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ABSTRACT

Development of accurate models and efficient solution algorithms for piecewise linear

functions (PWL) attracted a lot of attention due to wide range of application areas. There

have been several attempts to develop exact and efficient optimization models, including

mixed integer programming formulations, branching based algorithms, and linear program-

ming formulations for PWL functions with special structure. All of these attempts provide

useful insights; however, these formulations are either complex or target a very specific class

of PWL functions.

In this thesis, we present a novel linear programming formulation to find the extrema

of continuous PWL functions. We first prove that our formulation finds the extrema of any

continuous PWL function (convex, concave, or non-convex) exactly. While developing this

formulation we make use of two facts: first, simplex algorithm moves along the extreme

points of the feasible region while searching for the optimal solution and extrema of any

continuous PWL function lies at its break points. We develop a linear programming formu-

lation with a special feasible region such that the extreme points of this region overlap with

the break points of the corresponding PWL function. This property enables the simplex

algorithm to find the extrema of a PWL function exactly. Our formulation can be solved

with a general purpose LP solver, since binary variables are not needed. Furthermore, our

formulation has less number variables and constraints than existing formulations in the

literature. As a result, all of these properties decrease the complexity of our formulation

and the CPU time to find the optimal solution. We support our findings by computation-

ally benchmarking our formulation with the most common formulations in the literature.

Finally, we show that our formulation can also be used to find the extrema of separable

piecewise continuous linear functions.
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ÖZETÇE

Geniş uygulama alanları olması nedeniyle parçalı doğrusal fonksiyonların etkin tekniklerle

modellenmesi her zaman dikkat çeken bir konu olmuştur. Bu amaçla çeşitli modelleme

teknikleri geliştirilmiştir; tamsayı karışık programlama modelleri, dallara ayırma odaklı

yöntemler, özel yapıda parçalı doğrusal fonksiyonlar için lineer programlama modelleri

bu tekniklere örnek olarak gösterilebilir. Bütün bu çalışmalar faydalı olmakla birlikte, ya

kompleks formüller olmuş veya kısıtlı bir sınıf parçalı doğrusal fonksiyonları modellemeye

yoğunlaşmıştir.

Biz bu çalışmada sürekli parçalı doğrusal fonksiyonların uç değerinin başka kısıtlar ol-

madığı hallerde bulunmasını sağlayan yeni bir lineer programlama modeli sunmaktayız.

Öncelikle modelimizin sürekli parçalı doğrusal fonksiyonların uç değerini tam bir şekilde

bulduğunu gösteriyoruz. Modelimizi geliştirirken iki gerçekten faydalanıyoruz. Bunlardan

ilki simplex algoritmasının en iyi sonucu ararken olanaklı bölgenin uç noktalarında gezdiği,

ikincisiyse sürekli parçalı doğrusal bir fonksiyonun uç değerinin her zaman kırılma nok-

talarında bulunduğudur. Buradan yola çıkarak, geçerli bölgesinin uç noktaları tanımladığı

fonksiyonun kırılma noktalarına tamamen denk gelen bir lineer programlama modeli geliştirdik.

Böylelikle simplex algoritmasının parçalı doğrusal fonksiyonun uç değerini tam olarak bul-

masını sağladık. Modelimiz ikili değişkenler içermediğinden genel amaçlı bir lineer program-

lama çözümleyicisiyle çözülebilmektedir. Ayrıca modelimiz literatürde yer alan modellerden

daha az kısıt ve değişken içermektedir. Sonuç olarak, bütün bu özellikler modelimizin kom-

pleksitesini azaltırken çözüme ulaşma süresini de kısaltmaktadır. Modelimizi literatürdeki

en yaygın modellerle hesaplamalı olarak kıyaslayarak da bulgularımızı desteklemekteyiz.

Son olarak, modelimizin ayrılabilir parçalı sürekli doğrusal fonksiyonların uç değerlerinin

bulunması için kullanılabileceğini de gösteriyoruz.
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Chapter 1

INTRODUCTION

A function which consists of a number of linear sections, with different slopes is defined

as a piecewise linear function. We encounter piecewise linear functions in many different

fields of science [33] [11] [45] [34] [22] [2] and engineering [50] [29] [44] [23] [51] [8] [48] [10],

[9]. They are often used to approximate nonlinear functions in order to make their analysis

easy. For example, Osowski approximated an electrical circuit to a convex piecewise linear

function for optimization [41], similarly Dantzig, Johnson and White used piecewise linear

approximation while minimizing a chemical equilibrium function [19]. Figure 1.1 illustrates

a nonlinear function’s(blue) approximation to a piecewise linear function(red). Additionally,

in industrial engineering (especially in supply chain management) we encounter optimization

problems with piecewise linear cost functions. These problems include network loading

problems [38] [5] [27] [28], facility location problems [31] [32], merge in transit problems

[15] and network flow problems [12] [1] [3] [14]. Their wide range of application areas make

modeling and analysis of piecewise linear functions an important subject to study and the

history of these studies dates back to 1950s [16], [7], [40].

1.1 Piecewise Linear Functions

Piecewise linear functions have many different definitions and the followings are some ex-

amples to these definitions:

Definition 1 In mathematics, a piecewise linear function is a piecewise-defined function

whose pieces are linear. [6]

Definition 2 A function which consists of a number of linear sections, with different slopes
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Figure 1.1: Piecewise Linear Approximation of a Nonlinear Function

is defined as a piecewise linear function. [6]

Definition 3 A function f on the interval [a, b] is called a piecewise linear function if there

is a subdivision a = x0 ≤ x1 ≤ ... ≤ xn = b such that f is linear on each interval

[xj , xj+1]. [6]

Definition 4 If f(x) is a piecewise linear function on the domain [x1,xt] then it is defined

as follows [20]:

f(x) =





a1x + b1 if x1 ≤ x ≤ x2

a2x + b2 if x2 ≤ x ≤ x3

... ... ...

... ... ...

at−1x + bt−1 if xt−1 ≤ x ≤ xt

(1.1)

where

xj : break points on domain j=1,...,t

aj : the slope of the cost function for interval j ∀ j=1,...,t-1

bj : cost intercept of the function for interval j ∀ j=1,...,t-1
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It is assumed that xj ≤ xj+1 ∀ j=1,...,t-1 and the domain is bounded, i.e. xt < ∞.

Note the strict inequality when defining a function:

f(x) =





a1x + b1 if x1 ≤ x < x2

a2x + b2 if x2 ≤ x < x3

... ... ...

... ... ...

at−1x + bt−1 if xt−1 ≤ x < xt

(1.2)

We can consider < as ≤ by implicitly subtracting ε from xj such that xj−1 ≤ x ≤
(xj − ε). The rest of the thesis refers to the last definition of piecewise linear functions

given above. As an example, Figure 1.2 illustrates a piecewise linear function(red) defined

by Eq. (1.3). Piecewise linear function defined by Eq. (1.3) has a bounded domain from

−7 to 50, 7 break points and is divided into 6 intervals. The break points of this function

are x1 = −7, x2 = 1, x3 = 20, x4 = 28, x5 = 30, x6 = 40 and x7 = 50. The slopes on each

interval are a1 = 1, a2 = 1.5, a3 = a4 = 0, a5 = −1, a6 = 1 and the cost intercepts are

b1 = 10, b2 = 3, b3 = 33, b4 = 0, b5 = 20, b6 = −60.

f(x) =





x + 10 if −7 ≤ x ≤ 1

1.5x + 3 if 1 ≤ x ≤ 20

33 if 20 ≤ x ≤ 28

0 if 28 ≤ x ≤ 30

−x + 20 if 30 ≤ x ≤ 40

x− 60 if 40 ≤ x ≤ 50

(1.3)

Different criteria are used to classify piecewise linear functions depending on the purpose

of classification. One commonly used measure to classify PWL functions is to use their

structural properties. This approach has two main considerations:

1. Continuity at the break points
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Figure 1.2: A Piecewise Linear Function

2. Convexity of the overall function

The following classes of piecewise linear functions are derived using these considerations:

• Continuous Piecewise Linear Functions

– Convex Piecewise Linear Functions

– Concave Piecewise Linear Functions

– Non-Convex Piecewise Linear Functions

• Discontinuous Piecewise Linear Functions

1.2 Problem Definition

In this thesis we develop a linear programming formulation to find the extrema of a piece-

wise linear function f(x), where f(x) is defined with Eq. (1.1). We focus on formulating

continuous piecewise linear functions in all classes (convex, concave, non-convex) and we

also extend our research to cover the formulation of separable piecewise continuous linear

functions. We propose a linear programming formulation that can find the extrema of any
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continuous piecewise linear function in the existence of no other constraints. Our model

is superior to the existing models in terms of complexity and solution time. The general

problem structure is:

min f(x)

st x ∈ X (1.4)

where f(x) is a continuous piecewise linear function and x ∈ X represents the set of

equations that we define to find the extrema of f(x).

The remainder of this thesis is organized as follows. In Chapter 2, an overview of the

previous studies about modeling and optimization of PWL functions is given. Chapter 3

addresses our novel linear programming formulation to find the extrema of continuous piece-

wise linear functions and its extension to separable piecewise continuous linear functions.

This chapter also includes illustrative examples to better visualize our model and prove its

superiority over the existing formulations from literature. Chapter 4 includes benchmark

studies of these formulations with our novel formulation in terms of cpu time usage. Results

of benchmark studies supported with our findings from previous chapters are also provided

in Chapter 4. The thesis concludes in Chapter 5 with summarizing and emphasizing our

work and giving initiatives for future research. Additionally, data and sample GAMS code

used during benchmarks, and some definitions related to classification of PWL functions

are given in Appendixes.
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Chapter 2

LITERATURE REVIEW

Piecewise linear functions are difficult to model, because their shape changes in different

parts of the domain. Hence, complex formulations are needed to model such functions ex-

actly. Several approaches have been developed so far to model piecewise linear functions.

Based on their modeling and solution strategies we can group these approaches into three

categories. The first group of studies base on mixed integer programming (MIP) formula-

tions. The second group consists of a combination of linear programming formulations and

special modeling techniques. And the third group focuses on piecewise linear functions with

special properties.

The first category of work includes the use of mixed integer programming (MIP) models.

Several MIP formulations are proposed to model piecewise linear functions; such as convex

combination [17], multiple choice [12], incremental cost models [40] and bounded variable

method [18]. The first three of these formulations are the ones that are widely used in

textbooks and literature.

• Convex Combination Model

Convex combination model makes use of the fact that any point on the curve defined

by PWL function f(x) can be represented as a weighted average of the two successive

break points [17] . x and f(x) are defined by convex combinations of break points xj

and function values at break points (f(xj)) respectively (Figure 2.1):

x = λ1x1 + λ2x2 + ... + λtxt

f(x) = λ1f(x1) + λ2f(x2) + ... + λtf(xt)

1 = λ1 + λ2 + ... + λt

λj ≤ 1 ∀ j
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λj ≥ 0 ∀ j (2.1)

then impose the conditions that all λj = 0 except for one pair λj and λj+1 as follows :

λ1 ≤ δ1

λ2 ≤ δ1 + δ2

....

λt−1 ≤ δt−2 + δt−1

λt ≤ δt−1

1 = δ1 + δ2 + ...δt−1

δj = 0, 1 ∀ j = 1, .., t− 1 (2.2)

Figure 2.1: Convex Combination Model [17]

Let f(x) be a piecewise linear function with j break points. Then modeling f(x) with

Convex Combination Model results in 2j + 1 variables and 4j + 3 constraints.

• Multiple Choice Model

Multiple choice model defines a new variable zj as the total load of x in interval j [12].

