0

Lin7c-(1/1) O88952

Lnx1-(2/4) O70263

Lrrc7-(1/1) Q80TE7

Magi-1-(2/6) Q6RHR9

Magi-1-(4/6) Q6RHR9

Magi-1-(6/6) Q6RHR9

Magi-2-(2/6) Q9WVQ1

Magi-2-(5/6) Q9WVQ1

Magi-2-(6/6) Q9WVQ1

Magi-3-(1/5) Q9EQJ9

Magi-3-(2/5) Q9EQJ9

Magi-3-(5/5) Q9EQJ9

Mals2-(1/1) O88951

Mpp7-(1/1) Q8BVD5



Appendix 48

48

MUPP1-(1/13) Q8VBX6

MUPP1-(5/13) Q8VBX6

MUPP1-(10/13) Q8VBX6

MUPP1-(11/13) Q8VBX6

MUPP1-(12/13) Q8VBX6

MUPP1-(13/13) Q8VBX6

NHERF-1-(1/2) P70441

NHERF-2-(2/2) Q9JHL1

nNOS-(1/1) Q9Z0J4

OMP25-(1/1) Q8K4F3

PAR-3-(3/3) Q99NH2

PAR3B-(1/3) Q8TEW8

PAR6B-(1/1) Q9JK83

Pdlim5-(1/1) Q8CI51

Pdzk1-(1/4) Q9JIL4

Pdzk1-(3/4) Q9JIL4

Pdzk11-(1/1) Q9CZG9

Pdzk3-(1/1) ENSMUSP00000074788

Pdzk3-(2/2) ENSMUSP00000043100

PDZ-RGS3-(1/1) P49796

PSD95-(1/3) Q62108

PSD95-(2/3) Q62108

PSD95-(3/3) Q62108

PTP-BL-(2/5) Q64512

SAP102-(2/3) P70175

SAP102-(3/3) P70175

SAP97-(1/3) Q811D0

SAP97-(2/3) Q811D0

SAP97-(3/3) Q811D0

Scrb1-(1/4) Q80U72

Scrb1-(2/4) Q80U72

Scrb1-(3/4) Q80U72

Semcap3-(1/2) Q69ZS0

Shank1-(1/1) Q9Y566

Shank3-(1/1) Q4ACU6

Shroom-(1/1) Q9QXN0

SLIM-(1/1) Q8R1G6

Tiam2-(1/1) ENSMUSP00000024562

TIP-1-(1/1) Q9DBG9

Whirlin-(3/3) Q80VW5

ZO-1-(1/3) P39447

ZO-1-(2/3) P39447

ZO-2-(1/3) Q9Z0U1

ZO-3-(1/3) UPI00005652A2

ABP-(3/7)        Q9WTW1

ABP-(5/7) Q9WTW1

ABP-(6/7) Q9WTW1

AF-6-(1/1) P55196

ASIP/PAR3-(1/3) Q99NH2

CASK-(1/1) O14936

ZO-1-(2/3) Q07157

p55-(1/1) P70290

PICK1-(1/1) Q9NRD5

Syntenin-(2/2) O08992

Table A.1.3: Peptide sequences (up to -10 amino acid position)

Peptide Sequence 

AcvR1 NSLDKLKTDC

AcvR2 VDFPPKESSL

AcvR2b VDLLPKESSI

AN2 PALRNGQYWV

APC HSGSYLVTSV

Aquaporin-4 DSSGEVLSSV

AXL PAPPGQEDGA

Cacna1a AYSESEDDWC

Caspr2 IDESKKEWLI

Caspr4 VGENQKEYFF

Cav1.2 ADSRSYVSNL

Cav2.2 YHHPDQDHWC

Cav2.3 LSDTEEDDKC

Cav3.2 APDDSGDEPV

Cftr TEEEVQETRL

c-KIT TQPLLVHEDA

Claudin-1 PTPSSGKDYV
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Claudin-10 SKQFDKNAYV

