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Abstract

This thesis examines asymptotic properties of the quasi maximum likelihood (QML) es-

timator in a speci�c nonlinear generalized autoregressive conditionally heteroskedastic

(GARCH) process. The conditional mean is set to zero. The nonlinearity is established

via smooth transition mechanism in the conditional variance, where the distribution func-

tion of a logistic distribution is used for the smooth transition function. Strong consis-

tency and asymptotic normality of the QML estimator is proved in this smooth transition

GARCH(1; 1) model. For most of the analysis, we follow the work done in Meitz and

Saikkonen (2008c), where asymptotic properties of the QML estimator are studied in

nonlinear AR-GARCH models.

Key Words: Smooth transition, GARCH, nonlinear �nancial econometrics, strong con-

sistency, asymptotic normality, quasi maximum likelihood estimation.



Özet

Bu tez, do¼grusal olmayan belirgin bir genelleştirilmi̧s kendiyle ba¼glaş¬ml¬koşullu farkl¬

yay¬l¬m sürecinde sözde ençok olabilirlik tahmincisinin yanaş¬k özelliklerini incelemektedir.

Koşullu ortalama s¬f¬r olarak al¬nm¬̧st¬r. Do¼grusal d¬̧s¬l¬k, koşullu de¼gi̧sirlikteki yumuşak

geçi̧s mekanizmas¬yla sa¼gland¬. Yumuşak geçi̧s i̧slevi için ise lojistik da¼g¬l¬m¬n da¼g¬l¬m

i̧slevi kullan¬ld¬. Ençok olabilirlik tahmincisinin güçlü tutarl¬l¬¼g¬ve yanaş¬k normalli¼gi,

bahsi geçen yumuşak geçi̧sli genelleştirilmi̧s kendiyle ba¼glaş¬ml¬koşullu farkl¬yay¬l¬mmod-

elinde ispatland¬. Tezdeki çözümlemelerin ço¼gunda Meitz ve Saikkonen (2008c) makalesin-

dekilere benzer çözümlemeler kullan¬ld¬. Ad¬geçen makalede, sözde ençok olabilirlik tah-

mincisinin yanaş¬k özellikleri, koşullu ortalamas¬nda do¼grusal olmayan kendiyle ba¼glaş¬ml¬,

koşullu de¼gi̧sirli¼ginde ise do¼grusal olmayan genelleştirilmi̧s kendiyle ba¼glaş¬ml¬ koşullu

farkl¬yay¬l¬m süreci olan modeller içinde incelenmi̧stir.

Anahtar Kelimeler: Yumuşak geçi̧s, genelleştirilmi̧s kendiyle ba¼glaş¬ml¬koşullu farkl¬

yay¬l¬m, do¼grusal olmayan �nansal ekonometri, güçlü tutarl¬l¬k, yanaş¬k normallik, sözde

ençok olabilirlik tahmini
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1 Introduction and Literature Review

Risk and uncertainty in �nancial markets are of interest to everybody from individual

investors to hedge fund managers. They are measured in various ways, but the main

measure of risk and uncertainty is volatility, which is an essential character of �nancial

markets. Volatility is present not only in stock market asset prices, but also in �xed

income security returns, such as treasury bonds, due to changes in interest rates. One

important feature of volatility is it being time varying. If we take a look at the volatility

of returns of �nancial assets, then we get di¤erent volatilities at di¤erent points in time.

Because volatility can be inferred through variances, modelling the changing variance,

i.e. heteroskedasticity, is at the heart of �nancial analyses. Models used for analyzing

the time varying conditional variance have been used since Engle �rst introduced the

autoregressive conditionally heteroskedastic (ARCH) processes in 1982. In the past three

decades, Engle�s model became very popular and has been used in modelling �nancial

time series.

Suppose one is interested in modelling the univariate time series yt; which is often

assumed to consist of the returns of a �nancial asset. The ARCH process allows the

conditional variance of yt to change over time as a function of past yt�s although the

unconditional variance of yt is constant. The ARCH process proposed by Engle (1982) is

de�ned as

ytjFt�1 � N(0; �2t );

where Ft�1 is the information set available at time t� 1; and the conditional variance is

an explicit function of lagged yt�s

�2t = f(yt�1; yt�2; : : : ; yt�p; �).

The order of the ARCH process is p, and � is a vector of unknown parameters. In the

simplest and typical case, the conditional variance is described as

�2t = ! +

pX
i=1

�iy
2
t�i;

where ! > 0 and �i � 0 for i = 1; 2; : : : ; p: Additionally, the log-likelihood function for
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the ARCH model is found to be

logL(yT ; yT�1; : : : ; y1; �) = �
T

2
log(2�)� 1

2

TX
t=1

�
log(�2t ) +

y2t
�2t

�
:

Engle (1982) proved the relative e¢ ciency of the Maximum Likelihood Estimation (MLE)

to Ordinary Least Squares (OLS) in a special case. Furthermore, Pantula (1988) showed

a general result that the MLE is more e¢ cient than OLS in ARCH models. For these

reasons, MLE is used as the estimation technique in ARCH-type models.

ARCH models have been used in �nancial economics, especially in modelling foreign

exchange rates, stock returns, the changing uncertainty of in�ation rates and the term

structure of interest rates. One of the main features of asset returns is volatility clustering.

Volatility clustering is the phenomenon that large (small) values of returns are followed

by large (small) values of either sign. Another feature is that the asset returns have a lep-

tokurtic distribution, i.e. it has fat tails. Fat-tailedness brings about higher probabilities

for extreme values compared to a normal distribution. The generalized ARCH (GARCH)

model proposed by Bollerslev (1986) was able to successfully capture the volatility cluster-

ing and fat-tailedness of asset returns. The GARCH model is found by including lagged

conditional variances in the ARCH conditional variance equation. The GARCH(p; q)

model�s conditional variance is

�2t = ! +

qX
i=1

�iy
2
t�i +

pX
j=1

�j�
2
t�j;

where ! > 0, �i � 0 for i = 1; 2; : : : ; q, and �j � 0 for j = 1; 2; : : : ; p: The GARCH model

allows the conditional variance to depend on both its lags and on the lags of past squared

returns. Hence, some kind of learning mechanism is involved in the general process. Nev-

ertheless, there are some drawbacks of simple GARCH models. For instance, the model

is restricted by nonnegativity constraints, and the conditional variance is a¤ected only by

the magnitude of the shocks, not by their signs. In order not to have a negative �2t ; the

parameters in the conditional variance equation are set to be nonnegative. Furthermore,

because we have lags of squared returns, it does not matter whether the innovations

are positive or negative. However, Black (1976) suggested that while �bad news� are

increasing volatility, �good news�are reducing it. Thus, the model fails to capture the
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asymmetric responses of �2t . Therefore, GARCHmodel has been generalized and extended

in various directions in order to overcome these problems.

1.1 Linear Generalizations of ARCH/GARCH Models

The main aim of the generalizations was to increase the �exibility of the original model and

have weaker assumptions. The �rst generalization made was by Engle and Bollerslev in

1986. They introduced the Integrated GARCH (IGARCH) where the coe¢ cients, except

the intercept, of the conditional variance sum up to one. For example, the GARCH model

de�ned above will be IGARCHmodel if we restrict
Pq

i=1 �i+
Pp

i=1 �i = 1: In IGARCH, the

forecasts of the variance for further periods do not approach the unconditional variance.

In the model, today�s information is important for forecasting the conditional variance

in every period. Hence, the conditional variance will be a¤ected permanently by the

current shocks. IGARCH was proven not to be covariance stationary but still strictly

stationary by Nelson (1990). One of the other important and popular generalizations is

exponential GARCH (EGARCH) introduced by Nelson (1991). EGARCH(1; 1) is de�ned

in the following way.

yt = "t�t and log �2t = ! + 
yt�1 + � [jyt�1j � E(jyt�1j)] + � log �2t�1;

where "t is i.i.d. with zero mean and unit variance. EGARCH solves the two drawbacks.

First, it allows asymmetries and second, both the sign and the magnitude of the shocks

a¤ect the conditional variance in EGARCH model. For "good news", i.e. where 0 < "t <

1, log �2t is linear in yt�1 with a slope of 
 + �: However, for "bad news", where �1 <

"t < 0, the slope becomes 
��: Thus, the conditional variance responses asymmetrically

to di¤erent news. Furthermore, the sign and magnitude e¤ects are captured by the term

� [jyt�1j � E(jyt�1j)] :

Another important generalization is GJR-GARCH which is proposed by Glosten et

al. (1993). The model allows for asymmetry as it was the case in EGARCH. GJR-

GARCH(1; 1) is de�ned as

�2t = ! + �y
2
t�1 + 
y

2
t�1I(yt�1 < 0) + ��

2
t�1;
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where I is the indicator function. When the data is collected from asset returns, then


 generally turns out to be positive which implies that negative news a¤ect the condi-

tional variance more than the positive news. A similar structure to GJR-GARCH model

is introduced by Zakoïan (1994), the Threshold GARCH (TGARCH). But instead of the

conditional variance, the conditional standard deviation is modelled in TGARCH. An-

other linear generalization is Sentana (1995)�s quadratic GARCH (QGARCH) model. It

includes not only lagged returns but also cross-products of lagged returns which provide

asymmetric responses. The augmented ARCH (AARCH) introduced by Bera, Higgins and

Lee (1992) is a slightly more general model than QGARCH. Baillie et al. (1996) proposed

fractionally integrated GARCH (FIGARCH). In the FIGARCH model, the response of

the conditional variance to lagged residuals can decay slowly, contrary to GARCH and

IGARCH where there is either exponentially decay or permanence in e¤ect of shocks.

Hence, the model captures slowly changing volatility where e¤ects of shocks decay in a

long time. These are some characteristics of high-frequency data captured by FIGARCH.

1.2 Nonlinear Generalizations

There are also nonlinear extensions of ARCH and GARCH models. Higgins and Bera

(1992) introduced the nonlinear ARCH (NARCH) where the conditional standard devi-

ation raised to the power � is modelled. Another nonlinear model, that aims capturing

asymmetry, is the nonlinear asymmetric GARCH (NAGARCH) of Engle and Ng (1993)

where the response to shocks is centralized at a constant di¤erent from zero. A nonlinear

threshold model Double Threshold ARCH (DTARCH) model is presented by Li and Li

(1996). The name comes from the two threshold structure both in the autoregressive con-

ditional mean and in the conditional variance. Then, Hagerud (1996), González-Rivera

(1998) and Anderson et al. (1999) proposed nonlinear GARCH models by making smooth

transitions between regimes. In this paper, we are going to analyze a similar model to

that of González-Rivera (1998) de�ned as the following.

�2t = ! + �y
2
t�1 + �y

2
t�1F (yt�1; 
) + ��

2
t�1,
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where F (yt�1; 
) = (1+exp(�
yt�1))�1: The choice of the transition function is important.

For instance, if we put an indicator function as a transition function, then we get GJR-

GARCH model. Thus, jumps will occur at the regime changing points. However, a choice

of a continuous function makes the transition smoother, allowing intermediate regimes to

exist. Another nonlinear model that aims to explain volatility processes with di¤erent

regimes is Markov Switching GARCH (MS-GARCH) model. Authors such as Gray (1996),

Klaassen (2002), and Haas et al. (2004) proposed this kind of model. For instance, Haas

et al. (2004)�s model has a structure where the conditional variance equation is di¤erent

for each regime.

1.3 Families of GARCH Models

In addition to all these models mentioned above, some authors de�ned families of GARCH

processes. These families nest most of the GARCH models. Ding et al. (1993), Hentschel

(1995), Duan (1997), and He and Teräsvirta (1999) are some examples who proposed

families of GARCH models. For instance, the HGARCH model of Hentschel (1995) is

de�ned as
��t � 1
�

= ! + ���t�1 [jyt�1 � bj � c(yt�1 � b)]
v + �

��t�1 � 1
�

:

If we put (v; b) = (1; 0) and take the limit as �! 0 then we get EGARCH. If (�; v; b) =

(2; 2; 0) then we end up with GJR-GARCH. TGARCH and NGARCH are among other

important GARCH models that are nested in HGARCH model. Of course, the literature

on the extensions of ARCH and GARCH models is vast. We tried to present the most

popular and used versions. For a more general list, see Bollerslev (2008).

1.4 Theoretical Results

Because ARCH/GARCH models were capable of capturing some important features of

�nancial data, they have been used widely in �nance research and applications. Despite

the wide use of these models, sampling properties of the estimators were studied scarcely

in the early years after introduction of ARCH/GARCH processes. Milhøj (1985) studied

conditions for the existence of moments. The �rst study of the asymptotic properties
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of the ARCH model is done by Weiss (1986). He proved that the MLE is consistent

and asymptotically normal under fourth order moment condition on the ARCH process.

However, this assumption is a strong assumption. Nelson (1990) provided necessary and

su¢ cient conditions for stationarity and ergodicity of GARCH(1,1) process.

The �rst theory for the asymptotic properties of GARCH models is covered by Lums-

daine (1991), her doctoral dissertation. In 1992, Bollerslev and Wooldridge used strong

assumptions and derived the large sample properties of Quasi-Maximum Likelihood Esti-

mator (QML estimator). Nevertheless, they did not con�rm whether these assumptions

apply for GARCH models. Bougerol and Picard (1992a, b) provided necessary and su¢ -

cient conditions for the existence of a unique stationary solution of the conditional variance

equation of GARCH(p; q) models. Lee and Hansen (1994) contributed to the literature

by showing the consistency and asymptotic normality of QML estimator in GARCH(1,1)

with weaker assumptions than those of Weiss (1986) and Lumsdaine (1991). Lee and

Hansen did not make the assumption of the �i.i.d.�ness of the rescaled variable - the ratio

of the returns to the conditional standard deviation. However, they exclude integrated

GARCH processes for consistency proof. Lumsdaine (1996) showed that even without

the assumption of �nite fourth moments, the QML Estimators of all the parameters in

GARCH(1,1) and IGARCH(1,1) are consistent and jointly asymptotically normal. Nev-

ertheless, both Lee and Hansen (1994) and Lumsdaine (1996)�s work were unique so that

they cannot be easily generalized to GARCH (p; q) model. Ling and Li (1998) showed

that MLE of unstable ARMA with GARCH errors is consistent, yet the results were found

for local estimators.

Eventually, a more general result without very strong assumptions is found by Berkes,

Horváth and Kokoszka (2003). They proved the consistency and asymptotic normality

of QML estimator in GARCH(p; q) models in milder conditions. Moreover, they max-

imized the likelihood function over a general compact set, contrary to Lee and Hansen

(1994) and Lumsdaine (1996) where only the local consistency is obtained. Francq and

Zakoïan (2004) proved strong consistency and asymptotic normality of QML estimator

under weaker conditions than those in the existing literature, and they extended their

results to ARMA-GARCH models. Jensen and Rahbek (2004b) established similar as-
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ymptotic results for QML estimator in GARCH(1,1) model even when the parameters are

allowed to be in the region where the process is non-stationary. Straumann and Mikosch

(2006) extended the results of Berkes, Horváth and Kokoszka (2003) to a more general

conditionally heteroskedastic time series model. They studied asymptotic properties of

QML estimator in nonlinear pure GARCH models, including GARCH(p; q). As exam-

ples, AGARCH and EGARCH models are examined. As an extended result, Meitz and

Saikkonen (2008c) established the consistency and asymptotic normality of the QML es-

timator in nonlinear AR-GARCH models. In their model, they allow nonlinearity in both

the conditional mean and in the conditional variance. They also provide some examples

where their results can be applied.

1.5 The Topic of this Thesis

The aim of this thesis is to establish strong consistency and asymptotic normality of

the QML estimator in a smooth transition GARCH(1,1) model. As mentioned above,

smooth transition models are presented by Hagerud (1996) and González-Rivera (1998).

For the transition function, generally, either the logistic or exponential function is used.

We work on the smooth transition model with logistic function because in this case both

the sign and the magnitude of the innovations a¤ect the conditional variance. But, when

exponential transition is used then the model cannot capture the e¤ects of di¤erent signs

of innovations. Moreover, in a nonlinear autoregressive model, logistic function is proven

to be superior to exponential function by Teräsvirta (1994).

