
Intersection Problems of Steiner Triple Systems

by

Aras Erzurumluoǧlu
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ABSTRACT

A Steiner triple system of order n (STS(n)) is a pair (S, T ) where S is a set of

symbols of size n and T is a collection of 3 element subsets of S (triples) such that

each pair of distinct elements of S belongs to exactly one triple of T . It is known that

a Steiner triple system exists if and only if n ≡ 1, 3 (mod 6). Given a Steiner triple

system (S, T ), the flower at an element x of S is defined to be the set of all triples

containing the element x. Two Steiner triple systems (S, T1) and (S, T2) are said to

intersect in k triples if |T1 ∩ T2| = k. For all orders n ≡ 1, 3 (mod 6) let J(n) and

Jf(n) be defined as

J(n) = {k | ∃ (S, T1) and (S, T2) such that |T1 ∩ T2| = k} and

Jf(n) = {k | ∃ (S, T1) and (S, T2) such that |T1∩T2| = k+(n−1)/2 where (n−1)/2

of these common triples constitute a common flower}.

This thesis is a complete survey on determining J(n) and Jf (n), i.e. on intersection

and flower intersection problems of Steiner triple systems.
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ÖZETÇE

n’lik bir Steiner üçlü sistemi (SÜS(n)), (S, T ) şeklinde ifade edilen bir ikilidir öyle

ki S, n elemanlı bir semboller kümesini, T ise S’nin 3 elemanlı bazı altkümelerinden

(üçlü) oluşan bir topluluğu temsil eder ve S’den seçilecek her eleman ikilisi T ’nin

tam olarak bir üçlüsünde birlikte bulunur. Bilindiği üzere her n ≡ 1, 3 (mod 6)

için bir SÜS(n) vardır. Bir Steiner üçlü sistemi (S, T ) için S’nin x isimli elemanının

etrafındaki çiçek x elemanını içeren tüm üçlülerin oluşturduğu küme olarak tanımlanır.

Eğer |T1 ∩ T2| = k ise (S, T1) ve (S, T2) k tane üçlüde kesişiyor denir. J(n) ve Jf(n)

kümelerini şu şekilde tanımlayalım:

J(n) = {k | ∃ (S, T1) ve (S, T2) öyle ki |T1 ∩ T2| = k},

Jf(n) = {k | ∃ (S, T1) ve (S, T2) öyle ki |T1 ∩ T2| = k + (n − 1)/2 ve bu üçlülerin

(n− 1)/2 tanesi ortak bir çiçek oluşturur}.

Bu tezde n ≡ 1, 3 (mod 6) şeklindeki tüm n’ler için J(n) ve Jf(n) kümelerini

belirliyoruz, başka bir ifadeyle Steiner üçlü sistemlerinin kesişimi ve çiçek kesişimi

problemlerini çözüyoruz.
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Chapter 1

PRELIMINARIES

1.1 Definitions

Definition: A Steiner triple system of order n (STS(n)) is a pair (S, T ) where S is a

finite set of symbols, |S| = n, and T is a collection of 3 element subsets of S (triples)

such that each pair of distinct elements of S belongs to exactly one triple of T . A

number n is called admissible if there exists an STS(n) and the spectrum for Steiner

triple systems is defined to be the set of integers n for which there exists an STS(n).

Given a Steiner triple system (S, T ), the flower at an element x of S is defined to be

the set of all triples containing the element x.

Definition: A partial triple system is a pair (S, P ) where S is a set of points and P

is a collection of triples with the property that every pair of distinct elements of S

belongs to at most one triple of P . Two partial triple systems (S, P1) and (S, P2) are

said to be balanced provided P1 and P2 cover the same pair of distinct elements of S.

Definition: A pairwise balanced design (or PBD) is a pair (S,B) where S is a finite

set of symbols, and B is a collection of subsets of S called blocks such that each pair

of distinct elements of S occurs together in exactly one block of B.

Definition: A design is a pair (S,B) such that S is a set of elements called points

(vertices) and B is a collection of non-empty subsets of S called blocks.

Definition: A permutation on a set S of size n is a bijection from S to S. A system

(S, T2), which is constructed by performing a permutation on the triples of a system

(S, T1) is called an isomorphic disjoint mate of the system (S, T1) whenever these

systems do not possess any triples in common. A transposition is a permutation
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which exchanges two elements and keeps the others fixed. A permutation on symbols

i, j, ..., q which maps each of i, j to the next, q to i and leaves all other symbols, if

any, unchanged is called a cycle and is denoted by (ij...q).

Definition: A 1-factorization of a graph of order n is the decomposition of the edges

of the graph into 1-factors where a 1-factor is a set of n/2 disjoint edges, which

together cover all vertices of the graph.

Definition: A latin square of order n is an n × n array, each cell of which contains

exactly one of the symbols in {1, 2, ..., n} such that each row and each column of the

array contains each of the symbols in {1, 2, ..., n} exactly once. A latin square is said

to be commutative if cells (i, j) and (j, i) contain the same symbol for all 1 ≤ i, j ≤ n.

A latin square is said to be idempotent if cell (i, i) contains the symbol i for 1 ≤ i ≤ n

and a latin square of order 2n is said to be half-idempotent if for 1 ≤ i ≤ n, the cells

(i, i) and (n+ i, n + i) contain the symbol i.

Definition: A quasigroup of order n is a pair (Q, ◦) where Q is a set of size n and ◦

is a binary operation on Q such that for every pair of elements a, b ∈ Q, the equations

a ◦ x = b and y ◦ a = b have unique solutions. In our work, a quasigroup is just a

latin square with a headline and sideline.

Definition: Let Q = {1, 2, ..., 2n} and let H = {{1, 2}, {3, 4}, ..., {2n−1, 2n}} where

the two element subsets {2i− 1, 2i} ∈ H are called holes. A quasigroup with holes H

is a quasigroup (Q, ◦) of order 2n in which for each h ∈ H , (h, ◦) is a subquasigroup

of (Q, ◦).

Definition: A group divisible design is a triple (X,G,B) where X is a set of points,

G is a partition of X into subsets called groups and B is a collection of subsets of X

called blocks such that any pair of points from X appears together either in a group

or in a block, but not in both.

1.2 Some Fundamental Constructions

The following constructions will be useful in building some of the other constructions

used in the text.
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The Quasigroup with Holes Construction for Steiner Triple Systems: Let

({1, 2, ..., 2n}, ◦) be a commutative quasigroup of order 2n with holes {2i− 1, 2i} for

all 1 ≤ i ≤ n. Then,

(a) ({∞} ∪ {{1, 2, ..., 2n} × {1, 2, 3}}, B) is an STS(6n + 1), where B is defined as

follows.

(1) For 1 ≤ i ≤ n, let Bi contain the triples in an STS(7) on the symbols {∞} ∪

({2i− 1, 2i} × {1, 2, 3}) and let Bi ⊆ B.

(2) For 1 ≤ i 6= j ≤ 2n, {i, j} /∈ H place the triples {(i, 1), (j, 1), (i◦j, 2)}, {(i, 2), (j, 2),

(i ◦ j, 3)} and {(i, 3), (j, 3), (i ◦ j, 1)} in B.

(b) ({∞1,∞2,∞3} ∪ ({1, 2, ..., 2n} × {1, 2, 3}), B′) is an STS(6n + 3), where B′ is

defined by replacing (1) in (a) with:

(1′) For 1 ≤ i ≤ n, let B′
i contain the triples in an STS(9) on the symbols {∞1,∞2,

∞3} ∪({2i− 1, 2i} × {1, 2, 3}) in which {∞1,∞2,∞3} is a triple and let B′
i ⊆ B′. �

The systems constructed above have 6n2+n and 6n2+5n+1 triples respectively,

which are the correct number of triples. We see that all pairs with ∞ (∞i, i = 1, 2, 3

in (b)) being one of the elements and all pairs from the same hole appear in a triple

of type (1) ((1′) in (b)). All the other pairs appear in the triples of type (2).

