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ABSTRACT

Contribution of intermolecular interactions to the stability of two bound molecules is an
important factor in flexible binding problems. In order to understand the the change in
thermodynamic properties upon binding and determine the binding sides, two hexa-peptides
and their bound complex structures were analyzed. The dynamics of the peptides are obtained
via molecular dynamics. In order to extract the thermodynamic properties and determine the
binding side, a harmonic model was applied.

The interplay between harmonicity and anharmonicity in proteins was studied in literature,
reaching the conclusion that the motion within a local minimum is mainly harmonic and the
anharmonic component arises from transitions from one minimum to the other. The harmonic
formulation is extended to large fluctuations of residues in order to account for effects of
anharmonicity. The fluctuation probability function is constructed for this purpose as a

tensorial Hermite series expansion with higher order moments of fluctuations as coefficients.

Mode coupling and anharmonicity in a native fluctuating protein is investigated in modal
space by projecting the motion along the eigenvectors of the fluctuation correlation matrix.
Molecular dynamics trajectories of Crambin are generated and used to evaluate the terms of
the polynomials and to obtain the modal energies. Slowest modes have energies that are
below that of the harmonic energy, KT/2 per mode, and a few fast modes have energies
significantly larger than the harmonic which is a result of coupling. Detailed analysis of the
coupling of these modes to others is presented in terms of the lowest order two mode coupling
terms. In addition is was shown that the mode coupling and anharmonicity are important for
modeling the multidimensional energy landscape of the protein Crambin. The effect of them

on the fluctuational entropy is on the order of a few percent.

In order to understand the structure —binding relationship from a different perspective, the
fluctuations and free energy profiles of two very similar proteins, which differ only 2
aminoacids, were investigated; HLA-B51 and HLA-B52. HLA-B51 is related to the Behget’s
disease, which is a chronic inflammatory disorder, whereas HLA-B52 is not related to it. The
unbinding process of a peptide of sequence YAYDGKDY1, which is one of the catabolic
products of HLA-B51 and also known to bind well to HLA-B52, was investigated. Change in
the dynamics of 1 helix, residues 60-90, were analyzed. Free energy profiles have shown that

unbinding from HLA-B52 results in greater free energy differences than for HLA-B51.



OZET

Molekiiller arast etkilesimin kararlilik iizerine etkisinin anlasilmasi esnek baglanma
probleminde 6nemli bir faktor olusturmaktadir. Baglanmadan kaynaklanan termodinamik
degisimlerinin daha iyi anlasilmas1 ve baglanma bolgelerinin belirlenebilmesi amaciyla iki
hexa-peptit ve onlarin baglanmus formu analiz edildi. Molekiiler dinamik vasitasiyla
peptitlerin dinamigi elde edildi. Bu bilgiden istenen termodinamik 6zeliklerin elde edilmesi ve

baglanma bdlgelerinin belirlenmesi amaciyla harmonik bir model uygulandi.

Literatlrde bir lokal minimum etrafindaki hareketin harmonik oldugu ve anharmonik
hareketlerin lokal minimumlar arasi gegislerden kaynaklandigi sonucuna varilmistir. Blyuk
hareketleri aciklanabilmesi i¢in harmonik matematiksel formulasyon genisletildi. Dalgalanma

olasilik fonksiyonu yiiksek derece momentleri kullanarak Hermit serisi acilimu ile olusturuldu.

Proteinlerin ¢evre ile enerjik etkilesimi ve emilen enerjinin protein i¢indeki rezidiilere
dagilimi protein fonksiyonu agisindan ¢ok dnem arz eden bir konu. Bu sebepten dolayi
modlarin baglanmasi ve anharmonik hareketlerin mod uzayina korelasyon matrisinin
eigenvektorlerine yansitilmasi yolu ile incelenmistir. Crambin igin molekiler dinamik
yoriingeleri elde edildi ve bununla polinomlar olusturularak mod enerjileri hesaplandi. Yavas
modlarin enerjisinin harmonik kabulin, mod basina kT/2, altinda oldugu goriildi. Hizl
modlardan birkag¢inin ise harmonik kabuliin {izerinde enerjiye sahip olduklar1 goriildii. Bu
sapmalarin sebebi gevre ile ve baska bir veya birka¢c mod ile enerjik baglanma olarak
aciklanabilinir. Bu enerjik baglanmalarim detayl1 analizi ikili en diisiik derecede baglanmalar
cinsiden yapildi. Tlaveten Crambin igin modlarin baglanmasi ve anharmonik hareketlerin ok
boyutlu enerji yiizeyinin modellenmesinde 6nemli etkiye sahip oldugu goriildii. Anharmonik