The smooth transition model with logistic function has a similar structure to GJR-

GARCHmodel where indicator function is used to distinguish between the regimes. Thus,

there are breaks between two di¤erent regimes in GJR model. However, via smooth

transition functions we allow intermediary regimes to exist as the process is passing from

one regime to another. The parameters in the logistic function will determine the shape

of the transition. There can be a sharp transition so that there are low and high volatility

regimes or there can be a smoother transition where there are many intermediate regimes

depending on the parameters of the logistic function.

This thesis can be seen as a special case of Meitz and Saikkonen (2008c) where
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asymptotic theory for nonlinear AR-GARCH models is analyzed. We will basically follow

their arguments, therefore for more general results see Meitz and Saikkonen (2008c).

Moreover, some assumptions, derivations and techniques used in this paper are similar

to those of Straumann and Mikosch (2006), and Francq and Zakoïan (2004). Therefore,

throughout the paper we will refer to them often.

The rest of the thesis proceeds as follows. Section 2 introduces the model to be

studied. The assumptions and particular results related to strong consistency of the

QML estimator are included in this section. Section 3 contains some results, an extra

assumption and the strong consistency theorem. Section 4 is devoted to the asymptotic

normality of QML estimator. Concluding remarks are presented in Section 5. All of the

proofs and useful lemmas are left to the Appendix.

A �nal note on the notation used throughout this thesis. We denote (0;1) as R+.

The transpose of a vector or a matrix v is denoted as v0. For any scalar, vector, or

matrix v; the Euclidean norm1 is denoted by jvj. The Lp-norm of v is denoted by kvkp =

fE [jvjp] g1=p for a random variable (scalar, vector, or matrix) v and for p > 0: A sequence

of random elements vt is said to converge in Lp-norm to v if kvtkp <1 for all t; kvkp <1;

and limt!1 kvt � vkp = 0: The sequence of random elements vt (�) is said to be Lp-

dominated in � if there exists a sequence of positive random variables Dt such that

jvt (�)j � Dt for all � 2 � and kDtkp <1 uniformly in t. Finally, �a.s.� stands for �almost

surely�and �i¤�stands for �if and only if�.

1Euclidean norm for a real valued vector v is de�ned as jvj = (v0v)
1=2
: For a real valued (m� n)

matrix A = [aij ] ; the norm is de�ned as

jAj =

0@ mX
i=1

nX
j=1

a2ij

1A1=2

:
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2 The Model

We will focus on a speci�c type of smooth transition GARCH, ST-GARCH(1; 1), model

de�ned by, for t = 1; 2; : : :,

yt = �t"t

and �2t = g(yt�1; �
2
t�1;�0) = !0 + (�0;1 + �0;2G(yt�1; 
0))y

2
t�1 + �0�

2
t�1; (1)

Note that if one would set �0;2 = 0; the model would reduce to the standard GARCH(1,1)

model of Bollerslev(1986). In our model, the errors are assumed to be independent and

identically distributed random variables with zero mean and unit variance, i.e., "t
iid� (0; 1):

Moreover, "t is assumed to be independent of ys for s < t: In particular, "t is not only

independent of its own past, but also independent of the past of �2t : Thus, �
2
t determines

the unobserved conditional variance of the observed process yt, where �conditional�refers

to conditional on the past of the observed series, fyt�1; yt�2; : : :g : In this paper the con-

ditional mean is simply set to zero. We assume that the (6 � 1) true parameter vector

�0 = (!0; �0;1; �0;2; �0; 
0), where 
0 = (
0;1; 
0;2), belongs to a compact set �. This

permissible parameter space is a subset of R+� [0;1)2� [0; 1)�R�R+. Having a com-

pact parameter space is a common assumption in nonlinear estimation problems. We can

relax this assumption at a cost of some additional assumptions and a more complicated

analysis.

The function G is the distribution function of a logistic distribution de�ned by

G(yt�1; 
) =
1

1 + e�
2(yt�1�
1)
:

Although in economic applications, usually, the nonlinear function G(y; 
) is chosen to

be the cumulative distribution function of the logistic distribution, there are also other

choices for the function G: For instance, Lanne and Saikkonen (2005) used an increasing

function similar to the cumulative distribution of a positive continuous random variable

as the transition function where it depends on the lagged conditional variance instead of

the lagged series. Another choice may be exponential distribution function.

Note that the nonlinear function G takes values in [0; 1] and depends only on the

�rst lag of yt. The location parameter 
1 takes values in R; whereas 
2 takes values in
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R+ being a scale parameter. Consider the case 
2 = 0: The transition function becomes a

constant function and thus �0;1 and �0;2 cannot be identi�ed. Therefore, the permissible

parameter space of 
2 is positive numbers. Essentially, 
2 determines the smoothness

of the transition. Hence, the logistic smooth transition GARCH model nests several

important GARCH models, such as GJR-GARCH introduced by Glosten et al. (1993).

For large values of 
2 the transition function will become steeper and behave like an

indicator function at y = 
1: Thus, additionally, if we set 
1 = 0 then the model will

be equivalent to GJR-GARCH. These di¤erent plots of the function G are illustrated in

Figure 1 for 
1 = 0.

The shape of the function G for different values of

­0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

­40 ­20 0 20 40

yt­1

G
(y

t­
1;γ

) γ2
γ2
γ2
γ2

γ2=0.1

ovvsnefğf

γ2=0.3

γ2=1

γ2=50

γ2

Figure 1

Other properties related to the function G; such as continuity and di¤erentiability,

will be investigated in Appendix A.

2.1 Assumptions and Results for Strong Consistency

Now, we will make some assumptions from which we obtain particular results to prove

the consistency of the estimator.
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Assumption 1:

a) "t has (Lebesgue) density which is positive and lower-semi continuous on R.

b) E
�
(�0 + (�0;1 + �0;2) "

2
t )
r�
< 1 for some r > 0:

c) �0;1 > 0 and �0 > 0:

This assumption is necessary not only for satisfying identi�cation condition but also

for using results of Meitz and Saikkonen (2008a) for ergodicity and stationarity of (yt;

�2t ): Assumption 1 is needed to satisfy the Proposition 1 and Theorem 1 of that paper.

The number r is going to be used in further results, thus, throughout the paper we �x

this r. The last part of the assumption ensures the existence of the ARCH and GARCH

e¤ects, thus the identi�ability of the parameters in the conditional variance. Moreover,

the positiveness of these parameters is inevitable for the asymptotic normality of the QML

estimator. Under the assumption of �nite 6th moments of the innovations, Francq and

Zakoïan (2007) shows that the asymptotic distribution is non-Gaussian if we let some

parameters to be equal to zero.

Assumption 2: �0;2 > 0:

This assumption is important for identifying the parameters. If �0;2 = 0; then the

parameters in 
 cannot be identi�ed, thus the model becomes linear GARCH(1,1) model

of Bollerslev (1986).

Now let�s discuss the results that are derived from assumptions and properties of the

function G: They are going to be used for proving consistency of the QML estimator.

The �rst result is obtained from Assumption 1. The proofs of this and all the subsequent

results are in the Appendices.

Result 1: Suppose Assumption 1 holds. Then the process (yt; �2t ) de�ned above is ergodic

and stationary with E[�2rt ] <1:

Stationarity and ergodicity play a crucial role in the proofs of consistency and as-

ymptotic normality. They enable us to use well-known results, such as Ergodic Theorem.

Result 1 additionally provides us the �niteness of E[jytj2r]: Similar to our Result 1, the

ergodic stationarity assumption is made in many papers, for instance see Assumption
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C.1 of Straumann and Mikosch (2006). Although Result 1 is su¢ cient in the proof of

consistency of the estimator, we need stronger moment conditions for proving asymptotic

normality.

Assume y0; y1; : : : ; yT are observed, which are generated by ergodic and stationary

process de�ned by equation (1)(cf. Result 1). If "t were assumed to be Gaussian, then,

conditionally on the ��algebra generated by f"i;�1 < i � t� 1g ; the ratio yt=�t would

also be Gaussian. However, we do not assume the normality of "t; but the likelihood is

constructed as if "t would be normal. Therefore, the estimator considered in the paper is

QML estimator. Hence, the conditional quasi-maximum log-likelihood function is de�ned

as

L(�) = �T
2
log (2�)� 1

2

TX
t=1

�
log �2t +

y2t
�2t

�
: (2)

Because we cannot observe the process of the conditional variance we do not know any-

thing about its stationary distribution. But the log-likelihood function has the conditional

variance as a variable. Therefore, we de�ne a process to approximate the conditional vari-

ance in the following way.

ht(�) =

�
&0
g(yt�1; ht�1(�);�)

t = 0

t = 1; 2:::;

where � is an (6� 1) parameter vector with the true value �0. We assume that the initial

value &0 is positive and independent of �: After the speci�cation of &0; we can solve ht(�)

recursively for any given �. A similar approach is taken by several authors including

Lee and Hansen (1994), Lumsdaine (1996), Francq and Zakoïan (2004), Straumann and

Mikosch (2006). In the derivations, we will use the notation ht for ht(�) unless the explicit

dependence to � is needed. Meitz and Saikkonen (2008b) provided su¢ cient conditions

for ergodicity and stationarity only for ht(�0). We do not know anything about the

process ht(�) for � 6= �0: Thus, we additionally have to use Result 2, which is a direct

consequence of properties of the function G; in order to get Result 3 where we obtain

desirable properties of ht(�) .

Result 2: The function g : R � R+ � � ! R+ is continuous with respect to all of its

arguments and satis�es the following.
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i) For some 0 < % < 1 and 0 < {; $ <1 , g(y; x;�) � %x+{y2+$ for all � 2 �; y 2 R

and x 2 R+:

ii) For some 0 < � < 1 , jg(y; x1;�)� g(y; x2;�)j � � jx1 � x2j for all � 2 �; y 2 R and

x1; x2 2 R+:

In the property i), we do not only bound the function g from above but also we

specify the upper bound. This speci�c bound is used while achieving Result 3 where

we introduce ergodic and stationary solution to the approximation of the conditional

variance. The contraction property of g with respect to its second argument is given in

ii). Here, the constant � is �xed throughout the paper. An assumption similar to this

result is made by Straumann and Mikosch (2006), see Proposition 3.12. They also bound

the function g from above and assume a contraction property.

Result 3: Suppose Assumption 1 holds. Then, for all � 2 �; there exists a stationary

and ergodic solution h�t (�) to the equation

ht(�) = g(yt�1; ht�1(�);�) = ! + (�1 + �2G(yt�1; 
))y
2
t�1 + �h

2
t�1(�); t = 1; 2; :::. (3)

Moreover, h�t (�) is continuous in � and is measurable with respect to the ��algebra gen-

erated by (yt�1; yt�2; :::): The solution to the equation is unique when it is extended to all

t 2 Z: The solution evaluated at the true parameter is equal to the conditional variance,

i.e., h�t (�0) = �2t : Furthermore, E [sup�2� h
�r
t (�)] < 1 and ksup�2� jh�t � htjkr � C�t;

where C 2 R and � is as in Result 2. Finally, for � 2 �, if ht(�) is any other solution

to the above equation, then for some 
 > 1;


t sup
�2�

jh�t (�)� ht(�)j ! 0 in Lr � norm as t!1:

Result 3 is essential in proving consistency of QML estimator. Since the di¤erence

between h�t (�) and ht(�) is negligible, i.e., as t!1 the di¤erence converges uniformly to

zero su¢ ciently fast, we can use h�t (�) in the derivations. Actually, the di¤erence between

h�t (�) and any other solution to the recurrence equation is negligible. The advantage of

h�t (�) is its ergodicity and stationarity which is central in inferring the stationarity of the

likelihood function and in using the Ergodic Theorem.

13



3 Strong Consistency of the QML estimator

As mentioned in the previous section, we will use quasi-maximum likelihood estimation

in our analysis since "t is not assumed to be normal. We de�ne QML estimator of �0 to

be

�̂T = argmin
�2�

LT (�) = argmin
�2�

(
1

T

TX
t=1

lt(�)

)
; where lt(�) = log(ht(�)) +

y2t
ht(�)

:

The objective function LT (�) is obviously a linear transformation of the conditional

log-likelihood function de�ned in (2), as the constant is ignored and the function is

rescaled by �2=T . The ergodic and stationary counterpart of LT (�) is de�ned as L�T (�) =

T�1
PT

t=1 l
�
t (�); where l

�
t (�) = log(h

�
t )+y

2
t =h

�
t and h

�
t = h

�
t (�) is the stationary and ergodic

solution to (3). In addition to above results, we need further results about the conditional

variance function.

Result 4: The function g : R�R+ � �! R+ is bounded away from 0 in the sense that

inf(y;x;�)2R�R+�� g(y; x;�) = g for some g > 0:

Result 5: Suppose Assumptions 1 and 2 hold. Then h�t (�) = �
2
t a.s. only if � = �0:

Result 4 is an immediate outcome of model�s de�nition. However, it is important

for bounding the likelihood function from below uniformly. Moreover, since ht(�) is

constructed by the equation ht(�) = g(yt�1; ht�1(�);�); we obtain that ht(�) � g: Hence,

having the de�nition of being the solution of this recursive relation, h�t (�) has to satisfy

the properties of the relation as well, i.e., h�t (�) � g. These two inequalities provide us

the well-de�nedness of y2t =h
�
t and y

2
t =ht which are components of the likelihood function.

A similar uniformly bounding assumption is made by Straumann and Mikosch (2006). In

order to obtain Result 5, which is an identi�cation condition, we have to use properties

of the function G and other results. This condition is used in showing that the true

parameter is the unique minimizer of the expected value of the likelihood function. This

identi�ability condition is assumed in the same way in Assumption C.4 of Straumann and

Mikosch (2006). In the derivations of Francq and Zakoïan (2004), it is shown that this

condition holds for the linear ARMA-GARCH models.
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Assumption 3: E [sup�2� �2t=h
�
t ] <1:

Assumption 3 is an extra assumption. For proving strong consistency we actually

do not need it. However, if it is assumed then the proof simpli�es. The consistency

proof with Assumption 3 as an extra assumption is done in another part (Part 1 ) of the

proof. Similarly, Straumann and Mikosch (2006) provided 2 di¤erent proofs for strong

consistency, one proof with extra assumption similar to Assumption 3 and one without

it.

Now we are ready to state our strong consistency theorem whose proof is in Appendix

E.

Theorem 1 Suppose Assumptions 1 and 2 hold. Then, the QML estimator �̂T is strongly

consistent for �0, i.e., �̂T ! �0 a.s.

In the proof, we will use the Gaussian likelihood function LT (�) and the ergodic and

stationary approximation L�T (�): Instead of minimizing directly the likelihood function,

we will minimize its ergodic and stationary analogue L�T (�): Then, we make use of the

negligible di¤erence between LT (�) and L�T (�) in large samples. Both Francq and Zakoïan

(2004), and Straumann and Mikosch (2006) have a similar approach. In our proof, we

basically follow the arguments of Pötscher and Prucha (1991). We introduce an extra

part, named as Part 1, where we use a uniform Strong Law of Large Numbers (SLLN).

Here, we �nished the consistency proof by imposing the extra assumption, Assumption 3.

Thereby, in this part it is shown how the proof simpli�es when uniform SLLN can be used.

In Part 2, we continued the arguments of Pötscher and Prucha (1991) by considering the

Ergodic Theorem and the argument of Pfanzagl (1969) instead of using a uniform SLLN.

The latter argument is used also in other papers to prove the strong consistency (see

Jeantheau, 1998).
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4 Asymptotic Normality of the QML estimator

4.1 Assumptions

In order to verify the asymptotic normality of the QML estimator of the true value �0; we

need to analyze the limiting properties of the �rst and second derivatives of the objective

likelihood function LT (�) : In particular, we will focus on the derivatives of ht and h�t : In

this subsection, we state the necessary assumptions for asymptotic normality. They are

essential in proving the further results in the next subsection. These assumptions, along

with the previous ones, ensure twice continuously di¤erentiability of the processes ht and

h�t :

Assumption 4: The true parameter value �0 is an interior point of �; i.e., �0 2 ��:

This assumption is necessary for di¤erentiation of the conditional variance. Having

the true parameter values as an interior point, we can use Taylor series expansion of the

score vector around �0. Moreover, because �̂T is consistent by Theorem 1 we only need

to consider parameter values in an open neighborhood of �0: Therefore, we de�ne �0;

contained in the interior of �; to be a compact and convex set containing �0 as an interior

point. Assumption 4 is used in several papers that prove the asymptotic normality of the

QML estimator in a GARCH framework. Furthermore, Straumann and Mikosch (2006),

and Francq and Zakoïan (2004) also make use of a set having similar properties like �0:

Another importance of Assumption 4 is that it allows the asymptotic distribution of

QML estimator to be Gaussian. For instance, if �0 were equal to zero, then
p
T (�̂T��0) =

p
T �̂T � 0 for all T; where �̂T is the QML estimator of �0: However, the asymptotic dis-

tribution of an estimator which is positive for every T cannot be standard normal distrib-

ution. Thus, as pointed out in Francq and Zakoïan (2007), when the true parameter value

is on the boundary then the resulting asymptotic distribution is not Gaussian anymore.