If the total load is equal to x̂ and x̂ is in the interval ĵ, then zĵ = x̂ and zj = 0 for
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all intervals j 6= ĵ . Additionally, binary variable yj is introduced as yj = 1 if zj > 0

and yj = 0 otherwise. Additionally the condition that at most one yj is equal to one

is enforced. Based on these rules f(x) and x is defined as follows:

f(x) =
∑

j

ajzj + bjyj

x =
∑

j

zj (2.3)

and the constraints

xjyj ≤ zj ≤ xj+1yj ∀ j = 1, .., t− 1
∑

j

yj = 1

yj = 0, 1 ∀ j = 1, .., t− 1 (2.4)

Let f(x) be a piecewise linear function with j break points. Then modeling f(x) with

Multiple Choice Model results in 2j variables and 3j constraints.

• Incremental Model

As mentioned in [40], the incremental model introduces the component variables qj

as the load amount in interval j. The summation of qj gives the total load amount x.

The following equations defines the f(x) and x.

f(x) = b1 + a1x1 +
t−1∑

j=1

ajqj

x = x1 +
t−1∑

j=1

qj (2.5)

The interval k + 1 cannot be loaded unless the interval k is fully loaded. To provide

this condition an additional binary variable yj is introduced as yj = 1 if qj > 0 and
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yj = 0 otherwise. The following are the related constraints:

yj ≥ (
1

xj+1 − xj
)qj j = 1, .., t− 1

yj+1 ≤ (
1

xj+1 − xj
)qj j = 1, .., t− 2

yj = 0, 1 ∀ j = 2, .., t

qj ≥ 0 (2.6)

Let f(x) be a piecewise linear function with j break points. Then modeling f(x) with

Incremental Cost Model results in 2j variables and 4j constraints.

Comparing MIP formulations with different criterion have became a popular subject to

study. Researchers evaluated MIP formulations in order to find best performing formulation

in terms of solution time and complexity. Majority of these evaluations are conducted

by analyzing the strength of LP relaxations of MIP formulations. For example, Padberg

studied incremental cost and convex combination models by comparing their LP relaxations

[42]. In this study he showed that incremental cost formulation is far better than convex

combination formulation. He also showed that incremental cost formulation is locally ideal.

(A linear programming formulation is locally ideal if in the absence of other constraints its

LP relaxation models the problem perfectly [43]).

Similarly, Croxton, Gendron and Magnanti compared incremental cost, convex combi-

nation and multiple choice models by studying their LP relaxations [12]. They showed that

all these three formulations are equal in the sense that any feasible solution to one model

is also feasible to another model with the same cost. Besides, using the relationship of the

models to lagrangian duality, they showed that LP relaxations of all models approximate

the original function with its lower convex envelope .

Another comparison was conducted by Keha, Farias and Nemhauser [35]. They com-

pared incremental cost and convex combination formulations by investigating their LP re-

laxations with and without binary variables. LP relaxations without binary variables of

both models gave the same bound as those with binary variables. Hence, they suggested
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that modeling without binary variables (with the help of SOS2 or SOSX approach) is ad-

vantageous because the size of the formulation reduces and the problem structure becomes

compact. Additionally, they showed that neither formulation is superior to other when the

binary variables are removed.

Likewise, Croxton, Gendron and Magnanti studied MIP formulations for multi-commodity

network flow problems with non-convex piecewise linear costs and extended those formula-

tions by applying disaggregation methods [13]. They proved that disaggregation techniques

improve the LP lower bounds for multi-commodity network flow problems when the objec-

tive is a PWL function.

Ho also conducted a benchmark study and compared 4 different formulations to formu-

late separable convex PWL functions [30]. The first two of these formulations (δ and λ)

formulates the function (γ and σ) by representing f(x). He showed that the decomposition

dual of δ and λ is equal to the LP dual of σ. Besides, γ and σ has the same extremal

equivalent which corresponds to the formulation λ with an elimination of variables.

The second group of work focuses on modeling PWL functions without binary variables

and enforcing nonlinearities with different methods. For this purpose, Beale and Tomlin

suggested a formulation similar to convex combination, except that no binary variables are

included in the model [4]. Instead, they focused on developing special branch and bound

strategies to minimize sums of non-convex functions. They utilized the special structure of

such problems and showed that special ordered sets (SOS) can be used during the branch

and bound process. They described the procedure and performed tests indicating a better

performance than conventional MIP formulations. Their approach has been utilized by

different researchers to solve PWL functions’ optimization problems. For example; in their

paper Keha, Farias and Nemhauser introduced an algorithm to solve continuous separable

non-convex piecewise linear optimization problems [36]. Their algorithm relies on using

special ordered sets of two variables (SOS2) in branch and bound algorithm. In this paper,

they also suggested ways of creating strong cuts to be used in branch and cut algorithm.

Similarly, Farias and Zhao used SOS to solve discontinuous piecewise linear optimization

problems [21] and they called the method as ”SOSD”.
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Fourer published three papers complementing each other to introduce a modified sim-

plex algorithm for piecewise linear programming [24] [25] [26]. He developed and analyzed a

general and computationally practical simplex algorithm for minimization of convex separa-

ble piecewise linear objective subject to linear constraints. In his first paper, he introduced

and justified a PWL simplex algorithm under three assumptions (finiteness, feasibility and

non-degeneracy) [24]. In his second paper, he showed how these assumptions can be re-

laxed to allow the effective use of the algorithm and he also studied the theory of PWL

programming in detail in this second paper [25]. In his third paper, he argued the advan-

tages of using a direct piecewise linear simplex implementation over an indirect approach

that transforms the function into a linear program [26]. For example, he proposed that the

algorithm introduced in first paper is 2-6 times faster than a comparable linear algorithm.

In addition to these studies researchers have also developed new MIP formulations with

several advantages over the existing ones. For example, Sherali developed a formulation

which is a modification of the convex combination problem [46]. His formulation has totally

unimodularity property and hence is locally ideal. It can be applied to lower semi-continuous

PWL functions and when used to formulate continuous PWL functions it reduces to the

Padberg’s formulation [42]. Likewise, Li, Lu, Huang and Hu proposed a way of represent-

ing PWL functions with few binary variables [37]. The numerical examples indicate that

their formulation is computationally efficient compared to existing formulations (especially

multiple choice) and performs much better when the number of break points is large.

The third group of studies related to piecewise linear functions focus on modeling piece-

wise linear functions with special properties. In 1956 Dantzig proposed a formulation that

can be used to find the minimum of a convex separable PWL function [16]. The minimum

is attained by loading each segment up to its upper bound until the desired domain value

is reached. He showed that even though this formulation increases the number of variables,

the number of constraints remain the same. He illustrated his formulation with an example.

Similarly, Markowitz and Manne observed that while minimizing a convex piecewise linear

function, there is no need to binary variables and minimum is obtained automatically [40].

On the other hand, when the PWL function to be minimized is concave binary variables
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should be used. Hence, they introduced Incremental Cost Formulation that we mentioned

among the first group of studies as well [40].

Dantzig, Johnson and White approximated chemical equilibrium to a PWL function

[19]. They transferred free energy function into a convex separable PWL function, which

can be formulated with linear programming tools. Finally, they illustrated how to formulate

a convex PWL function as a linear programming problem by applying it on the sample

problem. Similar to their study, Osowski approximated a nonlinear function (from circuit

theory) to a PWL function [41]. The resulting PWL function was convex and hence he

formulated it without binary variables as follows:

Let f(x) be a convex piecewise linear function defined by Eq. (1.1) and satisfying

conditions in Eq. A.4. Then the following LP formulation models the minimization problem

of f(x) exactly:

min a1y1 +a2y2 + ... + at−1yt−1

x = y1 + y2 + ... + yt−1

0 ≤ yj ≤ ∆j ∀ j = 1, .., t− 1 (2.7)

where

∆j = xj+1 − xj (2.8)

defines the length of each interval.

Osowski explained this model as follows; ”... according to the convexity of the function

a1 ≤ a2 ≤ ... ≤ at−1, it is obvious that the way to find the minimum is to choose y1 as large

as possible until it hits its upper bound ∆1, then take y2 in turn etc, until yk is reached

such that by setting yk = ∆k the value of x is exceeded - in which case yk is reduced and

chosen in such a way that second equation above holds. It is evident that this process simply

generates the curve f(x), section after section, from zero up to the given value of x. ” [41]

Chua and Kang worked on sectionwise Piecewise Linar functions and their canonical

representations [9]. They observed that when the Piecewise Linear functions are continu-
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ous and monotonically increasing or decreasing the formulation changes to a simpler form

and binary variables may be removed. They also worked on approximations of nonlinear

functions using sectionwise PWL representation. Additionally, Snyder studied the maxi-

mization of concave piecewise linear separable objectives subject to linear constraints [47].

He observed that such problems may have a special structures that are not utilized by sim-

plex method. He proposed that division of variables into special ordered sets to control the

pivoting operations can reduce the number of basis changes in the simplex algorithm.

Charnes and Lemke studied the PWL approximation of nonlinear problems [7]. They

covered convex and separable PWL functions and developed an extended simplex method

for them. They illustrated the method with an example problem from the literature and

outlined the procedure on this instance. They achieved notable improvements in the compu-

tational tableau by taking advantage of the ”uncompressed matrix of the problem”. First

they convert the nonlinear function to a PWL function and then using the duality they

transformed the approximation into a simplex problem. Similar to Charnes and Lemke’s

study, Mangarasian, Rosen and Thompson used PWL functions to estimate the global mini-

mum of a non-convex function in Rn with multiple local minimums [39]. They approximated

it from below via concave minimization with PWL convex function using sample points from

the original function. The method provides accurate estimate of the global minimum and

applied to non-convex piecewise quadratic functions that model protein docking problems.

Although, modeling of piecewise linear functions is extensively studied in literature, ef-

fective models for representing continuous piecewise linear functions had not been developed

so far. They were either complex or targeted to a very limited classes of PWL functions.

The objective of this study is to fulfill this gap by introducing a novel LP formulation with-

out binary variables, for finding the extrema of continuous piecewise linear functions. Our

novel formulation is superior to existing formulations in terms of complexity and simplicity.

There are locally ideal MIP formulations; however, their complexity is high or they are used

with special branching strategies. This becomes a serious issue especially when the PWL

function has too many break points and/or component functions, because this increases the

cpu time spend until finding the extrema of PWL functions. To the contrary, our formu-
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lation has much lower complexity than any other existing formulation in literature. It has

less number of constraints and variables, and it is free from binary variables. These factors

decrease the cpu time for finding the extrema of PWL functions when our formulation used.

Other than complexity and simplicity, our formulation can be applied to a wide range of

PWL functions. There are formulations designed for specially structured PWL functions;

however they have limited application areas, such as only convex PWL functions etc. Our

formulation, however, can be applied to all types of continuous PWL functions (convex,

concave, non-convex) and separable piecewise continuous linear functions.
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Chapter 3

A NOVEL LINEAR PROGRAMMING FORMULATION TO FIND

THE EXTREMA OF CONTINUOUS PIECEWISE LINEAR

FUNCTIONS

We divided this chapter into four sections. The first section gives the model as a whole.

The second section mentions some observations related to piecewise linear functions. The

third section validates our novel formulation with a proof and models a piecewise linear

functions with our novel formulation. Section four shows how we extended our formulation

to separable piecewise continuous linear functions and illustrates this extension on a sepa-

rable piecewise continuous linear function. Throughout this section we refer to the PWL

definition in Chapter 1.

