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ABSTRACT

Turkey went through a major change in its primary health care system and imple-

mented family practice between 2005 and 2010. In this study, we provide a general

overview of Turkish family practice through the lens of a survey conducted among

family doctors. We analyze a specific case to explore behavior of patient arrivals over

time in presence of preventive services.

Further, we model the time allocation problem of a family doctor as a non-linear

optimization problem. Two approaches are explored. First, preventive service and

acute care services are assumed to be provided in isolation. Patients who demand

these services wait in parallel queues where we assumed all demand has to be satisfied.

Optimal percent of time allocated to preventive services is characterized. Second, all

patients wait in a single line with a need of acute care service. Family doctor decides

whether or not to offer a preventive service as an add-on for each patient, where

there is no obligation to satisfy the demand for prevention service. Conditions to

obtain boundary solutions, where all patients receive the same type of service, are

characterized. For both models, a feedback effect of that preventive activity on the

acute care demand is taken into consideration and numerical examples are provided.

Finally, we looked at how we can model feedback effect on arrivals by a Markov chain

approach.
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ÖZETÇE

Türkiye 2005-2010 yılları arasında birinci basamak sağlık hizmetlerinde değişiklik

yaptı ve Aile Hekimliği uygulamasını getirdi. Bu çalışmada Türk Aile Hekimliği

uygulamasına aile hekimleri arasında yapılan bir anket çalışmasıyla genel bir bakış

sağlanmıştır. Koruyucu sağlık hizmetlerinin hasta ziyaretlerine etkisini belirlemek

için vaka analizi yapılmıştır.

Aynı zamanda, aile hekiminin görevler arası zaman paylaşımı problemi lineer ol-

mayan optimizasyon problemi olarak modellenmiştir. İki farklı yaklaşım incelenmiştir.

İlk yaklaşımda koruyucu sağlık hizmetlerinin ve akut hizmetlerin ayrı ayrı sağlandığı

varsayılmıştır. Bu servisleri talep eden hastalar iki paralel kuyruk oluşturmakta

ve talebin hepsi karşılanmak zorundadır. Koruyucu sağlık hizmetlerine sağlanması

gereken optimum zaman karakterize edilmiştir. İkinci yaklaşımda bütün hastalar

akut gereksinimle tek bir sırada beklemektedirler. Aile hekimi her hasta için akut

servisi sağladıktan sonra koruyucu sağlık hizmeti verip vermeyeceğine karar vermek-

tedir. Koruyucu sağlık hizmetlerine olan talebi karşılama zorunluluğu yoktur. Her

hastanın aynı tip servis aldıgı şartlar karakterize edilmiştir. Her iki model için de

koruyucu sağlık hizmetinin akut ihtiyaçlara olan talep üzerine geribildirim etkisi göz

önünde bulundurulmuş ve sayısal örnekler sağlanmısıtır. Son olarak hasta ziyaret

talebi üzerindeki geribildirim etkisi Markov zinciri yaklaşımıyla modellenmiştir.
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Chapter 1

INTRODUCTION

Health care industry is one of the most important and expensive industries around

the world. Nearly 15% of GDP of U.S. is dedicated to health care industry. It is fol-

lowed by France with 11.2%, by Switzerland with 10.7%, and by Germany with 10.5%.

In Turkey this percentage is 6.2% [1]. Since the budget devoted is very high, in order

to increase cost effectiveness, operational studies as well as the leading clinical trials

in health care are important.

Primary Health Care (PHC) is the first degree health service that is provided to

society. In 1978 Alma-Ata Declaration of World Health Organization (WHO)1 stated

what services should be involved and what should be the aim in PHC : ‘protect and

promote’ [3]. As a formal definition, in 1988 Australian Health Ministers’ Council

defined PHC as

... seeks to extend the first level of the health system from sick care to the

development of health. It seeks to protect and promote the health of defined

communities and to address individual problems and populates health at

an early stage. Primary health care services involve continuity of care,

health promotion and education, integration of prevention with sick care, a

1WHO is the directing and coordinating authority for health within the United Nations system.
It is responsible for providing leadership on global health matters, shaping the health research
agenda, setting norms and standards, articulating evidence-based policy options, providing tech-
nical support to countries and monitoring and assessing health trends [2]
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concern for population as well as individual health, community involvement

and the use of appropriate technology.

Family practice, as a part of PHC, has gained importance since 1978, when WHO

introduced Health for All program. Around the world, the family practice began to

rise up since then, and governments started to gave place to it in their plans. With

the increase in importance and responsibility in family practice around the world,

Turkey went through a transformation in 2004 in its PHC. The major change was

implementing family practice into the system. This thesis is motivated with those

changes in Turkey.

In 2005, Düzce was selected as pilot city to implement family practice and the

practice was implemented in all cities by the end of 2010 [4]. The purpose of this

reform in Turkish health system is to lower the burden on hospitals so that the hospi-

tals can focus on serious illnesses and advanced treatments. According to WHO, the

providers of PHC are family doctors, nurses or other health professionals. General

Practitioners (family doctors) are key elements of primary health care systems. A

GP should be capable of recognition and identification of diseases. In this purpose,

a GP’s career education or specialization training takes 3 years. People see qualified

GPs first, if the problem cannot be handled then they are referred to a higher degree

health facility [5]. With this system, people would first consult to family doctors for

general, simple needs instead of going to a hospital. This would lower the congestion

in hospitals. Since family practice is new in Turkey, how it works should be well

understood.

The services offered by a family doctor are diagnosis & treatment, vaccination,

mother-child care, management of chronic diseases, scanning of risk factors, family

planning, promotion of health/prevention and administrative affairs. Preventive ser-
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vice, as a part of GP practice, must be given much more importance as well as given

much more time, to improve society’s health status in the long run. The benefits of

preventive health care, and, in general, establishing more healthy life can be realized

as reduced demand for health care and lower deaths in the long run. Therefore, GPs

should devote a portion of their time consistently for health promotion and preventive

activities. Other than administrative affairs, the services provided by a family doctor

can be classified into two categories i) prevention service, ii) acute care service. The

administrative tasks are usually handled by the nurse or by the doctor in after-hours.

In this thesis, we focused on optimizing time allocation of a GP between prevention

and acute care.

The rest of the study is structured as follows: Chapter 2 gives a brief literature

related to our study. Chapter 3 presents survey results conducted among family doc-

tors in Turkey, which provides a deeper understanding of the Turkish family practice.

A specific case was analyzed to determine the patient behavior. The findings con-

structed the basis of our modeling approaches. Chapter 4 introduces two different

queueing models to time allocation problem of a GP in capacity allocation framework,

assuming a GP provides two different services: preventive or acute care. Only 6% of

GPs in Turkey work with appointment, hence to be in line with practice appointment

scheduling was not considered. In the first approach (Dedicated Time Slots, DTS),

we consider a model where demands of two different services constitute two different

parallel queues served by a single server, and each demand should be satisfied. Fur-

ther, we included the decreasing effect of preventive service in the long run on patient

arrivals. We analyzed different forms of feedback function. In the second approach

(Prevention as an Add-on Service, PAS), we considered all patients wait in a single

line, and the family doctor decided whether or not to provide preventive service after

each acute care service as an add-on. Here, there is no obligation to satisfy the de-

mand for preventive service. Again, decreasing effect of preventive service is modeled
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by a feedback function on arrivals. In both models, optimal time allocation of a GP

between these services is explored and numerical examples are provided. Moreover,

we used a Markov chain approach to model the feedback mechanism on arrivals. The

process is based on one patient’s probability of preventive service ensured, and long

run (limiting) probabilities are found, the behavior is analyzed. Chapter 5 summa-

rizes the findings and directs to further research.
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Chapter 2

LITERATURE REVIEW

In this chapter we will briefly review the literature related with the family practice

in Turkey and modeling approaches related to primary health care. We will introduce

literature for preventive activity as a part of family practice.

As mentioned in Chapter 1, Turkey went through a transformation in its PHC

in 2004, and implemented family practice. Although the implementation is relatively

new, Akdeniz et al. (2009) [6] states that family medicine as a discipline was first intro-

duced in 1983. The postgraduate training was started in 1985 when family medicine

was included as a clinical specialty. By then, family practice residency programs

was provided only in state hospitals, and by 1995, departments of family practice

was funded in universities [7]. (For further information about development of family

medicine residency in Turkey see [5, 8, 9]). Those papers suggest that, on the doctor

side, the infrastructure was started to be constructed long ago, before implementa-

tion of family practice to primary care in Turkey. Around the world, postgraduate

trainings for family physicians are established in U.S., U.K. Ireland, Spain and etc.

over the last few decades [10]. Like other countries, Turkey adopted the changes too.

Güneş and Yaman (2008) [11] analyzed the current system and implications of family

practice in Turkey. They discussed the challenges of meeting needs.

There are also research articles about family practice residents in Turkey. Those

articles show survey results which bring light on how the system works, what the

needs are, and the difficulties confronted as well as how satisfied they are while train-
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ing family practice [12, 13, 14]. These studies are similar to the survey that we will

provide in Chapter 3, which are important while analyzing primary care system in

Turkey.

Other than case studies, there are some operational studies related to primary

health care. In this thesis we will focus on the time management of a GP.

One stream of literature focuses on appointment scheduling which is very impor-

tant for effectiveness and patient satisfaction. However, most of the models that are

used in manufacturing and logistics are not applicable to health care systems [15]. In

health care problems; the questions regarding to appointment rule, patient classifica-

tion and the adjustments of noises such as no-shows, urgent patients etc. should be

answered. The related literature up to 2003 and modeling of appointment systems in

health care systems can be seen in Veral and Çayırlı (2003) [16] more widely.

Another approach to solve scheduling problems in primary care systems can be

considered as practical application of the theory; the scheduling of the parallel queues

served by a single server in order to minimize the waiting time or the waiting cost

of the system where there exists a switchover time or cost. ‘The common property

of these systems is the need to efficiently share a single resource/server among many

queues/ stations’ [17]. These systems are applicable in many communication, produc-

tion, and health care systems. The system is known as a polling system, and there are

known results for the optimal scheduling of these systems depending on the service

discipline, polling order type (static or dynamic) etc. However, these problems are

very difficult to solve. There is a literature review on polling systems and mathemat-

ical models to solve these systems in Vishnevskii and Semenova (2006) [18].

Despite the fact that polling systems are in use in the areas of public health
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care, transportation, communication, and computer systems, little work has been

done about the operational efficiency of these systems. Boxma, Levy and Weststrate

(1991) [17] achieved finding an optimal pre-determined polling table by using an ap-

proximate approach to the problem of minimizing mean waiting time of the system.

They found two different rules for determining the efficient visit order numbers to

each queue under different types of service disciplines for constructing polling tables,

which are efficiently operating by using two independent analysis based on mean delay

approximation and lower bound. Two rules are similar and give results very close to

original problem’s optimal point in most of the cases.

If the scheduling of parallel queues served by a single server satisfies the following

properties; Poisson arrivals and general service time distribution (M/G/1 system),

and has no switchover time or switchover costs; then optimization of scheduling prob-

lem is reached by the well known cµ rule. In other words, if there is no switchover

time, the waiting cost associated with queue i is ci and is processed at rate µi then

the optimal policy for minimization of average waiting cost is the cµ rule which gives

higher priority to the queues with larger values of ciµi, stated in Duenyas and Van

Oyen (1996) [19],and Iravani and Kolfal (2005) [20]. For further detail and literature

review on cµ rule, see Büyükkoç et al. (1985) [21] and Mieghem (1995)[22]. In this

thesis, we do not consider an appointment system. According to family physicians in

Turkey, appointment system is very difficult to implement because of cultural reasons

and habits of patients. In addition, according to survey results in Chapter 3 only

6% of GPs in Turkey use appointment scheduling. It would be more appropriate to

model the system by capacity allocation approach that is used in health care systems.

A stream of literature considers the capacity allocation problem in health care set-

tings. Smith-Daniels et al. (1988) [23] states that there are three types of resources

that should be allocated in primary care: work-force concerning doctors and nurses
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etc, the equipments and tests in health care facilities and facilities itself. Moreover,

there are costs to be minimized such as waiting and operating costs . Bretthauer and

Cote (1998) [24] considered health care systems as a queueing network which includes

patients and work-force and used optimization methods while including the related

costs to find the optimal capacity allocation decisions. The costs related to this sys-

tem are mainly wages, waiting and operating costs whereas the decision variables are

the number of doctors and nurses that should be hired and the model solves for the

targeted customer service while minimizing the cost.

A GP has to accomplish different tasks and consider different costs related to

these different tasks. If we consider the demand for each service constitutes a dif-

ferent queue, then we have a Jackson network1. Wein (1989) [26] solved generalized

Jackson network capacity allocation problem. He found optimal service rates with

general distribution for k single server with infinite capacity waiting room. Customers

arrive to the system according to Poisson process. These optimal service rates are

found by minimizing delays subject to linear budget constraints on capacities using

Brownian approximation. The results found are the generalization of the square root

capacity allocation for Jackson networks which is found by Kleinrock in 1964 [27].

The solution first satisfies the effective arrival rates then allocates excess capacity

proportional to the square root of their effective arrival rates. When service time

distributions are exponential, the solution reduces to square root capacity allocation

found by Kleinrock [26]. Hasija et al. (2005) [28] analyzed capacity allocation problem

by a queueing model for call routing in two-tier call centers. The calls arrive to the

system according to Markov process, gets a service for diagnosis from gatekeeper and

1In a network with k interconnected queues if the customer arrivals follow Poisson process and
service time distributions follow exponential distribution, the utilization of queues is less than one
and a customer after leaving one queue, either moves to another queue with probability pi or leave
the system with 1− pi, then the network is a Jackson Network. When service time distribution is
generalized, the Jackson network is called generalized Jackson network. In the literature of health
care systems exponential service times and Poisson arrivals are commonly used [25]
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then they are either referred to a gatekeeper or an expert for treatment with corre-

sponding probabilities. This model is close to our PAS model in queueing approach;

however, it differs in the following senses: they assumed that after diagnosis, calls

form another queue to get treatment service. In addition, the probabilistic feedback

effect of treatment was not considered.

Prevention, as a part of family physician’s work, is becoming increasingly im-

portant. There exists a need for preventive service especially in the fields of cancer

screening, management of chronic diseases such as diabetes and hypertension etc.[29].

The impact of preventive counsels and health promotion program on doctor visits can

be monitored by controlled trials. Lorig et al. (1993) [30] run a 4-month randomized

trial to explore the effect of self-management educational programs in prevention.

The study is done among 343 arthritis patients, and they estimated the decrease in

doctor visits by 40%. Montgomery et al. (1994) [31] estimated the decrease in doctor

visits as 24% among 290 Parkinson’s disease patients by a 6-month randomized trial.

Moreover, Vickery et al. (1983) [32] stated that the doctor visits for minor illnesses

decreased by 31% as a result of self-management educational programs in prevention.

Fries et al. (1998) [33] presents a summary of results of clinical trials in prevention

service. The decrease in patient arrivals cannot be disregarded, and should be taken

into consideration when modeling primary care.

Although preventive service is very important in the sense we mentioned above,

Anderson and May (1995) [34] and Elizabeth et al. (2003) [35] pointed out that the

time allocated to this service is very low. The reasons are mainly lack of time and ex-

pertise of the doctor, the insurance problems and patient refusal [36]. Focusing on the

GP’s lack of time for preventive service, Pollak et al. (2008) [37] estimated the time

spent on preventive services in United States. They classified preventive activities

according to their priority (an A type has highest priority) and estimated time spent
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on each type. For example, although the national smoking rate is approximately 20%

percent, only 4% percent of patients discuss smoking issues (A type priority). How-

ever, there is a need for satisfaction of this type for prevention to avoid high death

rates. Furthermore, even though the recommended time to spend on this preventive

service is at least 3 minutes, the research shown that doctor can only spend approx-

imately 1.4 minutes. As the study suggests, neither the prevention need of patients

nor the recommended time devotion to each patient is achieved. Hence, keeping in

mind that prevention is an important service to be provided, it lowers the patient

arrival, modeling and optimizing time allocation gains importance.

There are studies related to the resource and time allocation problems for pre-

vention. Rauner (2002) [38] modeled strategies for policy makers to determine cost

effective HIV prevention programs. They analyzed a dynamic system for resource al-

location of disease control which is illustrated by the case of advanced drug therapies.

