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ABSTRACT

In this study, we analyze the error terms in average orders of Euler phi
function and divisor function. Our aim is to obtain a omega type estimation
for these error terms and show that they change sign infinitely often. In the
first part, we find the average value of the error term in the average order of
Euler phi function and obtain a omega type estimation for this error term
by employing basic arguments in Number Theory. In the second part, we
show that this error term changes sign infinitely often. We accomplish this
result by averaging this error term over arithmetic progressions. In the third
part we utilize complicated methods to improve the results that we found
in the first two parts. Finally, we combine the methods we used up to this
section and apply them to the divisor function which is defined to be the
sum of divisors of a given number n which is relatively prime to a.
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OZET

Bu caligmada, Euler phi fonksiyonu ve bolme fonksiyonunun ortalama biiyii-
me degerinde cikan hata terimleri analiz edilmistir. Amacimiz bu hata
terimleri icin omega tiirii bir deger bulma ve bu hata terimlerinin sonsuz
defa isaret degistirdigini géstermektir. Birinci boliimde Sayilar Teorisindeki
temel argiimanlar1 kullanarak, Euler phi fonksiyonunun ortalama biiytime
degerinde ¢ikan hata teriminin, ortalama biiyiime degerini hesapliyoruz ve
bu hata terimi icin omega tiirii bir deger buluyoruz. Ikinci béliimde, bu
hata teriminin sonsuz defa igsaret degistirdigini gosteriyoruz. Bu sonug, hata
teriminin aritmetik diziler {izerinde toplanmasi ile elde edilmistir. Ugiincii
boliimde, ilk iki boliimde buldugumuz sonuclar1 gelistirmek icin, ileri metot-
lardan faydalaniyoruz. Son olarak, bu boliime kadar kullandigimiz metotlar:
birlegtirerek; herhangi bir sayinin, verilen bir a sayisi ile aralarinda asal olan
bolenlerinin toplami olarak tanimladigimiz bélme fonksiyonu tizerinde uygu-
luyoruz.
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1 PRELIMINARIES

This chapter includes the basic information needed to understand the text
as we frequently will refer in the following chapters. It consists of four main
sections and in each of them, we will present the functions and some of their
properties that we are going to deal with. We also will introduce some main
formulas and tools that are widely used in Analytic Number Theory. All
these will be given briefly, without proof, since detailed arguments can be
found in [1] or [2].

1.1 Arithmetic Functions p(n) and ¢(n)

Definition 1. A real- or complex-valued function defined on the positive
integers is called an arithmetic function.

We give definitions of arithmetic functions p(n), ¢(n) and A(n) which
play an important role in the study of divisibility properties of integers and
the distribution of primes.

Definition 2. The Mdbius function p is defined as follows:

n(1) =1;
If n> 1, write n = pi* -- ~pzk, where p1,p2,- - ,pr are primes. Then
DY ifar=ay=-ap =1,
pln) = { 0 otherwise.

One of the important properties of p(n) is,
Theorem 1.1. Ifn > 1, we have
1 1 ifn=1
d%ﬂ:“(d) = [n] - { 0 §§Z >1.
Now we introduce a significant theorem in analytic number theory.
Theorem 1.2 (Mdbius Inversion Formula).

) =Y gd) & g(n) = > fln (5)-

din dln

Where f(n) and g(n) arithmetic functions.

By using Mobius inversion formula we can get many important results.
One of them is given in next theorem. First we introduce Mangoldt’s func-
tion A which plays central role in the distribution of primes.



Definition 3.

A(n) = logp if n=p™ for some prime p and some integer m > 1,
10 otherwise.

Theorem 1.3. Ifn > 1, we have

A(n) =" u(d)log % =" u(d)logd.

dn dn

Definition 4. If n > 1, the Euler totient ¢(n) is defined to be the number
of positive integers not exceeding n which are relatively prime to n; i.e.,

o(n) = Z 1.
m=1

(m,n)=1

We have some results about function ¢(n) that will be used in next chap-
ters.

Theorem 1.4. Ifn > 1, we have
n
on) = 3 u(d) . (1)
din

Theorem 1.5. Forn > 1, we have

o(n) =n ] <1 - ;) . (1.2)

Where p is any prime divisor of n.

Related with this theorem, in a later section we use next result that
Mertens proved.

Theorem 1.6. (Mertens product estimate, strong form) We have

-E
()i eo(ids) o oo

p<w
In above equation, the constant FE is the Euler’s constant which is defined
by the equation

1 1
FE = lim <1+—|—-~-+—logn>.
n

n—00 2



1.2 Dirichlet convolution

Definition 5. If f and g are two artihmetic functions, we define their Dirich-
let product (or Dirichlet convolution) to be the arithmetical function h defined
by the equation

hn) = (f < g)(n) = (g Nn) = > Fd)g (%)
dln

An example to this product is that the equation (1.1) can be written as
¢ =+ N. Where N is identity function.

The next theorem relates the product of Dirichlet Series with the Dirich-
let convolution of their coefficients.

Theorem 1.7. Given two functions F(s) and G(s) represented by Dirichlet
series,

F(s) = Z J(n) for o >a,

and

for o >b.

_ i g(n)
= >
n=1
Then in the half-plane where both series converge absolutely we have

Z pr , (1.3)

where h = f % g, the Dirichlet convolution of f and g:

=" f(d)g(>

din

Here o is real part of s.

Now we apply Theorem 1.6 to the sum

= ().

ns
n=1

We have
1
= Z —,  converges absolutely for o >1,
n

n=1



and

o0

Z 'M(CL) converges absolutely for o > 1.
n

n=1

Taking f(n) =1 and g(n) = p(n) in (1.3) we find

= p(d)

din

This gives

n=1

In particular, this shows that ((s) # 0 for 0 > 1 and that

3 un) L r o
> =0 for o> 1. (1.4)

n=1

In our subject we mainly use this formula for s = 2. Euler calculated that
2
¢(2) = %, therefore we have

Z = WE (1.5)

1.3 Multiplicative functions

In this section, we discuss an important subset of arithmetical functions
which is called multiplicative functions.

Definition 6. An arithmetical function f is called multiplicative, if f is not
identically zero and if

f(mn) = f(m)f(n) whenever (m,n)=1.
A multiplicative function f is called completely multiplicative if we also have

f(mn) = f(m)f(n) for all m,n.

We can give u(n), ¢(n) as examples of multiplicative functions. Multi-
plicativity provides us showing identities for some power of a prime instead
of n, which comes from next theorem.

Theorem 1.8. f is multiplicative if, and only if,

fit i) = ff") .. f)

for all primes p; and all integers a; > 1.



The other properties of multiplicative functions are
Theorem 1.9. If f is multiplicative, we have

Y oudf@) =110 fm).

dln pln

Theorem 1.10. Let f be multiplicative arithmetic function such that the
series Y f(n) is absolutely convergent. Then the sum of the series can be
expressed as an absolutely convergent infinite product,

Y =110+rw+ 0 +--)
n=1 D

extended over all primes. If f is completely multiplicative, the product sim-

plifies to
R 1
;f(n) - 1;[ 1—f(p)

1.4 Elementary Asymptotic Formulas and Partial Summa-
tion

To study the average of an arbitrary function f(n) we need a knowledge of

its partial sums
n
> fk)
k=1

Sometimes it is convenient to replace the upper index n by an arbitrary
positive real number z and to consider instead sums of the form

> fk)

k<z

This partial sum is also called summatory function of f(k) which is denoted
as F'(x). Before passing to methods for evaluating F'(x), we give a definition
for main term in F'(z).

Definition 7. If
1 1)
% g(x)

we say that f(x) is asymptotic to g(x) as x — oo, and we write f(x) ~ g(x)
as x — o0o.

=1,

For example, in a later section we will prove that

Z(b N—x as x — oo.

n<x



%zQ is called asymptotic value of the sum.

Here the term

Sometimes the asymptotic value of a partial sum can be obtained by
comparing it with an integral. A summation formula of Euler gives an exact
expression for the error made in such an approximation.

Theorem 1.11 (Euler’s Summation Formula). If f has a continuous deriva-
tive ' on the interval [y, x], where 0 < y < z, then

> f(n)I/xf(t)dH/ (t =[N (B)dt + f(@)([2] = =) = f(W)([y] = v)-
Y

x
y<n<z Yy

The next theorem gives a number of asymptotic formulas which are easy
consequences of Euler’s summation formula. In equation (1.7), {(s) denotes
the Riemann zeta function which is defined by the equation

=1
= — if 1
¢(s) ;ns if s>1,
and
1 1—s
¢(s) = lim -2 it 0<s<1.
n—o0 ns 1—s
n<x
Theorem 1.12. . .
Zzlogm+E+O<). (1.6)
n T
n<x
1 = _sv
— = +(¢(s)+0(@="%) if s>0, s#1. (1.7)
n<a:ns 1-s
1 1-s .
—=0@"") if s>1 (1.8)
TL>$n
o xa+1 N
;n :a+1+0(x) if a>0. (1.9)

Now we relate the partial sums of arbitarary arithmetical functions f
and g with those of their Dirichlet product f *g.