Claudin-11 SPTHAKSAHV

Claudin-14 HSGYRLNDYV

Claudin-15 FGKYGKNAYV

Claudin-16 AKMYAVDTRV

Claudin-18 QSHPTKYDYV

Claudin-19 GPSTAAREYV

Claudin-2 FNSYSLTGYV

Claudin-22 LELKQANPEI

Claudin-23 QNSLPCDSDL

Claudin-3 GTAYDRKDYV

Claudin-4 ARSVPASNYV

Claudin-5 NGDYDKKNYV

Claudin-6 PSEYPTKNYV

Claudin-7 PKSNSSKEYV

Claudin-8 PSIYSKSQYV

Claudin-9 ASGLDKRDYV

CNGA2 INTPEPAVAE

CNGA3 ENSEDASKTD

Cnksr2 HTHSYIETHV

Connexin-43 SRPRPDDLEI

CRIPT DTKNYKQTSV

CSF-1R LLQPNNYQFC

CtBP1 ADRDHTSDQL

DDR1 FLADDALNTV

Dlgap1/2/3 IYIPEAQTRL

EGFR APPSSEFIGA

EphA2 DQVNTVGIPI

EphA3 TQSKNGPVPV

EphA4 QQMHGRMVPV

EphA5 VQMVNGMVPV

EphA6 MHIQEKGFHV

EphA7_1 LHLHGTGIQV

EphA7_2 LVTNEHLSVL

EphB2 QMNQIQSVEV

EphB3 QMNQTLPVQV

EphB6_1 HLRQPGSVEV

Ephrin-B1/2 QSPANIYYKV

Ephrin-B3 QSPPNIYYKV

ErbB4 VAQGATAEMF

FGFR3 GPPSNGGPRT

FGFR4 PFPFSDSQTT

Frizzled TNSKQGETTV

GluR1 SGMPLGATGL

GluR2_1 NVYGIESVKI

GluR2_2 GMNVSVTDLS

GluR2_3 PKGTSLGWVE

GluR3 NVYGTESVKI

GluR5_1 RRTQRKETVA

GluR5_2 IRTQPSVHTV

GluRdelta1 ALDTSHGTSI

GluRdelta2 GNDPDRGTSI

Glycophorin-C GDTSKKEYFI

GRK6 DSEEELPTRL

Htr2c NVVSERISSV

JAM-1 EFKQTSSFLV

KA-2 TGPRELTEHE

KCNAB2 KPYSKKDYRS

KCNE4_1 RQAEGLVSIC

KCNE4_2 GSSENIHQNS

KCNH1 ESDRDIFGAS

KCNK3 RGLMKRRSSV

KCNK4_1 LEDFIKAMAI

KCNK4_2 GRLRDKAVPV

KCNK5 YNKADNPRGT

KCNK6 GPEREAPRSA

KCNQ2 PGTPRVTSQL

KIF17 SKNSFGGEPL

KIF1B NLKAGRETTV

Kir2.1 PRPLRRESEI

Kir2.2 VRPYRRESEI

Kir3.2_2 VANLENESKV

Kir3.2_3 NPEELTERNG

Kir3.3 LPPPESESKV

Kir4.1 SALSVRISNV

Kir4.2 RSLLLQQSNV

Kir5.1 LNRISMESQM

Kir6.1 PEGNQCPSES
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Kir6.2 KFSISPDSLS

