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Koç University

May 2011
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ABSTRACT

In this study, we analyze the error terms in average orders of Euler phi
function and divisor function. Our aim is to obtain a omega type estimation
for these error terms and show that they change sign infinitely often. In the
first part, we find the average value of the error term in the average order of
Euler phi function and obtain a omega type estimation for this error term
by employing basic arguments in Number Theory. In the second part, we
show that this error term changes sign infinitely often. We accomplish this
result by averaging this error term over arithmetic progressions. In the third
part we utilize complicated methods to improve the results that we found
in the first two parts. Finally, we combine the methods we used up to this
section and apply them to the divisor function which is defined to be the
sum of divisors of a given number n which is relatively prime to a.
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ÖZET

Bu çalışmada, Euler phi fonksiyonu ve bölme fonksiyonunun ortalama büyü-
me değerinde çıkan hata terimleri analiz edilmiştir. Amacımız bu hata
terimleri için omega türü bir değer bulma ve bu hata terimlerinin sonsuz
defa işaret değiştirdiğini göstermektir. Birinci bölümde Sayılar Teorisindeki
temel argümanları kullanarak, Euler phi fonksiyonunun ortalama büyüme
değerinde çıkan hata teriminin, ortalama büyüme değerini hesaplıyoruz ve
bu hata terimi için omega türü bir değer buluyoruz. l̇kinci bölümde, bu
hata teriminin sonsuz defa işaret değiştirdiğini gösteriyoruz. Bu sonuç, hata
teriminin aritmetik diziler üzerinde toplanması ile elde edilmiştir. Üçüncü
bölümde, ilk iki bölümde bulduğumuz sonuçları geliştirmek için, ileri metot-
lardan faydalanıyoruz. Son olarak, bu bölüme kadar kullandığımız metotları
birleştirerek; herhangi bir sayının, verilen bir a sayısı ile aralarında asal olan
bölenlerinin toplamı olarak tanımladığımız bölme fonksiyonu üzerinde uygu-
luyoruz.
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1 PRELIMINARIES

This chapter includes the basic information needed to understand the text
as we frequently will refer in the following chapters. It consists of four main
sections and in each of them, we will present the functions and some of their
properties that we are going to deal with. We also will introduce some main
formulas and tools that are widely used in Analytic Number Theory. All
these will be given briefly, without proof, since detailed arguments can be
found in [1] or [2].

1.1 Arithmetic Functions µ(n) and φ(n)

Definition 1. A real- or complex-valued function defined on the positive
integers is called an arithmetic function.

We give definitions of arithmetic functions µ(n), φ(n) and Λ(n) which
play an important role in the study of divisibility properties of integers and
the distribution of primes.

Definition 2. The Möbius function µ is defined as follows:

µ(1) = 1;
If n > 1, write n = pa11 · · · p

ak
k , where p1, p2, · · · , pk are primes. Then

µ(n) =

{
(−1)k if a1 = a2 = · · · ak = 1,
0 otherwise.

One of the important properties of µ(n) is,

Theorem 1.1. If n ≥ 1, we have

∑
d|n

µ(d) =

[
1

n

]
=

{
1 if n = 1,
0 if n > 1.

Now we introduce a significant theorem in analytic number theory.

Theorem 1.2 (Möbius Inversion Formula).

f(n) =
∑
d|n

g(d)⇔ g(n) =
∑
d|n

f(d)µ
(n
d

)
.

Where f(n) and g(n) arithmetic functions.

By using Möbius inversion formula we can get many important results.
One of them is given in next theorem. First we introduce Mangoldt’s func-
tion Λ which plays central role in the distribution of primes.
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Definition 3.

Λ(n) =

{
log p if n = pm for some prime p and some integer m ≥ 1,
0 otherwise.

Theorem 1.3. If n ≥ 1, we have

Λ(n) =
∑
d|n

µ(d) log
n

d
= −

∑
d|n

µ(d) log d.

Definition 4. If n ≥ 1, the Euler totient φ(n) is defined to be the number
of positive integers not exceeding n which are relatively prime to n; i.e.,

φ(n) =
n∑

m=1
(m,n)=1

1.

We have some results about function φ(n) that will be used in next chap-
ters.

Theorem 1.4. If n ≥ 1, we have

φ(n) =
∑
d|n

µ(d)
n

d
. (1.1)

Theorem 1.5. For n ≥ 1, we have

φ(n) = n
∏
p|n

(
1− 1

p

)
. (1.2)

Where p is any prime divisor of n.

Related with this theorem, in a later section we use next result that
Mertens proved.

Theorem 1.6. (Mertens product estimate, strong form) We have

∏
p≤x

(
1− 1

p

)
=

e−E

log x

(
1 +O

(
1

log x

))
for x ≥ 2.

In above equation, the constant E is the Euler’s constant which is defined
by the equation

E = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
.
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1.2 Dirichlet convolution

Definition 5. If f and g are two artihmetic functions, we define their Dirich-
let product (or Dirichlet convolution) to be the arithmetical function h defined
by the equation

h(n) = (f ∗ g)(n) = (g ∗ f)(n) =
∑
d|n

f(d)g
(n
d

)
.

An example to this product is that the equation (1.1) can be written as
φ = µ ∗N . Where N is identity function.

The next theorem relates the product of Dirichlet Series with the Dirich-
let convolution of their coefficients.

Theorem 1.7. Given two functions F(s) and G(s) represented by Dirichlet
series,

F (s) =

∞∑
n=1

f(n)

ns
for σ > a,

and

G(s) =
∞∑
n=1

g(n)

ns
for σ > b.

Then in the half-plane where both series converge absolutely we have

F (s)G(s) =

∞∑
n=1

h(n)

ns
, (1.3)

where h = f ∗ g, the Dirichlet convolution of f and g:

h(n) =
∑
d|n

f(d)g(
n

d
).

Here σ is real part of s.

Now we apply Theorem 1.6 to the sum

∞∑
n=1

µ(n)

ns
.

We have

ζ(s) =
∞∑
n=1

1

ns
converges absolutely for σ > 1,
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and
∞∑
n=1

µ(n)

ns
converges absolutely for σ > 1.

Taking f(n) = 1 and g(n) = µ(n) in (1.3) we find

h(n) =
∑
d|n

µ(d).

This gives

ζ(s)

∞∑
n=1

µ(n)

ns
= ζ(s)

∞∑
n=1

∑
d|n µ(d)

ns
= 1.

In particular, this shows that ζ(s) 6= 0 for σ > 1 and that

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
for σ > 1. (1.4)

In our subject we mainly use this formula for s = 2. Euler calculated that
ζ(2) = π2

6 , therefore we have

∞∑
n=1

µ(n)

n2
=

6

π2
. (1.5)

1.3 Multiplicative functions

In this section, we discuss an important subset of arithmetical functions
which is called multiplicative functions.

Definition 6. An arithmetical function f is called multiplicative, if f is not
identically zero and if

f(mn) = f(m)f(n) whenever (m,n) = 1.

A multiplicative function f is called completely multiplicative if we also have

f(mn) = f(m)f(n) for all m,n.

We can give µ(n), φ(n) as examples of multiplicative functions. Multi-
plicativity provides us showing identities for some power of a prime instead
of n, which comes from next theorem.

Theorem 1.8. f is multiplicative if, and only if,

f(pa11 . . . parr ) = f(pa11 ) . . . f(parr )

for all primes pi and all integers ai ≥ 1.
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The other properties of multiplicative functions are

Theorem 1.9. If f is multiplicative, we have∑
d|n

µ(d)f(d) =
∏
p|n

(1− f(p)).

Theorem 1.10. Let f be multiplicative arithmetic function such that the
series

∑
f(n) is absolutely convergent. Then the sum of the series can be

expressed as an absolutely convergent infinite product,

∞∑
n=1

f(n) =
∏
p

(
1 + f(p) + f(p2) + · · ·

)
extended over all primes. If f is completely multiplicative, the product sim-
plifies to

∞∑
n=1

f(n) =
∏
p

1

1− f(p)
.

1.4 Elementary Asymptotic Formulas and Partial Summa-
tion

To study the average of an arbitrary function f(n) we need a knowledge of
its partial sums

n∑
k=1

f(k).

Sometimes it is convenient to replace the upper index n by an arbitrary
positive real number x and to consider instead sums of the form∑

k≤x
f(k).

This partial sum is also called summatory function of f(k) which is denoted
as F (x). Before passing to methods for evaluating F (x), we give a definition
for main term in F (x).

Definition 7. If

lim
x→∞

f(x)

g(x)
= 1,

we say that f(x) is asymptotic to g(x) as x→∞, and we write f(x) ∼ g(x)
as x→∞.

For example, in a later section we will prove that∑
n≤x

φ(n) ∼ 3

π2
x2 as x→∞.

5



Here the term 3
π2x

2 is called asymptotic value of the sum.

Sometimes the asymptotic value of a partial sum can be obtained by
comparing it with an integral. A summation formula of Euler gives an exact
expression for the error made in such an approximation.

Theorem 1.11 (Euler’s Summation Formula). If f has a continuous deriva-
tive f ′ on the interval [y, x], where 0 < y < x, then∑
y<n≤x

f(n) =

∫ x

y
f(t)dt+

∫ x

y
(t− [t])f ′(t)dt+ f(x)([x]− x)− f(y)([y]− y).

The next theorem gives a number of asymptotic formulas which are easy
consequences of Euler’s summation formula. In equation (1.7), ζ(s) denotes
the Riemann zeta function which is defined by the equation

ζ(s) =
∞∑
n=1

1

ns
if s > 1,

and

ζ(s) = lim
n→∞

∑
n≤x

1

ns
− x1−s

1− s

 if 0 < s < 1.

Theorem 1.12. ∑
n≤x

1

n
= log x+ E +O

(
1

x

)
. (1.6)

∑
n≤x

1

ns
=
x1−s

1− s
+ ζ(s) +O(x−s) if s > 0, s 6= 1. (1.7)

∑
n>x

1

ns
= O(x1−s) if s > 1. (1.8)

∑
n≤x

nα =
xα+1

α+ 1
+O(xα) if α ≥ 0. (1.9)

Now we relate the partial sums of arbitarary arithmetical functions f
and g with those of their Dirichlet product f ∗ g.

Theorem 1.13. If h = f ∗ g, let

H(x) =
∑
n≤x

h(n), F (x) =
∑
n≤x

f(n), G(x) =
∑
n≤x

g(n).

Then we have

H(x) =
∑
n≤x

f(n)G
(x
n

)
=
∑
n≤x

g(n)F
(x
n

)
. (1.10)
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In Theorem 1.12 if we set g(n) = 1 for all n, then G(x) = [x] and (1.10)
gives us the following result:

Theorem 1.14. If F (x) =
∑

n≤x f(n), we have∑
n≤x

∑
d|n

f(d) =
∑
n≤x

f(n)
[x
n

]
=
∑
n≤x

F
(x
n

)
. (1.11)

We end this section by giving the partial summation formula which is one
of the most powerful methods for estimating the summatory of arithmetic
functions.

Theorem 1.15 (The Partial Summation Formula). Let x and y be real
numbers with 0 < y < x. Let f(n) be an arithmetic function with summatory
function F (x) and g(t) be a function with a continuous derivative on [y, x].
Then,

∑
y<n≤x

f(n)g(n) = F (x)g(x)− F (y)g(y)−
∫ x

y
F (t)g′(t)dt. (1.12)

In particular, if x ≥ 2 and g(t) is continuously differentiable on [1, x],
then ∑

n≤x
f(n)g(n) = F (x)g(x)−

∫ x

1
F (t)g′(t)dt. (1.13)
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2 An Asymptotic Formula for Error the Term Aris-
ing From the Summatory function of φ(n)

In Analytic Number Theory, we estimate the averages
∑

n≤x f(n) of arith-
metic functions, because they are expected to behave more regularly for
large x whereas an arithmetic function itself may behave beyond prediction
when n is large. We approach this subject from another perspective that es-
timates the averages of error terms, and finds that these error terms indeed
change sign infinitely often.