Note that the quasigroup with holes construction for Steiner triple systems allows

us to build STS’s from quasigroups and using the following construction, one can

build bigger quasigroups from STS’s.

Construction of Commutative Quasigroups with Holes: For all n ≥ 3, a

commutative quasigroup of order 2n with holes H = {{1, 2}, {3, 4}, ...{2n−1, 2n}} is

constructed as follows.

Let S = {1, 2, ..., 2n+ 1}. If 2n+ 1 ≡ 1 or 3 (mod 6), then we let (S,B) be a Steiner

triple system of order 2n+1, and if 2n+1 ≡ 5 (mod 6), then we let (S,B) be a PBD

of order 2n+1 with exactly one block b, of size 5, and the rest of size 3. By renaming

the symbols in the triples (blocks) if necessary, we can assume that the only triples

containing the symbol 2n+ 1 are {1, 2, 2n+ 1}, {3, 4, 2n+ 1}, ..., {2n− 1, 2n, 2n+ 1}

and 2n+ 1 /∈ b (when forming the quasigroups, these triples will be ignored).
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We define a quasigroup (Q, ◦) = ({1, 2, ..., 2n}, ◦) as follows:

(1) For each h ∈ H = {{1, 2}, {3, 4}, ...{2n− 1, 2n}}, let (h, ◦) be a subquasigroup of

(Q, ◦).

(2) For 1 ≤ i 6= j ≤ 2n, {i, j} /∈ H and {i, j} * b, let {i, j, k} be the triple in B

containing the symbols i and j and define i ◦ j = k = j ◦ i.

(3) If 2n+ 1 ≡ 5 (mod 6), then let (b,⊗) be an idempotent commutative quasigroup

of order 5 and for each {i, j} ⊆ b define i ◦ j = i⊗ j = j ◦ i. �
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Chapter 2

INTRODUCTION

2.1 Overview

Combinatorial design theory is the study of combinatorial designs which are collec-

tions of subsets of a finite set, having some special intersection properties. Among the

oldest and most interesting notions in combinatorial design theory are the balanced

incomplete block designs (BIBDs). A BIBD with parameters (v, b, r, k, λ) is a pair

(X,A) where (i): X is a set of v elements (called points), (ii): A is a family of b

subsets of X , each of cardinality k (called blocks), (iii): every point occurs in exactly

r blocks, and (iv): every pair of distinct points occurs in exactly λ blocks. Usually,

k < v is also required, which explains the use of the word incomplete. A balanced in-

complete block design with parameters (v, b, r, k, λ) is denoted by (v, b, r, k, λ)-BIBD.

From b blocks, each of size k, we have in total bk elements; counting the same set

in another way, we have v points, each of which appears r times in a block. Hence,

bk = vr. A point, say x, appears in r blocks, each time with some other k − 1 el-

ements, so
∑

t⊇{x}

|t \ {x}| = r(k − 1), but the sum on the left hand side can also be

counted as λ(v − 1) since x appears exactly λ times with each of the other v − 1

points. So, r(k − 1) = λ(v − 1). Each one of these identities allows us to shorten our

notation to (v, k, λ)-BIBD. A specially interesting case is when k = 3 and λ = 1.

We call a (v, 3, 1)-BIBD a Steiner triple system after Jakob Steiner (1796-1863), an

important geometer of his time [15]. The name Steiner triple system is misleading,

since W. S. B. Woolhouse [11] is known to be the first one to define this term. In 1844,

Woolhouse asked: For which positive integers n does a Steiner triple system of order

n exist (denoted by STS(n))? In 1847, this question was solved by T. P. Kirkman
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(1806-1895) [15], who is also famous with his 15 schoolgirls problem. The problem is

to arrange 15 schoolgirls in groups of three for seven days’ walks such that each pair

of them walk exactly once. This problem is equivalent to constructing an STS(15)

where the set of three element blocks (triples) can be partitioned into seven subsets

with five triples each, so that each element of the point set appears exactly once in a

triple of each such subset. Such Steiner triple systems are also called Kirkman triple

systems. Now going back to the existence question of Steiner triple systems, we give

constructions different than the ones of Kirkman. The following constructions are

due to Raj Chandra Bose (1901-1987) and Thoralf Skolem (1887-1963), respectively,

which together guarantee the existence of Steiner triple systems of order n whenever

n ≡ 1 or 3 (mod 6). These constructions make use of the existence of idempotent

commutative quasigroups of order 2n + 1 and half-idempotent commutative quasi-

groups of order 2n, both for n ≥ 1. These can be obtained by renaming the tables

for the additive group of integers modulo 2n+ 1 and 2n, respectively.

The Bose Construction: Let v = 6n+ 3 and let (Q, ◦) be an idempotent commu-

tative quasigroup of order 2n+ 1 where Q = {1, 2, ..., 2n+ 1}. Let S = Q× {1, 2, 3},

we define T to contain the following types of triples.

(1) For 1 ≤ i ≤ 2n+ 1, {(i, 1), (i, 2), (i, 3)} ∈ T .

(2) For 1 ≤ i < j ≤ 2n+1, {(i, 1), (j, 1), (i◦j, 2)}, {(i, 2), (j, 2), (i◦j, 3)}, {(i, 3), (j, 3),

(i ◦ j, 1)} ∈ T .

Then (S, T ) is a Steiner triple system of order 6n+ 3. Please see Figure 2.1. �

The Skolem Construction: Let v = 6n + 1 and let (Q, ◦) be a half-idempotent

commutative quasigroup of order 2n where Q = {1, 2, ..., 2n}. Let S = {∞} ∪ (Q ×

{1, 2, 3}), we define T to contain the following types of triples.

(1) For 1 ≤ i ≤ n, {(i, 1), (i, 2), (i, 3)} ∈ T .

(2) For 1 ≤ i ≤ n, {∞, (n + i, 1), (i, 2)}, {∞, (n + i, 2), (i, 3)}, {∞, (n + i, 3), (i, 1)}

∈ T .

(3) For 1 ≤ i < j ≤ 2n, {(i, 1), (j, 1), (i◦j, 2)}, {(i, 2), (j, 2), (i◦j, 3)}, {(i, 3), (j, 3), (i◦

j, 1)} ∈ T .
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Type 1 triples

Type 2 triples

i ◦ jji

i

i j

i ◦ j

i ◦ j

j

Figure 2.1: The Bose Construction

Then (S, T ) is a Steiner triple system of order 6n+ 1. Please see Figure 2.2. �

Theorem 2.1.1 There exists a Steiner triple system of order n if and only if n ≡ 1

or 3 (mod 6).

Proof : We only need to show that there is no STS(n) for n ≡ 0, 2, 4 or 5 (mod 6).

Let (S, T ) be an STS(n). Any triple in T contains three 2-element subsets. Since

each pair of distinct elements of S appears together in exactly one triple of T , we

have 3 |T | =
(

n

2

)

. So, |T | = n(n − 1)/6. For any x, let T (x) = {t \ {x} such that

x ∈ t ∈ T}. Then T (x) partitions S \ {x} into subsets of size two and considering
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the cardinality of S \ {x} we see that n− 1 is even, n is odd. Computing modulo 6,

we have n ≡ 1, 3 or 5. When n = 5, |T | = n(n− 1)/6 is not an integer. So, the only

available cases are n ≡ 1 or 3 (mod 6). �

Knowing the set of numbers n for which there exists an STS(n), our next concern

is determining the set of numbers k (for fixed n) for which there exists a pair of

STS(n)’s intersecting in k triples. Throughout this thesis we consider this problem

and a variety of it, called flower intersection problem, and give complete solutions to

both.
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Chapter 3

THE BASIC INTERSECTION PROBLEM OF STEINER

TRIPLE SYSTEMS

Two Steiner triple systems (S, T1) and (S, T2) are said to intersect in k triples if

| T1 ∩T2 |= k. If k = 0, (S, T1) and (S, T2) are said to be disjoint, and if | T1 ∩T2 |= 1

they are said to be almost disjoint. J. Doyen and C. C. Lindner solved these special

cases, respectively, establishing the first results on the intersection problem of Steiner

triple systems in [5] and [10]. Then, in 1975, C. C. Lindner and A. Rosa solved

completely the problem of determining the set of possible values k of triples in which

two Steiner triple systems can intersect [12], [13]. In this chapter, we give a detailed

analysis of their proof.