Assumption 5: E
h
(�0 + (�0;1 + �0;2) "

2
t )
2
i
< 1:

In other words, we assume that Assumption 1.b holds with r = 2: Basically, this

assumption is on the distribution of "t; it provides us the �niteness of the fourth moments
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of the innovations, i.e., E["4t ] < 1. We need it for the �niteness of the variance of

@l�t (�0) =@�. Additionally, together with the other assumptions, we will be able to prove

the �niteness of E[�4t ] and the fourth moment of yt. The �nite fourth moments of the

innovations, directly or indirectly, is assumed in many papers, including Straumann and

Mikosch (2006) (assumption N.3.i.), and Francq and Zakoïan (2004)(assumption A6).

4.2 Results and the Main Theorem for Asymptotic Normality

In this section, we introduce necessary results that will be used in proving the asymptotic

normality theorem. They are about the derivatives of the function g; and the di¤erentia-

bility properties of ht and its ergodic and stationary counterpart h�t : In fact, we will show

that the derivatives of ht converge to those of h�t : Again, the results in this section have

similarities in the corresponding results of Straumann and Mikosch (2006), and Francq

and Zakoïan (2004).

First, we state a result on the derivatives of the function g: Let�s denote the �rst

and second partial derivatives of g with gu1 = @g(y; h;�)= @u1 and gu1u2 = @
2g(y; h;�)=

@u1@u
0
2; where u1 and u2 can be any of y; h and �:

Result 6:

i) For some �nite C1 and C2; and all (y; x; �)2 R�R+��0; the quantities jg�j and jg��j

evaluated at (y; x; �) are bounded by C1(1 + y2 + x) and C2y2, respectively.

ii) For some �0 <1 and all (y; x1; x2)2 R� R+ � R+ we have

jgu(y; x1;�)� gu(y; x2;�)j � �0 jx1 � x2j ; u = h; �;

jgu1u2(y; x1;�)� gu1u2(y; x2;�)j � �0 jx1 � x2j ; u1; u2 = h; �:

This result will be used to prove the existence of some certain moments involving the

partial derivatives of g: Note that, �0 need not be less than 1, thus, the partial derivatives

of g need not be contractions as it was the case in Result 2. The inequalities in Result

6 will trivially hold for the partial derivatives with respect to h because gh = �: For the
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other inequalities, we will make use of the properties of partial derivatives of the function

G:

The following two results are associated with the derivatives of ht(�). The di¤eren-

tiation notations are kept here as well, e.g. h�;t = @ht(�)=@� and h��;t = @2ht(�)=@�@�
0:

By a straightforward di¤erentiation of the function ht (�) = g(yt�1; ht�1 (�) ;�) = ! +

(�1 + �2G(yt�1; 
))y
2
t�1 + �ht�1(�) we obtain, for t = 1; 2; : : : ;

h�;t(�) = g�;t + gh;th�;t�1(�)

= g�;t + �h�;t�1(�); (4)

h��;t(�) = g��;t + e4h
0
�;t�1(�) + h�;t�1(�)e

0
4 + �h��;t�1(�); (5)

where e4 is a (6� 1) unit vector having 1 in the fourth entry and 0 otherwise, i.e., e4 =

(0; 0; 0; 1; 0; 0)0. In the following results we will use the stationary ergodic counterparts of

the derivatives of the function g: Let�s de�ne g��;t = [g�]h=h�t�1(�)
= @g(yt�1; h

�
t�1(�);�)=

@� as the partial derivative of g evaluated at h = h�t�1(�); where h
�
t (�) is the stationary

ergodic solution to the equation (3) in Result 3. We de�ne g���;t in a similar way.

Result 7: Suppose Assumptions 1, 2, 4 and 5 hold. Then, for all � 2 �0; there exists a

stationary and ergodic solution h��;t(�) to the equation

h�;t(�) = g
�
�;t + �h�;t�1(�); t = 1; 2; : : : . (6)

Moreover, h��;t(�) is measurable with respect to the ��algebra generated by (yt�1; yt�2; :::)

and is unique when the recursive equation (6) is extended to all t 2 Z: The ergodic and

stationary solution h�t (�) obtained from Result 1 is continuously partially di¤erentiable on

�0 for every t 2 Z and @h�t (�)=@� = h��;t(�): Furthermore, E[sup�2� jh��;t(�)jr=2] <1 and

ksup�2� jh�t � htjkr=4 � C 0max
�
t; t4=r

	
�t�1; where C 0 2 R and � is as it was in Result

3. Finally, for � 2 �0, if ht(�) and h�;t(�) are any other solutions to the di¤erence

equations (3) and (6), respectively, then for some 
 > 1;


t sup
�2�0

��h��;t(�)� h�;t(�)��! 0 in Lr=4 � norm as t!1:
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This result can be viewed as an analogue of Result 3 for the �rst derivatives. It shows

that h�t (�); the stationary ergodic solution to (3), is continuously di¤erentiable and that

its derivative is also a stationary ergodic process which solves (6). This result will be used

in showing that L�T (�) is continuously di¤erentiable with an ergodic stationary derivative.

Moreover, Result 7 implies that for any other solution ht(�) to the equation (3), the

di¤erence between its derivative h�;t(�) and h��;t(�) converges to zero exponentially fast

and uniformly over �0. Hence, by this result, we will be able to prove that the �rst

derivative of L�T (�) can be served as an approximation to the �rst derivative of LT (�):

Result 8: Suppose Assumptions 1, 2, 4 and 5 hold. Then, for all � 2 �0; there exists a

stationary and ergodic solution h���;t(�) to the equation

h��;t(�) = g
�
��;t + e4h

�0
�;t�1(�) + h

�
�;t�1(�)e

0
4 + �h��;t�1(�); t = 1; 2; :::. (7)

Moreover, h���;t(�) is measurable with respect to the ��algebra generated by (yt�1; yt�2; :::)

and is unique when (7 ) is extended to all t 2 Z: The ergodic and stationary solution h�t (�)

obtained from Result 1 is continuously partially di¤erentiable on �0 for every t 2 Z and

@2h�t (�)=@�@�
0 = h���;t(�): Furthermore, E[sup�2� jh���;t(�)jr=4] <1: Finally, for � 2 �0,

if ht(�), h�;t(�) and h��;t(�) are any other solutions to the di¤erence equations (3), (6)

and (7), then for some 
 > 1;


t sup
�2�0

��h���;t(�)� h��;t(�)��! 0 in Lr=8 � norm as t!1:

This result, concerning the second derivatives of ht(�) and h�t (�), is similar to Result

7. Regarding the moments and convergence results in the last two previous results, the

values (r=2; r=4 and r=8) are not strict if these results hold for some positive exponents.

As a matter of fact, in Result 9 we will show that r can be replaced by 2 in all of the

results (Results 1; 3; 7 and 8) having r as either moment or convergence result. Result 7

and 8 are alike to Proposition 6.1 and 6.2 in Straumann and Mikosch (2006), respectively.

Result 9: Suppose Assumptions 1, 2, 4 and 5 hold. Then, Result 1 holds with r = 2,

speci�cally, E[�4t ] <1: Moreover,




 sup�2�0

��h��;t (�)��
h�t (�)







4

<1 and






 sup�2�0

��h���;t (�)��
h�t (�)







2

<1:
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This result is equivalent to an assumption (N.3) in Straumann and Mikosch (2006).

One of the consequences of Result 9, together with the Assumption 5, is the �niteness of

the fourth moments of yt: The inequalities regarding the derivatives of h�t will be used in

proving the �niteness of the expectation, for � 2 �0;

J (�) def= E

�
@2L�T (�)

@�@�0

�
;

where � 2 �0. Thus, by the help of the other results, we will be able to use the uniform

Strong Law of Large Numbers for the derivatives of L�T (�) and h
�
t (�): The expectation

J (�) is important because its inverse at the true parameter value �0 takes place in the

asymptotic variance of QML estimator. The properties and some convergence results

regarding J (�) will be thoroughly analyzed in Appendix E.

Result 10:

i) The distribution of "t is not concentrated at two points.

ii) For x� 2 R6; x0�
@g(yt;�2t ;
0)

@�
= 0 a.s. only if x� = 0:

The second part of our last result implies the linear independence of the elements of

@g (yt; �
2
t ; 
0) =@� with probability one, hence, it is an identi�cation result. It is parallel

to Assumption N.4 of Straumann and Mikosch (2006). Together with the �rst part of

Result 10, they guarantee the positive de�niteness of the asymptotic variance matrix of

the QML estimator of the true parameter �0: Hence, Result 10 assures that the asymptotic

covariance matrix is regular.

Now, we can state the main theorem of the asymptotic normality section.

Theorem 2 Suppose Assumptions 1, 2, 4 and 5 hold. Then,

p
T
�
�̂T � �0

�
!d N

�
0; E

�
"4t � 1

�
J (�0)�1

�
;

where J (�0) = E
�
��4t h

�
�;t (�0)h

�0
�;t (�0)

�
is positive de�nite.

As in the proof of Theorem 1, we will follow a similar approach like Straumann

and Mikosch (2006), and Francq and Zakoïan (2004). We �rst establish the asymptotic

normality of an infeasible QML estimator, will be denoted as ~�T ; that minimizes the
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likelihood function L�T (�) : A mean value expansion of the �rst derivative of L
�
T (�) will

be used as a technical tool for the asymptotic normality of ~�T . Next, the asymptotic

equivalence of the feasible and infeasible estimators will be established, so that
p
T (~�T �

�̂T )! 0 a.s. Finally, in order to compute consistent estimator of the asymptotic covariance

matrix, we introduce consistent estimators for E["4t � 1] and J (�0) : They are

1

T

TX
t=1

�
y4t

ĥ2t
� 1
�

and
1

T

TX
t=1

 
ĥ�;t

ĥt

ĥ0�;t

ĥt

!
; (8)

respectively. Here, the hat "^" signi�es that the variable is evaluated at the feasible QML

estimator �̂T . Obviously, if "t is distributed normally, thus E["4t ] = 3; then the asymptotic

covariance simpli�es to 2J (�0)�1 :

5 Conclusion

In applied econometrics, conditionally heteroskedastic models are commonly used. In this

paper, we have studied some asymptotic properties of QML estimator in a model where

the returns are conditionally heteroskedastic. The conditional variance of the returns

is speci�ed to have a smooth transition GARCH(1; 1) model with a logistic function as

transition mechanism. This speci�c nonlinear model in the conditional variance allows the

asymmetric response to positive and negative shocks. It is a generalization of threshold

GARCH models since our model reduces to a threshold model for speci�c choices of

parameters.

In this thesis, we proved the strong consistency and the asymptotic normality of

QML estimator. In fact, these asymptotic properties of QML estimator in our nonlinear

GARCHmodel are proved under conditions which are as mild as in linear GARCHmodels

(see for instance Lee and Hansen (1994), Lumsdaine (1996), Berkes, Horváth and Kokoszka

(2003)).

This master thesis relies on the results of Meitz and Saikkonen (2008c). But, our

approach is also similar to Straumann and Mikosch (2006), and Francq and Zakoïan

(2004). References to these papers are made at several steps throughout the paper.

This thesis can be generalized in various ways. An extension to nonlinear AR-GARCH
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models has already be done by Meitz and Saikkonen (2008c). It may be further extended

to nonlinear ARMA-GARCH models. Another generalization might be letting the true

parameter value �0 be on the boundary. This case is handled in a pure linear GARCH(p; q)

model by Francq and Zakoïan (2007). However, as discussed in section 2.1, the resulting

asymptotic distribution is a non-Gaussian one. For instance, if we let �0 to be equal to 0;

then for all T;
p
T (�̂T��0) =

p
T �̂T � 0 cannot have a Gaussian distribution. By making

minor changes in our assumptions, a potential future work can be considered as obtaining

�nite moments of any order for the terms in Result 9, i.e. jj sup�2�0 jh��;t (�) j=h�t (�) jjv <

1 and jj sup�2�0 jh���;t (�) j=h�t (�) jjv <1 for any v > 0:

Appendices

Appendix A: Properties of the Function G

In this part we will analyze the nonlinear function G. By taking the �rst derivative with

respect to y, we see that the function is strictly increasing at the true parameter value 
0.

@G(y; 
0)

@y
=


0;2e
�
0;2(y�
0;1)�

1 + e�
0;2(y�
0;1)
�2 > 0:

Because the exponential function always takes nonzero numbers and because the deriv-

ative of exponential function exists up to any order, we conclude that G(�; 
0) is strictly

increasing and its derivative exists up to any order and is continuous. Moreover, the

function G is continuous in the parameter values, thus G(�; �) is continuous.

We know that the function G takes values close to 1 as yt�1 gets larger, and val-

ues close to 0 as yt�1 gets smaller. However, in the conditional variance equation we

have the multiplication of these two functions. Therefore, let�s analyze the behavior of

G(yt�1; 
)yt�1 as yt�1 takes very large and very small values:We have the following equal-

ities for all 
 2 R� R+:

lim
y!�1

y2G(y; 
) = lim
y!�1

y2

1 + e�
2(y�
1)

= lim
y!�1

2


22e
�
2(y�
1)

= 0 by L�Hôpital Rule2. (9)
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lim
y!1

y2 [1�G(y; 
)] = lim
y!1

y2

1
e�
2(y�
1)

+ 1
= 0

= lim
y!1

2


22e

2(y�
1)

= 0 by a similar argument. (10)

Hence, we see that the function G converges to its extreme values much faster than yt�1

does. The next analysis is done for identi�cation. Assume that 
 6= 
0: Then,

y 6= 
2
1�
0;2
0;1

2�
0;2

i¤

�
2(y � 
1) 6= �
0;2(y � 
0;1) i¤

1
1+e�
2(y�
1)

6= 1

1+e�
0;2(y�
0;1)
i¤

G(y; 
) 6= G(y; 
0). (11)

Hence, if 
 6= 
0; then we have G(y; 
) 6= G(y; 
0) for y 6= (
2
1 � 
0;2
0;1)(
2 � 
0;2)�1:

In other words, the function G takes di¤erent values for di¤erent parameters for all y�s

except for a particular choice.

Next, analyze the properties of the derivatives of the function G: We denote the

partial derivatives of G as it is denoted for the functions g and h (e.g. G
 = @G(y; 
)=@
).

The �rst partial derivatives of G are given below.

