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ABSTRACT 

Contribution of intermolecular interactions to the stability of two bound molecules is an 

important factor in flexible binding problems. In order to understand the the change in 

thermodynamic properties upon binding and determine the binding sides, two hexa-peptides 

and their bound complex structures were analyzed. The dynamics of the peptides are obtained 

via molecular dynamics. In order to extract the thermodynamic properties and determine the 

binding side, a harmonic model was applied. 

The interplay between harmonicity and anharmonicity in proteins was studied in literature, 

reaching the conclusion that the motion within a local minimum is mainly harmonic and the 

anharmonic component arises from transitions from one minimum to the other. The harmonic 

formulation is extended to large fluctuations of residues in order to account for effects of 

anharmonicity. The fluctuation probability function is constructed for this purpose as a 

tensorial Hermite series expansion with higher order moments of fluctuations as coefficients.  

Mode coupling and anharmonicity in a native fluctuating protein is investigated in modal 

space by projecting the motion along the eigenvectors of the fluctuation correlation matrix. 

Molecular dynamics trajectories of Crambin are generated and used to evaluate the terms of 

the polynomials and to obtain the modal energies. Slowest modes have energies that are 

below that of the harmonic energy, kT/2 per mode, and a few fast modes have energies 

significantly larger than the harmonic which is a result of coupling. Detailed analysis of the 

coupling of these modes to others is presented in terms of the lowest order two mode coupling 

terms.  In addition is was shown that the mode coupling and anharmonicity are important for 

modeling the multidimensional energy landscape of the protein Crambin. The effect of them 

on the fluctuational entropy is on the order of a few percent. 

In order to understand the structure –binding relationship from a different perspective, the 

fluctuations and free energy profiles of two very similar proteins, which differ only 2 

aminoacids, were investigated; HLA-B51 and HLA-B52.  HLA-B51 is related to the Behçet‟s 

disease, which is a chronic inflammatory disorder, whereas HLA-B52 is not related to it. The 

unbinding process of a peptide of sequence YAYDGKDYI, which is one of the catabolic 

products of HLA-B51 and also known to bind well to HLA-B52, was investigated. Change in 

the dynamics of 1 helix,  residues 60-90, were analyzed. Free energy profiles have shown that 

unbinding from HLA-B52 results in greater free energy differences than for HLA-B51.  
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ÖZET 

Moleküller arası etkileşimin kararlılık üzerine etkisinin anlaşılması esnek bağlanma 

probleminde önemli bir faktör oluşturmaktadır. Bağlanmadan kaynaklanan termodinamik 

değişimlerinin daha iyi anlaşılması ve bağlanma bölgelerinin belirlenebilmesi amacıyla iki 

hexa-peptit ve onların bağlanmış formu analiz edildi. Moleküler dinamik vasıtasıyla 

peptitlerin dinamiği elde edildi. Bu bilgiden istenen termodinamik özeliklerin elde edilmesi ve 

bağlanma bölgelerinin belirlenmesi amacıyla harmonik bir model uygulandı.  

Literatürde bir lokal minimum etrafındaki hareketin harmonik olduğu ve anharmonik 

hareketlerin lokal minimumlar arası geçişlerden kaynaklandığı sonucuna varılmıştır. Büyük 

hareketleri açıklanabilmesi için harmonik matematiksel formulasyon genişletildi. Dalgalanma 

olasılık fonksiyonu yüksek derece momentleri kullanarak Hermit serisi açılımı ile oluşturuldu.  

Proteinlerin çevre ile enerjik etkileşimi ve emilen enerjinin protein içindeki rezidülere 

dağılımı protein fonksiyonu açısından çok önem arz eden bir konu. Bu sebepten dolayı 

modların bağlanması ve anharmonik hareketlerin mod uzayına korelasyon matrisinin 

eigenvektorlerine yansıtılması yolu ile incelenmiştir. Crambin için moleküler dinamik 

yörüngeleri elde edildi ve bununla polinomlar oluşturularak mod enerjileri hesaplandı. Yavaş 

modların enerjisinin harmonik kabulün, mod başına kT/2, altında olduğu görüldü. Hızlı 

modlardan birkaçının ise harmonik kabulün üzerinde enerjiye sahip oldukları görüldü. Bu 

sapmaların sebebi çevre ile ve başka bir veya birkaç mod ile enerjik bağlanma olarak 

açıklanabilinir. Bu enerjik bağlanmalarını detaylı analizi ikili en düşük derecede bağlanmalar 

cinsiden yapıldı. İlaveten Crambin için modların bağlanması ve anharmonik hareketlerin çok 

boyutlu enerji yüzeyinin modellenmesinde önemli etkiye sahip olduğu görüldü. Anharmonik 

hareketlerin ve mod bağlanmasının entropi üzerindeki etkisi sadece yüzde birkaç düzeyinde.  

Yapı-bağlanma ilişkisini farklı bir açıdan incelemek amacıyla birbirine çok benzer  olan ve 

sadece 2 amino grubu ile farklılık gösteren HLA-B51 ve HLA-B52 proteinlerinin serbest 

enerji profilleri ve hareketleri incelendi. HLA-B51 kronik iltihaplı bir hastalık olan Behçet 

hastalığı ile ilgili bir protein, HLA-B52 ise ilgisiz. YAYDGKDYI sekansına sahip HLA-

B51‟in katabolik bir ürünü olan ve HLA-B52‟ye de iyi bağlandığı bilinen bir peptittin 

bağlanma prosesi incelendi. 1 heliksindeki dinamik değişimler incelendi. Serbest enerji 

profilleri HLA-B52 bağlanmasının HLA-51‟e göre daha çok enerji açığa çıkardığını gösterdi. 
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Chapter 1 

 

INTRODUCTION 

 

 

A protein in aqueous solution constitutes a system whose atoms exhibit fluctuations over time 

about well defined mean positions. The aqueous medium forms the reservoir at constant 

temperature and pressure. The magnitude of fluctuations may be large relative to atomic radii 

as indicated by experiment. Fluctuations in atomic coordinates are well characterized by 

experiments[1]. In theory, fluctuations are studied at various levels of approximation, ranging 

from all-atom to coarse-grained scales. Studying the fluctuations of the C  is a convenient 

approximation where each successive C pair is assumed to be connected by a virtual bond of 

fixed length and only interactions between residues, represented by their C ‟s, are considered. 

In the present study, both this level of approximation and all atomic level approximation are 

adopted. Coarse-grained models of fluctuations started with the important observation that the 

large amplitude fluctuations of the protein G-actin could be described in the harmonic 

approximation by a single parameter only [2]. Based on this simple picture of the elastic 

fluctuations of a protein, the Gaussian Network Model, GNM, was proposed [3, 4], according 

to which the C ‟s were assumed analogous to the junctions of an amorphous network whose 

fluctuations were similar to those given in the random amorphous network model proposed by 

Flory[5, 6]. As in the random network model, the GNM is based on an isotropic description of 

residue fluctuations where only the number of neighbors of a given residue is important. The 

Anisotropic Network Model, ANM, was then introduced to estimate the directions of 

fluctuations[7, 8]. The GNM and models that followed it, collectively referred to as the Elastic 

network Models, ENMs, are found to provide important insights for understanding the 

structure-function relations of proteins. For this reason, and because of their immediate 

applicability to all kinds of proteins without size restrictions, they found wide use during the 

past decade [4, 9-11]. In general, these studies and several others that are cited by them, 

elaborate on different levels of approximation of the ENM‟s. They try to identify the force 

constants associated with the models, compare the different models, associate the models with 
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NMR data, optimize the model parameters over databases, apply the models to drug design 

problems and prediction of binding sites, folding cores, allosteric effects and hot residues. In 

addition to work in harmonic fluctuations cited here, anharmonicities of protein fluctuations 

[12, 13]  in the form of nonlinear modes that are localized in certain regions of the protein 

play important roles in protein function [14, 15]. In this respect, coupling of fast and slow 

modes resulting in energy flow is the most important process responsible for the protein‟s 

function [16, 17]. 

Despite this wide range of interest, a general statistical mechanical treatment of fluctuations 

that describes the theoretical basis of harmonic as well as anharmonic behavior is missing in 

the literature. The specific aim of the present paper is to give a statistical thermodynamic 

interpretation of fluctuations in native proteins that covers both harmonic and anharmonic 

behavior. 

In this section, the thermodynamic and statistical basis of fluctuations in native proteins will 

be given. This basis will be enlarged and applied to physical problems in the following section.  

 We use the entropy representation for the fundamental relation [18], 

 

 RV,U,SS                    1-1 

 

Where RV,U,S,  are the mean (thermodynamic) values of the entropy, energy, volume, and 

position vectors of  the atoms. Water is not shown explicitly in the fundamental relation. The 

protein is in diathermal contact with the surrounding water. Similarly, the protein is i n contact 

with a pressure (P) and a force (F) reservoir, as a result of which the energy, volume and the 

positions of residues exhibit fluctuations. Other, not bound proteins, are present in the 

surroundings but they do not influence the energy levels of the given protein. We call the 

protein and the surrounding water as an element. The collection of all elements of the system 

constitutes the ensemble. Statistical mechanics is applicable to a single element. 

Thermodynamics applies only to an ensemble of the elements. The ensemble of elements with 

its extensive properties constitutes a macroscopic system [18, 19]. The thermodynamic 
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variables S, U, V, R are obtained from the ensemble. For each element, these variables exhibit 

fluctuations about their native values. The distribution  R̂,V̂,Ûf  of the instantaneous 

extensive variables R̂,V̂,Û  are given by the relation, 
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where k is the Boltzmann constant and 
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The distribution now takes the explicit form 
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In equation (4), provided that the system remains around the given equilibrium point, i.e., a 

point on the thermodynamic surface  RV,U,SS  , there are no restrictions on the degree of 

departure of the system, i.e., the magnitude of fluctuations, from the average thermodynamic 

variables. If the fluctuations are large, the fluctuations may be anharmonic or may induce a 

jump from one local minimum to another. The applicability of results derived from equation 

(4) are discussed in detail in the following sections. 
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The correlation of fluctuations of the ith and jth residues may now be obtained from 

 

    RRRRRRR ˆ,V̂,Ûfˆˆ T

jjii
T

ji                         1-5 

 

where the superscript T denotes transpose and the summation is over all allowable states. 

Each of the following chapters is in form of a separate paper. For each of them separate 

introductions, problem statements and conclusions are provided. This first general 

introduction chapter aimed to provide the fundamental statistical mechanic background 

required to understand the following chapters. 
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Chapter 2 

 

HARMONIC FLUCTUATIONS OF TWO PEPTIDES 

 

 

2.1. Introduction 

 

Understanding the binding of two molecules is a complex problem that may suitably be 

simulated by molecular dynamics. In the present study, we use long molecular dynamics 

trajectories of two bound peptides to extract information from the system. In the interest of 

simplicity, we adopt a quasiharmonic analysis where we assume that the atoms of the two 

peptides are connected by linear springs, and the spring constants are obtained from the 

correlations of fluctuations of the atoms, which are in turn are obtained from the molecular 

dynamics trajectory. 

The idea of obtaining spring constants from fluctuation correlation is not new and was 

employed by Karplus and collaborators [20, 21] and Lamm and Szabo [22]. The most 

transparent use of the idea which we adopt in the present work is by Teeter and Case [23]. 

REACH (Realistic Extension Algorithm via Covariance Hessian) is an elastic network model 

(ENM) developed by Moristugu and Smith[24], in which the residue interaction spring 

constants are obtained directly from the atomic-detail variance-covariance matrix calculated 

using MD simulation [24]. In this way physically-based atomic MD force fields can be 

projected onto inter-residue spring constants. The REACH spring constants were derived by 

relating the harmonic-approximated potential energy of the ENM to the Hessian (second-

derivative) matrix and then to the variance-covariance matrix[24]. The interactions were 

divided into 4 classes; virtual 1-2 (between residue i and i+1), virtual 1-3 (between residue i 

and i+2),virtual 1-4 (between residue i and i+3) and the nonbonded interactions. In REACH, 

the residue-scale Hessian matrix is calculated using the variance–covariance matrix from the 

atomistic MD trajectory. Making the harmonic approximation under the equilibrium condition 
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at constant temperature, T , allows the Hessian matrix to be calculated from the 3N-

dimensional variance–covariance matrix [25].  

In their work Moristugu and Smith [23] have pointed out that the anharmonicity in atomistic 

MD simulations may lead to the spring constants deviating from the “ideal” harmonic 

approximation quantities, but the contribution will likely be small, i.e., this is not the main 

origin of negative spring constants. Moristugu and Smith [23] have used each 1-ns MD 

trajectories to calculate the variance-covariance matrix and justified their methodology by 

pointing out that the time length of 1 ns is long enough to characterize the vibrational 

component of protein fluctuation, which arises from the harmonic potential, but is not so long 

that the intramolecular contribution is small compared to the slow, diffusive motion. Since 

normal modes represent vibrational motions on an effective harmonic potential, the MD time 

length of 1 ns was concluded to be a suitable choice. Therefore, the MD trajectories were 

separated into 1-ns long trajectories from each of which the covariance matrix was calculated 

and then these matrices were averaged in order derive associated spring constants [26] . 

On ligand binding, protein dynamics is changed by two effects: the change in conformation of 

the protein from the unbound to the bound state and the interaction between the protein and 

the ligand [25]. Moritsugu et al.[25] have focused on the effect of the force field on the 

vibrational dynamics with a constant protein structure. They have shown that the internal 

degrees of freedom increases by 6 upon ligand binding which are considered as ligand 

external motions coupling to protein vibrations.  

In their study they have also pointed out that protein vibrations becomes stiffer on ligand 

binding and that an increase in vibrational entropy on ligand binding arises from the 

additional six degrees of freedoms. However, with stronger interaction energy, increased 

entropy on ligand binding would not be observed [25]. 

The spring constant matrix K is obtained from the expression 
1

TK kT R R


   
 

where the 

correlation matrix 
T

R R   of fluctuations of atom positions is obtained from the molecular 

dynamics trajectory. If, instead of the full trajectory, a specific conformation at a minimum of 

the energy, U , is found, the more familiar form of the spring constant matrix is obtained from 
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the Hessian of the system and corresponds to the harmonic or the normal mode analysis. 

Molecular dynamics show that in biological systems such as two bound peptides in water the 

system is strongly anharmonic, with frequent transitions from one conformation to another. 

The next level of approximation over the harmonic is the quasiharmonic that we adopt here. 

The probability distribution of fluctuations are Gaussian,  
1

2

T

kTf e
ΔR ΔR

ΔR
 

 , as in the 

harmonic approximation, but the spring constant matrix K is the fluctuation correlation matrix 

as discussed above. The name „quasiharmonic‟ derives from this difference from the harmonic. 