We will denote the number of triples in an STS(n) by tn; hence tn = n(n− 1)/6.

We define I(n) = {0, 1, ..., tn − 6, tn − 4, tn}. Further, we define J(n) to be the set of

all integers k for which there exists a pair of STS(n) intersecting in k triples.

3.1 Elementary Results

Lemma 3.1.1 J(3) = {1}, J(7) = {0, 1, 3, 7}.

Proof : When n = 3, t3 = 1. Since there is a unique STS(3), J(3) = {1}. To show

that J(7) = {0, 1, 3, 7}, we explicitly give pairs of STS(7)s intersecting in k = 0, 1, 3, 7

triples and then show why 2, 4, 5, 6 /∈ J(7). Let

T = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}.

T0 = {{6, 5, 3}, {5, 4, 2}, {4, 3, 1}, {3, 2, 7}, {2, 1, 6}, {1, 7, 5}, {7, 6, 4}}.

T1 = {{2, 3, 7}, {3, 5, 6}, {1, 2, 5}, {4,5,7}, {1, 6, 7}, {2, 4, 6}, {1, 3, 4}}.

T3 = {{1,2,4}, {2, 3, 6}, {2, 5, 7}, {5,6,1}, {3, 4, 5}, {4, 6, 7}, {7,1,3}}, where
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|T ∩ Ti| = i. 7 ∈ J(7) is done by taking the same STS(7) twice.

Now, we show 2, 4, 5, 6 /∈ J(7).

2 /∈ J(7): Assume contrarily that 2 ∈ J(7). Let (S, T1) and (S, T2) be two STS(7)

where T1 ∩ T2 = {T1, T2}. We consider two cases T1 ∩ T2 = ∅ and | T1 ∩ T2 |= 1.

Case i : Without loss of generality, we assume that T1 = {1, 2, 3} and T2 = {4, 5, 6}.

Then, also {1, 4, 7} ∈ T1 ∩ T2, since the pair {1, 4} must appear in a triple in both

systems, which gives a contradiction.

Case ii : Without loss of generality, let 1 be the common vertex of the triples T1

and T2. 1 appears together with 4 vertices in T1 and T2, hence 1 and the remaining

two other vertices that have not appeared yet must form a triple, both in (S, T1) and

(S, T2), which gives a contradiction.

4, 5, 6 /∈ J(7): Let T1 ∩ T2 = i. Assume i 6= 7, then there is a triple, say {1, 2, 3} ∈

T1 \ T2. Then the pair {1, 2} appears in a triple different than {1, 2, 3} in T2 \ T1, say

{1, 2, 4} ∈ T2 \T1. Now the pair {1, 4} must appear in a triple of T1 \T2, say {1, 4, 5}.

So, for each a that appears in a triple of T1 \ T2, there is at least one other triple in

T1 \ T2 containing a (in the above case, for 1, these are {1, 2, 3} and {1, 4, 5}). Hence

there are at least five elements which appear in a triple of T1 \ T2 (in the above case,

these are 1, 2, 3, 4, 5). These five elements appear at least 5 · 2 times in total in T1 \ T2

and hence we must have 5·2
3

≤ 7− i. We have i < 4. �

Our work for Lemma 3.1.1 can be generalized to STS’s of any order. Now, we

will prove that tn − 5, tn − 3, tn − 2 and tn − 1 cannot be in J(n), i.e. there cannot

exist a pair of STS(n)’s intersecting in tn − 5, tn − 3, tn − 2 or tn − 1 triples, which

is the same as saying J(n) ⊆ I(n).

Lemma 3.1.2 J(n) ⊆ I(n).

Proof : We have already examined the cases n = 3 and n = 7. So, assume n ≥ 9.

We remark that our proof for 4, 5, 6 /∈ J(7) in Lemma 3.1.1 applies for tn − 3, tn − 2,

tn − 1 as well (note that in the proof we did not use the information that n = 7).

So, we only need to show that tn − 5 /∈ J(n). Let (S, T1) and (S, T2) be two STS(n).
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Assume that | T1 \ T2 |= 5. As in the proof of Lemma 3.1.1, each element in a triple

of T1 \ T2 must appear in at least two triples of T1 \ T2. In five triples we have 15

elements in total (where each of the elements is counted at least twice). Then one of

the elements must occur in at least three triples of T1 \ T2. Denote that element by

1 and let the triples be {1, 2, 3}, {1, 4, 5}, {1, 6, 7}. Since each element has to appear

in at least two triples of T1 \ T2, there must be another triple in T1 \ T2 containing

the element 2. The same is true for the element 3. Respecting that the elements

4, 5, 6, 7 also have to appear in at least two triples of T1 \ T2, we see that without

loss of generality T1 \T2 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {3, 5, 7}}. The pair of

elements that occur together in a triple of T1 \T2 must also occur in a triple of T2 \T1.

The pair {2, 3} should occur in a triple of T2 \ T1, but there is no element other than

1 which occurs together with both 2 and 3 in a block of T1 \T2. So, {1, 2, 3} ∈ T2 \T1.

Contradiction. �

Now, we move on to prove the main result which tells that, indeed J(n) = I(n)

for all n ≡ 1, 3 (mod 6) with the sole exception being n = 9. To prove this result,

first we will prove some smaller cases and then use induction to handle the general

case.

First, note as our third lemma that J(9) = {0, 1, 2, 3, 4, 6, 12}, whereas I(9) =

{0, 1, 2, 3, 4, 5, 6, 8, 12}.

Lemma 3.1.3 J(9) = {0, 1, 2, 3, 4, 6, 12}.

Proof : Consider the STS(9) given by the set of triples {{0, 1, 2}, {0, 3, 6}, {0, 4, 8},

{0, 5, 7}, {1, 3, 8}, {1, 4, 7}, {1, 5, 6}, {2, 3, 7}, {2, 4, 6}, {2, 5, 8}, {3, 4, 5}, {6, 7, 8}}.

Applying the following permutations on the above STS(9), we generate new

STS(9)’s with k triples in common with the above given STS(9), where k ∈ {0, 1, 2, 3,

4, 6}; for k = 12, we can take two copies of the above STS(9).

k = 0 : (0, 1, 6, 4, 8, 7, 5)(2, 3)

k = 1 : (0, 5, 3, 4, 1, 8, 6)(2, 7)

k = 2 : (0, 7, 2, 8, 1, 5, 6, 4)
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k = 3 : (0, 3, 5, 4, 6, 2, 1, 7, 8)

k = 4 : (0, 7, 8, 6, 4, 3, 2, 5, 1)

k = 6 : (0, 7)(1, 3, 6, 4)

In [17] and [18] E. Witt proved that any two STS(9)’s are isomorphic. In [8] E. S.

Kramer and D. M. Mesner used this fact and a computer search to prove that there

exists no pair of STS(9)’s intersecting in 5 or 8 triples. Moreover, for all k ∈ I(9),

they listed the actual number of pairs of STS(9)’s intersecting in k triples. �

3.2 Teirlinck’s Algorithm

Before determining the whole set of number of triples in which two Steiner triple

systems (S, T1) and (S, T2) can intersect, we give an algorithm, called Teirlinck’s

Algorithm, which guarantees that 0 ∈ J(n) for all admissible n ≥ 3. As we mentioned

earlier, such a pair of systems that have no triples in common is called disjoint.