hareketlerin ve mod baglanmasinin entropi tizerindeki etkisi sadece yiizde birkag¢ diizeyinde.

Yapi-baglanma iliskisini farkli bir agidan incelemek amaciyla birbirine ¢ok benzer olan ve
sadece 2 amino grubu ile farklilik gosteren HLA-B51 ve HLA-B52 proteinlerinin serbest
enerji profilleri ve hareketleri incelendi. HLA-B51 kronik iltihapli bir hastalik olan Behget
hastalig1 ile ilgili bir protein, HLA-B52 ise ilgisiz. YAYDGKDY| sekansina sahip HLA-
B51’in katabolik bir Urunt olan ve HLA-B52’ye de iyi baglandig bilinen bir peptittin
baglanma prosesi incelendi. 1 heliksindeki dinamik degisimler incelendi. Serbest enerji

profilleri HLA-B52 baglanmasimin HLA-51’e gore daha ¢ok enerji agiga ¢ikardigini gosterdi.
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Chapter 1

INTRODUCTION

A protein in aqueous solution constitutes a system whose atoms exhibit fluctuations over time
about well defined mean positions. The aqueous medium forms the reservoir at constant
temperature and pressure. The magnitude of fluctuations may be large relative to atomic radii
as indicated by experiment. Fluctuations in atomic coordinates are well characterized by
experiments[1]. In theory, fluctuations are studied at various levels of approximation, ranging
from all-atom to coarse-grained scales. Studying the fluctuations of the C, is a convenient

approximation where each successive C, pair is assumed to be connected by a virtual bond of

fixed length and only interactions between residues, represented by their C,’s, are considered.
In the present study, both this level of approximation and all atomic level approximation are
adopted. Coarse-grained models of fluctuations started with the important observation that the
large amplitude fluctuations of the protein G-actin could be described in the harmonic
approximation by a single parameter only [2]. Based on this simple picture of the elastic
fluctuations of a protein, the Gaussian Network Model, GNM, was proposed [3, 4], according
to which the C,’s were assumed analogous to the junctions of an amorphous network whose
fluctuations were similar to those given in the random amorphous network model proposed by
Flory[5, 6]. As in the random network model, the GNM is based on an isotropic description of
residue fluctuations where only the number of neighbors of a given residue is important. The
Anisotropic Network Model, ANM, was then introduced to estimate the directions of
fluctuations[7, 8]. The GNM and models that followed it, collectively referred to as the Elastic
network Models, ENMs, are found to provide important insights for understanding the
structure-function relations of proteins. For this reason, and because of their immediate
applicability to all kinds of proteins without size restrictions, they found wide use during the
past decade [4, 9-11]. In general, these studies and several others that are cited by them,
elaborate on different levels of approximation of the ENM’s. They try to identify the force
constants associated with the models, compare the different models, associate the models with
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NMR data, optimize the model parameters over databases, apply the models to drug design
problems and prediction of binding sites, folding cores, allosteric effects and hot residues. In
addition to work in harmonic fluctuations cited here, anharmonicities of protein fluctuations
[12, 13] in the form of nonlinear modes that are localized in certain regions of the protein
play important roles in protein function [14, 15]. In this respect, coupling of fast and slow
modes resulting in energy flow is the most important process responsible for the protein’s
function [16, 17].

Despite this wide range of interest, a general statistical mechanical treatment of fluctuations
that describes the theoretical basis of harmonic as well as anharmonic behavior is missing in
the literature. The specific aim of the present paper is to give a statistical thermodynamic
interpretation of fluctuations in native proteins that covers both harmonic and anharmonic

behavior.