The deviation of the full probability distribution function from the quasiharmonic is given in 

recent work [27, 28]. 

In this chapter, we adopt a coarse grained model based on the alpha carbon representation. 

The spring constant matrix of peptide residues yields important information on the binding 

process and can easily be extended to protein pairs irrespective of their sizes. There are 

several methods and softwares for determining the protein-protein or protein-ligand binding 

problem. The stability of binding and the change in the Helmholtz binding energy can be 

determined by several computational techniques [29-34]. The molecular dynamics scheme 

gives a realistic estimate of energy and entropy changes in binding. The harmonic and the 

quasiharmonic approaches are only approximations aimed at (i) simplifying the problem, and 

(ii) arriving at an analytical  treatment. Below, we discuss the various aspects of this 

approximation, obtain the spring constant matrix for two bound peptides and elaborate on the 

validity of the approach. 

 

2.2. Model and Theory 

2.2.1. The Harmonic Model 

The model consists of two interacting native proteins having n1 and n2 residues in a thermal 

reservoir. The coarse grained model is adopted in which the instantaneous positions of the i th 

alpha carbon of  peptide  ,  1,2   is represented by 
)(ˆ 

iR .  The mean positions 

 ( ) ( ) ( ) ( ), ,i i i iR X Y Z   
 
are assumed fixed, and only the fluctuations 
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)()()( ˆ 

iii RRR            2-1

    

are of consequence.  

The correlation of the equilibrium fluctuations of the i th atom of peptide 1 and the jth atom of 

peptide
 
2 is given by the general second moments of the form  introduced by equation (5), 

 

1) (2) 1) 1) 2 2ˆ ˆ ˆ
T( T ( ( ( ) ( )

i j i i j jΔR ΔR = (R -R )(R -R ) f( ) R
      2-2

        

 

where, the superscript T denotes the transpose, and 

  

T T T

i j i j i j

T T T T

i j i j i j i j

T T T

i j i j i j

X X X Y X Z

R R Y X Y Y Y Z

Z X Z Y Z Z

      
 

         
       

      2-3 

 

The position vector of the  th peptide can be defined as  

 
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,..., , , ,..., , , ,...,n n nR X X X Y Y Y Z Z Z          . Here ( )
iX  is the mean x 

position of the ith atom of peptide  , with similar definitions holding for the remaining 

coordinates. Hence, the position vector of both peptides together is defined as 
(1)

(2)

ˆ
ˆ

ˆ

R

R

 
  
  

R  and 

in general
(1)

(2)

R

R

 
  
  

R . In the remaining sections of the paper, we suspend the superscript Greek 

letters identifying the peptides, and use the general vector representation for F and R 
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containing the information for both of the peptides as defined above.  Equation (2) can be 

rewritten in this notation as, 

 

ˆ ˆ ˆ( )( ) ( )
TT

i j i i j j f    R R R R R R R        2-4 

 

where the summation is over all allowable states. ˆ( )Rf  is the probability, that the system has 

coordinates R̂  in contact with the thermal reservoir. The instantaneous variables R̂  define the 

microstates of the complex. More generally, the probability,  ˆ ˆ ˆ, , Rf U V  of the complex in a 

thermal and pressure reservoir is given by  

 

  1 11 1ˆ ˆ ˆ ˆ ˆ ˆ, , exp , , ( )
F F

R R
P P

f U V k S k U V
T T T T T T

   
      

  
     2-5 

 

Here  
1

, ,
FP

S
T T T

 
 
 

 is the Massieu transform of the entropy and 
1

, ,
FP

T T T
 are the entropic 

intensive parameters whose values are equal to those of the reservoir. 

Because of the special form of  ˆ ˆ ˆ, , Rf U V  , equation (4) can be reformulated as 

 

ˆ ˆ ˆ( , , )ˆ( )T
i j i i

j

f U V
kT


   




R
R R R R

F
       2-6 

where 
(1)

(2)

F

F

 
  
 

F  and 

( )

( ) ( )

( )

x

y

z

F

F F

F



 



 
 

  
 
 

,  1,2  .
( )

xF 
 is the force exerted in the x direction on 

the th peptide. Equation (11) simplifies to 



Chapter 2: Harmonic Fluctuations of Two Peptides  10 

 

,

T i
i j

j P
i j

kT



 
    

  T, F

R
R R

F
        2-7 

 

where the variables to be kept fixed are indicated as subscripts. The variables on the right 

hand side of equation (7) are the thermodynamic, i.e., average quantities. The reader is 

referred to Callen [18] for details of the derivation above.  

Definition of the mean positions of the C ‟s and the harmonic assumption allows us to write 

the force-deformation relation for the complex as, 

 

ˆ o
F R-R  

 
           2-8 

 

  can be considered as the symmetric matrix having the harmonic springs as the elements. 

Hence, the bracket in equation (8) implies that springs are relaxed at the equilibrium positions

o
R  of the atoms and the energy is zero at those positions.  

The spring   in equation (8), written in terms of the coordinates of the Cα „s has a special 

form 

 

ij

ij ii ij

j i

if i j

 


 


   



          2-9 

 Applying equation (8) on equation (7) leads to the correlations of fluctuations  

 

1
R R

T kT               2-10
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The energy  ˆ ΔRU  of the microstate of the complex corresponding to the set  ΔR  follows 

from the harmonic assumption as 

 

 
1ˆ
2

ΔR ΔR ΔR
TU             2-11 

 

The energy in each interaction on the other hand can be evaluated as 

 

 
2

,

1

2
i j ij i jE R R             2-12 

Using the energy definition of the microstate  ΔR  provided in Eq.11, the configurational 

probability density in the Cartesian coordinates is given by 

 

 

 
 

1

2

1

2

ΔR ΔR

ΔR ΔR

ΔR

ΔR

ΔR

T

T

kT

kT

e
f

e d

 

 





        2-13 

 

Using equation (10), equation (13) can be reformulated as 

 

 

 
 

1

1

1

2

1

2

R R R R

R R R R

R

R

T T

T T

R

e
f

e d





    

    



 



        2-14 
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Fluctuation R  in the Cartesian space can be expressed in terms of the fluctuation in mode 

space as 

 

r R  TV            2-15 

 

Where V is the eigenvector matrix that diagonalizes the covariance matrix R R
T   

 

R R
T TV V              2-16 

 

Using equation (10) the force constant matrix can be formulated as 

 

TV V              2-17 

 

Here  is the eigenvalue matrix of   which equals to 1kT    . Since all translational and 

rotational degrees of freedom are eliminated, r  will consist of 3n-6 nonzero modes; i.e. the 

system consists of 3n-6 independent internal degrees of freedom. The energy  ˆ RU  of the 

microstate of the complex corresponding to the set  R can be defined in terms of the set 

 r   

 
3 6

2

1

1 1 1 1ˆ
2 2 2 2

ΔR R R R R r r r




           
n

T T T T
i i

i

U V V      2-18 
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Where ri  is the modal coordinate of the i th mode and i  is the ith eigenvalue of  . Taking 

the ensemble average of equation (18) and recognizing that 2
ri i   equals to kT  for every i, 

the average energy U can be written as 

 

3 6

1

1 (3 6)

2 2

n

i

n
U kT kT






           2-19 

 

This is the energy of a harmonic system consisting of n particles.  

The configurational probability density in modal space can be written for the 3n-6 internal 

modes, 

 

 

 
 

1

2

1

2

r r

r r

r

r

r

T

T

kT

kT

e
f

e d

  

  



 



        2-20 

 

Since all 3n-6 nonzero modes ri  are independent and harmonic they satisfy a multivariate 

Gaussian distribution. The denominator of equation (14) is the configurational integral part 

nZ  of the vibrational partition function. Hence, to evaluate nZ  the denominator of equation 

(20) is integrated out over all allowable states r  . 

 

 
 

     
1/21 3 61/2(3 6)/2 (3 6)/212

1

1
2 det 2

r r

r

r

T n
n nkT

n
ii

Z e d kT 


    



 
        

 
   2-21
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where i  are the 3n-6 internal eigenvalues of the   matrix.  Since free energy makes sense 

only with respect to reference point, we will assume an arbitrary state whose partition function 

is in the form of n
oZ  .   is selected so that entropy won‟t attain negative values. The 

excess Helmholtz free energy then follows as 

 

ln
 

   
 

n

o

Z
A kT

Z
          2-22 

 

Where oZ denotes the partition function of the reference state. Substituting the definition 

obtained for nZ  in equation (21) into equation (22) we end up with the following result.  

 

  

 

6
1

1

6
1

1

3
1 ln 2 ln

2

3 6 3
ln 2 ln

2 2

 

 







   

 
  

 
 



   =

 

n

i o

n

i o

A kT e kT kT Z

n
kT kT e kT Z       2-23 

Recalling the form of the Helmholtz free energy as 

 

 A U TS            2-24 

 

And using equation (19) and equation (22), the entropy can be written as 

 

 
6

1

1

3
ln 2 ln

2

n

i o

S
e kT Z

k
 


          2-25 
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2.2.2. Deviation from Harmonicity 

The even moments 2nx  of the variable x  in a Gaussian distribution are given as 

 

2 2

2

2

exp( )

exp( )

n

n

x px dx

x

px dx



















                    2-26 

 

Where the integrals can be evaluated using the following property 

 

2 2

0

(2 1)!! (2 )!
exp( )

2 (2 ) 2 (2 )

n

n n

n n
x px dx

p pp p

 



  

 
       2-27 

 

Hence defining x  to be the normalized modal coordinate of the i th mode rix    we end up  

with the following equations 

 

2
4 4 4 2

5
0 0

exp( 0.5 ) 1 3
2 exp( )

4 0.5

r
r r r r r ri
i i i i i i

n n n

d p d
Z Z Z


 

 
                          

 

2
2 2 2 2

3
0 0

exp( 0.5 ) 1 1
2 exp( )

2 0.5
i

r
r r r r r ri
i i i i i

n n n

d p d
Z Z Z


 

 
                        2-28 

 

Hence the dimensionless correlation among them equals to 3 under harmonic approximation 
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 

4 5

2 2
2

3

3

4 0.5 3 0.5 3 2 0.5
3

1

2 0.5

r

r

i i i

i

i

Z Z

Z





 



   
 
 
 
 

      2-29

   

2.3. Result and Discussions 

2.3.1. Molecular Dynamics 

Here the methods of the preceding section are applied to the complex structure of two distinct 

peptides. In HyperChem7, peptides of sequences ASN1-ASP2-MET3-PHE4-ARG5-LEU6 

and LEU7-LEU8-PHE9-MET10-GLN11-HIS12 were constructed. Structures were separately 

and in complex form geometrically optimized via Polack-Ribiere algorithm with OPLS force 

field in Hyperchem. These geometrically optimized structures were used as the starting 

structures prior to the minimization-equilibration cycles in the molecular dynamic simulations.  

Simulations were performed in explicit solvent (water) using NAMD 2.6 package with 

CHARMM27 force field [35]. All simulations were performed at constant temperature (310 K) 

and pressure (1.01325 bar) in a periodic water box with a 20-Å cushion. Ions were added in 

order to represent a more typical biological environment. Nonbonded and electrostatic forces 

were evaluated each time step. In order to keep all degrees of freedom, no rigid bonds were 

used . To evaluate the non-bonded interaction, cut-off distance was set to 12 Å. The Particle 

Ewald sum was used as a way of calculating long range forces in the periodic systems. 

Therefore error introduced by truncation due to the cut-off distance was minimized. 

Integration time step was set to 1 fs and structure was recorded at 1000-step (1 ps in MD). 

Prior to MD calculations, all models were subjected to 3 minimization-equilibration cycles. 

The first ones were applied to relax the water in the first place and the last two ones were 

applied to find a local minimum of the whole systems energy. All minimization cycles 

included 20,000 energy minimization steps to relieve close intermolecular contacts and 

geometric strain. In order to relax the water, the proteins were kept fixed in the first  

minimization and the 0.1 ns long equilibration cycle. Then the structures were released 

stepwise by applying harmonic constraining forces to every backbone atom of 1, 0.5 and 0.25 

kcal/(mol*Angstrom2) in magnitude each for 0.05 ns.  Finally an additional 0.05ns simulation 
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were performed without any constraining force. Following the first minimization-equilibration 

cycle two more minimization were performed, each separated by an 0.1ns equilibration phase. 

For chain A, calculations were performed using the trajectory part 57.6-61.1 ns after the final 

minimization-equilibration cycle. For chain B, calculations were performed using the 

trajectory part 52.8-56.3 ns after the final minimization-equilibration cycle. For the bound 

form on the other hand the trajectory part 27.5-31 ns after the final minimization-equilibration 

cycle was used for the calculations. In order to eliminate all the rotational and translational 

motions, all structures were aligned with respect to the first frame of the production phase 

using the transformation matrix which shows the best fit for to the Cα atoms with the first 

structure. All transformation matrices were constructed via tcl commands in VMD. 

 

2.3.2. Force Constants Among Two Peptides 

For each MD trajectory the 36x36 covariance matrix 
T R R  was constructed using the 

recorded snapshots during the production phase.  In order to show the fluctuations in a more 

concise manner the average of the dot products     , , , ,i j i i i j j jx y z x y z         R R  

were evaluated and shown in figure 1. Part 1 1   and part 2 2  give the intramolecular part of 

the correlations of peptide 1  and peptide 2 respectively.  Part 1 2  and its symmetric mirror 

image, part 2 1 , provide the intermolecular correlation among the two peptides. White 

regions indicate the negative values whereas black regions indicate the positive values. 

Numeric values of the correlation matrix are provided in Appendix.1.  
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Figure 2-1. Dot product matrix
T R R . White indicates negative correlations whereas 

black indicate positive correlations. 

 

Using MATLAB‟s build-in eigenvalues decomposition algorithm the eigenvalues and 

eigenvectors of the correlation matrix were obtained. Excluding the six zero eigenvalues, the 

pseudo inverse was formed.  By equation (10) the force constant matrix is constructed which 

has the following form, 
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(1) (1) (1) (1,2) (1,2) (1,2)
, , , , , ,

(1) (1) (1) (1,2) (1,2) (1,2)
, , , , , ,

(1) (1) (1) (1,2) (1,2) (1,2)
, , , , , ,

(2,1) (2,1) (2,1) (2,2) (2,2) (2,2)
, , , , , ,

X X X Y X Z X X X Y X Z

Y X Y Y Y Z Y X Y Y Y Z

Z Z Z Y Z Z Z X Z Y Z Z

X X X Y X Z X X X Y X Z

     

     

     
 

     

(2,1) (2,1) (2,1) (2,2) (2,2) (2,2)
, , , , , ,

(2,1) (2,1) (2,1) (2,2) (2,2) (2,2)
, , , , , ,

Y X Y Y Y Z Y X Y Y Y Z

Z X Z Y Z Z Z X Z Y Z Z

 
 
 
 
 
 
 
 
      
 
       

      2-30

 

 

As can be seen in equation (30) the force constant matrix is divided into 4 subsections.  
(1)



and 
(2)

 give the intramolecular correlation of peptide 1  and peptide 2  respectively.  
(1,2)

  

and its symmetric mirror image, 
(2,1)

 , provide the intermolecular correlation among both 

peptides. Here (1,1)
,X X  for example indicates the force constant among the residues in peptide 1  

in the x directions. 