Theorem 1.13. If h = fxg, let
H(z) =Y h(n), F(z)=)_ f(n), Gz)=>Y g(n).
n<x n<x n<x
Then we have

H(z) =Y f(n)G (%) =3 gm)F (%) . (1.10)

n<x n<lx



In Theorem 1.12 if we set g(n) = 1 for all n, then G(z) = [z] and (1.10)
gives us the following result:

Theorem 1.14. If F(x) =) .. f(n), we have

DD fd) =) fn) [ﬂ =ZF(%) (1.11)
n<z djn n<z n<a

We end this section by giving the partial summation formula which is one
of the most powerful methods for estimating the summatory of arithmetic
functions.

Theorem 1.15 (The Partial Summation Formula). Let = and y be real
numbers with 0 < y < x. Let f(n) be an arithmetic function with summatory

function F(x) and g(t) be a function with a continuous derivative on [y, x].
Then,

S fwgln) = Flalg(a) - Folat) = [ FOg@ar. (112)

y<n<z

In particular, if x > 2 and g(t) is continuously differentiable on [1,z],
then

S F(m)g(n) = Fa)g(a) - / " Pty (tydt. (1.13)

n<x



2 An Asymptotic Formula for Error the Term Aris-
ing From the Summatory function of ¢(n)

In Analytic Number Theory, we estimate the averages ) . f(n) of arith-
metic functions, because they are expected to behave more regularly for
large « whereas an arithmetic function itself may behave beyond prediction
when n is large. We approach this subject from another perspective that es-
timates the averages of error terms, and finds that these error terms indeed
change sign infinitely often.

Fluctuation of error terms interested mathematicians since beginning of
1900s. After Hadamard and De la Vallée Poussin proved Prime Number
Theorem in 1896, E. Schmidt analyzed the error term of #(x). In 1903,
he proved that ¢(z) — = changes sign infinitely often. After a while, E.
Schmidt get the same result for the function 7(x) — Li(x) under the as-
sumption that Riemann Hypothesis is false. In 1914, Littlewood proved
that w(z) — Li(x) fluctuates in the case Riemann Hypothesis is true. He
showed that m(z) — Li(z) = Qi (2% logloglog z), where Q1 means that the
error term achieves the given order of magnitude infinitely often with both
positive and negative signs. For proof of these results, see [2].

In this study, we will mainly focus on Euler’s ¢ function which gives
remarkable results. The first result on the behaviour of error term in
the average of ¢(n) is due to Dirichlet, who proved that E(z) = O(x9)
for some §, 1 < § < 2, where E(x) is the error term in the average of
¢(n). This was improved by Mertens to F(z) = O(zlogz) [1]. The proof
of these estimations are short and elementary. More recently, using the
best error term for the Prime Number Theorem, Walfisz improved this to

2 4
3

E(z) = O(z(log x)3 (loglog x)3) [10].

The results above give us an upper bound for the error term. On the
other side, in 1930, Pillai and Chowla gave Q-type estimation for E(x),
and showed that E(z) # o(xzlogloglogz) [3]. Then, in 1951, Erdds and
Shapiro analyzed the error term on the arithmetic progression and proved
that F(z) = Q4 (zloglogloglog x) [4], which was improved by Montgomery
to F(x) = Q4 (zy/loglogx) in 1987 [5].

In this chapter, we prove

and
E(x) # o(x logloglog x).



2.1 Average Orders of ¢(n) and %”)
Let us first find the average order of ¢(n) which is proved by Mertens.

Theorem 2.1. For x > 1, we have
Z o(n) = —x + O(xlogx). (2.1)
n<x

Therefore the average order of ¢(n) is 3”

Proof. By using (1.1), (1.5) and Theorem 1.11 we have

O]

By using above result and partial summation formula, we get the follow-
ing formula.

Theorem 2.2. For z > 1, we have

3 d’;”) _ %:p + O(log z). (2.2)

n<x

Therefore the average order of @ 18 %.

Proof. Applying partial summation formula and using

Z o(n —x + O(zlogx),

n<x



we get

(n) 3 (3 logt

3 3 T logt
:7T2:U+O(10g:n)+/ 7r2dt+0</ cﬁdt)
1 1

6
=5 + O(log z).

2.2 Average Order of Error term in Partial Sum of ¢(n)
First, let us define

Bx) = Y on) — o

and

H(a:)zng(:)—fzx

In this section, we will show that

3 9
<R

Theorem 2.3. If

Z an = o(x)

n<x
and

lan| < K < o0,
then

Zan {%}2 = o(x).

n<x

Where {%} denotes the fractional part of .

For the proof of this theorem, we refer to [3].

Now we will make some preparation for the next theorem. Let us put

M(z) = ().

n<x

10



Then one of the implications of the PNT is,
M(z) = o(x) (2.3)

and we can obtain from De la Vallée Poussin type zero free region for the
Riemann zeta function

M(z) = O(zexp(—cy/logz)).
Lemma 2.4. We have () )
n
n>x
Proof. For proving our result, it is sufficient to take M (z) = O(%). By

partial summation formula, we have

> M) M) M), A0,

Y2 2 3

By letting y — oo, we get

50 () =0 (5)

n>x
OJ
Now we use (1.1), (1.5), and Theorem 1.11 with above result to get
¢(n) _ pld) o pn) [z
DI B DB
n<x n<z dln n<x
_ p(n) p(n) [
- n<x72 B nSxT {ﬁ}
= pn) (n) (n) fz
= (nzlnz ‘m) ity
6
=z o) - ). (25)
n<x



Recall that

From (2.5), we have

= (Z “gl”) {Z}) +o(1). (2.6)

n<x
Now we are ready to prove our main result for H(x).

Theorem 2.5. We have

Z H(x) ~ —R as R — oo. (2.7)

<R

Proof. First observe that it is sufficient to prove the theorem only when R
is an integer. Let R be an integer and consider,

SLCED DD BELED DETED D) B T Ew 0}

z<R z<Rn<lzx <R z<Rn<lzx

We write double sum as,

S () (2.
)

2
z<Rn<lzx
(1) (R)
(A0 80D

In the above equation we complete each parenthesis to (% + ¢T 4+ -+ @) ,
and obtain
Y H(z)=(R+1) Z¢ — > ¢(n) R2+R)
z<R n<R n<R
¢ 3 p2
=¢{RY —2 -3 ¢(n) + - R—l—O(logR)——(R +R)
n<R n<R

{ Z ng) } — R) 4+ O(log R).

n<R n<R
(2.8)

12



Combining with (2.5), we see that
¢(n) _ p(n) pn) (R
PO D Dl D Dl
n<R n<RkR n<R
Moreover, using the formula we show that

ng(m:zmzq:éZM{mQ* m}

n<R d<R qS% d<R

(2.8) becomes

ZH(:U)ZRQZ“?SZ)_R (n){f}

<R n<R n<R

LRI ) SN )
Ay
Sl
Since Z o

n<R

Theorem 2.3 gives A; = o(R). And by using Theorem 1.13 and Theorem
1.1, we see that

A2=—§ZZH(CZ):_*
n<R djn
This gives,
_ 1 oun) p(n) [R
A=--R*Y " +RY =1 TolR)
n<R n<Rk

13



Going back and putting A into our main equation, we have

- 5 - ) (1) et

z<R n<R n<R n<R
pn) [ R _ 3 p_
+RY ; {n}+O(R> —5(R* = R) + O(log R)
n<R
Lo pn) 3 . 3
n<R
1 3 3
—R2{ &;)7 M(Z)}ZR2+2R+O(R)
2 n n T
n=1 n>R
3
= ﬁR + o(R). (2.9)
Which gives the desired result. O
Now we relate H(z) to E(z) in the next theorem.
Theorem 2.6. We have
E(R)=RH(R)+o(R) as R — oc. (2.10)
Proof.
3 2 3 9
E(R)=) o(n)— R =3 uld) Y q- 3R
n<R d<R q<§

n<R n<R
B R D )
+ ;n<R,u(n) [ﬂ - %R?

Again by a similar argument as in the previous theorem, we have

E(R)=-R)_ “52”) {f} +o(R).

n<R

14



and by equation (2.6), we have

7;%’”‘(:){1:} +o(1),

and
E(R)=RH(R)+o(R) follows.