3.1 Novel Formulation

In our novel formulation, we defined decision variables yj , as the load amounts in each

interval j. These decision variables are the same as the incremental cost model of Markowitz

and Manne, Eq. (2.5 - 2.6) [40]. Using these decision variables we developed the following

novel formulation for finding the extrema of continuous piecewise linear functions:

min y

st y = a1x1 + b1 +
t−1∑

j=1

ajyj

x = x1 +
t−1∑

j=1

yj

0 ≤ yj ≤ xj+1 − xj ∀ j = 1, ..., t− 1

yj+1 ≤ (xj+2 − xj+1)yj/(xj+1 − xj) ∀ j = 1, ..., t− 2
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(3.1)

The objective function in Eq. (3.1) can be replaced by max to find the maximum of the

piecewise linear function. The first constraint defines the PWL function’s value y and the

second constraint defines the domain’s value x that corresponds to y. The third and fourth

constraints are actually the set of constraints that define the load amounts in each interval

and the relationships among them respectively.

3.2 Observations Related to Continuous Piecewise Linear Functions

In order to model and optimize a continuous piecewise linear function, the following obser-

vations should be taken into account.

• For a continuous piecewise linear function with aj 6= 0 ∀ j = 1,..., t-1 extrema always

lies at kink (break)points

Proof : Assume to the contrary that minima of a piecewise linear function (f(x∗)) is

in the sth segment where x∗ 6= xS and x∗ 6= xs+1.

f(x∗) = asx
∗ + bs, x ∈ (xs, xs+1)

f(xs) = asxs + bs

f(xs+1) = asxs+1 + bs (3.2)

Then,

f(xs)− f(x∗) = as(xs − x∗)

f(xs+1)− f(x∗) = as(xs+1 − x∗) (3.3)

Since x∗ ∈ (xs,xs+1) we obtain (xs - x∗) < 0 and (xs+1 - x∗) > 0.

If as < 0 then,

f(xs)− f(x∗) > 0
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f(xs+1)− f(x∗) < 0 (3.4)

Hence, f(xs) > f(x∗) > f(xs+1) when x∗ ∈ (xs , xs+1) which is a contradiction to

the previous assumption.

If as > 0 then,

f(xs)− f(x∗) < 0

f(xs+1)− f(x∗) > 0 (3.5)

Therefore, f(xs) < f(x∗) < f(xs+1) when x∗ ∈ (xs , xs+1) which is contradiction to

the previous assumption. Hence, the minima of a piecewise linear function is located

always at break points when aj 6= 0 ∀ j = 1,.., t-1. ¤

When ∃ aj = 0, the above assumption can be restated as: ” At least one extreme

point corresponds to the extrema of the piecewise linear function represented ”.

• Markowitz and Manne stated in their paper the following: ”While modeling piecewise

linear functions; feasibility requires that the load on the interval k + 1 must be zero

unless the load on interval k is equal to its upper bound” [40]. This observation can

be restated as follows:

yk+1 > 0 only if yk = xk+1 − xk (3.6)

3.3 Proof of the Formulation

Theorem 1 If a piecewise linear function is continuous, then it can be represented with the

following system of linear equations exactly (given that load amounts in each interval meet

the condition in Eq. (3.6)):

y = a1x1 + b1 +
t−1∑

j=1

ajyj
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x = x1 +
t−1∑

j=1

yj (3.7)

where each yj is a continuous variable satisfying :

0 ≤ yj ≤ xj+1 − xj ∀ j = 1, ..., t− 1 (3.8)

Proof : Consider an arbitrary value x in the interval [xk,xk+1]. Then the value of piecewise

linear function is:

f(x) = akx + bk (3.9)

Assume to the contrary that the value of piecewise linear function at this arbitrary x is not

equal to the value of y at x, where y and x are defined by (3.7). Which is :

f(x) 6= y (3.10)

Then second equation of (3.7) for this chosen x can be written as:

x = x1 +
k−1∑

j=1

yj + yk +
t−1∑

j=k+1

yj (3.11)

Assume that

yj : at its upper bound, which is yj = xj+1 - xj ∀ j = 1,..., k-1.

yj : at its lower bound, which is yj = 0 ∀ j = k+1,..., t-1.

yk: in the interval of its boundaries.

Then, Eq(3.11) becomes :

x = x1 +
k−1∑

j=1

(xj+1 − xj) + yk +
t−1∑

j=k+1

0

x = xk + yk (3.12)
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Since 0 ≤ yk ≤ xk+1 - xk, when we add xk to the both sides of this inequality and

combine it with Eq(3.12) we obtain :

xk ≤ xk + yk ≤ xk+1

xk ≤ x ≤ xk+1 (3.13)

Eq(3.13) shows that functions in Eq(3.7) represents x exactly. Then, from the first equation

in (3.7), we can write y at x as follows :

y = a1x1 + b1 +
t−1∑

j=1

ajyj

= a1x1 + b1 +
k−1∑

j=1

ajyj + akyk +
t−1∑

j=k+1

0

= a1x1 + b1 +
k−1∑

j=1

aj(xj+1 − xj) + akyk

y = a1x1 + b1 + a1(x2 − x1) + a2(x3 − x2) + ... + ak−2(xk−1 − xk−2) + ak−1(xk − xk−1) + akyk

y = a1x1 + b1 + akyk + a1x2 − a1x1 +
k−1∑

j=2

aj(xj+1 − xj)

y = akyk + b1 + a1x2 +
k−1∑

j=2

aj(xj+1 − xj) (3.14)

From Eq(A.1) we know;

a1x2 + b1 = a2x2 + b2 ⇒ b2 = a1x2 + b1 − a2x2

a2x3 + b2 = a3x3 + b3 ⇒ b3 = a2x3 + b2 − a3x3

... ⇒ ...

ak−2xk−1 + bk−2 = ak−1xk−1 + bk−1 ⇒ bk−1 = ak−2xk−1 + bk−2 − ak−1xk−1

ak−1xk + bk−1 = akxk + bk ⇒ bk = ak−1xk + bk−1 − akxk

bk = b1 + a1x2 + a2(x3 − x2) + a3(x4 − x3) + ... + ak−1(xk − xk−1)− akxk (3.15)
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After inserting bk into Eq(3.9) and rearranging we obtain :

f(x) = akx + bk

= akx + b1 + a1x2 + a2(x3 − x2) + a3(x4 − x3) + ... + ak−1(xk − xk−1)− akxk

= ak(x− xk) + b1 + a1x2 +
k−1∑

j=2

aj(xj+1 − xj)

= akyk + b1 + a1x2 +
k−1∑

j=2

aj(xj+1 − xj) (3.16)

From equations Eq(3.14) and Eq(3.16) it is observed that y = f(x). Hence, assumption

f(x) 6= y does not hold and f(x) is exactly represented. ¤

Theorem 2 The following LP models the minimization of any continuous piecewise linear

function exactly.

min y

st y = a1x1 + b1 +
t−1∑

j=1

ajyj

x = x1 +
t−1∑

j=1

yj

0 ≤ yj ≤ xj+1 − xj ∀ j = 1, ..., t− 1

yj+1 ≤ (xj+2 − xj+1)yj/(xj+1 − xj) ∀ j = 1, ..., t− 2

(3.17)

Proof : We proved the validity of the first and second constraints in Theorem 1. When

we examine the last constraint of our model we observe the following:

For the interval (xk,xk+1) let yk be the load amount in this interval, then:

• If yk = 0, then the last constraint enforces the following :

yk+1 ≤ (xk+2 − xk+1)yk/(xk+1 − xk)
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yk+1 ≤ (xk+2 − xk+1)0/(xk+1 − xk)

yk+1 ≤ 0 (3.18)

and combining this with the third constraint of Eq (3.31) we have :

0 ≤ yk+1 ≤ 0 ⇒ yk+1 = 0. (3.19)

Hence; if yk=0, then yj=0 ∀ j=k+1, ..., t-1.

• If yk+1 = xk+2 - xk+1, then the last constraint enforces the following :

yk+1 ≤ (xk+2 − xk+1)yk/(xk+1 − xk)

(xk+2 − xk+1) ≤ (xk+2 − xk+1)yk/(xk+1 − xk)

xk+1 − xk ≤ yk

and combining this with the third constraint of Eq (3.31) we have :

xk+1 − xk ≤ yk ≤ xk+1 − xk ⇒ yk = xk+1 − xk (3.20)

Therefore; if yk+1 = xk+1 - xk, then yj = xj+1 - xj ∀ j=1, ..., k.

The last two constraints construct a feasible region where each corner point of that

feasible region corresponds to a break point of the piecewise linear function modelled. The

total load and its corresponding function value is calculated based on the yj values at the

extreme points of that feasible region. Moreover, for any break point k represented in this

feasible region, our second observation holds as follows:

1. All the intervals up to the break point k are loaded up to their upper bound. That is:

yj = xj+1 − xj ∀ j = 1, ..., k − 1 (3.21)
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2. All the intervals after the break point k are not loaded. That is:

yj = 0 ∀ j = k, ..., t− 1 (3.22)

In previous section we observed and proved that minima of any continuous piecewise

linear function is located at an extreme point. Our model constructs a feasible region with

the properly defined extreme points each corresponding to the break points of the piecewise

linear function. Moreover, we know that simplex algorithm moves among the extreme points

of the feasible region while searching the optimal solution. Hence, the extreme point at which

the simplex algorithm finds the optimal solution corresponds to the break point where the

piecewise linear function has its minima. Therefore, linear programming formulation in Eq

(3.31) models the minimization of continuous piecewise linear function exactly. ¤

The formulation in Eq (3.31) can be easily converted into a formulation which finds the

maxima of any continuous piecewise linear function by changing the objective function from

min to max. Consequently, we can claim that this formulation finds the extrema (minima

or maxima) of any continuous piecewise linear function exactly.

Illustrative Example

Let f(x) be a continuous piecewise linear function defined by Eq. (3.23) and represented

in Fig. 3.1 :

f(x) =





8 + 2x if 0 ≤ x ≤ 3

20− 2x if 3 ≤ x ≤ 7
(3.23)

Where x1 = 0, x2 = 3 and x3 = 7; a1 = 2 and a2= -2; b1 = 8 and b2 = 20.

When we model PWL function in Eq. (3.23) according to the formulation in Theorem

(2) the following model is obtained :

min y

st y = 8 + 2y1 − 2y2

x = x1 + y1 + y2
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Figure 3.1: Graph of f(x)

y1 ≤ 3

y2 ≤ 4

3y2 ≤ 4y1

y1 ≥ 0

y2 ≥ 0 (3.24)

LP formulation in Eq. (3.24) has 4 variables and 7 constraints and yields the feasible

region in Fig. (3.2), where the corner point feasible solutions correspond to the break points

and represent them exactly. First corner point (0,0) corresponds to the first break point

x1=0, where none of the intervals are loaded, that is y1=y2=0. The second corner point

(3,0) corresponds to the second break point x2=3, where the first interval is fully loaded

and the second interval is not loaded, that is y1=3 and y2=0. The third corner point (3,4)

corresponds to the third break point x3=7, where all the intervals are loaded up to their

upper bounds, that is y1=3 and y2=4.

When Eq(3.24) is solved with a linear programming solver, the optimal solution is ob-

tained where y1=3, y2=4 and x∗=7 with the objective function value y∗=6. This solution
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Figure 3.2: Feasible region of the model

represents the minima of piecewise linear function in Fig. 3.1 exactly.