Fluctuation of error terms interested mathematicians since beginning of
1900s. After Hadamard and De la Vallée Poussin proved Prime Number
Theorem in 1896, E. Schmidt analyzed the error term of ψ(x). In 1903,
he proved that ψ(x) − x changes sign infinitely often. After a while, E.
Schmidt get the same result for the function π(x) − Li(x) under the as-
sumption that Riemann Hypothesis is false. In 1914, Littlewood proved
that π(x) − Li(x) fluctuates in the case Riemann Hypothesis is true. He
showed that π(x)−Li(x) = Ω±(x1/2 log log log x), where Ω± means that the
error term achieves the given order of magnitude infinitely often with both
positive and negative signs. For proof of these results, see [2].

In this study, we will mainly focus on Euler’s φ function which gives
remarkable results. The first result on the behaviour of error term in
the average of φ(n) is due to Dirichlet, who proved that E(x) = O(xδ)
for some δ, 1 < δ < 2, where E(x) is the error term in the average of
φ(n). This was improved by Mertens to E(x) = O(x log x) [1]. The proof
of these estimations are short and elementary. More recently, using the
best error term for the Prime Number Theorem, Walfisz improved this to
E(x) = O(x(log x)

2
3 (log log x)

4
3 ) [10].

The results above give us an upper bound for the error term. On the
other side, in 1930, Pillai and Chowla gave Ω-type estimation for E(x),
and showed that E(x) 6= o(x log log log x) [3]. Then, in 1951, Erdös and
Shapiro analyzed the error term on the arithmetic progression and proved
that E(x) = Ω±(x log log log log x) [4], which was improved by Montgomery
to E(x) = Ω±(x

√
log log x) in 1987 [5].

In this chapter, we prove∑
n≤x

E(n) ∼ 3

2π2
x2

and
E(x) 6= o(x log log log x).

8



2.1 Average Orders of φ(n) and φ(n)
n

Let us first find the average order of φ(n) which is proved by Mertens.

Theorem 2.1. For x > 1, we have∑
n≤x

φ(n) =
3

π2
x2 +O(x log x). (2.1)

Therefore the average order of φ(n) is 3n
π2 .

Proof. By using (1.1), (1.5) and Theorem 1.11 we have

∑
n≤x

φ(n) =
∑
n≤x

∑
d|n

µ(d)
n

d
=
∑
q,d
qd≤x

µ(d)q =
∑
d≤x

µ(d)
∑
q≤x/d

q

=
∑
d≤x

µ(d)

{
1

2

(x
d

)2
+O

(x
d

)}

=
1

2
x2
∑
d≤x

µ(d)

d2
+O

x∑
d≤x

1

d


=

1

2
x2

{ ∞∑
d=1

µ(d)

d2
−
∑
d>x

µ(d)

d2

}
+O(x log x)

=
1

2
x2
{

6

π2
+O

(
1

x

)}
+O(x log x)

=
3

π2
x2 +O(x log x).

By using above result and partial summation formula, we get the follow-
ing formula.

Theorem 2.2. For x > 1, we have∑
n≤x

φ(n)

n
=

6

π2
x+O(log x). (2.2)

Therefore the average order of φ(n)
n is 6

π2 .

Proof. Applying partial summation formula and using∑
n≤x

φ(n) =
3

π2
x2 +O(x log x),

9



we get ∑
n≤x

φ(n)

n
=

3

π2
x+O(log x) +

∫ x

1

{
3

π2
+O

(
log t

t2

)}
dt

=
3

π2
x+O(log x) +

∫ x

1

3

π2
dt+O

(∫ x

1

log t

t2
dt

)
=

6

π2
x+O(log x).

2.2 Average Order of Error term in Partial Sum of φ(n)

First, let us define

E(x) =
∑
n≤x

φ(n)− 3

π2
x2

and

H(x) =
∑
n≤x

φ(n)

n
− 6

π2
x.

In this section, we will show that∑
x≤R

E(x) ∼ 3

2π2
R2.

Theorem 2.3. If ∑
n≤x

an = o(x)

and
|an| < K <∞,

then ∑
n≤x

an

{x
n

}2
= o(x).

Where
{
x
n

}
denotes the fractional part of x

n .

For the proof of this theorem, we refer to [3].

Now we will make some preparation for the next theorem. Let us put

M(x) =
∑
n≤x

µ(n).

10



Then one of the implications of the PNT is,

M(x) = o(x) (2.3)

and we can obtain from De la Vallée Poussin type zero free region for the
Riemann zeta function

M(x) = O(x exp(−c
√

log x)).

Lemma 2.4. We have ∑
n>x

µ(n)

n2
= o

(
1

x

)
. (2.4)

Proof. For proving our result, it is sufficient to take M(x) = O( x
log x). By

partial summation formula, we have∑
x<n≤y

µ(n)

n2
=
M(y)

y2
− M(x)

x2
+ 2

∫ y

x

M(t)

t3
dt

= O

(
1

y log y

)
+O

(
1

x log x

)
+O

(∫ y

x

1

t2 log t
dt

)
= O

(
1

y log y

)
+O

(
1

x log x

)
+O

(
1

log x

∫ y

x

1

t2
dt

)
= O

(
1

y log y

)
+O

(
1

x log x

)
+O

(
1

log x

(
1

x
− 1

y

))
.

By letting y →∞, we get∑
n>x

µ(n)

n2
= O

(
1

x log x

)
= o

(
1

x

)
.

Now we use (1.1), (1.5), and Theorem 1.11 with above result to get∑
n≤x

φ(n)

n
=
∑
n≤x

∑
d|n

µ(d)

d
=
∑
n≤x

µ(n)

n

[x
n

]
= x

∑
n≤x

µ(n)

n2
−
∑
n≤x

µ(n)

n

{x
n

}
= x

( ∞∑
n=1

µ(n)

n2
−
∑
n>x

µ(n)

n2

)
−
∑
n≤x

µ(n)

n

{x
n

}

=
6

π2
x+ o(1)−

∑
n≤x

µ(n)

n

{x
n

} . (2.5)
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Recall that

H(x) =
∑
n≤x

φ(n)

n
− 6

π2
x.

From (2.5), we have

H(x) = −

∑
n≤x

µ(n)

n

{x
n

}+ o(1). (2.6)

Now we are ready to prove our main result for H(x).

Theorem 2.5. We have∑
x≤R

H(x) ∼ 3

π2
R as R→∞. (2.7)

Proof. First observe that it is sufficient to prove the theorem only when R
is an integer. Let R be an integer and consider,∑

x≤R
H(x) =

∑
x≤R

∑
n≤x

φ(n)

n
−
∑
x≤R

6

π2
x =

∑
x≤R

∑
n≤x

φ(n)

n
− 3

π2
(R2 +R).

We write double sum as,

∑
x≤R

∑
n≤x

φ(n)

n
= (0) +

(
φ(1)

1

)
+

(
φ(1)

1
+
φ(2)

2

)
+

· · ·+
(
φ(1)

1
+
φ(2)

2
+ · · ·+ φ(R)

R

)
.

In the above equation we complete each parenthesis to
(
φ(1)
1 + φ(2)

2 + · · ·+ φ(R)
R

)
,

and obtain∑
x≤R

H(x) = (R+ 1)
∑
n≤R

φ(n)

n
−
∑
n≤R

φ(n)− 3

π2
(R2 +R)

=

R∑
n≤R

φ(n)

n
−
∑
n≤R

φ(n)

+
6

π2
R+O(logR)− 3

π2
(R2 +R)

=

R∑
n≤R

φ(n)

n
−
∑
n≤R

φ(n)

− 3

π2
(R2 −R) +O(logR).

(2.8)
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Combining with (2.5), we see that∑
n≤R

φ(n)

n
= R

∑
n≤R

µ(n)

n2
−
∑
n≤R

µ(n)

n

{
R

n

}
.

Moreover, using the formula we show that

∑
n≤R

φ(n) =
∑
d≤R

µ(d)
∑
q≤R

d

q =
1

2

∑
d≤R

µ(d)

{[
R

d

]2
+

[
R

d

]}
.

(2.8) becomes∑
x≤R

H(x) = R2
∑
n≤R

µ(n)

n2
−R

∑
n≤R

µ(n)

n

{
R

n

}

−1

2

∑
n≤R

µ(n)

{[
R

n

]2
+

[
R

n

]}
︸ ︷︷ ︸

A

− 3

π2
(R2 −R) +O(logR).

A = −1

2

∑
n≤R

µ(n)

[
R

n

]2
− 1

2

∑
n≤R

µ(n)

[
R

n

]

= −1

2
R2
∑
n≤R

µ(n)

n2
+R

∑
n≤R

µ(n)

n

{
R

n

}
− 1

2

∑
n≤R

µ(n)

{
R

n

}2

︸ ︷︷ ︸
A1

−1

2

∑
n≤R

µ(n)

[
R

n

]
︸ ︷︷ ︸

A2

.

Since ∑
n≤R

µ(n) = o(R),

Theorem 2.3 gives A1 = o(R). And by using Theorem 1.13 and Theorem
1.1, we see that

A2 = −1

2

∑
n≤R

∑
d|n

µ(d) = −1

2
.

This gives,

A = −1

2
R2
∑
n≤R

µ(n)

n2
+R

∑
n≤R

µ(n)

n

{
R

n

}
+ o(R).
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Going back and putting A into our main equation, we have∑
x≤R

H(x) = R2
∑
n≤R

µ(n)

n2
−R

∑
n≤R

µ(n)

n

{
R

n

}
− 1

2
R2
∑
n≤R

µ(n)

n2

+R
∑
n≤R

µ(n)

n

{
R

n

}
+ o(R)− 3

π2
(R2 −R) +O(logR)

=
1

2
R2
∑
n≤R

µ(n)

n2
− 3

π2
R2 +

3

π2
R+ o(R)

=
1

2
R2

{ ∞∑
n=1

µ(n)

n2
−
∑
n>R

µ(n)

n2

}
− 3

π2
R2 +

3

π2
R+ o(R)

=
3

π2
R+ o(R). (2.9)

Which gives the desired result.

Now we relate H(x) to E(x) in the next theorem.

Theorem 2.6. We have

E(R) = RH(R) + o(R) as R→∞. (2.10)

Proof.

E(R) =
∑
n≤R

φ(n)− 3

π2
R2 =

∑
d≤R

µ(d)
∑
q≤R

d

q − 3

π2
R2

=
1

2

∑
n≤R

µ(n)

{[
R

n

]2
+

[
R

n

]}
− 3

π2
R2

=
1

2

∑
n≤R

µ(n)

[
R

n

]2
+

1

2

∑
n≤R

µ(n)

[
R

n

]
− 3

π2
R2

=
1

2
R2
∑
n≤R

µ(n)

n2
−R

∑
n≤R

µ(n)

n

{
R

n

}
+

1

2

∑
n≤R

µ(n)

{
R

n

}2

+
1

2

∑
n≤R

µ(n)

[
R

n

]
− 3

π2
R2.

Again by a similar argument as in the previous theorem, we have

E(R) = −R
∑
n≤R

µ(n)

n

{
R

n

}
+ o(R).
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and by equation (2.6), we have

H(R) = −

∑
n≤R

µ(n)

n

{
R

n

}+ o(1),

and
E(R) = RH(R) + o(R) follows.

Theorem 2.7. We have∑
x≤R

E(x) ∼ 3

2π2
R2 as R→∞. (2.11)

Proof. From Theorem 2.6, we have

∑
x≤R

E(x) =
∑
x≤R

xH(x) + o

∑
x≤R

x

 =
∑
x≤R

xH(x) + o(R2).

We apply partial summation formula and (2.7) to deduce that

∑
x≤R

xH(x) =
3

π2
R2 + o(R2)−

∫ R

1

3

π2
tdt−

∫ R

1
f(t)dt

=
3

2π2
R2 + o(R2)−

∫ R

1
f(t)dt.