In this section, the thermodynamic and statistical basis of fluctuations in native proteins will
be given. This basis will be enlarged and applied to physical problems in the following section.

We use the entropy representation for the fundamental relation [18],

S=S(U,V,R) 1-1

Where S,U,V, R are the mean (thermodynamic) values of the entropy, energy, volume, and
position vectors of the atoms. Water is not shown explicitly in the fundamental relation. The
protein is in diathermal contact with the surrounding water. Similarly, the protein is i n contact
with a pressure (P) and a force (F) reservoir, as a result of which the energy, volume and the
positions of residues exhibit fluctuations. Other, not bound proteins, are present in the
surroundings but they do not influence the energy levels of the given protein. We call the
protein and the surrounding water as an element. The collection of all elements of the system
constitutes the ensemble. Statistical mechanics is applicable to a single element.
Thermodynamics applies only to an ensemble of the elements. The ensemble of elements with

its extensive properties constitutes a macroscopic system [18, 19]. The thermodynamic
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variables S, U, V, R are obtained from the ensemble. For each element, these variables exhibit

fluctuations about their native values. The distribution f(U,\f,FQ) of the instantaneous

extensive variables U,V, R are given by the relation,

f(UV.R)=expl -k S{E,B,E}—k‘l [iuni\i_ifej 12
TTT T T T

where k is the Boltzmann constant and S[% ; ;J is the Massieu transform of the entropy,

which for the specified thermodynamic variables chosen reads as

u P, F 13

The distribution now takes the explicit form

In equation (4), provided that the system remains around the given equilibrium point, i.e., a
point on the thermodynamic surface S = S(U,V,R), there are no restrictions on the degree of
departure of the system, i.e., the magnitude of fluctuations, from the average thermodynamic
variables. If the fluctuations are large, the fluctuations may be anharmonic or may induce a
jump from one local minimum to another. The applicability of results derived from equation

(4) are discussed in detail in the following sections.
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The correlation of fluctuations of the i" and j™ residues may now be obtained from

(ARi4R") =3[R - R JR, -R; ] f(UV.R) 1-5

where the superscript T denotes transpose and the summation is over all allowable states.

Each of the following chapters is in form of a separate paper. For each of them separate
introductions, problem statements and conclusions are provided. This first general
introduction chapter aimed to provide the fundamental statistical mechanic background
required to understand the following chapters.
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Chapter 2

HARMONIC FLUCTUATIONS OF TWO PEPTIDES

2.1. Introduction

Understanding the binding of two molecules is a complex problem that may suitably be
simulated by molecular dynamics. In the present study, we use long molecular dynamics
trajectories of two bound peptides to extract information from the system. In the interest of
simplicity, we adopt a quasiharmonic analysis where we assume that the atoms of the two
peptides are connected by linear springs, and the spring constants are obtained from the
correlations of fluctuations of the atoms, which are in turn are obtained from the molecular

dynamics trajectory.

The idea of obtaining spring constants from fluctuation correlation is not new and was
employed by Karplus and collaborators [20, 21] and Lamm and Szabo [22]. The most

transparent use of the idea which we adopt in the present work is by Teeter and Case [23].

REACH (Realistic Extension Algorithm via Covariance Hessian) is an elastic network model
(ENM) developed by Moristugu and Smith[24], in which the residue interaction spring
constants are obtained directly from the atomic-detail variance-covariance matrix calculated
using MD simulation [24]. In this way physically-based atomic MD force fields can be
projected onto inter-residue spring constants. The REACH spring constants were derived by
relating the harmonic-approximated potential energy of the ENM to the Hessian (second-
derivative) matrix and then to the variance-covariance matrix[24]. The interactions were
divided into 4 classes; virtual 1-2 (between residue i and i+1), virtual 1-3 (between residue i
and i+2),virtual 1-4 (between residue i and i+3) and the nonbonded interactions. In REACH,
the residue-scale Hessian matrix is calculated using the variance—covariance matrix from the

atomistic MD trajectory. Making the harmonic approximation under the equilibrium condition



Chapter 2: Harmonic Fluctuations of Two Peptides 6

at constant temperature, T , allows the Hessian matrix to be calculated from the 3N-

dimensional variance—covariance matrix [25].