We can model the same problem with three text book formulations:

• Convex Combination Model

• Multiple Choice Model

• Incremental Cost Model

Convex Combination Formulation:

min f(x)

st f(x) = λ1f(x1) + λ2f(x2) + λ3f(x3)

x = λ1x1 + λ2x2 + λ3x3

λ1 ≤ 1

λ2 ≤ 1

λ3 ≤ 1
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λ1 +λ2 + λ3 = 1

λ1 ≤ δ1

λ2 ≤ δ1 + δ2

λ3 ≤ δ2

δ1 +δ2 = 1

λ1 ≥ 0

λ2 ≥ 0

λ3 ≥ 0

δ1 = 0, 1

δ2 = 0, 1 (3.25)

Multiple Choice Formulation:

min f(x)

st f(x) = a1z1 + b1y1 + a2z2 + b2y2

x = z1 + z2

x1y1 ≤ z1

x2y2 ≤ z2

z1 ≤ x2y1

z2 ≤ x3y2

y1 +y2 = 1

y1 = 0, 1

y2 = 0, 1 (3.26)

Incremental Cost Formulation:

min f(x)
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st f(x) = b + a1x1 + a1q1 + a2 + q2

x = x1 + q1 + q2

y1 ≥ q1

x1 − x2

y2 ≥ q2

x3 − x2

y2 ≤ q1

x2 − x1

q1 ≥ 0

q2 ≥ 0

y1 = 0, 1

y2 = 0, 1 (3.27)

Formulating the same problem with different methods yield programming models with

different number of variables and constraints. For example, when we model PWL function

in Eq. (3.23) with our formulation and with three other formulations, we get programming

models with different complexities, see Table 3.1. Among these formulations, our formula-

tion has both least number of variables and constraints. This result can be generalized to

all continuous PWL functions as follows: Let f(x) be a PWL function with t number of

break points. Then, table 3.2 represents the number of variables and constraints of different

modeling methods (and their LP relaxations) used to formulate f(x).

Table 3.1: Number of Variables and Constraints for Piecewise Linear Function in Fig. 3.1

variables constraints (LP) constraints (MIP)
Our Formulation 4 7

Convex Combination 6 11 9
Multiple Choice 7 17 15

Incremental Cost 6 11 9
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Table 3.2: Number of Variables and Constraints for a Piecewise Linear Function with t
Break Points

variables constraints (LP) constraints (MIP)
Our Formulation t + 1 2t + 1

Convex Combination 2t + 1 5t + 2 4t + 3
Multiple Choice 2t 4t− 1 3t

Incremental Cost 2t 5t− 4 4t

3.4 Extension to Separable Piecewise Continuous Linear Functions

Separable Piecewise Continuous Linear Function ”A real-valued function f(x) de-

fined over x = (x1, x2, ..., xn)T ∈ <n is said to be a seperable piecewise continuous

linear function if and only if it can be written as

f(x) = f1(x1) + f2(x2) + ... + fn(xn) (3.28)

where each component function fi(xi) depends only on one variable xi, and is piecewise

continuous linear with respect to xi” [20].

From definition it is observed that, component functions (fi(xi)) of a separable piecewise

linear function are defined independent from each other. Therefore, in the absence of other

equations that link component functions to each other, minimizing/maximizing a separable

piecewise continuous linear function f(x) is equal to minimizing/maximizing its component

functions fi(xi) separately [12].

Let f(x) be a separable piecewise continuous linear function defined by Eq.3.29,

f(x) = f1(x1) + f2(x2) + ... + fn(xn) =
n∑

i=1

fi(xi) (3.29)

where each fi(xi) is continuous PWL function defined by Eq. 3.30:
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fi(xi) =





ai1xi + bi1 if xi1 ≤ xi ≤ xi2

ai2xi + bi2 if xi2 ≤ xi ≤ xi3

... ... ...

... ... ...

aiti−1xi + biti−1 if xiti−1 ≤ xi ≤ xiti

(3.30)

where

xij : break points on domain ∀ j=1,...,ti in function fi, i=1,...,n

aij : the slope of the cost function for interval j ∀ j=1,...,ti-1 in function fi, i=1,...,n

bij : cost intercept of the function for interval j ∀ j=1,...,ti-1 in function fi, i=1,...,n

ti : number of break points of component function fi(xi), i=1,...,n

It is assumed that xij ≤ xij+1 ∀ j=1,...,ti-1, i=1,...,n and the domain is bounded, i.e. xti

< ∞. It is also further assumed that component piecewise linear functions are continuous

fulfilling the conditions in Eq. (A.1).

Then we can find the minimum of f(x) with the following LP formulation:

min f(x)

st f(x) =
n∑

i=1

yi

yi = ai1xi1 + bi1 +
ti−1∑

j=1

aijyij ∀ i = 1, ..., n

xi = xi1 +
ti−1∑

j=1

yij ∀ i = 1, ..., n

0 ≤ yij ≤ xij+1 − xij ∀ j = 1, ..., ti − 1 , ∀ i = 1, ..., n

yij+1 ≤ (xij+2 − xij+1)yij

xij+1 − xij
∀ j = 1, ..., ti − 2 , ∀ i = 1, ..., n

(3.31)
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We can apply the same formulation to find the maximization of f(x) by replacing ob-

jective of the formulation from minimization to maximization.

Illustrative Example - Separable Piecewise Continuous Linear Functions

Let f(x) be a separable piecewise continuous linear function defined by Eq. 3.32

f(x) = f1(x1) + f2(x2) (3.32)

where f1(x1) and f2(x2) defined by Eq. 3.33 and Eq. 3.34 respectively.

f1(x1) =





2x1 + 1 if 0 ≤ x1 ≤ 4

−x1 + 1 if 4 ≤ x1 ≤ 7
(3.33)

f2(x2) =





−2x2 if −1 ≤ x2 ≤ 2

x2 − 6 if 2 ≤ x2 ≤ 5

3x2 − 16 if 5 ≤ x2 ≤ 10

(3.34)

The first component function f1(x1) has 2 intervals, with break points x11 = 0, x12 = 4,

x13 = 7, slopes a11 = 2, a12 = −1 and cost intercepts b11 = 1, b12 = 1. The second

component function f2(x2) has 3 intervals with break points x21 = −1, x22 = 2, x23 = 5,

x24 = 10, slopes a21 = −2, a22 = 1, a23 = 3 and cost intercepts b21 = 0, b22 = −6 and

b23 = −16.

Then the LP formulation in Eq. 3.35 finds the minimum of f(x) exactly.

min f(x)

st f(x) = y1 + y2

y1 = 1 + 2y11 − y12

y2 = −2y21 + y22 + 3y23
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x1 = y11 + y12

x2 = −1 + y21 + y22 + y23

0 ≤ y11 ≤ x12 − x11

0 ≤ y12 ≤ x13 − x12

0 ≤ y21 ≤ x22 − x21

0 ≤ y22 ≤ x23 − x22

0 ≤ y23 ≤ x24 − x23

y12 ≤ (x13 − x12)y11

x12 − x11

y22 ≤ (x23 − x22)y21

x22 − x21

y23 ≤ (x24 − x23)y22

x23 − x22
(3.35)



Chapter 4: Numerical Study and Results 31

Chapter 4

NUMERICAL STUDY AND RESULTS

In this chapter, multiple choice model, convex combination model, incremental cost

model and its LP relaxation are compared with our formulation. The comparisons base on

the cpu time spend by each model to find the optimal solution of minimization/maximization

problems of different structured PWL functions. The reason why we chose those modeling

methods is that they are the most well known modeling methods in literature. We added

LP relaxation of incremental cost model as well, since it can find the extrema of a PWL

function in the existence of no other constraints (locally ideal property [42]) which is the

same problem we are considering.

Our numerical study consists of two parts. In first part we consider benchmarks of small

sized piecewise linear functions, i.e. number of break points up to 10. In second part, we

consider larger instances of piecewise linear functions, i.e. break points more than 50.

During benchmarks, GAMS version 23.4 is used on a Intel Core 2 Duo CPU T 8100

@2.10 GHz 2 GB of RAM computer. A sample GAMS code from benchmark studies can

be found in appendix.

4.1 Small Sized PWL Functions

All PWL functions stated in this section belong to the continuous PWL functions category.

Within this category 4 different types of problems are taken into account and those are:

• Convex Piecewise Linear Functions

• Concave Piecewise Linear Functions

• Non-Convex Piecewise Linear Functions
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• Separable Piecewise Continuous Linear Functions

We created 5 PWL functions from each category and solved the problem of finding their

extrema both with our model and other modeling methods. We compared cpu times spend

to solve both minimization and maximization problem of these functions with different types

of modeling techniques. Details of each PWL function with corresponding performances of

modeling methods can be found in appendix.

In table 4.1 we put all the run times together and in table 4.2 we indicated best perform-

ing models on each PWL function studied. In table 4.2, the ”x” on a row indicates that the

modeling method under which ”x” placed has found the extrema of corresponding function

in shortest time. For example minimum of fourth problem in convex PWL functions was

solved fastest by our formulation and this is indicated with a ”x” under Our Formulation

column in row 7. More than one ”x” on a row indicates that more than one modeling

method found the optimal solution with shortest cpu time.

20 different functions were used for benchmark studies with small instances and their

minimization and maximization result in 40 different optimization problems. In 30 of these

problems our formulation has been one of the modeling methods that reached the optimal

solution fastest and in 23 of these problems our formulation has been the only fastest

method. Additionally, our formulation has always been one of the 2 fastest formulations

in all benchmark problems. There were 5 PWL functions and 10 optimization problems in

convex PWL functions category. In 5 of these problems our formulation has been one of

the fastest modeling methods and in 4 of them our formulation has been the only fastest

method. There were 5 PWL functions and 10 optimization problems in concave PWL

functions category. In 7 of these problems our formulation has been one of the fastest

modeling methods and again in 7 of them our formulation has been the only fastest method.

There were 5 PWL functions and 10 optimization problems in non-convex PWL functions

category. In 8 of these problems our formulation has been one of the fastest modeling

methods and in 6 of them our formulation has been the only fastest method. There were 5

separable PWL functions and 10 optimization problems derived from them. In all of these

problems our formulation has been one of the fastest modeling methods and in 6 of them
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Table 4.1: CPU Times of Modeling Methods in Benchmark studies with Small Instances
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Table 4.2: Best Performances in Benchmark Studies with Small Instances
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our formulation has been the only fastest method.

Most frequently (75% of time) our formulation has been the fastest method that found

the optimal solution. It was followed by LP Relaxation of Incremental Cost model (30%

of time), Multiple Choice Model (10% of time), Incremental Cost Model (5% of time)

and Convex Combination model respectively (never). LP relaxation of Incremental Cost

formulation has been one of the fastest modeling methods in 12 of 40 problems and in 8

of them it has been the only fastest modeling method. In 4 of all problems LP Relaxation

of Incremental Cost formulation has been one of the fastest modeling methods and in 1

of them it has been the only fastest modeling method. In 2 of all problems Incremental

Cost formulation has been one of the fastest modeling methods and in 1 one of them it has

been the only fastest method. Convex Combination formulation has never been among the

best performers. We summarized percentage of time being fastest model and being among

fastest models in Table 4.3. When we take the average of cpu times for each modeling

method, it is observed that our formulation finds the extrema fastest for general and all

sub categories (blue cells in Table 4.4) of PWL functions. From table 4.4 we observe

that our formulation has the least average CPU time as 0.0143 and its closest follower LP

relaxation of Incremental Cost formulation’s average CPU time is 0.0208. In other words,

our formulation is 1.45 times faster than its closest follower.

Table 4.3: Modeling Methods and Best Performance Distributions with Small Instances
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Table 4.4: Average CPU Times of Modeling Methods in Benchmark studies with Small
Instances

4.2 Larger Instances

In this section we consider large instances of piecewise linear functions that has fifty break

points or more. For this purpose, we generated 3 separable piecewise continuous linear

functions that have 5 component functions. All the component functions of first separable

piecewise continuous linear functions have 50 break points. All the component functions

of second separable piecewise continuous linear functions have 100 break points. All the

component functions of third separable piecewise continuous linear functions have 200 break

points.