Moreover, Kaplan and Pollack (1998) [39] formulated the budget allocation problem

to HIV prevention activities while maximizing the number of people prevented from

infection. Güneş, Chick and Akşin (2004) [40] investigated the breast cancer screening

problem by including capacity constraints. The aim was to decrease the rate of deaths

due to breast cancer by matching the supply of screening tests and the demand for

them. Güneş (2009) [41] modeled the time allocation problem to preventive services

by Markovian queueing approach. She assumed each and every patient is provided

by preventive service and considered the decreasing effect of prevention on expected

service time and patient arrivals in the long run. In addition, Kunduzcu (2009) [42]

used event-based dynamic programming to find the optimal admission control and

scheduling policies in a facility that offers only two services: screening (less urgent

need) and diagnosis (urgent need). The model accounts for the future benefits of

screening activity (otherwise, cµ rule is optimal). She characterized the situations

where less urgent needs gain priority over urgent needs.
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In this thesis, we focused on family physician’s capacity allocation problem by

differentiating prevention activity from other tasks. Modeling the system with the

support of Turkish family practice data, by considering the decrease in arrival rates

and service time, modeling the patient arrivals in accordance with their preventive

service reception, forms the uniqueness of this thesis.
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Chapter 3

FAMILY PRACTICE IN TURKEY

Family practice is a new implementation in Turkish primary health care. In this

chapter, we will provide information about how the system works which forms the

basis of our modeling approaches. Some issues in family practice discussed in the

context of Turkey, with an emphasis on the time allocation of GPs and different

tasks they perform. We will present survey results1 to give an overview of the family

practice in Turkey and a specific case to have a deeper understanding.

3.1 Observations from the Family Practice of Turkey

3.1.1 Family Doctors

The survey is conducted among 384 Turkish family doctors, among pilot cities Adıyaman,

Denizli, Düzce, Edirne, Elazığ, Eskişehir, Gümüşhane, Isparta, İzmir, Osmaniye and

Samsun are selected. The ages of those GPs varies between 24 and 55. 297 of them

are men and 87 of them are women (approximately 23% are women, 87% are men).

They have been working as a GP for 18 months on the average.

64 % of GPs say that in five years possibility of quitting GP is between 0 and 25

percent. Also, 75 % of GPs are satisfied with their jobs Table 3.1 and Table 3.2).

1The survey was prepared and distributed in 2008 by Evrim Didem Güneş, PhD; Hakan Yaman
MD,MS : Aile Hekimleri Pilot Uygulama. The data that is collected by this survey is analyzed
and used in this thesis as an overview. The results used are shown in appendix in Table B.7
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Table 3.1: Willingness of quitting family practice

Response # of respondents %

0-25 percent 246 64

25-50 percent 34 9

50-75 percent 60 16

75-100 percent 45 12

Table 3.2: Satisfaction Degree

Response # of respondents %

satisfied 279 75

not sure 56 15

not at all satisfied 36 10

Table 3.3: Willingness of specialization

Response # of respondents %

yes 171 46

no 154 42

don’t know 43 12

Table 3.4: Willingness of specializa-
tion in family practice

Response # of respondents %

yes 115 67

no 42 25

don’t know 14 8
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46% of them want to specialize and among those 67% want to specialize in family

practice (Table 3.3 and Table 3.4). These are the signs of satisfaction of the new PHC

implementation in Turkey from the GP point of view.

3.1.2 Patients and Working Principles

Approximately 1802 female, 1780 male and a total of 3582 patients are registered

to each GP. If we look at age distribution of patients, we see that nearly 50 % is

between 19 and 50. On the average, family doctors work at the clinic approximately

37 hours and spend approximately 6 hours for home visits per week (86.75% of time

clinic duty, 13.25% of time home visits). A consultation takes 11 minutes and 57

patients consult to each GP per day. GPs refer approximately 5.5% of the patients to

a higher-level health care facility. Main reasons for referral are consulting a specialist

to be sure about diagnosis and treatment, need of surgical or specialist intervention,

lack of medical equipment, and insistence of the patient.

A GP works alone or usually with a nurse. They have many responsibilities such

as acute care, disease prevention, and promotion of health, management of chronic

diseases, mother-child health, family planning, administrative affairs etc. They have

to accomplish these tasks in a limited amount of time. In Table 3.5 time allocation

of a family doctor among different tasks are shown. It can be understood that they

do not spend much time for promotion of health (3% of their time), most of the time

they provide diagnosis and treatment services. Moreover, according to GPs, average

importance level of these services are shown in Table 3.6 (5 being most important,

1 being least important). Again, we see promotion of health is the least important

service among GPs.

The results in both Table 3.5 and Table 3.6 show that preventive activity has lower
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Table 3.5: Time Allocation Among Tasks

Task %

Diagnosis 24

Treatment 21

Vaccination 10

Mother-child care 8

Administrative affairs 8

Management of chronic diseases 7

Scanning of risk factors 5

Family planning 5

Other duties 4

Periodic examinations 3

Promotion of health/prevention 3

Seminars 3

importance than the other tasks or is given less time devotion; however, it is one of

the most important services that a family doctor should provide in the sense that it

maintains and improves the health quality of people. In Chapter 2, the importance

of preventive activity is presented. The results of clinical trials suggest that it lowers

the patient arrivals and improves society’s health status in the long run. As a result,

much more time and importance should be allocated to that service. In addition,

according to our survey results, 80% of GPs think that they do not have enough

time to provide all the services that is defined in GP directives, one of which is being

preventive service. Since the percentage of dissatisfaction in lack of time to provide

services is high, planing modeling and time allocation of a GP among different tasks

gains importance. The benefits of preventive health care, and ,in general, establish-
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Table 3.6: Importance Level

Vaccination 4.72

Mother-child health 4.55

Family planning 4.20

Diagnosis and treatment 4.04

Management of chronic diseases 3.94

Periodic examinations 3.88

Promotion of health 3.80

ing more healthy life is realized as reduced demand for health care as well as lower

deaths in the long run. Therefore, GPs should devote a portion of of their time consis-

tently for health promotion and preventive activities. In this thesis, we assume that

GP provides two types of services; acute care and preventive activity. We will focus

on optimizing the portion of time that is allocated to preventive service in our models.

Majority of GPs work without appointment ( 6% with appointment, 94 % without

appointment). In line with practice, we do not use appointment scheduling systems

to model time allocation of GP, and instead we take a capacity planning approach.

3.2 A specific case

Dr. X is a General Practitioner (GP) in Düzce, a city in Turkey. He works for 8 hours

a day. The number of patients that are registered to him is 2630. We used the data

that we gathered from him in order to estimate model parameters as well as model

construction. Descriptive statistics are below.

45% of the patients are male and 55% of the patients are female. By number,
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these percentages represents 1183 and 1447 patients respectively. We can say that

these percentages are nearly equal, so for further analysis gender effect is ignored.

Figure 3.1: Age-Gender Distribution

Figure 3.1 shows age-gender distribution of his patients. The increase-decrease

pattern in different genders among age groups is similar. This parallelism will elimi-

nate the age caused differences within female and male groups.

Figure 3.2 shows average consultation numbers in one year per days of the week.

Dr.X carries out a mobile preventive and diagnostic service in the villages of Düzce

on Wednesdays as a requirement of being a GP and therefore accepts patients in his

office only before noon on Wednesdays. The decrease in the number of patients that

is seen at the clinic on Wednesday is explained by this mobile prevention activity.

The pattern is typical, it shows seasonality within a week.



Chapter 3: Family Practice In Turkey 18

Figure 3.2: Consultation distribution per weekdays

3.2.1 Patient Segmentation

As mentioned in Chapter 1, we will focus on two types of services that is provided

by a GP: prevention (mobile or not) and acute care. Dr. X gives importance to

preventive service very much and devotes his time to preventive activity as much as

possible. However, the data available did not specify patients who received prevention

services and therefore, we could not exactly separate patients who took prevention

and who did not. Luckily, we were able to classify patients under certain conditions

who are provided preventive service accordingly. The classification of those patients

are discussed deeply with Dr. X and will be explained.

According to their objectives preventive service can be divided into three groups;

primary, secondary and tertiary. Primary preventive service deals with people with

no symptoms and targets to decrease the odds of catching a disease. Secondary pre-

ventive service deals with people who are at an early stage of disease and targets to

treat. Tertiary preventive service deals with people who have chronic diseases and

targets to keep illness under control [43]. In other words, preventive service is the
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actions that are taken for preventing diseases before they show up, early diagnosis and

treatment of diseases, and keeping under control of symptomatic illnesses. For this

reason, we decided to take obesity, anxiety and hypertension patients as a proxy for

the patients with preventive service needs. Obesity and anxiety patients were taking

secondary preventive service whereas hypertension patients took tertiary prevention.

Those patients are called type 2 patients and going to form the second queue in Sec-

tion 4.1. Other than those patients are type 1 patients (patients that are provided

acute care service) who are going to form the first queue in Section 4.1

For obesity patients prevention activity can be done by offering a special diet and

monitoring the progress on health and also by doing this preventing from further

diseases. For anxiety patients, the prevention activity can be considered as relax-

ing the patient by talking about their fears by preventing deep impacts that can be

caused by their behaviors and sometimes by guiding them in their life. This will

improve their social relations and prevent them from future harms. For hypertension

patients, there are tests should be run to trace their health-status. These tests are

also done periodically but would result in early diagnosis of other diseases that can

be caused by hypertension. By using these type of patients we are willing to monitor

the treatment progress. We believe that as prevention activity increases the number

of times that they consult to doctor will decrease since they are in treatment progress.

Next, we looked at the arrivals of those patients in order to see if to group those

patients as one is reasonable or not. In figure 3.3 patients’ total monthly consulta-

tions per patient per day that belong to obesity, anxiety, and hypertension groups

are shown. Data is from August 2009 to July 2010. The number of patients that are

assigned to these three different groups are different than each other hence we nor-

malized total monthly consultations by dividing each total by the number of patients

that belong to each group. Thus the graph shows average number of consultations
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Figure 3.3: Obesity, anxiety, and hypertension groups’ monthly consultations per
patient per day

per month.

In Figure 3.3 we see close numbers for anxiety and hypertension groups but very

different numbers for obesity group. This difference is most probably caused by the

difference of numbers of patients that are assigned to obesity group. The patients that

are assigned to obesity group are 7 people where anxiety group consists of 168 and

hypertension group consists of 414 people. For the obesity group, since the number of

people that are registered to this group is very low, the results are not very accurate.

In the light of this information, we disregard obesity group and deal with anxiety and

hypertension group which is shown in Figure 3.4.

It can be seen from Figure 3.4 that the consultation numbers per patient per day

are very close for anxiety and hypertension group. We tested whether there exists a

statistical difference between the average consultation numbers related to those groups

or not, by performing independent samples t-test for each month. Null hypothesis
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Figure 3.4: Anxiety and hypertension patients’ consultation per patient per day

suggests their average consultations are equal. We compared the two graphs month

by month. In Table B.2 the results are shown. According to test results, we can say

that there is not enough evidence to reject the null hypothesis that the means are

equal. So we can group those patients as one and treat them as type 2 patients who

need and get preventive activity. From now on we refer to anxiety and hypertension

patients as type 2 patients and make inference according to their behavior.

Figure 3.5 shows the average consultation per patient over months for total (all

of the patients registered to doctor), type 1 (acute care), and type 2 (prevention)

patients. Type 1 patients does not include type 2 patients and we cannot see same

pattern in the arrivals of these two different kinds of patients. Hence, it is can be

inferred that it is a fair assumption that we separate those patients. In addition, we

tested whether the differences in the arrival rates are statistically significant or not.

We used independent samples t-test and concluded the differences are significant. The

results are shown in Table B.4. Moreover, ‘total’ reflects the high arrival rates of type

2 patients, the arrival rate for total and type 1 significantly different due to these high
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Figure 3.5: Consultations

averages. We can say that total arrival is affected by type 2 patient arrival rate and

consider these effects in the models. In conclusion, type 1 and type 2 patients differ

in their arrival rates and their arrival patterns. We will focus on the behavior of type

2 patients in the following section, assuming it will affect whole population. We will

then use this information when introducing feedback effect in the models in Chapter

4.

3.2.2 Feedback effect

In Figure 3.6 type 2 patients’ consultation per month per day numbers are shown.

Monthly totals are divided by the work days that belong to that month. Here, there

exists a decrease in the monthly consultation. This decrease can be explained by

seasonality, going out of town and other kinds of environmental reasons as well as

feedback effect due to the preventive service they get. We tested whether the de-

crease is statistically significant or not. We compared the means of the first (August

2009) and the last (July 2010) averages. We used paired samples t-test and Wilcoxon
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Figure 3.6: Prevention given patients’ arrival rates per day over months

signed rank test to analyze before-after comparison. In Table B.5 and Table B.6 the

results of the tests are shown. Both tests give the same result that the difference is

statistically significant. We can conclude that prevention patients’ per month per day

consultations have decreased.

Figure 3.7: Linear Relation
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Figure 3.8: Exponential Relation

In this case if we assume the reason of the decrease is feedback effect, it is a fair

assumption that the decrease will reflect to whole system. In Dr.X case, it could be

said two things; the relationship is nearly linear or is nearly exponential. The rela-

tionships are shown in Figure 3.7 and in Figure 3.8.

These figures show very strong relationship between the time amount and the de-

crease in arrival with very high R-squares (0,8842 and 0,8918 respectively). Here, in

Figures 3.7 and 3.8 x represents x-axis which is defined as months. Every month has

a number starting from 1. As time goes by, as number of months increases, the arrival

rate decreases. It can be considered as, as the cumulative time spent for preventive

service increases, arrival rate will decrease. We will use this information in Sections

4.2.1, 4.2.2 and 4.4 when we are modeling feedback function.
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Chapter 4

CAPACITY ALLOCATION MODELS

Family doctors have limited time and in that limited time they have to provide

many services. Among these tasks; we focus on acute care and prevention in this

study. The survey results, which was introduced in Chapter 3, provide an overview of

family practice in Turkey and showed that only 6% of GPs use appointment system in

practice. Since the percentage is very low, instead of appointment scheduling, we used

time/capacity allocation framework to be in line with practice. The time allocation

problem of a GP is characterized by queueing approach.

We studied two different queueing approaches. First one is Dedicated Time Slots

model which assumes that the acute care and prevention services are provided at

different times, and patients arrive specifically for that service. We have two separate

queues served by a single server, GP. The demand for each service should be satisfied.

Second one is Prevention as an Add-on Service which assumes that all patients

wait in a single queue served by GP. Whether to offer a preventive service or not

after each acute care service as an add-on depends on the choice of GP. There is no

obligation to satisfy the demand for preventive activity.

We try to find optimal time allocation between preventive activity and acute care

in steady-state. In reality, arrival rate of patients could be higher than the service

rate of the doctor which means the system is instable, doctor cannot serve all of the

patients who are waiting. However, we assume that this is not the case, the system is
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stable in our models. In addition, when we look from doctor’s point of view, provision

of preventive service by doctor can depend on the number of patients who are waiting

in line. The doctor can choose not to provide prevention if the number of waiting

patients is high. Nevertheless, we assume the doctor’s choice is independent from the

number of waiting patients.

4.1 Dedicated Time Slots Model

In DTS, the demand for acute care and prevention services constitute different queues,

the patients of these two different types of service arrive with different rates. They

are assumed to be provided in isolation and each demand should be satisfied. This

approach is motivated by the results in Section 3.1.2, when you can differentiate the

patient arrivals of each type. It is stated that 13.25% of time a GP performs home

visits, mobile preventive activity. Moreover, the specific case in Section 3.2 showed

that the GP provides preventive activity on Wednesday afternoons. In this context,

acute care and preventive activity constitutes different queues and the services are

provided at different times.

Moreover, their service times may also be different, and there is a high possibility

that their waiting cost per patient is also different. We assume that arrivals follow

Poisson process, and service times follow exponential distribution. Wein (1989) [26]

model a problem close to ours discussed widely in Chapter 2. It is different in the

sense that it optimizes the service rates with a strict constraint on budget.

In DTS model, we analyze optimal capacity allocation decision between two types

of queues. First queue represents the patients waiting for acute care whereas the

second queue represents the patients waiting for preventive services. The GP, serves

acute care patients 100p% of time and in the remaining time serves for prevention.
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Table 4.1: DTS Model Parameters and Decision Variable

Model parameters

λ1 Arrival rate for patients demanding acute care

λ2 Arrival rate for patients demanding prevention

1
µ1

Expected service time for acute care

1
µ2

Expected service time for prevention

c1 Waiting cost of acute care patients (per patient, per unit time)

c2 Waiting cost of prevention patients (per patient, per unit time)

Decision Variable

p Percentage of service capacity allocated for acute care

(p represents probability hence percentage is defined as 100p. Throughout this thesis

p will be referred to percentage. To illustrate p = 0.01 stands for 1%).

Figure 4.1: General system representation for GP’s office arrivals

In a traditional queueing model, service takes place continuously 24 hours a day

and 7 days a week. Hence service rate µ and expected service rate 1
µ

are defined ac-

cordingly. However, a GP works for generally 8 hours in a day and 5 days in a week.