Theorem 2.7. We have

3 2
2E(m)~WR as R — oo, (2.11)

Proof. From Theorem 2.6, we have
ZE(m)zZmH(m)—i—o Z ZxH ) + o(R?).
<R z<R <R <R

We apply partial summation formula and (2.7) to deduce that

3 p2 2 I
> zH(x) R+o(R) /17T2tdt /1f(t)dt

<R

—R2+0R2 / f(t)

272

Where f(t) is a function with f(¢) = o(t). To complete the proof, it suffices
to show that
lim — [ f(t)dt=0. (2.12)

Given € > 0, there exists a n (depending only on €) such that ‘@‘ < e if

R >n.
];z/lRf(t)dt‘ /f dt‘ 12/an(t)dt‘

R
+ — etdt

|
%
&

15



=S e o
N R2 2 2R?
here

f(n®) = sup [f(t)].

te[l,n]

By letting R — oo we find

N

1 R
limsup‘/ ftdt‘g
R—o0 R? 1 ( )

and since € is arbitrary, this proves (2.12).

Therefore, we have
3
> zH(x) = 55 R+ o(R?).
s

And this completes the proof of

> E(z) ~ 3 R

212
z<R

2.3 An Important Result of F(z)

In this section we prove that E(x) # o(xlogloglogz) which is a Q-type
estimation for E(x). First we make some preparations.

Let P(a,b) denote the product of the primes between a and b, i.e.

II »

a<p<b

and P(a,b) = 1, if we have no prime between a and b. Let zy be the least
positive solution of the following system of congruences which is clearly

16



solvable:

x =0 (mod 2),
z+1=0 (mod P(2,2%)),
x+3=0 (mod P(23,232)),

z+2k—1=0 (mod P(2*",23")).

Some observation on these congruences are now in order.

1. zg is even, from first congruence.
2. wo>23"" - (2k — 1), from last congruence.
3. xg < P(1, 23k), by Chinese Remainder theorem.

Now we clearly have 2377 < xg. Taking logarithm of both sides

3F21og 2 < log z
(k —2)log 3 + loglog 2 < loglog xg
klog3 — 2log3 + loglog2 < loglogxy follows.

After arranging constants, we have
k < Hyloglogxg, where H; > 0.

On the other side, we have xg < P(1, 23k), and similarly

T < H P

1<p<23”

log xp < Z logp =0 <23k)

p<2s®
loglog xgp < O (3’“)
logloglogzg < O (k).

After arranging constant, we have

k > Hjlogloglogxg where Hs > 0.

17

(2.13)

(2.14)



From Theorem 1.6, we have

I1 <1 - ;) ~ li_:x, (2.15)

p<z

where E is Euler’s contant, and p runs through primes. It follows that
1 1
11 (1 — ) =3 +o(1). (2.16)
r<p<z3 p
Hence there is a positive integer f, independent of k, such that

11 (1 - ;) <5 (2.17)

r<p<z3
f
when x > 23,

)

Observe that ¢>(Tn < % when n is even, and since xg is even

B(wo + 1)

< L (2.18)
To+ 1 2’ '

when ¢ is even. We will get a similar estimate for odd ¢ as well.

When t is any odd number from the set 2f + 1, 2f + 3, -+ ,2k — 1 with
k > f+1. Since zg is the least positive solution of the congurances, we have

2o+t =rP(2% " 2%),

for some r positive integer and for s € [f + 1,k], so by (1.2) and (2.17) we
have

e ) I () e

pl(zo+t) 23571 <038
since 23°7" > 237
For the remaining values of ¢ from 1, 2,--- ,2f, we have
t
St (2.20)
To+1
Theorem 2.8. We have
E(x) # o(z logloglog x). (2.21)
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Proof.

zo+2k

3 2, 3 2
E(wo+2k) — E(zo) = Y ¢(n) — —5 (w0 + 2k)* + —5 (o)
xo+1
xo+2k
12
= > ¢(n — 5ok
zo+1
zo+2f To+2k
— _ﬁkQ — 7:5015 + Y ¢n > o(n).
n=xo+1 n=xo+2f+1
(2.22)
From (2.18), (2.19), (2.20) and (2.22), we obtain
xo+2f zo+2k n
2
E(zo + 2k) — E(zg) < —7/{ ——xok—i— oon+ > o)
n=xo+1 n=xo+2f+1
9 12
= ——k - —x0k+f(2xo+2f+1)

2

(k= f)2zo+2k+2f+1)

l\.')\)—t

12
12 )
=xok [ 1— - + O(zo) + O(loglog® xoy)  (2.23)
since f = O(1) and k = O(loglog zo).

From (2.14), (2.23) and using (1 — 13) < 0, we have

12
|E(xo + 2k) — E(x0)| > Ha (772 - 1) zologloglogxg + O(xp).  (2.24)

Now suppose that E(z) = o(zlogloglogz). Since k = O(loglog x) from
(2.13),
|E(xo + 2k) — E(x0)| = o(zo logloglog )

which contradicts with equation (2.24), and hence we have

E(x) # o(z loglog log x).
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3 The First Result on the Sign Changes of the
Error Term in the Average Order of ¢(n)

In the study of analyzing the error term FE(z), fluctuation of this error
term is the most important part that mathematicians interested in. Related
with this subject, the first question that one can ask whether E(z) < 0 for
some positive . Sylvester tabulated ¢(n), > _ &(m), and (3/7*)n for
n=1,2,---,1000 [9]. He conjectured that E(z) > 0 whenever x is a posi-
tive integer [8], [9], but he failed to note that E(820) < 0. In 1936, Sarma
disproved the conjecture and showed that F(820) = —9.092... < 0 [7].

In this section we prove that F(x) changes sign infinitely often. We
have the result E(z) = Qi (xloglogloglogx). In other words, there exists a
positive constant ¢ and infinitely many integers x such that

E(x) > cxloglogloglog x
and infinitely many integers x such that
E(x) < —cxloglogloglog x.

3.1 Evaluation of Certain Sums

Let us start with a lemma which relates H(z) to E(z).

Lemma 3.1. For integral x,

> H(n) —m+@H&ﬂﬂ@—E@) (3.1)

n<x

Proof. By using (2.8), we get

> Hn)=(z+1) Z(b =Y " ¢(n) (2* + )

n<z n<w n<w
:(;1:+1)<6x+H ) Z(b x+x)
, n<z
= ﬁx-i- (x+1)H(z) — E(x). (3.2)
O]
Lemma 3.2. We have the following estimates.
L 1 T

E:gH(E>:Oﬂ) (3.3)
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3
A
8
3
IA
8
&
3

™

1
RI= Q= Q=
/N N

)
IN
8

<
INA
8

Q
IA
8

This gives

q<z

2. By using H(z) = O(log x), we have

;H(Z) =0 (dg;logz> =0 (log (}12))

—0 <log (é]')) — O(zlog z — log[al!).

Making use of the formula
log [z]! = zlogz — z + O(log ), (see [1])
we have

SH (g) = O(z).

d<z
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3. Note that

0@ == YY) =Y Y

n<z n<e dn q<z d<z/q
S22} 5 om

This in turn gives

Sy E (%) = O(x).

d<z

Theorem 3.3. The formula

Z H(n)= %xlogw + O(x) (3.6)

mn<zx

holds.
Proof. From lemma 3.1, we have
> Hn + (z+1)H(z) — E(x). (3.7)
n<lz
Replacing = by x/m in (3.7) and summing over all integral m < x we have
3 z 1 z x T
> X Hm) =3 e > i ()3 # (1) =X B ()
m<zrn<z/m m<x m<x m<x m<zx
By using lemma 3.2 and (1.6) we have

Z H(n —:L‘logx—i—O( ).

mn<x

3.2 The Average of H(n) over Arithmetic Progressions

The main idea of the proof is to evaluate certain averages of H(n) over
arithmetic progressions. Let us begin with an important lemma.

Lemma 3.4. We have

ZL

m<z

m=p(modA)

z + O(log 2), (3.8)

D>\Q

P
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where

CzC(A):H(l—pé).

ptA
Proof. Let us put m = dg. Then we have

z%"”:zz*ﬁ >

m<z m<z dq=pB(modA)
m=p(modA) m= ﬁ(modA) dg<z
p(d) 3
= — 1
d<z q<z/d
(AN a=amod( i)
_ p(d) [(d,A)z
=) oo
d<z
(d,A)|8

If we take 7 = (d, A), then we have d = tr for some positive integer ¢, so
that

u(d d,A) z z d
Z El){(A)d 0(1)}_A Z T Z 'uc(lg)—i—O(logz)

(ddijzlﬁ 7|(A,8) (d,A)=T1

Z Z +Olgz)

[(A,B8) (t,A)=
follows.
From the formula

we see that

Finally we have,

m=p(modA)

which is the desired result. O
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Theorem 3.5. If A, B are integers with A > B > 0, then
S H(An-B)=~ S H(n)+ Az +O(loga) (3.9)
A )

n<x n<Ax—B

where

A= N(A,B) = M(A,B) - >
T
and
5B - 1AACA o) B AR for B0
M(A.B) = (3.10)
%MA)E(A) for B =0.