In their work Moristugu and Smith [23] have pointed out that the anharmonicity in atomistic
MD simulations may lead to the spring constants deviating from the “ideal” harmonic
approximation quantities, but the contribution will likely be small, i.e., this is not the main
origin of negative spring constants. Moristugu and Smith [23] have used each 1-ns MD
trajectories to calculate the variance-covariance matrix and justified their methodology by
pointing out that the time length of 1 ns is long enough to characterize the vibrational
component of protein fluctuation, which arises from the harmonic potential, but is not so long
that the intramolecular contribution is small compared to the slow, diffusive motion. Since
normal modes represent vibrational motions on an effective harmonic potential, the MD time
length of 1 ns was concluded to be a suitable choice. Therefore, the MD trajectories were
separated into 1-ns long trajectories from each of which the covariance matrix was calculated

and then these matrices were averaged in order derive associated spring constants [26] .

On ligand binding, protein dynamics is changed by two effects: the change in conformation of
the protein from the unbound to the bound state and the interaction between the protein and
the ligand [25]. Moritsugu et al.[25] have focused on the effect of the force field on the
vibrational dynamics with a constant protein structure. They have shown that the internal
degrees of freedom increases by 6 upon ligand binding which are considered as ligand

external motions coupling to protein vibrations.

In their study they have also pointed out that protein vibrations becomes stiffer on ligand
binding and that an increase in vibrational entropy on ligand binding arises from the
additional six degrees of freedoms. However, with stronger interaction energy, increased

entropy on ligand binding would not be observed [25].

-1
The spring constant matrix Kis obtained from the expression K =[kT <ARART ﬂ where the

correlation matrix <ARART> of fluctuations of atom positions is obtained from the molecular

dynamics trajectory. If, instead of the full trajectory, a specific conformation at a minimum of

the energy, U, is found, the more familiar form of the spring constant matrix is obtained from
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the Hessian of the system and corresponds to the harmonic or the normal mode analysis.
Molecular dynamics show that in biological systems such as two bound peptides in water the
system is strongly anharmonic, with frequent transitions from one conformation to another.

The next level of approximation over the harmonic is the quasiharmonic that we adopt here.

1ot
—— AR KAR
The probability distribution of fluctuations are Gaussian, f(4R)«ce 2T , as in the

harmonic approximation, but the spring constant matrix K is the fluctuation correlation matrix
as discussed above. The name ‘quasiharmonic’ derives from this difference from the harmonic.
The deviation of the full probability distribution function from the quasiharmonic is given in
recent work [27, 28].

In this chapter, we adopt a coarse grained model based on the alpha carbon representation.
The spring constant matrix of peptide residues yields important information on the binding
process and can easily be extended to protein pairs irrespective of their sizes. There are
several methods and softwares for determining the protein-protein or protein-ligand binding
problem. The stability of binding and the change in the Helmholtz binding energy can be
determined by several computational techniques [29-34]. The molecular dynamics scheme
gives a realistic estimate of energy and entropy changes in binding. The harmonic and the
quasiharmonic approaches are only approximations aimed at (i) simplifying the problem, and
(i) arriving at an analytical treatment. Below, we discuss the various aspects of this
approximation, obtain the spring constant matrix for two bound peptides and elaborate on the
validity of the approach.

2.2. Model and Theory

2.2.1. The Harmonic Model

The model consists of two interacting native proteins having n; and n, residues in a thermal

reservoir. The coarse grained model is adopted in which the instantaneous positions of the i™

alpha carbon of peptide &, (§ =1,2) is represented by Fii(g). The mean positions

R ={Xi(5),Yi(§),Zi(5)} are assumed fixed, and only the fluctuations
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AR® =R _R® 21

are of consequence.