Consider the disjoint systems (S, T1) and (S, T2), where

T1 = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}} and

T2 = {{1, 2, 5}, {2, 4, 6}, {4, 5, 3}, {5, 6, 7}, {6, 3, 1}, {3, 7, 2}, {7, 1, 4}}.

We can observe that T2 = T1α where α is the following permutation:

α =





1 2 3 4 5 6 7

1 2 4 5 6 3 7





Such a system (S, T2), which is constructed by performing a permutation α on a

system (S, T1) is called an isomorphic disjoint mate of the system (S, T1) whenever

these systems are disjoint. Given two systems (S, T1) and (S, T2) of order n, our plan

is to construct α as a product of transpositions such that T2 = T1α. We will denote

the transposition that interchanges a and b by (ab). Let {c, d, e} ∈ T1∩T2. We define

the spread of c with respect to {c, d, e} as S(c) = {c, d, e} ∪ A(c) ∪ B(c) where A(c)

and B(c) are defined as follows:

A(c) = {a | {a, x, y} ∈ T1 and {c, x, y} ∈ T2 \ {c, d, e}} and

B(c) = {b | {b, z, w} ∈ T2 and {c, z, w} ∈ T1 \ {c, d, e}}.
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In words, we consider the pair of elements {z, w} that forms a triple in T1 with

c. By definition of an STS, this pair of elements also appears together in a triple of

T2. Say the third element of that triple in T2 is b. All such elements b, except those

of {c, d, e} constitute B(c). Similarly, considering the pair of elements {x, y} that

forms a triple in T2 with c we get elements a such that {a, x, y} is a triple of T1. Such

elements a, other than those in {c, d, e} constitute A(c).

Given two systems (S, T1) and (S, T2) of order n, the following algorithm provides

a way to manipulate T2 such that under a certain circumstance the modified STS has

fewer triples in common with T1.

Theorem 3.2.1 (The Reduction Algorithm) Suppose that (S, T1) and (S, T2) are two

STS(n) such that {1, 2, 3} ∈ T1∩T2 and |S(3)| < n. Then there exists a transposition

α such that T1 ∩ T2α ⊆ T1 ∩ T2 and |T1 ∩ T2α| < |T1 ∩ T2|.

Proof : Let x be such that x /∈ S(3) and let α = (3x). T1 ∩ T2α contains all the

triples of T1 ∩ T2 which do not include any of x or 3, as well as the triple {3, x, a}

if {3, x, a} ∈ T1 ∩ T2. As triples that do not contain 3 or x do not change under

the permutation (3x), if there are some other triples in T1 ∩ T2α, these must be

either of the form {x, a, b} or {3, a, b}. If {x, a, b} ∈ T1 ∩ T2α, then {x, a, b} ∈ T1

and {3, a, b} ∈ T2, but this implies x ∈ A(3) ⊆ S(3). If {3, a, b} ∈ T1 ∩ T2α, then

{3, a, b} ∈ T1 and {x, a, b} ∈ T2 and this implies x ∈ B(3) ⊆ S(3). Both of these cases

contradict with our assumption that x /∈ S(3). So, T1 ∩ T2α ⊆ T1 ∩ T2. Moreover,

{1, 2, 3} ∈ (T1 ∩ T2) \ (T1 ∩ T2α). Hence, |T1 ∩ T2α| < |T1 ∩ T2|. �

Given two STS(n)’s (S, T1) and (S, T2), as long as the assumption of the theorem

is satisfied, we can repeat the above algorithm to find transpositions α1, α2, ..., αk so

that T1 ∩ T2α1α2...αk = ∅. If at some step i the assumption is not satisfied, i.e. if

every element in every triple of T1∩T2α1α2...αi has spread (with respect to that triple)

equal to S, this algorithm does not help any further. We need another algorithm:

Theorem 3.2.2 (Teirlinck’s Algorithm) Suppose that (S, T1) and (S, T2) are two

STS(n) such that {1, 2, 3} ∈ T1∩T2 and |S(3)| = n. Then there exists a transposition
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α such that T1 ∩ T2α contains a triple t with an element e such that |S(e)| < n and

|T1 ∩ T2α| ≤ |T1 ∩ T2|.

Proof : We are going to construct the necessary transposition α by an algorithm, but

first we note that given two STS(n)’s; (S, T1), (S, T2) and a triple {1, 2, 3} ∈ T1 ∩ T2,

for any element of this triple, for example for 1, S(1) = S if and only if {1, 2, 3}, A(1)

and B(1) are all disjoint. This is because S(1) = {1, 2, 3} ∪ A(1) ∪ B(1) and both

of A(1) and B(1) should have (n − 3)/2 elements by their definition. That said, we

describe the algorithm step by step as follows:

1. Let {1, 2, 3} ∈ T1 ∩ T2.

2. Suppose {3, x, y} is another triple in T2 containing the symbol 3.

3. Let {x, y, c} be the triple containing x and y in T1. Since we assumed that

S(3) = S, making use of our observation we conclude that c /∈ {1, 2, 3}.

4. Suppose {3, c, d} is the triple containing 3 and c in T2.

5. As the final step, we find the triple containing c and d in T1, say {c, d, e}. Since

S(3) = S, making use of our observation again, we conclude that e /∈ {1, 2, 3}. Please

see Figure 3.1.

We claim that α = (3e) is the required transposition. If so, {c, d, e} ∈ T1 ∩

T2α. Denote by Sα(e) the spread of e with respect to {c, d, e} after the transposition

is applied. So, |Sα(e)| < n because after applying the transposition α, the sets

{c, d, e}, Aα(e) and Bα(e) are not disjoint. For example, c is in both {c, d, e} and

Aα(e) (remark that {e, x, y} ∈ T2α and {c, x, y} ∈ T1, hence c ∈ Aα(e)). Finally,

we need to show that |T1 ∩ T2α| ≤ |T1 ∩ T2|. Now, {1, 2, 3} is not any more in

T1 ∩ T2α, but {c, d, e} ∈ T1 ∩ T2α. It is enough to show that T1 ∩ T2α does not

contain any new triple, other than {c, d, e}. Assume that there exists a triple in

(T1 ∩ T2α) \ (T1 ∩ T2). Such a triple must contain at least one of the elements 3

or e. Assume {e, a, b} ∈ (T1 ∩ T2α) \ (T1 ∩ T2), where {e, a, b} 6= {c, d, e} and a

and b are arbitrary elements different than e. So, {e, a, b} ∈ T1 and {3, a, b} ∈ T2.

This means that 3 ∈ B(e). We remember that the spread of each element was

assumed to be equal to S. But from {c, d, e} ∈ T1 and {c, d, 3} ∈ T2, we also get
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Figure 3.1: Teirlinck’s Algorithm
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3 ∈ B(e). The observation we made before describing the algorithm suggests that

{e, a, b} = {c, d, e}. Contradiction. This time, assume {3, a, b} ∈ (T1∩T2α)\(T1∩T2),

where {3, a, b} 6= {c, d, e} and a and b are arbitrary elements different than 3. So,

{3, a, b} ∈ T1 and {e, a, b} ∈ T2. This means again that 3 ∈ A(e), but 3 was already

shown to be in A(e) due to a different block. Contradiction. �

Theorem 3.2.3 Let (S, T1) and (S, T2) be any two STS(n). Then there exist trans-

positions α1, α2, ..., αk such that T1 ∩ T2α1α2...αk = ∅.

Proof : Repeated applications of the Reduction Algorithm and Teirlinck’s Algorithm

(needed whenever every element in every triple in the intersection has spread equal

to S) produce a pair of disjoint triple systems. �

3.3 Basic Constructions and Lemmas

In this section, we will deal with the main constructions, which we will need to cope

both with the smaller cases and the general case.