Again to be more concise, simple in presentation and to be in accord with [5, 6] a new force 

constants matrix is defined in terms of  as follows 

 

(1) (1) (1) (1,2) (1,2) (1,2) (1) (1,2)
, , , , , ,

(2,1) (2)(2,1) (2,1) (2,1) (2) (2) (2)
, , , , , ,

X X Y Y Z Z X X Y Y Z Z

X X Y Y Z Z X X Y Y Z Z

          
     
            
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The   matrix is divided into 4 subsections as it was the case for   The   matrix is 

numerically provided in Appendix 2 and shown in figure 2 (a). Since the diagonal terms are 

the sum of the off-diagonal terms in each row, they tend to be significantly larger in 

magnitude then the off-diagonal terms. Therefore, for clarity  diagonal terms were set to zero 

in figure 2 (a)  and only off-diagonal terms are shown As can be concluded from equation (9), 

the negative off-diagonal elements of  indicate positive force constants whereas positive 
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ones indicate negative force constants. Positive force constants ij  indicate that residue i and 

residue j tend to stay at their equilibrium distance,  o o
i jnorm R R . Any deviation from this 

distance will cause an increase in energy as indicated in equation (11) which is unfavorable.  

The equilibrium coordinates were assumed to be the same as the mean coordinates of the 

atoms R  obtained via MD.  Negative force constants on the other hand indicate that any 

deviation from the mean coordinates results in a decrease in energy. Since an energy decrease 

is favorable, the meaning of a negative force constant is that residue i and j do not prefer to 

stay at these relative positions,  o o
i jnorm R R . Therefore, for the rest of the paper positive 

force constants will be called attractive force constants and negative force constants will be 

called repulsive force constants. Hence, large negative off-diagonal elements of   show 

strong attractive interactions. As can be seen in figure 2 (a) attractive force constants for the 

interactions among residues of the same peptide (intramolecular) attain much larger values 

than the force constants for the interactions among residues of different peptides 

(intermolecular). To focus on the intermolecular interactions, part 
(1,2)

 is shown separately in 

figure 2 (b). 

.  
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Figure 2-2: (a)   matrix of the bound form. (b) Part 1 2  of the   matrix in the bound form. 

Black color indicates negative elements (Attractive) whereas white indicates positive elements 

(Repulsive). 

 

The 6 strongest spring constants are observed in decreasing order among PHE4-MET10, 

ARG5-GLN11, PHE4- GLN11, MET3-PHE9, PHE4-LEU7 and ARG5-PHE9.  Phenylalanine 

is an aromatic hydrophobic neutral amino acid whereas Methionine is a hydrophobic neutral 

amino acid. Hence, due to their hydrophobic character, trying to escape the surrounding water 

molecules, PHE4-MET10 and MET3-PHE9 interact strongly. We interpret the strong 

attractive spring between ARG5 and GLN11 as a result of an indirect effect, induced by their 

covalent neighbors, PHE4 and MET10. The strong attraction between PHE4-MET10 results 

in an induced steric attraction between ARG5 and GLN11. Otherwise, Arginine and 

Glutamine are both polar hydrophilic residues which can interact with the surrounding water 
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molecules and a direct strong attraction between them is not expected. Leucine is an aliphatic 

hydrophobic neutral amino acid. Due to its hydrophobic character, attractive interaction 

among PHE4-LEU7 is observed.  Arginine is a polar hydrophilic positively charged amino 

acid. The weak interaction between ARG5 and PHE9 may also be seen as an indirect 

attractive force induced by their hydrophobic neighbors PHE4-MET10 and MET3-PHE9. 

 

2.3.3. Binding Energies in the Harmonic Approximation 

In this section, we calculate the change in energy of the system upon binding. The change 

results from two components: the first is the change in the energy of each peptide upon 

binding, and the second is the energy stored in the system from the interactions of the two 

peptides.  

For two peptides the force constant matrix    is in the following form.  

 

   

   

1 1,2

2,1 2

  
  
              2-32

 

 

Where  1
 , reflects the interaction among residues of peptide 1 and  1 2

  reflects the 

interaction among the residues of peptide 1 and peptide 2. 

The energies of of peptides 1,2  were evaluated in their unbound state as 

 

       1
6

2

T
unboundU R R kT

   
    

                2-33 

 

Here  
  is evaluated via equation (10) using the covariance matrix which was obtained 

from the molecular dynamic trajectory of peptide  . Using the fluctuations  
R


  , the 
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energies corresponding to these coordinates  are evaluated as shown in equation (11). Taking 

the average of these energies over the trajectory  the average energy shown in equation (33) 

were obtained.  

In the bound state on the other hand energies are calculated as 

  

       1 1 1 11
10.04

2

T
boundU R R kT    

 

      

  

       2 2 2 21
10.02

2

T
boundU R R kT             2-34 

 

Here the intramolecular force constant part  1
  of peptide 1  which is shown in the detailed 

structure of the   matrix in equation (30)  is selected. Using the fluctuations   1
R  of  

peptide 1  in its bound form and the force constant matrix  1
 , the energies corresponding to 

fluctuation values  1
R   are evaluated. Again average of the energies are evaluated over the 

trajectory and  resulting average energy is shown in equation (34). 

The energy stored as direct interaction between the two peptides is calculated as the sum of 

the two terms: 

 

     2 1,2 1(1,2) 1
-2.53

2

T
boundU R R kT    
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The change in the energy of the system upon binding is 

   1 1(2,1) (2,1)1
-2.53

2

T
boundU R R kT    
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   (1) (1) (2) (2) (1,2) (2,1) 3bound unbound bound unbound bound boundU U U U U U U kT       
 2-36

 

 

Note that the change in energy, ΔU , is positive. The individual energies of the peptides 

increase due to binding. This is an expected result since the peptides are forced to tenser 

conformations instead of staying in their native conformation. The interaction energy between 

the two peptides are, on the other hand,  attractive showing that there is attraction between the 

two peptides. 

 

In harmonic approximation, the energies of peptide 1, 2, and the bound form are evaluated 

from equation (19) as: 
 1

6unboundU kT , 
 2

6unboundU kT And (1,2) 15boundU kT . 
 1

boundU , 

 2
boundU  and boundU  are the energies of peptide 1 , peptide 2  and the bound form respectively. 

The difference in energy, U between the bound and unbound states of peptide 1  and 2  is  

 

   1 2

15 6 6

3

             

             

bound unbound unboundU U U U

kT kT kT

kT

   

  



        2-37 

 

which is the same as the value calculated by using the force constants, as expected.  

The binding free energy bindingA of peptide 1  and peptide 2  is evaluated using the energy 

formalism proposed by equation (23) . For the simulation at  310KT   the following binding 

energy emerges, 

         

         2-38 

   1 2

12.63

b
bindingA A A A

kT

   

             
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Using equation (25) the change in entropy in binding is obtained as -9.63bindingS k   .  

The increase in energy comes from the fact that, prior to binding 12+12=24 internal degrees 

of freedom existed whereas subsequent to binding 30 internal degrees of freedom exist.  

This increase in the degrees of freedom is caused by the additional 6 relative motions of the 

peptides with respect to each other which are introduced via binding.  

Since peptides are more restricted by binding, the disorder of peptides decreases and therefore 

the entropy decreases. 

However, in biological systems binding occurs inside a solvent. Hence, if the solvent and the 

peptides are considering together as a closed system, the energy and entropy change would 

also include the thermodynamic change of the solvent and the solvent-peptide interactions. 

It was observed that these peptides stay in their bound form for the entire trajectory. Solvent 

effects most probably compensate for the thermodynamically unfavorable entropy and energy 

change observed for the peptides. In addition the unharmonicity present in the system is 

expected to affect the energy values to some extent.  

 

2.3.4. Deviation from Harmonicity 

In order to understand how accurate our harmonic model suits the system, the term 

 

4

2
2

r

r

i

i





 

is investigated. For each mode its theoretical value was predicted by equation (29) to be 3. 

Deviations from this value indicate the unharmonicity present in the system. In figure  (3) the 

solid line shows  the term 

 

4

2
2

r

r

i

i





 which is evaluated using the molecular dynamic 

trajectory. The dotted line on the other hand shows the theoretical value. As can be seen in the 

figure the deviation from the theoretical value is %11 for the first mode which is the global 

(slowest) mode. For the next two slowest modes, mode 2 and 3, deviations are negligible. 

Deviations seem to dominate at the medium modes. Maximum deviation is around %41 and 
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observed for mode 21. The fact that deviation from harmonicity is mild at the most global 3 

modes indicates that our model acceptable to predict the gross overall behavior the system.  

 

 

Figure 2-3. 

 

4

2
2

r

r

i

i





 values evaluated using the molecular dynamic trajectory are shown 

with the solid line and the theoretical values are shown with the dotted line.  

 

2.4. Conclusion 

 

Methodologically the most similar models are the Gaussian Network Model (GNM), 

Anisotropic Network model (ANM) and the REACH (Realistic Extension Algorithm via 
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Covariance Hessian) method. All these coarse-grained models are built using the alpha carbon 

coordinates only. Both the GNM and the ANM assume that residue pairs within a cutoff 

distance are connected with springs with the same force constant. Since force constants are 

evaluated posteriori, these models do not predict the magnitude of the fluctuations. In GNM 

the fluctuations are assumed to be isotropic and Gaussian . The ANM  is simply a normal 

mode analysis applied to an elastic network model [9]. The REACH method on the other hand 

is an elastic network model in which the residue interaction force constants are evaluated  

using the variance-covariance matrix obtained from the molecular dynamic (MD simulations) 

[24]. In REACH, the interactions are divided into 4 classes; virtual 1-2 (between residue i and 

i+1), virtual 1-3 (between residue i and i+2),virtual 1-4 (between residue i and i+3) and the 

nonbonded interactions. In  [24, 26]  wide distributions of force constants for these 

interactions were obtained, which range from negative values to positive values for 1-3, 1-4 

and nonbonded interactions. For a simplified understanding of protein dynamics and for 

convenient application in coarse grained MD simulation, a constant value model was assumed 

in REACH for each of the virtual bond interactions and a single exponential decay was 

assumed for the nonbonded interaction[24]. In other words representative force constants 

were assumed for each class of the virtual bonds and a representative equation was assumed 

for the nonbonded interactions. For interactions among residues in different proteins, the same 

single exponential form which was used for intramolecular nonbonded interaction, was used.  

Hence the distance dependence of the force constants for nonbonded intramolecular 

interactions was also applied to the intermolecular interactions. In our work the virtual 1-2 

type interactions were found to be around the same order  as the ones obtained for myoglobin 

monomer[24] and for the myoglobin dimer [26] 

In our model all force constants were taken as they are. Positive force constants ij  indicate 

that residue i and residue j tend to stay at their equilibrium distance,  o o
i jnorm R R . Any 

deviation from this distance will cause an increase in energy as indicated in equation (11) 

which is unfavorable.  The equilibrium coordinates were assumed to be the same as the mean 

coordinates of the atoms R  obtained via MD.  Negative force constants on the other hand 

indicate that any deviation from the mean coordinates results in a decrease in energy. Since an 

energy decrease is favorable, the meaning of a negative force constant is that residue i and j 
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do not prefer to stay at these relative positions,  o o
i jnorm R R . The aim in our model was to 

find strong positive force constants, which show important binding sites. The other 3 models 

on the other hand do not focus on the force constants. They rather use approximate 

generalized force constant values to investigate the dynamics of the proteins.
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Chapter 3 

 

QUASI-HARMONIC ANALYSIS OF MODE COUPLING IN FLUCTUATING 
NATIVE PROTEINS 

 

 

3.1. Introduction 

 

The expectation that the fluctuations of residues of a protein should be strongly coupled in 

order for the protein to perform its function is leading to a growing interest in protein physics  

[14, 15, 36]. Recently, several papers addressed this issue and gave specific examples of mode 

coupling: Moritsugu et al [16, 17] were among the first who studied mode coupling due to 

intramolecular vibrational energy transfer in myoglobin at near zero temperature by molecular 

dynamics simulations. Calculations were performed by adding a small amount of energy to 

one mode and monitoring the transfer of this energy into three other modes. The latter were 

selected according to a Fermi-resonance related argument among frequencies. Sanejouand and 

collaborators[14, 15] [37] studied the consequences of energy transfer at room temperature by 

cooling specific residues at the surface of dimeric citrate synthase and observing the transfer 

of energy to different modes. They explained the localization of energy at specific residues 

located in the stiff parts of the protein and its transfer to other modes by employing an 

anharmonic potential. The interplay between the surroundings of the protein and intraprotein 

dynamics have been also investigated[38, 39]. Of particular relevance to our work is the paper 

by Moritsugu and Smith in which intra-protein dynamics is investigated at 300 K. The 

energetic interactions of a protein with its surroundings and the distribution of the energy 

absorbed by the protein to different residues is the major issue concerning protein function.  

Interest in modal decomposition in protein dynamics is not new. Decomposition of 

trajectories into an essential subspace and a remaining Gaussian subspace has been employed 

widely [20, 40-45]. In general, the interest has been focused on retaining the essential 

subspace of anharmonic modes for the analysis of correlated motions and ignoring the 

remaining Gaussian subspace that consists of the faster modes of motion. The interplay 
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between harmonicity and anharmonicity in proteins was studied by Hayward et al, by 

employing molecular dynamics simulations  [13], reaching the conclusion that the motion 

within a local minimum is mainly harmonic and the anharmonic component arises from 

transitions from one minimum to the other. Although it is generally true that the essential 

subspace of anharmonic modes are the ones that lead to important couplings between modes, 

higher modes also play important roles in protein fluctuation dynamics. The findings of 

Moritsugu et al [16, 17, 44] showing energy transfer between modes 1589,  1860,  5858 out of 

a total of 7418 modes at zero temperature of myoglobin is an example of the importance of 

faster modes.  In the interest of observing the effects of quasi-harmonic motions, we used the 

covariance projection technique [44] and analyzed the fluctuations of a small protein, 

Crambin at 273.15K and 310 K. The principle aim of this paper is to understand how modes 

in proteins are coupled with each other, whether they persist throughout the full trajectory, 

how the energy of the protein is distributed to these modes, and what the observable 

consequences of such coupling are. Our calculations show that, among the 1971 modes of the 

system, the slowest few modes are strongly coupled among themselves throughout the full 40 

ns trajectory. The time-averaged energies of the slowest modes are always below the average 

energy of the protein. Strong and long lasting couplings are also observed in the faster modes. 