The correlation of the equilibrium fluctuations of the i™ atom of peptide 1 and the j™ atom of

peptide 2 is given by the general second moments of the form introduced by equation (5),

R R T .
<ARi(1)ARTj(2)>:Z(Ri(1)_Ri(l))(Rj(Z)_Rj(Z)) fR) >

where, the superscript T denotes the transpose, and

AX,AX[T AXAY,T AXAZ]
(ARART)=| AYAX["  AYAY  AYAZ[ 2-3
AZAX"  AZAY] AZAZ]

The position vector of the ¢ ™ peptide can be defined as

Fi(f):{)21(5),)22(5),...,)an(f),\fl(g),\?z(f),...,\fnl(‘f),21(5),22(5),...,2m(5)}. Here X, is the mean x

position of the i™ atom of peptide ¢, with similar definitions holding for the remaining
. . : : : . | R®
coordinates. Hence, the position vector of both peptides together is defined as R= <) and
R

. R® . : :
in general R { (Z)}. In the remaining sections of the paper, we suspend the superscript Greek
R

letters identifying the peptides, and use the general vector representation for F and R
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containing the information for both of the peptides as defined above. Equation (2) can be
rewritten in this notation as,

<ARiARjT>=Z(F§i—Ri)(F§j—Rj)Tf(FE) 2-4

where the summation is over all allowable states. f (R) is the probability, that the system has

coordinates R in contact with the thermal reservoir. The instantaneous variables R define the

A

microstates of the complex. More generally, the probability, f( V, Fi) of the complex in a

thermal and pressure reservoir is given by

TE are the entropic

—|r

1PF
Here S{?,?,?} is the Massieu transform of the entropy and

~| T

intensive parameters whose values are equal to those of the reservoir.

Because of the special form of f (U ( ﬁe) , equation (4) can be reformulated as

<ARiARJ- > KT (R - R)M 2-6
J
F (&)
F® x
where F :{F(Z’} and F© =| £ |, (£=12).F" is the force exerted in the x direction on
Fz(é*)

the £ " peptide. Equation (11) simplifies to
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<ARiAR]-T>=kT R 2.7
oF; TPF.,

where the variables to be kept fixed are indicated as subscripts. The variables on the right
hand side of equation (7) are the thermodynamic, i.e., average quantities. The reader is

referred to Callen [18] for details of the derivation above.

Definition of the mean positions of the C,’s and the harmonic assumption allows us to write

the force-deformation relation for the complex as,
F=K|R-R’] 2-8

K can be considered as the symmetric matrix having the harmonic springs as the elements.

Hence, the bracket in equation (8) implies that springs are relaxed at the equilibrium positions

R of the atoms and the energy is zero at those positions.

The spring K in equation (8), written in terms of the coordinates of the C” ‘s has a special

form

—K'ij |f | * J
Kij =1 &; :ZKij 2-9

j#i

Applying equation (8) on equation (7) leads to the correlations of fluctuations

<ARART > —kTK? 2-10
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The energy U (4R) of the microstate of the complex corresponding to the set {4R} follows

from the harmonic assumption as

U (4R) =%ARTKAR 2-11

The energy in each interaction on the other hand can be evaluated as

Using the energy definition of the microstate {4R} provided in Eq.11, the configurational

probability density in the Cartesian coordinates is given by

———AR"KAR
g 2kT
f(4R)= T 913
[ e 27 "d{4r)

Using equation (10), equation (13) can be reformulated as

—%ART (ARART )’1AR
e

f(AR)= : - 2-14
~~ART(ARART) AR
[e? d{AR}

{AR}
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Fluctuation AR in the Cartesian space can be expressed in terms of the fluctuation in mode

Space as
Ar =VTAR 2-15

Where V is the eigenvector matrix that diagonalizes the covariance matrix <ARART>
(ARART)=vzvT 2-16

Using equation (10) the force constant matrix can be formulated as
K=VAV' 2-17

Here Ais the eigenvalue matrix of K which equals to A=kT=. Since all translational and

rotational degrees of freedom are eliminated, Ar will consist of 3n-6 nonzero modes; i.e. the

system consists of 3n-6 independent internal degrees of freedom. The energy U (AR) of the

microstate of the complex corresponding to the set {AR} can be defined in terms of the set
(ar

7 1. .7 1, o7 T 1,7 15, 2
U(4R)=ZAR'KAR =—AR'VAV AR =ZAr AAr:EZZiAri 2-18
i=1
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Where Ar, is the modal coordinate of the i mode and 4 is the i" eigenvalue of K . Taking
the ensemble average of equation (18) and recognizing that 4; <Ari2> equals to kT for every i,

the average energy U can be written as

1 3n—-6

U KT =@w 2-19

i=1

This is the energy of a harmonic system consisting of n particles.