Proof. Tt clearly suffices to prove (3.9) for integral . Thus we may assume
that = an integer. We have

ZH(AnB)Z{ ) Cbgn”“g(AnB)}

n<lzx n<z | m<An—B
DD DEAUCRLE o )
m 72
n<e m<An—B n<x
= Z $lm) Z 17%(A$2+AZL‘72BI)
m ™
m<Ax—B %Bgngx
m<Az—B m m<Ax—B m
m=—B(modA)
K
L
3
- ﬁ(AmQ + Ax — 2Bx). (3.11)
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First consider the summation K to get

e A s e

m<Ax—B m<Ax—B

m+B=a(modA)

o3 st s ol

m<Azx—B m<Azx—B
yEe y el
a=0 A m<Ax—B m
m+B=a(modA)
Next we add and subtract
B-1 (m)
A m<Azx—B m
and 5
- [(Az — B)? + (Az — B)]
to get
K=2laz-B+1) olm) _ 6(m) — - [(Az — B)? + (Az — B)]
A m 2
m<Az—B m<Az—B
A-1
B—-1 - B
LBl g dm) b(m)
A m
m<Axr—B a=0 m<Ax—B

m—l—BEag(:;wdA)
N 3 [(Az — B)? + (Az — B)]
72 A '

Observe that, as we did in (2.8), the terms in parenthesis are equal to

m<Azx—B
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Using this the summation K becomes

A-1
1 B-1 o(m) a—B o(m)
=3 2 Hm+——= > =4 = > S
m<Azr—B m<Azr—B a=0 m<Ax—B
m+B=a(modA)

. ;[(Ax - B)?; (Az — B)]

Note that

B-1 ¢(m) B-16
) T A 2 (Az — B) + O(log x)
m<Axr—B

and

3[(Az— B2+ (Az—B)] 3 , 6 3B2 3
2 _ _ >R °L 2
2 A 2 . 2 x+A7r2 +7r2

3 B
An?
Taking these into account, the summation K further equals

A-1
1 3 5 3 a—B d(m)
m<Ax—B a=0 m<Azx—B
m+B=a(modA)

Ky
Now we evaluate the sum K by using lemma (3.4).

A-1

_N~e—B ¢(m)
= ; A m<§:p:B m
m+B=a(modA)

(Az — B) Z w(d) + O(log z)
a=0 d|(A,a—B) d
> (a-B) (j)—i-O(log:c).

a=0 d|(A.a—B)
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If we let ¢ = a — B, then above equation becomes

A-1 A-1
Cx p(d p(d p(d)
R DEP R R MY S Mo
¢=0 d|(A,c) c=A-B  d|(Ayc) c=A—Bd|(Ac)
+ O(log x)
A-1 A-1
Cx{Zc Z M(d)—A Z Mild)}+0(logx)
c=0 d|(A,c) c=A—-Bd|(A)
A-1 B
Cz p(d) p(d)
c=0 d|A c=1d|(A,c)
dle
Ca | () = 6(4,0)
= 7 Yoo A (4.0 + O(log z)
d|A 1<c<A-1 c=1
c=0(mod d)
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Thus, summation K becomes

1 5 3 3
- Z m<Ax—B H(m) " ﬁAlj B ﬁx

CAp(d) 16(AC S d(A,c)
+m{2 - 2 "5 A C’; (4.0 }JrO(logaz).

Next consider summation L, which is

m<Ax—B d|(A,—B)
m=—B(modA)
B ud) CB u(d)
=C Z g 1 Z pi + O(log z)
d|(A,B) d|(A,—B)
L YAB)
=Cx (A.B) + O(log z).

Going back to our main equation (3.11) and inserting summation K and
summation L, we obtain

1 3 3 ¢(4, B)
éH(An - B) = Am<§BH(m) + ﬁAxQ - ﬁa:—i—Cx (A.B)
CA d) 16(A)C oA
+:c{2 Mc(l?)_2¢(A) —CZ;QZ(A ’CC))}+O(logx)
dlA c= ’

Recall that

Therefore
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In this way, one obtains

1 3 3 x ¢p(A)C
ZH(An—B):Z Z H(m)+7r2Aa:2—7r2x+7T2Ax—()

m<zx m<Azx—B

D54, ¢ A,B) 3
- Cz Z qb(il’ C)) + Cqu(A, B)) — ﬁ[Aa:2 + Ax — 2Bx]

which finally gives desired the result. O

Theorem 3.6. For any integers A and B with A > B > 0

> H(An-— B) = M(A,B)zlogz + O(x). (3.14)

mn<z
Proof. From the previous theorem, since H(z) = O(logz) we have

ZH(An—B):% 3 H(m)—% S H(m)+ Az + OQlog)

m<x m<Ax Ax—B<m<Azx

:% S H(m)+ Az + O(logz).

m<Ax

If we replace = by x/m in preceding equation, we obtain

S H(An—B) :% S° H(n) + A% 4 Oflog 2.

n<z/m n<Az
—_— m
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Summing the above sum over all integers m < z, we have

> H(An—B):%Z > H(n)—l—AZ%—FO(ZIOg%)

mn<z m<z n< Az m<x m<x
1 1
=72 2L Hm-3 > > H®
mSAan% m<m§Axn§AT:E

+ Azlogx + O(x).

Since
A-1
Y D Hm=) Y Hn=0(),
z<m< Az p< Az a=1n<A—a
we have
1
Z H(An— B) = — Z H(n) + Azlogz + O(x).
A
mn<z mn<Ax
Using Theorem 3.3, we have
13
Z H(An — B) = ZﬁA:plogA:r + Azxlogx + O(x)

mn<x
= %xlogm + Azlogx + O(x)
T
= M(A, B)zlogz + O(z).

If we combine Theorem 3.6 with the result
3
H(n) ~ —
Z (n) 20
n<x
which we proved in section 2, we get a new result.

Theorem 3.7. For A, B any integers, A > B > 0,

> H(An - B) ~ M(A,B)z. (3.15)
n<x
Proof. From theorem (3.5), we have
1
ZH(An - B) = 1 Z H(n) + Az + O(log z).

n<lx n<Azx
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If we put

into equation we get

3.3 Sign Changes of H(z)

We first note that A = A,, =[], p;, where p; denote the ith prime number
and k is sufficiently large.

Theorem 3.8. For B # 0, and fized, we have

lim lim
K—00 T—00 I log x

Y H(Awmn—-B)= — —H(B-1). (3.16)

mn<x

Proof. First observe that from Theorem 3.6, we have

Z H{Asn = B) = M(Ay, B) + O <lo;x>

C 6 19(A)C(4) $(Ax, )
—aBoyT 4 W

2o ().
log

Now letting kK — oo gives, C(A,) =1, %%f(’%) =0 and (A, ¢) = ¢, so

B—1 B—1
P(Ar, ) () _ 6
> =y 2 - —(B-1)+HB-1).
2
c=1 (AH,C) c=1 ¢ T
And after letting z — oo, we get
lim lim ZH(An—B)—E—H(B—l)
K—>00 T—00 xlogaj‘ " N ’7'1’2 ’

mn<x
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From Theorem 3.3 it follows that H(n) is positive for infinitely many
n. In the next theorem, we show that one cannot have H(n) > 0 for all
sufficiently large n.

Theorem 3.9. H(n) < 0 for some sufficiently large n.

Proof. Assume for a contradiction that H(n) > 0 for all sufficiently large n.
Then by using Theorem 3.8, for all sufficiently large B we have

6

. . 0 N>
mn<z
By definition of H(n), we write
¢(B)
HB)-HB-1)=—"—-—
(B)-H(B-1)="2 —
This gives
6 ¢(B)
ﬁ—H(B—l)zi—H(B)
Therefore (B)
—~>H(B)>0
L2 > H(B)
Choosing € > 0 and a large odd number B such that @ < €, we see that
6 ¢(B+1) 6 1
HB+1)=HB)- 5+ —~+——2<e——+=
(B =HB) -+ 2T <o 2t
which gives the required contradiction. ]

In the previous section we proved that H(x) # o(logloglogx). Thus
there exist infinitely many integers x such that

|H(x)| > clogloglogx for some ¢ > 0. (3.17)

Note that using (3.17), we see that given any large number N > 6, one can
find integer B such that |H(B)| > N. This brings us to an important result.