We start with the well known fact that there exists a 1-factorization of K2n for

each n . For the sake of completeness, we give a proof of this fact here. Let us note

it as a lemma.

Lemma 3.3.1 There exists a 1-factorization of K2n for each n.

Proof : Let F = {F1, F2, ..., F2n−1} where Fi = {{i, 2n}, {i − j, i + j}} for i =

1, 2, ..., 2n − 1, j = 1, 2, ..., n − 1, where i − j, i + j are calculated modulo Z2n−1.

This gives a 1-factorization of K2n. Please see Figure 3.2. �

2n+1 Construction: We let (S, T ) be a Steiner triple system of order n, say S =

{a1, a2, ..., an} and (X,F) be a 1-factorization of Kn+1, where X is a vertex set such

that X ∩S = ∅ and F is the union of 1-factors F1, F2, ..., Fn. We set S∗ = S ∪X and

define the collection of triples T ∗ as the union of the following:

(1) T ⊆ T ∗.
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1 1 11 1

2 2 2 2
2

333334 4 4 4 4

5 5 5 5 5
6

6
6 66

Figure 3.2: A 1-factorization of K6

(2) For each vertex ai ∈ S and for each edge [x, y] of the 1-factor Fi, i = 1, 2, ..., n,

we place the triple {ai, x, y} in T ∗. Please see Figure 3.3.

F1 F2 Fn

Kn+1 =

STS(n)

ana2a1

Figure 3.3: 2n+ 1 Construction

(S∗, T ∗) is an STS(2n + 1). First we count the number of triples. There are tn =

n · (n − 1)/6 triples of type (1) and n · (n + 1)/2 triples of type (2). Together, these

make (4n2 +2n)/6 = (2n+1) · 2n/6 = t2n+1 triples. So, we have the right number of

triples. Hence it is enough to show that each pair of vertices of S∗ appear together

in a triple. All pairs of points, both from S, appear clearly in a triple of type (1),

since (S, T ) is an STS. All pairs of points, both from X , appear together in a triple

of type (2), since to each edge [x, y] corresponds a triple of type (2). And finally, all
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pairs of vertices such that one is from S, the other one from X appear again in a

triple of type (2), because each point ai of S is joined to both endpoints of all the

edges (building a triple of type (2)) of a 1-factor Fi of K2n and a 1-factor covers all

vertices of K2n, by definition. �

This construction is an important tool for intersecting Steiner triple systems in

certain number of triples because of the following lemma.

Lemma 3.3.2 If k ∈ J(n), then k+s(n+1)/2 ∈ J(2n+1) for every s ∈ {0, 1, 2, ..., n}\

{n− 1}.

Proof : Let (S, T1) and (S, T2) be two STS(n)’s intersecting in k triples. Let (S∗, T ∗
1 )

be an STS(2n + 1) constructed from (S, T1) using the 2n + 1 Construction. Let α

be a permutation of the elements of S fixing exactly s elements, say {a1, a2, ..., as}.

Clearly, such a permutation exists for s ∈ {0, 1, 2, ..., n} \ {n − 1}. Using the same

1-factorization, we define the triples of (S∗, T ∗
2 ) as follows:

(1) T2 ⊆ T ∗
2 .

(2) For each vertex ai ∈ S and for each edge [x, y] of the 1-factor Fi, i = 1, 2, ..., n,

we place the triple {aiα, x, y} in T ∗
2 .

Again by the 2n+1 Construction, (S∗, T ∗
2 ) is an STS(2n+1). Since each 1-factor

contains (n + 1)/2 edges, (S∗, T ∗
1 ) and (S∗, T ∗

2 ) have s(n + 1)/2 triples of type (2)

in common. In addition, since we chose (S, T1) and (S, T2) in such a way that they

intersect in k triples, (S∗, T ∗
1 ) and (S∗, T ∗

2 ) have k triples of type (1) in common.

So, in total (S∗, T ∗
1 ) and (S∗, T ∗

2 ) have k + s(n + 1)/2 triples in common. Please see

Figure 3.4. �

Lemma 3.3.3 For n ≥ 13, J(n) = I(n) implies J(2n+ 1) = I(2n+ 1).

Proof : We exploit the preceding lemma by putting consecutively s = 0, 1, 2, ..., n−2

and s = n. Then, the followings are in J(2n+ 1):

s = 0 gives 0, 1, 2, ... , tn − 6, tn − 4, tn.

s = 1 gives 0 + (n + 1)/2, 1 + (n + 1)/2, 2 + (n + 1)/2, ... , tn − 6 + (n + 1)/2,

tn − 4 + (n+ 1)/2, tn + (n+ 1)/2.
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F =

a1α = a1
anα 6= an

asα = as as+1α 6= as+1

STS(n)

Fa1
Fas

Fas+1
Fan

Figure 3.4: k ∈ J(n) ⇒ k + s(n+ 1)/2 ∈ J(2n + 1)

s = 2 gives 0+ 2(n+1)/2, 1 + 2(n+1)/2, 2 + 2(n+1)/2, ... , tn − 6+ 2(n+1)/2,

tn − 4 + 2(n+ 1)/2, tn + 2(n+ 1)/2.

:

s = n− 2 gives 0 + (n− 2)(n+ 1)/2, 1 + (n− 2)(n+ 1)/2, 2 + (n− 2)(n+ 1)/2,

... , tn − 6 + (n− 2)(n+ 1)/2, tn − 4 + (n− 2)(n+ 1)/2, tn + (n− 2)(n+ 1)/2.

s = n gives 0+n(n+1)/2, 1+n(n+1)/2, 2+n(n+1)/2, ... , tn−6+n(n+1)/2,

tn − 4 + n(n+ 1)/2, tn + n(n + 1)/2.

Put in a closed form, we have J(n) = I(n) for n ≥ 13 by our assumption. Since

n ≥ 13 implies tn−6 ≥ 2(n+1)/2 (and hence also tn−6 ≥ (n+1)/2); for t ∈ I(2n+1)

such that 0 ≤ t ≤ n(n + 1)/2, we can write t = k + s(n + 1)/2, where k ∈ I(n) and

s ∈ {0, 1, ..., n} \ {n− 1}. If t ≥ n(n + 1)/2, we can write t = k + n(n + 1)/2, where

k ∈ I(n). So, assuming J(n) = I(n), we have covered all the numbers in I(2n + 1).

Hence, J(2n+ 1) = I(2n+ 1). �
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In what follows, we will need this lemma:

Lemma 3.3.4 [16] (Stern and Lenz) For any subset D ⊆ {1, 2, ..., ⌊g/2⌋}, define

G(D, g) to be the graph with vertex set {0, 1, ..., g − 1} and edge set consisting of all

edges having a difference in D. If D contains an element d where g/gcd({d, g}) is

even, then G(D, g) has a 1-factorization.

Proof : A proof of this fact can be found in [11] and [16]. �

2n+7 Construction: Let (S, T ) be a Steiner triple system of order n (remark that

n must be odd), say S = {a1, a2, ..., an} and (X,F) be a factorization of Kn+7 into n

1-factors F1, F2, ..., Fn and n + 7 triples generated by the base block {0, 1, 3}, where

X is a vertex set such that X ∩ S = ∅. We set S∗ = S ∪X and define the collection

of triples T ∗ as the union of the following:

(1) T ⊆ T ∗.

(2) For each vertex ai ∈ S and for each edge [x, y] of the 1-factor Fi, i = 1, 2, ..., n,

we place the triple {ai, x, y} in T ∗.

(3) Put the n + 7 triples generated by the base block {0, 1, 3} in T ∗. Please see

Figure 3.5.