Consequently; we need to rescale service rates with a rescaling factor to maintain time
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continuum [44]. In our model, service rates are inputs, so when we assign values to

service rates this rescaling is taken into consideration. However, here we have a GP

(a single server) who serves for two different queues. We model the allocation of time

into two dedicated portions as splitting the available service capacity into two parallel

servers. Again, to maintain time continuum we rescaled service rates with rescaling

factors p and 1 − p for µ1 and µ2 respectively. By doing so, we assure that a GP

cannot give two services at the same time. We get average rescaled effective service

rates as pµ1 and (1− p)µ2 and rescaled effective service times as 1
pµ1

and 1
(1−p)µ2

[44].

p is the portion of time allocated to acute care service as a decision variable. As-

suming exponential service and Poisson arrivals, expected total waiting cost (expected

number of people in the system in steady state × cost per patient) can be found as;

c1λ1

µ1p− λ1

+
c2λ2

µ2 (1− p)− λ2

The objective of the GP is to finish the work with minimum waiting for patients.

The mathematical representation of the model is:

min
p

c1λ1

µ1p− λ1

+
c2λ2

µ2 (1− p)− λ2

s.t.

µ1p ≥ λ1 + ε1

µ2(1− p) ≥ λ2 + ε2

0 < p < 1

In above optimization model constraints are the stability conditions for the GP,

guarantee that the demand rate should be less than service rate. In addition, it im-

plies that there is an obligation to satisfy each demand. This model is appropriate

when there is a need for satisfaction of prevention, like A type prevention which is

mentioned in Pollak et al. (2008) [37].
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ε1 and ε2 are very small positive numbers that are used to ensure the system

stability. The decision variable p, or the percentage of time spent for acute care is

defined to be between 0 and 1.

4.1.1 Analysis

This problem is a non-linear optimization problem with linear constraints. Second

derivative of total cost function with respect to p is;

d2TC

dp2
=

2c1λ1µ
2
1

(−λ1 + pµ1) 3
+

2c2λ2µ
2
2

(−λ2 + (1− p)µ2) 3

This derivative is positive under the assumptions

λ1 < µ1, λ2 < µ2, λ1, λ2, µ1, µ2, c1, c2 > 0

together with stability constraints

(µ1p− λ1 − ε1) > 0 and µ2(1− p)− λ2 − ε2) > 0

It implies total cost function is convex. Since total cost function is convex, we can

find unique solution to this non-linear optimization problem which is going to be

globally optimal according to KKT conditions. This unique solution should satisfy

the following stability constraints:

µ1p ≥ λ1 + ε1

p ≥ λ1 + ε1
µ1

> 0 (4.1.1)

µ2(1− p) ≥ λ2 + ε2

p ≥ 1− λ2 + ε2
µ2

< 1 (4.1.2)

4.1.1 and 4.1.2 are equivalent to the following;

λ1

µ1

< p < 1− λ2

µ2

(4.1.3)
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4.1.3 gives a system stability condition on the model parameters;

λ1

µ1

+
λ2

µ2

< 1 or (4.1.4)

µ1µ2 − λ1µ2 − λ2µ1 > 0 (4.1.5)

To solve this non-linear optimization problem, we used Lagrangian Relaxation.

The boundaries of p are disregarded since constraints 4.1.1 and 4.1.2 already satisfy

the boundary conditions on p. Hence, the Lagrangian function becomes,

L(p, u1, u2) =
c1λ1

µ1p− λ1

+
c2λ2

µ2(1− p)− λ2

−u1(µ1p−λ1− ε1)−u2(µ2(1− p)−λ2− ε2)

(4.1.6)

The optimal solution should satisfy

∂L(p, u1, u2)

∂p
= 0,

u1 (µ1p− λ1 − ε1) = 0,

u2 (µ2 (1− p)− λ2 − ε2) = 0

The following proposition describes the solution to the DTS model.

Proposition 4.1. The optimal solution of the Dedicated Time Slots optimization

problem can be one of the following;

• Interior Solution

If the two queues are identical (i.e, c1 = c2, µ1 = µ2, λ1 = λ2) then optimal

solution is an interior one and is equal to 1/2. Otherwise, we will assume

c1λ1µ2 6= c2λ2µ1, and interior solution is given as;

u1 = 0, u2 = 0, p =
λ1µ1µ2 ((c1 + c2)λ2 − c1µ2) +

√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

µ1µ2 (c2λ2µ1 − c1λ1µ2)

• Boundary Solution 1

If only the first constraint is binding, and c1λ1µ1

ε21
< c2λ2µ2(

λ2−µ2+
µ2(λ1+ε1)

µ1

)
2
; then the

optimal solution is given by

u2 = 0, u1 =
− c1λ1µ1

ε21
+ c2λ2µ2(

λ2−µ2+
µ2(λ1+ε1)

µ1

)
2

µ1
, p =

λ1 + ε1
µ1
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• Boundary Solution 2

If only the second constraint is binding, and c2λ2µ2

ε22
< c1λ1µ1(

λ1−µ1(−λ2+µ2−ε2)
µ2

)
2
; then

the optimal solution is given by

u1 = 0, u2 =
− c2λ2µ2

ε22
+ c1λ1µ1(

λ1−µ1(−λ2+µ2−ε2)
µ2

)
2

µ2
, p =

−λ2 + µ2 − ε2
µ2

According to KKT conditions, for a boundary solution to be optimal, it should

satisfy the positivity condition on the Lagrange multipliers u1 and u2. In this case if u1

of boundary solution 1 and u2 of boundary solution 2 are both negative, the optimal

solution is the interior solution. Then, we can write a condition for the solution to be

interior:

ε2λ2µ1µ2

λ1 (λ2µ1 + (ε+ λ1 − µ1)µ2) 2
<
c1
c2
<
λ2 (µ1 (ε+ λ2 − µ2) + λ1µ2)

2

ε2λ1µ1µ2

If above condition is satisfied (implying u1 < 0 and u2 < 0), the optimal solution

is interior. Since ε is a very small number, it makes left hand side of the inequality

nearly zero and right hand side of the inequality a very large number. In that case the

interval of c1
c2

becomes very large and in reasonable cost assignments the ratio stays

in that interval. As a result; the optimal solution becomes an interior one. For the

remaining analysis, we will focus on the interior solution.

4.1.2 Sensitivity Analysis

In this section we will analyze how optimal values of p change with respect to model

parameters. We will assume the optimal solution is the interior solution, where the

constraints are non-binding. Since the solution is defined as the solution to the first

order derivative of the Lagrange function, we use implicit differentiation to find the

reaction of p to the changes in parameters. Then we investigate the sign of the deriva-

tive that is found by implicit differentiation. The following proposition summarizes

the results:
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Proposition 4.2. Comparative Statics for DTS model;

∂p∗

∂λ1

> 0,
∂p∗

∂λ2

< 0,
∂p∗

∂µ1

< 0,
∂p∗

∂µ2

> 0,
∂p∗

∂c1
> 0 and

∂p∗

∂c2
< 0

p represents the portion of time that should be spent on acute care. As arrival

rate or waiting cost of acute care patients increase, ceteris paribus, the portion of

time that should be spent on their treatment should also increase to satisfy demand

and to lower the waiting cost of them respectively. Whereas as service rate for this

patients increases, the portion should decrease. Similarly, as arrival rate or wait-

ing cost of prevention and chronic diseases increase, p should decrease (in that case

(1 − p), the portion of time that should be spent on prevention and management of

chronic diseases increases) to satisfy demand and to lower the waiting cost respec-

tively. Whereas if the service rate for that kind of patients increases ceteris paribus,

p should increase too (in that case (1− p), the portion of time that should be spent

on prevention and management of chronic diseases decreases). Analytical results are

consistent with intuition.

4.2 Dedicated Time Slots Model with Feedback

In the previous model, we assumed that demand from acute care patients follow Pois-

son distribution with parameter λ1. Now we consider a case where mean arrival rate

rate for acute care depends on the time that is spent on the prevention service. As

prevention service increases, we expect a decrease in the arrival rate of acute care

patients. There are clinical trials that suggest the arrival rate of patients decrease

drastically when prevention is provided [33] (for detailed information see Chapter 2).

Furthermore, in Chapter 3 in Figure 3.5 we see a decrease in the arrival rates of pre-

vention patients (type 2 patients) in time.

All of these suggest, as patients get certain prevention, the odds of getting sick

should decrease. We call it the feedback effect. Again, in Figure 3.5 we see that the
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prevention patients’ high arrival rates affect whole patients’ arrival rates (represented

by Total). In that sense, we include the effect in the total arrival rate.

λ1 is the representation of total arrival rate, assuming prevention patients will join

this queue in time for acute needs, after preventive service provided to them. In our

DTS with Feedback model, the portion of time that is spent on prevention services

is shown by (1 − p). In this context, as (1 − p) increases λ1 should decrease. In

other words, λ1 is a decreasing function of (1 − p). Equivalently, we model λ1 as an

increasing function of p. In the following, we will analyze different functional forms

of λ1, other model parameters and the decision variable is the same as defined before.

4.2.1 Model Definition: Linear λ1

In Figure 3.7 we have shown that the decrease in the arrival rate of prevention patients

(type 2 patients) can be modeled as a linear function. With the data provided, linear

model fit gives R2 = 0, 8842. Here, λ1 is a linear function of p, λ1 = λ0(1 + p). We

call this model as Dedicated Time Slots Model with Linear Feedback (DTSL). The

mathematical representation of this model is:

min
p

c1λ0(1 + p)

µ1p− λ0(1 + p)
+

c2λ2

µ2 (1− p)− λ2

s.t.

µ1p ≥ λ0(1 + p) + ε1 (4.2.1)

µ2(1− p) ≥ λ2 + ε2 (4.2.2)

0 < p < 1

Here λ0 is a threshold value which is equivalent to λ1

2
in the model without feedback

(DTS). So that if p = 1 (meaning no prevention) λ1 = λ1. Constraints are the stability

conditions for the GP, guarantee that the demand rate should be less than service rate.

ε1 and ε2 are very small positive numbers that are used to make the system stability
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and utilization less than 1 certain. The decision variable p, or the percentage of time

spent for acute care is defined to be between 0 and 1.

4.2.1.1 Analysis

This problem is again a non-linear optimization problem with linear constraints; simi-

lar to our DTS model, hence solution technique is similar too. The boundaries of p are

disregarded since constraint 4.2.1 and 4.2.2 already satisfy the boundary conditions

on p. Then the optimization problem is defined as;

min
p

c1λ0(1 + p)

µ1p− λ0(1 + p)
+

c2λ2

µ2 (1− p)− λ2

s.t.

µ1p ≥ λ0(1 + p) + ε1

µ2(1− p) ≥ λ2 + ε2

Second derivative of TC with respect to p is;

d2TC

dp2
=

2c1λ0 (λ0 − µ1)µ1

((1 + p)λ0 − pµ1) 3
− 2c2λ2µ

2
2

(λ2 + (−1 + p)µ2) 3
> 0

This derivative is positive under the assumptions

λ0 < µ1, λ2 < µ2 λ0, λ2, µ1, µ2, c1, c2 > 0

together with stability constraints:

µ1p− λ0(1 + p)− ε1 ≥ 0, µ2(1− p)− λ2 − ε2 ≥ 0

It implies that total cost function is convex. Since total cost function is convex,

we can find the unique solution to this non-linear optimization problem which is

globally optimal according to KKT conditions. This unique solution should satisfy

the following stability constraints:

µ1p > λ0 (1 + p) (4.2.3)

µ2 (1− p) > λ2 (4.2.4)
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4.2.3 and 4.2.4 are together equivalent to the following;

λ0

µ1 − λ0

< p <
µ2 − λ2

µ2

This also gives a system stability condition on the model parameters;

λ0

µ1 − λ0

< 1− λ2

µ2

equivalently;

µ2µ1 − λ2µ1 − 2λ0µ2 + λ2λ0 > 0 (4.2.5)

To solve the non-linear optimization problem, we used Lagrangian Relaxation.

The Lagrange function becomes,

L(p, u1, u2) =
c1λ0(1 + p)

µ1p− λ0(1 + p)
+

c2λ2

µ2(1− p)− λ2
−u1(µ1p−λ0(1 + p)− ε1)−u2(µ2(1− p)−λ2− ε2)

(4.2.6)

The optimal solution should satisfy

∂L(p, u1, u2)

∂p
= 0,

u1 (µ1p− λ0(1 + p)− ε1) = 0,

u2 (µ2 (1− p)− λ2 − ε2) = 0

The following proposition describes the optimal solution to the Dedicated Time

Slots Model with Linear Feedback model.

Proposition 4.3. The optimal solution of the DTSL optimization problem can be

one of the following;

• Interior Solution:

Solution to the first order derivative of Lagrange function

u1 = 0, u2 = 0,

p =
λ0µ2 (c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2)) +

√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

µ2 (c2λ2 (λ0 − µ1) 2 − c1λ0µ1µ2)
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• Boundary solution 1:

If only the first constraint is binding, and

c2λ2µ2(
λ2 − µ2 + µ2(−λ0−ε1)

λ0−µ1

)
2
>

c1λ0µ1(
λ0 + λ0(−λ0−ε1)

λ0−µ1
− µ1(−λ0−ε1)

λ0−µ1

)
2

(the condition that u′is ≥ 0); then the optimal solution is given by

u2 = 0, u1 =

− c1λ0µ1(
λ0+

λ0(−λ0−ε1)
λ0−µ1

−µ1(−λ0−ε1)
λ0−µ1

)
2

+ c2λ2µ2(
λ2−µ2+

µ2(−λ0−ε1)
λ0−µ1

)
2

−λ0 + µ1

,

p =
−λ0 − ε1
λ0 − µ1

• Boundary solution 2:

If only the second constraint is binding, and

c1λ0µ1(
λ0 + λ0(−λ2+µ2−ε2)

µ2
− µ1(−λ2+µ2−ε2)

µ2

)
2
>
c2λ2µ2

ε22

(the condition that u′is ≥ 0); then the optimal solution is given by

u1 = 0, u2 =

c1λ0µ1(
λ0+

λ0(−λ2+µ2−ε2)
µ2

−µ1(−λ2+µ2−ε2)
µ2

)
2
− c2λ2µ2

ε22

µ2

,

p =
−λ2 + µ2 − ε2

µ2

According to KKT conditions a boundary solution to be optimal it should satisfy

the positivity condition on the Lagrange multipliers u1 and u2. In this case if u1 of

boundary solution 1 and u2 of boundary solution 2 are both negative, the optimal

solution is an interior solution. This implies if

ε2λ2 (λ0 − µ1) 2µ2

λ0µ1 (λ2 (−λ0 + µ1) + (ε+ 2λ0 − µ1)µ2) 2
< c1/c2 <

λ2 ((ε+ λ2) (λ0 − µ1) + (−2λ0 + µ1)µ2) 2

ε2λ0µ1µ2

condition on costs hold, the optimal solution is interior. For very small ε the solution

is interior. For the remaining we will focus only on interior solution.
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4.2.1.2 Sensitivity Analysis

In this section we will analyze how optimal solution p∗ of the DTS with Linear Feed-

back model change with respect to model parameters 1. Similar to DTS, interior

solution is the root of first order derivative of Lagrange function related to the ex-

pected total waiting cost function. As a result, implicit differentiation is used. The

following proposition summarizes the results:

Proposition 4.4. Comparative Statics for DTSL;

∂p∗

∂λ0

> 0,
∂p∗

∂λ2

< 0,
∂p∗

∂µ1

< 0,
∂p∗

∂µ2

> 0,
∂p∗

∂c1
> 0 and

∂p∗

∂c2
< 0

We expected to find parallel results with DTS and our expectations are met.

Linear λ1 is a reasonable approach in the sense that it does not violate convexity

assumption of total cost function and the sensitivity results are logical.

4.2.2 Model definition: Exponential λ1

In figure 3.8, we have shown that the decrease in the arrival rate of prevention pa-

tients (type 2 patients) can be modeled as an exponential. With the data provided,

linear model fit gives R2 = 0, 8918. Here, we define λ1=
λ0

e1−p
which is increasing in p,

percentage of time allocated to acute care service and decreasing in (1−p), percentage

of time allocated to preventive service. We call this model as Dedicated Time Slots

model with Exponential Feedback (DTSE)

In the case of linear λ1 in DTSL, we were able to find closed form solutions to

our non-linear cost minimization optimization problem. Unlike linear model, we were

not able to find closed form solutions since we have non-linear objective function and

non-linear constraints. However, if we do numerical analysis we are able to find an

1Model constraints and assumption on model parameters are taken into consideration when an-
alyzing the sensitivity of decision variable p
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optimal solution by search algorithms if cost function is convex. Then the problem be-

comes convex optimization with convex constraints.The mathematical representation

of DTSE is:

min
p

c1
λ0

e1−p

µ1p− λ0

e1−p

+
c2λ2

µ2 (1− p)− λ2

s.t.