The time-averaged energies of the faster modes that exhibit strong coupling are always larger 

than the average energy. The faster modes that exhibit coupling are few in number and they 

appear and disappear at different stretches of the trajectory. The coupling that we identified 

between two of the modes suggest a distinct mechanism where the residue fluctuations of one 

of the modes drive the motions of the other mode. The transfer of energy among different 

modes, including slow as well as fast modes, and the resulting affinity and conformation 

changes in a protein is of importance for understanding allostery [36].  

In this chapter paper, we present results for Crambin in water at 273.15K. The results for 310 

K, which are similar to those for 273.15 K are presented in the end of this chapter as 

supplementary material. 

The plan of this chapter is as follows: In Part 2, we present the model and the simulations. In 

the results section, we first evaluate the marginal energies of the modes in order to see which 

modes deviate strongly from the harmonic. Having identified these modes, we then use the 
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lowest order two mode coupling analysis for their detailed analysis. The paper ends with the 

discussion section. 

 

3.2. The Model and Simulations 

3.2.1. Molecular Dynamics Simulations 

Crambin, Protein Data bank code 1EJG.pdb, was selected as an example since it is a relatively 

small, 46 residue protein and its dynamics is widely studied[41, 46, 47]. All Molecular 

dynamics simulations  were performed for an N,V,T ensemble in explicit solvent (water) 

using NAMD 2.6[35] package with CHARMM27 force field. Two different simulations were 

performed at temperatures of 273.15 K and 310 K. The protein was solvated in a waterbox of 

12 A cushion and periodic boundary conditions were applied. Ions were added in order to 

represent a more typical biological environment. Langevin dynamics was used to control the 

systems temperature and pressure. All atoms were coupled to the heat bath. A time step of 1fs 

was used. Nonbonded and electrostatic forces were evaluated at each time step. In order to 

keep all degrees of freedom no rigid bonds were used. Three minimization-equilibration 

cycles were applied: The first one was applied under N,P,T conditions to relax the water in the 

first place and the second and third ones were applied under N,V,T conditions to find a local 

minimum of the whole system‟s energy[48]. The energy of the initial system was first 

minimized for 20000 steps. The system was then equilibrated by first keeping the Protein 

fixed for the first 0.1 ns. At 273.15 K it took 0.01 ns for the volume to converge whereas at 

310 K it took 0.02 ns for the volume to converge.. During the remaining time, volume 

fluctuated around 155500 Å3 at 273.15 K and around 159000 Å3 at 310K. Then, the protein 

was released stepwise by applying harmonic constraining forces to every backbone atom of 1, 

0.5 and 0.25 kcal/(mol*Angstrom2) in magnitude each for 0.05 ns. Finally, the simulation was 

performed for an additional 0.05 ns without applying any force. Having finished the first cycle, 

the second minimization-equilibration cycle was performed, this time the protein was free to 

move. Again, 20000 steps of minimization were applied and system was equilibrated for 1 ns. 

After a final 20000 steps of minimization, the protein was equilibrated for an additional 1 ns 

at both temperatures.  

http://en.wikipedia.org/wiki/%C3%85
http://en.wikipedia.org/wiki/%C3%85
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After equilibration, several stretches of the trajectory of different lengths were used for 

analysis. In the main part of the work, 2.75 ns long trajectories from different stretches of a 

full 40 ns simulation were used. The first 2.75 ns stretch was taken 10 ns after the final 

equilibration.  

At every 500th time step of the 2.75 ns trajectory, the instantaneous atomic coordinates R̂  of 

all atoms, the velocities, the pressures and the energies were recorded. In order to eliminate all 

the rotational and translational motions, all structures were aligned with respect to the 

structure observed at time instant 1.5 ns of the production phase. Alignments were performed 

using the transformation matrix which shows the best fit of the backbone atoms. All 

transformation matrices were constructed via tcl commands in VMD.  

The 46 residue Crambin consists of 657 atoms. Hence a set of 1971 modes are obtained. Then 

the overall rotational and translational motions were eliminated since they are irrelevant for 

the internal motions [44].Thus, an overall of 1965 non-zero modes were obtained.  

 

3.2.2. Fluctuations, Correlations and Principal Component Decomposition 

The fluctuations R of atoms are defined by ˆ -R R R  , where R are the mean atomic 

coordinates and hence are time independent quantities, which define an average configuration 

obtained by the protein during the part of the trajectory that we use for calculations.  

The covariance matrix C  is defined in terms of R  as 

 

 
TC   R R           3-1 

 

Here, the angular brackets denote the average, taken over the trajectory. The instantaneous 

fluctuations are transformed into modal space using principal component decomposition with 

the covariance matrix as [44, 49],  
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1/2r C R            3-2  

 

Where r are the dimensionless transformed fluctuations in modal space. We let e represent 

the eigenvector matrix that diagonalizes C, and λ  represent the eigenvalues. Then, 

TT diag eRR
2/1

2/1




  and the fluctuations r  are the fluctuations in mode space 

spanned by the eigenvectors, e [49]. The components of the real trajectory that correspond to a 

given mode is obtained simply by keeping the eigenvalue of interest, equating all the others to 

zero, followed by a back transformation of equation (2). 

In figure 1 the distributions W(Δr)of the modal coordinates r are shown for the first 12 

slowest modes. The range of values taken by r  is divided into twenty-five stations, and the 

normalized frequency of observing a given r  is shown in the figures by the filled circles. 

The lines through the points are drawn using a 17th order Hermite series expansion of the 

fluctuation probability distribution function (See equation (14) below). The distributions of 

the 1st, 2nd, 3rd, 4th, 8th and 12th modes depart strongly from a harmonic distribution. These 

modes mainly contain information about the anharmonicities in the system. The overall 

behavior is that the distributions converge to single peak Gaussians with increasing mode 

numbers.  
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Figure 3-1. The normalized histograms of the modal coordinates r  for the first 12 slow 

modes. Filled points are the calculated values and the lines through them are evaluated using 

equation (14), up to the 17th order terms.  

 

3.2.3. Tensorial Hermite Series Approximation and Thermodynamic Analysis 

In order to describe the behavior of the protein in its full generality, we use a 3n dimensional 

tensorial Hermite series, where n is the number of residues. Originally, a three dimensional 

Tensorial Hermite series was used by Flory and Yoon to describe the statistical behavior of 
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short polyethylene chains [50, 51].The method was then generalized and applied to protein 

fluctuations by Yogurtcu et al. [49] in 3n dimensional space. We adopt the notation of[49-51].  

In terms of the actual coordinates R , the probability function  RW  may be approximated 

by the tensorial Hermite series [49] 

 

     
1/2 1/2 1

2 det exp
2


   

          
 

N T T T
W R R R R R R R  

            3-3 

  














 









3

211
1 RRR

/
THH!  

 

Here N is the number of nonzero modes after the elimination of translational and rotational 

degrees of freedom. The leading term of the distribution function is the Gaussian and the 

terms in the last square brackets show the deviations from the Gaussian, introduced as 

corrections in terms of the Hermite polynomials. The expression  W R  is valid for any 

amplitude of fluctuations. These correction terms become unimportant as the fluctuations 

become small. The first few polynomials, H , are  

 

 
  iRH R1  

 
  ijji RRH R2

 

 
   ijkkji RRRRH R3  

    
   ijklRRH 224

4 R     3-4 

 
   ijklmRRRH 235

5 R
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   ijklmnRRRH 32246

6 R  

 

where, 
ij  is the Kronecker delta, and  ijkR  in the expression for H3 is a shorthand 

notation for 
jikikjjki RRR  , with similar expressions for the remaining terms in 

equation (3). For example,  

 

 2
i j kl i k jl i l kj j k il j l ik k l ij

ijkl
R R R R R R R R R R R R R                         . 

 

The expression given by equation (3) contains all the information on the behavior of the 

system in its full generality. However, being an infinite series, it is complicated, and being a 

moment based expansion it may have problems of slow convergence [49-51]. If the higher 

moments of the system can be calculated easily, such as from a molecular dynamics trajectory, 

then equation (3) may suitably be used to extract information on the system at different levels 

of approximation. The deviations from harmonicity are due to two different sources, (i) 

anharmonicity of pure modes and (ii) coupling of two or more modes. The first is the presence 

of higher order terms m
ir where  m > 2 of pure modes. The second is the coupling of two 

modes represented by a nonzero value of the average 
m k

i j r r . Coupling of three different 

modes such as k l m
i j kr r r    and coupling of more than three modes also contribute to 

coupling. However, keeping track of such high order coupling is a formidable task, and we 

will consider only the lowest order coupling in the present work. It is to be noted that all 

orders of the moments that appear in H  in equation (3) can easily be evaluated from 

molecular dynamics trajectories. Hermite series are generally known as slow converging 

series[49-51]. In the present work, we adopt the Hermite series up to the 17 th order moments 

that ensures convergence within a few percent of simulation results. A general scheme and a 

computer script for easily computing tensorial Hermite polynomials from molecular dynamics 

simulation trajectories up to any desired order is provided in the next section [28]. 
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In terms of the modal coordinates, r , where r is the vector with elements  1 2, ...., Nr r r   , 

the probability function reads as  
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3
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2 exp 1 !

2
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

 


 



  
          

   
r r r r     3-5 

 

where, the average Hermite polynomials are defined as 

 

 
   v v W d




   H H r r r        3-6 

 

The elements of vH  now contain products of modal coordinates. For example the third 

order terms are now i j k  r r r , and are measures of the extent of mode coupling. The 

second order modes are decoupled since i j ij  r r .  

equation (5) may be rewritten as 

 

 

     
1

3

1
exp ln 1 !

2

TW C H H 








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   
r r r r     3-7 

 

where,   22
N

C 


 is the normalization constant. Writing equation (7) as 
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3
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where ln ln
0

E Z C    , and comparing with the normalized distribution for a T, V, N 

ensemble 

 

 
 

 E q
e

f q
Z



          3-9 

 

leads to the energy of the system at a specific microstate having modal coordinates r  as 
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equation (10) can be considered in two parts: (i) The fluctuation part, which depends on the 

microstate r  and (ii) the reference energy oE which depends on the free energy as 

 

 
 

1
ln 2

2
oE F NkT           3-11 

 

 

Using equations (9) and (10), the thermodynamic energy, U , is written as 

 

 

     
1

0
3

( ) ln 1 !
2

kT
U E f d N kT H H E 




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
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 
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Substituting  
1

ln 2
2

oE U TS NkT     into equation (12) leads to the following expression 

for the entropy 

 

 

      
1

3

1 ln 2 ln 1 !
2

k
S N k H H 



 






 
      

 
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Thus correlations, depending on their signs, decrease or increase the entropy with respect to 

that of the harmonic model. The leading term on the right hand side of equation (12) is the 

energy of the N modes in the uncoupled case. The second term is the co ntribution of 

anharmonicity and coupling. The third term is the reference energy, which depends on the 

macro state of the system as was defined in equation (11). 

The marginal energy of a mode is defined as the energy obtained by considering only one 

mode, equating all the other modal variables to zero. equation (10) is now written as 

 

 

   2
0

0

1 1 1
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Here the Hermite series expansion in the parenthesis may be expressed as an v th order 

polynomial of the modal coordinate ir  , 
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Here v

ir  is the  th power of the ith modal coordinate only and vc  is a function of the various 

moments of the Hermite polynomials. Since the reference energy 0E  is constant throughout all 

calculations, for simplicity it will be set to zero in all calculations and figures. 

 

3.3. The Lowest Order Coupling of Two Modes: 

 

The results of MD simulations to be reported below show that the energies of few of the 

modes deviate strongly from the harmonic resulting from coupling, obtained by the 17 th order 

Hermite series. A mode may be coupled to the surrounding water, or to another mode, or to 

several other modes simultaneously. We are specifically interested in the coupling of two 

modes to each other. In order to understand the details of coupling between two modes, we 

perform a first order approximation keeping the third order moments only, which read as 

2
i j r r and 2

i j r r . In the lowest order, coupling of three modes, 
i j kr r r    where i and j 

and k are different from each other, may also contribute to coupling, which we also discuss in 

some detail. 

If both of the terms 2
i j r r or 2

i j r r  have the same sign, the fluctuations of these two 

modes are positively correlated. If they have different signs, fluctuations of mode i and j are 

negatively correlated. In terms of energy, large values of 2
i j r r  and 2

i j r r  indicate the 

presence of large energy coupling among them, but the type of coupling, i.e., whether i gains 

or loses energy while j loses energy and vice versa, cannot be concluded. 

Expanding equation (10) up to the third order terms and setting all modes other than i and j to 

zero, the marginal energy of modes i and j together is obtained as 
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The marginal energy of the ith mode reads as 
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The energy coupling ij i j i jE E E E     among mode i and j at the microstate r is obtained 

from equations (16) and (17) as 
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i j ij

ij

i j

E


   
   

   

        3-18 

where, 
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is the single mode anharmonicity term, and 
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contains the joint distribution of modes i and j.  

We now expand equation (18) up to the second order terms in i , j , and ij
 

 

 
 21 1

...
2

ij ij ij i j ij i jE
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The function ij  is third order in the modal coordinates. Thus, the first term on the right hand 

side of equation (21) is of third order. The remaining ones are all of sixth order. The energy 

coupling in the presence of third order term only reads as ij
ijE




   , or 

 

 
   2 2 2 21 1

2 2
ij i j i j i i j i j jE



 
              

 
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Equation (22) is the lowest order contribution to mode coupling. It is a function of the third 

order moments 3
ir , 3

jr , 2
i j r r , 2

i j r r , as well as their microstate values 3
ir , 

3
jr , 2

i j r r , 2
i j r r , and of the linear terms ir  and jr . At a given time, if 0ij  , then 

0ijE  , indicating that the combined energy of modes i and j is less than the sum of the 

single mode energies. Similarly, when  0ij  , the coupling energy is positive, i.e., 0ijE  . 

Thermodynamically, 0ijE   implies that the coupling of modes i and j gives off energy to 

the surroundings, and 0ijE   absorbs energy from the surroundings. Thus, the sign of 
ij

can differentiate the case when two modes gain or lose energy simultaneously. Another 

possibility of coupling is obtained when one mode loses energy and the other one 

simultaneously gains energy. This type of coupling can not be determined by the sign of ij . 