Where f(t) is a function with f(t) = o(t). To complete the proof, it suffices
to show that

lim
R→∞

1

R2

∫ R

1
f(t)dt = 0. (2.12)

Given ε > 0, there exists a n (depending only on ε) such that
∣∣∣f(R)
R

∣∣∣ < ε if

R ≥ n. ∣∣∣∣ 1

R2

∫ R

1
f(t)dt

∣∣∣∣ ≤ ∣∣∣∣ 1

R2

∫ n

1
f(t)dt

∣∣∣∣+

∣∣∣∣ 1

R2

∫ R

n
f(t)dt

∣∣∣∣
≤ (n− 1)f(n∗)

R2
+

1

R2

∫ R

n
εtdt

=
(n− 1)f(n∗)

R2
+

ε

R2

(
R2

2
− n2

2

)

15



=
(n− 1)f(n∗)

R2
+
ε

2
− n2

2R2

here
f(n∗) = sup

t∈[1,n]
|f(t)|.

By letting R→∞ we find

lim sup
R→∞

∣∣∣∣ 1

R2

∫ R

1
f(t)dt

∣∣∣∣ ≤ ε

2

and since ε is arbitrary, this proves (2.12).

Therefore, we have ∑
x≤R

xH(x) =
3

2π2
R2 + o(R2).

And this completes the proof of∑
x≤R

E(x) ∼ 3

2π2
R2.

2.3 An Important Result of E(x)

In this section we prove that E(x) 6= o(x log log log x) which is a Ω-type
estimation for E(x). First we make some preparations.

Let P (a, b) denote the product of the primes between a and b, i.e.∏
a<p<b

p

and P (a, b) = 1, if we have no prime between a and b. Let x0 be the least
positive solution of the following system of congruences which is clearly

16



solvable:

x ≡ 0 (mod 2),

x+ 1 ≡ 0 (mod P (2, 23)),

x+ 3 ≡ 0 (mod P (23, 23
2
)),

· · · · · ·

x+ 2k − 1 ≡ 0 (mod P (23
k−1

, 23
k
)).

Some observation on these congruences are now in order.

1. x0 is even, from first congruence.

2. x0 > 23
k−1 − (2k − 1), from last congruence.

3. x0 < P (1, 23
k
), by Chinese Remainder theorem.

Now we clearly have 23
k−2

< x0. Taking logarithm of both sides

3k−2 log 2 < log x0

(k − 2) log 3 + log log 2 < log log x0

k log 3− 2 log 3 + log log 2 < log log x0 follows.

After arranging constants, we have

k < H1 log log x0, where H1 > 0. (2.13)

On the other side, we have x0 < P (1, 23
k
), and similarly

x0 <
∏

1<p<23k

p

log x0 <
∑
p≤23k

log p = O
(

23
k
)

log log x0 < O
(

3k
)

log log log x0 < O (k) .

After arranging constant, we have

k > H2 log log log x0 where H2 > 0. (2.14)
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From Theorem 1.6, we have

∏
p≤x

(
1− 1

p

)
∼ e−E

log x
, (2.15)

where E is Euler’s contant, and p runs through primes. It follows that∏
x<p≤x3

(
1− 1

p

)
=

1

3
+ o(1). (2.16)

Hence there is a positive integer f , independent of k, such that∏
x<p≤x3

(
1− 1

p

)
<

1

2
, (2.17)

when x ≥ 23
f
.

Observe that φ(n)
n < 1

2 when n is even, and since x0 is even

φ(x0 + t)

x0 + t
<

1

2
, (2.18)

when t is even. We will get a similar estimate for odd t as well.

When t is any odd number from the set 2f + 1, 2f + 3, · · · , 2k − 1 with
k ≥ f+1. Since x0 is the least positive solution of the congurances, we have

x0 + t = rP (23
s−1
, 23

s
),

for some r positive integer and for s ∈ [f + 1, k], so by (1.2) and (2.17) we
have

φ(xo + t)

x0 + t
=

∏
p|(x0+t)

(
1− 1

p

)
≤

∏
23s−1<p≤23s

(
1− 1

p

)
<

1

2
, (2.19)

since 23
s−1 ≥ 23

f
.

For the remaining values of t from 1, 2, · · · , 2f , we have

φ(x0 + t)

x0 + t
< 1. (2.20)

Theorem 2.8. We have

E(x) 6= o(x log log log x). (2.21)
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Proof.

E(x0 + 2k)− E(x0) =

x0+2k∑
x0+1

φ(n)− 3

π2
(x0 + 2k)2 +

3

π2
(x0)

2

=

x0+2k∑
x0+1

φ(n)− 12

π2
k2 − 12

π2
x0k

= −12

π2
k2 − 12

π2
x0k +

x0+2f∑
n=x0+1

φ(n) +

x0+2k∑
n=x0+2f+1

φ(n).

(2.22)

From (2.18), (2.19), (2.20) and (2.22), we obtain

E(x0 + 2k)− E(x0) < −
12

π2
k2 − 12

π2
x0k +

x0+2f∑
n=x0+1

n+

x0+2k∑
n=x0+2f+1

n

2

= −12

π2
k2 − 12

π2
x0k + f(2x0 + 2f + 1)

+
1

2
(k − f)(2x0 + 2k + 2f + 1)

= x0k

(
1− 12

π2

)
+O(x0) +O(k2)

= x0k

(
1− 12

π2

)
+O(x0) +O(log log2 x0) (2.23)

since f = O(1) and k = O(log log x0).

From (2.14), (2.23) and using
(
1− 12

π2

)
< 0, we have

|E(xo + 2k)− E(x0)| > H2

(
12

π2
− 1

)
x0 log log log x0 +O(x0). (2.24)

Now suppose that E(x) = o(x log log log x). Since k = O(log log x0) from
(2.13),

|E(x0 + 2k)− E(x0)| = o(x0 log log log x0)

which contradicts with equation (2.24), and hence we have

E(x) 6= o(x log log log x).
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3 The First Result on the Sign Changes of the
Error Term in the Average Order of φ(n)

In the study of analyzing the error term E(x), fluctuation of this error
term is the most important part that mathematicians interested in. Related
with this subject, the first question that one can ask whether E(x) < 0 for
some positive x. Sylvester tabulated φ(n),

∑
m≤n φ(m), and (3/π2)n for

n = 1, 2, · · · , 1000 [9]. He conjectured that E(x) > 0 whenever x is a posi-
tive integer [8], [9], but he failed to note that E(820) < 0. In 1936, Sarma
disproved the conjecture and showed that E(820) = −9.092 . . . < 0 [7].

In this section we prove that E(x) changes sign infinitely often. We
have the result E(x) = Ω±(x log log log log x). In other words, there exists a
positive constant c and infinitely many integers x such that

E(x) > cx log log log log x

and infinitely many integers x such that

E(x) < −cx log log log log x.

3.1 Evaluation of Certain Sums

Let us start with a lemma which relates H(x) to E(x).

Lemma 3.1. For integral x,∑
n≤x

H(n) =
3

π2
x+ (x+ 1)H(x)− E(x). (3.1)

Proof. By using (2.8), we get∑
n≤x

H(n) = (x+ 1)
∑
n≤x

φ(n)

n
−
∑
n≤x

φ(n)− 3

π2
(x2 + x)

= (x+ 1)

(
6

π2
x+H(x)

)
−
∑
n≤x

φ(n)− 3

π2
(x2 + x)

=
3

π2
x+ (x+ 1)H(x)− E(x). (3.2)

Lemma 3.2. We have the following estimates.

1. ∑
d≤x

1

d
H
(x
d

)
= O(1). (3.3)
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2. ∑
d≤x

H
(x
d

)
= O(x). (3.4)

3. ∑
d≤x

E
(x
d

)
= O(x). (3.5)

Proof. In the following three proof, we use Theorem 1.11.

1.

x+O(1) =
∑
n≤x

1 =
∑
n≤x

1

n

∑
d|n

φ(d) =
∑
dq≤x

φ(d)

dq

=
∑
q≤x

1

q

∑
d≤x/q

φ(d)

d
=
∑
q≤x

1

q

{
H

(
x

q

)
+

6

π2
x

q

}

=
∑
q≤x

1

q
H

(
x

q

)
+

6

π2
x
∑
q≤x

1

q2

=
∑
q≤x

1

q
H

(
x

q

)
+ x+O(1).

This gives ∑
q≤x

1

q
H

(
x

q

)
= O(1).

2. By using H(x) = O(log x), we have

∑
d≤x

H
(x
d

)
= O

∑
d≤x

log
x

d

 = O

log

∏
d≤x

x

d


= O

(
log

(
xx

[x]!

))
= O(x log x− log[x]!).

Making use of the formula

log [x]! = x log x− x+O(log x), (see [1])

we have ∑
d≤x

H
(x
d

)
= O(x).
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3. Note that

x2

2
+O(x) =

∑
n≤x

n =
∑
n≤x

∑
d|n

φ(d) =
∑
q≤x

∑
d≤x/q

φ(d)

=
∑
q≤x

{
3

π2
x2

q2
+ E

(
x

q

)}
=
∑
q≤x

E

(
x

q

)
+
x2

2
+O(x).

This in turn gives ∑
d≤x

E
(x
d

)
= O(x).

Theorem 3.3. The formula∑
mn≤x

H(n) =
3

π2
x log x+O(x) (3.6)

holds.

Proof. From lemma 3.1, we have∑
n≤x

H(n) =
3

π2
x+ (x+ 1)H(x)− E(x). (3.7)

Replacing x by x/m in (3.7) and summing over all integral m ≤ x we have∑
m≤x

∑
n≤x/m

H(n) =
3

π2

∑
m≤x

x

m
+x

∑
m≤x

1

m
H
( x
m

)
+
∑
m≤x

H
( x
m

)
−
∑
m≤x

E
( x
m

)
.

By using lemma 3.2 and (1.6) we have∑
mn≤x

H(n) =
3

π2
x log x+O(x).

3.2 The Average of H(n) over Arithmetic Progressions

The main idea of the proof is to evaluate certain averages of H(n) over
arithmetic progressions. Let us begin with an important lemma.

Lemma 3.4. We have∑
m≤z

m≡β(modA)

φ(m)

m
=
C

A

∑
d|(A,β)

µ(d)

d
z +O(log z), (3.8)
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where

C = C(A) =
∏
p-A

(
1− 1

p2

)
.

Proof. Let us put m = dq. Then we have∑
m≤z

m≡β(modA)

φ(m)

m
=

∑
m≤z

m≡β(modA)

∑
d|m

µ(d)

d
=

∑
dq≡β(modA)

dq≤z

µ(d)

d

=
∑
d≤z

(d,A)|β

µ(d)

d

∑
q≤z/d

q≡ β
(d,A)

mod
(

A
(d,A)

)
1

=
∑
d≤z

(d,A)|β

µ(d)

d

{
(d,A)

A

z

d
+O(1)

}
.

If we take τ = (d,A), then we have d = tτ for some positive integer t, so
that∑

d≤z
(d,A)|β

µ(d)

d

{
(d,A)

A

z

d
+O(1)

}
=
z

A

∑
τ |(A,β)

τ
∑

(d,A)=τ

µ(d)

d2
+O(log z)

=
z

A

∑
τ |(A,β)

τ
µ(τ)

τ2

∑
(t,A)=1

µ(t)

t2
+O(log z)

follows.

From the formula
∞∑
d=1

µ(d)

d2
=
∏
p

(
1− 1

p2

)
we see that ∑

(t,A)=1

µ(t)

t2
=
∏
p-A

(
1− 1

p2

)
= C.

Finally we have, ∑
m≤z

m≡β(modA)

φ(m)

m
= C

z

A

∑
τ |(A,β)

µ(τ)

τ
+O(log z)

which is the desired result.
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Theorem 3.5. If A, B are integers with A > B ≥ 0, then∑
n≤x

H(An−B) =
1

A

∑
n≤Ax−B

H(n) +4x+O(log x), (3.9)

where

4 = 4(A,B) = M(A,B)− 3

π2

and

M(A,B) =


6
π2B − 1

2
φ(A)C(A)

A − C(A)
∑B−1

c=1
φ(A,c)
(A,c) for B 6= 0

1
2
φ(A)C(A)

A for B = 0.