µ1p−
λ0

e1−p
− ε1 > 0

µ2(1− p)− λ2 − ε2 > 0

0 < p < 1

Here λ0 is a threshold value which is equivalent to λ1 in the model without feedback.

4.2.2.1 Convexity of the total cost function

If the second derivative of the cost function with respect to p is positive then the cost

function is convex and we can find a minimizer.

d2TC

dp2
=
e1+pc1λ0µ1 (ep (−2 + p)λ0 + e (2 + (−2 + p) p)µ1)

(epµ1 − epλ0) 3
+

2c2λ2µ
2
2

((1− p)µ2 − λ2) 3
> 0

Second derivative of the cost function in the case λ1 = λ0

e1−p
is always positive

implying there exists a minimum point.

4.2.3 Model Definition: General case, λ1 as a convex increasing function of p

We saw that defining λ1 as a linear increasing function of p is reasonable. We can

generalize this result to specific function. Any function that is monotonically increas-

ing and convex, would satisfy our expectations under some conditions. As long as

total cost function remains convex we can find optimal solutions using non-linear op-

timization techniques. The solution would be harder to find for non-linear functions

of λ1 since stability constraints would become non-linear too. In that case, we are

not able to solve the optimization problem as we solved before. For simple non-linear
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constraints, we may be able to find optimal solutions. Otherwise, we will use search

algorithms to find the optimal solution.

4.2.3.1 Convexity of the total cost function

Assume λ1 is an increasing function of p which is shown by λ1(p). Also assume λ1(p)

is convex. These implies λ′1(p) > 0 and λ′′1(p) > 0. Under these assumptions total

cost function becomes;

TC=
c1λ1(p)

µ1p− λ1(p)
+

c2λ2

µ2 (1− p)− λ2

If total cost function above is convex, then we can find a minimizer. The second

derivative of the total cost function is;

d2TC

dp2
=

c1µ1 (−2λ′1(p)
2p− 2λ1(p)µ1 + λ′′1(p)p (λ1(p)− pµ1) + 2λ′1(p) (λ1(p) + pµ1))

(λ1(p)− pµ1) 3

− 2c2λ2µ
2
2

(λ2 + (−1 + p)µ2) 3

The sufficient condition for convexity of expected total cost function is;

c1µ1(2λ′
1(p)2p+ 2λ1(p)µ1 + λ′′

1(p)p(pµ1 − λ1(p))
(pµ1 − λ1(p))3

+
2c2λ2µ

2
2

((1− p)µ2 − λ2)3
>

2λ′
1(p)(λ1(p) + pµ1))
(pµ1 − λ1(p))3

(4.2.7)

If the condition in equation 4.2.7 is satisfied, the total cost function is convex and

we will be able to find a minimizer (optimal minimum) to non-linear optimization

problem by using suitable search algorithms or non-linear optimization techniques.

4.3 Numerical Analysis for DTS, DTSL, and DTSE

In this section, we are going to compare numerical results of three models. First

model has no feedback effect (DTS), second model has linear feedback effect (DTSL),

and the third model has exponential feedback effect (DTSE). Analysis are done for

43150 scenarios with different parameters, which are feasible for all three models. In
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Table 4.2 the range of the parameters are shown. For DTSL, λ0 is set to λ1

2
in order

to make a fair comparison with other models. The percentage of time that should be

spent on acute care and prevention are compared as well as the costs. In addition,

sensitivity of DTSE can be investigated regarding different model parameters.

Table 4.2: Range of Parameters

Parameter Range Parameter Range

λ1 11-30 µ2 76-100

λ2 20-40 c1 1-20

µ1 50-77 c2 1-5

Sensitivity analysis of DTS and DTSL were done in Sections 4.1.2 and 4.2.1.2

respectively. However, we could not find a closed form solution for DTSE. We were

not able to determine the reaction to changes in model parameters. The graphs below

will help to gain an intuition about the third model’s response.

Figures 4.2 and 4.3 represents the behavior of p, percentage of time that should be

allocated to acute care service, to the changes in waiting costs. c1 and c2 are waiting

costs assigned to acute care patients and prevention patients respectively. For all

three models as c1, the waiting cost of acute care patients, increases; p increases and

1−p decreases accordingly to lower the expected total waiting cost. As c2, the waiting

cost of prevention patients, increases; p decreases and 1− p increases accordingly to

lower the expected total waiting cost.

Figure 4.4 and 4.5 shows the response of p to the changes in service rates. µ1 and

µ2 are the pre-determined service rates for acute care and prevention respectively.

They can be considered as average service rates when only one task is performed. For
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Figure 4.2: Reaction of p to the changes in waiting cost of acute care patients
λ1 = 14, λ2 = 30, µ1 = 75, µ2 = 80, c2 = 3

Figure 4.3: Reaction of p to the changes in waiting cost of prevention patients
λ1 = 14, λ2 = 30, µ1 = 75, µ2 = 80, c1 = 3

all models, as µ1 increases p decreases and as µ2 increases p increases.
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Figure 4.4: Reaction of p to the changes in service rate of acute care patients
λ1 = 14 ,λ2 = 30, µ2 = 80, c1 = 1, c2 = 1

Figure 4.5: Reaction of p to the changes in service rate of prevention patients
λ1 = 14, λ2 = 30, µ1 = 75, c1 = 1, c2 = 13

Figure 4.6 and 4.7 shows the changes in p due to changes in demand. As λ1, arrival

rate for acute care patients, increases ceteris paribus; p increases to satisfy demand.
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Figure 4.6: Reaction of p to the changes in arrival rate of acute care patients
λ2 = 30, µ1 = 75, µ2 = 80, c1 = 1, c2 = 1

Figure 4.7: Reaction of p to the changes in arrival rate of prevention patients
λ1 = 14, µ1 = 75, µ2 = 80, c1 = 1, c2 = 1

1 − p decreases accordingly. As λ2, arrival rate for prevention patients, increases

ceteris paribus; p decreases and 1 − p increases accordingly to satisfy demand from
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prevention patients.

Figure 4.8: Percentage of time that should be allocated to prevention service for three
models

Figure 4.8 shows the comparison of prevention service between the three models.

The percentage of time that should be allocated to prevention service is lower for

model with no feedback than the model with linear feedback and it is lower for the

model with linear feedback than the model with exponential feedback. In feedback

effect context, we can say that exponential feedback is more effective on arrival rate

than the linear feedback effect, it decreases more fast. In other words, the percentage

of time that should be allocated to prevention service is more responsive to exponen-

tial feedback. Strongest feedback effect is related to third model, consequently; the

trade of between service time and arrival rate is higher. We can say that, as feedback

effect becomes stronger, more time is spent on prevention.
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Figure 4.9: Waiting cost comparison for three models

Figure 4.9 shows the comparison of costs between three models. Cost is higher

for model without feedback than the model with linear feedback and it is higher for

the model with linear feedback than the model with exponential feedback. We can

conclude that, when feedback effect on the arrival rates gets stronger the system will

devote more time to that service. When more time is devoted to that service, the

operational costs will lower in the long run.
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4.4 Prevention as an Add-on Service

In first approach, DTS, we defined two types of patients joining two separate queues.

First queue is for acute care patients and second queue is for prevention patients. We

found how much time should be allocated for those two different kinds of queues. In

addition, we assume prevention will reduce sickness rate. Overall, total arrival rate

will decrease.

For mobile preventive activity of GP, assuming there exists another queue is ap-

plicable. However, prevention can be provided in the clinic too. Keeping in mind

that on the average, only 13.25% of time GP serves for mobile preventive activity, we

need to build a model which includes time dedicated to prevention at the clinic. In

reality, such a model is more applicable according to the service provision process in

practice.

Our second approach, Prevention as an Add-on service (PAS), assumes preven-

tion service is provided to some patients. Every patient joins the same queue and

the doctor decides whether to fulfill only the acute care need or to offer some preven-

tive service after the acute care as an add-on, resulting in no obligation for demand

satisfaction for prevention. In this case, model is a single queue single server model

in which the service provider offers two types of services. Due to time allocation to

prevention service, feedback is included in the model.

In [41] there exists a similar model which assumes all patients join to a single

queue but all of them gets preventive service. Moreover, a feedback mechanism on

both arrival rate and service time is developed; however, they assumed that service

time distribution is exponential. In PAS, we assumed all patients join a single queue,

arriving according to a Poisson process to the system and the doctor offers two types
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of service; short or long. In that case, service time distribution is no longer exponen-

tial. Short service stands for the service provided to satisfy the coming need of the

patient, long service stands for the service if prevention as an add-on is provided.

As percentage of time that is allocated to long service increases, meaning time de-

voted to prevention service increases, arrival rate to the system will decrease consid-

ering the feedback effect; i.e arrival rate is a decreasing function of the time allocated

to it. Doctor has to decide what percentage of time he should offer prevention. The

objective is to minimize waiting cost.

4.4.1 Model Definition

Patients arrive to the system according to Poisson process. Doctor serves with a

service rate µ1 with probability 1 − p referring to short service or serves with a

service rate µ2 with probability p referring to long service. Assume both service

time distributions follow exponential distribution. As decision variable p, the portion

of time that is allocated to prevention service, increases; arrival rate decreases as a

consequence of the feedback effect. In other words λ(p) is decreasing in p.

Figure 4.10: Model Representation

Assume; X1 ∼ EXPO(µ1) and X2 ∼ EXPO(µ2) represents short and long service

time distributions respectively. This implies the condition µ1 > µ2 on service rates.

Total service time distribution takes the value X2 with probability p and X1 with
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Table 4.3: Model Parameters and The Decision Variable

Model Parameters

λ(p) Arrival rate of patients (decreasing function of the decision variable)

1
µ1

Average service time for short service

1
µ2

Average service time for long service

c Waiting cost (per patient per unit time)

Decision variable

p Percentage of patients who are offered prevention service

probability (1 − p). In other words if we define a new random variable (Y ) for the

total service time of the system, its probability density function is represented by

fY (y) = (p)fX2(x2) + (1− p)fX1(x1) (4.4.1)

where X1, X2 are exponentially distributed random variables with rates µ1 and µ2,

and 1− p and p are the probabilities that Y will take on the form of the exponential

distribution with rate µ1 or µ2. Random variable Y is hyper-exponentially distributed.

The system becomes M/G/1, and we can use Pollaczek-Khinchin formula to find

average number of people in the system. According to P-K formula;

L =
λ(p)2E(Y 2)

2(1− λ(p)E(Y ))
+ λ(p)E(Y )

where

E(Y ) =
(1− p)
µ1

+
p

µ2

(4.4.2)

=
µ2(1− p) + pµ1

µ1µ2

(4.4.3)

E(Y 2) =
2(1− p)
µ2

1

+
2p

µ2
2

(4.4.4)
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E(Y ) and E(Y 2) are calculated by using properties of the hyperexponential dis-

tribution. Objective function is to minimize the expected total cost which is found by

substituting E(Y ) and E(Y 2) values in P-K formula and multiplying it by c, waiting

cost per patient per unit time. The mathematical representation of the model is:

min
p

cλ(p)2
(

2(1−p)
µ2

1
+ 2p

µ2
2

)
2
(

1− λ(p)
(

(1−p)
µ1

+ p
µ2

)) + cλ(p)

(
(1− p)
µ1

+
p

µ2

)
s.t.

1− λ(p)

(
(1− p)
µ1

+
p

µ2

)
− ε ≥ 0 (4.4.5)

0 ≤ p ≤ 1 (4.4.6)

where λ(p) is a decreasing function of the decision variable p.

4.4.2 Analysis: General λ(p)

For further analysis for simplicity, assume that cost function is characterized by the

number of people in the queue and the cost per patient is unit cost, (c = 1). In that

case, expected total cost becomes;

L(p) =
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

)
2
(

1− λ(p)
(

(1−p)
µ1

+ p
µ2

))
L(p) =

λ(p)2
(

2(1−p)
µ2

1
+ 2p

µ2
2

)
2 (1− ρ(p))

where ρ(p) is the utilization. Since we cannot determine the convexity of this cost

function, we analyzed the behavior of nominator and denominator. We would like to

determine the sufficient conditions where expected total cost is monotone in p which

makes a boundary solution optimal.

An ‘all policy’ is where p∗ = 1 whereas a ‘nothing policy’ is where p∗ = 0. The

following propositions describe the conditions of all or nothing policy for PAS.
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Proposition 4.5. If |λ
′(p)|
λ(p)

>
µ2

1−µ2
2

2µ2
2

; optimal solution is given by p = 1.

Proposition 4.6. If |λ
′(p)|
λ(p)

<
µ2

1−µ2
2

2µ2
1

; optimal solution is given by p = 0.

If nominator of the total cost function is decreasing whereas the denominator is

increasing for all p, total cost will always decrease. Proposition 4.5 describes these

sufficient conditions for a monotone decreasing total cost. This implies the optimal

solution will be achieved at maximum value of p. Increasing denominator implies de-

creasing ρ(p). If utilization function (which is always positive by definition) is always

decreasing, Equation 4.4.5, stability condition, is always satisfied for p = 1, which in

that case is the optimal solution.

Conversely, Proposition 4.6 describes the sufficient conditions for a monotone in-

creasing total cost with the reverse logic mentioned above, increasing nominator and

decreasing denominator for all p, which implies the optimal solution will be achieved

at minimum value of p. Decreasing denominator implies increasing ρ(p). Assuming

p = 0 is feasible, which means no prevention activity is allowed, Equation 4.4.6 spec-

ifies minimum value of p is 0, which in that case is the optimal solution.

In addition, Proposition 4.5 states that ‘all policy’ is optimal when relative change

of λ(p) with respect to p is greater than a specific ratio which is a function of the

magnitudes of service rates. The smaller the ratio is, the easier the fulfillment of the

condition might be. As µ1, the expected service rate for acute care service, decreases

and µ2, the expected service rate for prevention, increases; the ratio gets smaller in

which case the condition is more likely to be satisfied. This is an expected result. De-

crease in µ1 implies increase in expected service time, E(Y ) (Equation 4.4.2), system

will assign less time devotion to that service; whereas increase in µ2 implies decrease

in expected service time, system will assign much time devotion to that service. Con-

sequently, these effects on the system will force p to take larger values, and when the
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condition is satisfied p takes its maximum value which is 1.

A similar situation occurs in Proposition 4.6. ‘Nothing policy’ is optimal when

relative change of patient arrival function is smaller than a specific ratio which is a

function of µ1 and µ2, expected service rates of acute care and prevention services

respectively. As the value of the ratio increases, the satisfaction of the condition will

be easier. We can rewrite the ratio as 1
2
− µ2

2

2µ2
1
. It is obvious that if µ2 decreases and µ1

increases the ratio will increase and the condition is more likely to be satisfied. This

is again an expected result. As expected service rate of acute care patients increases;

expected service time, E(Y ), will decrease and much time will be devoted to that

service, whereas when service rate of prevention patients, µ2, decreases; E(Y ) will

increase and less time will be assigned. p, the portion of time that is devoted to

prevention service will be forced to decrease and when the condition is satisfied, takes

its minimum value which is 0.

4.4.3 Analysis: λ(p) = λ0(2− kp)

Assume total cost function as just waiting time with unit cost, λ0 < µ2 < µ1 and

λ(p) = λ0(2 − kp) where 0 < k < 2 2 (to make sure λ(p) is a positive function). In

that case, the cost function becomes;

L(p) =
(2− kp)2λ2

0

(
2(1−p)
µ2

1
+ 2p

µ2
2

)
2
(

1− (2−kp)λ0(pµ1+(1−p)µ2)
µ1µ2

)
L(p) =

(2− kp)2λ2
0

(
2(1−p)
µ2

1
+ 2p

µ2
2

)
2 (1− ρ(p))

Since we cannot determine the convexity of this cost function, we would like to de-

termine where all or nothing policy is optimal.

2k is a positive constant which can be assumed as effect of prevention. This constant’s derivation
will be explained in Section 4.7
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The following propositions specify the conditions, presented in Section 4.4.2 as

Proposition 4.5 and 4.6, for pre-determined linear arrival function.

Proposition 4.7. If µ1√
1+k
≤ µ2 < µ1; optimal solution p = 1.

Proposition 4.8. If 0 < µ2 ≤ µ1

√
2−3k
2−k and 0 < k < 2

3
; optimal solution is given by

p = 0.

Proposition 4.7 and Proposition 4.8 are the sufficient conditions for monotone de-

creasing and monotone increasing total cost function respectively, in which cases all

or nothing policy is optimal. Here, we have pre-determined patient arrival function,

λ(p) which is linear and decreasing in p. The conditions are functions of service rates

and k, the effectiveness of prevention service.