One should examine the absolute energies iE and jE  over the full trajectory for this purpose. 
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The average value 
ij  of ij  reads as  
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and the energy coupling is 
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Since 
ij  is always positive, equation (24) indicates that in third order coupling, 0ijE  , 

i.e., coupling of two modes i and j gives off energy to the surroundings.  

The cumulative coupling iC  of a given mode i to all of the other modes is obtained by 

summing 
ij  over all other modes j 
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Comparing equation (24) and (25), we conclude that within the third order approximation the 

cumulative coupling energy of mode i to the rest of the modes is always negative.  

 

 



Chapter 3: Quasi-Harmonic Analysis of Mode Coupling in Fluctuationg Native Protein 45 

 

3.4. Results 

 

In order to have a clear picture on the temperature dependence of coupling effects around  

physiological temperatures, simulations were performed at 273.15 K and at 310 K. Here, we 

presentresults for 273.15 K. Full data for the 310 K case are presented in the Supplementary 

section. 

The RMSD plots for all non-hydrogen atoms with respect to their average are shown for 310 

K and for 273.15 K in figure 2 for a stretch of 2.75 ns of the trajectory. Results indicate that 

an increase of about 40K approximately doubles the RMSD values.  
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Figure 3-2. The RMSD values at 310 K (Black solid line) and at 273.15 K (Grey solid line) 

 



Chapter 3: Quasi-Harmonic Analysis of Mode Coupling in Fluctuationg Native Protein 46 

 

3.4.1. Marginal Energies of Modes as a Function of Time and Mode Index 

The energy of each mode is evaluated using the marginal energy formula via equation (14) up 

to the 17v  th order. As stated before, almost full convergence of the probability function is 

obtained when 17 terms are taken. The mean marginal energy of each mode is evaluated in the 

same way by equation (12) and are shown in figure 3 for 273.15 K. 0E  is set to zero, and the 

results are presented relative to 
2

kT  , the harmonic component, as may be seen from equation 

(12). The figure shows that the majority of the modes have the harmonic energy. However, a 

few of the slower modes exhibit a significant negative deviation from the harmonic energy. 

The largest ten negative deviations from the harmonic approximation in decreasing order are 

for modes 1, 2, 8, 12, 3, 4, 18, 5, 6 and 10. In figure 1 the first six of them can be identified as 

highly unharmonic. Two of the faster modes, modes 310 and 445, exhibit positive deviation 

from the harmonic. In the following discussion, the harmonic component of the energy 
2

kT  

will be subtracted and the corresponding modes will be named “positive modes” or “negative 

modes” depending on the sign of the energy.  
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Figure 3-3. Energy iE  of each mode at 273.15 K relative to the harmonic energy 
2

kT per 

mode. Mode index corresponds to an increasing frequency order. Mode 1 is the slowest mode 

whereas mode 1965 is the fastest mode. 
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Figure 3-4. Energy iE  of each mode at 273.15 K relative to the harmonic energy 
2

kT
 
per 

mode at different stretches of the trajectory. (a) Stretch 1.25 - 4.25ns, (b) Stretch 5.75- 

11.25ns, (c) Stretch 8.25 - 11.5ns and (d) Stretch 32ns - 38ns. 

 

In figure 4, energies at different time intervals are presented. Each of these stretches was 

aligned separately. After alignment principal component analysis was performed for each 

stretch. Using the obtained modes r , the energies iE
 
 which are depicted in figure 4 were 
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obtained.  One sees from figures 3 and 4 that modes with high positive coupling fall into four 

regions in the mode spectrum: (i) 310, (ii) 445, (iii) 792 and (iv) 1319.  As the trajectory 

extends to longer and longer times, new modes are not introduced, but the relative magnitudes 

of the coupled modes vary. 

The energy jumps observed in figures 3 and 4 result from strong jumps in modal coordinates. 

In figure 5, the third order modal coordinates of the modes 310 and 445 are shown as a 

function of time. Both of these modes make large scale jumps during the simulation. The 

jumps take place during a short time interval as shown in the insets of the figures. However, a 

strong jump in the modal coordinate is not a necessary condition for coupling between modes. 

We will shown below that mode 310 is strongly coupled with mode 148 although the 

marginal energy of mode 148 does not deviate from the mean energy.  

 

 

Figure 3-5. Third order moment 
3

ri  of mode 310 and 445 at 273.15 K  
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3.4.2. Third Order Moments and coupling of Modal Coordinates 

The largest 500 2
i jr r   values are shown for 237.15 K in figure 6 in a scatter plot with axes 

ri , r j , rk , with j=k. The largest 500 
i j k  r r r terms make a total of 2346 points due to the 

multiple presence of one type of coupling, i.e  2
1 2r r   occurs as 1 2 2 2 1 2,r r r r r r     

 

and 2 2 1r r r   . As can be clearly seen the third order couplings among the top 500 are 

clustered in the slow mode regime. The largest 750000 third order couplings 
i j kr r r  

 
were 

determined. There are a total of 140520 values of 
i j kr r r   when multiplicities are removed. 

In figure 7, we present the absolute values of 
i j kr r r   in decreasing order as a function of 

rank, where the latter goes from 1 to 140520. It is clearly seen from this log-log plot that there 

is an extended power law region. 
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Figure 3-6. The scatter diagram of the largest 500 2

i jr r   terms at 237.15 K. There are of 

2346 points due to the multiple presence of one type of coupling.  
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Figure 3-7. Distribution of 
i j kr r r    terms at 237.15 K. Rank goes from 1 to 140520.  

 

Figure 6 shows that third order coupling is confined mostly to slower modes. As an example, 

we show here the third order coupling of mode 1 with other modes. The third order coupling 

of mode 1 with all other modes j occurs in two forms; 2
1 jr r   and 2

1 jr r  . In figure 8, 

both of these coupling terms are shown as a function of index j. It can be seen that the third 

order coupling for mode 1 in the form of 2
1 jr r   decreases with increasing mode number. 

Most important couplings are observed with modes smaller than 200. For the couplings of 

type 2
1 jr r  , on the other hand, an increase in the coupling terms with increasing mode 

numbers is observed after mode 100, which has its peak between modes 200 and 250. 

Subsequent to mode 300, coupling again decreases up to mode 400. A small but non-

negligible coupling of the type 2
1 jr r   is present for all modes j as can be seen from the 

lower panel of figure 8.  
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Figure 3-8. Third order coupling terms 2
1 jr r   and 2

1 jr r   of the first mode to other 

modes. 

 

In this paper, we have not gone into a detailed analysis of the coupling of three different 

modes, such as i j kr r r    which is also third order. Our calculations show that mixed three 

mode terms are generally larger for slow modes. For example one such term is 1 2 8r r r    

which is 50% of the correlation 2
1 2r r  . This is shown in more detail in figure 9, where the 

ratio 2
1 2 1 2/kr r r r r      is presented as a function of mode index k.  
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Figure 3-9. 2
1 2 1 2/kr r r r r      as a function of mode index k. 

 

3.4.3. Time Averaged Third Order Coupling 
ij  

The form of equation (23) shows that the values of 
ij  are positive. The largest coupling 

terms 
ij  are among the slow mode pairs, among modes 1-31. The magnitude of coupling 

decreases with increasing mode number. However, among the faster modes, a strong coupling 

between modes 148 and 310 exists. We compare the relative magnitude of the couplings of 

these two modes with the couplings of the slowest mode in figure 10.  In figure 10 (a), the 

coupling energy ij
 
between mode i = 1 and all other modes is shown. Strong couplings 

are mainly observed among mode 1 and other slow modes.  This plot is essentially the sum of 

the two parts given by figure 8. In figure 10 (b) and (c), the coupling of modes i=148 and 310 

with all other modes is presented. The strong coupling between modes 148 and 310 is evident 

from an inspection of figures (b) and (c).  
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Figure 3-10. (a) Time averaged coupling of energy values 
1 j  among the first mode and 

all other modes j (b)  among mode 148 and all other modes j, 
148 j  (c) among mode 310 

and all other modes j,
310 j .  

 

The second panel of figure 10 shows that mode 148 couples strongly with mode 310, and the 

third panel shows that mode 310 couples strongly with mode 148. Weaker coupling of these 

two modes to other modes also exist as may be seen from the figures. 

In figure 11, we present the cumulative correlation iC of a mode i with all other modes, 

defined as i ij

j

C    . 
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Figure 3-11. Cumulative coupling of mode i to all other modes.  

  

In this figure, the peak at mode 310 is visible. More precisely, the peak consists of several 

closely spaced spikes around mode 310. The second group of modes around 148 may also be 

seen in the figure. Modes 149 and 310 are strongly coupled as will be discussed in more detail 

below. 

 

3.4.4. Third Order Coupling ij as a Function of Time 

There may be instances when the values of ij become small due to the cancellation of 

positive and negative values along the trajectory when the average is taken. For this reason, 

we present the non averaged values of ij
 
as a function of time. Again, the slower modes 

exhibit pronounced coupling with small modes. In figure 12 (a), for example, the coupling 

term 1,2  among mode 1 and 2 is shown. Slow variation of positive and negative couplings 
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along the trajectory is apparent. Overall, the coupling is positive when the full trajectory is 

considered. Coupling shows positive characteristic in the first 0.3 ns. After 0.3 ns coupling 

switches between positive and negative values. In figure 12 (b) the coupling term 2,31  is 

depicted. These two modes are selected because their coupling is strong compared to other 

slow modes. Coupling is strong for the first 0.29 ns and the period 0.86-1.17 ns. Other than 

these periods, an additional peak is observed at 0.660 ns. In figure 12 (c) the coupling term 

148,310  is shown.  An outstanding peak is observed at time instant 2.0375 ns.  The maximum 

magnitudes of 1,2 and 2,31 are 1.5 and 3.5, respectively, whereas that of 148,310 is 18 as may 

be seen from the comparison of figures 12 (a), (b) and (c). The coupling among modes 1-2 

and 2-31 is continuous and generally larger than the coupling among 148-310, except for the 

peaks. The strong coupling among modes 148 and 310 in the period 2.0375- 2.0450 ns is 

shown in the inset of figure 12 (c). Additional smaller peaks outside these periods are 

observed, mainly at 0.9975 ns and 0.4125 ns.  
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Figure 3-12. (a) Coupling term among mode 1 and 2 (b) Coupling term among mode 2 and 

31 (c) Coupling term among mode 148 and 310, all as a function of time.  
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3.4.5. Coupling of Conformations 

The couplings discussed above are all in modal space. Here, we investigate the effects of the 

stated couplings on the three dimensional conformations of the protein.  The dot product of 

the eigenvectors of modes i and j gives the correlation of the positional fluctuations of these 

modes since, 

 

 

 


T
i j T

i j

i j

R R
e e

 
         3-26

 

 

Here  iR  is the fluctuation vector obtained by the back transformation from the modal space 

by keeping only the ith mode. For simplicity, only the carbon alpha atoms will be considered. 

In figure 13 (a) the correlations of the residues in mode 310 310 310e e
T are shown. The most 

active residues in this mode are 3, 4, 31 and 36. Especially residue 31 is correlated to a wide 

range of other residues. The 5 largest negatively correlated residue pairs of mode 310 are 

CYS4-SER6, CYS3-SER6, CYS4-GLY31, ARG17-GLY31 and CYS3- ILE33. 

CYS3 and CYS32 are connected together by two parallel hydrogen bonds, resulting in a 

strong interaction. Both residues GLY31 and ILE33, which are negatively correlated to CYS3, 

are neighbor residues of CYS32. The constraint imposed by the CYS3-CYS32 bridge against 

the anticorrelated fluctuations of both GLY31 and ILE33 is expected to store energy into the 

system, which is observed as the positive deviation of the energy of mode 310 from the 

harmonic in figure 3.  

In figure 13 (b) the correlations of the residues in mode 148 148 148e e
T are shown.  

The most active residue in this mode is GLY 37 and it is anticorrelated with PRO5, LEU18, 

and ALA45.   
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In figure 13 (c) the correlations of the residues in mode 148 and mode 310 148 310e e
T are shown. 

GLY 37 in mode 148 is the key residue that is correlated with a large number of residues 

fluctuating in mode 310 such as GLY37- ARG17, GLY37- VAL8, GLY37-ILE33.  

 

 

 

Figure 3-13. (a) Contour plot of 310 310e e
T  (b) Contour plot of 148 148e e

T  (c) Contour plot of 

148 310e e
T .
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3.5. Discussion 

 

A direct method of identifying mode coupling from molecular dynamics trajectories would be 

to project the trajectory onto the eigenvectors obtained from principle component analysis, 

and calculate the energies for each mode. If a mode i and j are dependent, then, 

     E i j E i E j   , where  E i j  is the energy calculated in the presence of the two 

modes. Softwares such as NAMD can calculate the energy of the system when the trajectory 

is given. Although this approach would lead to the energies of the modes for small 

fluctuations, such as that obtained at very low temperatures, it becomes unreliable when 

applied to proteins around physiological temperatures where fluctuations are dominant. For 

this reason, in the present paper, we take an alternate route where we search for signs o f 

coupling by expanding the probability function of residue fluctuations into tensorial Hermite 

series expressed in principal components. This approach is valid for all fluctuation levels, and 

therefore acts as a good method of identifying coupling of all orders in modes at physiological 

temperatures. For clarity and brevity, we concentrate mostly on the third order coupling terms.  

If the system were harmonic, the total energy would be 3NkT/2. This energy would be 

distributed to the 3N modes equally, with an energy of kT/2 per mode. Our calculations show 

that the slowest modes have energies below the harmonic. Slow modes exhibit coupling with 

other slow modes. Few fast modes have energies above the harmonic energy. It is these 

modes that exhibit strong coupling. When the third order coupling term is plotted as a 

function of time, we see that the coupling of fast modes is about an order of magnitude 

stronger than that of the slow modes.  

One of the modes, mode 310, results from the presence of CYS-CYS bridge that restricts the 

fluctuations of the protein significantly. In mechanical terms, such a restriction would increase 

the strain energy of the protein, and this excess energy should transfer to another mode. In this 

case, this is achieved by coupling to mode 148 via the residue GLY37. The present approach 

makes it possible to identify the important modes and the residues that take part in these 

modes, and to estimate their contributions to the behavior of the native protein.  
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It is interesting to note that the coupling of modes is not active continuously throughout the 

full trajectory. The coupling of two modes is ephemeral; it persists for several picoseconds, 

and then disappears, but reappears at a later time during the trajectory. However, it is to be 

noted that the coupling involves only the same few modes throughout the trajectory.  