(3.10)

Proof. It clearly suffices to prove (3.9) for integral x. Thus we may assume
that x an integer. We have

∑
n≤x

H(An−B) =
∑
n≤x

 ∑
m≤An−B

φ(m)

m
− 6

π2
(An−B)


=
∑
n≤x

∑
m≤An−B

φ(m)

m
− 6

π2

∑
n≤x

(An−B)

=
∑

m≤Ax−B

φ(m)

m

∑
m+B
A
≤n≤x

1− 3

π2
(Ax2 +Ax− 2Bx)

=
∑

m≤Ax−B

φ(m)

m

(
x−

[
m+B

A

])
︸ ︷︷ ︸

K

+
∑

m≤Ax−B
m≡−B(modA)

φ(m)

m

︸ ︷︷ ︸
L

− 3

π2
(Ax2 +Ax− 2Bx). (3.11)
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First consider the summation K to get∑
m≤Ax−B

φ(m)

m

(
x−

[
m+B

A

])
= x

∑
m≤Ax−B

φ(m)

m
−

∑
m≤Ax−B

φ(m)

m

[
m+B

A

]
= x

∑
m≤Ax−B

φ(m)

m

−
A−1∑
a=0

∑
m≤Ax−B

m+B≡a(modA)

φ(m)

m

m+B − a
A

=

x ∑
m≤Ax−B

φ(m)

m
− 1

A

∑
m≤Ax−B

φ(m)


−
A−1∑
a=0

B − a
A

∑
m≤Ax−B

m+B≡a(modA)

φ(m)

m
.

Next we add and subtract

B − 1

A

∑
m≤Ax−B

φ(m)

m

and
3

π2
[(Ax−B)2 + (Ax−B)]

to get

K =
1

A

(Ax−B + 1)
∑

m≤Ax−B

φ(m)

m
−

∑
m≤Ax−B

φ(m)− 3

π2
[(Ax−B)2 + (Ax−B)]


+
B − 1

A

∑
m≤Ax−B

φ(m)

m
+

A−1∑
a=0

a−B
A

∑
m≤Ax−B

m+B≡a(modA)

φ(m)

m

+
3

π2
[(Ax−B)2 + (Ax−B)]

A
.

Observe that, as we did in (2.8), the terms in parenthesis are equal to

1

A

∑
m≤Ax−B

H(m).
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Using this the summation K becomes

=
1

A

∑
m≤Ax−B

H(m) +
B − 1

A

∑
m≤Ax−B

φ(m)

m
+

A−1∑
a=0

a−B
A

∑
m≤Ax−B

m+B≡a(modA)

φ(m)

m

+
3

π2
[(Ax−B)2 + (Ax−B)]

A
.

Note that

B − 1

A

∑
m≤Ax−B

φ(m)

m
=
B − 1

A

6

π2
(Ax−B) +O(log x)

and

3

π2
[(Ax−B)2 + (Ax−B)]

A
=

3

π2
Ax2 − 6

π2
Bx+

3

A

B2

π2
+

3

π2
− 3

A

B

π2
.

Taking these into account, the summation K further equals

=
1

A

∑
m≤Ax−B

H(m)+
3

π2
Ax2− 3

π2
x+

A−1∑
a=0

a−B
A

∑
m≤Ax−B

m+B≡a(modA)

φ(m)

m

︸ ︷︷ ︸
K1

+O(log x).

Now we evaluate the sum K1 by using lemma (3.4).

K1 =

A−1∑
a=0

a−B
A

∑
m≤Ax−B

m+B≡a(modA)

φ(m)

m

=
A−1∑
a=0

(a−B)

A

C

A
(Ax−B)

∑
d|(A,a−B)

µ(d)

d
+O(log x)

=
Cx

A

A−1∑
a=0

(a−B)
∑

d|(A,a−B)

µ(d)

d
+O(log x).
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If we let c = a−B, then above equation becomes

=
Cx

A

A−B−1∑
c=−B

c
∑
d|(A,c)

µ(d)

d
+O(log x)

=
Cx

A


A−B−1∑
c=0

c
∑
d|(A,c)

µ(d)

d
+

A−1∑
c=A−B

(c−A)
∑
d|(A,c)

µ(d)

d

+O(log x)

=
Cx

A


A−B−1∑
c=0

c
∑
d|(A,c)

µ(d)

d
+

A−1∑
c=A−B

(c)
∑
d|(A,c)

µ(d)

d
−A

A−1∑
c=A−B

∑
d|(A,c)

µ(d)

d


+O(log x)

=
Cx

A


A−1∑
c=0

c
∑
d|(A,c)

µ(d)

d
−A

A−1∑
c=A−B

∑
d|(A,c)

µ(d)

d

+O(log x)

=
Cx

A


A−1∑
c=0

c
∑
d|A
d|c

µ(d)

d
−A

B∑
c=1

∑
d|(A,c)

µ(d)

d

+O(log x)

=
Cx

A


∑
d|A

µ(d)

d

∑
1≤c≤A−1
c≡0(mod d)

c−A
B∑
c=1

φ(A, c)

(A, c)

+O(log x)

=
Cx

A

1

2

∑
d|A

µ(d)
∑

1≤c/d≤(A−1)/d

c

d
−A

B∑
c=1

φ(A, c)

(A, c)

+O(log x)

=
Cx

A

1

2

∑
d|A

µ(d)

{(
A

d

)2

−
(
A

d

)}
−A

B∑
c=1

φ(A, c)

(A, c)

+O(log x)

=
Cx

A

1

2
A2
∑
d|A

µ(d)

d2
− 1

2
φ(A)−A

B∑
c=1

φ(A, c)

(A, c)

+O(log x)

= x

CA2 ∑
d|A

µ(d)

d2
− 1

2

φ(A)C

A
− C

B∑
c=1

φ(A, c)

(A, c)

+O(log x). (3.12)

We remark
B∑
c=1

φ(A, c)

(A, c)
= 0 when B = 0.

27



Thus, summation K becomes

=
1

A

∑
m≤Ax−B

H(m) +
3

π2
Ax2 − 3

π2
x

+ x

CA2 ∑
d|A

µ(d)

d2
− 1

2

φ(A)C

A
− C

B∑
c=1

φ(A, c)

(A, c)

+O(log x).

Next consider summation L, which is∑
m≤Ax−B

m≡−B(modA)

φ(m)

m
.

Using Lemma 3.4, we get

L =
∑

m≤Ax−B
m≡−B(modA)

φ(m)

m
=
C

A

∑
d|(A,−B)

µ(d)

d
(Ax−B) +O(log x)

= Cx
∑

d|(A,B)

µ(d)

d
− CB

A

∑
d|(A,−B)

µ(d)

d
+O(log x)

= Cx
φ(A,B)

(A,B)
+O(log x).

Going back to our main equation (3.11) and inserting summation K and
summation L, we obtain∑
m≤x

H(An−B) =
1

A

∑
m≤Ax−B

H(m) +
3

π2
Ax2 − 3

π2
x+ Cx

φ(A,B)

(A,B)

+ x

CA2 ∑
d|A

µ(d)

d2
− 1

2

φ(A)C

A
− C

B∑
c=1

φ(A, c)

(A, c)

+O(log x).

Recall that

C =
∏
p-A

(
1− 1

p2

)
.

Therefore

C
∑
d|A

µ(d)

d2
=

6

π2
follows.
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In this way, one obtains∑
m≤x

H(An−B) =
1

A

∑
m≤Ax−B

H(m) +
3

π2
Ax2 − 3

π2
x+

3

π2
Ax− x

2

φ(A)C

A

− Cx
B∑
c=1

φ(A, c)

(A, c)
+ Cx

φ(A,B)

(A,B)
− 3

π2
[Ax2 +Ax− 2Bx]

+O(log x)

=
1

A

∑
m≤Ax−B

H(m) +
6

π2
Bx− x

2

φ(A)C

A
− Cx

B∑
c=1

φ(A, c)

(A, c)

− 3

π2
x+O(log x)

=
1

A

∑
m≤Ax−B

H(m) +4x+O(log x) (3.13)

which finally gives desired the result.

Theorem 3.6. For any integers A and B with A > B ≥ 0∑
mn≤x

H(An−B) = M(A,B)x log x+O(x). (3.14)

Proof. From the previous theorem, since H(x) = O(log x) we have∑
m≤x

H(An−B) =
1

A

∑
m≤Ax

H(m)− 1

A

∑
Ax−B<m≤Ax

H(m) +4x+O(log x)

=
1

A

∑
m≤Ax

H(m) +4x+O(log x).

If we replace x by x/m in preceding equation, we obtain∑
n≤x/m

H(An−B) =
1

A

∑
n≤Ax

m

H(n) +4 x

m
+O(log

x

m
).
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Summing the above sum over all integers m ≤ x, we have∑
mn≤x

H(An−B) =
1

A

∑
m≤x

∑
n≤Ax

m

H(n) +4
∑
m≤x

x

m
+O(

∑
m≤x

log
x

m
)

=
1

A

∑
m≤Ax

∑
n≤Ax

m

H(n)− 1

A

∑
x<m≤Ax

∑
n≤Ax

m

H(n)

+4x log x+O(x).

Since ∑
x<m≤Ax

∑
n≤Ax

m

H(n) =
A−1∑
a=1

∑
n≤A−a

H(n) = O(1),

we have ∑
mn≤x

H(An−B) =
1

A

∑
mn≤Ax

H(n) +4x log x+O(x).

Using Theorem 3.3, we have∑
mn≤x

H(An−B) =
1

A

3

π2
Ax logAx+4x log x+O(x)

=
3

π2
x log x+4x log x+O(x)

= M(A,B)x log x+O(x).

If we combine Theorem 3.6 with the result∑
n≤x

H(n) ∼ 3

π2
x,

which we proved in section 2, we get a new result.

Theorem 3.7. For A, B any integers, A > B ≥ 0,∑
n≤x

H(An−B) ∼M(A,B)x. (3.15)

Proof. From theorem (3.5), we have∑
n≤x

H(An−B) =
1

A

∑
n≤Ax

H(n) +4x+O(log x).
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If we put ∑
n≤x

H(n) ∼ 3

π2
x

into equation we get ∑
n≤x

H(An−B) ∼ 3

π2
x+4x

= M(A,B)x.

3.3 Sign Changes of H(x)

We first note that A = Aκ =
∏κ
i=1 pi, where pi denote the ith prime number

and κ is sufficiently large.

Theorem 3.8. For B 6= 0, and fixed, we have

lim
κ→∞

lim
x→∞

1

x log x

∑
mn≤x

H(Aκn−B) =
6

π2
−H(B − 1). (3.16)

Proof. First observe that from Theorem 3.6, we have

1

x log x

∑
mn≤x

H(Aκn−B) = M(Aκ, B) +O

(
1

log x

)

=
6

π2
B − 1

2

φ(Aκ)C(Aκ)

Aκ
− C(Aκ)

B−1∑
c=1

φ(Aκ, c)

(Aκ, c)

+O

(
1

log x

)
.

Now letting κ→∞ gives, C(Aκ) = 1, 1
2
φ(Aκ)C(Aκ)

Aκ
= 0 and (Aκ, c) = c, so

B−1∑
c=1

φ(Aκ, c)

(Aκ, c)
=

B−1∑
c=1

φ(c)

c
=

6

π2
(B − 1) +H(B − 1).

And after letting x→∞, we get

lim
κ→∞

lim
x→∞

1

x log x

∑
mn≤x

H(Aκn−B) =
6

π2
−H(B − 1).
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From Theorem 3.3 it follows that H(n) is positive for infinitely many
n. In the next theorem, we show that one cannot have H(n) ≥ 0 for all
sufficiently large n.

Theorem 3.9. H(n) < 0 for some sufficiently large n.

Proof. Assume for a contradiction that H(n) ≥ 0 for all sufficiently large n.
Then by using Theorem 3.8, for all sufficiently large B we have

lim
κ→∞

lim
x→∞

1

x log x

∑
mn≤x

H(Aκn−B) =
6

π2
−H(B − 1) ≥ 0.

By definition of H(n), we write

H(B)−H(B − 1) =
φ(B)

B
− 6

π2
.

This gives
6

π2
−H(B − 1) =

φ(B)

B
−H(B).

Therefore
φ(B)

B
≥ H(B) ≥ 0.

Choosing ε > 0 and a large odd number B such that φ(B)
B < ε, we see that

H(B + 1) = H(B)− 6

π2
+
φ(B + 1)

B + 1
≤ ε− 6

π2
+

1

2
< 0

which gives the required contradiction.