Theorem 3.10. For integral x, we have

limsup H(z) =00 and lirr_l}an(:p) = —o00. (3.18)

T—00

Proof. From implication of (3.17) we have two cases, either H(B) > N or
H(B) < —N.

Case 1: H(B) > N.
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From (3.16), we have

lim lim
K—00 T—00 T ]og T

> H(Awn — B) = =2~ — H(B) < =N +1.

mn<z

Therefore, for all sufficiently large k, say x > kg, we have

lim
z—oo xlog x

> H(Awm-B)<-N+2.

mn<z

Then for each k, there exists an xg = xo(k) such that for all x > xg

Z H(Agxn — B) < (=N + 3)xlogx. (3.19)

mn<zx

We conclude from (3.19) that for each k > kg, we have an n* = n*(k) such
that

1
H(Agn™ = B) < =N +3< o N.

Since otherwise we would get a contradiction from

Z 122 Z 1~Z%~wlogaj.

mn<x m<zn<z/m m<x
Case 2: H(B) < —N.
We have

> H(Am-B)=-—*-H(B)>N

mn<z

lim lim
K—00 T—00 T ]og T

Therefore, for all sufficiently large k, say x > kg, we have

> H(Awm-B)>N-1.

mn<z

) 1
lim
z—oo T logx

Then for each k there exists an xg = xo(x) such that for all x > xg

Z H(Awn — B) > (N —3)xlogz. (3.20)

mn<zx

We conclude from (3.20) that for each k > kg, we have an n* = n*(k) such
that

1
H(Agn" = B) > N 32> N.

33



Theorem 3.11. For integral x, we have

lim sup Elz) =o00 and liminf Elz) = —00. (3.21)

T—00 T T—00 T

Proof. From Theorem (2.6), we have

E(x)

= H(xz)+ O(1).
Hence, (3.21) follows immediately from the previous theorem. O

3.4 More Precise Results

In this section, we prove our main theorem
Theorem 3.12. For ¢ > 0, there exist infinitely many x such that
H(x) > cloglogloglog x (3.22)
and infinitely many x such that
H(z) < —cloglogloglog x. (3.23)

Proof. Recall that from Lemma 3.4, we have

> M:% S 494 Olog ).

m d
msz d|(A,B)
m=p(modA)

To analyze the error term more carefully in the proof of Lemma 3.4, let
T =(d,A) and d = kT, so that

lu(d)] | 1% (d)
O Z | = O y
d<z d<z
(d,A)|8 78 T|A
_0 p2(7) 12 (k)
k
7|8 T|A k<z/T
2
= log =
O D wi(r)log>
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Using above result, we have from Lemma 3.4 that

3 % Z (Z ,uz(T)logj_). (3.24)

m<z [(A,B) 7|(A,B)
m=p(modA)

Using (3.24) instead of (3.8) in the proof of Theorem 3.5, we obtain for
integral =z,

m< A d(4,5) ri(4,8) !
m=—(modA)
_C p(d) 2
=7 T(Am B)+ 0O Z p*(7)log Az
d|(A,8) 7|(4,8)
= % Mild)(Ax — B) +0(2"W log Az).
d|(A,8)
This gives
> H(An-B)= Z H(n) + Az + 0(2°@ log Az). (3.25)
n<x n<Az
Combining (3.25) with
Z H(n) ~ %x,
n<x
we get,
fz +Ax~3x+m_ M(A, B)z.
n<Ax
Using this in (3.25), we get
> H(An — B) = M(A, B)z + 0(2"Wlog Az) + o(x) (3.26)

n<x

where both the O and o are uniform in A. Now, let us take

x:A:Hp.

p<B

Then
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Here C(A) depends on B, and we know that % ( ) < 1. herefore we
can find constants ¢; > 0 and ¢z > 0 such that 1 — % < C(A4) < 2

In this way, (3.26) becomes

1 2v(A)+ Jog A
ZZH(An—B) = M(A,B)+ O (A +o(1)

) — M(A,B) +0(1)
6 1¢(A) 3= 6(4,¢)
= 5B 5 CA) -C4) 2. (o) +0(1)

Here we have

Zgbif’cc)) _ 6B—6+H(B—1)—fB+H(B)—M.

w2 2 B
This gives
% > H(An—B) - %B + ;d’f)cm) + C’(A)%B + C(A)H(B)
n<x
—C(A)@ =0(1)
B
(3.27)
Since we have 1 — % < C(A) < 1— £, for some ¢, co positive
L 1(4) 6
T ;S;H(An ~B) - —B + 5 CA) +C(A) 5B+ C(A)H(B)
B
—C( )(B) >
1 6 6 B
L (1-5) S (- §) (- 40)
n<x
follows. From (3.27), we have
% S H(An - B) - % +H(B) - ¢(zf) - CﬂgB)
n<x

To simplify (3.28), note that %1 = 0(1), @ <1, 25~ =0() and
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c29(B)

=g < 1. Consequently,

1
1 > H(An—B)+ H(B) =0(1) holds.
n<x
This means there exist [ independent of A,B such that
1
ZZH(An—B)JrH(B) <l
n<x

for sufficiently large B.
We know that for infinitely many B
|H(B)| > clogloglog B holds.

There are two cases:
Case 1: H(B) > clogloglog B.

First observe that, since we take

A=Hp,

p<B

for large B, we have

log A = Z logp ~ B.
p<B

(3.30) implies that there exist n* < A, such that
H(An* — B) <1 — clogloglog B
< —%clog loglog B

< —c loglogloglog(An* — B).

Case 2: H(B) < —clogloglog B.
Again (3.30) implies that there exist an n* < A such that
H(An* — B) > clogloglog B — [
> %clog loglog B
> ¢ loglogloglog(An*® — B).
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Which concludes the proof.

Theorem 3.13. For ¢ > 0, there exist infinitely many x such that
E(x) > cxloglogloglog x
and infinitely many x such that
E(x) < —cxloglogloglog x.
Proof. From theorem 2.6 we have

= H(xz)+ O(1).

Thus, combining this with theorem 3.12; we have the desired result.
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4 Improved Result of Sign Changes of Error Term
in Mean of ¢(n)

In this secton we show that E(x) = Qi (x+/loglogz), which is a further
improvement result of the previous section. In other words, there exist a
positive constant ¢ and infinitely many integers x such that

E(x) > cx+/loglog x

and infinitely many integer x such that

E(z) < —cx+/loglog .

Here we introduce a new approach to the problem such as complex in-
tegration with employing Perron’s formula. Now let us begin with some
preliminaries.

4.1 Basic lemmas

First we define s(x) to be the 'saw tooth’ function. Which is, s(z) has period
1, 5(0) =0, and s(z) = 3 — {z} for 0 < {z} < 1.

Lemma 4.1. We have

Hr) = 120 4 M(d)s(””d/d) +0 (emerVIoEe) (4.1)

uniformly for x > 2, y > ze~c1viose,

Here we set ¢(x) = 0, if = is not an integer. The constants ¢; are positive
and absolute.

Proof. Observe that we have three cases for y; namely y = z, y > x and
re~VIosT <4 < 2 First consider the case y = x. We recall that

o) _ - )
n d

din

It follows that
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d<z d<z
6 w(d) d) (x
=3t Tty {E}
d>x d<zx
This gives
el pld) g
H(z) = xz 2 Z J {d} (4.2)
d>x d<z
Here we put
1(d)
L(z) = —.
(x) .
d<zx

From the PNT with De la Vallée Poussin error term, we know that L(z) <
e~coVIoe for 2 > 2. Hence, by using partial summation in (4.2)

d
e

d>x
becomes
p(d) pd)l  L(y) L(z) /yL(t)
= - = - dt
d? Z d d y x + . 12
d>x r<d<y

dt.

641mxﬂogy 641mxﬂogx Y 641m\ﬂogt
< - +/ 5
Yy x @ t

Letting y — oo, we have

wd) 1 coviogz,

Using this, and adding L(z)/2 to (4.2) we see that

2 (o () oo

d<z

In the case when x is not an integer, we have s(z) = 1/2—{z} and ¢(z) =0
so that

H(z) +Z x/d +O< —Cl\/@>

by setting ¢; = ¢p. On the other hand, if = is an integer, we have s(z/d) =0
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while d|z. If we calculate the sum in this case we get

1 pld) — 1(z)
5270 T3 4

Putting this into (4.3), we see that

H(x) = 1¢(;) + Z ,u(d)s(xd/d) + O (6701\/@>

again by setting c; = ¢p.
When y > z, using the case y = x it suffices to show that

Z p(d)M - O(e‘c(’\/@).

d
r<d<y

Applying partial summation, we get

> u@™ D = (5-) 1) - ) o [

r<d<y y

Since y > x, L(y) < L(z) < e~°0VI°8 5o that

Z u(d)s(md/d) < eV follows
r<d<y

by taking cg = ¢; when y > .