G
(y; 
) =

24 G
1(y; 
)
G
2(y; 
)

35 = �1 + e�
2(y�
1)��2
24 �
2e�
2(y�
1)

(y � 
1)e�
2(y�
1)

35
Gy(y; 
) =

�

2e

�
2(y�
1)
� �
1 + e�
2(y�
1)

��2
Now, we will prove that the partial derivative G
 at the true values converge to zero

faster than the convergence of y2 to �1:We apply L�Hôpital Rule twice and three times,
2L�Hôpital Rule: Suppose f and g are real and di¤erentiable in (a; b), and g0(x) 6= 0 for all x 2 (a; b),

where �1 � a < b � 1. Suppose [f 0(x)=g0(x)] ! A as x ! a: If f(x) ! 0 and g(x) ! 0 as x ! a, or

g(x)! +1 as x! a then
f(x)

g(x)
! A as x! a:

The analogous statement is of course true if x! b, or g(x)! �1: Here we take f(x) as y2; and g(x) as

1 + exp(�
2(y � 
1)): We apply the rule twice.
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respectively, to obtain that

lim
y!�1

y2G
1(y; 
0) = lim
y!�1

�
2;0y2e�
2;0(y�
1;0)�
1 + e�
2;0(y�
1;0)

�2
= lim

y!�1

�
2;0y2

e
2;0(y�
1;0) + 2 + e�
2;0(y�
1;0)

= lim
y!�1

�2

22;0e


2;0(y�
1;0) + 
22;0e
�
2;0(y�
1;0)

= 0: (12)

lim
y!�1

y2G
2(y; 
0) = lim
y!�1

y2(y � 
1;0)e�
2;0(y�
1;0)�
1 + e�
2;0(y�
1;0)

�2
= lim

y!�1

y3 � 
1;0y2

e
2;0(y�
1;0) + 2 + e�
2;0(y�
1;0)

= lim
y!�1

3


32;0e

2;0(y�
1;0) � 
32;0e�
2;0(y�
1;0)

= 0: (13)

Note that after L�Hôpital Rule is applied, in either case, i.e. y ! +1 and y ! �1; the

denominators diverge to �1:

For the identi�cation of the partial derivative G
(y; 
0) we will prove that there exists

�y such that (a; b)0G
(�y; 
0) 6= 0 for (a; b) 2 R2n f(0; 0)g :

(a; b)0G
(y; 
0) 6= 0 i¤

h
a b

i
266664

�
2;0e
�
2;0(y�
1;0)

(1+e�
2;0(y�
1;0))
2

(y�
1;0)e
�
2;0(y�
1;0)

(1+e�
2;0(y�
1;0))
2

377775 6= 0 i¤
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�
�a
2;0 + b(y � 
1;0)

�
e�
2;0(y�
1;0)�

1 + e�
2;0(y�
1;0)
�2 6= 0 i¤

b(y � 
1;0) 6= a
2;0 i¤

a
2;0
b

� 
1;0 6= y. (14)

Thus, if (a; b) 6= (0; 0) then (a; b)0G
(y; 
0) 6= 0 for all y�s except one for y = b�1a
2;0�
1;0:

In other words, the partial derivatives G
1(y; 
0) and G
2(y; 
0) are linearly independent

unless y = b�1a
2;0 � 
1;0:

Let�s prove that G(�; �) is twice continuously di¤erentiable on R�R�R+ - actually

it is in�nitely many times continuously di¤erentiable, but we only need up to the second

continuous derivatives of G in our analysis. Let f1(x) = x�1 and f2(y; 
1; 
2) = 1 +

e�
2(y�
1): Note that, f1 is twice continuously di¤erentiable for x > 0; and f2 is three

times continuously di¤erentiable for any (y; 
1; 
2) 2 R � R � R+: The composition of

two twice continuously di¤erentiable functions is also twice continuously di¤erentiable.

Thus, (f1 � f2)(y; 
1; 
2) =
�
1 + e�
2(y�
1)

��1
is twice continuously di¤erentiable because

f2(y; 
1; 
2) > 0 for any y; 
1 and 
2: The second partial derivatives with respect to

parameters are found as the following.

G

(y; 
) =

24 G
1
1(y; 
)
G
2
1(y; 
)

G
1
2(y; 
)

G
2(y; 
)

35

=
e�
2(y�
1)

�
e�
2(y�
1) � 1

�
[1 + e�
2(y�
1)]

3

26664

22 1� 
2(y � 
1)� 2

�
1� e
2(y�
1)

��1
G
1
2(y; 
) (y � 
1)

2

37775
Note that G
2
1(y; 
) = G
1
2(y; 
) for any (y; 
) because G is twice continuously di¤eren-

tiable. Since G(�; �) is twice continuously di¤erentiable on R�R�R+ it is obviously di¤er-

entiable on any R�N(
0) where N(
0) denotes a neighborhood of the true parameters 
0:

Because the statement is true for any neighborhood we �x one neighborhood for the rest

of the analysis throughout the paper. For convenience, let�s take N(
0) = (
0=2; 2
0) :

Note that, 
2 is still strictly positive uniformly in N(
0). Hence, we can prove now the
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boundedness of G

 in absolute value uniformly over R�N(
0): Note that,

e�
2(y�
1)
�
e�
2(y�
1) � 1

�
[1 + e�
2(y�
1)]

3 � 1h
e
2
3

2(y�
1) + e�

1
3

2(y�
1)

i3 + 1h
e
1
3

2(y�
1) + e�

2
3

2(y�
1)

i3 :
By using the inequality above we found limits of the second partials as the followings.

lim
y!�1

��G
1
1(y; 
)�� � lim
y!�1


22h
e
2
3

2(y�
1) + e�

1
3

2(y�
1)

i3 + 
22h
e
1
3

2(y�
1) + e�

2
3

2(y�
1)

i3
= 0:

lim
y!�1

��G
2
2(y; 
)�� � lim
y!�1

(y � 
1)
2h

e
2
3

2(y�
1) + e�

1
3

2(y�
1)

i3 + (y � 
1)
2h

e
1
3

2(y�
1) + e�

2
3

2(y�
1)

i3
= 0:

lim
y!�1

��G
1
2(y; 
)�� � lim
y!�1

1 + 
2(y � 
1)h
e
2
3

2(y�
1) + e�

1
3

2(y�
1)

i3 + 3 + 
2(y � 
1)h
e
1
3

2(y�
1) + e�

2
3

2(y�
1)

i3
= 0:

In the last two results the divergence rate of the nominator to +1 is much slower

than that of the denominator. Hence, following the previous arguments the limits are

zero. Also notice that, none of the three limits are a¤ected by the parameters 
 2 N(
0):

Thus, we conclude that all of the partial derivatives in G

 are bounded in absolute value

uniformly over R�N(
0):We can conclude that for � 2 R�N(
0) there exist constants

Mi for i = 1; : : : ; 5 such that jG
1j � M1; jG
2j � M2; jG
1
1j � M3; jG
1
2j � M4;

jG
2
2j �M5:

Appendix B: Auxiliary Lemmas

Lemma 1 Let x1; x2; : : : ; xk be random variables. Then, for any r > 0,


Pk
i=1 xi





r
� �r;k

Pk
i=1 kxikr where �r;k =max

�
1; k(1�r)=r

	
:

Proof. For the case r � 1 Minkowski�s Inequality3 applies, i.e.,


Pk
i=1 xi





r
�
Pk

i=1 kxikr � �r;k

Pk
i=1 kxikr :

3Minkowski�s Inequality: kX + Y kr � kXkr + kY kr.

A recursive generalization of Minkowski�s Inequality is found by



Pk

i=1Xi





r
�
Pk

i=1 kXikr :

26



For 0 < r < 1;


Pk
i=1 xi





r
=

n
E
h���Pk

i=1 xi

���rio1=r � ncrPk
i=1E [jxij

r]
o1=r

by Loève�s cr-Inequality4,

= c1=rr

�Pk
i=1E [jxij

r]
�1=r

= c1=rr E

����Pk
i=1E [jxij

r]
���1=r�

� c1=rr c1=r
Pk

i=1E
n
(E [jxijr])1=r

o
by Loève�s cr-Inequality for 1=r;

= c1=rr c1=r
Pk

i=1 (E [jxij
r])

1=r where c1=rr = 1 and c1=r = k1=r�1;

� �r;k

Pk
i=1 kxikr :

The third equality holds because E [jxijr] is a nonnegative scalar.

Lemma 2 Suppose for some r > 0; 
 > 1; and nonnegative process xt; 
txt converges to

zero in Lr-norm, i.e., k
txtkr ! 0 as t!1: Then
P1

t=1 xt <1 a.s. and k
P1

t=1 xtkr <

1 also holds.

Proof. See Meitz and Saikkonen (2008c), p.26.

Lemma 3 For all x � 0 and all s 2 (0; 1), we have x=(1 + x) � xs:

Proof. Let s 2 (0; 1) : We have three cases. If x = 0; then it is obvious. If x 2 (0; 1),

then (1 + x)�1 < 1 < xs�1: If x � 1, then x= (1 + x) < 1 � xs:

Appendix C: Derivations Of Results 1-5

Result 1: Suppose Assumption 1 holds. Our main aim is to satisfy Proposition 1 and

Theorem 1 of Meitz and Saikkonen (2008a) which provides the ergodicity and stationarity

of the process (yt; �2t ) such that �
2
t have moments of order r. Proposition 1 is satis�ed by

the properties of (yt; �2t ) : Since we do not have any conditional mean in our model, all

premises of Theorem 1 of Meitz and Saikkonen (2008a) associated with the conditional

mean are satis�ed. The rest premises are ensured by Assumption 1.a and 1.b, and by the

4Loève�s cr-Inequality: E
h���Pk

i=1Xi

���ri � cr
Pk

i=1E [jXij
r
] where cr = 1 when 0 < r � 1; and

cr = k
r�1 when r � 1.
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properties of the conditional variance function. The theorem and the proposition provide

�niteness of E [�2rt ] and the joint ergodicity and stationarity of the process (yt; �
2
t ):

Moreover, from Result 1 we can obtain that E[y2rt ] = E[�2rt ]E["
2r
t ] < 1 by the

independence of "t�s and by Assumption 1.b.

Result 2: The function g(y; x;�) = !+(�1+�2G(y; 
))y2+�x is clearly continuous. The

parameter space being compact, hence bounded, there exist !, { and � satisfying 1 >

! � ! > 0, 1 > { � �1 + �2 > 0 and 1 > � > � � 0: These three properties give us

g(y; x;�) = ! + (�1 + �2G(y; 
))y
2 + �x � ! + {y2 + �x since G 2 [0; 1]:

Let � 2 �; y 2 R and x1; x2 2 R+. Then,

jg(y; x1;�)� g(y; x2;�)j =
���! + (�1 + �2G(y; 
))y2 + �x1�� �! + (�1 + �2G(y; 
))y2 + �x2���

= � jx1 � x2j

� � jx1 � x2j

where 0 � � � � < 1: Such a � exists because � 2 [0; 1):

Result 3: The derivation of this result is omitted for now (work in progress).

Result 4: We have g(y; x;�) = !+(�1+�2G(y; 
))y2+�x � ! > 0 since �1; �2 2 [0;1);

G 2 [0; 1] and � 2 [0; 1): Hence, g(y; x;�) is bounded uniformly below in �:

Result 5: Suppose Assumptions 1 and 2 hold. Assume there exists � 2 � satisfying

h�t (�) = �2t : We will show that � = �0. By Result 3, we have h�t+1(�0) = !0 + (�0;1 +

�0;2G(yt; 
0))y
2
t + �0�

2
t = �

2
t+1: If we subtract h

�
t+1(�0) from h�t+1(�) and use yt = �t"t we

obtain

(!�!0)+(�1��0;1)�2t "2t+[�2G(�t"t; 
)� �0;2G(�t"t; 
0)]�2t "2t+(���0)�2t = 0 a:s: (15)

By de�nition of h�t and by Result 4 we have h
�
t = g(yt�1; h

�
t�1;�) � g > 0. In particular,

h�t (�0) = �
2
t � g > 0: Hence, we divide both sides of (15) by �2t and arrange to obtain

(�1��0;1)"2t = �(� � �0)� ��2t
�
(! � !0) + [�2G(�t"t; 
)� �0;2G(�t"t; 
0)]�2t "2t

	
a:s:

(16)
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By Result 4 and Assumption 1.a, i.e. "t has a density that is positive everywhere, the event�
�2t � g; "t � g�1=2M

	
has positive probability for all M < 0:We have �"t � �g�1=2M

implying �"t�t � g1=2(�g�1=2M) = �M: Thus, �t"t � M < 0 on this event. By (9),

y2tG(yt; 
) = �2t "
2
tG(�t"t; 
) ! 0 as yt = �t"t ! �1: By choosing M small enough,

we can make the term [�2G(�t"t; 
)� �0;2G(�t"t; 
0)]�2t "2t arbitrarily close to 0; thus we

can make the term in the curly brackets of (16) arbitrarily close to (!� !0) on the event

f�t"t �Mg :We know that ��2t is bounded since 0 < ��2t � g�1. If �t"t =M; then clearly

the right-hand-side of (16) is bounded. Also, if we let �t"t ! �1; then it is bounded

again by (9). Therefore, the right-hand-side of the equation is bounded on the event

f�t"t �Mg : But the left-hand-side may take arbitrarily large values in absolute value if

�1 6= �0;1 and M is chosen small enough. Thus, we must have �1 = �0;1 since �t"t � M

with positive probability for allM < 0: In other words, unless �1 6= �0;1 the left-hand-side

may take any value with positive probability but the right-hand-side is bounded on the

event f�t"t �Mg :

Now we have the restriction �1 = �0;1: Rearranging (16) gives

(�2��0;2)"2t = �(���0)���2t
�
(! � !0) + [�2(G(�t"t; 
)� 1)� �0;2(G(�t"t; 
0)� 1)]�2t "2t

	
a:s:

(17)

Consider the event {�2t � g ; "t � g�1=2M}. We will follow a similar argument as above.

By Result 4 and Assumption 1.a, this event has positive probability for all M > 0:

On this event, we have �t"t � M: By (10), we have that yt = �t"t ! 1 implies that

y2t (1 � G(yt; 
)) = �2t "
2
t (1 � G(�t"t; 
)) ! 0 for all 
: By choosing M large enough, we

can make the term in the curly brackets of (17) arbitrarily close to (!� !0) on the event

f�t"t � Mg: Again, the right-hand-side becomes bounded and the left-hand-side may

take any value with positive probability unless �2 is equal to �0;2: Therefore, another

restriction is �2 = �0;2:

If we arrange (17) again under restrictions, then we obtain

(�0 � �)�2t = (! � !0) + �0;2[G(�t"t; 
)�G(�t"t; 
0)]�2t "2t a:s: (18)

Now consider events f�2t 2 (��; ��); "t � ��1=2Mg for some � > 0 with � < �� < �� and

M < 0: We know that Pf�2t 2 (��; ��)g > 0 where 0 < � < �� < ��: By Assumption
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1.a and by the independence of �2t and "t; these events have positive probability. Since

�2t > �; on these events �t"t < M regardless of the values �� and ��: By (9) and by similar

arguments as above, the right-hand-side of (18) can be arbitrarily close to (! � !0) with

positive probability if M is chosen small enough. However, the left-hand-side is varying

with positive probability if we consider events with di¤erent values of �� and ��;unless

� = �0:

Now we have another restriction � = �0: Thus, we obtain

(!0 � !) = �0;2 [G(�t"t; 
)�G(�t"t; 
0)]�2t "2t a:s:

If we take limit of both sides as �t"t ! �1; then the left-hand-side remains as !0 � !

whereas the right-hand-side converges to 0 by (9). Thus, another restriction is ! = !0:

Since �0;2 > 0 by Assumption 2, we end up with

[G(�t"t; 
)�G(�t"t; 
0)]�2t "2t = 0 a:s: (19)

If 
 6= 
0 then by (11) there exists y = �t"t such that G(�t"t; 
) 6= G(�t"t; 
0): Consider

a neighborhood of �t"t: Set u� = �t"t � � and u� = �t"t + � for some � > 0: The

event f�t"t 2 (u�; u�)g has positive probability because "t has a density that is positive

everywhere and is independent of �t, and additionally because �2t is nondegenerate since

Pf�2t 2 (��; ��)g > 0. Since G(:; :) is continuous [G(�t"t; 
)�G(�t"t; 
0)] is bounded

away from zero on the event f�t"t 2 (u�; u�)g : Therefore, we have to have 
 = 
0 which,

with other restrictions, leads us to conclude that � = �0. Hence, Result 5 holds.

Appendix D: Derivations Of Results 6-10

Result 6: In this proof we need the �rst and second partial derivatives of the function

g (y; h;�) = !+ [�1 + �2G (y; 
)] y
2+ �h with respect to its second and third arguments.

Let�s �nd the �rst and second partial derivatives of g with respect to the parameter value

� = (!; �1; �2; �; 
1; 
2) ; where the partials are evaluated at (y; x;�) 2 R�R+ ��0: For
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short notation, G is used for G (y; 
), and similarly for the partial derivatives of G.

g� =

26666666666664

1

y2

y2G

x

�2y
2G
1

�2y
2G
2

37777777777775
and g�� =

26666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 y2G
1 y2G
2

0 0 0 0 0 0

0 0 y2G
1 0 �2y
2G
1
1 �2y

2G
1
2

0 0 y2G
2 0 �2y
2G
2
1 �2y

2G
2
2

37777777777775
Because G (�; �) is twice continuously di¤erentiable, so is the function g: Now, we can

prove the �rst part of Result 6, i.e., the boundedness of jg�j and jg��j : As mentioned in

the introduction, Euclidean Norm will be used as the vector and matrix norm.

jg�j =
h
1 + y4 + y4G2 + x2 + �22y

4
�
G2
1 +G

2

2

�i1=2
� 1 + y2 + y2G+ x+ �2y

2
���G
1��+ ��G
2���

� 1 +
�
2 + �2

���G
1��+ ��G
2���� y2 + x since G 2 [0; 1] ;

� 1 + [2 + �2 (M1 +M2)] y
2 + x

� C1
�
1 + y2 + x

�
: (20)

where the constant C1 � [2 + �2 (M1 +M2)] : The third inequality follows by the �niteness

of the �rst partial derivatives ofG; which is discussed in Appendix A:Regarding the second

partial derivative of g; we will use similar justi�cations.

jg��j =
h
y4
n
2
�
G2
1 +G

2

2

�
+ �22

�
G2
1
1 + 2G

2

1
2

+G2
2
2

�oi1=2
� y2

hp
2
���G
1��+ jG
2j�+ �2 ���G
1
1��+p2 ��G
1
2��+ ��G
2
2���i

� y2
hp
2 (M1 +M2) + �2

�
M3 +

p
2M4 +M5

�i
� C2y

2: (21)

Next, we prove the second part of Result 6. Let (y; x1; x2; �) 2 R � R+ � R+ � �0.