F1 F2 Fn

{0, 1, 3}
{1, 2, 4}

K

Kn+7 =

STS(n)

ana2a1

Figure 3.5: 2n+ 7 Construction
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(S∗, T ∗) is an STS(2n+7). First we need to make clear that such a factorization

of Kn+7 into n 1-factors F1, F2, ..., Fn and n+7 triples with base block {0, 1, 3} exists.

This is the point where we need the Stern-Lenz Lemma. ConsiderKn+7 after removing

the n+7 triples with base block {0, 1, 3}. The edge set of the remaining graph consists

of all the edges with difference in the {4, 5, ... , (n + 7)/2}. In the notation of the

Stern-Lenz Lemma, this remaining graph is G({4, 5, ... , (n + 7)/2}, n + 7). Taking

d = (n + 7)/2 ((n + 7)/2 ≥ 4), we have gcd({(n + 7)/2, n + 7}) = (n + 7)/2. So, in

this case g/gcd({d, g}) = (n + 7)/((n + 7)/2) = 2, hence is even. So, there exists a

factorization of Kn+7 into n 1-factors F1, F2, ..., Fn and n + 7 triples with base block

{0, 1, 3}. Now, we count the number of triples. There are tn = n · (n − 1)/6 triples

of type (1), n · (n + 7)/2 triples of type (2) and n + 7 triples of type (3). Together,

these make (4n2 + 26n + 42)/6 = (2n + 7) · (2n + 6)/6 = t2n+7 triples. Hence it is

enough to show that each pair of points of S∗ appear together in a triple. All pairs of

points, both from S, appear in a triple of type (1), since (S, T ) is an STS. All pairs

of points, both from X , appear together in a triple of type (3) if their difference is 1,

2 or 3 and in a triple of type (2) otherwise. Finally, all pairs of points such that one

point is from S, the other one is from X appear again in a triple of type (2), because

each point ai of S is joined to both endpoints of all the edges of a 1-factor Fi of Kn+7

and a 1-factor covers all points of Kn+7, by definition. �

We will make use of the following lemma repeatedly:

Lemma 3.3.5 If k ∈ J(n), then k + s(n + 7)/2 + z ∈ J(2n + 7) for every s ∈

{0, 1, 2, ..., n} \ {n− 1} where z ∈ {0, n+ 7}.

Proof : Let (S, T1) and (S, T2) be two STS(n)’s intersecting in k triples. Let (S∗, T ∗
1 )

be an STS(2n + 7) constructed from (S, T1) using the 2n + 7 Construction. Let α

be a permutation of the elements of S fixing exactly s elements, say {a1, a2, ..., as}.

Such a permutation exists for s ∈ {0, 1, 2, ..., n} \ {n − 1}. Using the same 1-factors

F1, F2, ..., Fn of Kn+7, we define the triples of (S∗, T ∗
2 ) as follows:

(1) T2 ⊆ T ∗
2 .

(2) For each vertex ai ∈ S and for each edge [x, y] of the 1-factor Fi, i = 1, 2, ..., n,
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we place the triple {aiα, x, y} in T ∗
2 .

(3) Put the n+ 7 triples with base block {0, 1, 3} or {0, 2, 3} in T ∗.

Again by the 2n+7 Construction, (S∗, T ∗
2 ) is an STS(2n+7). Since each 1-factor

contains (n + 7)/2 edges, (S∗, T ∗
1 ) and (S∗, T ∗

2 ) have s(n + 7)/2 triples of type (2)

in common. Since we chose (S, T1) and (S, T2) in such a way that they intersect in

k triples, (S∗, T ∗
1 ) and (S∗, T ∗

2 ) have k triples of type (1) in common. In addition

to these, depending on whether we choose the same base block or not in these two

systems, (S∗, T ∗
1 ) and (S∗, T ∗

2 ) have 0 or n + 7 triples of type (3) in common. So, in

total (S∗, T ∗
1 ) and (S∗, T ∗

2 ) have k + s(n + 7)/2 + z triples in common. Please see

Figure 3.6. �

F =

a1α = a1 asα = as as+1α 6= as+1

STS(n)
anα 6= an

{0, 1, 3}

{0, 2, 3}

or

Fa1
Fas

Fas+1
Fan

Figure 3.6: k ∈ J(n) ⇒ k + s(n + 7)/2 + z ∈ J(2n+ 7)

Lemma 3.3.6 For n ≥ 13, J(n) = I(n) implies J(2n+ 7) = I(2n+ 7).

Proof : We go on in a similar way as in the proof of Lemma 3.3.3. First we note

that assuming n ≥ 13 and J(n) = I(n) implies that all t ≤ n + 7 are in I(n). For

t ∈ I(2n+7) such that 0 ≤ t ≤ n(n+7)/2, we can write t = k+s(n+7)/2+0, where
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k ∈ I(n) and s ∈ {0, 1, ..., n} \ {n− 1}. If n(n+ 7)/2 ≤ t ≤ n(n+ 7)/2 + (n+ 7), we

can write t = k + n(n + 7)/2 + 0, where k ∈ I(n) (we noted that (n + 7) ∈ I(n)). If

t ≥ n(n+ 7)/2 + (n+ 7), we can write t = k + n(n+ 7)/2 + (n+ 7), where k ∈ I(n).

So, assuming J(n) = I(n), we have covered all the numbers in I(2n + 7). Hence,

J(2n+ 7) = I(2n+ 7). �

3.4 Small Cases

Now, we start dealing with the cases where n < 27.

Lemma 3.4.1 J(13) = I(13).

Proof : Consider the STS(13) given by the set of triples {{0, 1, 2}, {0, 3, 4}, {0, 5, 6},

{0, 7, 8}, {0, 9, 10}, {0, 11, 12}, {1, 3, 5}, {1, 4, 7}, {1, 6, 8}, {1, 9, 11}, {1, 10, 12}, {2, 3,

9}, {2, 4, 5}, {2, 6, 10}, {2, 7, 12}, {2, 8, 11}, {3, 6, 11}, {3, 7, 10}, {3, 8, 12}, {4, 6, 12},

{4, 8, 9}, {4, 10, 11}, {5, 7, 11}, {5, 8, 10}, {5, 9, 12}, {6, 7, 9}}.

Applying the following permutations on the above STS(13), we generate new

STS(13)’s with k triples in common with the STS(13) given above, where k ∈

{0, 1, ..., 20, 22}; for k = 26, we can take two copies of the above STS(13).

k = 0 : (0, 10, 12, 8, 11, 9)(1, 4, 3, 5)(2, 7)

k = 1 : (0, 2, 3, 6)(1, 7, 11)(4, 12, 9, 10, 8, 5)

k = 2 : (0, 8, 9, 12, 10, 7, 5, 6, 4, 11, 3, 1, 2)

k = 3 : (0, 3, 8, 12, 1, 6, 9)(2, 10, 7, 5)

k = 4 : (0, 10, 6, 1, 5, 9, 4, 7, 12, 11, 2)

k = 5 : (0, 2, 1, 10, 8, 5, 7, 4, 12)(3, 6, 9, 11)

k = 6 : (0, 3, 12, 4, 8, 5, 2, 9, 11)(1, 10, 6, 7)

k = 7 : (0, 11, 2)(1, 12, 8, 3)(4, 6, 9)

k = 8 : (1, 5, 4, 2, 6)(3, 7)(8, 11, 12)

k = 9 : (0, 12, 9)(1, 7, 5, 10, 11, 8, 4, 2, 3)

k = 10 : (0, 4, 9, 12, 6, 10, 2, 3, 8, 1)(5, 7, 11)

k = 11 : (1, 12, 10, 2, 7, 3, 9, 6, 11)(4, 8)
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k = 12 : (0, 6, 12, 5, 4, 11, 9, 3, 7, 8)(1, 2, 10)

k = 13 : (0, 7, 6)(1, 3, 12, 2, 10, 9, 5, 8, 4)

k = 14 : (0, 3, 8, 11, 5)(1, 7, 6, 4, 9)(2, 10, 12)

k = 15 : (1, 3, 6, 10, 11, 8, 9, 12, 7)(2, 4, 5)

k = 16 : (0, 11, 6, 5, 7, 3)(1, 8)(4, 12, 9, 10)

k = 17 : (1, 5, 2, 6)(3, 9, 7, 8)(4, 1, 0)

k = 18 : (0, 3)(1, 10, 8, 6, 2, 7, 11)(5, 9, 12)

k = 19 : (1, 7, 6)(2, 8, 5)(3, 12, 9)(4, 11, 10)

k = 20 : (0, 6, 4, 8, 11, 7, 2, 3, 1, 10)(5, 12, 9)

k = 22 : (0, 6, 3, 10, 8)(1, 4, 2, 12, 9)(5, 11, 7) �

Lemma 3.4.2 J(15) = I(15).