When ze~ V18T < ¢ < . again it suffices to show that

> M(d)8($/d) < e~aViogz,

d
y<d<z

Suppose k is a positive integer such that 1 < k <
monotonic for 77 < d < 7, we have

> w02 () -5t () oo [,

/(k+1)
< e €0 /log kLH
< e—%cm /log T )

Since s(z/d) is

z
v
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Summing over both sides by 1 < k < 5, we find that

Z Z M(d)s(azd/d) _ Z M(d)s(xd/d)

1<k<z/y %H<d<% y<d<z

e—%co\/ log ze—c1Viog @
e—c1Vlogx

e ioga—ar Viozs
e—c1Vlogx

< 6—%60\/@—%01\/@_

<

<

Taking 4c; = ¢ the above expression becomes

Z 'u’(d)S(x/d) < 87201\/m+01 logz __ 3*01\/@.

d
y<d<z

This completes the proof. ]

Lemma 4.2. Let b and r > 0 be relatively prime integers, and let 3 be a

real number. Then .

> s(n/r+ ) = s(rpB). (4.4)

n=1

Proof. First observe that from definition of s(z) both sides are periodic with
period %, so we may assume that 0 < 8 < % The numbers bn run through
a complete residue system (mod 7), so we may assume that b = 1. Then we
have two cases; B =0o0r 0 < 3 < 1/r.

If 8 = 0 then left hand side is

r r—1 r—1
1 n
Sostonfr+8) =3 stn/r) =3 (5~ )
n=1 n=1 n=1
r—1 r—1
1 1
2 n=1 r n=1
-1 1
:r2 —~r(r=1)/2=0

42



which gives s(rg3) = 0.

If 0 < 8 < 1, then sum is

T r—1
Y osln/r+8) =7 s(n/r+p)
" o
=S G -n/r-8)
n=0
1 .1 n
_2—5-1-7;(2——5)
1 r—1 1
=B+ =) =B 1)
1
25—7“5:5(7"5)

Now in next lemma we extend the sum in (4.4) over an arbitrary interval
1<n<N.

Lemma 4.3. Let b and r > 0 be relatively prime integers, and let B be a
real number. Then for any positive N,

Zs nb/r + B) = Ns(rﬁ) + O(r). (4.5)
n=1
Proof. Let N=Qr+ R, 0 < R <r. By Lemma 4.2
N Qr R
anb/r—l—ﬂ Z (nb/r + B) + Z (nb/r + B)
n=1 n=1 . n=1
= Qs(rB) + Z s(nb/r + )
n=1

= N+ 00) +0(R)
= Yarp) + 000,

O]

Lemma 4.4. If ¢ is a positive integer, ¢ < e2VI°6N o s a non-integral
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real number, 0 < a < q, then

N
> " H(ng+ a) = C(q,a)N + O(Ne~2VleN), (4.6)
Where .
cao) =S (T[a-r2] Tu@™2
plg dlq

Proof. We apply Lemma 4.1 by taking y = (N + 1)ge~VIeN  Put 2 =
nq + a, where n is an integer and n < N . Since ng + « is non-integral we
have ¢(ng + «) = 0, so that

(g +a) = 3 ) IEDD | o merostiaen) 4y

d
d<y

If we sum over both sides of (4.8) up to N, we get

N d N
Z H nq T a Z Z nq + O[)/ ) 4 O (Z 6701 log(nq+a)> .
n=1 n=1d<y n=1
(4.9)
In (4.9), the error term is estimated to be
N
Z e—clw/log(nq—i-a) < Z e —c1+v/logng + Z e—q«lognq
n<N1/4 N1/4<n<N
< N1/4 (N N1/4) \/logN
Here observe that N1/4 < Ne 5 ViosN . Taking co = % we see that the error
term is
<« Ne~e2ViegN, (4.10)

Now, we apply Lemma 4.3 to the double sum in (4.9) by taking r = ﬁ
and 3 = 7. In this way, one obtains

N

;Md > (M) - ;u(dd) (T (qg) +ou)

=N u(d) (.4)

d<y
(4.11)
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Here error term is
ST 1< (N + 1)geVREN — Ngeme1VIeN 4 ge—erviog N
d<y
< qu_clm
< Ne2—c1viogN

1

Again taking co = 5, we see that

O Zl < Ne @ViegN,
d<y

(4.12)

To estimate the main term in (4.11), we take d square free, since otherwise
wu(d) = 0. Let us write d = ef with e|q, (f,q) = 1. Clearly, e = (d, q). Thus

the main term in equation (4.11) becomes

v ualGs () =N T e (3)

d<y ef<y ©
(f,9)=1
ple) (o n(f)
NY Fos(D) X5
esy f<y/e
(f,9)=1
Here observe that
(f) _ < nlf) p(f)
2 2 2
f<y/e / f=1 ! >y/e /
(f.)=1 (f.9)=1 (f,q)=1
-1
6 _9 1
=5 o= ] +of X 7
plg f>y/e
-1
6 _
=S (TTa-»2 ] +0tem).

plg

Therefore, equation (4.13) becomes

-1
-5 (Ma-r2) T8 ()40 vy ]

plg elq elq

45

(4.13)

(4.14)



The proof will be complete, if we can show that O (N qu %) <& Ne~c2Viog N,

Since e is square free,

a do1= Nowlo) « 2 erviogN
Y Yy q
elg
< ec“/logN

< Ne @/2VIgN _ ne—c2VIogN  fo]gws.

Finally combining (4.9),(4.10),(4.12) and (4.14), we have

N
Z H(ng+ a) = C(q,a)N + O(Ne~2VleNy a5 desired.
n=1

4.2 Sign Changes in the Mean of ¢(n)
Before proving our main theorems we recall the following result which is a

consequence of the Mellin transform.

Let a(s) = Y »2; 9= be Dirichlet series of a, with o9 > maz(0,0.) where

o is abscissa of convergence, and for a positive integer k put

Cr(z) = % Z an(z —n)*.

n<x

Then we have

1 og+ioco 1.S+k‘
Crl@) = 55 /(,O_m O oy sy pay (4.15)

for z > 0. We refer the proof of this formula to [2].

Theorem 4.5. For x > 2

H(z) = Eix) + O(eoVIoeT), (4.16)

Where ¢ is a positive absolute constant.

Proof. From Theorem 2.1 and 2.2, we have
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and

= — — .
T x
n<zx
By using these
3 E
S (1-0) 2 ) 5oy 3, Bl g
n<zx z n n<x n n<x r T v

It suffices to show that
2

First recall that

p(n) (s
Zns‘*‘l_g(s—l—l) for o> 1.

n<x

By (4.15), we have

n n n artico s)x®
Z<1_m)¢51):glcz(x_n)(n):21m/ ioo C(s—i—%)l(s—i—l)

n<x n<x

for a > 1.

Let o denote the contour o = (2%, —o0 < ¢ < +o00, where 7 = [t] + 4.

On this contour we have ﬁ < logT and ((s) < 71/21og 7.

Before estimating the integral we need some preparation. While the path is
y(t) = ~Tog(iray T it; and we have s(s + 1) in the integral, it follows that

2

c c c
i)l i) = it —
( log(t + 4) i)( log(t + 4) it) log(t +4) ! log?(t + 4)
) ct . ct 9
—1 —1 -1
log(t+4) log(t+4)
This gives
1 1
<

s(s+1) 7 (t+4)*
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First we estimate the integral on v(t) = —

/

m+itwher60§t<oo.

g ¢(r(1)a™
AT+ BGH+1)

g SOy 2]

<</0 [CA+ AV () + 1)|\7

T 1C(~( t))H:ﬂ(t)’ /
<</0 S+ @)+ 47 Dl

~ (t)dt

'(t)|dt

On ~(t) we have ﬁ < log 7 and ((s) < 71/%log 7. Therefore,

1/21 ~(t)
/ <</ 08" |a }\ (t)]dt
© 0

(t+4)2
_ T(t+4)1/2log2(t+4)‘x7(t)‘ ,
log x

/T log(t + 4) Clog t+4)

0 (t+4)3/2

5T Lo (t + 4)e CTEtD T log(t+ 4)e CReiD
:/ dt+/

0 (t 4 4)3/2 VIoEE (t+4)3/2

Viogz [* o 1 gz (T 1

—cylogz 7dt Clog T -

<e / + 1)/ +e Tl s ()
o logw 4 4

—cy/logz T o

<Le +e 1g(T+4)< (T+4)1/4+(e\/@+4)1/4> follows.