Note that, because gh = �, ghh = 0; g�h = 0; and gh� = 1; the required inequalities in the

second part of Result 6 are trivially satis�ed for the partial derivatives of g with respect

to h: For those with respect to �;

jg� (y; x1; 
)� g� (y; x2; 
)j = jx1 � x2j

jg�� (y; x1; 
)� g�� (y; x2; 
)j = 0:
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Hence the inequalities with �0 = 1 works for the derivatives of g with respect to the second

and third arguments.

Result 7 and Result 8: See Meitz and Saikkonen (2008c).

Result 9: First, we show that Result 1 holds for r = 2. As in the proof of Result 1, we

refer to the Theorem 1 of Meitz and Saikkonen (2008a). Assumption 1 and 5, and the

properties of �2t justi�es the premises of that theorem. Then, we obtain that E[�
4
t ] <1:

Now, we will show the �niteness of jj sup�2�0 jh��;t (�) j=h�t (�) jj4:We already assumed

that �0 2 ��0: Furthermore, without loss of generality, we may assume that �0 is small

enough so that � = (!; �1; �2; �; 
) 2 �0 satis�es 0 < ! � ! � ! < 1; 0 < �1 � �1 �

�1 < 1; 0 < �2 � �2 � �2 < 1; 0 < � � � � � < 1; and 
 2 N (
0) : In other

words, we are interested in the parameter values that do not lie on the boundary of the

general parameter set � and that are close to the true parameter value �0. We are allowed

to assume these because by the help of Results 1-5 we are able to prove that the QML

estimator �̂T is strongly consistent for �0.

If we consider the ergodic stationary counterpart of (4) and use recursive substitution

we obtain an in�nite sum.

h��;t = g��;t + �h
�
�;t�1

= g��;t + �
�
g��;t�1 + �h

�
�;t�2

�
...

=

1X
j=0

�jg��;t�j:

In order to prove the convergence of the sum, we need to use Lemma 2 and the upper

bound for g��;t�j found in (20)��g��;t�j�� � 1 + y2t�1�j
�
1 +G (yt�1�j; 
) + �2

���G
1 (yt�1�j; 
)��+ ��G
2 (yt�1�j; 
)���	+ h�t�1�j
� 1 + y2t�1�j [2 + �2 (M1 +M2)] + h

�
t�1�j

� 1 + C1y
2
t�1�j + h

�
t�1�j: (22)

By using this inequality we can write that
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��h��;t�� =
�����
1X
j=0

�jg��;t�j

����� �
1X
j=0

�j
��g��;t�j�� � 1X

j=0

�j
�
1 + Cy2t�1�j + h

�
t�1�j

�
:

We have already found the �niteness of E[y4t ] = ky2t k
2
2 : Thus, ky2t k2 < 1: By letting

1 < 
 < ��1 so that �
 < 1; we obtain that for j !1




j�j �1 + C1y2t�1�j + h�t�1�j�

2 � (
�)j+C1 (
�)j 

y2t�1�j

2+(
�)j 

h�t�1�j

2 ! 0 a:s:;

by stationarity of y2t and h
�
t ; and by E [sup�2� h

�2
t (�)] < 1 given in the Result 3 with

r = 2: Because the term (1 + C1y
2
t�1�j + h

�
t�1�j) is non-negative, by Lemma 2 we getP1

k=0 �
j(1 + C1y

2
t�1�j + h

�
t�1�j) < 1: Hence, we prove the �niteness of jh��;tj; which

implies the convergence of
P1

j=0 �
jg��;t�j: By using the inequality (22) and the fact that

� 2 (0; 1) we can write



 sup
�2�0

jh��;tj
h�t






4

�





 sup�2�0

P1
j=0 �

j
�
1 + C1y

2
t�1�j + h

�
t�1�j

�
h�t







4

� 1

1� �





 sup
�2�0

1

h�t






4

+ C1






 sup�2�0

P1
j=0 �

jy2t�1�j
h�t







4

+






 sup�2�0

P1
j=0 �

jh�t�1�j
h�t







4

: (23)

In order to show the �niteness of jj sup�2�0 jh��;t (�) j=h�t (�) jj4 we need to show the

�niteness of the three terms in (23). The �rst term is clearly �nite because h�t � g by

Result 4. Next, let�s show that the second term is �nite. Rewrite h�t as

h�t = ! + [�1 + �2G (yt�1; 
)] y
2
t�1 + �h

�
t�1

=

1X
k=0

�k
�
! + [�1 + �2G (yt�1�k; 
)] y

2
t�1�k

�
�

1X
k=0

�k
�
! + (�1 + �2) y

2
t�1�k

�
= ! (1� �)�1 + (�1 + �2)

1X
k=0

�ky2t�1�k: (24)

is �nite by the same arguments used in proving the �niteness of jh��;tj. Hence, we �nd

an upper bound for h�t : Although we have g as a lower bound for h
�
t we need another

lower bound that has similar components as the upper bound (24). Because G 2 [0; 1] ;
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� 2 (0; 1) ; ! � ! > 0; and �1 � �1 > 0 we have that

h�t =
1X
k=0

�k
�
! + [�1 + �2G (yt�1�k; 
)] y

2
t�1�k

�
�

1X
k=0

�k
�
! + �1y

2
t�1�k

�
� ! (1� �)�1 + �1

1X
k=0

�ky2t�1�k

� ! + �j�1y
2
t�1�j for any j � 0: (25)

By taking any 0 < s � 1=2 and by making use of Lemma 3, we obtain

�jy2t�1�j
h�t

�
�jy2t�1�j

! + �j�1y2t�1�j

= �1
�1 �j�1y

2
t�1�j=!

1 + �j�1y2t�1�j=!

� �1
�1 ��j�1y2t�1�j=!�s

= �1
s�1!�s�sjy2st�1�j:

By the fact that s 2 (0; 1=2], and by using the Liapunov�s Inequality5 we can write that

y2st�1�j

4 =
�
E
�
y8st�1�j

�	1=4
=
n�
E
�
y8st�1�j

��1=8so2s
= kyt�1�jk2s8s

� kyt�1�jk2s4

Thus, we obtain




 sup�2�0

1X
j=0

�jy2t�1�j
h�t







4

�





 sup�2�0

1X
j=0

�1
s�1!�s�sjy2st�1�j







4

� �1
s�1!�s

1X
j=0

�
sj 

y2st�1�j

4 by Minkowski�s Inequality,

� �1
s�1!�s

1X
j=0

�
sj kyt�1�jk2s4

= �1
s�1!�sM 00

1X
j=0

�
sj

where M 00 = kytk2s4 <1;

= �1
s�1!�sM 00

�
1� �s

��1
because �

s 2 (0; 1) for s 2 (0; 1=2];

< 1: (26)

5If r > p > 0; then kXkr � kXkp :
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Hence, the �niteness of the second term in (23) is proved. Finally, let�s concentrate on

the third term, i.e., jj sup�2�0
P1

j=0 �
jh�t�1�j=h

�
t jj4:When we analyze the summand in the

norm, and use the same arguments as in proving the �niteness of the second term, we

end up with a similar result. We use Lemma 3, and the lower bound of h�t for any j � 0

; that is found in (25), and we choose s 2 (0; 1=2] in order to get

�jh�t�j�1
h�t

� �j
1X
k=0

�k
�
! + [�1 + �2G (yt�2�j�k; 
)] y

2
t�2�j�k

�
! + �1�

j+k+1y2t�2�j�k

� �j
1X
k=0

�k
! + (�1 + �2) y

2
t�2�j�k

! + �1�
j+k+1y2t�2�j�k

= �j
1X
k=0

!�k

! + �1�
j+k+1y2t�2�j�k

+ (�1 + �2)

1X
k=0

�j+ky2t�2�j�k

! + �1�
j+k+1y2t�2�j�k

� �
j!

!

1X
k=0

�
k
+
(�1 + �2)

�

1X
k=0

�j+k+1y2t�2�j�k

! + �1�
j+k+1y2t�2�j�k

� �
j!

!

�
1� �

��1
+
(�1 + �2)

�1�

1X
k=0

�j+k+1�1y
2
t�2�j�k=!

1 + �1�
j+k+1y2t�2�j�k=!

� �
j!

!

�
1� �

��1
+
(�1 + �2)�1

s

!s�1�

1X
k=0

�(j+k+1)sy2st�2�j�k

� �
j!

!

�
1� �

��1
+
(�1 + �2)�1

s�1�
(j+1)s

!s�

1X
k=0

�
ks
y2st�2�j�k

Thus, by the help of Minkowski�s Inequality and similar arguments as in (26), we obtain

that jj sup�2�0
P1

j=0 �
jh�t�1�j=h

�
t jj4 < 1: As a conclusion, the �rst norm in Result 9 is

�nite, i.e., 



 sup
�2�0

jh��;tj
h�t






4

<1: (27)

Next, we will prove the �niteness of the second norm in Result 9, which is jj sup�2�0 jh���;tj=h�t jj2:

As found in (7) in Result 8, the ergodic stationary second derivative of ht evolves according

to the equation

h���;t = g���;t + e4h
�0
�;t�1 + h

�
�;t�1e

0
4 + �h

�
��;t�1

=

1X
j=0

�jg���;t�j +
1X
j=0

�je4h
�0
�;t�1�j +

1X
j=0

�jh��;t�1�je
0
4: (28)

The convergence of these sums can be proven in a similar way as it is done in the case of

35



h��;t:

jh���;tj �
1X
j=0

�j
��g���;t�j��+ 2 1X

j=0

�j
��h��;t�j�� :

Note that je4h�0�;t�1�jj = jh��;t�1�je04j = jh��;t�1�jj: This time we have to use the upper

bound for jg���;t�jj found in (21), i.e., jg���;t�jj � C2y2t�1�j: The convergence of the in�nite

sums follows by the �niteness of jh��;tj and by Lemma 2. By using (28), the norm in Result

9 can be written as



 sup
�2�0

jh���;tj
h�t






2

=







 sup�2�0

���P1
j=0 �

jg���;t�j +
P1

j=0 �
je4h

�0
�;t�1�j +

P1
j=0 �

jh��;t�1�je
0
4

���
h�t








2

�





 sup�2�0

1X
j=0

�j
��g���;t�j��
h�t







2

+ 2






 sup�2�0

1X
j=0

�j
��h��;t�1�j��
h�t







2

:

The inequality follows from Minkowski�s Inequality. Therefore, jj sup�2�0 jh���;tj=h�t jj2 is

�nite if 




 sup�2�0

1X
j=0

�j
��g���;t�j��
h�t







2

<1 and






 sup�2�0

1X
j=0

�j
��h��;t�1�j��
h�t







2

<1: (29)

Regarding the �rst term above,




 sup�2�0

1X
j=0

�j
��g���;t�j��
h�t







2

�





 sup�2�0

1X
j=0

�j
C2y

2
t�1�j

h�t







2

� C2






 sup�2�0

1X
j=0

�j
y2t�1�j
h�t







4

by Liapunov�s Inequality,

< 1.

The last inequality has already been proven in (26). Regarding the other term in (29),

we will follow similar steps as in previous analysis.




 sup�2�0

1X
j=0

�j
��h��;t�1�j��
h�t







2

�





 sup�2�0

1X
j=0

�j
��h��;t�1�j��
h�t







4

�
1X
j=0

�
j






 sup�2�0

��h��;t�1�j��
h�t







4

by Liapunov�s Inequality and Minkowski�s Inequality. Choose 
 2 (1; ��1); because the

term jj sup�2�0 jh��;t�1�jj=h�t jj4 is �nite by (27), we have 
j�
jjj sup�2�0 jh��;t�1�jj=h�t jj4 ! 0
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a.s. Thus, Lemma 2 provides the �niteness of
P1

j=0 �
jjj sup�2�0 jh��;t�1�jj=h�t jj4: As a

conclusion, the second norm in Result 9 jj sup�2�0 jh���;tj=h�t jj2 is �nite.

Result 10: Since "t have a density which is positive and lower semicontinuous on R by

Assumption 1, clearly Result 10 i) holds. Now, let�s verify the second condition in Result

10, which is the identi�cation condition given as x0�@g (yt; �
2
t ; 
0) =@� = 0 a.s. only if

x� = 0: Let x� = (x1; x2; : : : ; x6) 2 R6 and suppose that x0�@g (yt; �2t ; 
0) =@� = 0 a.s. In

other words,

x0�
@g (yt; �

2
t ; 
0)

@�
= x0�

26666666664

1

�2t "
2
t

�2t "
2
tG (�t"t; 
0)

�2t

�0;2�
2
t "
2
tG
 (�t"t; 
0)

37777777775
= x1 + x2�

2
t "
2
t + x3�

2
t "
2
tG (�t"t; 
0) + x4�

2
t + �0;2 (x5; x6)

0 �2t "
2
tG
 (�t"t; 
0)

= 0 a.s. (30)

We will follow a similar way as in the veri�cation of Result 5. We found that for

some � > 0 and for all � < �� < �� we have

Pf�2t 2 (��; ��)g > 0: (31)

Consider the events
�
�2t 2 (��; ��) and "t � ��1=2M

	
with � < �� < �� and M < 0: By

the independence of �t and "t; we can separate the joint probability as

P
�
�2t 2 (��; ��) and "t � ��1=2M

	
= Pf�2t 2 (��; ��)gPf"t � ��1=2Mg:

This probability is strictly positive by (31) and Assumption 1.a. Moreover, on the events�
�2t 2 (��; ��) and "t � ��1=2M

	
we have �t"t �M regardless of the values of �� and ��:

Thus, let �� and �� be �xed. Consider (30) as M ! �1; then, y2t = �2t "2t !1: By the

properties of the function G; i.e. by (9), (12) and (13), the third and the �fth terms in

(30) are converging to zero as M ! �1, hence they are bounded. The fourth one is also

bounded since �2t 2 (��; ��): However, the second term can take values arbitrarily large

in absolute value unless x2 = 0: Hence, we restrict x2 to be zero:
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By rewriting x3�2t "
2
tG (�t"t; 
0) as x3�

2
t "
2
t + x3�

2
t "
2
t [G (�t"t; 
0)� 1] ; we arrange (30)

under the restriction of x2 = 0 as

x1 + x3�
2
t "
2
t + x3�

2
t "
2
t [G (�t"t; 
0)� 1] + x4�2t + �0;2 (x5; x6)

0 �2t "
2
tG
 (�t"t; 
0) = 0 a.s.

(32)

Consider the events
�
�2t 2 (��; ��) and "t � ��1=2M

	
withM > 0: AsM takes arbitrarily

large values, the third and the �fth terms in the above equation are bounded by the

properties of the interaction between y2t and the function G; i.e. (10), (12) and (13).

Hence, by the same reasoning as above, x3 should be equal to zero since �2t "
2
t becomes

unbounded as M !1:

Under the additional restriction x3 = 0; the above equation can be written as

x1 + x4�
2
t + �0;2 (x5; x6)

0 �2t "
2
tG
 (�t"t; 
0) = 0 a.s.