Kv1.1 VNKSKLLTDV

Kv1.2 VNITKMLTDV

Kv1.3 VNIKKIFTDV

Kv1.4 SNAKAVETDV

Kv1.5 CLDTSRETDL

Kv1.6 YAEKRMLTEV

Kv1.7 PAGKHMVTEV

Kv2.1 AHGSTRDQSI

Kv3.1 GRKPLRGMSI

Kv3.3_1 RAPPTLPSIL

Kv3.3_2 FGERDSETQV

Kv4.1 LPETVKISSL

Kv4.2 GGNIVRVSAL

L-glutaminase LSKENLESMV

Liprin-a2 DNSTVRTYSC

Megalin ANLVKEDSDV

Mel1a/b NNNLIKVDSV

mGluR1 RDYKQSSSTL

mGluR3 EVLDSTTSSL

Na/Pi-

cotransporter

LPAHHNATRL

Nav1.4 VRPGVKESLV

Nav1.5 SPDRDRESIV

Nav1.6 RQKEVRESKC

Nav2 EEKASIQTQI

Neurexin-1/2 KKNKDKEYYV

Neurexin-3 QKNKDKEYYV

Neurexin-4 PQILEESRSE

Neuroligin-2 LPHPHSTTRV

NHE1 EGEPFIPKGQ

NMDAR2A KKMPSIESDV

NMDAR2B EKLSSIESDV

NMDAR2C RRISSLESEV

NMDAR2D AHFSSLESEV

P2Y1 EFKQNGDTSL

Parkin ACMGDHWFDV

PDGFR PLAEAEDSFL

PDGFRa_1 SSDLVEDSFL

PDGFRa_2 HSGKYDLSVV

PFK-M SRKRSGEAAV

PIX NDPAWDETNL

PKC FVHPILQSAV

PMCA1 SPLHSLETSL

PTK7 LGDSPADSKQ

Ril VYPNAKVELV

ROR1 HTESMISAEV

ROR2 TEAAHVQLEA

RYK EFHAALGAYV

Sapk3 GARVPKETAL

Sema3a HEFERAPRSV

Sema3b ERGPRSAAHW

Sema3f RNRRHHPPDT

Sema4a- DNNHLGAEVA

Sema4b- LGSEIRDSVV

Sema4c PDSNPEESSV

Sema4f PLATCDETSI

Sema5a FTDLNNYDEY

Sema6b- TGERTAPPVP

Sema6c PAPHGGHFNF

SERCA2A NYLEQPAILE

SERCA3 RGESPVWPSD

SSTR2 SGAEDIIAWV

Stargazin NTANRRTTPV

Syndecan-1 KPTKQEEFYA

Syndecan-2 QKAPTKEFYA

Syndecan-3 KPDKQEEFYA

TAZ NKSEPFLTWL

TIE1 AGIDATAEEA

TPC1 GSRQRSQTVT

Trip6 ELSATVTTDC

TRPC1 SKYAMFYPRN

TRPC2 EGDLETKGES

TRPC3 KLNPSVLRCE

TRPC4 AHEDYVTTRL

TRPC5 GQEEQVTTRL

TRPC6 LEPKLEESRR

TRPM3 DPAEHPFYSV
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TRPM5 SQPLLETGST

TRPM6 RSSLEDHTRL

TRPM7 EATNSVRLML

TRPM8 LLKEIANNIK

TRPP2 SGNGSANVHA

TRPV3 ELDEFPETSV

TRPV4 PKWRTDDAPL

TRPV6 EDGEGWEYQI

TYRO3 QQGLLPHSSC

A.2   Classifiers

Table A.2.1: Parameter values for each classifier used in trigram interaction prediction 

model.

Classifier Parameters

SVM Complexity parameter: 1.0

Tolerance parameter: 0.001

Epsilon: 10-12

Kernel: Linear kernel (Exponent: 1.0)

Nearest Neighbor k (number of neighbors to use): 1

Distance function: Eucledian distance

Naïve Bayes Alpha: 0.5 (Simple Estimator)

J48 Confidence factor: 0.25

Min number of objects per leaf: 2

Random Forest Number of trees: 200

Number of Features:30
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Table A.2.2: Search methods that are used to reduce dimensionality.

Search Method Description

Best First Searches the space of attribute subsets by greedy 

hillclimbing augmented with a backtracking facility

Greedy Stepwise Performs a greedy forward or backward search through 

the space of attribute subsets

Linear Forward Selection Extension of BestFirst. Takes a restricted number of k 

attributes into account. Fixed-set selects a fixed number 

k of attributes, whereas k is increased in each step when 

fixed-width is selected

Rank Search From the ranked list of attributes, subsets of increasing 

size are evaluated, ie. The best attribute, the best attribute 

plus the next best attribute, etc.

Subset Size Forward Selection The search performs an interior cross-validation (here 5-

fold is used). A Linear Forward Selection is performed 

on each fold to determine the optimal subset-size

A.3 Generated Population 

Table A.3.1: Peptide Library for α1-syntrophin with 7 amino acid class notation.

4152726571
4213727373
7152726571
4252726571
4213327311
4153326571
4212726571
4152727312
7213327311
7152326511
4213327311
7113327311
7152726571
7212727311
7153327311
7213326571
4466431331
1745233253
1446336457
5631776743

3274657131
3275126131
3745126331
3245657332
3745127331
3245657331
3275126153
3274657151
2745126351
2744657351
2274657151
2774126151
2274656151
2774126151
2744657331
2745126331
6272334452
1655347714
3151324243
7234414261

   1132432371
1232432521
1132326521
1132426321
1132326371
2132432522
1142432521
1144326321
2244326521
2144326371
2244432371
2244332571
2244432521
1244326371
2234326371
2232432571
2717455443
5615364731
7532241553
4416555175

   3223543653
2722466541
2463543371
2722356541
5442577563
5676562441
7463454531
7116426541
2463722371
6175125431
7441311761
6724354241
1571625431
4614631641
7315654641
7476634641
2233215371
4263434641
7571311761
4476634641

5326526331
5324226331
5326526311
5324256331
5324256311
5324526331
5324257331
5324226317
7764257311
7766557311
7764257331
7766527311
7766527331
7766257311
7766526311
7766557331
3715111423
3425721342
1433134121
6214212447
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