By letting T' — oo we obtain
/ < e VIeT  when 0<t< oo. (4.19)
gl

Second, to estimate the integral on v(t) = —
note that

m—i—it, where —oco < t < 0,

IO
|/T41+v< Moem+n’ "
O )]
< /T [RERC
!
t

LGOIk
O et ,
< [ amyEs T O

) ‘xv(t ‘
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On ~(t) we have ﬁ < log 7 and ((s) < 7%/%log 7. Therefore
0 7121092 7 ‘mV(t)’

<« 6t

»/p -7 (Jt| +4)2

_/ (It 4+ 4) /% 1og?([t| + 4) |27®]
o (|t|+4)

0 Jog(|t| +4)e ¢ log(\t|+4)
« [ et +9

_r (|t] + 4)3/2
0 10g(|t| —+ 4)6_010;(0\%14) —eVlogz 10g(|t| + 4)6—010;(0‘%
—evioET (!tl +4)3/ 7 (It] + 4)3/

_eVioET

[ (t)dt

1 _clogz 1
e—cViogz 4 = loé?ﬁ <— (6@4+ L + G +44)1/4> follows.
Again, by letting T'— 0o, we obtain
/ <e VT when —oo<t<0. (4.20)

Now after these estimations we evaluate the residue. Observe that in the
region between p and the orginal line of integration, we have the only pole
at s = 1. From the contour p, {(s + 1) has no critical zero since p in the
zero free region for (s + 1) And also we take in account the pole s = 0 for
¢(s+ 1), but note that =B +1) has a removable singularity at s = 0. Hence
we need to consider only the simple pole at s = 1. So residue calculation
gives

. C(s)x® .3
2me | -1 =2mi—x. 4.21
il =D T sy D) 2t (421)
Thus from (4.19),(4.20),(4.21), our integral is
1 a+1i0c0 C(S)$s 3 W
27 Jyins ot s 1) w2 TOET)
This gives
E(z)

H(z) = +O(emVIoeT),

T

This result brings us to our main theorem.
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Theorem 4.6. We have

E(z) = Q4 (z+/loglogx). (4.22)

Proof. From Theorem 4.5, it suffices to show that H(x) = Q4 (v/loglog x).

Now we apply lemma 4.4 with choice

o= J] »

p<z
p=3(mod4)

where we choose z ~ /log N and w(q) is even, so that ¢ = 1(mod4) and
g < eC2VIog N

Observe that if d|g, then 2
odd. If w(d) is even then 4
By using this we show that

= 1(mod4) or ¢ = 3(mod4) when w(d) is even or
= 1(mod4) and if w(d) is odd then 4 = 3(mod4).

»

(i) N

pd)s 7)) =1

In the case w(d) is even, we have pu(d) = 1 and 4 = 1(mod4) which give
p(d)s (1) = ( — 1) = 1. And on the other side, if w(d) is odd, then we
have ,u(d) nd 2 = 3(mod4) which gives

5(4q) =1 Gi) =1

Now we choose « in Lemma 4.4 for proving the claims H(x) is positive for
infinitely many = and H(z) is negative for infinitely many z. In the first

1
2
1 an

—_

p(d

~—
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case we choose o = %, so that

plg dlq
-1
=5 o= >4
plg dlq
N 1
Ty
dlq
1
I ()
p<z p
p=3(mod4)
Taking logarithm of both sides, we get
1
log(Clg,q/4) ~ Y log (1 + )
p<z p
p=3(mod4)
> oy
p<z n=1 pn
p=3(mod4)
1 — (—1)"*!
= 2 o > 2 o
p<z p<z n=2
p=3(mod4) p=3(mod4)

By Mertens estimation, we have

Z ]1) = qs(lq)loglogz + O(1). (see [2])

p<z
p=k(modq)

Here p is prime and (k,q) = 1. This gives

1 1
Z — = —loglogz + O(1).
p 2
P<z
p=3(mod4)
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And, note that

n=2 n=2
1 <1
— il
2p n=0 pn
__ 11
2(p? —p) ~ p*
This gives
(o]
-1 n+1
> Y =om
p<z n=2 p
p=3(mod4)
Hence, we have
C(q,q/4) =~ \/log z ~ \/loglog N. (4.23)

From equation (4.6), we see that there are x such that H(z) is positive and

furthermore H(z) = Q(+/loglog x).

Since the average value of H(ng + «) for 1 < n < N is asymptotic to

C(q, $) = Vloglog N, we have H(x) # o(y/loglog x).

In the second case we choose v = %. In this case we show

o 1
p(@)s () =3
If w(d) is even, then we have ;u(d) = 1 and £ = 1(mod4) which gives
3q 1 3 1
uid)s (4d> =1 <2 - 4) =1

And on the other side, if w(d) is odd, we have p(d) = —1 and 4 = 3(mod4)
which gives
3¢\ 11y 1
s (38) =0 (5-1) =1

C(q,3q/4) = —C(q,q/4) = —/loglog N (4.24)

Thus, again from equation (4.6), we obtain there are x such that H(x) is
negative and does not exceed —+/loglog x.

This gives us,
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From both cases o = { and o = % we obtain that H(z) = Q4 (y/loglogx),
and hence from Theorem 4.5, we have

E(x) = Q4 (z+/loglog x).
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5 Fluctuation on the Averages of the Sum of Di-
visor Function

In this section, we apply the methods that we used in preceding sections and
show the existence of fluctuations on the error term for the average order
of divisors of n which are coprime to any given integer a. We define this a

function as,

Dy(n)= > d.

din
(da)=1

Where a > 1 is an integer.

5.1 Average order of D,(n) and D“T(")
Let us first find the average of D,(n).

Theorem 5.1. For all x > 2, we have

Proof.

m2z2p(a
Z Dy(n) = 1;2() + O(zlogz).

n<x

DoDam) =30 3T d=3 3

n<zx n<z dn n<z dln
(d,a)=1 (n/d,a)=1

=D 2 a=). ) ad ul)

d<z q<z/d d<z q<z/d r|q

(g,a)=1 rla
=2 D rulr) 3 s
d<z r<z/d s<z/dr

rla

22 1 r 1
Sy a Yo a3]

d<z rla d<w

_d@at~ L
=" e + O(xzlog )
d<zx

)

(5.1)

O

By using above theorem and partial summation formula we get following

result.
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Theorem 5.2. For all x > 2, we have

Dq(n) _ m*z¢(a)
Z T 6a + O(log z). (5.3)
n<x
Proof.
Dy(n) _ m*z°¢(a) * 1%¢(a)
= 1 dt
nz<;: n z12a +O(logz) Jr/l 12a
2
= 7r3gZ(a) + O(log ).
O
5.2 Fluctuation on the averages of D,(n)
Before we start the section, we introduce some definitions. We define
2226 (a)
Ko(z) ==Y Da(n) - o (5.4)

n<x

n 7T2.%' a
Fo(z) =) D“Tf ) _ Gi( ) (5.5)

for a = p?lp? .. .pg‘“ where 3; > 0 and 1 <1 < s. And we use p, ¢ to denote

primes.

In this section, we prove that K,(z) = Q4 (zloglogx). Let us begin with
some lemmas for proving the theorem.

Lemma 5.3. For each natural number n, we have

D) S L. (5.6

dln pl(a,d)

Proof. Observe that both sides in the equation are multiplicative function
of m, it sufficies to check the equality for n = ¢°, where ¢ is a prime and b is
a nonnegative integer. We have two cases here, ¢la or ¢ 1 a.