Proof : First, let us prepare the ingredients for the proof. Below is a quasigroup,

(Q, ◦1) of order 4. Applying the permutation (σ1σ2)(σ3σ4) to the rows of (Q, ◦1) gives

a quasigroup intersecting in no cells, and the permutation (σ1σ2) to the rows of (Q, ◦1)

gives a quasigroup intersecting in 8 cells with (Q, ◦1). Taking two copies the same

quasigroup (Q, ◦1), we get 16 cells in the intersection.

◦1

σ1 1 2 3 4

σ2 2 3 4 1

σ3 3 4 1 2

σ4 4 1 2 3

And below are two idempotent commutative quasigroups of order 7 intersecting

in 12 cells above the main diagonal:
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◦1

1 6 5 7 2 3 4

6 2 7 5 4 1 3

5 7 3 6 1 4 2

7 5 6 4 3 2 1

2 4 1 3 5 7 6

3 1 4 2 7 6 5

4 3 2 1 6 5 7

and

◦2

1 6 5 7 4 3 2

6 2 1 5 7 4 3

5 1 3 6 2 7 4

7 5 6 4 3 2 1

4 7 2 3 5 1 6

3 4 7 2 1 6 5

2 3 4 1 6 5 7

Let (Q, ◦) be a quasigroup of order 4 and let S = {∞1,∞2,∞3} ∪ (Q×{1, 2, 3}).

Further, we let S(i) = {∞1,∞2,∞3} ∪ (Q × {i}), i = 1, 2, 3 and (S(i), T (i)) be an

STS(7) where {∞1,∞2,∞3} is a triple in both of T (2) and T (3). We set T (2)∗ =

T (2) \ {∞1,∞2,∞3} and T (3)∗ = T (3) \ {∞1,∞2,∞3}. Now, we are ready to define

a collection of triples T on S as follows:

T = {T (1) ∪ T (2)∗ ∪ T (3)∗} ∪ {(a, 1), (b, 2), (a ◦ b, 3)|a, b ∈ Q}.

(S, T ) is an STS(15). Clearly, | S | = 15. Pairs with both elements from

{∞1,∞2,∞3} appear in a triple of T (1), pairs with one element from {∞1,∞2,∞3}

and the other element from (Q×{i}) and also pairs with both elements from (Q×{i})

appear in a triple of T (1), if i = 1; in a triple of T (i)∗ if i = 2, 3. And finally, pairs with

one element from (Q× {i}) and the other from (Q× {j}), where i 6= j, i, j = 1, 2, 3

appear in a triple of the form {(a, 1), (b, 2), (a ◦ b, 3)}. In our construction, we have

(| STS(7) |) + (| STS(7) | −1) + (| STS(7) | −1) + 4 · 4 = 35 triples, which is equal

to the number of triples in an STS(15). Hence (S, T ) is an STS(15).

We consider two STS(15)’s (S, T1) and (S, T2) constructed in this way. By Lemma

3.1.1, J(7) = {0, 1, 3, 7}, so we can find a pair of STS(7)’s (S(1), T1(1)) and (S(1),

T2(1)) intersecting in 0, 1, 3 or 7 triples. Renaming the labels if necessary so that {∞1,

∞2,∞3} is a triple, we can also find a pair of STS(7)’s (S(2), T1(2)), (S(2), T2(2))

and (S(3), T1(3)), (S(3), T2(3)) which intersect in 0, 1, 3 or 7 triples. So, x =| T1(1)∩

T2(1) |∈ {0, 1, 3, 7}, y =| T1(2)
∗ ∩ T2(2)

∗ |∈ {0, 2, 6} and z =| T1(3)
∗ ∩ T2(3)

∗ |∈

{0, 2, 6}. And using the quasigroups of order 4 which we constructed before, we
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can have w other common triples in T1 and T2, where w ∈ {0, 8, 16}. In total,

| T1 ∩ T2 |= x+ y + z + w, where x ∈ {0, 1, 3, 7}, y, z ∈ {0, 2, 6}, w ∈ {0, 8, 16}. This

way, we can write the numbers in the set {0, 1, 2, ..., 35}\ {26, 30, 32, 33, 34} as a sum

of the form x + y + z + w. We remind that I(15) = {0, 1, 2, ..., 35} \ {30, 32, 33, 34}.

So, only 26 is missing. We need to construct a pair of STS(15)’s intersecting in 26

triples to complete the proof.

Now, let S = {∞} ∪ (X × {1, 2}) where | X |= 7 and define collection of triples

T1, T2 as the union of the following:

(1) {∞, (x, 1), (x, 2)} ∈ T1 and T2 for all x ∈ X .

(2) Put the same STS(7) on X × {2} in each of T1 and T2.

(3) Let (X, ◦1) and (X, ◦2) be a pair of idempotent and commutative quasigroups on

X which intersect in exactly 12 cells above the main diagonal. For each x 6= y ∈ X ,

we put {(x, 1), (y, 1), (x ◦1 y, 2)} in T1 and {(x, 1), (y, 1), (x ◦2 y, 2)} in T2.

Clearly, in each system, we have 7 triples of type (1), again 7 triples of type (2)

and 21 triples of type (3). So, altogether there are 35 triples. Note that pairs with

one element being ∞ appear in type (1) triples. Pairs with both elements from the

second level occur in type (2) triples. Pairs with both elements from the first level

occur in type (3) triples. The pair {(a, 1), (b, 2)} is in a triple of type (1) if a = b, in a

triple of type (3) otherwise. Remark that the quasigroup used to build the triples of

the type (3) is idempotent. Hence (S, T1) and (S, T2) are STS(15)’s having 7 triples

of the type (1), 7 triples of the type (2) and 12 triples of the type (3) in common. So,

we have 7 + 7 + 12 = 26 ∈ J(15). �

Lemma 3.4.3 J(19) = I(19).

Proof : Again, we prepare the necessary ingredients first. Below is a commutative

quasigroup (Q, ◦1) of order 6 with holes of size 2.
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◦1

1 2 5 6 3 4

2 1 6 5 4 3

5 6 3 4 1 2

6 5 4 3 2 1

3 4 1 2 5 6

4 3 2 1 6 5

Changing i (where i = 0, 1, 2 or 3) of the 2×2 subsquares other than those consti-

tuting the holes and the corresponding subsquares below the diagonal independently

from the form
a b

b a
to

b a

a b
, we get a new commutative quasigroup of order 6

with holes of size 2 intersecting in 0, 4, 8 or 12 cells with (Q, ◦1) above the diagonal

of the holes.

Now let S = {∞}∪ ({1, 2, 3, 4, 5, 6}×{1, 2, 3}). We define a collection of triples T

on S using the quasigroup with holes construction for Steiner triple systems of section

1.2. to get an STS(19).

Now we consider two STS(19)’s (S, T1) and (S, T2) constructed in the above way

(not necessarily from the same STS(7)’s or from the same quasigroups on each level).