In the previous section we proved that H(x) 6= o(log log log x). Thus
there exist infinitely many integers x such that

|H(x)| > c log log log x for some c > 0. (3.17)

Note that using (3.17), we see that given any large number N ≥ 6, one can
find integer B such that |H(B)| > N . This brings us to an important result.

Theorem 3.10. For integral x, we have

lim sup
x→∞

H(x) =∞ and lim inf
x→∞

H(x) = −∞. (3.18)

Proof. From implication of (3.17) we have two cases, either H(B) > N or
H(B) < −N .

Case 1: H(B) > N .
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From (3.16), we have

lim
κ→∞

lim
x→∞

1

x log x

∑
mn≤x

H(Aκn−B) =
φ(B)

B
−H(B) < −N + 1.

Therefore, for all sufficiently large κ, say κ ≥ κ0, we have

lim
x→∞

1

x log x

∑
mn≤x

H(Aκn−B) < −N + 2.

Then for each κ, there exists an x0 = x0(κ) such that for all x ≥ x0∑
mn≤x

H(Aκn−B) < (−N + 3)x log x. (3.19)

We conclude from (3.19) that for each κ ≥ κ0, we have an n∗ = n∗(κ) such
that

H(Aκn
∗ −B) < −N + 3 ≤ −1

2
N.

Since otherwise we would get a contradiction from∑
mn≤x

1 =
∑
m≤x

∑
n≤x/m

1 ∼
∑
m≤x

x

m
∼ x log x.

Case 2: H(B) < −N .

We have

lim
κ→∞

lim
x→∞

1

x log x

∑
mn≤x

H(Aκn−B) =
φ(B)

B
−H(B) > N

Therefore, for all sufficiently large κ, say κ ≥ κ0, we have

lim
x→∞

1

x log x

∑
mn≤x

H(Aκn−B) > N − 1.

Then for each κ there exists an x0 = x0(κ) such that for all x ≥ x0∑
mn≤x

H(Aκn−B) > (N − 3)x log x. (3.20)

We conclude from (3.20) that for each κ ≥ κ0, we have an n∗ = n∗(κ) such
that

H(Aκn
∗ −B) > N − 3 ≥ 1

2
N.
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Theorem 3.11. For integral x, we have

lim sup
x→∞

E(x)

x
=∞ and lim inf

x→∞

E(x)

x
= −∞. (3.21)

Proof. From Theorem (2.6), we have

E(x)

x
= H(x) +O(1).

Hence, (3.21) follows immediately from the previous theorem.

3.4 More Precise Results

In this section, we prove our main theorem

Theorem 3.12. For c > 0, there exist infinitely many x such that

H(x) > c log log log log x (3.22)

and infinitely many x such that

H(x) < −c log log log log x. (3.23)

Proof. Recall that from Lemma 3.4, we have∑
m≤z

m≡β(modA)

φ(m)

m
=
C

A

∑
d|(A,β)

µ(d)

d
z +O(log z).

To analyze the error term more carefully in the proof of Lemma 3.4, let
τ = (d,A) and d = kτ , so that

O

 ∑
d≤z

(d,A)|β

|µ(d)|
d

 = O

 ∑
d≤z

τ |β τ |A

µ2(d)

d


= O

 ∑
τ |β τ |A

µ2(τ)

τ

∑
k≤z/τ

µ2(k)

k


= O

 ∑
τ |(A,β)

µ2(τ) log
z

τ

 .
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Using above result, we have from Lemma 3.4 that

∑
m≤z

m≡β(modA)

φ(m)

m
=
C

A

∑
d|(A,β)

µ(d)

d
z +O

 ∑
τ |(A,β)

µ2(τ) log
z

τ

 . (3.24)

Using (3.24) instead of (3.8) in the proof of Theorem 3.5, we obtain for
integral x,

∑
m≤Ax−B

m≡−β(modA)

φ(m)

m
=
C

A

∑
d|(A,β)

µ(d)

d
(Ax−B) +O

 ∑
τ |(A,β)

µ2(τ) log
Ax−B

τ



=
C

A

∑
d|(A,β)

µ(d)

d
(Ax−B) +O

 ∑
τ |(A,β)

µ2(τ) logAx


=
C

A

∑
d|(A,β)

µ(d)

d
(Ax−B) +O(2v(A) logAx).

This gives∑
n≤x

H(An−B) =
1

A

∑
n≤Ax

H(n) +4x+O(2v(A) logAx). (3.25)

Combining (3.25) with ∑
n≤x

H(n) ∼ 3

π2
x,

we get
1

A

∑
n≤Ax

H(n) +4x ∼ 3

π2
x+4x = M(A,B)x.

Using this in (3.25), we get∑
n≤x

H(An−B) = M(A,B)x+O(2v(A) logAx) + o(x) (3.26)

where both the O and o are uniform in A. Now, let us take

x = A =
∏
p≤B

p.

Then

C(A) =
∏
p>B

(
1− 1

p2

)
.
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Here C(A) depends on B, and we know that 6
π2 ≤ C(A) ≤ 1. Therefore, we

can find constants c1 > 0 and c2 > 0 such that 1− c1
B < C(A) < 1− c2

B .

In this way, (3.26) becomes

1

A

∑
n≤x

H(An−B) = M(A,B) +O

(
2v(A)+1 logA

A

)
+ o(1)

= M(A,B) +O(1)

=
6

π2
B − 1

2

φ(A)

A
C(A)− C(A)

B−1∑
c=1

φ(A, c)

(A, c)
+O(1).

Here we have

B−1∑
c=1

φ(A, c)

(A, c)
=

6

π2
B − 6

π2
+H(B − 1) =

6

π2
B +H(B)− φ(B)

B
.

This gives

1

A

∑
n≤x

H(An−B)− 6

π2
B +

1

2

φ(A)

A
C(A) + C(A)

6

π2
B + C(A)H(B)

−C(A)
φ(B)

B
= O(1).

(3.27)

Since we have 1− c1
B < C(A) < 1− c2

B , for some c1, c2 positive

1

A

∑
n≤x

H(An−B)− 6

π2
B +

1

2

φ(A)

A
C(A) + C(A)

6

π2
B + C(A)H(B)

−C(A)
φ(B)

B
≥

1

A

∑
n≤x

H(An−B)− 6

π2
B +

(
1− c1

B

) 6

π2
B +

(
1− c2

B

)(
H(B)− φ(B)

B

)

follows. From (3.27), we have

1

A

∑
n≤x

H(An−B)− 6c1
π2

+H(B)− φ(B)

B
− c2H(B)

B

+
c2φ(B)

B2
= O(1). (3.28)

To simplify (3.28), note that 6c1
π2 = O(1), φ(B)

B ≤ 1 , c2H(B)
B = O(1) and
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c2φ(B)
B2 < 1. Consequently,

1

A

∑
n≤x

H(An−B) +H(B) = O(1) holds. (3.29)

This means there exist l independent of A,B such that∣∣∣∣∣∣ 1

A

∑
n≤x

H(An−B) +H(B)

∣∣∣∣∣∣ ≤ l (3.30)

for sufficiently large B.

We know that for infinitely many B

|H(B)| > c log log logB holds.

There are two cases:

Case 1: H(B) > c log log logB.

First observe that, since we take

A =
∏
p≤B

p,

for large B, we have

logA =
∑
p≤B

log p ∼ B.

(3.30) implies that there exist n∗ ≤ A, such that

H(An∗ −B) ≤ l − c log log logB

≤ −1

2
c log log logB

≤ −c1 log log log log(An∗ −B).

Case 2: H(B) < −c log log logB.

Again (3.30) implies that there exist an n∗ ≤ A such that

H(An∗ −B) ≥ c log log logB − l

≥ 1

2
c log log logB

≥ c1 log log log log(An∗ −B).
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Which concludes the proof.

Theorem 3.13. For c > 0, there exist infinitely many x such that

E(x) > cx log log log log x

and infinitely many x such that

E(x) < −cx log log log log x.

Proof. From theorem 2.6 we have

E(x)

x
= H(x) +O(1).

Thus, combining this with theorem 3.12, we have the desired result.
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4 Improved Result of Sign Changes of Error Term
in Mean of φ(n)

In this secton we show that E(x) = Ω±(x
√

log log x), which is a further
improvement result of the previous section. In other words, there exist a
positive constant c and infinitely many integers x such that

E(x) > cx
√

log log x

and infinitely many integer x such that

E(x) < −cx
√

log log x.

Here we introduce a new approach to the problem such as complex in-
tegration with employing Perron’s formula. Now let us begin with some
preliminaries.

4.1 Basic lemmas

First we define s(x) to be the ’saw tooth’ function. Which is, s(x) has period
1, s(0) = 0, and s(x) = 1

2 − {x} for 0 < {x} < 1.

Lemma 4.1. We have

H(x) =
1

2

φ(x)

x
+
∑
d≤y

µ(d)
s(x/d)

d
+O

(
e−c1

√
log x

)
(4.1)

uniformly for x ≥ 2, y ≥ xe−c1
√
log x.

Here we set φ(x) = 0, if x is not an integer. The constants ci are positive
and absolute.

Proof. Observe that we have three cases for y; namely y = x, y > x and
xe−c1

√
log x ≤ y < x. First consider the case y = x. We recall that

φ(n)

n
=
∑
d|n

µ(d)

d
.

It follows that ∑
n≤x

φ(n)

n
=
∑
n≤x

∑
d|n

µ(d)

d

=
∑
d≤x

µ(d)

d

∑
q≤x/d

1
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= x
∑
d≤x

µ(d)

d2
−
∑
d≤x

µ(d)

d

{x
d

}
=

6

π2
x− x

∑
d≥x

µ(d)

d2
−
∑
d≤x

µ(d)

d

{x
d

}
.

This gives

H(x) = −x
∑
d≥x

µ(d)

d2
−
∑
d≤x

µ(d)

d

{x
d

}
. (4.2)

Here we put

L(x) =
∑
d≤x

µ(d)

d
.

From the PNT with De la Vallée Poussin error term, we know that L(x)�
e−c0

√
log x for x ≥ 2. Hence, by using partial summation in (4.2)∑

d≥x

µ(d)

d2

becomes∑
d≥x

µ(d)

d2
=
∑
x≤d<y

µ(d)

d

1

d
=
L(y)

y
− L(x)

x
+

∫ y

x

L(t)

t2
dt

� e−c0
√
log y

y
− e−c0

√
log x

x
+

∫ y

x

e−c0
√
log t

t2
dt.

Letting y →∞, we have ∑
d≥x

µ(d)

d2
� 1

x
e−c0

√
log x.

Using this, and adding L(x)/2 to (4.2) we see that

H(x) =
∑
d≤x

µ(d)

d

(
1

2
−
{x
d

})
+O(e−c0

√
log x). (4.3)

In the case when x is not an integer, we have s(x) = 1/2−{x} and φ(x) = 0
so that

H(x) =
1

2

φ(x)

x
+
∑
d≤y

µ(d)
s(x/d)

d
+O

(
e−c1

√
log x

)
by setting c1 = c0. On the other hand, if x is an integer, we have s(x/d) = 0
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while d|x. If we calculate the sum in this case we get

1

2

∑
d≤x

µ(d)

d
=

1

2

φ(x)

x
.

Putting this into (4.3), we see that

H(x) =
1

2

φ(x)

x
+
∑
d≤y

µ(d)
s(x/d)

d
+O

(
e−c1

√
log x

)
again by setting c1 = c0.

When y > x, using the case y = x it suffices to show that∑
x<d≤y

µ(d)
s(x/d)

d
= O(e−c0

√
log x).

Applying partial summation, we get∑
x<d≤y

µ(d)
s(x/d)

d
=

(
1

2
− x

y

)
L(y)− 1

2
L(x)− x

∫ y

x

L(t)

t2
dt.

Since y > x, L(y) < L(x)� e−c0
√
log x so that∑

x<d≤y
µ(d)

s(x/d)

d
� e−c0

√
log x follows

by taking c0 = c1 when y > x.

When xe−c1
√
log x ≤ y ≤ x, again it suffices to show that∑

y<d≤x
µ(d)

s(x/d)

d
� e−c1

√
log x.