Additionally, we approximated two functions from signal processing: Duffing map and

henon map. Duffing map is defined by Eq. (4.1) and Henon map is defined by Eq.(4.2). We

first initialized the first 2 iterations’s values and using them we iterated mapping functions

several times. For each iteration, we assigned a break point and initialized the first break

point as 1 (x1 = 1), while keeping the length of each interval as one. In this way if a mapping

function is iterated 10 times, we obtained its PWL approximation with 10 break points and

at each break point the value of the PWL function is equal to mapping functions value at

corresponding iteration. The duffing map approximation consisted of 100 break points (100

iterations of duffing map) and henon map approximation consisted of 2000 break points

(2000 iterations of henon map).

f(t) = −0.2f(t− 1) + 2.75f(t− 2)− f(t− 1)3 (4.1)
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f(t) = 1− 1.4f(t− 1)2 + 0.3f(t− 2) (4.2)

We compared cpu times spend to solve both minimization and maximization problem

of large PWL functions with different types of modeling techniques.

In table 4.5 we put all the CPU times for large instances and in table 4.6 we indicated

best performing models on each large PWL function studied. Our formulation has been the

most frequently best performing formulation followed by incremental cost formulation and

its LP relaxation. In 9 out of 10 problems our formulation has found the optimal solution

with the least CPU time and in 8 of them our formulation has been the unique solution

that has found the optimal solution with the least CPU time. One of the observations that

we gained from large instances is the following: As the number of break points increase,

our formulations performance has dominated other formulations more. Our formulation has

become more frequently best performing method when the sample PWL functions are large.

Another observation is that: The gap between our formulation’s CPU usage and its closest

followers’ CPU usage has increased. From table 4.7 we observe that our formulation has the

least average CPU time as 0.0114 and its closest follower Incremental Cost formulation’s

average CPU time is 0.0287. In other words, our formulation is 2.5 times faster than its

closest follower when the number of break points are high. This ratio was 1.45 for small

instances.

Table 4.8 represents the distribution of time a modeling method has become one of the

best performing methods among all benchmark studies (both small and large instances).

Our formulation has become 78% of time one of the best performing methods in all bench-

mark studies. Moreover, 88% of time our formulation is one of the best performing methods,

whereas this ratio decreases to 68% for minimization problems. In table 4.9 we put average

CPU times of modeling methods in all benchmark studies. Our formulation has the least

average CPU time as 0.014 and its closest follower LP relaxation of incremental cost for-

mulation’s average CPU time is 0.023. In other words, our formulation is 1.6 times faster

than its closest follower in all benchmark studies.
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Table 4.5: CPU Times of Modeling Methods in Benchmark Studies with Large Instances

Table 4.6: Best Performances in Benchmark Studies with Large Instances

Table 4.7: Average CPU Times of Modeling Methods in Benchmark studies with Large
Instances
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Table 4.8: Modeling Methods and Best Performance Distributions in All Instances

Table 4.9: Average CPU Times of Modeling Methods in All Benchmark Studies

As we illustrated in Chapter 3 our formulation has lower complexity than other formu-

lations and we validate this result in our benchmark studies as well. Our novel formulation

has dominated other formulations both in general and in all sub categories of PWL func-

tions studied in terms of CPU time. It has the highest frequency of being fastest modeling

method and there is a huge gap between its nearest follower (1.45 times faster for small sized

problems, 2.5 times faster for large sized problems, 1.6 faster for all benchmarks). We also

observed that as the number of break points increase, the performance of our formulation

dominates other formulations more significantly.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this thesis we proposed a novel linear programming formulation for finding the extrema

of continuous piecewise linear functions. Although, modeling of piecewise linear functions is

extensively studied in literature, this novel formulation differs from others in terms of com-

plexity, run time and simplicity. We can group previous studies on modeling of piecewise

linear functions into three categories. The first category of work includes the use of mixed

integer programming (MIP) models. Several MIP formulations are proposed to model piece-

wise linear functions; incremental cost, convex combination and multiple choice models are

the most well known of these formulations. They make use of binary variables and hence

are hard to solve. On the other hand, second category of work concentrated on developing

models that do not require the use of binary variables or decrease the number of binary

variables in the models. They make use of the branch and bound, branch and cut algorithms

combined with special ordered sets. The third group of studies focus on modeling piecewise

linear functions with special structures useful for their formulation. For example, convex

piecewise linear functions fall into this category. Their minimization can be modelled as LP

without binary variables or a modified version of simplex algorithm exists to solve the same

problem.

All of these attempts provide useful insights; however, these formulations are either com-

plex or target a very specific class of PWL functions. In this thesis we presented a novel and

effective linear programming formulation for finding the extrema of continuous PWL func-

tions. We proved that our formulation finds the extrema of any continuous PWL function

(convex, concave or non-convex) exactly. While developing this formulation we made use

of two facts: First, simplex algorithm moves along the extreme points of the feasible region

while searching for the optimal solution. Second, extrema of any continuous PWL function
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lies at one of its break points. We developed a linear programming formulation with a spe-

cial feasible region such that the extreme points of this region overlap with the break points

of the corresponding PWL function. This property enables the simplex algorithm to find

the extrema of PWL function exactly. Being free from binary variables, our formulation can

be implemented and solved in a general purpose LP solver. Furthermore, our formulation

has lower number variables and constraints than the existing formulations in the literature.

As a result, all of these properties decrease the complexity of our formulation and the CPU

time to find the optimal solution. We then extended our formulation to find the extrema of

separable piecewise continuous linear functions.

We supported our findings computationally by benchmarking our formulation with the

most common formulations in the literature. We derived PWL functions with different

structural properties and found their extrema using both our formulation and 4 different

formulations from literature. The comparison based on the CPU times spend to find the

optimal solution using each formulation method. Benchmark studies showed that our for-

mulation is performing far better than other formulation types. 78% of time our formulation

was one of the formulations that found the optimal solution with shortest cpu time and 64%

of time our formulation was the fastest model alone. Additionally, our method was 100% of

time among the fastest 2 methods. The nearest follower of our model was the LP relaxation

of incremental cost formulation. It was 26% of time among best performers and 18% of

time the fastest model alone.

In conclusion, our contribution to the literature with this thesis is threefold. First,

we developed a general formulation that can be used to model all classes of continuous

PWL functions. Previous LP formulations (without binary variables) were targeting specific

types of problems, such as minimizing convex PWL functions or maximizing concave PWL

functions. Second, our formulation does not include binary variables, hence it has a simple

structure and can be solved with a general purpose LP solver. Other formulations covering

all classes of PWL functions were harder to implement. They either include binary variables

or reach the solution step by step using branching algorithms and special ordered sets.

Third, the complexity of our formulation is less than the existing methods and it reaches



Chapter 5: Conclusions and Future Work 42

the optimal solution in shorter time.

We believe there are two directions for future research. First direction is extending our

formulation to cover the discontinuous PWL functions and the second direction is extending

our formulation to find the extrema of PWL functions when there are other constraints.
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Appendix A

TYPES OF PIECEWISE LINEAR FUNCTIONS

Continuous Piecewise Linear Function A piecewise linear function is classified as continuous

if the following is satisfied [20]:

a1x2 + b1 = a2x2 + b2

a2x3 + b2 = a3x3 + b3

... = ...

... = ...

at−2xt−1 + bt−2 = at−1xt−1 + bt−1 (A.1)

This set of equations provides that the values of local functions on both sides of each

break point are exactly the same [49]. For example, Figure A.1 is the graph of a

continuous piecewise linear function described by Eq. (A.2):

f(x) =





4x + 3 if 0 ≤ x ≤ 2

−2x + 15 if 2 ≤ x ≤ 3

x + 6 if 3 ≤ x ≤ 7

(A.2)

Here, the function is defined on the domain [0,7] with the break points x1 = 0, x2 = 2,

x3 = 3 and x=7. Local functions on both sides of the break points has the same value.

For example at second break point x2 = 2, the value of the function does not change.

When we calculate f(2) using equations in the first interval f(x) = 4x + 3 or in the

second interval f(x) = −2x + 15, the same value is obtained f(2) = 11. The same

is true at break point x3 = 3 too. When we calculate f(3) using equations in the
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second interval f(x) = −2x + 15 or in the third interval f(x) = x + 6, the same value

is obtained f(3) = 9.

Figure A.1: A Continuous Piecewise Linear Function

On the other hand, figure A.2 is the graph of a discontinuous piecewise linear function

described by Eq. (A.3):

f(x) =





3x + 7 if 0 ≤ x ≤ 3

−2x + 10 if 3 ≤ x ≤ 5

x if 5 ≤ x ≤ 6

(A.3)

In this example, the function is defined on the domain [0,6] with the break points

x1 = 0, x2 = 3, x3 = 5 and x=6. Local functions on both sides of at least one break

point does not have the same value. For example at second break point x2 = 3, the

value of the function changes. When we calculate f(3) using the equation in first

interval f(x) = 3x + 7, the result is f(3) = 16; whereas, when we calculate f(3) using

equation in second interval f(x) = −2x + 10, the result is f(3) = 4. 16 6= 4 and

continuity conditions in Eq. (A.1)are not satisfied; hence, the function is classified as
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Figure A.2: A Discontinuous Piecewise Linear Function

discontinuous.

Convex Piecewise Linear Function A piecewise linear function is classified as convex

if the following is satisfied [20]:

aj ≤ aj+1 ∀ j ∈ 1, ..., t− 1 (A.4)

For example, figure A.3 is the graph of a convex piecewise linear function described

by Eq. (A.5):

f(x) =





−4x + 2 if −2 ≤ x ≤ 0

−3x + 2 if 0 ≤ x ≤ 2

x− 6 if 2 ≤ x ≤ 5

2x− 11 if 5 ≤ x ≤ 6

3x− 17 if 6 ≤ x ≤ 9

(A.5)
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The slopes of the function in each segment satisfy the condition in Eq. (A.4), i.e.

a1 = −4 ≤ a2 = −3 ≤ a3 = 1 ≤ a4 = 2 ≤ a5 = 3.

Figure A.3: A Convex Piecewise Linear Function

Concave Piecewise Linear Function A piecewise linear function is classified as concave

if the following is satisfied [20]:

aj ≥ aj+1 ∀ j ∈ 1, ..., t− 1 (A.6)

Figure A.4 is graph a concave piecewise linear function described by Eq. (A.7) :

f(x) =





10x + 20 if 5 ≤ x ≤ 15

6x + 80 if 15 ≤ x ≤ 20

200 if 20 ≤ x ≤ 30

−2x + 260 if 30 ≤ x ≤ 40

−10x + 580 if 40 ≤ x ≤ 45

(A.7)

The slopes of the function in each segment satisfy the condition in Eq. (A.6), i.e.
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a1 = 10 ≥ a2 = 6 ≥ a3 = 0 ≥ a4 = −2 ≥ a5 = −10.

Figure A.4: A Concave Piecewise Linear Function

From this definitions the following is observed: Convexity (concavity) is related with

the slope of the cost function in each segment. If the slope of the function in each segment

is non-decreasing (non-increasing), then the piecewise linear function is convex (concave).

Non-convex Piecewise Linear Function If a continuous piecewise linear function is

neither convex nor concave, then it is classified as non-convex. Figures A.1 and A.2

are examples of piecewise linear functions that are neither convex nor concave, hence

defined as non-convex piecewise linear functions.
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Appendix B

DETAILS OF PROBLEMS IN BENCHMARK STUDIES

B.1 Benchmark of Convex PWL Functions

Function 1: The first convex PWL function used for benchmark is the function used to

illustrate a convex PWL function. It was defined by equation A.5 and represented in Fig.