Proposition 4.7, specifies that as k, the effectiveness of prevention, increases; the

the number of values that µ2, expected service rate for long service, can take to

satisfy the condition increases. In other words, the range of µ2 gets wider and the

condition gets more relaxed. Moreover, expected service rate for prevention can take

lower values as k increases. This implies, as prevention becomes more effective, the

effect of decrease in service rate of prevention, which increases expected service time,

E(Y ), would become redundant. Decrease in λ(p) would dominate increase in E(Y ),

resulting in increase in p. When the condition satisfied, the optimal solution will be

given by 1, the maximum value of p.

Likewise, Proposition 4.8, specifies the boundary of µ2 as a function of µ1 and k.

For smaller values of k, the upper bound will increase, resulting in larger values of µ2.

As k, decreases the upper bound on µ2 will increase, which results in higher values of

expected service time of preventive service. As a result, if effectiveness of prevention

is low and expected service rate of prevention is high, system will choose decreasing

expected service time of the system, E(Y ), over increasing arrival rate resulting in
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lower values of p. If the condition above is satisfied, the optimal solution will be given

by minimum value of p, 0.

4.4.4 Analysis: λ(p) = λ0

kp

Assume total cost function is just waiting time with unit cost and feedback effect is

represented by λ(p) = λ0

kp
.

L(p) =

(
λ0

kp

)2 (
2(1−p)
µ2

1
+ 2p

µ2
2

)
2

(
1− (λ0

kp )(pµ1+(1−p)µ2)

µ1µ2

)

L(p) =

(
λ0

kp

)2 (
2(1−p)
µ2

1
+ 2p

µ2
2

)
2 (1− ρ(p))

Proposition 4.9. Optimal solution is always 1.

We can say that for this form of feedback effect, it is very strong and it is going

to be more advantageous to do prevention all the time to every patient in the long

run. The system will reflect the effect of prevention very well. Decrease in arrival rate

will dominate the increase in expected service time, resulting in providing prevention

service to each and every patient.

4.5 Numerical Analysis of PAS with different forms of λ(p)

To have a intuition about how different λ(p) functions react to changes in p, we

provide Figure 4.11. The functions that are represented, are the functions that we

used in our analysis in this section.

4.5.1 λ(p) = λ0(2− p)

We ran 10080 scenarios with different model parameters. Range of parameters are

shown in Table 4.4.
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Figure 4.11: Different forms of λ(p)

Table 4.4: Range of Parameters

Parameter Range

λ 2-29

µ1 30-60

µ2 10-39

For all scenarios, optimal p is achieved at 0. The sufficient condition for monotone

increasing total cost function stated in Proposition 4.6 is,

|λ′(p)|
λ(p)

=
|−λ0|

λ0(2− p)
=

1

2− p
<
µ2

1 − µ2
2

2µ2
1

2µ2
1 < (2− p)(µ2

1 − µ2
2)

pµ2
1 < −(2− p)µ2

2

This is not possible for any values of p since the left hand side of the inequality is

positive whereas the right hand side is negative. Even though the sufficient condition
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for p = 0 is never satisfied, the model can result in p = 0 optimal solution. This

implies trade off between decreasing arrival rate and increasing average service time

is not strong. It might be the result of selected parameters as well as the arrival

function, which might not be able to reflect the effect of prevention to the system

properly.

4.5.2 λ(p) = λ0

p

We ran 17365 scenarios with different model parameters. Range of parameters are

shown in Table 4.5

Table 4.5: Range of Parameters

Parameter Range

λ 1-50

µ1 50-70

µ2 40-60

For all scenarios, optimal p is achieved at 1. This was the case for k = 1 in Section

4.4.4. It was shown in Proposition 4.9 for this form of feedback effect optimal solution

is always 1.

4.5.3 λ(p) = λ0

ep

We ran 17365 scenarios with different model parameters. Range of parameters are

shown in Table 4.4

For all scenarios, optimal p is achieved at 1. We can say that arrival function of

this type reflects the effectiveness of preventive activity to the system very strongly,
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resulting in optimal solution p = 1, providing every patient prevention service.

As a reminder, for this form of feedback function the relative change in λ(p) with

respect to p in Propositions 4.5 and 4.6 becomes 1.

|λ′(p)|
λ(p)

=
|−e−pλ0|
e−pλ0

= 1

The condition in Proposition 4.5 becomes

1 >
µ2

1 − µ2
2

2µ2
2

3µ2
2 > µ2

1

As a result, for those cases, the sufficient condition for monotone decreasing total cost

function is always satisfied, resulting in p = 1. However, the condition in Proposition

4.6 becomes

1 <
µ2

1 − µ2
2

2µ2
1

µ2
1 < −µ2

2

which is impossible because of model assumptions. The sufficient conditions for mono-

tone increasing total cost function is never satisfied. Keep in mind that, although this

condition is not satisfied, p = 0 can also be achieved.

4.6 Model outputs with data provided from case study (section 3.2)

We are going to analyze our models’ optimal solutions with the λ values that are

derived from case study. λ1 parameter for both DTS and PAS models, is taken as

‘total’ arrival rate mentioned in Section 3.2. λ2 parameter in DTS model is taken

as ‘type 2’ patients’ arrival rate. They are average daily arrival rates obtained from

yearly data. Costs per patient are assumed to be equal and 1 for both models. For

this section, when considering optimal time allocation to preventive activity in each
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approach, it should kept in mind that for DTS model it is (1−p), for PAS model it is p.

We will analyze two separate cases. In the first one we will assume expected service

rates are equal for two approaches resulting in an assumption of different expected

service times of each service, acute care and prevention. In the second one, we will

assume expected service rates are different for each service; however, expected service

times are equal.

Service rates are derived for DTS by assuming prevention service lasts 6.85 minutes

and acute care service takes 8 minutes. For PAS it is assumed that long service takes

8 minutes whereas short one takes 6.85 minutes, implying there exists an add-on of

1.15 minutes for prevention. Values of model parameters derived from case study are

shown in Table 4.6.

Table 4.6: Values

DTS PAS

Parameter Value Parameter Value

λ1 39.51153855 λ1 39.51153855

λ2 18.7155417 λ2 -

µ1 60 µ1 70

µ2 70 µ2 60

c1 1 c1 1

c2 1 c2 -

Model results are shown in Table 4.7. For PAS, optimal solution is achieved at

p = 1 regardless of the type of the feedback function. We see for DTS approach,

p lowers as feedback gets stronger. This means as feedback function becomes more
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Table 4.7: Model Results

DTS PAS

Model p 1− p Cost Model p Cost

No Fb 0.703792 0.296208 23.8174 Non-Linear Fb 1 1.26976

Linear Fb 0.641568 0.358432 8.28425 Linear Fb 1 1.26976

Exponential Fb 0.565561 0.434439 4.66668 Exponential Fb 1 0.0774454

responsive to the unit change in time allocation to preventive service, time allocated

to prevention service, 1− p, starts to increase.

As a second case, we again assumed costs per patient are same and equal to 1. Ser-

vice rates for prevention and acute care are calculated by assuming prevention takes 3

minutes and acute care service takes 8 minutes. In DTS model those services are sep-

arated and service rates are calculated accordingly, µ1 for just acute care µ2 for just

prevention. In PAS model, short service means just acute care which takes 8 minutes

and long service means acute care+prevention which takes 8+3=11 minutes, µ1 for

short service, µ2 for long service and they are calculated accordingly. This kind of es-

timation for service rates is more fair. Model parameter values are shown in Table 4.8.

The results are shown in Table 4.9. Again we see for DTS model, the time dedi-

cated to prevention increases as feedback effect gets stronger whereas for PAS model

the optimal solution is always 1.

In DTS model, there is an obligation to satisfy the demand for prevention. Stabil-

ity condition for prevention queue ensures that some time is dedicated to prevention.

Consequently, we have no 0 or 1 solution. However, in the PAS model, there is no such
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Table 4.8: Values

DTS PAS

Parameter Value Parameter Value

λ1 39.51153855 λ1 39.51153855

λ2 18.7155417 λ2 -

µ1 60 µ1 60

µ2 160 µ2 40

c1 1 c1 1

c2 1 c2 -

Table 4.9: Model Results

DTS PAS

Model p 1− p Cost Model p Cost

No Fb 0.816464 0.183536 5.9268 Non-Linear Fb 1 8.68816

Linear Fb 0.771034 0.228966 4.14791 Linear Fb 1 8.68816

Exponential Fb 0.696039 0.303961 2.938148 Exponential Fb 1 0.207426

obligation. In Proposition 4.5, we stated that when µ1 decreases and µ2 increases, the

model tends to give optimal solution as 1. This means, when the gap between service

rates is small, the model reaches its minimum at p = 1. With parameters in Table

4.6 and Table 4.8, service rates are very close the each other, hence optimal solution

1 is reasonable.

In addition, in DTS model, we can clearly see the effect of change in feedback
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function by comparing the results of different forms of feedback. As we mentioned

before, the time allocated to prevention service increases as the feedback function

gets stronger. However, in PAS model, it seems that regardless of feedback type, the

system tends to provide prevention each and every patient. This might be the result

of system dynamics. PAS model is affected more by the changes in arrival rate which

probably dominates the change in total expected service time.

In DTS, as feedback function gets stronger the costs decrease while time allocated

to preventive service increases. In PAS, for optimal solution 1, the waiting costs are

the same for non-linear and linear feedback; however, the cost in exponential feedback

is lower than them. This is the case because when p = 1, total cost function for non-

linear and linear feedback in PAS are the same, and for exponential feedback it is

smaller.

4.7 Markov Chain Approach for Modeling λ(p)

In this chapter notation of p is consistent with the model PAS. To be applicable to

DTS approach, p and 1− p should be reversed.

So far we assumed prevention activity has a negative effect on arrival rate, and

did optimization for general λ(p) or pre-determined λ(p) according to this assumption

about the feedback effect. λ(p) is set to be a decreasing function of p. However, we

have not discussed how we can model feedback effect on arrival rate, in other words

how we can determine λ(p) function.

One approach to model λ(p) can be by using Markov chain. We define a Markov

chain for one person in the patient list to explore the effect of prevention in the long

run. Then we will use this approach to model total arrival function.
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4.7.1 States, Transitions, and Long Run Behavior

The states of Markov chain, specified for one patient, are being in ‘healthy’ or ‘sick’

condition assuming transitions occurs on a monthly basis. It is done so since tran-

sitions should be specified by equal time intervals. Daily transition, will not be

appropriate since specify the daily effect of prevention will be difficult by case studies

or even meaningless, when the impact of prevention is perceived in the long run is

considered. Moreover, every doctor visit was not considered as a transition step, since

the time period of those visits is not supposed to be the same. Keeping in mind that,

every transition occurs in one month period, in the long run, by finding stationary

distribution, we can determine long run probability for being sick which can be con-

sidered as probability of arrival for one person.

First, we should understand the meanings of states. Generally, a person consults

a GP if he is sick already. When one person visits the doctor due to his illness and

gets a kind of prevention service regarding his sickness then the state of this person

is sick but when one person visits the doctor due to his illness and gets prevention

service on any other kind of disease, not regarding his actual illness (the reason that

he visits the doctor) then the state of this person is healthy. Here we assume once

the prevention service is given before the disease or illness emerges, it is more effec-

tive. In other words, the probability of moving from being healthy to healthy due to

prevention is higher than moving from sick to healthy.

PAS states that with probability p doctor gives long service meaning gives pre-

vention service and with probability (1 − p) doctor gives short service meaning no

preventive activity. In this case we can specify the Markov chain as;
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P =


S H

S 1− α p α p

H 1− β p β p


where α and β are coefficients for specifying effectiveness of preventive activity with

the assumption β > α > 0, prevention taken when in healthy condition is more effec-

tive than prevention taken when in sick condition.

Stationary distribution Π and steady-state probabilities of being sick ΠS or healthy

ΠH can be found by;

lim
n→∞

P (n) = Π

[
ΠS ΠH

]
=
[
ΠS ΠH

]1− α p α p

1− β p β p


ΠS + ΠH = 1

ΠS = (1− α p) ΠS + (1− β p) ΠH

ΠH = α pΠS + β pΠH

By solving above equations we find;

ΠS =
1− β p

1− β p+ α p

ΠH =
α p

1− β p+ α p

The derivative of ΠS with respect to p is;

dΠS

d p
= − α

(1− p (β − α))2

which is always negative; meaning ΠS, long run probability of being sick, is a decreas-

ing function of prevention activity, consistent with our assumption that as prevention

activity increases arrival rate decreases.
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4.7.2 Total Arrival Function

Remember that ΠS is the steady-state probability of being sick for one person. Ac-

cording to PAS, probability of providing prevention service remains same for all in-

dividuals. In that case, ΠS remains same for all people in the patient list.

Moving one step further, we can treat that case as a binomial event which is

repeated for N times, the total number of people in the patient list, and model λ(p)

by using Poisson approximation to binomial. In other words,

λ(p) = N ΠS

= N
1− β p

1− β p+ α p

When N is large and ΠS is small, we can use Poisson approximation to binomial

for modeling λ(p).

If we rewrite the function as

λ(p) =
1− β p

(1− β p)(1 + αp
1−β p)

=
1

1 + f(p)
(4.7.1)

which is similar to the feedback function λ(p) = λ0

kp
we defined in Section 4.4.4. For

that form of feedback it is always optimal to provide maximum level of prevention.

For feedback form in Equation 4.7.1, it might be the same case since the effect of

prevention is reflected more.

As another approach, if we analyze the nominator and the denominator of ΠS

function separately, we see both are decreasing functions of p.

d(1− β)

dp
= −β < 0
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and
d(1− β p+ α p)

dp
= α− β < 0

| − β| = β > β − α = |α− β|

which implies the decrease in nominator will dominate the decrease in denominator.

If we consider that the decrease in total arrival function is reflected by the function

in the nominator, just to have an intuition, we have

λ(p) = N(1− β p)

This function is similar to our pre-determined decreasing linear arrival function

in Section 4.5.1 when analyzing PAS model with linear feedback effect. If we use

Markov chain approach to estimate the total arrival function in the steady-state, we

identify similar λ(p) function to we analyzed before.

4.7.3 α and β Determination

So far we determined total arrival function by Markov chain approach. We used α

and β coefficients to reflect the effectiveness of prevention to the system. These co-

efficients are same with k coefficient that we used as a measure of effectiveness in

Section 4.4, while analyzing different forms of λ(p) in PAS model.

The effect of prevention can be traced by clinical trials. Fries et al. (1998) [33]

provides a summary about the randomized clinical trials of self-management educa-

tional programs in prevention. The results suggest that there is a decrease in doctor

visits related to prevention service. For example, consultations decreased by 5-17%

percent among California employees, by 7.5% among insured Californian families and

by 16% among arthritis patients. These percentages, depending on the prevention

service provided, can be used to estimate the effect of prevention that is represented

by α and β.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

Family practice has gained importance since the implementation of PHC in Turkey.

The survey results have shown that 75% of the GPs are satisfied with their jobs; how-

ever, 80% of them stated that they don’t have enough time to accomplish all the

tasks. Prevention is one of the most important tasks among them. The studies have

shown that, preventive service lowers the number of doctor visits as well as it lowers

the deaths in the long run. The case that we analyzed also shown similar results.

The patients that are provided prevention service regulary, are more likely to come

doctor’s office less often. Although this impact of prevention is crucial, in the sense

that it lowers the congestion in the office as well as maintains the society’s good health

status in the long run, the time devoted to this service is very low all around the world.

In this study, we focused on time allocation problem of a GP among two different

tasks: prevention and acute care service in a capacity allocation framework. Since

survey results shown that only 6% of GPs work with appointment and also they stated

that implementaiton of appointment system is very hard due to the habits of patients,

to be in line with practice we didn’t prefer appointment scheduling approach. Instead,

we analyzed two queueing approaches. In the first approach we assumed that we can

differentiate the patients according to their needs. The patients who demand acute

care and preventive service constitutes two diffent queues served by a single server.

Each demand should be satisfied. Steady-state performance is used and modeled as

a non-linear optimization problem. Further, we considered a feedback function on

arrival rate which reflects the effect of preventive service in the long run to the total
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arrival rate. We analyzed a linear feedback function and characterized the optimal

time allocated to preventive service while minimizing total cost. We also analyzed an

exponential feedback function. We presented numerical results for that model. The

numerical results show that the time allocated to preventive service in exponential

feedback model is higher than the time allocated to preventive service in linear feed-

back model, and the time allocated to preventive service is higher for linear feedback

model than no feedback model. We also show that the waiting cost is higher for no

feedback model than linear feedback model, and it is higher for linear feedback model

than the exponential feedback model. We can conclude that, as feedback effect gets

stronger the system is more likely to devote more time to preventive service. In the

long run, the operational costs would also decrease. The family doctors should start

to analyze the data that they collected and detect those demand changes according

to prevention services they provided. They should consider to devote more time to

the preventive services with the highest impact.