Suppose k is a positive integer such that 1 ≤ k ≤ x
y . Since s(x/d) is

monotonic for x
k+1 < d < x

k , we have

∑
x
k+1

<d<x
k

µ(d)
s(x/d)

d
=

1

2
L
(x
k

)
− 1

2
L

(
x

k + 1

)
+ x

∫ x/k

x/(k+1)

L(t)

t2
dt

� e−c0
√

log x
k+1

� e−
1
2
c0
√

log x
k .
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Summing over both sides by 1 ≤ k ≤ x
y , we find that

∑
1≤k≤x/y

∑
x
k+1

<d<x
k

µ(d)
s(x/d)

d
=
∑
y<d≤x

µ(d)
s(x/d)

d

�
∑

1≤k≤x/y

e−
1
2
c0
√

log x
k

�
(
x

y
− 1

)
e−

1
2
c0
√
log y

� x

y
e−

1
2
c0
√
log y

� e−
1
2
c0
√

log xe−c1
√
log x

e−c1
√
log x

� e−
1
2
c0
√

log x−c1
√
log x

e−c1
√
log x

� e−
1
2
c0
√
log x+c1

√
log x.

Taking 4c1 = c0 the above expression becomes∑
y<d≤x

µ(d)
s(x/d)

d
� e−2c1

√
log x+c1

√
log x = e−c1

√
log x.

This completes the proof.

Lemma 4.2. Let b and r > 0 be relatively prime integers, and let β be a
real number. Then

r∑
n=1

s(bn/r + β) = s(rβ). (4.4)

Proof. First observe that from definition of s(x) both sides are periodic with
period 1

r , so we may assume that 0 ≤ β < 1
r . The numbers bn run through

a complete residue system (mod r), so we may assume that b = 1. Then we
have two cases; β = 0 or 0 < β < 1/r.

If β = 0 then left hand side is

r∑
n=1

s(bn/r + β) =
r−1∑
n=1

s(n/r) =
r−1∑
n=1

(
1

2
− n

r
)

=
1

2

r−1∑
n=1

1− 1

r

r−1∑
n=1

n

=
r − 1

2
− 1

r
r(r − 1)/2 = 0
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which gives s(rβ) = 0.

If 0 < β < 1, then sum is

r∑
n=1

s(n/r + β) =
r−1∑
n=0

s(n/r + β)

=
r−1∑
n=0

(
1

2
− n/r − β)

=
1

2
− β +

r−1∑
n=1

(
1

2
− n

r
− β)

=
1

2
− β +

r − 1

2
− 1

2r
r(r − 1)− β(r − 1)

=
1

2
− rβ = s(rβ).

Now in next lemma we extend the sum in (4.4) over an arbitrary interval
1 ≤ n ≤ N .

Lemma 4.3. Let b and r > 0 be relatively prime integers, and let β be a
real number. Then for any positive N ,

N∑
n=1

s(nb/r + β) =
N

r
s(rβ) +O(r). (4.5)

Proof. Let N = Qr +R, 0 ≤ R < r. By Lemma 4.2

N∑
n=1

s(nb/r + β) =

Qr∑
n=1

s(nb/r + β) +
R∑
n=1

s(nb/r + β)

= Qs(rβ) +
R∑
n=1

s(nb/r + β)

=
N

r
s(rβ) +O(1) +O(R)

=
N

r
s(rβ) +O(r).

Lemma 4.4. If q is a positive integer, q ≤ ec2
√
logN , α is a non-integral
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real number, 0 < α < q, then

N∑
n=1

H(nq + α) = C(q, α)N +O(Ne−c2
√
logN ). (4.6)

Where

C(q, α) =
6

π2

∏
p|q

(1− p−2)

−1∑
d|q

µ(d)
s(α/d)

d
. (4.7)

Proof. We apply Lemma 4.1 by taking y = (N + 1)qe−c1
√
logN . Put x =

nq + α, where n is an integer and n ≤ N . Since nq + α is non-integral we
have φ(nq + α) = 0, so that

H(nq + α) =
∑
d≤y

µ(d)
s((nq + α)/d)

d
+O(e−c1

√
log(nq+α)). (4.8)

If we sum over both sides of (4.8) up to N , we get

N∑
n=1

H(nq + α) =
N∑
n=1

∑
d≤y

µ(d)
(s(nq + α)/d)

d
+O

(
N∑
n=1

e−c1
√

log(nq+α)

)
.

(4.9)
In (4.9), the error term is estimated to be

N∑
n=1

e−c1
√

log(nq+α) �
∑

n≤N1/4

e−c1
√
lognq +

∑
N1/4<n≤N

e−c1
√
lognq

� N1/4 + (N −N1/4)e
−c1
2

√
logN .

Here observe that N1/4 < Ne
−c1
2

√
logN . Taking c2 = c1

2 we see that the error
term is

� Ne−c2
√
logN . (4.10)

Now, we apply Lemma 4.3 to the double sum in (4.9) by taking r = d
(d,q)

and β = α
d . In this way, one obtains

∑
d≤y

µ(d)

d

N∑
n=1

s

(
nq + α

d

)
=
∑
d≤y

µ(d)

d

(
N

d
(d, q)s

(
α

(d, q)

)
+O(d)

)

= N
∑
d≤y

µ(d)
(d, q)

d2
s

(
α

(d, q)

)
+O

∑
d≤y

1

 .

(4.11)
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Here error term is∑
d≤y

1� (N + 1)qe−c1
√
logN = Nqe−c1

√
logN + qe−c1

√
logN

� Nqe−c1
√
logN

� Nec2−c1
√
logN .

Again taking c2 = c1
2 , we see that

O

∑
d≤y

1

� Ne−c2
√
logN . (4.12)

To estimate the main term in (4.11), we take d square free, since otherwise
µ(d) = 0. Let us write d = ef with e|q, (f, q) = 1. Clearly, e = (d, q). Thus
the main term in equation (4.11) becomes

N
∑
d≤y

µ(d)
(d, q)

d2
s

(
α

(d, q)

)
= N

∑
ef≤y

(f,q)=1

µ(ef)

e2f2
es
(α
e

)

= N
∑
e≤y

µ(e)

e
s
(α
e

) ∑
f≤y/e
(f,q)=1

µ(f)

f2
.

(4.13)

Here observe that∑
f≤y/e
(f,q)=1

µ(f)

f2
=

∞∑
f=1

(f,q)=1

µ(f)

f2
−
∑
f>y/e
(f,q)=1

µ(f)

f2

=
6

π2

∏
p|q

(1− p−2)

−1 +O

 ∑
f>y/e

1

f2


=

6

π2

∏
p|q

(1− p−2)

−1 +O(e/y).

Therefore, equation (4.13) becomes

= N
6

π2

∏
p|q

(1− p−2)

−1∑
e|q

µ(e)

e
s
(α
e

)
+O

N∑
e|q

1

y

 . (4.14)
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The proof will be complete, if we can show thatO
(
N
∑

e|q
1
y

)
� Ne−c2

√
logN .

Since e is square free,

N

y

∑
e|q

1 =
N

y
2w(q) � 2w(q)

q
ec1
√
logN

� ec1
√
logN

� Ne−c1/2
√
logN = Ne−c2

√
logN follows.

Finally combining (4.9),(4.10),(4.12) and (4.14), we have

N∑
n=1

H(nq + α) = C(q, α)N +O(Ne−c2
√
logN ) as desired.

4.2 Sign Changes in the Mean of φ(n)

Before proving our main theorems we recall the following result which is a
consequence of the Mellin transform.

Let α(s) =
∑∞

n=1
an
ns be Dirichlet series of an with σ0 > max(0, σc) where

σc is abscissa of convergence, and for a positive integer k put

Ck(x) =
1

k!

∑
n≤x

an(x− n)k.

Then we have

Ck(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)

xs+k

s(s+ 1) · · · (s+ k)
(4.15)

for x > 0. We refer the proof of this formula to [2].

Theorem 4.5. For x ≥ 2

H(x) =
E(x)

x
+O(e−c

√
log x). (4.16)

Where c is a positive absolute constant.

Proof. From Theorem 2.1 and 2.2, we have

H(x) =
∑
n≤x

φ(n)

n
− 6

π2
x
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and
E(x)

x
=
∑
n≤x

φ(n)

x
− 3

π2
x.

By using these∑
n≤x

(
1− n

x

) φ(n)

n
=
∑
n≤x

φ(n)

n
−
∑
n≤x

φ(n)

x
= H(x) +

3

π2
x− E(x)

x
. (4.17)

It suffices to show that∑
n≤x

(
1− n

x

) φ(n)

n
=

3

π2
x+O(e−c

√
log x).

First recall that ∑
n≤x

φ(n)

ns+1
=

ζ(s)

ζ(s+ 1)
for σ > 1.

By (4.15), we have

∑
n≤x

(
1− n

x

) φ(n)

n
=

1

x

∑
n≤x

(x− n)
φ(n)

n
=

1

2πi

∫ a+i∞

a−i∞

ζ(s)xs

ζ(s+ 1)s(s+ 1)

(4.18)
for a > 1.

Let ℘ denote the contour σ = −c
log τ , −∞ < t < +∞, where τ = |t| + 4.

On this contour we have 1
ζ(s+1) � log τ and ζ(s)� τ1/2 log τ .

Before estimating the integral we need some preparation. While the path is
γ(t) = − c

log(t+4) + it, and we have s(s+ 1) in the integral, it follows that

(− c

log(t+ 4)
+ it)(1− c

log(t+ 4)
+ it) = − c

log(t+ 4)
+ it+

c2

log2(t+ 4)

−i ct

log(t+ 4)
− i ct

log(t+ 4)
− t2.

This gives
1

s(s+ 1)
� 1

(t+ 4)2
.
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First we estimate the integral on γ(t) = − c
log(t+4) + it where 0 ≤ t <∞.

∣∣∣∣∫
γ

∣∣∣∣ =

∣∣∣∣∣
∫ T

0

ζ(γ(t))xγ(t)

ζ(1 + γ(t))γ(t)(γ(t) + 1)
γ′(t)dt

∣∣∣∣∣
�
∫ T

0

|ζ(γ(t))|
∣∣xγ(t)∣∣

|ζ(1 + γ(t))||γ(t)||(γ(t) + 1)|
|γ′(t)|dt

�
∫ T

0

|ζ(γ(t))|
∣∣xγ(t)∣∣

|ζ(1 + γ(t))|(t+ 4)2
|γ′(t)|dt.

On γ(t) we have 1
ζ(s+1) � log τ and ζ(s)� τ1/2 log τ . Therefore,∣∣∣∣∫

℘

∣∣∣∣� ∫ T

0

τ1/2 log2 τ
∣∣xγ(t)∣∣

(t+ 4)2
|γ′(t)|dt

=

∫ T

0

(t+ 4)1/2 log2(t+ 4)
∣∣xγ(t)∣∣

(t+ 4)2
|γ′(t)|dt

�
∫ T

0

log(t+ 4)e
−c log x

log(t+4)

(t+ 4)3/2
dt

=

∫ e
√

log x

0

log(t+ 4)e
−c log x

log(t+4)

(t+ 4)3/2
dt+

∫ T

e
√
log x

log(t+ 4)e
−c log x

log(t+4)

(t+ 4)3/2
dt

� e−c
√
log x

∫ e
√
log x

0

1

(t+ 4)5/4
dt+ e

−c log x
log T

∫ T

e
√
log x

1

(t+ 4)5/4

� e−c
√
log x + e

−c log x
log(T+4)

(
− 4

(T + 4)1/4
+

4

(e
√
log x + 4)1/4

)
follows.