 

3.6. Supplementary Material 

 

This data contains results for s 2.75ns long stretch of the trajectory obtained at 310K.  
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Figure 3-14. The normalized histograms of the modal coordinates r  for the first 12 slow modes. 

Filled points are the calculated values and the lines through them are evaluated using equation (14). 
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Figure 3-15. The scatter diagram of the largest 500 
i j k  r r r  terms at 310 K. There are of 

2332 points due to the multiple presence of one type of coupling. 
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Figure 3-16. Distribution of i j kr r r    terms at 310 K. Rank goes from 1 to 140520.  
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Figure 3-17. Third order coupling terms 2
3 j r r  and 2

3 j r r  among the third mode and 

all other modes. 

 

3.6.1. Coupling of  Energies from 
ij  Values 

 The values of 
ij  are all positive. The largest average 10 coupling terms 

ij  are 

observed for the mode pairs  3- 6, 4-2, 10-5, 7-3, 1-6, 7- 6, 3-13, 25-13, 3-1 and 16-5. 

In figure 18 (a), the energy coupling 
ij

 
between mode i = 3 and all other modes is shown. 

Strong couplings are mainly observed among mode 3 and other slow modes. In figure 5 (b) 

the same is shown for modes i=608.  
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Figure 3-18. (a) Mean Coupling of energy values 3, j   among the first mode and all other 

mode j (b) Mean Coupling of energy values 608, j   among the 608th  mode and all other 

mode j. 
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The largest coupling term 
3, j  is observed among the mode 3 and 6 .The largest coupling 

term 
608, j  is observed among the mode 3 and 608. 
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Figure 3-19. Cumulative coupling of mode i to all other modes.  

 

In figure 20 (a) the third order coupling function 3,6  is shown over time. In figure 20 (b) the 

third order coupling function 3,608  is shown over time. 
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Figure 3-20. (a) Coupling term among mode 3 and 6 as a function of time (b) Coupling term 

among mode 3 and 608 as a function of time. 
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The energy of each mode is evaluated using the marginal energy formula via equation (14) up 

to the 17v  th order and are shown for all modes in figure 21. The largest 2 positive peaks 

are at 608 and 512. The ten largest negative peaks are located at modes 1,  6,  3, 7,  2, 13,  5, 

16, 9 and  4 with respective values of  0.3258, 0.4177, 0.4558,  0.4563, 0.4574, 0.4706, 

0.4746 and 0.4748. 
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Figure 3-21. Energy iE  of each mode at 310 K. 
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Chapter 4 

 

ANHARMONICITY, MODE-COUPLING AND ENTROPY IN FLUCTUATING 

NATIVE PROTEIN 

 

4.1. Introduction 

 

Several studies have pointed out that for the protein to perform its function, fluctuations of 

proteins have to be coupled [14, 15, 36]. The protein dynamics were investigated extensively 

under harmonic conditions in the literature [8, 9, 13, 20, 46, 52] and mode coupling were 

studied under harmonic conditions[16].  However, it is nowaday general knowledge that the 

slow modes are highly anharmonic [13, 49, 52, 53] . For this reason, the modal space were 

decomposed into an anharmonic essential subspace and a remaining harmonic Gaussian 

subspace [20, 40-45].  It was pointed out by Moritsugu et al.[16] and Leitner et al. [54] that 

coupling among modes is essential for the protein dynamics, such as energy transfer inside the 

protein. In this chapter the contributions of the anharmonicty and the mode couplings to the 

thermodynamic properties are investigated. 

 

4.2. Modal Expansion and Beyond 

 

Sampling the time evolution of a protein by using molecular dynamics reveals a multivariate 

probability distribution function (pdf)  f R  for the deviations of atoms (assume there are N 

of them) from their mean positions, i.e. ˆ
i i i R R R  , i = 1, . . . , 3N. We here adopt a coarse-

grained representation of this pdf where only C  atoms are considered, so that N is also the 

number of residues. Accordingly, R i are the mean C  coordinates corresponding to the 

average configuration of the protein during the part of the trajectory that is used for the 

calculations. 



Chapter 4: Anharmonicity, Mode-Coupling and Entropy in Fluctuationg Native Protein 72 

 

4.2.1. Hermite Expansion 

Since the deviations from this free energy minimum are expected to be harmonic for 

sufficiently small amplitudes, Hermite polynomials - which are orthogonal wrt a Gaussian 

weight function - constitute a natural basis for representing  RW  . First, following, Ref. [49, 

55], we perform the transformation 

 

1/2
T


r R R R               4-1 

 

This diagonalizes the covariance matrix T R R     (   represents averaging over 

the trajectory) and would give the normal modes of the protein if fluctuations were 

harmonic. Otherwise, the distribution function for r  in its most general form, can 

be expressed as [50] 
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where  
1

!C H 


  (constant) and H  (derived below) are tensors of rank  , and the dot 

product refers to 
... ...

...

ij k ij k

ij k
C H  . The fluctuations r  in this mode space spanned by the 

eigenvectors of   are meanless, i.e., 0i r , and decoupled at the lowest (second) 

order, i.e., 

 

 T
i j ijr r             

 4-3 

 

4.2.2. Anharmonicity, Mode-coupling and Entropy in a Fluctuating Native Protein  

The modes are numbered in the order of the corresponding nonzero eigenvalues of  , 
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i.e., smaller ranking modes are also the slowest ones. A purely harmonic model is given 

by 0C  ,  . Note that, the atomic fluctuations corresponding to a given mode can 

easily be calculated by setting to zero all the eigenvalues except the one of interest, 

followed by a back transformation of equation (1). 

Tensor Hermite polynomials can be obtained by successive differentiation using 

Rodrigues‟ formula: 

 

 
 

 
 ... ...1ij k ij kH g

g
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Above,    
23 /2

2 exp
2

n xg x    
  

 is the multidimensional Gaussian distribution and 

... ..ij k i j k    is the gradient tensor with i

ix
 


. The tensor coefficients that 

appear in  W r  follow from the orthogonality relation as  
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Therefore, the problem reduces to obtaining the expectation values of the polynomial  

tensor elements for the system. At the lowest nonvanishing order they read  
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Higher order tensor elements can be calculated using a diagrammatic technique.  A 

graphical representation of 4H  in one and two dimensions is given in figure 1. 
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Figure 4-1. Graphical representation of  4H x  tensor elements in two dimensions. 

Terms that vanish by virtue of equation (3) are crossed. 

The inclusion of mode-coupling necessitates consideration of mixed indices (nondiagonal 

tensor elements). Here, we focus on the coupling between mode pairs and ignore threesome 

and higher order mixing, i.e., we consider only the bi-polynomials  1 2...
,

i i i
k lH 

  r r  with 

 , , , 1,2,.....,3mi k l k l n  . At first sight, estimating the contribution of mode-coupling even at 

this lowest level appears to be a formidable task, because the number of distinct expectation 

values to be extracted from the data grows combinatorially. We show below that, the 

factorization property of the off-diagonal tensor elements and the orthogonality of the modes 

at the second order bring a significant reduction in complexity, which we exploit to 

investigate the impact of anharmonicity and mode-coupling separately on the protein 

dynamics. 

We first observe that, the value of a tensor element  1 2 ...i i i
H 
 r does not depend on the order 

of the indices due to the commutativity of the gradient operator,

 .

0k l l k     .Therefore, 

   1 2...
,

i i i p
k lH H

    r r r           

where p is the number of indices equal to k (and the remaining p   indices are equal to l). 

The fact that the covariance matrix in the normal basis is diagonal further implies that 
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p
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as is also evident from the Rodrigues‟s formula in equation (4). 

 

4.3.  Anharmonicity vs Mode-coupling 

 

Combining equation (5) and equation (7), the Hermite expansion in equation (2) can be cast 

into the 

following form: 
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The first term in equation (8) corresponds to a purely harmonic model given by the Gaussian 

probability distribution 
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This is the starting point for most of the past studies on protein fluctuations [9]. 

The next term in equation (9) is appreciable when the fluctuations are anharmonic, but 

gives no information about mode-coupling. In fact, the most general mode-amplitude 

distribution of an anharmonic model composed of decoupled modes is 

 



Chapter 4: Anharmonicity, Mode-Coupling and Entropy in Fluctuationg Native Protein 76 

 

       
3

3 /2 2
1

1 3

1 1
2 exp 1

2 !

n
n

i i i
i i

W H H 








 

   
           

   
 r r r r     4-10 

 

The approximation to the true distribution given in equation (10) is named 1W  in order to 

remind the reader that it qualitatively improves on the Gaussian approximation oW  of 

equation (9). The difference between the full pdf given in equation (8) and the approximation 

1W  

is the mode-coupling corrections such as 
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Figure 4-2. Time plots of the slowest 1st, 5th, 10th, and 50th modes between timesteps 8000-

8500. 

 

and higher order cumulants. Note that, marginal distributions are transparent to such 

corrections 
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as a merit of the orthogonality relation in equation (5). Therefore, even if the marginal 

distributions are reproduced to good accuracy, the multidimensional free-energy 

landscape of the protein may still be very different from that implied by a model based 

on equation (10). We demonstrate below that this is the case for the protein Crambin. To  

this end, we improve the approximation in equation (10) one step further and approximate 

 W r  by 

 

   2
i j k

W W
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, i.e., the part of the Hermite expansion spelled out in equation (9) which takes into account 

the mode-coupling corrections at the lowest order they appear while ignoring cubic and  

higher-order terms. The magnitude of the neglected terms can be estimated through 

other means presented at the end of our paper. 

 

4.4. Results 

4.4.1.  Crambin Molecular Dynamics: a Test Ground 

Crambin (Protein Data bank code 1EJG.pdb) was selected as a test ground since it is a 

relatively small protein and its dynamics is widely studied [41, 46, 47]. The 46 residue 

Crambin consists of 657 atoms. Taking only the alpha carbons into account a set of 138 

modes were obtained, six of which have a zero eigenvalue corresponding to the translation of 

the center of mass and three global rotational degrees of freedom around it. 

All molecular dynamics simulations were performed for an N,P,T ensemble in 

explicit solvent (water) at 310 K using NAMD 2.5 package with CHARMM27 force  

field. The protein was solvated in a waterbox of 15Å cushion and periodic boundary 

conditions were applied. Ions were added in order to represent a more typical biological 

environment. Langevin dynamics was used to control the system‟s temperature and  

pressure. All atoms were coupled to the heat bath of temperature of 310 K. A time step 

of 1fs was used. Nonbonded and electrostatic forces were evaluated at each time step.  

http://en.wikipedia.org/wiki/%C3%85
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In order to keep all degrees of freedom no rigid bonds were used. All structures were 

translated so that their centers of mass are positioned at the origin and rotated to yield 

the best mass weighted RMSD agreement with the initial structure [49]. 

 

 

 

 

Figure 4-3. A comparison of  0W  and 1W  and 2W  on the normalized histogram of the slowest 

mode. Note that 1W  and 2W give the same marginal mode probabilities. 

 

The full dataset consists of 8967 snapshots of 132 modes taken at 0.1 ps intervals. To prevent 

overfitting, every 9th snapshot (a total of 996) was reserved as the test set and the rest (7971 

snapshots) were used as the training set. Figure 2 gives the time plots of a few of the sample 

modes. The average values of the Hermite polynomials given in equation (5) are calculated by 
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averaging over 7971 snapshots of the fluctuation trajectory. A maximum rank of 17 for the 

Hermite polynomial tensors was observed to be sufficientfor the convergence of our results.  

 

4.4.2.  Entropy Estimation 

In order to compare the quality of the three models 0W  and 1W  and 2W  (given respectively 

by Eqs. (9, 10, and 12)), we use the average log likelihood of the snapshots in the  

test data, given the parameters optimized for the training data. equation (13) defines the 

average log likelihood of the data.  ( )ir  denotes the ith snapshot and M  is the number 

of snapshots. 
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From the definition of the log likelihood given in equation (13) it immediately follows that the 

entropy, S , can be estimated as  logBS k W  r  where Bk  is the Boltzmann constant. 

The average log likelihood based on oW  is -187.5 per snapshot, corresponding to 115.5 

kcal/mol contribution to the free energy. The latter is obtained as  logTS RT W  r ,

R=1.986  cal/mol  , T = 310 K. 

Figure (3) compares the oW  and 1W  distributions for the slowest mode, obtained from 

the test data. The anharmonicity of the dynamics is clear and is well represented by 1W . 

The free energy equivalent of the 1W  entropy is 115.1  kcal/mol which is only 0.4% less 

than that of oW . 
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4.4.3. Mode-Coupling Corrections 

 

 

Figure 4-4. A comparison of 1W , 2W  and KDE against a scatter plot of the two slowest 

modes. 

 

The 2W  approximation in equation (8) introduces pairwise interactions between modes. Note 

that, the correction due to the mode-coupling terms included in 2W  is invisible at the level of 

the marginal distibutions, such as in figure (3). Therefore we compare in the first two panels 

of figure 4 the contour plots of 1W  and 2W  distributions with the scatter plot of the two 

slowest modes. The free energy landscape of the protein is captured visibly better by 2W  

when compared to 1W . The contribution at the level of 2W   to free energy equivalent of 

entropy is 110.9 kcal/mol. This results in a correction of    −4.6 kcal/mol to the free energy 

solely due to mode-coupling. 

 

4.4.4. Higher-Order Coupling 

To quantify the effects of phenomena beyond pairwise interactions, we further used non- 

parametric kernel density estimation (KDE) procedure to model the probability density of the 

training set. In this approach, one fits the data using second-order Gaussian kernels with fixed 

bandwidths optimized by likelihood cross validation. We used the “npudensbw” and “npudens” 

procedures from the “np” package for the “R” statistical computing environment[56]. 



Chapter 4: Anharmonicity, Mode-Coupling and Entropy in Fluctuationg Native Protein 81 

 

In figure 4, the results of KDE are presented in the third panel. These results are 

representative of all orders of contributions to anharmonicity and mode coupling and may be 

used to obtain a reasonable upper bound on the impact of mode-coupling on 

protein energetics. The free energy equivalent of the entropy calculated by the KDE is 

108.4 kcal/mol. This shows that the total reduction in entropy due to anharmonicities 

and coupling relative to Gaussian is 7.1 kcal/mol, or 6.1% for Crambin. In spite of the  

fact that the simulation time is too short to faithfully sample the free-energy landscape, 

the result above is found to be stable under a ten-fold variation in the size of the analysed 

data set. 