In the second approach, patients come to doctors office and constitute a single

queue where doctor provides long or standard (short) service to each patient. Long

service stands for an acute care service combined with preventive advice whereas

standard service is acute care service. In practice, this model is more realistic and

more applicable since it is always not possible to differentiate patients beforehand.

In addition, it is more applicable that a GP decides whether a patient needs any

preventive recommendation/service or not and takes action accordingly by providing

long or short service. The decision variable is the portion of time that a GP should

provide long service which is the percentage of patients that are offered preventive

service. In the analysis, we used steady-state expected performance of the system,

and modeled as a non-linear optimization problem. Moreover, in the long run the

effect of prevention on total arrival rate is characterized by a general decreasing feed-

back function of the decision variable. We explored sufficient conditions for monotone
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decreasing and monotone increasing total cost function where the optimal solution is

0 or 1 respectively. If the expected service rate for acute care is low and expected

service rate for prevention is high, the system is more likely to devote more time to

prevention. Conversely, for high values of expected service rate of acute care and

low values of expected service rate of prevention, the system is more likely to devote

less time to prevention. We provided numerical examples for three different types of

feedback function. For all cases the optimal solution is achieved at either 1 or 0. We

explored that this model tends to work with an ‘all or nothing’ policy.

As an extension, we analyzed the feedback mechanism on arrivals by a Markov

chain approach. One step transition is assumed to be one month time period. One

patient’s probability of prevention service provided, characterizes the Markov chain,

and long run probabilities are found. The behavior of long run probability constituted

the basis of one patient’s arrival function. Assuming the number of patients that is

registered to a GP is large, Poisson approximation to Binomial is used to characterize

the general arrival function in the steady-state which is decreasing in the amount of

prevention service provided. This is a parallel result with the clinical trials. And also

parallel with our feedback function assumptions.

For further research, the data could be recorded collaboratively with the doctor in

order to differentiate more effectively the patients who are offered preventive service.

Then, it could be analyzed to determine the feedback effect to the whole system. For

DTS approach, the number of queues could be increased and analyzed accordingly.

Furthermore, for both models different distributions of both service and arrival rates

could be considered. Different forms of feedback function could also be analyzed.

Especially for PAS, more representative feedback functions which allows GP to de-

vote some time to each service can be considered. This also can be achieved by a

pre-determined constraint on demand satisfaction for prevention patients. Different
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approaches other than Markov chain can be used to model feedback function.
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Appendix A

PROOFS

A.1 Proposition 4.1

Proof. If constraints are not binding, the optimal solution is found by equating the

first derivative of the Lagrange function to zero. Let the first derivative of the La-

grange function (4.1.6) with respect to p be

F (.) = −u1µ1 −
c1λ1µ1

(−λ1 + pµ1) 2
+ u2µ2 +

c2λ2µ2

(−λ2 + (1− p)µ2) 2

In this case, since the derivative of the Lagrange function is quadratic in p, we

have 2 possible interior solutions.

Solution1:

u1 = 0, u2 = 0, p =
λ1µ1µ2 ((c1 + c2)λ2 − c1µ2) +

√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

µ1µ2 (c2λ2µ1 − c1λ1µ2)

Solution2:

u1 = 0, u2 = 0, p =
λ1µ1µ2 ((c1 + c2)λ2 − c1µ2)−

√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

µ1µ2 (c2λ2µ1 − c1λ1µ2)

Solution 1 and 2 represents the interior solution of the non-linear optimization

problem of high-level approach. The derivative of Lagrange function with respect to

p is in the quadratic form hence we have two roots.
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A.1.1 Investigation of Solution 1 and Solution 2

Here we are going to characterize the possible interior solutions. We will analyze the

solutions by investigating their two parts.

c2λ2µ1 − c1λ1µ2 (A.1.1)

(c1 + c2)λ2 − c1µ2 (A.1.2)

A.1.1 comes from denominator and A.1.2 comes from nominator of the solutions.

We did investigation by analyzing their signs.

• Case 1: c2λ2µ1 − c1λ1µ2 > 0 and (c1 + c2)λ2 − c1µ2 > 0

In this case, Solution 2 to be positive (0 < p < 1 should hold for solutions) it

must satisfy

λ1µ1µ2 ((c1 + c2)λ2 − c1µ2) >
√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2 (A.1.3)

since the denominator coefficient A.1.1 is positive by case assumption. Other-

wise solution would be negative and not be feasible. Again we should check

whether stability conditions hold for a feasible solution.

µ1

(
λ1µ1µ2 ((c1 + c2)λ2 − c1µ2)−

√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

µ1µ2 (c2λ2µ1 − c1λ1µ2)

)
−λ1 > 0

λ1µ1µ2 ((c1 + c2)λ2 − c1µ2)−
√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

µ2 (c2λ2µ1 − c1λ1µ2)
− λ1 > 0

By case assumptions and A.1.3 every term is positive, the inequality sign does

not change when multiplying the terms.

λ1µ1µ2 ((c1 + c2)λ2 − c1µ2)−
√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

> λ1µ2 (c2λ2µ1 − c1λ1µ2)

λ1µ1µ2 ((c1 + c2)λ2 − c1µ2) > λ1µ2 (c2λ2µ1 − c1λ1µ2)
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λ1µ1µ2 ((c1 + c2)λ2 − c1µ2) > λ1µ2 (c2λ2µ1 − c1λ1µ2)

µ1 ((c1 + c2)λ2 − c1µ2) > (c2λ2µ1 − c1λ1µ2)

µ1c1λ2 − c1µ2µ1 > −c1λ1µ2

µ2µ1 − µ1λ2 − λ1µ2 < 0

This contradicts with the system stability condition 4.1.5. In that case, solution

2 is not feasible, hence solution 1 is optimal.

• Case 2: c2λ2µ1 − c1λ1µ2 > 0 and (c1 + c2)λ2 − c1µ2 < 0

In this case the denominator is positive and first part of the nominator is neg-

ative. The second part of the nominator should be positive otherwise p would

be negative which is not possible. Hence, solution 1 is optimal.

• Case 3: c2λ2µ1 − c1λ1µ2 < 0 and (c1 + c2)λ2 − c1µ2 > 0

This case is not possible since it gives

λ2

µ2 − λ2

<
c1
c2
<
λ2µ1

λ1µ2

This implies
λ2

µ2 − λ2

<
λ2µ1

λ1µ2

In other words
1

µ2 − λ2

<
µ1

λ1µ2

and

µ1µ2 − λ1µ2 − λ2µ1 < 0

This contradicts the system stability condition 4.1.5 on the model parameters

hence this case is not possible.
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• Case 4: c2λ2µ1 − c1λ1µ2 < 0 and (c1 + c2)λ2 − c1µ2 < 0

In that case, there exist no problem with positivity of solution 2. We should

check stability conditions for feasibility.

µ2

(
1−

(
λ1µ1µ2 ((c1 + c2)λ2 − c1µ2)−

√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

µ1µ2 (c2λ2µ1 − c1λ1µ2)

))
−λ2 > 0

µ2

(
1−

(
λ1µ1µ2 ((c1 + c2)λ2 − c1µ2)−

√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

µ1µ2 (c2λ2µ1 − c1λ1µ2)

))
−λ2 > 0

or equivalently;

−c2λ2µ1 (λ2µ1 + (λ1 − µ1)µ2) +
√
c1c2λ1λ2µ1µ2 (λ2µ1 + (λ1 − µ1)µ2) 2

µ1 (c2λ2µ1 − c1λ1µ2)
> 0

implying

c2λ2µ1 (λ2µ1 + (λ1 − µ1)µ2) > 0λ2µ1 + λ1µ2 − µ1µ2 > 0

which contradicts with the system stability condition 4.1.5. Hence solution 1 is

optimal.

A.1.2 Results:

It is proven that whatever the model parameters are, Solution 1 gives the optimal

solution for the Lagrange function if the solution is an interior one. To put in other

words unless the solution is a boundary solution, the positive root of the derivative

of the Lagrange function gives the optimal solution.

A.2 Proposition 4.2: Comparative Statics of DTS

Proof. Let the first derivative of the Lagrangian function with respect to p be

F (.) = −u1µ1 −
c1λ1µ1

(−λ1 + pµ1) 2
+ u2µ2 +

c2λ2µ2

(−λ2 + (1− p)µ2) 2
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Then p∗ is the solution to F (.) = 0. The interior solution is found by equating

the first derivative of Lagrangian function to zero, the comparative statics should be

analyzed by implicit function theorem.

Reaction to λ1:

By implicit function theorem we can write:

∂p∗

∂λ1

= −∂F (.)

∂λ1

[
∂F (.)

∂p

]−1

p=p∗

= −
c1µ1 (λ1 + pµ1)

(
− (λ1−pµ1)3

2c1λ1µ2
1
− 2c2λ2µ2

2

(λ2+(−1+p)µ2)3

)
(λ1 − pµ1) 3

> 0

Reaction to λ2:

By implicit function theorem:

∂p∗

∂λ2

= −∂F (.)

∂λ2

[
∂F (.)

∂p

]−1

p=p∗

= −
c2µ2 (−λ2 + (−1 + p)µ2)

(
− (λ1−pµ1)3

2c1λ1µ2
1
− 2c2λ2µ2

2

(λ2+(−1+p)µ2)3

)
(λ2 + (−1 + p)µ2) 3

< 0

Reaction to µ1:

By implicit function theorem:

∂p∗

∂µ1

= −∂F (.)

∂µ1

[
∂F (.)

∂p

]−1

p=p∗

=
(u1 (λ1 − pµ1)

3 + c1λ1 (λ1 + pµ1))
(
− (λ1−pµ1)3

2c1λ1µ2
1
− 2c2λ2µ2

2

(λ2+(−1+p)µ2)3

)
(λ1 − pµ1) 3
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Since u1 = 0 the equation becomes:

∂p∗

∂µ1

= −∂F (.)

∂µ1

[
∂F (.)

∂p

]−1

p=p∗

=
c1λ1 (λ1 + pµ1)

(
− (λ1−pµ1)3

2c1λ1µ2
1
− 2c2λ2µ2

2

(λ2+(−1+p)µ2)3

)
(λ1 − pµ1) 3

< 0

Reaction to µ2:

By implicit function theorem:

∂p∗

∂µ2

= −∂F (.)

∂µ2

[
∂F (.)

∂p

]−1

p=p∗

= −
(
−(λ1 − pµ1)

3

2c1λ1µ2
1

− 2c2λ2µ
2
2

(λ2 + (−1 + p)µ2) 3

)(
u2 +

c2λ2 (λ2 − (−1 + p)µ2)

(λ2 + (−1 + p)µ2) 3

)

Since u2 = 0 the equation becomes:

∂p∗

∂µ2

= −∂F (.)

∂µ2

[
∂F (.)

∂p

]−1

p=p∗

= −
c2λ2 (λ2 − (−1 + p)µ2)

(
− (λ1−pµ1)3

2c1λ1µ2
1
− 2c2λ2µ2

2

(λ2+(−1+p)µ2)3

)
(λ2 + (−1 + p)µ2) 3

> 0

Reaction to c1:

By implicit function theorem:

∂p∗

∂c1
= −∂F (.)

∂c1

[
∂F (.)

∂p

]−1

p=p∗

=
λ1µ1

(
− (λ1−pµ1)3

2c1λ1µ2
1
− 2c2λ2µ2

2

(λ2+(−1+p)µ2)3

)
(λ1 − pµ1) 2

> 0
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Reaction to c2:

By implicit function theorem:

∂p∗

∂c2
= −∂F (.)

∂c2

[
∂F (.)

∂p

]−1

p=p∗

= −
λ2µ2

(
− (λ1−pµ1)3

2c1λ1µ2
1
− 2c2λ2µ2

2

(λ2+(−1+p)µ2)3

)
(λ2 + (−1 + p)µ2) 2

< 0

A.3 Proposition 4.3

Proof. If constraints are not binding, then the optimal solution to high-level approach

optimization problem with linear feedback effect is found by equating the first deriva-

tive of the Lagrange function to zero. Let the first derivative of the Lagrange function

4.2.6 with respect to p be

F (.) = −u1 (−λ0 + µ1)−
c1 (1 + p)λ0 (−λ0 + µ1)

(− (1 + p)λ0 + pµ1) 2
+

c1λ0

− (1 + p)λ0 + pµ1

+u2µ2 +
c2λ2µ2

(−λ2 + (1− p)µ2) 2

In this case, since the derivative of the Lagrange function is quadratic, we have 2

possible interior solutions.

Solution1:

u1 = 0, u2 = 0,

p =
λ0µ2 (c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2)) +

√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

µ2 (c2λ2 (λ0 − µ1) 2 − c1λ0µ1µ2)

Solution2:

u1 = 0, u2 = 0,

p =
λ0µ2 (c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2))−

√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

µ2 (c2λ2 (λ0 − µ1) 2 − c1λ0µ1µ2)
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Solution 1 and 2 represents the interior solution of the non-linear optimization

problem of high-level approach with linear feedback effect. The derivative of the

Lagrange function with respect to p is in the quadratic form hence we have two roots.

A.3.1 Investigation of Solution 1 and Solution 2

Here we are going to investigate possible interior solutions. These solutions have two

parts:

c2λ2 (λ0 − µ1)
2 − c1λ0µ1µ2 (A.3.1)

c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2) (A.3.2)

A.3.1 comes from denominator and A.3.2 comes from nominator of the solutions.

We did investigation by analyzing their signs.

• Case 1: c2λ2 (λ0 − µ1)
2− c1λ0µ1µ2 > 0 and c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2) > 0

In this case, Solution 2 to be positive (0 < p < 1 should hold for solutions) must

satisfy;

λ0µ2 (c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2)) >
√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

since the denominator coefficient A.3.1 is positive by case assumption. Oth-

erwise solution would be negative and not be feasible. Again we should check

whether stability conditions hold for a feasible solution.

µ1

(
λ0µ2 (c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2))−

√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

µ2 (c2λ2 (λ0 − µ1) 2 − c1λ0µ1µ2)

)
−

λ0

(
1 +

(
λ0µ2 (c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2))−

√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

µ2 (c2λ2 (λ0 − µ1) 2 − c1λ0µ1µ2)

))
> 0
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or equivalently;

c1λ0µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) + (−λ0 + µ1)
√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

µ2 (−c2λ2 (λ0 − µ1) 2 + c1λ0µ1µ2)
> 0

but this is never possible since the first part of the nominator is positive by

stability condition 4.2.5 and the denominator is negative by case assumption,

the whole expression is negative so the solution does not satisfy 4.2.2 stability

condition. Hence, solution 1 gives optimal.

• Case 2: c2λ2 (λ0 − µ1)
2− c1λ0µ1µ2 > 0 and c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2) < 0

In this case the denominator is positive and first part of the nominator is neg-

ative. The second part of the nominator should be positive otherwise p would

be negative which is not possible. Hence, solution 1 is optimal.

• Case 3: c2λ2 (λ0 − µ1)
2− c1λ0µ1µ2 < 0 and c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2) > 0

This case is not possible since it gives

λ2(µ1 − λ0)
2

λ0µ1µ2

<
c1
c2
<
λ2(µ1− λ0)

µ1(µ2 − λ2)

This implies
λ2(µ1 − λ0)

2

λ0µ1µ2

<
λ2(µ1− λ0)

µ1(µ2 − λ2)

In other words
µ1 − λ0

λ0µ2

<
1

µ2 − λ2

and

µ2µ1 − λ2µ1 − 2λ0µ2 + λ2λ0 < 0

This contradicts the system stability condition 4.2.5 on the model parameters

hence this case is not possible.

• Case 4: c2λ2 (λ0 − µ1)
2− c1λ0µ1µ2 < 0 and c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2) < 0
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In that case solution 2 is never optimal since there are no model parameters

that satisfying;

µ2

(
1−

(
λ0µ2 (c2λ2 (µ1 − λ0)− c1µ1 (µ2 − λ2))−

√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

µ2 (c2λ2 (λ0 − µ1) 2 − c1λ0µ1µ2)

))
−λ2 > 0

equivalently;

c2λ2 (µ1 − λ0) (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) +
√
c1c2λ0λ2µ1µ2 (λ0 (λ2 − 2µ2) + µ1 (−λ2 + µ2)) 2

c2λ2 (λ0 − µ1) 2 − c1λ0µ1µ2
> 0

In that case, the first part of the nominator is positive by 4.2.5 but the de-

nominator is negative by case assumption, and the whole expression is negative

so the solution does not satisfy 4.2.2 stability condition. Hence solution 1 is

optimal.