A.3. Its minimization and maximization with different models yield the results in Table

B.1. When the objective is both minimization and maximization, the LP relaxation of

incremental cost formulation finds the optimal solution with the least cpu time.

Table B.1: CPU times for Convex PWL Function Example-1

Minimize Maximize
Our Formulation 0.027 0.012

Convex Combination 0.125 0.092
Multiple Choice 0.028 0.030

Incremental Cost 0.031 0.110
Incremental Cost (LP Relaxation) 0.026 0.011

Function 2: The second convex PWL function is defined by equation B.1 and repre-

sented in Fig. B.1.

f(x) =





−10x− 20 if 5 ≤ x ≤ 15

−6x− 80 if 15 ≤ x ≤ 20

−200 if 20 ≤ x ≤ 30

2x− 260 if 30 ≤ x ≤ 40

10x− 580 if 40 ≤ x ≤ 45

(B.1)
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Figure B.1: Convex PWL Function - 2

Its minimization and maximization with different models yield the results in Table B.2.

When the objective is minimization, multiple choice formulation finds the optimal solution

with the least cpu time. On the other hand, when the objective is maximization our

formulation finds the optimal solution with the least cpu time.

Table B.2: CPU times for Convex PWL Function Example-2

Minimize Maximize
Our Formulation 0.027 0.010

Convex Combination 0.161 0.098
Multiple Choice 0.011 0.013

Incremental Cost 0.036 0.126
Incremental Cost (LP Relaxation) 0.031 0.033

Function 3: The third convex PWL function is defined by equation B.2 and represented

in Fig. B.2.
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f(x) =





−6x + 10 if −10 ≤ x ≤ −2

−5x + 12 if −2 ≤ x ≤ 1

−3x + 10 if 1 ≤ x ≤ 5

−x if 5 ≤ x ≤ 13

−13 if 13 ≤ x ≤ 20

0.5x− 23 if 20 ≤ x ≤ 25

(B.2)

Figure B.2: Convex PWL Function - 3

Its minimization and maximization with different models yield the results in Table B.3.

When the objective is minimization the LP relaxation of incremental cost formulation finds

the optimal solution with least cpu time. On the other hand, when the objective if maxi-

mization our formulation finds the optimal solution with the least cpu time.

Function 4: The fourth convex PWL function is defined by equation B.3 and repre-

sented in Fig. B.3.
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Table B.3: CPU times for Convex PWL Function Example-3

Minimize Maximize
Our Formulation 0.029 0.011

Convex Combination 0.118 0.040
Multiple Choice 0.030 0.033

Incremental Cost 0.035 0.038
Incremental Cost (LP Relaxation) 0.028 0.034

f(x) =





−0.5x + 8 if −10 ≤ x ≤ −2

9 if −2 ≤ x ≤ 1

x + 8 if 1 ≤ x ≤ 5

3x− 2 if 5 ≤ x ≤ 13

5x− 28 if 13 ≤ x ≤ 20

6x− 48 if 20 ≤ x ≤ 25

(B.3)

Figure B.3: Convex PWL Function - 4

Its minimization and maximization with different models yield the results in Table B.4.
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When the objective is both minimization and maximization, our formulation finds the op-

timal solution with the least cpu time.

Table B.4: CPU times for Convex PWL Function Example-4

Minimize Maximize
Our Formulation 0.010 0.010

Convex Combination 0.146 0.097
Multiple Choice 0.032 0.034

Incremental Cost 0.029 0.112
Incremental Cost (LP Relaxation) 0.032 0.032

Function 5: The fifth convex PWL function is defined by equation B.4 and represented

in Fig. B.4.

f(x) =





−x + 5 if −80 ≤ x ≤ −70

−0.75x + 22.5 if −70 ≤ x ≤ −65

−0.5x + 38.75 if −65 ≤ x ≤ −40

−0.25x + 48.75 if −40 ≤ x ≤ −5

50 if −5 ≤ x ≤ 0

0.25x + 50 if 0 ≤ x ≤ 10

0.5x + 47.5 if 10 ≤ x ≤ 60

0.75x + 32.5 if 60 ≤ x ≤ 70

x + 15 if 70 ≤ x ≤ 80

(B.4)

Its minimization and maximization with different models yield the results in Table B.5.

When the objective is minimization, both the LP relaxation of incremental cost formulation

and our formulation find the optimal solution with least cpu time. On the other hand, when

the objective is maximization, the LP relaxation of incremental cost formulation finds the

optimal solution with the least cpu time.
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Figure B.4: Convex PWL Function - 5

Table B.5: CPU times for Convex PWL Function Example-5

Minimize Maximize
Our Formulation 0.010 0.020

Convex Combination 0.101 0.116
Multiple Choice 0.012 0.024

Incremental Cost 0.017 0.030
Incremental Cost (LP Relaxation) 0.010 0.011

B.2 Benchmark of Concave PWL Functions

Function 1: The first concave PWL function used for benchmark is the function used to

illustrate a concave PWL function. It was defined by equation A.7 and represented in Fig.

A.4. Its minimization and maximization with different models yield the results in Table

B.6. When the objective is minimization, our formulation finds the optimal solution with

the least cpu time. On the other hand, when the objective is maximization the LP relaxation

of incremental cost formulation finds the optimal solution with the least cpu time.

Function 2: The second concave PWL function is defined by equation B.5 and repre-

sented in Fig. B.5.
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Table B.6: CPU times for Concave PWL Function Example-1

Minimize Maximize
Our Formulation 0.010 0.013

Convex Combination 0.113 0.165
Multiple Choice 0.026 0.022

Incremental Cost 0.064 0.025
Incremental Cost (LP Relaxation) 0.011 0.011

f(x) =





4x− 2 if −2 ≤ x ≤ 0

3x− 2 if 0 ≤ x ≤ 2

−x + 6 if 2 ≤ x ≤ 5

2x + 11 if 5 ≤ x ≤ 6

−3x + 17 if 6 ≤ x ≤ 9

(B.5)

Figure B.5: Concave PWL Function - 2

Its minimization and maximization with different models yield the results in Table B.7.

When the objective is minimization, the LP relaxation of incremental cost formulation
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finds the optimal solution with least cpu time. On the other hand, when the objective is

maximization, our formulation finds the optimal solution with the least cpu time.

Table B.7: CPU times for Concave PWL Function Example-2

Minimize Maximize
Our Formulation 0.029 0.010

Convex Combination 0.120 0.141
Multiple Choice 0.031 0.032

Incremental Cost 0.046 0.030
Incremental Cost (LP Relaxation) 0.027 0.028

Function 3: The third concave PWL function is defined by equation B.6 and repre-

sented in Fig. B.6.

f(x) =





6x− 10 if −10 ≤ x ≤ −2

5x− 12 if −2 ≤ x ≤ 1

3x− 10 if 1 ≤ x ≤ 5

x if 5 ≤ x ≤ 13

13 if 13 ≤ x ≤ 20

−0.5x + 23 if 20 ≤ x ≤ 25

(B.6)

Its minimization and maximization with different models yield the results in Table B.8.

When the objective is both minimization and maximization our formulation finds the opti-

mal solution with the least cpu time.

Function 4: The fourth concave PWL function is defined by equation B.7 and repre-

sented in Fig. B.7.
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Figure B.6: Concave PWL Function - 3

Table B.8: CPU times for Concave PWL Function Example-3

Minimize Maximize
Our Formulation 0.028 0.011

Convex Combination 0.029 0.112
Multiple Choice 0.033 0.014

Incremental Cost 0.051 0.036
Incremental Cost (LP Relaxation) 0.034 0.033

f(x) =





0.5x− 8 if −10 ≤ x ≤ −2

−9 if −2 ≤ x ≤ 1

−x− 8 if 1 ≤ x ≤ 5

−3x + 2 if 5 ≤ x ≤ 13

−5x + 28 if 13 ≤ x ≤ 20

−6x + 48 if 20 ≤ x ≤ 25

(B.7)

Its minimization and maximization with different models yield the results in Table B.9.
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Figure B.7: Concave PWL Function - 4

When the objective is minimization, the LP relaxation of incremental cost formulation

finds the optimal solution with least the cpu time. On the other hand when the objective

is maximization our formulation finds the optimal solution with the least cpu time.

Table B.9: CPU times for Concave PWL Function Example-4

Minimize Maximize
Our Formulation 0.030 0.010

Convex Combination 0.101 0.092
Multiple Choice 0.031 0.028

Incremental Cost 0.040 0.034
Incremental Cost (LP Relaxation) 0.027 0.032

Function 5: The fifth concave PWL function is defined by equation B.8 and represented

in Fig. B.8.
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f(x) =





x− 5 if −80 ≤ x ≤ −70

0.75x− 22.5 if −70 ≤ x ≤ −65

0.5x− 38.75 if −65 ≤ x ≤ −40

0.25x− 48.75 if −40 ≤ x ≤ −5

−50 if −5 ≤ x ≤ 0

−0.25x− 50 if 0 ≤ x ≤ 10

−0.5x− 47.5 if 10 ≤ x ≤ 60

−0.75x− 32.5 if 60 ≤ x ≤ 70

−x− 15 if 70 ≤ x ≤ 80

(B.8)

Figure B.8: Concave PWL Function - 5

Its minimization and maximization with different models yield the results in Table B.10.

When the objective is both minimization and maximization our formulation finds the opti-

mal solution with the least cpu time.
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Table B.10: CPU times for Concave PWL Function Example-5

Minimize Maximize
Our Formulation 0.010 0.010

Convex Combination 0.026 0.060
Multiple Choice 0.012 0.018

Incremental Cost 0.042 0.038
Incremental Cost (LP Relaxation) 0.024 0.024

B.3 Benchmark of Non-Convex PWL Functions

Function 1: The first non-convex PWL function used for benchmark is the function used

to illustrate a continuous PWL function. It was defined by equation A.2 and represented in

Fig. A.1. Its minimization and maximization with different models yield the results in Table

B.11. When the objective is minimization, incremental cost formulation finds the optimal

solution with least cpu time. On the other hand, when the objective is maximization, both

the LP relaxation of incremental cost formulation and our formulation find the optimal

solution with the least cpu time.

Table B.11: CPU times for Non-Convex PWL Function Example-1

Minimize Maximize
Our Formulation 0.013 0.010

Convex Combination 0.023 0.052
Multiple Choice 0.026 0.015

Incremental Cost 0.012 0.011
Incremental Cost (LP Relaxation) 0.013 0.010

Function 2: The second non-convex PWL function is defined by equation B.9 and

represented in Fig. B.9.



Appendix B: DETAILS OF PROBLEMS IN BENCHMARK STUDIES 65

f(x) =





0.2x + 5 if 0 ≤ x ≤ 10

0.3x + 4 if 10 ≤ x ≤ 20

0.5x if 20 ≤ x ≤ 30

−0.4x + 27 if 30 ≤ x ≤ 40

0.6x− 13 if 40 ≤ x ≤ 50

(B.9)

Figure B.9: Non-Convex PWL Function - 2

Its minimization and maximization with different models yield the results in Table B.12.

When the objective is minimization our formulation and incremental cost formulation find

the optimal solution with the least cpu time. On the other hand, when the objective is

maximization, our formulation finds the optimal solution with least cpu time.