By letting T →∞ we obtain∫
γ
� e−c

√
log x when 0 ≤ t <∞. (4.19)

Second, to estimate the integral on γ(t) = − c
log(t+4) +it, where −∞ < t ≤ 0,

note that ∣∣∣∣∫
γ

∣∣∣∣ =

∣∣∣∣∣
∫ 0

−T

ζ(γ(t))xγ(t)

ζ(1 + γ(t))γ(t)(γ(t) + 1)
γ′(t)dt

∣∣∣∣∣
�
∫ 0

−T

|ζ(γ(t))|
∣∣xγ(t)∣∣

|ζ(1 + γ(t))||γ(t)||(γ(t) + 1)|
|γ′(t)|dt

�
∫ 0

−T

|ζ(γ(t))|
∣∣xγ(t)∣∣

|ζ(1 + γ(t))|(|t|+ 4)2
|γ′(t)|dt.
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On γ(t) we have 1
ζ(s+1) � log τ and ζ(s)� τ1/2 log τ . Therefore∣∣∣∣∫

℘

∣∣∣∣� ∫ 0

−T

τ1/2 log2 τ
∣∣xγ(t)∣∣

(|t|+ 4)2
|γ′(t)|dt

=

∫ 0

−T

(|t|+ 4)1/2 log2(|t|+ 4)
∣∣xγ(t)∣∣

(|t|+ 4)2
|γ′(t)|dt

�
∫ 0

−T

log(|t|+ 4)e
−c log x

log(|t|+4)

(|t|+ 4)3/2
dt

=

∫ 0

−e
√
log x

log(|t|+ 4)e
−c log x

log(|t|+4)

(|t|+ 4)3/2
dt+

∫ −e√log x

−T

log(|t|+ 4)e
−c log x

log(|t|+4)

(|t|+ 4)3/2
dt

� e−c
√
log x

∫ 0

−e
√
log x

1

(|t|+ 4)5/4
dt+ e

−c log x
log T

∫ −e√log x

−T

1

(|t|+ 4)5/4

� e−c
√
log x + e

−c log x
log(T+4)

(
− 4

(e
√
log x + 4)1/4

+
4

(T + 4)1/4

)
follows.

Again, by letting T →∞, we obtain∫
γ
� e−c

√
log x when −∞ < t ≤ 0. (4.20)

Now after these estimations we evaluate the residue. Observe that in the
region between ℘ and the orginal line of integration, we have the only pole
at s = 1. From the contour ℘, ζ(s + 1) has no critical zero since ℘ in the
zero free region for ζ(s+ 1). And also we take in account the pole s = 0 for
ζ(s+ 1), but note that 1

ζ(s+1)s has a removable singularity at s = 0. Hence
we need to consider only the simple pole at s = 1. So residue calculation
gives

2πi lim
s→1

(s− 1)
ζ(s)xs

ζ(s+ 1)s(s+ 1)
= 2πi

3

π2
x. (4.21)

Thus from (4.19),(4.20),(4.21), our integral is

1

2πi

∫ a+i∞

a−i∞

ζ(s)xs

ζ(s+ 1)s(s+ 1)
=

3

π2
x+O(e−c

√
log x).

This gives

H(x) =
E(x)

x
+O(e−c

√
log x).

This result brings us to our main theorem.

49



Theorem 4.6. We have

E(x) = Ω±(x
√

log log x). (4.22)

Proof. From Theorem 4.5, it suffices to show that H(x) = Ω±(
√

log log x).

Now we apply lemma 4.4 with choice

q =
∏
p≤z

p≡3(mod4)

p,

where we choose z ≈
√

logN and ω(q) is even, so that q ≡ 1(mod4) and
q ≤ ec2

√
logN .

Observe that if d|q, then q
d ≡ 1(mod4) or q

d ≡ 3(mod4) when ω(d) is even or
odd. If ω(d) is even then q

d ≡ 1(mod4) and if ω(d) is odd then q
d ≡ 3(mod4).

By using this we show that

µ(d)s
( q

4d

)
=

1

4
for all d|q.

In the case ω(d) is even, we have µ(d) = 1 and q
d ≡ 1(mod4) which give

µ(d)s
( q
4d

)
= 1

(
1
2 −

1
4

)
= 1

4 . And on the other side, if ω(d) is odd, then we
have µ(d) = −1 and q

d ≡ 3(mod4) which gives

µ(d)s
( q

4d

)
= (−1)

(
1

2
− 3

4

)
=

1

4
.

Now we choose α in Lemma 4.4 for proving the claims H(x) is positive for
infinitely many x and H(x) is negative for infinitely many x. In the first
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case we choose α = q
4 , so that

C(q, q/4) =
6

π2

∏
p|q

(1− p−2)

−1∑
d|q

µ(d)
s(q/4d)

d

=
6

π2

∏
p|q

(1− p−2)

−1∑
d|q

1

4d

≈
∑
d|q

1

d

=
∏
p≤z

p≡3(mod4)

(
1 +

1

p

)
.

Taking logarithm of both sides, we get

log(C(q, q/4)) ≈
∑
p≤z

p≡3(mod4)

log

(
1 +

1

p

)

=
∑
p≤z

p≡3(mod4)

∞∑
n=1

(−1)n+1

pnn

=
∑
p≤z

p≡3(mod4)

1

p
+

∑
p≤z

p≡3(mod4)

∞∑
n=2

(−1)n+1

pnn
.

By Mertens estimation, we have∑
p≤z

p≡k(modq)

1

p
=

1

φ(q)
log log z +O(1). (see [2])

Here p is prime and (k, q) = 1. This gives∑
p≤z

p≡3(mod4)

1

p
=

1

2
log log z +O(1).
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And, note that

∞∑
n=2

(−1)n+1

pnn
≤
∞∑
n=2

1

pnn

≤ 1

2p2

∞∑
n=0

1

pn

=
1

2(p2 − p)
≤ 1

p2
.

This gives ∑
p≤z

p≡3(mod4)

∞∑
n=2

(−1)n+1

pnn
= O(1).

Hence, we have

C(q, q/4) ≈
√

log z ≈
√

log logN. (4.23)

From equation (4.6), we see that there are x such that H(x) is positive and
furthermore H(x) = Ω(

√
log log x).

Since the average value of H(nq + α) for 1 ≤ n ≤ N is asymptotic to
C(q, q4) ≈

√
log logN , we have H(x) 6= o(

√
log log x).

In the second case we choose α = 3q
4 . In this case we show

µ(d)s
(α
d

)
= −1

4
.

If ω(d) is even, then we have µ(d) = 1 and q
d ≡ 1(mod4) which gives

µ(d)s

(
3q

4d

)
= 1

(
1

2
− 3

4

)
= −1

4
.

And on the other side, if ω(d) is odd, we have µ(d) = −1 and q
d ≡ 3(mod4)

which gives

µ(d)s

(
3q

4d

)
= (−1)

(
1

2
− 1

4

)
= −1

4
.

This gives us,

C(q, 3q/4) = −C(q, q/4) ≈ −
√

log logN (4.24)

Thus, again from equation (4.6), we obtain there are x such that H(x) is
negative and does not exceed −

√
log log x.
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From both cases α = q
4 and α = 3q

4 we obtain that H(x) = Ω±(
√

log log x),
and hence from Theorem 4.5, we have

E(x) = Ω±(x
√

log log x).
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5 Fluctuation on the Averages of the Sum of Di-
visor Function

In this section, we apply the methods that we used in preceding sections and
show the existence of fluctuations on the error term for the average order
of divisors of n which are coprime to any given integer a. We define this a
function as,

Da(n) =
∑
d|n

(d,a)=1

d. (5.1)

Where a > 1 is an integer.

5.1 Average order of Da(n) and Da(n)
n

Let us first find the average of Da(n).

Theorem 5.1. For all x ≥ 2, we have∑
n≤x

Da(n) =
π2x2φ(a)

12a
+O(x log x). (5.2)

Proof. ∑
n≤x

Da(n) =
∑
n≤x

∑
d|n

(d,a)=1

d =
∑
n≤x

∑
d|n

(n/d,a)=1

n

d

=
∑
d≤x

∑
q≤x/d
(q,a)=1

q =
∑
d≤x

∑
q≤x/d

q
∑
r|q
r|a

µ(r)

=
∑
d≤x

∑
r≤x/d
r|a

rµ(r)
∑

s≤x/dr

s

=
x2

2

∑
d≤x

1

d2

∑
r|a

µ(r)

r
+O

x∑
d≤x

1

d


=
φ(a)

a

x2

2

∑
d≤x

1

d2
+O(x log x)

=
π2x2φ(a)

12a
+O(x log x).

By using above theorem and partial summation formula we get following
result.
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Theorem 5.2. For all x ≥ 2, we have∑
n≤x

Da(n)

n
=
π2xφ(a)

6a
+O(log x). (5.3)

Proof. ∑
n≤x

Da(n)

n
=
π2x2φ(a)

x12a
+O(log x) +

∫ x

1

π2φ(a)

12a
dt

=
π2xφ(a)

6a
+O(log x).

5.2 Fluctuation on the averages of Da(n)

Before we start the section, we introduce some definitions. We define

Ka(x) :=
∑
n≤x

Da(n)− π2x2φ(a)

12a
(5.4)

Fa(x) :=
∑
n≤x

Da(n)

n
− π2xφ(a)

6a
(5.5)

for a = pβ11 p
β2
2 . . . pβss where βi > 0 and 1 ≤ i ≤ s. And we use p, q to denote

primes.

In this section, we prove that Ka(x) = Ω±(x log log x). Let us begin with
some lemmas for proving the theorem.

Lemma 5.3. For each natural number n, we have

Da(n)

n
=
∑
d|n

1

d

∏
p|(a,d)

(1− p). (5.6)

Proof. Observe that both sides in the equation are multiplicative function
of n, it sufficies to check the equality for n = qb, where q is a prime and b is
a nonnegative integer. We have two cases here, q|a or q - a.

If q|a, then
Da(q

b)

qb
=

1

qb

∑
d|qb

(d,a)=1

d =
1

qb
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and ∑
d|qb

1

d

∏
p|(a,d)

(1− p) = 1 + (1− q)
(

1

q
+

1

q2
+ . . .+

1

qb

)
=

1

qb
.

Which gives the identity.

If q - a
Da(q

b)

qb
=

1

qb

∑
d|qb

(d,a)=1

d =
(1 + q + q2 + . . .+ qb)

qb

and∑
d|qb

1

d

∏
p|(a,d)

(1− p) =
∑
d|qb

1

d
=

(
1 +

1

q
+ . . .+

1

qb

)
=

(1 + q + q2 + . . .+ qb)

qb
.

Which completes the formula.

Lemma 5.4. We have∑
n≤x

1

n

∏
p|(a,n)

(1− p) =

{
log p1 +O

(
1
x

)
if s = 1,

O
(
1
x

)
if s > 1.

(5.7)

Proof. From Theorem 1.8, we have∑
n≤x

1

n

∏
p|(a,n)

(1− p) =
∑
n≤x

1

n

∑
d|(a,n)

µ(d)d =
∑
d|a

µ(d)
∑
n≤x

d

n

∑
d|n

1

=
∑
d|a

µ(d)
∑
q≤x/d

1

q
=
∑
d|a

µ(d)

(
log

x

d
+ E +O

(
d

n

))

= (log x+ E)
∑
d|a

µ(d)−
∑
d|a

µ(d) log d+O

(
1

x

)
.

From Theorem 1.3, we have −
∑

d|a µ(d) log d = Λ(a), so that

∑
n≤x

1

n

∏
p|(a,n)

(1− p) = (log x+ E)
∑

d|p1···ps

µ(d) + Λ(a) +O

(
1

x

)
follows.

Consider the cases that s = 1 or s > 1. If s = 1, Λ(a) = log p1 and
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∑
d|p1 µ(d) = 0, so

∑
n≤x

1

n

∏
p|(a,n)

(1− p) = log p1 +O

(
1

x

)
.

If s > 1, then Λ(a) = 0 and
∑

d|p1···ps µ(d) = 0 so that

∑
n≤x

1

n

∏
p|(a,n)

(1− p) = O

(
1

x

)
.