A.3.2 Results :

It is proven that whatever the model parameters are, Solution 1 gives the optimal

solution for the Lagrange function of high-level approach with linear feedback effect

optimization problem if the solution is an interior one. To put in other words unless

the solution is a boundary solution, the positive root of the derivative of the Lagrange

function gives the optimal solution.

A.4 Proposition 4.4: Comparative Statics of DTSL

Proof. Let the first derivative of Lagrangian function with respect to p be

F (.) = −u1 (−λ0 + µ1)−
c1 (1 + p)λ0 (−λ0 + µ1)

(− (1 + p)λ0 + pµ1) 2
+

c1λ0

− (1 + p)λ0 + pµ1

+u2µ2 +
c2λ2µ2

(−λ2 + (1− p)µ2) 2

Then p∗ is the solution to F (.) = 0. The interior solution is found by equating

the first derivative of Lagrangian function to zero, the comparative statics should be
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analyzed by implicit function theorem.

Reaction to λ0:

By implicit function theorem:

∂p∗

∂µ1

= −∂F (.)

∂µ1

[
∂F (.)

∂p

]−1

p=p∗

=
u1 ((1 + p)λ0 − pµ1)

3 + c1µ1 ((1 + p)λ0 + pµ1)

((1 + p)λ0 − pµ1) 3

Since u1 = 0 the equation becomes:

∂p∗

∂µ1

= −∂F (.)

∂µ1

[
∂F (.)

∂p

]−1

p=p∗

=
c1µ1 ((1 + p)λ0 + pµ1)

2 ((1 + p)λ0 − pµ1) 3
(
c1λ0µ1(−λ0+µ1)
((1+p)λ0−pµ1)3

+
c2λ2µ2

2

(λ2+(−1+p)µ2)3

) > 0

Reaction to λ2:

By implicit function theorem:

∂p∗

∂λ2

= −∂F (.)

∂λ2

[
∂F (.)

∂p

]−1

p=p∗

=
c2µ2 (−λ2 + (−1 + p)µ2)

2 (λ2 + (−1 + p)µ2) 3
(
c1λ0µ1(−λ0+µ1)
((1+p)λ0−pµ1)3

+
c2λ2µ2

2

(λ2+(−1+p)µ2)3

) < 0

Reaction to µ1:

By implicit function theorem:
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∂p∗

∂µ1

= −∂F (.)

∂µ1

[
∂F (.)

∂p

]−1

p=p∗

= − u1 ((1 + p)λ0 − pµ1)
3 + c1λ0 ((1 + p)λ0 + pµ1)

2 ((1 + p)λ0 − pµ1) 3
(
c1λ0µ1(−λ0+µ1)
((1+p)λ0−pµ1)3

+
c2λ2µ2

2

(λ2+(−1+p)µ2)3

)

Since u1 = 0 the equation becomes:

∂p∗

∂µ1

= −∂F (.)

∂µ1

[
∂F (.)

∂p

]−1

p=p∗

= − c1λ0 ((1 + p)λ0 + pµ1)

2 ((1 + p)λ0 − pµ1) 3
(
c1λ0µ1(−λ0+µ1)
((1+p)λ0−pµ1)3

+
c2λ2µ2

2

(λ2+(−1+p)µ2)3

) < 0

Reaction to µ2:

By implicit function theorem:

∂p∗

∂µ2

= −∂F (.)

∂µ2

[
∂F (.)

∂p

]−1

p=p∗

=
u2 + c2λ2(λ2−(−1+p)µ2)

(λ2+(−1+p)µ2)3

2
(
c1λ0µ1(−λ0+µ1)
((1+p)λ0−pµ1)3

+
c2λ2µ2

2

(λ2+(−1+p)µ2)3

)

Since u2 = 0 the equation becomes:

∂p∗

∂µ2

= −∂F (.)

∂µ2

[
∂F (.)

∂p

]−1

p=p∗

=
c2λ2 (λ2 − (−1 + p)µ2)

2 (λ2 + (−1 + p)µ2) 3
(
c1λ0µ1(−λ0+µ1)
((1+p)λ0−pµ1)3

+
c2λ2µ2

2

(λ2+(−1+p)µ2)3

) > 0
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Reaction to c1:

By implicit function theorem:

∂p∗

∂c1
= −∂F (.)

∂c1

[
∂F (.)

∂p

]−1

p=p∗

= − λ0µ1

2 ((1 + p)λ0 − pµ1) 2
(
c1λ0µ1(−λ0+µ1)
((1+p)λ0−pµ1)3

+
c2λ2µ2

2

(λ2+(−1+p)µ2)3

) > 0

Reaction to c2:

By implicit function theorem:

∂p∗

∂c2
= −∂F (.)

∂c2

[
∂F (.)

∂p

]−1

p=p∗

=
λ2µ2

2 (λ2 + (−1 + p)µ2) 2
(
c1λ0µ1(−λ0+µ1)
((1+p)λ0−pµ1)3

+
c2λ2µ2

2

(λ2+(−1+p)µ2)3

) < 0

A.5 Proposition 4.5

If |λ
′(p)|
λ(p)

>
µ2

1−µ2
2

2µ2
2

; optimal solution is p = 1

Proof.

L(p) =
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

)
2
(

1− λ(p)
(

(1−p)
µ1

+ p
µ2

))
L(p) =

λ(p)2
(

2(1−p)
µ2

1
+ 2p

µ2
2

)
2 (1− ρ(p))

If L(p) is monotone decreasing (dL(p)
dp

< 0 for all p), then optimal solution is p = 1.

Sufficient conditions for
dL(p)

dp
< 0
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are
dρ(p)

dp
< 0

d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

< 0

dρ(p)

dp
=
λ(p) (µ1 − µ2)

µ1µ2

+
λ′(p) (pµ1 + (1− p)µ2)

µ1µ2

=
λ(p) (pµ1 + (1− p)µ2)

µ1µ2

(
λ′(p)

λ(p)
+

µ1 − µ2

pµ1 + (1− p)µ2

)
since 0 < p < 1, λ(p) > 0, µ1 > µ2 > 0,

λ(p) (pµ1 + (1− p)µ2)

µ1µ2

> 0

and since λ(p) is decreasing in p, λ′(p) < 0; to be

dρ(p)

dp
< 0

the following should be true;

λ′(p)

λ(p)
+

µ1 − µ2

pµ1 + (1− p)µ2

< 0

|λ′(p)|
λ(p)

>
µ1 − µ2

pµ1 + (1− p)µ2

d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

= λ(p)2

(
− 2

µ2
1

+
2

µ2
2

)
+ 2λ(p)λ′(p)

(
2(1− p)
µ2

1

+
2p

µ2
2

)

=
2λ(p)2(2pµ2

1 − 2(−1 + p)µ2
2)

µ2
1µ

2
2

(
λ′(p)

λ(p)
+

µ2
1 − µ2

2

2pµ2
1 − 2(−1 + p)µ2

2

)
since 0 < p < 1, λ(p) > 0, µ1 > µ2 > 0;

2λ(p)2(2pµ2
1 − 2(−1 + p)µ2

2)

µ2
1µ

2
2

> 0
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and since λ(p) is decreasing in p, λ′(p) < 0; to be

d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

< 0

the following should be true;

λ′(p)

λ(p)
+

µ2
1 − µ2

2

2pµ2
1 − 2(−1 + p)µ2

2

< 0

|λ′(p)|
λ(p)

>
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

We have two conditions for monotone decreasing total cost function;

|λ′(p)|
λ(p)

>
µ1 − µ2

pµ1 + (1− p)µ2

|λ′(p)|
λ(p)

>
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

If
|λ′(p)|
λ(p)

> max
p

{
µ1 − µ2

pµ1 + (1− p)µ2

}
|λ′(p)|
λ(p)

>
µ1 − µ2

pµ1 + (1− p)µ2

for all p.

d
(

µ1−µ2

pµ1+(1−p)µ2

)
dp

= − (µ1 − µ2)
2

(pµ1 − (−1 + p)µ2) 2
< 0

implying
µ1 − µ2

pµ1 + (1− p)µ2

is a decreasing function in p and reaches its maximum value when p = 0. When p = 0;

µ1 − µ2

pµ1 + (1− p)µ2

=
µ1 − µ2

µ2

Hence
|λ′(p)|
λ(p)

>
µ1 − µ2

µ2
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is a sufficient condition for dρ(p)
dp

< 0.

If
|λ′(p)|
λ(p)

> max
p

{
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

}

|λ′(p)|
λ(p)

>
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

for all p.

d
(

µ2
1−µ2

2

2(µ2
2(1−p)+µ2

1p)

)
dp

= − (µ2
1 − µ2

2)
2

2 (pµ2
1 − (−1 + p)µ2

2)
2
< 0

implying
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

is a decreasing function in p and reaches its maximum value when p = 0. When p = 0;

µ2
1 − µ2

2

2(µ2
2(1− p) + µ2

1p)
=
µ2

1 − µ2
2

2µ2
2

Hence
|λ′(p)|
λ(p)

>
µ2

1 − µ2
2

2µ2
2

is a sufficient condition for

d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

< 0

For all µ1 > µ2; (
µ2

1−µ2
2

2µ2
2

)
(
µ1−µ2

µ2

) =
µ1 + µ2

2µ2

> 1

µ2
1 − µ2

2

2µ2
2

>
µ1 − µ2

µ2

hence;
|λ′(p)|
λ(p)

>
µ2

1 − µ2
2

2µ2
2

is a sufficient condition for
dρ(p)

dp
< 0
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and
d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

< 0

. In that case, nominator of total cost function will always decrease whereas the

denominator will always increase implying total cost will always decrease. Then the

optimal solution is p = 1.

A.6 Proposition 4.6

If |λ
′(p)|
λ(p)

<
µ2

1−µ2
2

2µ2
1

; optimal solution is p = 0

Proof.

L(p) =
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

)
2
(

1− λ(p)
(

(1−p)
µ1

+ p
µ2

))
L(p) =

λ(p)2
(

2(1−p)
µ2

1
+ 2p

µ2
2

)
2 (1− ρ(p))

If L(p) is monotone increasing (dL(p)
dp

> 0 for all p), then optimal solution is p = 0.

dL(p)

dp
> 0

are
dρ(p)

dp
> 0

d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

> 0

dρ(p)

dp
=
λ(p) (µ1 − µ2)

µ1µ2

+
λ′(p) (pµ1 + (1− p)µ2)

µ1µ2

=
λ(p) (pµ1 + (1− p)µ2)

µ1µ2

(
λ′(p)

λ(p)
+

µ1 − µ2

pµ1 + (1− p)µ2

)
since 0 < p < 1, λ(p) > 0, µ1 > µ2 > 0,

λ(p) (pµ1 + (1− p)µ2)

µ1µ2

> 0
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and since λ(p) is decreasing in p, λ′(p) < 0; to be

dρ(p)

dp
> 0

, it should be;
λ′(p)

λ(p)
+

µ1 − µ2

pµ1 + (1− p)µ2

> 0

|λ′(p)|
λ(p)

<
µ1 − µ2

pµ1 + (1− p)µ2

d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

= λ(p)2

(
− 2

µ2
1

+
2

µ2
2

)
+ 2λ(p)λ′(p)

(
2(1− p)
µ2

1

+
2p

µ2
2

)

=
2λ(p)2(2pµ2

1 − 2(−1 + p)µ2
2)

µ2
1µ

2
2

(
λ′(p)

λ(p)
+

µ2
1 − µ2

2

2pµ2
1 − 2(−1 + p)µ2

2

)
since 0 < p < 1, λ(p) > 0, µ1 > µ2 > 0;

2λ(p)2(2pµ2
1 − 2(−1 + p)µ2

2)

µ2
1µ

2
2

> 0

and since λ(p) is decreasing in p, λ′(p) < 0; to be

d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

> 0

, it should be;
λ′(p)

λ(p)
+

µ2
1 − µ2

2

2pµ2
1 − 2(−1 + p)µ2

2

> 0

|λ′(p)|
λ(p)

<
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

We have two conditions for monotone increasing total cost function;

|λ′(p)|
λ(p)

<
µ1 − µ2

pµ1 + (1− p)µ2

|λ′(p)|
λ(p)

<
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)
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If
|λ′(p)|
λ(p)

< min
p

{
µ1 − µ2

pµ1 + (1− p)µ2

}
|λ′(p)|
λ(p)

<
µ1 − µ2

pµ1 + (1− p)µ2

for all p.

d
(

µ1−µ2

pµ1+(1−p)µ2

)
dp

= − (µ1 − µ2)
2

(pµ1 − (−1 + p)µ2) 2
< 0

implying
µ1 − µ2

pµ1 + (1− p)µ2

is a decreasing function in p and reaches its minimum value when p = 1. When p = 1;

µ1 − µ2

pµ1 + (1− p)µ2

=
µ1 − µ2

µ1

Hence
|λ′(p)|
λ(p)

<
µ1 − µ2

µ1

is a sufficient condition for dρ(p)
dp

> 0.

If
|λ′(p)|
λ(p)

< min
p

{
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

}
|λ′(p)|
λ(p)

<
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

for all p.

d
(

µ2
1−µ2

2

2(µ2
2(1−p)+µ2

1p)

)
dp

= − (µ2
1 − µ2

2)
2

2 (pµ2
1 − (−1 + p)µ2

2)
2
< 0

implying
µ2

1 − µ2
2

2(µ2
2(1− p) + µ2

1p)

is a decreasing function in p and reaches its minimum value when p = 1. When p = 1;

µ2
1 − µ2

2

2(µ2
2(1− p) + µ2

1p)
=
µ2

1 − µ2
2

2µ2
1
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Hence
|λ′(p)|
λ(p)

<
µ2

1 − µ2
2

2µ2
1

is a sufficient condition for

d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

> 0

For all µ1 > µ2; (
µ2

1−µ2
2

2µ2
1

)
(
µ1−µ2

µ1

) =
µ1 + µ2

2µ1

< 1

µ2
1 − µ2

2

2µ2
1

<
µ1 − µ2

µ1

hence;
|λ′(p)|
λ(p)

<
µ2

1 − µ2
2

2µ2
1

is a sufficient condition for
dρ(p)

dp
> 0

and
d
(
λ(p)2

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

> 0

. In that case, nominator of total cost function will always increase whereas the

denominator will always decrease implying total cost will always increase. Then the

optimum solution is p = 0.

A.7 Proposition 4.7

If
√

µ2
1

1+k
≤ µ2 < µ1; total cost is always decreasing and the optimal solution is p = 1.

Proof.

L(p) =
(2− kp)2λ2

0

(
2(1−p)
µ2

1
+ 2p

µ2
2

)
2 (1− ρ(p))
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where

ρ(p) =
(2− kp)λ0 (pµ1 + (1− p)µ2)

µ1µ2

If L(p) is monotone decreasing (dL(p)
dp

< 0 for all p), then optimal solution is p = 1.

Sufficient conditions for
dL(p)

dp
< 0

are
dρ(p)

dp
< 0

d
(

(2− kp)2λ2
0

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

< 0

If
dρ(p)

dp
=
λ0 ((2− 2kp)µ1 − (2 + k − 2kp)µ2)

µ1µ2

< 0

then since λ0, µ1, µ2 > 0;

(2− 2kp)µ1 − (2 + k − 2kp)µ2 < 0

(2− 2kp)µ1 < (2 + k − 2kp)µ2

since 0 < k < 2 and 0 < p < 1; 2 + k − 2kp > 0 we can divide both sides of the

inequality by it without changing the direction of the inequality.

µ2

µ1

>
2− 2kp

2 + k − 2kp

d
(

2−2kp
2+k−2kp

)
dp

= − 2k2

(−2 + k(−1 + 2p))2
< 0

implying
2− 2kp

2 + k − 2kp

is a decreasing function in p and takes its maximum value when p = 0. When p = 0,

µ2

µ1

>
2− 2kp

2 + k − 2kp
=

2

2 + k
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If

d
(

(2− kp)2λ2
0

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

= (2−kp)2λ2
0

(
− 2

µ2
1

+
2

µ2
2

)
−2k(2−kp)λ2

0

(
2(1− p)
µ2

1

+
2p

µ2
2

)
< 0

then since λ0, µ1, µ2 > 0,0 < p < 1 and 0 < k < 2, (2− kp) > 0;

2k(2− kp)λ2
0

(
2(1− p)
µ2

1

+
2p

µ2
2

)
> (2− kp)2λ2

0

(
− 2

µ2
1

+
2

µ2
2

)

k

(
2(1− p)
µ2

1

+
2p

µ2
2

)
> (2− kp)

(
− 1

µ2
1

+
1

µ2
2

)
k
(
2pµ2

1 + 2(1− p)µ2
2

)
> (2− kp)

(
µ2

1 − µ2
2

)
µ2

2(2− 3kp+ 2k) > µ2
1(2− 3kp)

since 0 < p < 1 and 0 < k < 2, (2− 3kp+ 2k) > 0

µ2
2

µ2
1

>
2− 3kp

2 + 2k − 3kp

d
(

2−3kp
2+2k−3kp

)
dp

= − 6k2

(−2 + k(−2 + 3p))2
< 0

implying
2− 3kp

2 + 2k − 3kp

is a decreasing function in p and takes its maximum value when p = 0. When p = 0,

µ2
2

µ2
1

>
2− 3kp

2 + 2k − 3kp
=

1

1 + k

µ2

µ1

>
1√

1 + k

together with the other condition,

µ2

µ1

>
1√

1 + k
>

2

2 + k

hence
µ2

µ1

>
1√

1 + k
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is a sufficient condition for
dρ(p)

dp
< 0

and
d
(

(2− kp)2λ2
0

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

< 0

. In that case, nominator of total cost function will always decrease whereas the

denominator will always increase implying total cost will always decrease. Then the

optimum solution is p = 1.