Function 3: The third non-convex PWL function is defined by equation B.10 and

represented in Fig. B.10.
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Table B.12: CPU times for Non-Convex PWL Function Example-2

Minimize Maximize
Our Formulation 0.024 0.015

Convex Combination 0.045 0.059
Multiple Choice 0.028 0.030

Incremental Cost 0.024 0.024
Incremental Cost (LP Relaxation) 0.033 0.024

f(x) =





1.667x if 0 ≤ x ≤ 30

x + 20 if 30 ≤ x ≤ 60

−2x + 200 if 60 ≤ x ≤ 90

2.667x− 220 if 90 ≤ x ≤ 120

(B.10)

Figure B.10: Non-Convex PWL Function - 3

Its minimization and maximization with different models yield the results in Table B.13.

When the objective is both minimization and maximization our formulation finds the opti-

mal solution with least cpu time.
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Table B.13: CPU times for Non-Convex PWL Function Example-3

Minimize Maximize
Our Formulation 0.010 0.010

Convex Combination 0.118 0.073
Multiple Choice 0.028 0.032

Incremental Cost 0.057 0.034
Incremental Cost (LP Relaxation) 0.026 0.031

Function 4: The fourth non-convex PWL function is defined by equation B.11 and

represented in Fig. B.11.

f(x) =





3x + 5 if −20 ≤ x ≤ −14

5x + 33 if −14 ≤ x ≤ −5

−0.5x + 5.5 if −5 ≤ x ≤ 15

−11x + 163 if 15 ≤ x ≤ 20

9.5x− 247 if 20 ≤ x ≤ 26

x− 16 if 26 ≤ x ≤ 30

(B.11)

Its minimization and maximization with different models yield the results in Table B.14.

When the objective is minimization, the LP relaxation of incremental cost formulation

finds the optimal solution with the least cpu time. On the other hand, when the objective

is maximization our formulation finds the optimal solution with least cpu time.

Table B.14: CPU times for Non-Convex PWL Function Example-4

Minimize Maximize
Our Formulation 0.028 0.010

Convex Combination 0.106 0.098
Multiple Choice 0.029 0.034

Incremental Cost 0.035 0.033
Incremental Cost (LP Relaxation) 0.010 0.012
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Figure B.11: Non-Convex PWL Function - 4

Function 5: The fifth non-convex PWL function is defined by equation B.12 and

represented in Fig. B.12.

f(x) =





3 if −3 ≤ x ≤ −2

−2x + 7 if −2 ≤ x ≤ 10

−13 if 10 ≤ x ≤ 12

x− 25 if 12 ≤ x ≤ 15

2x− 40 if 15 ≤ x ≤ 20

2.5x− 50 if 20 ≤ x ≤ 28

−x + 48 if 28 ≤ x ≤ 30

18 if 30 ≤ x ≤ 35

(B.12)

Its minimization and maximization with different models yield the results in Table B.15.

When the objective is both minimization and maximization our formulation finds the opti-

mal solution with the least cpu time.
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Figure B.12: Non-Convex PWL Function - 5

Table B.15: CPU times for Non-Convex PWL Function Example-5

Minimize Maximize
Our Formulation 0.010 0.010

Convex Combination 0.060 0.061
Multiple Choice 0.016 0.023

Incremental Cost 0.022 0.023
Incremental Cost (LP Relaxation) 0.011 0.012

B.4 Benchmark of Separable PWL Functions

Function 1: The first separable PWL function has five component functions (Eq. B.13)

that are defined by equations B.14 - B.18. Its minimization and maximization with different

models yield the results in Table B.16. When the objective is minimization, both the LP

relaxation of incremental cost formulation and our formulation find the optimal solution with

the least cpu time. On the other hand, when the objective is maximization our formulation

finds the optimal solution with least cpu time.

f(x) = f1(x1) + f2(x2) + f3(x3) + f4(x4) + f5(x5) (B.13)
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f1(x1) =





−4x1 + 2 if −2 ≤ x1 ≤ 0

−3x1 + 2 if 0 ≤ x1 ≤ 2

x1 − 6 if 2 ≤ x1 ≤ 5

2x1 − 11 if 5 ≤ x1 ≤ 6

3x1 − 17 if 6 ≤ x1 ≤ 9

(B.14)

f2(x2) =





−10x2 − 20 if 5 ≤ x2 ≤ 15

−6x2 − 80 if 15 ≤ x2 ≤ 20

−200 if 20 ≤ x2 ≤ 30

2x2 − 260 if 30 ≤ x2 ≤ 40

10x2 − 580 if 40 ≤ x2 ≤ 45

(B.15)

f3(x3) =





−6x3 + 10 if −10 ≤ x3 ≤ −2

−5x3 + 12 if −2 ≤ x3 ≤ 1

−3x3 + 10 if 1 ≤ x3 ≤ 5

−x3 if 5 ≤ x3 ≤ 13

−13 if 13 ≤ x3 ≤ 20

0.5x3 − 23 if 20 ≤ x3 ≤ 25

(B.16)

f4(x4) =





−0.5x4 + 8 if −10 ≤ x4 ≤ −2

9 if −2 ≤ x4 ≤ 1

x4 + 8 if 1 ≤ x4 ≤ 5

3x4 − 2 if 5 ≤ x4 ≤ 13

5x4 − 28 if 13 ≤ x4 ≤ 20

6x4 − 48 if 20 ≤ x4 ≤ 25

(B.17)
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f5(x5) =





−x5 + 5 if −80 ≤ x5 ≤ −70

−0.75x5 + 22.5 if −70 ≤ x5 ≤ −65

−0.5x5 + 38.75 if −65 ≤ x5 ≤ −40

−0.25x5 + 48.75 if −40 ≤ x5 ≤ −5

50 if −5 ≤ x5 ≤ 0

0.25x5 + 50 if 0 ≤ x5 ≤ 10

0.5x5 + 47.5 if 10 ≤ x5 ≤ 60

0.75x5 + 32.5 if 60 ≤ x5 ≤ 70

x5 + 15 if 70 ≤ x5 ≤ 80

(B.18)

Table B.16: CPU times for Separable PWL Function Example-1

Minimize Maximize
Our Formulation 0.010 0.011

Convex Combination 0.033 0.047
Multiple Choice 0.011 0.027

Incremental Cost 0.011 0.056
Incremental Cost (LP Relaxation) 0.010 0.020

Function 2: The second separable PWL function has five component functions (Eq.

B.19) that are defined by equations B.20 - B.24. Its minimization and maximization with

different models yield the results in Table B.17. When the objective is minimization both

our formulation and multiple choice formulation find the optimal solution with least cpu

time. On the other hand, when the objective is maximization our formulation finds the

optimal solution with least cpu time.

f(x) = f1(x1) + f2(x2) + f3(x3) + f4(x4) + f5(x5) (B.19)
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f1(x1) =





10x1 + 20 if 5 ≤ x1 ≤ 15

6x1 + 80 if 15 ≤ x1 ≤ 20

200 if 20 ≤ x1 ≤ 30

−2x1 + 260 if 30 ≤ x1 ≤ 40

−10x1 + 580 if 40 ≤ x1 ≤ 45

(B.20)

f2(x2) =





4x2 − 2 if −2 ≤ x2 ≤ 0

3x2 − 2 if 0 ≤ x2 ≤ 2

−x2 + 6 if 2 ≤ x2 ≤ 5

2x2 + 11 if 5 ≤ x2 ≤ 6

−3x2 + 17 if 6 ≤ x2 ≤ 9

(B.21)

f3(x3) =





6x3 − 10 if −10 ≤ x3 ≤ −2

5x3 − 12 if −2 ≤ x3 ≤ 1

3x3 − 10 if 1 ≤ x3 ≤ 5

x3 if 5 ≤ x3 ≤ 13

13 if 13 ≤ x3 ≤ 20

−0.5x3 + 23 if 20 ≤ x3 ≤ 25

(B.22)

f4(x4) =





0.5x4 − 8 if −10 ≤ x4 ≤ −2

−9 if −2 ≤ x4 ≤ 1

−x4 − 8 if 1 ≤ x4 ≤ 5

−3x4 + 2 if 5 ≤ x4 ≤ 13

−5x4 + 28 if 13 ≤ x4 ≤ 20

−6x4 + 48 if 20 ≤ x4 ≤ 25

(B.23)
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f5(x5) =





x5 − 5 if −80 ≤ x5 ≤ −70

0.75x5 − 22.5 if −70 ≤ x5 ≤ −65

0.5x5 − 38.75 if −65 ≤ x5 ≤ −40

0.25x5 − 48.75 if −40 ≤ x5 ≤ −5

−50 if −5 ≤ x5 ≤ 0

−0.25x5 − 50 if 0 ≤ x5 ≤ 10

−0.5x5 − 47.5 if 10 ≤ x5 ≤ 60

−0.75x5 − 32.5 if 60 ≤ x5 ≤ 70

−x5 − 15 if 70 ≤ x5 ≤ 80

(B.24)

Table B.17: CPU times for Separable PWL Function Example-2

Minimize Maximize
Our Formulation 0.011 0.010

Convex Combination 0.030 0.065
Multiple Choice 0.011 0.011

Incremental Cost 0.066 0.021
Incremental Cost (LP Relaxation) 0.012 0.011

Function 3: The third separable PWL function has five component functions (Eq.

B.25) that are defined by equations B.26 - B.30. Its minimization and maximization with

different models yield the results in Table B.18. When the objective is minimization; the LP

relaxation of incremental cost formulation, multiple choice formulation and our formulation

find the optimal solution with the least cpu time. On the other hand, when the objective

is maximization, both our formulation and multiple choice formulation find the optimal

solution with least cpu time.

f(x) = f1(x1) + f2(x2) + f3(x3) + f4(x4) + f5(x5) (B.25)
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f1(x1) =





4x1 + 3 if 0 ≤ x1 ≤ 2

−2x1 + 15 if 2 ≤ x1 ≤ 3

x1 + 6 if 3 ≤ x1 ≤ 7

(B.26)

f2(x2) =





0.2x2 + 5 if 0 ≤ x2 ≤ 10

0.3x2 + 4 if 10 ≤ x2 ≤ 20

0.5x2 if 20 ≤ x2 ≤ 30

−0.4x2 + 27 if 30 ≤ x2 ≤ 40

0.6x2 − 13 if 40 ≤ x2 ≤ 50

(B.27)

f3(x3) =





1.667x3 if 0 ≤ x3 ≤ 30

x3 + 20 if 30 ≤ x3 ≤ 60

−2x3 + 200 if 60 ≤ x3 ≤ 90

2.667x3 − 220 if 90 ≤ x3 ≤ 120

(B.28)

f4(x4) =





3x4 + 5 if −20 ≤ x4 ≤ −14

5x4 + 33 if −14 ≤ x4 ≤ −5

−0.5x4 + 5.5 if −5 ≤ x4 ≤ 15

−11x4 + 163 if 15 ≤ x4 ≤ 20

9.5x4 − 247 if 20 ≤ x4 ≤ 26

x4 − 16 if 26 ≤ x4 ≤ 30

(B.29)
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f5(x5) =





3 if −3 ≤ x5 ≤ −2

−2x5 + 7 if −2 ≤ x5 ≤ 10

−13 if 10 ≤ x5 ≤ 12

x5 − 25 if 12 ≤ x5 ≤ 15

2x5 − 40 if 15 ≤ x5 ≤ 20

2.5x5 − 50 if 20 ≤ x5 ≤ 28

−x5 + 48 if 28 ≤ x5 ≤ 30

18 if 30 ≤ x5 ≤ 35

(B.30)

Table B.18: CPU times for Separable PWL Function Example-3

Minimize Maximize
Our Formulation 0.011 0.012

Convex Combination 0.093 0.140
Multiple Choice 0.011 0.012

Incremental Cost 0.040 0.023
Incremental Cost (LP Relaxation) 0.011 0.015

Function 4: The fourth separable PWL function has three component functions (Eq.