Lemma 5.5. We have

Fa(x) = −
∞∑
k=1

1

k

{x
k

} ∏
p|(a,k)

(1− p). (5.8)

Proof. First observe that, from Theorem 1.9 and using the fact that

1

k2

∏
p|(a,k)

(1− p)

is completely multiplicative, we have

∞∑
k=1

1

k2

∏
p|(a,k)

(1− p) =
∏
q

 1

1−
{

1
q2
∏
p|(a,q)(1− p)

}


=
∏
q

 ∞∑
i=0

1

q2i

∏
p|(a,qi)

(1− p)


=
∏
q|a

(
1 +

∞∑
i=0

1− q
q2i

)∏
q-a

∞∑
i=0

1

q2i

=
∏
q|a

(
1 + (1− q)

(
1

1− 1
q2

− 1

))∏
q-a

(
1− 1

q2

)−1

=
∏
q|a

(
1 +

1

q

)−1∏
q-a

(
1− 1

q2

)−1

=
∏
q|a

(
1− 1

q

)∏
q

(
1− 1

q2

)−1
=
π2φ(a)

6a
. (5.9)
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By using equation (5.5), Lemma 5.3 and above result, we get

Fa(x) =
∑
n≤x

∑
k|n

1

k

∏
p|(a,k)

(1− p)− x
∞∑
k=1

1

k2

∏
p|(a,k)

(1− p)

=
∑
k≤x

1

k

∑
q≤x/k

∏
p|(a,k)

(1− p)− x
∞∑
k=1

1

k2

∏
p|(a,k)

(1− p)

=
∑
k≤x

1

k

[x
k

] ∏
p|(a,k)

(1− p)− x
∞∑
k=1

1

k2

∏
p|(a,k)

(1− p).

Since
[
x
k

]
= 0 for x > k

Fa(x) =

∞∑
k=1

1

k

[x
k

] ∏
p|(a,k)

(1− p)− x
∞∑
k=1

1

k2

∏
p|(a,k)

(1− p)

=

∞∑
k=1

1

k

(x
k
−
{x
k

}) ∏
p|(a,k)

(1− p)− x
∞∑
k=1

1

k2

∏
p|(a,k)

(1− p)

= −
∞∑
k=1

1

k

{x
k

} ∏
p|(a,k)

(1− p) follows.

Lemma 5.6. We have

Fa(x) = −
∑
k≤y

1

k

{x
k

} ∏
p|(a,k)

(1− p) +O(1) (5.10)

uniformly for x ≥ 2, y ≥ 1
2

√
x.

Proof. By Lemma 5.5, it is sufficient to prove that∑
k≥y

1

k

{x
k

} ∏
p|(a,k)

(1− p) = O(1).

Here if y ≥ x
2 , then∑

k≥y

1

k

{x
k

} ∏
p|(a,k)

(1− p)�
∑
k≥y

1

k

{x
k

}∏
p|a

(1− p)�
∑
k≥y

x

k2
� x

y
� 1.

(5.11)
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Now we assume that
√
x
2 ≤ y <

x
2 . By (5.11) we have∑

k≥x

1

k

{x
k

} ∏
p|(a,k)

(1− p) = O(1).

Therefore, it suffices to prove that∑
y<k≤x

1

k

{x
k

} ∏
p|(a,k)

(1− p) = O(1).

Let M be an integer with M ≤ x/y < M + 1. Then, for each integer t with
2 ≤ t ≤ M + 1,

{
x
k

}
is monotone in the range x/t < k ≤ x/(t− 1). Hence,

by Lemma 5.4 and partial summation, we have∑
x/t<k≤x/(t−1)

1

k

{x
k

} ∏
p|(a,k)

(1− p) = O

(
t

x

)

and ∑
y<k≤x/M

1

k

{x
k

} ∏
p|(a,k)

(1− p) = O

(
M

x

)
.

Thus, for y ≥
√
x
2 , we have∑

y<k≤x

1

k

{x
k

} ∏
p|(a,k)

(1− p) =
∑

2≤t≤M

∑
x/t<k≤x/(t−1)

1

k

{x
k

} ∏
p|(a,k)

(1− p)

+
∑

y<k≤x/M

1

k

{x
k

} ∏
p|(a,k)

(1− p)

� 1

x

∑
1≤t≤x/y

t� 1

x

x2

y2
� 1.

which gives desired result.

Lemma 5.7. We have

Ka(x)

x
− Fa(x) = O(1). (5.12)

Proof. By (5.4), we have

Ka(x)

x
=

1

x

∑
n≤x

Da(n)− π2xφ(a)

12a
. (5.13)
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From Lemma 5.3∑
n≤x

Da(n) =
∑
n≤x

n
∑
d|n

1

d

∏
p|(a,d)

(1− p) =
∑
d≤x

∑
q≤x/d

q
∏
p|(a,d)

(1− p)

=
∑
d≤x

(
1

2

[x
d

]2
+

1

2

[x
d

]) ∏
p|(a,d)

(1− p)

=
∑
d≤x

(
x2

2d2
+

x

2d
− x

d

{x
d

}) ∏
p|(a,d)

(1− p) +O(x).

From Lemma 5.4, we have∑
d≤x

1

d

∏
p|(a,d)

(1− p) = O(1/x).

Therefore,∑
n≤x

Da(n) =
∑
d≤x

(
x2

2d2
− x

d

{x
d

}) ∏
p|(a,d)

(1− p) +O(x)

=
x2

2

∑
d≤x

1

d2

∏
p|(a,d)

(1− p)− x
∑
d≤x

1

d

{x
d

} ∏
p|(a,d)

(1− p) +O(x).

Using Lemma 5.6, we get∑
n≤x

Da(n) =
x2

2

∑
d≤x

1

d2

∏
p|(a,d)

(1− p) + xFa(x) +O(x). (5.14)

If we put (5.14) into (5.13), then

Ka(x)

x
=
x

2

∑
d≤x

1

d2

∏
p|(a,d)

(1− p) + Fa(x)− π2xφ(a)

12a
+O(1)

=
x

2

∞∑
d=1

1

d2

∏
p|(a,d)

(1− p)− π2xφ(a)

12a
− x

2

∑
d>x

1

d2

∏
p|(a,d)

(1− p)

+ Fa(x) +O(1) follows.
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Form (5.9), we have

Ka(x)

x
− Fa(x) = −x

2

∑
d>x

1

d2

∏
p|(a,d)

(1− p) +O(1)

= O

(
x
∑
d>x

1

d2

)
+O(1) = O(1).

This completes the proof.

Lemma 5.8. If b, r are positive integers such that (b, r) = 1 and β is real
number, then for any positive integer N , we have

N∑
n=1

{
nb

r
+ β

}
=
N

r
{rβ}+

N

r

(
r − 1

2

)
+O(r). (5.15)

Proof. By Lemma 4.3, we have

N∑
n=1

(
1

2
−
{
nb

r
+ β

})
=
N

r

(
1

2
− {rβ}

)
+O(r).

Note that

−
N∑
n=1

{
nb

r
+ β

}
= −N

2
+
N

2r
− N

r
{rβ}+O(r).

This gives

N∑
n=1

{
nb

r
+ β

}
=
N

r
{rβ}+

N

r

(
r − 1

2

)
+O(r).

Lemma 5.9. Let A = m!

p
β1
1 ···p

βs
s

be an integer with (A, a) = 1 and A ≥ ma.

Then ∑
k≤A

(k,A)

k2

∏
p|(a,k)

(1− p) ≥ φ(a)

a
logm+O(1). (5.16)
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Proof. By using Theorem 1.8, we have∑
k≤A

(k,A)

k2

∏
p|(a,k)

(1− p) =
∑
k≤A

(k,A)

k2

∑
d|a
d|k

µ(d)d

=
∑
d|a

∑
k≤A

(k,A)

k2

∑
d|k

µ(d)d

=
∑
d|a

µ(d)

d

∑
q≤A/d

(q,A)

q2

=
∑
d|a

µ(d)

d

∑
q≤A/a

(q, A)

q2
+
∑
d|a

µ(d)

d

∑
A/a<q≤A/d

(q, A)

q2

=
φ(a)

a

∑
q≤A/a

(q,A)

q2︸ ︷︷ ︸
A1

+
∑
d|a

µ(d)

d

∑
A/a<q≤A/d

(q, A)

q2︸ ︷︷ ︸
A2

.

Since A
a ≥ m, we have

A1 =
∑
q≤A/a

(q, A)

q2
≥

∑
q≤m

(q,a)=1

(q, A)

q2
=

∑
q≤m

(q,a)=1

1

q

=
∑
q≤m

1

q

∑
d|q
d|a

µ(d) =
∑
d|a

∑
q≤m

1

q

∑
d|q

µ(d)

=
∑
d|a

µ(d)

d

∑
r≤m/d

1

r
=
∑
d|a

µ(d)

d

(
log

m

d
+O(1)

)
=
φ(a)

a
logm+O(1).

And

A2 =
∑
d|a

µ(d)

d

∑
A/a<q≤A/d

(q, A)

q2
�

∑
A/a<k≤A

(k,A)

k2
�

∑
A/a<k≤A

1

k
� 1.

Using A1 and A2 in the above equation, we obtain∑
k≤A

(k,A)

k2

∏
p|(a,k)

(1− p) ≥ φ(a)

a
logm+O(1).
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Theorem 5.10. For any integer a > 1, we have

Ka(x) = Ω±(x log log x). (5.17)

Proof. Let A be as in Lemma 5.9 and let B be an integer with 0 ≤ B < A.
By Lemma 5.6, we have

1

A

A∑
n=1

Fa(nA+B) = − 1

A

A∑
n=1

∑
k≤A

1

k

{
nA+B

k

} ∏
p|(a,k)

(1− p) +O(1)

= − 1

A

∑
k≤A

1

k

 ∏
p|(a,k)

(1− p)

 A∑
n=1

{
nA+B

k

}
+O(1).

(5.18)

By using Lemma 5.8 by putting r = k
(k,A) and β = B

k , the equation (5.18)
becomes

= −
∑
k≤A

(k,A)

k2

 ∏
p|(a,k)

(1− p)

({ B

(k,A)

}
+

k

2(k,A)
− 1

2

)
+O(1).

Using Lemma 5.4, this further equals

= −
∑
k≤A

(k,A)

k2

 ∏
p|(a,k)

(1− p)

({ B

(k,A)

}
− 1

2

)
+O(1). (5.19)

In equation (5.19), we take B = 0 to obtain

1

A

A∑
n=1

Fa(nA) =
1

2

∑
k≤A

(k,A)

k2

∏
p|(a,k)

(1− p) +O(1). (5.20)

Taking B = A− 1, we have

1

A

A∑
n=1

Fa(nA+A− 1) = −
∑
k≤A

(k,A)

k2

 ∏
p|(a,k)

(1− p)

(1

2
− 1

(k,A)

)
+O(1)

= −1

2

∑
k≤A

(k,A)

k2

∏
p|(a,k)

(1− p) +O(1). (5.21)

Note that

log log(A2 +B)� log logA� log(m logm)� logm. (5.22)
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Using Lemma 5.9 in equation (5.20), we have

1

A

A∑
n=1

Fa(nA) ≥ φ(a)

2a
logm+O(1).

From (5.22), we get
Fa(x) > log log x. (5.23)

Using Lemma 5.9 in equation (5.21), we have

1

A

A∑
n=1

Fa(nA+A− 1) ≤ −φ(a)

2a
logm+O(1).

Again from (5.22), we get

Fa(x) ≤ − log log x. (5.24)

Finally from (5.23) and (5.24) we get

Fa(x) = Ω±(log log x).

Therefore, by Lemma 5.7

Ka(x) = Ω±(x log log x) follows.
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6 Conclusion

In this thesis, we investigate the error terms in the averages of the arith-
metic functions φ(n) and Da(n). By using basic concepts of the Number
Theory, we gave Ω-type estimations for these error terms and by evaluat-
ing the averages on the arihmetic progressions, we showed that these error
terms change sign infinitely many times. Both results provided us to get
better prediction for the artihmetic functions φ(n) and Da(n), when n is a
large number. However, an answer can be given to Montgomery’s conjecture
E(x) = O(x log log x) [5], if one improves the results of this thesis.

Moreover, one can obtain similar results for the Jordan totient function
which is defined as

Jk(n) =
∑
d|n

µ(d)
(n
d

)k
.

It seems with some minor modifications, the current methods would work
for the Jordan totient function to obtain similar results. On the other hand,
in each section we mainly used the different properties of Möbius function.
Therefore, any function which is related to the Möbius function can be stud-
ied for similar results.

Consequently, in the major part of Analytic Number Theory we face with
error terms, to understand the behaviour of arithmetic functions, further we
should analyze these error terms by obtaining big-O and Ω-type estimations.
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