The configurational probability density in modal space can be written for the 3n-6 internal

modes,
—%ArTAAr

f(ar)=— 2-20
———ArTAAr

Since all 3n-6 nonzero modes Ar, are independent and harmonic they satisfy a multivariate
Gaussian distribution. The denominator of equation (14) is the configurational integral part

Z,, of the vibrational partition function. Hence, to evaluate z,, the denominator of equation

(20) is integrated out over all allowable states {Ar} .

I, 12 3n-6 12
zo= [ & 27" M aar) = (2nkT)Cr "2 [det(A7)[" = (22) " H(%] 2-21
{ar} i=L \ 7
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where A are the 3n-6 internal eigenvalues of the K matrix. Since free energy makes sense
only with respect to reference point, we will assume an arbitrary state whose partition function

is in the form of Z,=¢". ¢ is selected so that entropy won’t attain negative values. The

excess Helmholtz free energy then follows as

A= KT In(ﬁ} 2-22
ZO

Where z, denotes the partition function of the reference state. Substituting the definition

obtained for z, inequation (21) into equation (22) we end up with the following result.

A= —ng nz_e(l— In( 4 *7e2KT )| -KT InZ,

_3n- . ( Zln( - 7re2kT)+InZOJ 2-23

Recalling the form of the Helmholtz free energy as

A=U-TS 2-24

And using equation (19) and equation (22), the entropy can be written as

S 33 (.-
E=§leln(/1i 17re2kT)+In Z, 2-25
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2.2.2. Deviation from Harmonicity

The even moments <x2“> of the variable x in a Gaussian distribution are given as

T x2" exp(— px?)dx
(") == 2-26
Jexp(—pxz)dx

—00

Where the integrals can be evaluated using the following property

szxz”exp(—pxz)dx=(zn_1 ”\ﬁ: @t |z 2-27
0 2:2p)"\'p 2-2p)"\'pP

Hence defining x to be the normalized modal coordinate of the i"™ mode x =Ar, we end up

with the following equations

3z
42,705°

0 | 2 oo
<Ar—4>=2jAr4—eXp( 0-5A6) jar =L IAr—4 exp(—pAr?)dAr, =
i : i 7 i Zno [ I |

n

Wz 2-28

o0 - 2 o
<Ari2>:2jAri2MdAri :i_[Arizexp(—pAriz)dAri =
! z Z 1 2Z,\0.5°

n

Hence the dimensionless correlation among them equals to 3 under harmonic approximation
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BV
(') az,\os _ 3205 _3V2r 05 _, 2-29
(7)) (M} v

2Z;\0.53

2.3. Result and Discussions

2.3.1. Molecular Dynamics

Here the methods of the preceding section are applied to the complex structure of two distinct
peptides. In HyperChem?, peptides of sequences ASN1-ASP2-MET3-PHE4-ARG5-LEU6
and LEU7-LEU8-PHE9-MET10-GLN11-HIS12 were constructed. Structures were separately
and in complex form geometrically optimized via Polack-Ribiere algorithm with OPLS force
field in Hyperchem. These geometrically optimized structures were used as the starting

structures prior to the minimization-equilibration cycles in the molecular dynamic simulations.