Now, consider the events
�
�2t 2 (��; ��) and "t � ��1=2M

	
withM > 0 and with di¤erent

values for �� and ��: The third term in the last equation converges to zero as M ! 1:

However, in order to have x1 + x4�2t = 0 a.s., we either have to have x1 = x4 = 0 or

�2t = �x1=x4: But, by taking �� and �� accordingly, we can exclude the possibility of �2t
being equal to �x1=x4: Thus, we have x1 = x4 = 0:

Since �0;2 > 0 by Assumption 2, we are left with the equation (x5; x6)
0G
 (�t"t; 
0)�

2
t "
2
t =

0 a.s. Note that, in (14) we found that (x5; x6)
0G
 (�t"t; 
0) is zero if and only if

�t"t = x5
2;0=x6 � 
1;0 for nonzero (x5;x6) : Hence, again by taking �� and �� properly,

we reach the conclusion that (x5; x6) = (0; 0) :

As a result, x� should be zero if x0�@g (yt; �
2
t ; 
0) =@� = 0 a.s., thus, the identi�cation

condition in Result 10 holds.

Appendix E: The Proofs of the Main Theorems

The Proof of Theorem 1

For strong consistency of �̂T ; it su¢ ces to show that, for all � > 0

lim inf
T!1

inf
�2B(�0;�)c

(LT (�)� LT (�0)) > 0 a:s:;
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where LT (�) = T�1
PT

t=1 lt(�) = T
�1PT

t=1 log ht+y
2
t =ht, andB(�0; �) = f� 2 � j j�0 � �j < �g

is the open ball with the center �0 and radius �. Moreover, B(�0; �)c is the complement

of this set in �, which will be denoted as Bc (see Pötscher and Prucha (1991, p.145))6.

The interpretation of this inequality is as follows. Even in the best case, i.e., even if

the in�mum of the distance is taken, the likelihood function LT (�) is greater than the

likelihood function with the true parameter, LT (�0); outside all open balls centered at �0

with radii �; uniformly for large T: Hence, equivalently, the inequality implies that �0 is

the unique minimizer of LT (�) in �.

Note that,

lim inf
T!1

inf
�2Bc

(LT (�)� LT (�0)) = lim inf
T!1

inf
�2Bc

(LT (�)� LT (�0)� L�T (�)� L�T (�0)� E[l�t (�0)])

� lim inf
T!1

inf
�2Bc

f(LT (�)� LT (�0))� (L�T (�)� L�T (�0))g (33)

+lim inf
T!1

inf
�2Bc

fE [l�t (�0)]� L�T (�0)g (34)

+lim inf
T!1

inf
�2Bc

fL�T (�)� E [l�t (�0)]g

Let�s analyze the �rst expression on the right hand side, which is denoted by (33).

lim inf
T!1

inf
�2Bc

f(LT (�)� LT (�0))� (L�T (�)� L�T (�0))g

= �lim sup
T!1

� inf
�2Bc

f(LT (�)� LT (�0))� (L�T (�)� L�T (�0))g7

= �lim sup
T!1

sup
�2Bc

� f(LT (�)� LT (�0))� (L�T (�)� L�T (�0))g

� �lim sup
T!1

sup
�2Bc

j(L�T (�)� L�T (�0))� (LT (�)� LT (�0))j

� �lim sup
T!1

sup
�2�

j(L�T (�)� L�T (�0))� (LT (�)� LT (�0))j since Bc � �:

If we consider the term denoted by (34), we see that E[l�t (�0)]� L�T (�0) does not depend

on �. Thus,

lim inf
T!1

inf
�2Bc

fE[l�t (�0)]� L�T (�0)g = lim inf
T!1

fE[l�t (�0)]� L�T (�0)g:

6A basic su¢ cient condition for �
B
(�̂n;

��n) ! 0 a:s: as n ! 1 is that for each " > 0;

lim infn!1 inf�
B
(�;��n)�"

�
Rn(�)�Rn(��n)

�
> 0 a:s:

To familiarize the notation: Rn is the likelihood function, �̂n is the likelihood estimator, ��n is the

minimizer of Rn, B is the space of parameters of interest, �
B
is the metric de�ned on B; and � 2 B: In

the proof we simply replace ��n with the true parameter.
7Let {an} be a sequence in [-1;1], then lim inf an = � lim sup(�an).
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Hence, we obtain

lim inf
T!1

inf
�2Bc

(LT (�)� LT (�0))

� �lim sup
T!1

sup
�2�

j(L�T (�)� L�T (�0))� (LT (�)� LT (�0))j (35)

+lim inf
T!1

fE[l�t (�0)]� L�T (�0)g (36)

+lim inf
T!1

inf
�2Bc

fL�T (�)� E [l�t (�0)]g (37)

Throughout the proof, we shall show that the �rst two terms, that is (35) and (36), are

equal to zero a.s. whereas the third term (37) is strictly positive. We will proceed term

by term.

First, we will show that the �rst term is equal to zero a.s. To deduce it, we begin by

showing that sup�2� jL�T (�)� LT (�)j ! 0 a.s. as T !1: Notice that,

jl�t (�)� lt(�)j =
����(log h�t + y2th�t )� (log ht + y

2
t

ht
)

����
� jlog h�t � log htj+ y2t

���� 1h�t � 1

ht

����
�

���� 1ht (h�t � ht)
����+ y2t ������ 1ĥ2t

�
(h�t � ht)

����
=

1

ht
jh�t � htj+

y2t

ĥ2t
jh�t � htj

� 1

g
jh�t � htj+

y2t
g2
jh�t � htj

� m(1 + y2t ) jh�t � htj for some m � maxfg�1; g�2g:

The second inequality is satis�ed by Mean Value Theorem8 for some ĥt and ht lying

between ht and h�t : The third inequality is satis�ed because both h
�
t � g and ht � g by

Result 4. Hence, we have



sup
�2�

jl�t (�)� lt(�)j





r=2

�




sup
�2�
fm(1 + y2t ) jh�t � htjg






r=2

=





m(1 + y2t )sup
�2�

jh�t � htj





r=2

8Mean Value Theorem: If f is a real continuous function on [a; b] which is di¤erentiable in (a; b), then

there is a point x 2 (a; b) at which

f(b)� f(a) = (b� a)df(x)
dx

:
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�


m(1 + y2t )

r 



sup

�2�
jh�t � htj






r

� 4r;2m
�
1 +



y2t 

r� 



sup
�2�

jh�t � htj





r

by Lemma 1.

The second inequality is justi�ed by Cauchy-Schwarz Inequality9. The �niteness of the last

term is given by the proof of Result 1, i.e., E[y2rt ] <1 implies ky2t kr =M <1: Result 3

gives that ksup�2� jh�t � htjkr � C�t; where C 2 R and � 2 (0; 1): Let 1 < 
 < 1=� and

4r;2m(1 + ky2t kr) = m0: Then,




tsup
�2�

jl�t (�)� lt(�)j





r=2

� m0C

t

�t
! 0 a:s: as t!1:

Thus, by Lemma 2,
P1

t=1 sup�2� jl�t (�)� lt(�)j <1 a.s. We can write that

sup
�2�

j(L�T (�)� LT (�)j = sup
�2�

����� 1T
TX
t=1

l�t (�)�
1

T

TX
t=1

lt(�)

�����
� 1

T
sup
�2�

TX
t=1

jl�t (�)� lt(�)j

� 1

T

TX
t=1

sup
�2�

jl�t (�)� lt(�)j

The last term converges a.s. as T ! 1; since
PT

t=1 sup�2� jl�t (�)� lt(�)j is �nite as

T ! 1. We showed that sup�2� j(L�T (�)� LT (�)j ! 0 a.s. as T ! 1. In particular,

since �0 2 �, we have j(L�T (�0)� LT (�0)j ! 0 a.s. as T !1. Hence,

lim sup
T!1

sup
�2�

j(L�T (�)� L�T (�0))� (LT (�)� LT (�0))j

� lim sup
T!1

sup
�2�

fjL�T (�)� LT (�)j+ jL�T (�0)� LT (�0)jg

= lim sup
T!1

�
jL�T (�0)� LT (�0)j+ sup

�2�
jL�T (�)� LT (�)j

�
� lim sup

T!1
jL�T (�0)� LT (�0)j+ lim sup

T!1
sup
�2�

jL�T (�)� LT (�)j

= 0 a:s:

Thus, the term (35) equal to zero a.s.

To handle with the remaining two terms (36) and (37), �rst consider the term L�T (�),

thus the term l�t (�): By Result 1 and Result 3, h
�
t and y

2
t are ergodic and stationary

9Cauchy-Schwarz Inequality: For random variables X and Y; (E[XY ])2 � E[X2]E[Y 2] with equality

attained when Y = cX; c a constant.
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implying that l�t (�) = log h�t + y
2
t =h

�
t is ergodic and stationary. Because h

�
t � g and y2t

is independent of �; l�t (�) is bounded below uniformly in �. Therefore, the expectation

of negative part of l�t (�) is not in�nite. Hence, E [l
�
t (�)] is well-de�ned and belongs to

R [ f1g : In particular, E [inf�2� l�t (�)] < 1: By Result 3, E [sup�2� h�rt (�)] < 1 for

some r > 0. Therefore, we can write that

1 > E

�
sup
�2�
h�rt (�)

�
> logE

�
sup
�2�
h�rt (�)

�
� E

�
log

�
sup
�2�
h�rt (�)

��
= E

�
log

�
max
�2�

h�rt (�)

��
since � is a compact set,

= E

�
max
�2�

flog h�rt (�)g
�

= rE

�
max
�2�

flog h�t (�)g
�

= rE

�
sup
�2�

flog h�t (�)g
�

since � is a compact set.

The second inequality is satis�ed since x > x�1 � log x for all x 2 R+. The tangent line

of the curve log x passing through the point x = 1 is the line y = x� 1. Hence, the curve

log x is under this tangent line for all x 10. The third inequality is justi�ed by Jensen�s

Inequality11 since log is a concave function. The �rst equality is justi�ed because log is

a strictly increasing transformation, thus, the maximizer of h�rt (�) and the maximizer of

10The function y = log u is a concave function. The tangent line at the point u = 1 is y = �1 + u:

Because a concave function plots below any tangent line, the inequality log u � �1 + u is obtained.
11Jensen�s Inequality: If a Borel function � is convex on an interval I containing the support of an

integrable random variable X, where �(X) is also integrable, then

�(E(X)) � E(�(X)):

For a concave function the reverse inequality holds.
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log h�rt (�) is the same. Hence E [sup�2� log h
�
t (�)] <1. Notice that,

E [l�t (�0)] = E

�
log h�t (�0) +

y2t
h�t (�0)

�
= E

�
log �2t +

�2t "
2
t

�2t

�
since h�t (�0) = �

2
t by Result 3,

= E
�
log �2t

�
+ 1 since E["2t ] = 1:

Since log is a concave function, we have, rE[log �2t ] = E[log �
2r
t ] � logE[�2rt ] < E[�2rt ] <

1 by Jensen�s inequality and by Result 1. Hence, we have E [l�t (�0)] = E[log �
2
t ]+1 <1.

However, for � 6= �0; we may have E[y2t =h�t (�)] = 1: Thus, we may not bound E [l�t (�)]

from above as well.

Part 1: Note that if Assumption 3 is assumed as an extra assumption, then the proof

is simpli�ed. We, now, can bound E [l�t (�)] from above, actually uniformly, because by As-

sumption 3 we have E[sup�2� �
2
t=h

�
t ] <1: We showed above that E [sup�2� log h�t (�)] <

1: Thus,

E

�
sup
�2�

l�t (�)

�
= E

�
sup
�2�

�
log h�t (�) +

�2t
h�t

��
� E

�
sup
�2�

log h�t (�)

�
+ E

�
sup
�2�

�2t
h�t

�
<1

Since l�t (�) is ergodic and stationary with E [sup�2� l
�
t (�)] < 1; a Uniform Strong Law

of Large Numbers12 provides sup�2� jL�T (�)� E [l�t (�)]j ! 0 a.s. as T ! 1. In par-

ticular, jL�T (�0)� E [l�t (�0)]j ! 0 a.s. as T ! 1. Therefore, the second term (36),

lim infT!1fE [l�t (�0)]� L�T (�0)g; is equal to zero.

Next, we will prove that E [l�t (�)] is uniquely minimized at � = �0. Equivalently, we

will show that E [l�t (�)]� E [l�t (�0)] > 0 for all � 2 �nf�0g:

E [l�t (�)]� E [l�t (�0)] = E

�
log h�t +

y2t
h�t

�
� E

�
log h�t (�0) +

y2t
h�t (�0)

�
= E

�
log h�t +

�2t "
2
t

h�t

�
� E

�
log �2t +

�2t "
2
t

�2t

�
= E

�
log h�t � log �2t

�
+ E

�
�2t "

2
t

h�t

�
� 1

= E

�
� log �

2
t

h�t
+
�2t
h�t

�
� 1 since "t is independent of �2t and h

�
t :

12Let (vt) be a stationary ergodic sequence random elements with values in the space of continuous

Rd-valued functions equipped with the sup norm kvkK = sups2K jv(s)j. Then the Uniform Strong

Law of Large Numbers (SLLN) is implied by E kv0kK < 1. The uniform SLLN is said to hold if

k1=n
Pn

t=1 vt � E(v0)kK ! 0 a:s:
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By using the inequality x � log x � 1 for all x 2 R+ with equality if and only if x = 1;

and by using the identi�cation in Result 5, i.e., �2t=h
�
t 6= 1 if � 6= �0; we conclude that

E [l�t (�)]� E [l�t (�0)] > 0 for � 6= �0: Let�s consider the third term (37).

lim inf
T!1

inf
�2Bc

fL�T (�)� E [l�t (�0)]g

= lim inf
T!1

inf
�2Bc

fL�T (�)� E [l�t (�0)] + E [l�t (�)]� E [l�t (�)]g

� lim inf
T!1

�
inf
�2Bc

(L�T (�)� E [l�t (�)]) + inf
�2Bc

(E [l�t (�)]� E [l�t (�0)])
�

�
�
lim inf
T!1

inf
�2Bc

(L�T (�)� E [l�t (�)])
�
+

�
lim inf
T!1

inf
�2Bc

(E [l�t (�)]� E [l�t (�0)])
�

=

�
lim inf
T!1

inf
�2Bc

(L�T (�)� E [l�t (�)])
�
+

��
min
�2Bc

E [l�t (�)]

�
� E [l�t (�0)]

�
(38)

The last equality is satis�ed because E [l�t (�0)] does not depend on � and T; B
c is com-

pact being a closed set of a compact set �; and E [l�t (�)] does not depend on T: As a

consequence, the result is positive because the �rst term in (38) is zero but the last term

is positive by the analysis above. Thus, lim infT!1 inf�2BcfL�T (�)�E [l�t (�0)]g > 0 which

completes the proof.

In this part, the uniform SLLN, via the help of Assumption 3, facilitated the proof

by letting us to conclude that the �rst term in the last equality is equal to zero. But,

without Assumption 3 we cannot bound E [l�t (�)] from above, thus we cannot use uniform

SLLN to obtain a nonnegative number from the �rst term in (38). Next, we move one

the second part of the proof where we use di¤erent arguments other then SLLN.

Part 2: Let�s continue the proof without having Assumption 3 as an extra assump-

tion. Since l�t (�0) is ergodic and stationary with E [l
�
t (�0)] < 1; we can use Ergodic

Theorem13 and conclude that L�T (�0) = 1=T
PT

t=1 l
�
t (�0) ! E [l�t (�0)] a.s. Thus, the sec-

ond term (36); lim infT!1fE [l�t (�0)]�L�T (�0)g; is equal to zero. Now, consider the third

term (37), lim infT!1 inf�2BcfL�T (�)�E[l�t (�0)]g. By Lemma 3.11 of Pfanzagl (1969)14,
13Ergodic Theorem: Let fzig be a stationary and ergodic process with E(zi) = �: Then

�zn =
1

n

nX
i=1

zi ! � a:s:

14Let (T;U) be a �-compact metrizable space and ft : X ! [�1;+1]; t 2 T; a family of A-measurable
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we obtain that E [l�t (�)] is a lower semi�continuous function
15 on � and

lim inf
T!1

inf
�2Bc

L�T (�) � inf
�2Bc

E [l�t (�)] a:s: (39)

If we can show that E [l�t (�)]�E [l�t (�0)] � 0 with equality if and only if � = �0; then the

positivity of the third term (37) will be proven because

lim inf
T!1

inf
�2Bc

fL�T (�)� E [l�t (�0)]g =

�
lim inf
T!1

inf
�2Bc

L�T (�)

�
� E [l�t (�0)]

�
�
inf
�2Bc

E [l�t (�)]

�
� E [l�t (�0)]

will be strictly greater than zero by the lower semicontinuity of E [l�t (�)] : The inequality

is satis�ed by (39). We know that E [l�t (�0)] < 1: Thus, if E [l�t (�)] = 1 then we are

done. Therefore, we assume that E [l�t (�)] < 1. The rest follows as it was shown in the

part with the extra assumption, i.e. Part 1.