 

4.5. Discussion 

 

Anharmonicity of protein motions has been addressed in several earlier papers by means of 

principal component analysis [23, 52, 57]. Hayward et al.[52] used a quasiharmonic  

approximation to the anharmonic energy surface having multiple minima, where the  

fluctuation distribution function was treated as a multivariable Gaussian, with the variables 

being the normal modes of the molecular dynamics trajectory. If hopping between different 

minima is suppressed, then the quasiharmonic approximation reduces to normal mode 

analysis. In the present paper, the quasiharmonic approximation would obtain if the sum in the 

brackets in equation (2) were set to zero, subject to the conditions given by Eqs. (1&3). The 

higher-order moments in equation (2) include terms necessary to go beyond the  

quasiharmonic approximation. Maisuradze and Leitner [57] applied the principal component 

analysis to a tetrapeptide and analyzed the free energy surface using only the largest two 

eigenvectors obtained from the dihedral angle space. Their analysis contains the coupling 

effects between the first two eigenvectors. In the present work we also expressed the free 

energy surface keeping mode pairs, but contrary to the the treatment of Ref.[57] all pairs are 

included. Ref.[57] also discussed the problems with sampling convergence based on the first 

two mode analysis. In our case, the relative entropy of non-harmonic effects measured over all 

of the modes appears stable under varying data size. 
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Maisuradze et al. [58] investigated the folding and unfolding of the B domain of 

staphylococcal protein by a coarse-grained principal component analysis and showed that 

while a one or two dimensional free energy landscape is sufficient for describing folding and 

unfolding, it may fail in describing the stability of the native state. Their work considers the 

folding/unfolding of a protein, and therefore deviates from the present work that focuses on 

fluctuations about the native state. Nevertheless, their observations are relevant, and the need 

to go to higher dimensions is pertinent. Similarly, Altis et al. showed that a five dimensional 

landscape in dihedral space is necessary to properly characterize the free energy landscape 

[23]. 

The main difference of the present work from these past studies is that, by means of a Hermite 

expansion we take into account all of the principal components, in contrast with the restricted 

numbers considered in [23, 57, 58]. The constraint on the Hermite series expansion is twofold: 

maximum tensor rank and the order of coupling. A cutoff on the maximum rank can be made 

as large as computationally possible, since their evaluation is straightforward. The order of 

coupling (two-body, three-body, etc) is more subtle. In the present paper, we treated the first- 

and second-order couplings only. Including the higher-order terms is a computational  

challange. Instead, we supplemented our results by an alternative nonparametric “kernel 

density” estimation method that in effect considers all orders, but does not allow a separation 

of elastic, anharmonic and mode-coupling contributions to the free energy. Our results show 

that the difference between the Hermite representation at the second-order and the KDE do 

not show marked differences from each other. 

 

4.6.  Conclusion 

 

The probability distributions of residue fluctutations obtained by the Hermite series expansion 

and the KDE give consistent measures of the fluctuational entropy of the protein Crambin in 

its native state. The Gaussian approximation oW  gives a value of TS  115.5 kcal/mol. 

Introduction of anharmonicities in the absence of mode coupling reduces the entropy to TS 

115.1 kcal/mol. Inclusion of second order mode coupling further reduces the entropy to TS 
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110.9 kcal/mol. The KDE, which takes all orders of correlations and mode coupling into 

account yields an entropy of TS   108.4 kcal/mol. 

In conclusion, we find that the effect of anharmonicity and correlations on the entropy is 

about 6% as determined from the difference between the Gaussian and the KDE 

approximations. The Hermite expansion of the configurational p.d.f. suggests that the  

correlations (i.e., mode-coupling) account for a large portion of this correction. In a  strict 

sense, 6% is a lower bound on the best estimate one can obtain from the given data - although, 

presumably not too far from it in view of the nonparametric nature of the KDE method. 

Finally, in spite of their relatively small weight, we see that both corrections to the Gaussian 

approximation strongly modify the shape of the free-energy landscape of the protein in the 

vicinity of its native state. Most of the contribution due to anharmonicity is from the modes 

corresponding to the largest eigenvalues of the covariance matrix (i.e., slowest modes), yet a 

quantitive evaluation of the contribution to the fluctuation entropy in terms of the eigenvalues 

is not obvious. It is nevertheless worth stressing that, unlike in a harmonic system, the 

different fluctuational modes contribute unequally to the free energy of a native protein.
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Chapter 5 

 

INVESTIGATING THE EFFECT OF THE DIFFERENCE IN THE UNBINDING 

FREE ENERGY PROFILES OF HLA-B51 AND HLA-B52 ON BEHÇET’S DISEASE 

 

 

5.1. Introduction 

 

Behçet‟s disease is a type of chronic inflammatory disorder with a substantial genetic 

background, which is chiefly featured by perennial oral aphthous ulceration, genital ulceration, 

skin lesions and uveitis [59]. In the literature, the role of the immunological abnormalities on 

the mechanism by which the Behçet‟ disease is caused has been contended for a long time 

[59-62].  These immunological abnormalities are presumably caused by microbial pathogens 

in genetically delicate individuals [59]. Comas et.al.[63] have shown by using mitochondrial 

studies that the disease might have a genetic basis. It was observed that Behçet‟s disease is 

seen mainly at the regions around the ancient silk road and that it overlaps with a elevated 

frequency of HLA-B51 in the healthy population [59, 64-66]. The most powerful proof 

underpinning the involvement of genetic factors in the pathogenesis of Behçet‟s disease is its 

relation with HLA-B51 [64].  HLA-B5, of which HLA-B51 is a serotype, is a human gene 

that encodes a protein that plays a critical role in the immune system. However, if HLA-B51 

has an immediate effect in the development the of Behçet‟s disease or if the mentioned 

correlation implies linkage disequilibrium with a susceptibility gene for Behçet‟s disease 

which is stationed close to HLA-B locus, has been studied in the literature extensively [59].  It 

was shown using stratification analyses, genotypic differentiation and allelic association in 

various ethnic clusters  that HLA-B51 is presenting the most powerful relation with Behçet ‟s 

disease [59, 67-69]. Moreover, HLA-B sequence specifying HLA-B*51 is proposed to be the 

main responsible genetic factor in Behçet‟s disease [70, 71]. The B*51 allele, HLA-B*51001, 

is probably the strongest related  B*51 allele to the Behçet‟s disease since it is observed in 

higher levels in Behçet‟s patients  compared to healthy individuals [64, 71].  
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Assuming that HLA-B*5101 association with the mechanisms of Behçet‟s disease is correct, 

an minor differences in peptide sequences between the HLA molecules should be able to 

provide detailed information about the disease etiology [71, 72]. HLA-B51 selects peptides 

with eight or nine amino acids and with a hydrophobic C-terminus [71, 73, 74]. Lemmel et al. 

[71] have performed a mass spectrometric analysis of the 22 HLA-B*5101 ligands which 

were obtained by extraction and identification from cells which include HLA-B5101 

molecules.  As a result of the comparison among these peptides it was found that the amino 

acids at positions 2 and 9 are anchor residues. These anchor residues were identified to be 

Alanine, Proline and Glycine at position 2 and to be Isoleucine, Phenylalanine  and Valine at 

position 9[71].  

Since the peptide sequence, YAYDGKDYI, which is one of the catabolic products of HLA-

B51, includes these particular anchor amino acids; it is selected as the ligand in this study. 

The protein structure of HLA-B*5101 was extracted from the pdb file 1E27.  

-B5 split antigen HLA-B52  is not related  with Behçet‟s disease and differs only 2 amino 

acids at the  1 helix from HLA-B51[59].  Asparagine and phenylalanine in HLA-B51 

( positioned at 63 and 67 of the   1 helix),  which are located at the B pocket of the antigen 

binding groove, are exchanged with glutamic acid and serine in HLA-B52 [59, 66, 75]  .  It 

was shown by molecular typing of HLA-B51 molecules that the presence of certain Behçet‟s  

disease related peptides with their distinctive F and B pockets features may be one of the 

causative factors of Behçet‟s disease [74]. Moreover, it was suggested the motif of the 

peptides that are able to bind to the HLA molecules may be altered by the modifications in the 

B pocket  [71, 74]. The structure of HLA-B52 was obtained by the modification of the HLA-

B*5101 structure at positions 63 and 67. 

In order to gain detailed information about the relationship between HLA-B51 and Behçet‟s 

disease we compared binding of the peptide, YAYDGKDYI, to the B pocket of HLA-B51 and 

of HLA-B52. 

 

Unbinding is simulated in NAMD via steered molecular dynamics. Force profiles, Potential of 

mean force (PMF) profiles are constructed and free energy differences are evaluated. The 
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purpose of this analysis is to identify the strength, characteristics and difference among the 

unbinding process for HLA-B51 and HLA-B512. 

 

5.2. Methods 

5.2.1. Theory 

In this work the unbinding of the ligand from the proteins are performed with a finite velocity. 

Because of this finite velocity, friction is present in the system and entropy generation due to 

friction occurs. Hence, the process becomes a non-equilibrium (irreversible) process. In 

addition, for an T,V,N ensemble the temperature of the system in reality does not stay exactly 

constant during the molecular dynamics simulations. It fluctuates slightly around the 

temperature of the bath. Therefore, energy transfer over a finite temperature difference may 

occurs which might be another source of irreversibility.  

Some of work that is applied on the system during the unbinding process will be lost to these 

irreversibilities. Hence, the change in free energy of the system will be lower than the work 

applied on the system. The second law of thermodynamic states that the free energy difference 

between the initial and final state can not be larger than the average work performed on the 

system during this process. 

 

final initialA A A W   
 

        5-1 

 

equation (1) provides an upper limit to the free energy differenc. The Jarzynski‟s equality 

states that the following equality holds regardless of the speed of the process [29, 76] 

 

A We e              5-2
 

 

Jarzynski‟s equality is a relation between equilibrium free energy differences and work done 

through nonequilibrium  processes[77]. The major difficulty of the Jarzynski‟equality is that 

its average is dominated by small work values that are observed only rarely. Therefore, if only 



Chapter 5: Investigating The Effect of The Difference in the Unbinding Free Energy Profiles 

of HLA-B51 and HLA-B52 on Behçet‟s Disease 87 

 

a small number of steered molecular dynamic simulations are performed, the velocity should 

be small enough to permit such small work values. Moreover, in the literature this difficulty 

was overcome to some extend by applying the cumulant expansion [29, 78, 79] .  

 

2 3
2 2 32 3log ( ) ( 3 2 ) ..

2 3!

We W W W W W W W  
            5-3 

 

Using the cumulant expansion two kind of error are involved; Systematic error due to the 

truncation of higher order terms and statistical error due to insufficient sampling [77]. For a 

finite number of trajectories the statistical error is larger than the systematic error. Therefore,  

as [77] have pointed out approximate formulas may give better  results because lower order 

cumulants are estimated with smaller statistical error. 

The system is described as a classical mechanical system of N particles which is described by 

a molecular dynamics simulation at constant temperature T and volume V. A microstate of the 

system is defined by the 3N dimensional position vector R  and momentum vector p . In 

SMD an external harmonic guiding potential  is applied so that by adjusting  the system is 

guided along the reaction coordinate  as [80], 

 

2( ) ( ( ) )
2

R R
k

h              5-4 

 

For both HLA-B52 and HLA-B51 the reaction coordinate   was selected as the distance 

among the center of mass of THR97 in chain A and the center of mass of GLY5 in chain C . 

The modified Hamiltonian is defined as 

 

( , ) ( , ) ( )R p R p RoH H h             5-5 

 

Where ( , )R poH  is the Hamiltonian of the original system. The average W  is taken over the 

ensemble of trajectories whose initial states ,R po o  are sampled from the canonical ensemble 
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corresponding to the Hamiltonian ( , )R po o oH  [77] . For that purpose structures of the N,V,T 

simulation, each 10 ps away from each other will be used as starting structures for Steered 

Molecular Dynamics. 

Constant velocity SMD simulations were performed, meaning that  is changed with a 

constant velocity as [80],  

 

( ) (0)t vt              5-6 

 

Here t  is time and ( )t is the   parameter value at time t of the simulation. The external work 

is evaluated as, 

 

     

 
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
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Where F  is the force applied on the system which is evaluated as  

 '
( )

(0) '
R

Rt

dh
F k vt

d

  


        and d vdt  . In order to obtain the force F  in the 

direction of pulling, the dot product of the force f  applied on the SMD atoms in the 

simulation and direction of pulling n  , which is the reaction coordinate, need to be calculated  

F f n  [48]. 

The Jarzynski‟s equality provides the methodology to evaluate the free energy differences 

( ( )) ( (0))A t A   using the work values    0 tW 
. However  Rt  fluctuates among 

trajectories, meaning that at the same  t  value, different reaction coordinates  Rt  may 

be observed. Hence, to calculate the PMF    at  ,    0 tW   values at different time t but 

being at the same  reaction coordinate   have to be combined. When the spring constant k  of 

the guiding potential is sufficiently large so that the reaction coordinate follows the constraint 

center   closely, the following stiff-spring approximation emerges [77] 
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( ) ( )A              5-8 

 

Hence, the PMF ( ) will be evaluated by the Jarzynski‟s equality using the work values

   0 tW 
.
 

Due to the external potential applied to the SMD atoms the conformation of the peptide will 

be lightly biased. Therefore the final states will not be in equilibrium state. However, to relax 

these final states no external work is required. Therefore, Jarzynski‟s equality can be stated in 

terms of transformations between equilibrium states [80] 

 

5.2.2. MD Simulations 

All Molecular dynamics simulations  were performed for an N,V,T ensemble in explicit 

solvent (water) using NAMD 2.6 package with CHARMM27 force field.  Simulations were 

performed  at 310 K temperature and 1 bar pressure. The reaction coordinates were aligned 

with the positive x axis.  The proteins were then solvated in a waterbox of 40 Å  cushion in 

the positive x direction and 10 Å cushions in the other directions. Periodic boundary 

conditions were applied. Ions were added in order to represent a more typical biological 

environment. Langevin. dynamics was used to control the systems temperature and pressure. 

All atoms were coupled to the heat bath. A time step of 1fs was used. Nonbonded and 

electrostatic forces were evaluated each time step. In order to keep all degrees of freedom no 

rigid bonds were used. Three minimization-equilibration cycles were applied: The first one 

was applied under N,P,T conditions to relax the water in the first place and the second and 

third ones were applied under N,V,T conditions to find a local minimum of the whole 

system‟s energy[35]. The energy of the initial system was first minimized for 20000 steps. 

Water was then equilibrated by keeping the Protein fixed for 0.25 ns. Then, the protein was 

released and an additional 20000 step minimization was performed this time under N,V,T 

condition. Then the system was equilibrated for 0.5ns. After a final 20000 steps of 

minimization, the final conventional molecular dynamic simulation (CMD) was performed.  