If gla, then
Do(¢®) 1 1
) Z d= @
dlg®
(d,a)=1
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and

1 1 1 1 1
dlg®  pl(a,d)
Which gives the identity.
Ifgta
Da(¢?) 1 g Q+a+d+.. . +d)
¢ g Z - ¢
d|q®
(d,a)=1

and

1 l+q+¢+...+¢
STl am=3g=(1r ) = 0
dlg®  pl(a,d) dlg®
Which completes the formula. ]

Lemma 5.4. We have
lngl—l-O( ) if s =1,
Z 1] a { o(1) ifs>1 (5:7)
n<x p|(an

Proof. From Theorem 1.8, we have

Sia-n=Y"3% u(d)d=Zu(d)Z%21

n<z - p|(a,n) n<z  dl(an) n<z - dln
d
:Zu Z Zu (log +E—|—O< >>
dla q<:p/d
1
= (logz + E) Zu(d) — Zu(d) logd+ O (3:) :
dla dla

From Theorem 1.3, we have — 3~ , pu(d) logd = A(a), so that

Z % (1-p)=(logz+E) Z p(d) + Ala) + O (;) follows.

n<z  pl(a,n) d|p1-ps

Consider the cases that s = 1 or s > 1. If s = 1, A(a) = logp: and
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If s > 1, then A(a) =0and >, ., #(d) =0 so that

Z% 11 (1—p)=0<i>.

n<z - pl(an)

Lemma 5.5. We have

Proof. First observe that, from Theorem 1.9 and using the fact that

1
52 H (1-p)
pl(a,k)
is completely multiplicative, we have

R e )

=1 pl(ak) q 7 a1 =

Al (le ( '>(1p))

ool q ool
HESE e

(5.8)



By using equation (5.5), Lemma 5.3 and above result, we get

Y Y i a-s ik [T

n<z kin p\(a k) pl(ak
— Z S J[a-p-2> % (1-p)
k<z q<x/k p|(a,k) k=1 pl(a.k)
YL <1_p>_xz$ (1-»)
k<x pl(ak) k=1" pl(a;k)

R =S [ T a-n-a% 5 T a-»
k=1 pl(a,k) k=1 p\(ak)
S ek o
= pl(a:k) k=1 " pl(ak)
:_Z%{%} (1—-p) follows

Lemma 5.6. We have

uniformly for v > 2, y > %\/E

Proof. By Lemma 5.5, it is sufficient to prove that

S T a-n=00).

k>y pl(ak)

Here if y > §, then

(it Mo-n <X {{}lo-n <

XT T
Y S <o<l
k Yy
k>y pl(a,k) k>y

k>y

(5.11)
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Now we assume that f <y < 3. By (5.11) we have

St Ia-»

o(1).
k>x p|(a,k)
Therefore, it suffices to prove that
1z
> Az} I a-»=o0.

y<k<z p|(a,k)
Let M be an integer with M < x/y < M + 1. Then, for each integer ¢ with

2<t< M+1, {#} is monotone in the range z/t < k < x/(t — 1). Hence
by Lemma 5.4 and partial summation, we have

> ilit [Lo-n=-o()

z/t<k<z/(t—1)

pl(a.k) .
and . o
X
> i H“‘p):O(x)‘
y<k<z/M p|(a,k)

Thus, for y > f , we have

1 rx 1z
Yol Il a-m= 3 3 p{ip Il a-
y<k<z pl(a,k) 2<t<M g /t<k<z/(t—1) pl(a
1
vy lLa-w
y<k<z/M pl(ak)

1 1 22
- < -5 < 1.
DDA

1<t<z/y
which gives desired result. O
Lemma 5.7. We have
K“x(x) ~ Ey(z) = O(1) (5.12)
Proof. By (5.4), we have
K,(x 1 T
x( ) x%Da(n) -z 152( ) (5.13)
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From Lemma 5.3

S0 =YY S [a-n= a0

n<x n<z din " pl(ad) d<z q<z/d pl(a.d)

~S (AT ) T

<z pl(a,d)

From Lemma 5.4, we have

Z I -p)=00/).

d<z p|ad)
Therefore,
5= (- 543)) T e-n o
n<z d<z pl(a,d)
2
IS L Ha-w - 5 T a-n+ow
d<z = p|(a,d) d<z pl(a,d)

Using Lemma 5.6, we get

> Dq(n) = Z II @ =p)+2Fu(z) + Ox). (5.14)

n<z = e

If we put (5.14) into (5.13), then
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Form (5.9), we have

This completes the proof. O

Lemma 5.8. If b, r are positive integers such that (b,r) =1 and  is real
number, then for any positive integer N, we have

N

Z{Tﬁ)w}:]j{rﬁwf(’";1)+O(r). (5.15)

n=1

Proof. By Lemma 4.3, we have

n=1
Note that
N
nb N N N
_;{T—’_/B} = —E‘FZ—?{T'B}—FO(T)
This gives
N
nb N N (r—1
S {% st = Ts+ X (1) vow
n=1 "
O
Lemma 5.9. Let A = ﬁ be an integer with (A,a) =1 and A > ma.
Pyt ps
e o 6a)
, a
> ™ [[]a-p=> = logm +O(1). (5.16)
k<A pl(a,k)
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Proof. By using Theorem 1.8, we have

SEV T a-n= %0 uad

k<A p|(a,k) k<A dla
dlk
k,A
-5 > Y uay
dla k<A dlk
p(d) (g; 4)
- d Z 2
dla q<A/d
p(d) (g; A) p(d) (g:4)
- Z d Z e T Z d Z e
dla g<A/a dla Ala<q<A/d
¢(a) (g, 4) p(d) (¢:A)
i 2 > > 2
g<A/a dla Ala<q<A/d
A1 A2
Since % > m, we have
(g: 4) (¢: A) 1
Ay = Z e > Z 2 = Z q
q<Al/a g<m q<m
(g,0)=1 (g,a)=1
1 1
= 62#(@—22&2#(@
q<m dlq dla g<m dlq
dla
_ o H(d) 1 u(d) m
=X A0 X s= (e o)
dla r<m/d dla
= ¢Ela) logm 4+ O(1)
And
p(d) (¢: 4) (k, A) 1
A2 = Z 7 Z 7 < Z 7 < Z E < 1.
dla AJa<q<A/d AJa<k<A Ala<k<A
Using A; and As in the above equation, we obtain
k,A o(a
> ( e ) I[[] a-p=> El)logm+0(1).
k<A pl(a,k)
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Theorem 5.10. For any integer a > 1, we have
K,(x) = Qy(xloglogx). (5.17)

Proof. Let A be as in Lemma 5.9 and let B be an integer with 0 < B < A.
By Lemma 5.6, we have

A
Foy(nA+ B) = %Z ;{"A;B} IT a-p+o)

HM:»

n=1 k<A pi(a.k)
A
1 1 nA+ B
- k( <1p>)2{ 2} +ow
k<A p|(a,k) n=1

(5.18)

By using Lemma 5.8 by putting r = (kkA) and 8 = %, the equation (5.18)
becomes

== (ki;a;l) (pH ( p)) <{ (134) } + 2(1:/1) N ;> +OW).

k<A (a.k)

Using Lemma 5.4, this further equals

ey (pg[k)up)) ({2 -Dvom. e

In equation (5.19), we take B = 0 to obtain

A
%ZF‘I(”A) - % ) <k,;;4) II a-p+o). (5.20)
n=1

k<A p|(a,k)

Taking B = A — 1, we have

A k, A 1 1
Zg alnd+4-1)= Z(l#)(pgk)(lp)) (2_(k,A)>+O(1)

k<A
1 (k,4)
:—52 e II a-p+o00) (5.21)
k<A pl(a,k)
Note that
loglog(A? + B) < loglog A < log(mlogm) < logm. (5.22)
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Using Lemma 5.9 in equation (5.20), we have

A

1 ¢(a)
— u > —21 1).
AREIF (nA) > o ogm + O(1)
From (5.22), we get
F,(z) > loglogx. (5.23)

Using Lemma 5.9 in equation (5.21), we have

1 ¢(a)
— — < -2 + 1).
nE 1Fa(nA +A-1) . logm + O(1)
Again from (5.22), we get
F,(z) < —loglog x. (5.24)

Finally from (5.23) and (5.24) we get
Fy(x) = Q4 (loglogx).
Therefore, by Lemma 5.7

Kq(z) = Qi(xloglogz) follows.
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6 Conclusion

In this thesis, we investigate the error terms in the averages of the arith-
metic functions ¢(n) and D,(n). By using basic concepts of the Number
Theory, we gave ()-type estimations for these error terms and by evaluat-
ing the averages on the arihmetic progressions, we showed that these error
terms change sign infinitely many times. Both results provided us to get
better prediction for the artihmetic functions ¢(n) and D,(n), when n is a
large number. However, an answer can be given to Montgomery’s conjecture
E(z) = O(xloglog x) [5], if one improves the results of this thesis.

Moreover, one can obtain similar results for the Jordan totient function

which is defined as .
n
Je(n) = E p(d) (3) :
din

It seems with some minor modifications, the current methods would work
for the Jordan totient function to obtain similar results. On the other hand,
in each section we mainly used the different properties of Mobius function.
Therefore, any function which is related to the Mobius function can be stud-
ied for similar results.

Consequently, in the major part of Analytic Number Theory we face with

error terms, to understand the behaviour of arithmetic functions, further we
should analyze these error terms by obtaining big-O and Q-type estimations.
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