Simulations were performed in explicit solvent (water) using NAMD 2.6 package with
CHARMM27 force field [35]. All simulations were performed at constant temperature (310 K)
and pressure (1.01325 bar) in a periodic water box with a 20-A cushion. lons were added in
order to represent a more typical biological environment. Nonbonded and electrostatic forces
were evaluated each time step. In order to keep all degrees of freedom, no rigid bonds were
used . To evaluate the non-bonded interaction, cut-off distance was set to 12 A. The Particle
Ewald sum was used as a way of calculating long range forces in the periodic systems.
Therefore error introduced by truncation due to the cut-off distance was minimized.
Integration time step was set to 1 fs and structure was recorded at 1000-step (1 ps in MD).
Prior to MD calculations, all models were subjected to 3 minimization-equilibration cycles.
The first ones were applied to relax the water in the first place and the last two ones were
applied to find a local minimum of the whole systems energy. All minimization cycles
included 20,000 energy minimization steps to relieve close intermolecular contacts and
geometric strain. In order to relax the water, the proteins were kept fixed in the first
minimization and the 0.1 ns long equilibration cycle. Then the structures were released
stepwise by applying harmonic constraining forces to every backbone atom of 1, 0.5 and 0.25
kcal/(mol*Angstrom?) in magnitude each for 0.05 ns. Finally an additional 0.05ns simulation
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were performed without any constraining force. Following the first minimization-equilibration
cycle two more minimization were performed, each separated by an 0.1ns equilibration phase.
For chain A, calculations were performed using the trajectory part 57.6-61.1 ns after the final
minimization-equilibration cycle. For chain B, calculations were performed using the
trajectory part 52.8-56.3 ns after the final minimization-equilibration cycle. For the bound
form on the other hand the trajectory part 27.5-31 ns after the final minimization-equilibration
cycle was used for the calculations. In order to eliminate all the rotational and translational
motions, all structures were aligned with respect to the first frame of the production phase
using the transformation matrix which shows the best fit for to the C* atoms with the first

structure. All transformation matrices were constructed via tcl commands in VMD.

2.3.2. Force Constants Among Two Peptides
For each MD trajectory the 36x36 covariance matrix <ARART> was constructed using the

recorded snapshots during the production phase. In order to show the fluctuations in a more
concise manner the average of the dot products <ARi ~ARj>=<{Axi,Ayi,Azi}~{ij,ij,Azj}>

were evaluated and shown in figure 1. Part 1-1 and part 2—2 give the intramolecular part of
the correlations of peptide 1 and peptide 2respectively. Part 1-2 and its symmetric mirror
image, part 2—1, provide the intermolecular correlation among the two peptides. White
regions indicate the negative values whereas black regions indicate the positive values.
Numeric values of the correlation matrix are provided in Appendix.1.
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Figure 2-1. Dot product matrix <AR~ART>. White indicates negative correlations whereas

black indicate positive correlations.

Using MATLAB’s build-in eigenvalues decomposition algorithm the eigenvalues and
eigenvectors of the correlation matrix were obtained. Excluding the six zero eigenvalues, the
pseudo inverse was formed. By equation (10) the force constant matrix is constructed which

has the following form,
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_K(Q),x Ky KY, K% KD K(Q',ZZ)_
K\((l,)x K$1)Y Kgl,)z K(l,Z) K(l,Z) K(l,Z)
K9, k9, k¥, k$2 k2 ¢
KEY KEY k§P k§D kG k§D
K K kP kR k) kE 230
KEY kG kED kED kG kED

As can be seen in equation (30) the force constant matrix is divided into 4 subsections. K®

and K@ give the intramolecular correlation of peptide 1 and peptide 2 respectively. K2

and its symmetric mirror image, K@Y, provide the intermolecular correlation among both

peptides. Here K<X11; for example indicates the force constant among the residues in peptide 1

in the x directions.

Again to be more concise, simple in presentation and to be in accord with [5, 6] a new force

constants matrix is defined in terms of K as follows

2-31

K(l) +K$ )Y -I-K(l) K():(L’Z)g +K(Yl:$) +K(ZL,§) r(l) 1-'(1,2)
Sy @

7| 2t 20) | (21 2 2 2
KEN KV +KE? KO} 4K +KE)

The T matrix is divided into 4 subsections as it was the case for K The I' matrix is
numerically provided in Appendix 2 and shown in figure 2 (a). Since the diagonal terms are
the sum of the off-diagonal terms in each row, they tend to be signif