A.8 Proposition 4.8

If 0 < µ2 ≤ µ1

√
2−3k
2−k and 0 < k < 2

3
; total cost is always increasing and the optimal

solution is p = 0.

Proof.

L(p) =
(2− kp)2λ2

0

(
2(1−p)
µ2

1
+ 2p

µ2
2

)
2 (1− ρ(p))

where

ρ(p) =
(2− kp)λ0 (pµ1 + (1− p)µ2)

µ1µ2

If L(p) is monotone increasing (dL(p)
dp

> 0 for all p), then optimal solution is p = 0.

Sufficient conditions for
dL(p)

dp
> 0

are
dρ(p)

dp
> 0

d
(

(2− kp)2λ2
0

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

> 0

If
dρ(p)

dp
=
λ0 ((2− 2kp)µ1 − (2 + k − 2kp)µ2)

µ1µ2

> 0
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then since λ0, µ1, µ2 > 0;

(2− 2kp)µ1 − (2 + k − 2kp)µ2 > 0

(2− 2kp)µ1 > (2 + k − 2kp)µ2

since 0 < k < 2 and 0 < p < 1; 2 + k − 2kp > 0 we can divide both sides of the

inequality by it without changing the direction of the inequality.

µ2

µ1

<
2− 2kp

2 + k − 2kp

d
(

2−2kp
2+k−2kp

)
dp

= − 2k2

(−2 + k(−1 + 2p))2
< 0

implying
2− 2kp

2 + k − 2kp

is a decreasing function in p and takes its minimum value when p = 1. When p = 1,

µ2

µ1

<
2− 2kp

2 + k − 2kp
=

2− 2k

2− k

If

d
(

(2− kp)2λ2
0

(
2(1−p)
µ2

1
+ 2p

µ2
2

))
dp

= (2−kp)2λ2
0

(
− 2

µ2
1

+
2

µ2
2

)
−2k(2−kp)λ2

0

(
2(1− p)
µ2

1

+
2p

µ2
2

)
> 0

then since λ0, µ1, µ2 > 0,0 < p < 1 and 0 < k < 2, (2− kp) > 0;

2k(2− kp)λ2
0

(
2(1− p)
µ2

1

+
2p

µ2
2

)
< (2− kp)2λ2

0

(
− 2

µ2
1

+
2

µ2
2

)
k

(
2(1− p)
µ2

1

+
2p

µ2
2

)
< (2− kp)

(
− 1

µ2
1

+
1

µ2
2

)
k
(
2pµ2

1 + 2(1− p)µ2
2

)
< (2− kp)

(
µ2

1 − µ2
2

)
µ2

2(2− 3kp+ 2k) < µ2
1(2− 3kp)

since 0 < p < 1 and 0 < k < 2, (2 − 3kp + 2k) > 0 we can divide both sides of the

inequality by it without changing the direction of the inequality.

µ2
2

µ2
1

<
2− 3kp

2 + 2k − 3kp
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d
(

2−3kp
2+2k−3kp

)
dp

= − 6k2

(−2 + k(−2 + 3p))2
< 0

implying
2− 3kp

2 + 2k − 3kp

is a decreasing function in p and takes its minimum value when p = 1. When p = 1,

µ2
2

µ2
1

<
2− 3kp

2 + 2k − 3kp
=

2− 3k

2− k

since 0 < k < 2, 2 − 3k can be negative whereas
µ2

2

µ2
1

can never be negative. This

implies a boundary condition on k.

2− 3k > 0

k <
2

3

0 < k <
2

3

Then;
µ2

µ1

<

√
2− 3k

2− k
together with the other condition if 0 < k < 2

3
;√

2− 3k

2− k
<

2− 2k

2− k

Then;
µ2

µ1

<

√
2− 3k

2− k
<

2− 2k

2− k
hence

µ2

µ1

<

√
2− 3k

2− k

0 < µ2 ≤ µ1

√
2− 3k

2− k
In this case total cost function is monotone increasing and optimal solution is p =

0.
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A.9 Proposition 4.9

Optimal solution is always 1.

Proof.

L(p) =

(
λ0

kp

)2 (
2(1−p)
µ2

1
+ 2p

µ2
2

)
2 (1− ρ(p))

where

ρ(p) =

(
λ0

kp

)
(pµ1 + (1− p)µ2)

µ1µ2

If L(p) is monotone decreasing (dL(p)
dp

< 0 for all p), then optimal solution is given by

1.

dρ(p)

dp
= − λ

kp2µ1

< 0

implying denominator is always increasing.

d
(
λ0

kp

)2 (
2(1−p)
µ2

1
+ 2p

µ2
2

)
dp

=
2λ2

(
−2+p
µ2

1
− p

µ2
2

)
k2p3

< 0

implying nominator is always decreasing.

As a result, L(p) is monotone decreasing and optimal solution is given by 1.
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Appendix B

TABLES

Table B.1: Group Statistics

Group Statistics

anxiety,hypertension N Mean Std. Deviation Std. Error Mean

august
0 168 ,76 ,865 ,067

1 414 ,76 ,877 ,043

september
0 168 ,79 ,972 ,075

1 414 ,69 ,868 ,043

october
0 168 ,77 ,875 ,068

1 414 ,64 ,885 ,044

november
0 168 ,58 ,696 ,054

1 414 ,55 ,727 ,036

december
0 168 ,65 ,848 ,065

1 414 ,64 ,822 ,040

january
0 168 ,77 ,882 ,068

1 414 ,59 ,759 ,037

february
0 168 ,71 ,807 ,062

1 414 ,61 ,845 ,042

march
0 168 ,66 ,832 ,064

1 414 ,61 ,829 ,041

april
0 168 ,61 ,725 ,056

1 414 ,51 ,732 ,036

may
0 168 ,71 ,829 ,064

1 414 ,65 ,821 ,040

june
0 168 ,80 ,962 ,074

1 414 ,69 ,910 ,045

july
0 168 ,55 ,724 ,056

1 414 ,56 ,802 ,039
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Table B.3: Group Statistics

Group Statistics

type2-type1 N Mean Std. Deviation Std. Error Mean

august
1 2121 ,19 ,478 ,010

2 582 ,76 ,873 ,036

september
1 2121 ,16 ,435 ,009

2 582 ,72 ,900 ,037

october
1 2121 ,18 ,455 ,010

2 582 ,68 ,884 ,037

november
1 2121 ,17 ,442 ,010

2 582 ,56 ,718 ,030

december
1 2121 ,22 ,492 ,011

2 582 ,65 ,828 ,034

january
1 2121 ,36 ,590 ,013

2 582 ,64 ,800 ,033

february
1 2121 ,19 ,451 ,010

2 582 ,64 ,835 ,035

march
1 2121 ,23 ,548 ,012

2 582 ,63 ,830 ,034

april
1 2121 ,20 ,499 ,011

2 582 ,54 ,731 ,030

may
1 2121 ,22 ,516 ,011

2 582 ,66 ,823 ,034

june
1 2121 ,26 ,509 ,011

2 582 ,73 ,926 ,038

july
1 2121 ,25 ,540 ,012

2 582 ,56 ,780 ,032



Appendix B: Tables 104

In
d
ep

en
d
en

t
S
am

p
le

s
T

es
t

t-
te

st
fo

r
E

q
u
al

it
y

of
M

ea
n
s

L
ev

en
e’

s
T

es
t

fo
r

95
%

C
on

fi
d
en

ce

E
q
u
al

it
y

of
V

ar
ia

n
ce

s
M

ea
n

S
td

.
E

rr
or

In
te

rv
al

of
th

e
D

iff
er

en
ce

F
S
ig

.
t

d
f

S
ig

.
(2

-t
ai

le
d
)

D
iff

er
en

ce
D

iff
er

en
ce

L
ow

er
U

p
p

er

au
gu

st
E

q
u
al

va
ri

an
ce

s
as

su
m

ed
38

9,
19

2
,0

00
-2

0,
79

9
27

01
,0

00
-,

57
0

,0
27

-,
62

4
-,

51
6

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
5,

14
7

67
9,

25
0

,0
00

-,
57

0
,0

38
-,

64
4

-,
49

6

se
p
te

m
b

er
E

q
u
al

va
ri

an
ce

s
as

su
m

ed
60

0,
15

1
,0

00
-2

0,
89

4
27

01
,0

00
-,

55
5

,0
27

-,
60

7
-,

50
3

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
4,

43
4

65
7,

14
0

,0
00

-,
55

5
,0

38
-,

63
1

-,
48

0

o
ct

ob
er

E
q
u
al

va
ri

an
ce

s
as

su
m

ed
46

4,
10

2
,0

00
-1

8,
37

7
27

01
,0

00
-,

49
4

,0
27

-,
54

7
-,

44
1

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
3,

02
8

66
7,

56
9

,0
00

-,
49

4
,0

38
-,

56
9

-,
42

0

n
ov

em
b

er
E

q
u
al

va
ri

an
ce

s
as

su
m

ed
44

1,
34

1
,0

00
-1

6,
40

0
27

01
,0

00
-,

39
5

,0
24

-,
44

2
-,

34
7

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
2,

62
2

70
6,

30
7

,0
00

-,
39

5
,0

31
-,

45
6

-,
33

3

d
ec

em
b

er
E

q
u
al

va
ri

an
ce

s
as

su
m

ed
37

8,
36

7
,0

00
-1

5,
54

7
27

01
,0

00
-,

42
3

,0
27

-,
47

6
-,

37
0

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
1,

75
7

69
7,

22
7

,0
00

-,
42

3
,0

36
-,

49
3

-,
35

2

ja
n
u
ar

y
E

q
u
al

va
ri

an
ce

s
as

su
m

ed
11

2,
68

5
,0

00
-9

,3
54

27
01

,0
00

-,
28

1
,0

30
-,

34
0

-,
22

2

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-7
,8

94
76

2,
86

9
,0

00
-,

28
1

,0
36

-,
35

0
-,

21
1

fe
b
ru

ar
y

E
q
u
al

va
ri

an
ce

s
as

su
m

ed
48

6,
03

2
,0

00
-1

7,
00

4
27

01
,0

00
-,

44
3

,0
26

-,
49

4
-,

39
2

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
2,

31
6

67
6,

83
8

,0
00

-,
44

3
,0

36
-,

51
4

-,
37

2

m
ar

ch
E

q
u
al

va
ri

an
ce

s
as

su
m

ed
24

3,
66

7
,0

00
-1

3,
63

6
27

01
,0

00
-,

39
5

,0
29

-,
45

2
-,

33
8

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
0,

85
8

72
5,

34
0

,0
00

-,
39

5
,0

36
-,

46
7

-,
32

4

ap
ri

l
E

q
u
al

va
ri

an
ce

s
as

su
m

ed
26

8,
47

0
,0

00
-1

2,
97

8
27

01
,0

00
-,

33
8

,0
26

-,
38

9
-,

28
7

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
0,

50
9

73
5,

45
8

,0
00

-,
33

8
,0

32
-,

40
1

-,
27

5

m
ay

E
q
u
al

va
ri

an
ce

s
as

su
m

ed
29

2,
89

6
,0

00
-1

6,
07

9
27

01
,0

00
-,

44
8

,0
28

-,
50

3
-,

39
3

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
2,

47
7

71
0,

73
3

,0
00

-,
44

8
,0

36
-,

51
9

-,
37

8

ju
n
e

E
q
u
al

va
ri

an
ce

s
as

su
m

ed
34

7,
42

3
,0

00
-1

6,
08

8
27

01
,0

00
-,

46
9

,0
29

-,
52

6
-,

41
1

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-1
1,

73
4

67
9,

94
4

,0
00

-,
46

9
,0

40
-,

54
7

-,
39

0

ju
ly

E
q
u
al

va
ri

an
ce

s
as

su
m

ed
17

5,
47

9
,0

00
-1

1,
07

2
27

01
,0

00
-,

31
1

,0
28

-,
36

6
-,

25
6

E
q
u
al

va
ri

an
ce

s
n
ot

as
su

m
ed

-9
,0

38
74

0,
57

6
,0

00
-,

31
1

,0
34

-,
37

8
-,

24
3

T
ab

le
B

.4
:

D
iff

er
en

ce
b

et
w

ee
n

ty
p

e
1

an
d

ty
p

e
2

p
at

ie
n
ts

’
ar

ri
va

ls



Appendix B: Tables 105

Paired Samples Statistics

Mean N Std. Deviation Std. Error Mean

Pair 1 August ,76 582 ,873 ,036

July ,56 582 ,780 ,032

Paired Samples Test

Paired Differences

95 Confidence

Interval of the

Std. Std. Error Difference Sig(2-

Mean Deviation Mean lower upper t df tailed)

Pair 1 ,201 1,028 ,043 ,117 ,285 4,720 581 ,000

august-july

Table B.5: Paired t-test
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Ranks

N Mean Rank Sum of Ranks

July - august Negative Ranks 201a 157,64 31685,50

Positive Ranks 112b 155,85 17455,50

Ties 269c

Total 582

a.july<august

b.july>august

c.july=august

Test Statisticsb

July-August

Z −4, 724a

Asymp.Sig (2-tailed) ,000

a.Based on positive Ranks

b.Wilcoxon Signed Rank Test

Table B.6: Wilcoxon Signed Rank test
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Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

Age(doctor) 384 24 55 36.32 5.903

Gender(f=1,m=0) 384 0 1 .23 .419

Experience (month) 384 1 66 18.02 7.252

People registered 384 1001 5673 3582.16 506.975

Female registered 384 501 3007 1802.61 265.307

Male registered 384 500 2743 1779.55 257.345

<1 384 1 500 49.52 30.271

1-5 384 5 675 202.17 80.138

6-14 381 10 1111 518.62 165.411

15-18 381 5 850 240.75 83.982

19-50 381 30 4143 1747.41 421.434

51-64 381 11 2200 485.62 187.426

>65 381 19 1210 359.86 188.810

Working hours (in clinic) 384 6 88 37.14 7.719

Working hours (mobile) 384 0 35 5.66 6.428

Average consultation duration (min) 384 1 70 10.76 5.619

Number of assistants 384 0 4 1.22 .582

Diagnosis (percentage) 384 2.083 69.048 23.82148 11.451464

Treatment 384 .787 62.500 21.01058 11.050285

Vaccination 384 .000 36.585 9.78056 6.011333

Management of chronic diseases 384 .000 33.333 6.62349 4.307501

Periodic examinations 384 .000 30.612 3.42147 3.103974

Risk factor scanning 384 .000 19.608 5.07261 3.154727

Mother-child health 384 .000 27.027 7.58703 4.656366

Family planning 384 .000 19.231 4.99282 3.082138

Promotion of health 384 .000 14.218 2.94473 1.814306

Administrative affairs 384 .000 45.455 7.62039 5.336940

Seminars 384 .000 14.815 3.19603 2.023527

Other 384 .000 29.268 3.92879 3.031416

Appointment (yes=1,no=0) 384 0 1 .06 .238

Enough time (yes=1,no=0) 384 0 1 .20 .401

Refer higher level (percentage) 384 0 90 5.52 8.473

Daily consultation 384 3 135 57.02 21.444

Quit family practise in 5 years (percentage) 384 0 100 24.64 31.461

Diagnosis and treatment (level of importance) 384 0 5 4.04 1.157

Vaccination 384 0 5 4.72 1.021

Management of chronic diseases 384 0 5 3.94 1.182

Periodic examinations 384 0 5 3.88 1.219

Risk factor scanning 384 0 5 4.07 1.128

Mother-child health 384 0 5 4.55 1.076

Family planning 384 0 5 4.20 1.263

Promotion of health 384 0 5 3.80 1.224

Administrative affairs 384 0 5 3.08 1.287

Seminars 384 0 5 3.69 1.185

Other 384 0 5 .78 1.458

Valid N (listwise) 380

Table B.7: Survey Results : Descriptive Statistics
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