B.31) that are defined by equations B.32 - B.34. Its minimization and maximization with

different models yield the results in Table B.19. When the objective is both minimization

and maximization our formulation finds the optimal solution with least cpu time.

f(x) = f1(x1) + f2(x2) + f3(x3) (B.31)
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f1(x1) =





−x1 + 5 if −80 ≤ x1 ≤ −70

−0.75x1 + 22.5 if −70 ≤ x1 ≤ −65

−0.5x1 + 38.75 if −65 ≤ x1 ≤ −40

−0.25x1 + 48.75 if −40 ≤ x1 ≤ −5

50 if −5 ≤ x1 ≤ 0

0.25x1 + 50 if 0 ≤ x1 ≤ 10

0.5x1 + 47.5 if 10 ≤ x1 ≤ 60

0.75x1 + 32.5 if 60 ≤ x1 ≤ 70

x1 + 15 if 70 ≤ x1 ≤ 80

(B.32)

f2(x2) =





0.5x2 − 8 if −10 ≤ x2 ≤ −2

−9 if −2 ≤ x2 ≤ 1

−x2 − 8 if 1 ≤ x2 ≤ 5

−3x2 + 2 if 5 ≤ x2 ≤ 13

−5x2 + 28 if 13 ≤ x2 ≤ 20

−6x2 + 48 if 20 ≤ x2 ≤ 25

(B.33)

f3(x3) =





3 if −3 ≤ x3 ≤ −2

−2x3 + 7 if −2 ≤ x3 ≤ 10

−13 if 10 ≤ x3 ≤ 12

x3 − 25 if 12 ≤ x3 ≤ 15

2x3 − 40 if 15 ≤ x3 ≤ 20

2.5x3 − 50 if 20 ≤ x3 ≤ 28

−x3 + 48 if 28 ≤ x3 ≤ 30

18 if 30 ≤ x3 ≤ 35

(B.34)

Function 5: The fifth separable PWL function has five component functions (Eq.



Appendix B: DETAILS OF PROBLEMS IN BENCHMARK STUDIES 77

Table B.19: CPU times for Separable PWL Function Example-4

Minimize Maximize
Our Formulation 0.010 0.010

Convex Combination 0.032 0.074
Multiple Choice 0.011 0.011

Incremental Cost 0.012 0.057
Incremental Cost (LP Relaxation) 0.011 0.030

B.35) that are defined by equations B.36 - B.40. Its minimization and maximization with

different models yield the results in Table B.20. When the objective is both minimization

and maximization our formulation finds the optimal solution with least cpu time.

f(x) = f1(x1) + f2(x2) + f3(x3) + f4(x4) + f5(x5) (B.35)

f1(x1) =





−x1 + 5 if −80 ≤ x1 ≤ −70

−0.75x1 + 22.5 if −70 ≤ x1 ≤ −65

−0.5x1 + 38.75 if −65 ≤ x1 ≤ −40

−0.25x1 + 48.75 if −40 ≤ x1 ≤ −5

50 if −5 ≤ x1 ≤ 0

0.25x1 + 50 if 0 ≤ x1 ≤ 10

0.5x1 + 47.5 if 10 ≤ x1 ≤ 60

0.75x1 + 32.5 if 60 ≤ x1 ≤ 70

x1 + 15 if 70 ≤ x1 ≤ 80

(B.36)
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f2(x2) =





0.5x2 − 8 if −10 ≤ x2 ≤ −2

−9 if −2 ≤ x2 ≤ 1

−x2 − 8 if 1 ≤ x2 ≤ 5

−3x2 + 2 if 5 ≤ x2 ≤ 13

−5x2 + 28 if 13 ≤ x2 ≤ 20

−6x2 + 48 if 20 ≤ x2 ≤ 25

(B.37)

f3(x3) =





3 if −3 ≤ x3 ≤ −2

−2x3 + 7 if −2 ≤ x3 ≤ 10

−13 if 10 ≤ x3 ≤ 12

x3 − 25 if 12 ≤ x3 ≤ 15

2x3 − 40 if 15 ≤ x3 ≤ 20

2.5x3 − 50 if 20 ≤ x3 ≤ 28

−x3 + 48 if 28 ≤ x3 ≤ 30

18 if 30 ≤ x3 ≤ 35

(B.38)

f4(x4) =





1.667x4 if 0 ≤ x4 ≤ 30

x4 + 20 if 30 ≤ x4 ≤ 60

−2x4 + 200 if 60 ≤ x4 ≤ 90

2.667x4 − 220 if 90 ≤ x4 ≤ 120

(B.39)

f5(x5) =





3x5 + 5 if −20 ≤ x5 ≤ −14

5x5 + 33 if −14 ≤ x5 ≤ −5

−0.5x5 + 5.5 if −5 ≤ x5 ≤ 15

−11x5 + 163 if 15 ≤ x5 ≤ 20

9.5x5 − 247 if 20 ≤ x5 ≤ 26

x5 − 16 if 26 ≤ x5 ≤ 30

(B.40)
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Table B.20: CPU times for Separable PWL Function Example-5

Minimize Maximize
Our Formulation 0.010 0.010

Convex Combination 0.026 0.037
Multiple Choice 0.012 0.011

Incremental Cost 0.011 0.021
Incremental Cost (LP Relaxation) 0.012 0.020
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Appendix C

GAMS MODEL FOR BENCHMARK PROBLEMS

$Non-Convex PWL Function-1 Benchmark Code

Sets j /1,2,3,4/;

Parameters

x(j)

/ 1 0

2 2

3 3

4 7/

a(j)

/1 4

2 -2

3 1/

b(j)

/1 3

2 15

3 16/

f(j)
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/1 3

2 11

3 9

4 13

/;

Variables

y1(j)

fx1

xx1

xx2

lamda2(j)

fx2

z3(j)

fx3

xx3

fx4

xx4

q4(j)

fx5

xx5

q5(j)

y5(j);

Positive variables

y1(j)

lamda2(j)
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q4(j)

q5(j)

y5(j);

Binary variables

sigma2(j)

y3(j)

y4(j);

Equations

bound1(j)

domain1

key1(j)

functionvalue1

boundlamda2(j)

domainxx2

sumoflamdas2

lamda12

lamdat2(j)

lamda22(j)

sumofsigma2

functionvalue2

functionfx3

domainx3

boundlowerz3(j)

boundupperz3(j)

sumofy3
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functionfx4

domainx4

yjgreaterthan4(j)

yjlessthan4(j)

functionfx5

domainx5

yjgreaterthan5(j)

yjlessthan5(j)

yjlessthan50(j);

bound1(j)$(ord(j) lt card(j)).. y1(j)=l=(x(j+1)-x(j));

domain1.. sum(j$(ord(j) lt card(j)),y1(j))+x(’1’)=e=xx1;

key1(j)$(ord(j) lt card(j)-1)..

y1(j+1)=l=(x(j+2)-x(j+1))*y1(j)/(x(j+1)-x(j));

functionvalue1.. fx1=e=a(’1’)*x(’1’)+b(’1’)+sum(j$(ord(j) lt

card(j)), a(j)*y1(j));

boundlamda2(j).. lamda2(j)=l=1;

domainxx2.. xx2=e=sum(j,lamda2(j)*x(j));

sumoflamdas2.. sum(j,lamda2(j))=e=1;

lamda12.. lamda2(’1’)=l=sigma2(’1’);

lamdat2(j)$(ord(j) eq card(j)).. lamda2(j)=l=sigma2(j-1);
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lamda22(j)$(ord(j) gt 1 and ord(j) lt card(j))..

lamda2(j)=L=sigma2(j-1)+sigma2(j);

sumofsigma2.. sum(j$(ord(j) lt card(j)),sigma2(j))=E=1;

functionvalue2.. fx2=E=sum(j,f(j)*lamda2(j));

functionfx3.. fx3=E=sum(j$(ord(j) lt

card(j)),a(j)*z3(j)+b(j)*y3(j));

domainx3.. xx3=E=sum(j$(ord(j) lt card(j)),z3(j));

boundlowerz3(j)$(ord(j) lt card(j)).. x(j)*y3(j)=L=z3(j);

boundupperz3(j)$(ord(j) lt card(j)).. z3(j)=L=x(j+1)*y3(j);

sumofy3.. sum(j$(ord(j) lt card(j)),y3(j))=E=1;

functionfx4.. fx4=E=b(’1’)+a(’1’)*x(’1’)+sum(j$(ord(j) lt

card(j)),a(j)*q4(j));

domainx4.. xx4=E=x(’1’)+sum(j$(ord(j) lt card(j)),q4(j));

yjgreaterthan4(j)$(ord(j) lt card(j))..

y4(j)=g=q4(j)/(x(j+1)-x(j));

yjlessthan4(j)$(ord(j) lt card(j)-1)..

y4(j+1)=L=q4(j)/(x(j+1)-x(j));
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functionfx5.. fx5=E=b(’1’)+a(’1’)*x(’1’)+sum(j$(ord(j) lt

card(j)),a(j)*q5(j));

domainx5.. xx5=E=x(’1’)+sum(j$(ord(j) lt card(j)),q5(j));

yjgreaterthan5(j)$(ord(j) lt card(j))..

y5(j)=g=q5(j)/(x(j+1)-x(j));

yjlessthan5(j)$(ord(j) lt card(j)-1)..

y5(j+1)=L=q5(j)/(x(j+1)-x(j));

yjlessthan50(j)$(ord(j) lt card(j)).. y5(j)=L=1;

Model ourmodelmax /bound1, domain1, key1, functionvalue1/ ;

Solve ourmodelmax using lp maximizing fx1 ;

Model ourmodelmin /bound1, domain1, key1, functionvalue1/ ;

Solve ourmodelmin using lp minimizing fx1 ;

Model convexcombmax / boundlamda2, domainxx2 , sumoflamdas2,

lamda12, lamdat2, lamda22, sumofsigma2, functionvalue2/ ;

Solve convexcombmax using mip maximizing fx2;

Model convexcombmin / boundlamda2, domainxx2 , sumoflamdas2,

lamda12, lamdat2, lamda22, sumofsigma2, functionvalue2/ ;
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Solve convexcombmin using mip minimizing fx2;

Model multiplechoicemax

/functionfx3,domainx3,boundlowerz3,boundupperz3,sumofy3/ ;

Solve multiplechoicemax using mip maximizing fx3;

Model multiplechoicemin

/functionfx3,domainx3,boundlowerz3,boundupperz3,sumofy3/ ;

Solve multiplechoicemin using mip minimizing fx3;

Model incrcostmax

/functionfx4,domainx4,yjgreaterthan4,yjlessthan4/ ;

Solve incrcostmax using mip maximizing fx4;

Model incrcostmin

/functionfx4,domainx4,yjgreaterthan4,yjlessthan4/ ;

Solve incrcostmin using mip minimizing fx4;

Model LPincrcostmax /

functionfx5,domainx5,yjgreaterthan5,yjlessthan5,yjlessthan50/ ;

Solve LPincrcostmax using lp maximizing fx5;

Model LPincrcostmin /
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functionfx5,domainx5,yjgreaterthan5,yjlessthan5,yjlessthan50/ ;

Solve LPincrcostmin using lp minimizing fx5;

display ourmodelmin.resusd;

display ourmodelmax.resusd;

display convexcombmin.resusd;

display convexcombmax.resusd;

display multiplechoicemin.resusd;

display multiplechoicemax.resusd;

display incrcostmin.resusd;

display incrcostmax.resusd;

display LPincrcostmin.resusd;

display LPincrcostmax.resusd;
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