As a conclusion, we showed that the following inequality holds

lim inf
T!1

inf
�2B(�0;�)c

(LT (�)� LT (�0)) > 0 a:s:

by showing (35) and (36) are zero a.s., and (37) is strictly positive a.s. Therefore, by

following Pötscher and Prucha (1991)�s argument we conclude that the QML estimator

�̂T is strongly consistent for �0; that is, �̂T ! �0 a.s.

function such that: (1) t ! ft(x) is l.s.c., (2) inf fC 2 A for any compact set C � T: Let furthermore

P jA is a p-measure such that (3) P [inf f
T
] > �1: Then, (a) t ! P [ft] is l.s.c., (b) inft2C P [ft] �

limn!1 inft2C 1=n
Pn

i=1 ft(xi) P
N � a:e: for any compact set C.

l.s.c. stands for lower semicontinuous and lim is a notation for lim inf. In our proof we take X = R;

A as the Borel Algebra, P as the expectation, T = �: Thus, t = �; xi = t; and ft(xi) = l�t (�): (1) is

satis�ed because is l�t (�) continuous, (2) and (3) are satis�ed because l
�
t (�) is bounded below uniformly

in �: Therefore we obtain the results (a) E [l�t (�)] is l.s.c. and (b) for C = B
c (since Bc is a compact set)

inf�2Bc E [l�t (�)] � lim infT!1 inf�2Bc 1=T
PT

t=1 tl
�
t (�) = lim infT!1 inf�2Bc L�T (�)

15Let f be a real (or extended-real) function on a topological space. If fx : f(x) > �g is open for every

real �, then, f is said to be lower semicontinuous.
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The Proof of Theorem 2

We denote the �rst and the second derivatives of lt (�) as l�;t(�) and l��;t(�): Thus, those

of LT (�) is given as

L�;T (�) =
@LT (�)

@�
=
1

T

TX
t=1

@lt (�)

@�
=
1

T

TX
t=1

l�;t (�) ;

L��;T (�) =
@2LT (�)

@�@�0
=
1

T

TX
t=1

@2lt (�)

@�@�0
=
1

T

TX
t=1

l��;t (�) :

Similar notation is used for the ergodic stationary counterparts, i.e., the �rst and the

second derivatives are denoted as l��;t(�), l
�
��;t(�); and L

�
�;T (�) ; L

�
��;T (�) : In order to

prove Theorem 2, we need some intermediate steps, named as Lemma D1-D6.

Lemma D1. Under the assumptions of Theorem 2,

p
TL��;T (�0)!d N (0; I (�0)) ;

where I (�0) = E[l��;t(�0)l�0�;t(�0)] = E["4t � 1]E[��4t h��;t(�0)h�0�;t(�0)] is �nite.

Proof. Taking the �rst derivative of l�t (�) = log h
�
t + y

2
t =h

�
t yields

l��;t = �
h��;t
h�t

�
y2t
h�t
� 1
�
:

Evaluating it at �0 yields l��;t (�0) = ���2t h��;t (�0) ("2t � 1): Hence,

E
�
l��;t(�0)l

�0
�;t(�0)

�
= E

h�
"2t � 1

�2
��4t h

�
�;t (�0)h

�0
�;t (�0)

i
= E

�
"4t � 2"2t + 1

�
E
�
��4t h

�
�;t (�0)h

�0
�;t (�0)

�
by the independence of "t;

= E
�
"4t � 1

�
E
�
��4t h

�
�;t (�0)h

�0
�;t (�0)

�
since E["2t ] = 1:

An implication of Assumption 5 is the �niteness of E["4t ]: By Result 9 and Liapunov�s

Inequality, we have jj sup�2�0 jh��;t(�)j=h�t (�)jj2 <1: In particular, E[jh��;t(�0)j2=�4t ] <1:

Thus, E[��4t h
�
�;t (�0)h

�0
�;t (�0)] is �nite which implies that I (�0) = E[l��;t(�0)l

�0
�;t(�0)] is

�nite.

The ergodic stationarity of yt and �2t ; by Result 1, imply the ergodic stationar-

ity of "2t : Furthermore, h
�
�;t (�0) is ergodic stationary by Result 7. Thus, l��;t (�0) =
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���2t h��;t (�0) ("2t � 1) is ergodic and stationary. In addition, l��;t (�0) is a martingale

di¤erence sequence.

E
�
l��;t (�0) jl��;t�1 (�0) ; : : : ; l��;1 (�0)

�
= E

�
��2t h

�
�;t (�0)

�
1� "2t

�
jl��;t�1 (�0) ; : : : ; l��;1 (�0)

�
= E

�
1� "2t

�
E
�
��2t h

�
�;t (�0) jl��;t�1 (�0) ; : : : ; l��;1 (�0)

�
= 0:

The second equality follows from the independence of "t: The last one follows from the

�niteness of ��2t and h��;t (�0) ; and from the fact that E["2t ] = 1: Hence, l
�
�;t (�0) being an

ergodic stationary martingale di¤erence sequence with �nite I (�0) = E[l��;t(�0)l
�0
�;t(�0)];

we can use Billingsley�s Central Limit Theorem to conclude

p
TL��;T (�0) =

1p
T

TX
t=1

l��;t (�0)!d N (0; I (�0)) :

Lemma D2. Under the assumptions of Theorem 2, l���;t(�) is L1�dominated in �0 and

sup�2�0 jL���;T (�) � J (�) j ! 0 a.s. where J (�) = E[l���;t(�)] is continuous at �0; and

J (�0) = E[��4t h��;t (�0)h�0�;t (�0)]:

Proof. By taking the second derivative of l�t (�); we have

l���;t = �
h���;t
h�t

�
y2t
h�t
� 1
�
+
h��;t
h�t

h�0�;t
h�t

�
2
y2t
h�t
� 1
�
:

A su¢ cient condition for l���;t(�) being L1�dominated in �0 is the �niteness ofE[sup�2�0 jl���;t(�)j]:

Via the help of Hölder�s Inequality16 we obtain

E

�
sup
�2�0

��l���;t(�)��� =





 sup
�2�0

��l���;t(�)��




1

=





 sup
�2�0

�����h���;th�t

�
y2t
h�t
� 1
�
+
h��;t
h�t

h�0�;t
h�t

�
2
y2t
h�t
� 1
�����





1

�




 sup
�2�0

����h���;th�t

�
y2t
h�t
� 1
�����





1

+





 sup
�2�0

����h��;th�t h
�0
�;t

h�t

�
2
y2t
h�t
� 1
�����





1

16For any p � 1;

E [jXY j] � kXkp kY kq ;

where q = p=(p� 1) if p > 1; and q =1 if p = 1:

47



�




 sup
�2�0

����h���;th�t

����




2





 sup
�2�0

����y2th�t � 1
����




2

+





 sup
�2�0

����h��;th�t
����




4





 sup
�2�0

����h�0�;th�t
����




4





 sup
�2�0

����2y2th�t � 1
����




2

�





 sup�2�0

��h���;t��
h�t







2

�
g�1



y2t 

2 + 1�+





 sup�2�0

��h��;t��
h�t







2

4

�
2g�1



y2t 

2 + 1�
< 1:

The �niteness at the last step is justi�ed by Result 9. Thus, l���;t(�) is L1�dominated in

�0:

For showing sup�2�0 jL���;T (�)�J (�) j ! 0 a.s. we will make use of uniform SLLN.

The ergodic stationarity of the variables y2t ; h
�
t ; h

�
�;t and h

�
��;t are satis�ed by Result 1, 3,

7 and 8, respectively. Moreover, because h���;t is continuous by Result 8, so are h
�
t and

h��;t since they are di¤erentiable. Thus, l
�
��;t(�) forms an ergodic stationary sequence with

�nite E[sup�2�0 jl���;t(�)j]: Hence, by the uniform SLLN

L���;T (�) =
1

T

TX
t=1

l���;t(�)! E
�
l���;t(�)

�
a:s : uniformly on �0:

Hence, sup�2�0 jL���;T (�) � J (�) j ! 0 a.s. where J (�) = E[l���;t(�)]: The uniform

almost sure convergence implies the uniform continuity of J (�) in �0; in particular,

J (�) is continuous at �0: At the true parameter value, J (�) takes the following form

J (�0) = E
�
l���;t(�0)

�
= E

�
�
h���;t (�0)

�2t

�
"2t � 1

�
+
h��;t (�0)

�2t

h�0�;t (�0)

�2t

�
2"2t � 1

��
= E

�
"2t � 1

�
E
�
���2t h���;t (�0)

�
+ E

�
2"2t � 1

�
E
�
��4t h

�
�;t (�0)h

�0
�;t (�0)

�
= E

�
��4t h

�
�;t (�0)h

�0
�;t (�0)

�
:

In the third equality, the term E["2t � 1]E[���2t h���;t (�0)] vanishes because E["2t ] = 1 and

E[���2t h���;t (�0)] � g�2E[h���;t (�0)] is �nite since h
�
��;t (�) is continuous, thus �nite, at

�0 by Result 8.

Lemma D3. Under the assumptions of Theorem 2, I (�0) and J (�0) are positive def-

inite.

Proof. Let x 2 R6n f0g : We want to show that x0I (�0)x > 0 for all x 2 R6n f0g : For a

contradiction, suppose that x0I (�0)x = 0: Also note that we can express x0I (�0)x = 0
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as

x0I (�0)x = x0E
�
l��;t(�0)l

�0
�;t(�0)

�
x

= E
�
x0l��;t(�0)l

�0
�;t(�0)x

�
= E

h�
x0l��;t(�0)

�2i
= 0:

But this implies that x0l��;t(�0) = ("
2
t � 1)��2t x0h��;t(�0) = 0 a.s. By Result 10 i) "t is not

concentrated at two points, thus "2t 6= 1 a.s. Moreover, �2t is bounded g � �2t < 1 by

Result 4 and Result 2. Therefore, we are left with x0h��;t(�0) = 0 a.s. Because h��;t is

stationary by Result 7, it is also true that x0h��;t�1(�0) = 0 a.s. Hence,

x0h��;t(�0) = x0
�
g�;t (�0) + �h

�
�;t�1(�0)

�
= x0g�;t (�0) + �x

0h��;t�1(�0)

= x0
@g (yt; �

2
t ; 
0)

@�

= 0 a.s.

Yet, by the identi�cation condition in Result 10 we have to have x = 0:We conclude that

I (�0) is a (6� 6) positive de�nite matrix.

In a similar way, the positive de�niteness of J (�0) can be proven. Actually, after

the step x0J (�0)x = E[��4t x0h��;t(�0)] = 0 a.s., the same steps as above should be taken.

LemmaD.4 Under the assumptions of Theorem 2,
p
T (e�T��0)!d N

�
0; E["4t � 1]J (�0)

�1�
where e�T = argmin�2� L�T (�) :
Proof. First note that e�T ! �0 a.s., which can be seen by the �rst few steps of the

proof of Theorem 1. The only di¤erence is that we do not have the term in (35), which

converges to zero a.s.

lim inf
T!1

inf
�2Bc

(L�T (�)� L�T (�0)) � lim inf
T!1

fE[l�t (�0)]� L�T (�0)g+ lim inf
T!1

inf
�2Bc

fL�T (�)� E [l�t (�0)]g

> 0 a.s. by the proof of Theorem 1.

Hence, for strong consistency of e�T ; it su¢ ced to show the positiveness of lim infT!1 inf�2Bc(L�T (�)�
L�T (�0)); which is done in the proofs of (36) and (37).
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The mean value expansion17 of L�T (�) around �0 gives us

L��;T (
e�T ) = L��;T (�0) + _L���;T (

e�T � �0)
where _L���;T signi�es the (6� 6) L���;T (�) matrix with each row evaluated at an interme-

diate point �i;T ; for i = 1; 2; : : : ; 6; lying between e�T and �0: More explicitly,
_L���;T =

1

T

TX
t=1

26664
@2lt(�)
@!2

����=�1;T � � � @2lt(�)
@!@
2

����=�1;T
...

. . .
...

@2lt(�)
@
2@!

����=�6;T � � � @2lt(�)

@
22

����=�6;T

37775
(6�6)

:

Because �i;T lies between e�T and �0 for each i and because e�T is strongly consistent for
�0; so are each �i;T : Hence, �i;T ! �0 a.s. for i = 1; 2; : : : ; 6: Moreover, the convexity of

�0 assures that each �i;T is contained in the interior of �0 for large T:

Next, we will show that _L���;T ! J (�0) a.s. as T ! 1: By Lemma D.2 we have

sup�2�0 jL���;T (�) � J (�) j ! 0 a.s. Hence, each row of L���;T (�) converges to the cor-

responding row of J (�) : Thus, ith row of L���;T (�) evaluated at �i;T converges almost

surely to the ith row of J (�) evaluated at �i;T ; for each i: As a result, we can write that
_L���;T ! _J a.s. where _J signi�es the matrix J (�) with ith row evaluated at �i;T for

i = 1; 2; : : : ; 6: Because J (�) is continuous at �0 by Lemma D.2 and because �i;T ! �0

a.s. for each i; we have _J ! J (�0) a.s.

_L���;T ! _J a:s: and _J ! J (�0) a:s: imply _L���;T ! J (�0) a:s:

Because J (�0) is invertible being positive de�nite by Lemma D.3, _L���;T is also invertible

for large T: Thus, we can write

_L��1��;T ! J (�0)�1 a:s: as T !1: (40)

Let�s multiply the mean value expansion with
p
T and with the Moore-Penrose Inverse18

of _L���;T ; which exists for all T and denoted by _L
�+
��;T : Then,

p
T _L�+��;TL

�
�;T (
e�T ) = pT _L�+��;TL��;T (�0) +pT _L�+��;T _L���;T (e�T � �0):

17Let h : Rp ! Rq be continuously di¤erentiable. Then, h (x) admits the mean value expansion

h (x) = h (x0) +
@h (�x)

@x0
(x� x0) ;

where �x is a mean value lying between x and x0:
18The (n�m) matrix A+ is the Moore-Penrose Inverse of the (n�m) matrix A if it satis�es
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By adding and subtracting
p
T (e�T � �0) to the right-hand-side, we arrange the above

equation to obtain

p
T (e�T��0) = (I6� _L�+��;T _L���;T )pT (e�T��0)+pT _L�+��;TL��;T (e�T )�pT _L�+��;TL��;T (�0) (41)

where I6 is the (6� 6) identity matrix. Now, we will show that the �rst two terms on the

right-hand-side of (41) converge to zero a.s. Actually, these terms will be exactly equal to

zero for su¢ ciently large T, in other words, for each event w on a set with probability one

there exists Tw such that for all T � Tw the �rst two terms are exactly zero. Regarding

the �rst term, for su¢ ciently large T; the inverse of _L���;T exists as shown in (40). Hence,

_L�+��;T =
_L��1��;T ; which gives us _L

�+
��;T

_L���;T = I6: For the second term, because e�T minimizes
the function L�T (�) on � and because �0 is an interior point of �0; we have L

�
�;T (
e�T ) = 0

for all su¢ ciently large T: Note that, being a minimizer is not enough to have a zero

derivative at that point. First of all, the derivative is taken in the vicinity of �0; i.e. on

�0: Moreover, e�T may be on the boundary of �0 for some T; which may result in a non-
zero derivative. Therefore, we need e�T to be an interior point of �0; and to ensure this,
given that e�T is consistent for �0; T should be su¢ ciently large. As a result �rst two

terms in (41) are not only converging to zero a.s. but also they are exactly equal to zero

a.s. after a threshold for T: Furthermore, the Moore-Penrose inverse _L�+��;T converges to

J (�0)�1 a.s. since _L�+��;T = _L��1��;T for su¢ ciently large T: Thus, (41) can be written as

p
T (e�T � �0) = o1 (1) + �J (�0)�1 + o2 (1)�pTL��;T (�0);

where o1 (1) and o2 (1) are vector- and matrix-valued processes, respectively, and converge

to zero a.s. at rate T: Thus, as T !1; the right-hand-side becomes J (�0)�1
p
TL��;T (�0):

But, by Lemma D.1, we have that
p
TL��;T (�0) !d N (0; I (�0)) yielding the desired re-

sult J (�0)�1
p
TL��;T (�0) !d N(0;J (�0)�1 I (�0)J (�0)�1): Here, note that the matrix

J (�0) = E[��4t h��;t (�0)h�0�;t (�0)] is symmetric, so is its inverse, and moreover J (�0)
�1 I (�0) =

i) AA+A = A;

ii) A+AA+ = A+;

iii) (AA+)H = AA+;

iv) (A+A)H = A+A;

where AH is the conjugate transpose of the matrix A:
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E["4t � 1]. To conclude the proof,

p
T (e�T � �0)!d N

�
0; E

�
"4t � 1

� �
E
�
��4t h

�
�;t (�0)h

�0
�;t (�0)

�	�1�
:

Lemma D.5 Under the assumptions of Theorem 2, there exists a constant 
 > 1 such

that


t sup
�2�0

��l��;t(�)� l�;t(�)��! 0 in L1=3 � norm as t!1:

Proof. In this proof and in some further analysis, we will use the inequality

jx�y� � xyj = jx�y� � xy � xy�j = jy� (x� � x)� (x� � x) (y� � y) + x� (y� � y)j

� jy�j j(x� � x)j+ jx� � xj jy� � yj+ jx�j jy� � yj (42)

for any conformable vectors.