At every 500th time step of final conventional molecular dynamic simulation, the 

instantaneous atomic coordinates R  of all atoms, the pressures and the energies were 
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recorded. For both HLA-B52 and HLA-B51, 15ns long trajectories at time 10-25ns of the 

CMD were used for the calculation. For HLA-B51 the initial states ,R po o   of the SMD 

simulations were selected starting at 20.782 ns with 10 ps space between them. For HLA-B51 

the initial states ,R po o  of the SMD trajectories were selected starting at 13.688 ns with 10ps 

space between them. 

  

5.3. Result and Discussion 

5.3.1. Change in Dynamics 

As was mentioned before HLA-B51 differs only 2 aminoacids from HLA-B52; Asparagine 

and phenylalanine at positions 63 and 67 of the 1 helix of the HLA-B51 molecule are replaced 

with glutamic acid and serine at the same positions in the HLA-B52 [81]. In order to 

understand the effect of this modification on the dynamics of the bound forms of HLA-B51 

and HLA-B52, the fluctuations of the ligand are investigated.  

In order to eliminate translational and rotational degrees of freedom, the structures in each 

trajectory were aligned with respect to the structure at the middle of the production simulation 

(time 7.5ns). Alignments were performed using the transformation matrix which shows the  

best fit of the backbone atoms. These alignments were carried out in two different ways; 1- 

The protein-ligand complex was aligned with respect to the ligand. 1-The protein-ligand 

complex was aligned with respect to the chain A of the protein, which is the chain with the 

binding pocket. 

 For type 1 alignment, only the vibrational fluctuation of the ligand is of consequence.  In the 

second type of alignment, since the rotational and translational degrees of freedom of chain A 

are eliminated, the relative fluctuations of the ligand with respect to the chain A and the 

ligand‟s vibrational fluctuations are of consequence.  

The square root of the mean fluctuation of each carbon alpha atom will be used as a numeric 

indication of the fluctuations as, 

 

 
1/21/2 22

i i iR R R            5-9
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Here iR  is the mean atomic coordinate of the i th carbon alpha atom and iR  is its instantaneous 

coordinate. In figure 1 (a-b) the 
1/2

2
iR  values of  are provided for the 15ns long trajectories. 

Black dots indicate the fluctuation value for HLA-B52 whereas grey dots indicate the 

fluctuation values for HLA-B51. In figure 1(a)  type 1 alignments (with respect to the ligand) 

were performed. In figure 1 (b) on the other hand type 2 alignments (with respect to chain A) 

were performed. 

In figure 1 (a) it is observed that the vibrational fluctuation of the ligand differ significantly 

among HLA-B52 and HLA-B51. On the other hand, in figure 1(b) it is observed that when 

aligned with respect chain A, the ligand seems to be on the overall be more mobile in HLA-

B51 

It can be concluded that for this ligand the HLA-B51 binding pocket is sloppier than that of 

HLA-B52. 
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Figure 5-1. 
1/2

2
iR  values of the carbon alpha atom of the ligand for the 15ns trajectories 

where complex is aligned with respect to the ligand (a) and complex is aligned with respect to 

the chain A of the protein (b). Black dots indicate the fluctuation value for HLA-B52 whereas 

grey dots indicate the fluctuation values for HLA-B51.
  

 

Since the difference among HLA-B51 and HLA-B52 are only the aminoacids at positions 63 

and 67 of the 1 helix, the change in the fluctuations of this helix are investigated. For that 

purpose the fluctuations among each residue pair i and j are evaluated using the alpha carbon 

coordinates as follows 

  

 
22

ij ij ijR R R             5-10 
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Where ij i jR R R  is the distance among residue i residue j of chain A. In order to indicate the 

overall strength of the correlation of each i th residue with all others, summation of 2
ijR  

over all other residues at helix 1 (residues 60-90) are performed as
90

2

60

ij

j

R



  and shown in 

figure 2 (a).  

The same procedure is repeated by constructing the covariance matrix T
ΔRΔR  for the helix 

and performing the summation as
90

60

i j

j

R R



  .
 

90

60

i j

j

R R



  values are depicted in figure 2 

(b) . Black dots indicate the overall strength of the correlation values for HLA-B52 whereas 

grey dots indicate the overall strength of the correlation values for HLA-B51. 

It has to be noted that alignments prior to the evaluations were performed with respect to the 

backbone atoms of the whole protein-ligand complex.  

As can be seen in both figures the fluctuations among the residues of helix-1 for HLA-B51 are 

significantly larger than that for HLA-B52. 

 

 



Chapter 5: Investigating The Effect of The Difference in the Unbinding Free Energy Profiles 

of HLA-B51 and HLA-B52 on Behçet‟s Disease 95 
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Figure 5-2. 
90

2

60

ij

j

R



  values of the carbon alpha atoms of helix-1 (a) 
90

60

i j

j

R R



  values of 

the carbon alpha atoms of helix-1 (b). Black dots indicate overal strength of the correlation 

values for HLA-B52 whereas grey dots indicate the overal strength of the correlation values 

values for HLA-B51.
  
   

 

5.3.2. SMD Simulations 

Park et al. [77] have shown that for the unfolding of helical Deca-alanine in vacuum a pulling 

speed of  0.1 Å 
ns

 resulted in an reversible process. In our work a pulling speed of  10 Å 
ns

which is 100 times higher than this reversible pulling speed were applied. Pulling speeds and 

spring constants of similar studies are as follows; 20 Å 
ns

 (time step is 2fs) and spring 

constant of  25 
Å

kcal
mol

 for Acetylcholine unbinding from the alpha7 nicotinic acetylcholine 
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receptor ligand binding domain [82] . Zhang et.al. [82] have concluded that a pulling velocity 

of 20 Å 
ns

 were sufficiently slow to produce  good statistics from the number of trajectories 

they have used . 

The initial structures for the SMD trajectories were selected from 25 snapshots each taken 

with 10ps interval among them. Vashisth &Abrams [83] have randomly sampled their starting 

structures from the ensemble of configurations in the final ~100ps of equilibration simulation. 

Zhang et.al. [82] have used the final state of the equilibration as a restart point for further 

SMD study. Park et. al. [77] have selected the initial coordinates of the SMD simulation from 

an ensemble generated by  a 1ns equilibrium simulation.  

To generate the PMF,  Zhang et.al. [82] used 22 to 45 separate SMD runs for each trajectory. 

Park et. al.[77], on the other hand have used 100 trajectories for the helix coil transition of  

deca-alanine in vacuum and grouped them into ten blocks of ten trajectories. It was shown for 

the unfolding of helical deca-alanine, that for both pulling velocities  10 Å 
ns

 and 100 Å 
ns

the 

second order cumulant expansion gave better result than the Jarzynski‟s equality[77]. The 

finite-sampling estimate of a non-linear average is biased[77]. Therefore instead of using the 

second order cumulant expansion directly, the unbiased estimate introduced by [77] will be 

used as 
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        5-11
 

 

Here M is the total number of trajectories and iW is the work obtained from the ith trajectory.  

In figure 3 (a) the force profiles for the 11. SMD simulations are provided for HLA-B51 and 

HLA- HLA-B52. The forces shown in figure 3 (a) fluctuate to both positive and negative 

values which indicate that the thermal fluctuations of the peptides are larger than the 

perturbation from the pulling force.  For this condition the unbinding process was concluded 

to be near equilibrium [82].  The reasoning behind that  statement maybe better understood by 

the statement provided previously by [84] which says that smaller velocities generally result 
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in longer times and smaller forces required to induce unbinding because of the  higher 

probability for the ligand to overcome the lowered energy barrier due to thermal fluctuations. 

In figure 3 (b) the average force profiles  of HLA-B52 (black line) and HLA-B51 (grey line)  

with respect to the reaction coordinate   for the SMD simulation are provided as, 

 

 
1

M

i

i

W

W
M



 


           5-12 

 

Here the sum is over  a total number of M SMD simulations.  Based on the magnitude of the 

force peaks for the unbinding pathways of HLA-B51 and HLA-B52 it can be concluded that 

unbinding of HLA-B51 is smoother than for HLA-B52. Hence, indicating that HLA-B52 is 

stronger bound.  After 23 Å  force values fluctuate around a constant value. This related small 

work values are due to the friction force generated by the finite pulling velocity. These work 

value may be more eminent then other works due to the larger size of the peptide that is 

moved. Therefore, free energy profiles after 23Å  are expected to increase at a constant rate.  
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Figure 5-3.  (a) Reaction coordinates vs force for the 11. SMD simulation (Starting structure 

selected at 20.892 ns of the conventional molecular dynamics simulation) of HLA-B52 

(shown with black line) and for the 11. SMD simulation (Starting structure selected at 

13.798ns of the conventional molecular dynamics simulation) simulation of HLA-B51 

(Shown with grey line). (b) Reaction coordinates vs average force of all SMD simulation for 

HLA-B52 (shown with the black solid line) and HLA-B51 (Shown with the grey line). 

 

In figure 4 the potential of mean forces (PMF) evaluated using equation (11) are shown for 

the reaction coordinate  . The black line is the potential of mean force of HLA-B52 whereas 

the grey line is the PMF of HLA-B51. The PMF of HLA-B51 clearly follows a lower curve 

than HLA-B52, indicating that unbinding of HLA-B51 is easier than HLA-B52. This result is 

in total agreement with the previous findings stated above.  
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Figure 5-4.  PMF of HLA-B52 (Solid black line) and HLA-B51 (Solid grey line) with respect 

to the reaction coordinate   
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Figure 5-5. Difference between the minimum and maximum work values at each reaction 

coordinate   

 

Direct use of Jarzynski‟s equality requires the deviation of work distribution within a few kT 

[82]. In figure 5 the difference between the minimum and maximum work values at each 

coordinates are shown. As can be seen the standard deviation grows as the peptide unbinds.  It 

is important to note that equation (11) favor small work values. Therefore, the PMF is closer 

to the lower boundary of the work values. A large work deviation means that there are cases 

for which the work required is much larger than the PMF. For HLA-B52 the work deviation is 

much larger than that of HLA- HLA-B51 at the end. Therefore, in addition to the larger PMF 

there are also much larger work values.  
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Although SMD provides an approach to investigate the binding/unbinding events, yet the 

pulling direction of the force in SMD is chosen randomly or by guessing on the basis of 

structural information, which makes that the force applied to the ligand in such chosen 

directions may not move it along a favorable pathway [85]. 

 

5.4. Conclusion 

 

The PMF and force profiles show that binding of peptide YAYDGKDYI to HLA-B51 is 

clearly more floppy than binding of the same peptide to HLA-B52. HLA-B51 differs only 2 

aminoacids from the other -B5 split antigen HLA-B52, which is not related with Behçet‟s 

disease. Asparagine and phenylalanine at positions 63 and 67 of the 1 helix of the HLA-B51 

molecule are replaced with glutamic acid and serine at the same positions in the HLA-B52. 

These modifications seem to increase the fluctuations at helix 1 and hence make the binding 

side floppier.  This decrease in binding affinity may the reason of the pathogenic mechanism 

HLA-B51. Further study has to be conducted using other peptides in order to understand if 

this observed behavior is of general characteristic. 
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APPENDIX 

 

A.1 

i jΔR ΔR

2
Å  

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.68 -0.01 -0.16 -0.13 -0.04 0.18 -0.19 -0.11 -0.15 -0.07 -0.10 0.10 

2 -0.01 0.28 0.12 0.00 -0.11 -0.05 -0.24 -0.05 0.05 0.03 -0.02 0.01 

3 -0.16 0.12 0.23 0.08 -0.06 -0.09 -0.12 -0.01 0.09 0.04 -0.02 -0.11 

4 -0.13 0.00 0.08 0.17 0.04 -0.08 -0.04 -0.01 0.05 0.04 0.01 -0.12 

5 -0.04 -0.11 -0.06 0.04 0.22 0.11 0.14 -0.02 -0.05 -0.07 -0.05 -0.13 

6 0.18 -0.05 -0.09 -0.08 0.11 0.69 -0.04 -0.09 -0.09 -0.16 -0.19 -0.19 

7 -0.19 -0.24 -0.12 -0.04 0.14 -0.04 0.70 0.07 -0.18 -0.17 0.02 0.04 

8 -0.11 -0.05 -0.01 -0.01 -0.02 -0.09 0.07 0.16 0.07 0.00 0.00 -0.02 

9 -0.15 0.05 0.09 0.05 -0.05 -0.09 -0.18 0.07 0.25 0.12 -0.01 -0.14 

10 -0.07 0.03 0.04 0.04 -0.07 -0.16 -0.17 0.00 0.12 0.23 0.08 -0.09 

11 -0.10 -0.02 -0.02 0.01 -0.05 -0.19 0.02 0.00 -0.01 0.08 0.24 0.05 

12 0.10 0.01 -0.11 -0.12 -0.13 -0.19 0.04 -0.02 -0.14 -0.09 0.05 0.60 
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A.2 

  

2mol Å
kJ


 

1 2 3 4 5 6 7 8 9 10 11 12 

1 31.0 -33.1 1.2 -0.8 0.6 1.7 -1.0 -1.5 -0.8 6.1 -1.9 -1.6 

2 -33.1 206.2 -161.5 5.5 -3.7 1.1 -0.5 -2.7 -6.1 -1.3 -7.4 3.6 

3 1.2 -161.5 349.2 -168.6 1.2 -0.9 -1.3 -4.7 -11.1 -2.6 6.8 -7.5 

4 -0.8 5.5 -168.6 333.1 -145.0 8.2 -9.1 4.5 2.1 -20.9 -12.0 3.1 

5 0.6 -3.7 1.2 -145.0 232.1 -72.1 7.9 -2.3 -8.7 5.6 -13.6 -2.0 

6 1.7 1.1 -0.9 8.2 -72.1 71.8 0.6 -1.3 0.5 -5.0 2.3 -7.1 

7 -1.0 -0.5 -1.3 -9.1 7.9 0.6 69.4 -73.7 -2.6 0.5 8.0 1.7 

8 -1.5 -2.7 -4.7 4.5 -2.3 -1.3 -73.7 228.4 -144.0 -5.8 0.2 2.9 

9 -0.8 -6.1 -11.1 2.1 -8.7 0.5 -2.6 -144.0 325.1 -147.5 -5.0 -1.9 

10 6.1 -1.3 -2.6 -20.9 5.6 -5.0 0.5 -5.8 -147.5 321.5 -151.3 0.8 

11 -1.9 -7.4 6.8 -12.0 -13.6 2.3 8.0 0.2 -5.0 -151.3 227.8 -53.9 

12 -1.6 3.6 -7.5 3.1 -2.0 -7.1 1.7 2.9 -1.9 0.8 -53.9 62.0 
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