Now, let�s consider the di¤erence h��1t h��;t � h�1t h�;t:����h��;th�t � h�;tht
���� =

����h��;th�t � h�;tht + h
�
�;t

ht
�
h��;t
ht

����
=

����h��;t� 1h�t � 1

ht

�
� 1

ht

�
h��;t � h�;t

�����
�

��h��;t�� ���� 1h�t � 1

ht

����+ ��h�1t �� ��h��;t � h�;t��
� g�2

��h��;t�� ��h��;t � h�;t��+ g�1 ��h��;t � h�;t�� ;
where the last inequality follows by the Mean Value Theorem and Result 4. Thus, we can

write 



 sup
�2�0

����h��;th�t � h�;tht
����




1=2

�




 sup
�2�0

�
g�2

��h��;t�� ��h��;t � h�;t��+ g�1 ��h��;t � h�;t��	




1=2

� 41=2;2

"
g�2





 sup
�2�0

��h��;t�� ��h��;t � h�;t��




1=2

+ g�1




 sup
�2�0

��h��;t � h�;t��




1=2

#

� 2

"
g�2





 sup
�2�0

��h��;t��




1





 sup
�2�0

��h��;t � h�;t��




2

+ g�1




 sup
�2�0

��h��;t � h�;t��




1=2

#
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where, in the second inequality, we make use of Lemma 1, and for the last step we use

Cauchy-Schwarz Inequality and Liapunov�s Inequality. In order to get a more proper

upper bound for jj sup�2�0 jh
��1
t h��;t � h�1t h�;tjjj1=2; recall that jj sup�2�0 jh�t � htjjjr and

jj sup�2�0 jh��;t � h�;tjjjr=4 are bounded by C�t and C 0maxft; t4=rg�t�1 by Result 3 and 7,

respectively. Moreover, by Result 7, we also have that E[sup�2�0 jh��;tjr=2] < 1; thus,

jj sup�2�0 jh��;tjjjr=2 = D <1. Finally, in Result 9, we showed that we can replace r with

2 in our analysis. Therefore,



 sup
�2�0

����h��;th�t � h�;tht
����




1=2

� 2g�2DC�t + 2g�1C 0max
�
t; t2
	
�t�1

� max
�
2g�2DC; 2g�1C 0��1

	 �
1 + t2

�
�t

� C 00t2�t: (43)

Next, let�s consider the di¤erence l��;t (�)� l�;t (�) and use the inequality (42)��l��;t (�)� l�;t (�)��
=

�����h��;th�t
�
y2t
h�t
� 1
�
+
h�;t
ht

�
y2t
ht
� 1
�����

�
����h��;th�t � h�;tht

���� ����y2th�t � 1
����+ ����h��;th�t � h�;tht

���� ����y2th�t � y
2
t

ht

����+ ����h��;th�t
���� ����y2th�t � y

2
t

ht

����
�

����h��;th�t � h�;tht
���� �g�1y2t + 1�+ ����h��;th�t � h�;tht

���� �g�2y2t jh�t � htj�+ ��h��;t�� �g�3y2t jh�t � htj� ;
where the last inequality follows by the Mean Value Theorem and Result 4. Hence, we

now are able to �nd a proper upper bound of the norm jj sup�2�0 jl��;t(�)� l�;t(�)jjj1=3.



 sup
�2�0

��l��;t(�)� l�;t(�)��




1=3

�




 sup
�2�0

��������h��;th�t � h�;tht
���� �g�1y2t + 1�+ ����h��;th�t � h�;tht

���� �g�2y2t jh�t � htj�+ ��h��;t�� �g�3y2t jh�t � htj�����




1=3

� 41=3;3

(



�g�1y2t + 1� sup
�2�0

����h��;th�t � h�;tht
����




1=3

+





g�2y2t sup
�2�0

����h��;th�t � h�;tht
���� jh�t � htj





1=3

+





g�3y2t sup
�2�0

��h��;t�� jh�t � htj




1=3

)
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� 3

(

g�1y2t + 1

1




 sup
�2�0

����h��;th�t � h�;tht
����




1=2

+ g�2


y2t 

2 



 sup

�2�0

����h��;th�t � h�;tht
����




1=2





 sup
�2�0

jh�t � htj





2

+g�3


y2t 

1 



 sup

�2�0

��h��;t��




1





 sup
�2�0

jh�t � htj





1

�
� 3

(�
g�1



y2t 

2 + 1� 



 sup
�2�0

����h��;th�t � h�;tht
����




1=2

+g�2


y2t 

2 



 sup

�2�0

����h��;th�t � h�;tht
����




1=2





 sup
�2�0

jh�t � htj





2

+g�3


y2t 

2 



 sup

�2�0

��h��;t��




1





 sup
�2�0

jh�t � htj





2

�
:

where Lemma 1 is used in the second inequality, Hölder�s Inequality is used in the third

inequality, and Liapunov�s Inequality is used in the last step. Moreover, by Result 9, we

know that E[y4t ] < 1 which provides the �niteness of the norm ky2t k2 = M < 1. In

addition, by using the upper bound for jj sup�2�0 jh
��1
t h��;t�h�1t h�;tjjj1=2 found in (43), we

can bound jj sup�2�0 jl��;t(�)� l�;t(�)jjj1=3 from above in the following way



 sup
�2�0

��l��;t(�)� l�;t(�)��




1=3

� 3
��
g�1M + 1

�
C 00t2�t + g�2MC 00t2�tC�t + g�3MDC�t

	
� 3max

��
g�1M + 1

�
C 00; g�2MC 00C; g�3MDC

	
�tt2

�
1 + �t

�
� Bt2�t

�
1 + �t

�
� 2Bt2�t:

for some constant B. Now, let 
 2 (1; ��1) so that jj
t sup�2�0 jl��;t(�) � l�;t(�)jjj1=3 �

2Bt2 (�
)t ! 0 a.s. as t!1: In other words, the almost sure convergence of 
t sup�2�0 jl��;t(�)�

l�;t(�)j to zero in L1=3�norm is proven as t!1.

Lemma D.6 Under the assumptions of Theorem 2,
p
T (�̂T � e�T )! 0 a.s. as T !1.

Proof. We know that �0 2 ��0; and both �̂T and e�T are strongly consistent for �0 by
Theorem 1 and by the proof of Lemma D.4. Thus, for su¢ ciently large T we can say that

�̂T and e�T belong to ��0 with probability one. Since �̂T and e�T are minimizers of LT (�)
and L�T (�) on �; respectively, we can write L�;T (�̂T ) = L

�
�;T (
e�T ) = 0 for su¢ ciently large

T: By applying the mean value theorem we obtain

L��;T (
e�T )� L��;T (�̂T ) = �L���;T (

e�T � �̂T );
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where �L���;T signi�es the matrix L
�
��;T (�) with each row evaluated at an intermediate

point ��i;T ; for i = 1; 2; : : : ; 6; lying between e�T and �̂T : By using the above equation and
the equality L�;T (�̂T ) = L��;T (e�T ) = 0; we can write that

p
T (L�;T (�̂T )� L��;T (�̂T )) =

p
T (L��;T (

e�T )� L��;T (�̂T )) = �L���;T
p
T (e�T � �̂T ):

Let�s concentrate on the di¤erence in the left-hand-side.

p
T
���L�;T (�̂T )� L��;T (�̂T )��� =

p
T

����� 1T
TX
t=1

l�;t(�̂T )�
1

T

TX
t=1

l��;t(�̂T )

�����
=

1p
T

�����
TX
t=1

�
l�;t(�̂T )� l��;t(�̂T )

������
� 1p

T

�����
TX
t=1

sup
�2�0

�
l�;t(�̂T )� l��;t(�̂T )

������
� 1p

T

TX
t=1

sup
�2�0

���l�;t(�̂T )� l��;t(�̂T )��� :
By LemmaD.5 and Lemma 2,

P1
t=1 sup�2�0 jl�;t(�̂T )�l��;t(�̂T )j <1: Therefore,

p
T jL�;T (�̂T )�

L��;T (�̂T )j ! 0 a.s. as T !1: Hence,

�L���;T
p
T (e�T � �̂T )! 0 a.s. as T !1:

Now, we will show that �L���;T is invertible, thus nonsingular, so that we can conclude thatp
T (e�T � �̂T ) ! 0 a.s. Note that, for each i; ��i;T is strongly consistent for �0 because

��i;T lies between e�T and �̂T : By Lemma D.2 we had sup�2�0 jL���;T (�)�J (�) j ! 0 a.s.,

thus �L���;T ! �J where �J denotes the matrix J (�) with ith row evaluated at ��i;T : Since

J (�) is continuous at �0 and ��i;T is strongly consistent for �0; we have �J ! J (�0) a.s.,

which implies �L���;T ! J (�0) a.s. Moreover, for su¢ ciently large T; �L��1��;T exists because

J (�0)�1 exists by Lemma D.3. Hence, �L���;T being a nonsingular matrix, we can conclude

that
p
T (�̂T � e�T )! 0 a.s. as T !1.

Proof of (8) Under the assumptions of Theorem 2,

ÎT =
"
1

T

TX
t=1

�
y4t

ĥ2t
� 1
�#"

1

T

TX
t=1

ĥ�;t

ĥt

ĥ0�;t

ĥt

#
! I (�0) a.s.
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Proof. We will prove the strong consistency of the estimators in ÎT ; i.e., we will prove

1

T

TX
t=1

�
y4t

ĥ2t
� 1
�

! E
�
"4t � 1

�
a.s., (44)

1

T

TX
t=1

ĥ�;t

ĥt

ĥ0�;t

ĥt
! E

�
h�;t (�0)

�2t

h0�;t (�0)

�2t

�
a.s. (45)

We will use uniform SLLN and the strong consistency of the QML estimator �̂T : First,

we prove two results on uniform strong consistency.

sup
�2�0

����� 1T
TX
t=1

y4t
h�2t

� E
�
y4t
h�2t

������ ! 0 a.s. as T !1; (46)

sup
�2�0

����� 1T
TX
t=1

h�;t
h�t

h0�;t
h�t

� E
�
h�;t
h�t

h0�;t
h�t

� ����� ! 0 a.s. as T !1: (47)

In order to use uniform SLLN, we need to prove the �niteness of E[sup�2�0 jh
��2
t y4t j] and

E[sup�2�0 jh
��2
t h�;th

0
�;tj]:

E

�
sup
�2�0

���� y4th�2t
����� = E

�
y4t sup

�2�0

���� 1h�2t
����� � E �y4t g�2� = g�2E �y4t � <1 by Result 4 and 9,

E

�
sup
�2�0

����h�;th�t h
0
�;t

h�t

����� =





 sup
�2�0

����h�;th�t h
0
�;t

h�t

����




1

=





 sup
�2�0

jh�;tj
h�t





2
2

�




 sup
�2�0

jh�;tj
h�t





2
4

<1 by Result 9.

Hence, uniform SLLN applies, thus (46) and (47) hold.

Now, let�s concentrate on the convergence of the �rst estimator, and try to show that

sup
�2�0

�����1=T
TX
t=1

y4t
�
h��2t � h�2t

������! 0 a.s. as T !1:

We �rst analyze the di¤erence in the summand.���� y4th�2t � y4t
h2t

���� = y4t

���� 1h�2t � 1

h2t

����
� y4t

���(�2 _h�3t ) (h�t � ht)���
= 2y4t

��� _h�3t ��� jh�t � htj
� 2y4t g

�3 jh�t � htj ;

where the �rst inequality follows from the Mean Value Theorem for _ht lying between h�t

and ht: Thus, by Result 4 _ht � g; which justi�es the last inequality. By Hölder�s Inequality
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we get 



 sup
�2�0

���� y4th�2t � y4t
h2t

����




2=3

�




 sup
�2�0

2y4t g
�3 jh�t � htj






2=3

� 2g�3


y4t 

1 



 sup

�2�0
jh�t � htj






2

� M 0�t;

whereM 0 = 2g�3 ky4t k1C <1 by Result 3 and 9. Let 1 < 
 < ��1; then jj
t sup�2�0 jy4t (h
��2
t �

h�2t )jjj2=3 � M 0 (
�)t ! 0 a.s. By Lemma 2,
P1

t=1



sup�2�0 jy4t �h��2t � h�2t
�
j



2=3
< 1:

Therefore, we conclude that

sup
�2�0

����� 1T
TX
t=1

�
y4t
h�2t

� y4t
h2t

������! 0 a.s. as T !1: (48)

The �rst desired result in (44) will be derived from the uniform convergence results in

(46) and (48). They, respectively, imply that

1

T

TX
t=1

y4t
h�2t

! E

�
y4t
h�2t

�
a.s. uniformly and

1

T

TX
t=1

y4t
h�2t

! 1

T

TX
t=1

y4t
h2t
a.s. uniformly.

Thus, we can infer that 1=T
PT

t=1 h
�2
t y

4
t ! E[h��2t y4t ] a.s. uniformly on �0: Because the

convergence is uniformly, it will also hold for a particular choice of � 2 �0; for instance

for �̂T . Therefore, we can write that

1

T

TX
t=1

y4t

h2t (�̂T )
! E

"
y4t

h�2t (�̂T )

#
a.s.

Since �̂T is strongly consistent for �0 and h�t is continuous we have h
�2
t (�̂T )! h�2t (�0) =

�4t : Then, we can easily obtain that

1

T

TX
t=1

�
y4t

ĥ2t
� 1
�
! E

�
y4t
�4t
� 1
�
= E

�
"4t � 1

�
a.s.

Next, let�s �nd similar results for the second estimator in ÎT :We have already found

the uniform convergence result in (47). What we need is to �nd the analogous result

of (48) that contains the �rst derivatives of the processes ht and h�t : We again use the

inequality (42) with x� = h��1t h��;t and y
� = x�0;����h��;th�t h

�0
�;t

h�t
� h�;t
ht

h0�;t
ht

���� �
����h�0�;th�t

���� ����h��;th�t � h�;tht
����+ ����h��;th�t

���� ����h�0�;th�t � h
0
�;t

ht

����+ ����h��;th�t � h�;tht
���� ����h�0�;th�t � h

0
�;t

ht

����
� 2

����h��;th�t
���� ����h��;th�t � h�;tht

����+ ����h��;th�t � h�;tht
����2 :
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Thus, we can write
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C 00t2�t +
�
C 00t2�t

�2�
� D0t4�t;

where the second inequality follows from Lemma 1, the third one follows from Cauchy-

Schwarz Inequality, the fourth one is justi�ed by Liapunov�s Inequality and by (43), the

�fth one is satis�ed by Result 9. Again by using similar arguments and making use of

Lemma 2,

sup
�2�0

����� 1T
TX
t=1

�
h��;t
h�t

h�0�;t
h�t

� h�;t
ht

h0�;t
ht

������ � 1

T

TX
t=1

sup
�2�0

����h��;th�t h
�0
�;t

h�t
� h�;t
ht

h0�;t
ht

����! 0 a.s.

Hence, by a very similar reasoning done for the �rst estimator in ÎT ; we can conclude

that
1

T

TX
t=1

ĥ�;t

ĥt

ĥ0�;t

ĥt
! E

�
h�;t (�0)

�2t

h0�;t (�0)

�2t

�
a.s.
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