Since J(7) = {0, 1, 3, 7}, the STS(7)’s we define on each hole {2i − 1, 2i}, i = 1, 2, 3

in T1 and T2 can intersect in 0, 1, 3 or 7 triples. Using the pairs of commutative

quasigroups of order 6 with holes of size 2 intersecting in 0, 4, 8, 12 triples, the collec-

tion of triples of type {(a, 1), (b, 1), (a ◦1 b, 2)} in T1 and T2 intersect in 0, 4, 8 or 12

triples. The same applies to the collection of triples of type {(a, 2), (b, 2), (a ◦1 b, 3)}

and {(a, 3), (b, 3), (a ◦1 b, 1)} as well. So, using this construction, we can intersect

(S, T1) and (S, T2) in x1 + x2 + x3 + y1 + y2 + y3 triples where x1, x2, x3 ∈ {0, 1, 3, 7}

and y1, y2, y3 ∈ {0, 4, 8, 12}. We immediately observe that all the elements of the set

{0, 1, 2, ..., 57}\{48, 52, 54, 55, 56} can be written as a sum x1+x2+x3+y1+y2+y3. We

note that I(19) = {0, 1, 2, ..., 57}\{52, 54, 55, 56}, so constructing a pair of STS(19)’s

intersecting in 48 triples will complete the proof. Taking n = 9, k = 3 and s = 9 in



Chapter 3: The Basic Intersection Problem of Steiner Triple Systems 29

the 2n+ 1 Construction we get 48 ∈ J(19) by lemma 3.3.2. �

Lemma 3.4.4 J(21) = I(21).

Proof : The proof is similar to the proof of the Lemma 3.4.2. We take a quasi-

group of order 6, say (Q, ◦). We construct new quasigroups of order 6 intersecting in

0, 4, 8, 12, 16, 20, 24, 28, 32, 36 cells with (Q, ◦) by changing respectively 9, 8, 7, 6, 5, 4, 3,

2, 1, 0 of the nine 2 × 2 subsquares of (Q, ◦) from the form
a b

b a
to

b a

a b
. Now

let (Q, ◦) be a quasigroup of order 6 and let S = {∞1,∞2,∞3} ∪ (Q × {1, 2, 3}).

Further, we let S(i) = {∞1,∞2,∞3} ∪ (Q × {i}), i = 1, 2, 3 and (S(i), T (i)) be

an STS(9) where {∞1,∞2,∞3} is a triple in both of T (2) and T (3). We set

T (2)∗ = T (2) \ {∞1,∞2,∞3} and T (3)∗ = T (3) \ {∞1,∞2,∞3}. Now, we are ready

to define a collection of triples T on S as follows:

T = {T (1) ∪ T (2)∗ ∪ T (3)∗} ∪ {(a, 1), (b, 2), (a ◦ b, 3)} where a, b ∈ Q.

Pairs with both elements from {∞1,∞2,∞3} appear in a triple of T (1), pairs

with one element from {∞1,∞2,∞3} and the other element from (Q × {i}) and

pairs with both elements from (Q × {i}) appear in a triple of T (1), if i = 1, in a

triple of T (i)∗ if i = 2, 3. And finally, the pairs with one element from (Q × {i})

and the other from (Q × {j}), where i 6= j, i, j = 1, 2, 3 appear in a triple of the

form {(a, 1), (b, 2), (a ◦ b, 3)}. In our construction, we have | STS(9) | +(| STS(9) |

−1) + (| STS(9) | −1) + 6 · 6 = 70 triples, which is equal to the number of triples in

an STS(21). Hence (S, T ) is an STS(21).

We consider two STS(21)’s (S, T1) and (S, T2) constructed in this way. Since

J(9) = {0, 1, 2, 3, 4, 6, 12}, we can find a pair of STS(9)’s (S(1), T1(1)) and (S(1),

T2(1)) intersecting in 0, 1, 2, 3, 4, 6, 12 triples. So, we have x =| T1(1)∩T2(1) |∈ {0, 1, 2,

3, 4, 6, 12}, y =| T1(2)
∗ ∩ T2(2)

∗ |∈ {0, 1, 2, 3, 5, 11} and z =| T1(3)
∗ ∩ T2(3)

∗ |∈

{0, 1, 2, 3, 5, 11}. Using the quasigroups of order 6 which we constructed before, we can

have w other common triples in T1 and T2, where w ∈ {0, 4, 8, 12, 16, 20, 24, 28, 32, 36}.

In total, | T1 ∩ T2 |= x + y + z + w and we can write the numbers in the set

{0, 1, 2, ..., 70} \ {63, 65, 67, 68, 69} as a sum of the form x + y + z + w. We remind
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that I(21) = {0, 1, 2, ..., 70} \ {65, 67, 68, 69}. So, only 63 and 66 are missing. Now,

using the 2n+ 7 Construction, we cover these cases. Taking k = 0, s = 7 and k = 3,

s = 7 in the 2n + 7 Construction we get 63 ∈ J(21) and 66 ∈ J(21), respectively by

lemma 3.3.5. �

Lemma 3.4.5 J(25) = I(25).

Proof : Below is a pair of commutative quasigroups of order 8 with holes of size 2,

intersecting in 6 cells above the main diagonal.

◦1

1 2 6 7 8 3 4 5

2 1 8 5 4 7 6 3

6 8 3 4 7 1 5 2

7 5 4 3 2 8 1 6

8 4 7 2 5 6 3 1

3 7 1 8 6 5 2 4

4 6 5 1 3 2 7 8

5 3 2 6 1 4 8 7

and

◦2

1 2 8 5 4 7 6 3

2 1 6 7 8 3 4 5

8 6 3 4 7 2 5 1

5 7 4 3 1 8 2 6

4 8 7 1 5 6 3 2

7 3 2 8 6 5 1 4

6 4 5 2 3 1 7 8

3 5 1 6 2 4 8 7

Moreover, the following quasigroup does not intersect in any cell above the main

diagonal with the first quasigroup above.

◦3

1 2 8 6 7 4 5 3

2 1 5 7 3 8 4 6

8 5 3 4 2 7 6 1

6 7 4 3 8 1 2 5

7 3 2 8 5 6 1 4

4 8 7 1 6 5 3 2

5 4 6 2 1 3 7 8

3 6 1 5 4 2 8 7
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Taking the same quasigroup of order 8 with holes of size 2, we get a pair of

quasigroups of order 8 with holes of size 2, intersecting in 24 cells.

Let S = {∞}∪ ({1, 2, 3, 4, 5, 6, 7, 8}×{1, 2, 3}). Define a collection of triples T on

S using the quasigroup with holes construction for Steiner triple systems of Section

1.2. to get an STS(25).

Now consider two STS(25)’s (S, T1) and (S, T2) constructed in the above way

(not necessarily from the same STS(7)’s or from the same quasigroups on each level).

Since J(7) = {0, 1, 3, 7}, the STS(7)’s we define on each hole {2i−1, 2i}, i = 1, 2, 3, 4

in T1 and T2 can intersect in 0, 1, 3 or 7 triples. Using the pairs of commutative

quasigroups of order 8 with holes of size 2 intersecting in 0, 6, 24 triples, the collection

of triples of type {(a, 1), (b, 1), (a ◦1 b, 2)} in T1 and T2 intersect in 0, 6 or 24 triples.

The same applies also to the collection of triples of type {(a, 2), (b, 2), (a ◦2 b, 3)} and

{(a, 3), (b, 3), (a◦3 b, 1)}. So, using this construction only, we can intersect (S, T1) and

(S, T2) in x1 + x2 + x3 + x4 + y1 + y2 + y3 triples where x1, x2, x3, x4 ∈ {0, 1, 3, 7}

and y1, y2, y3 ∈ {0, 6, 24}. We immediately observe that all the elements of the set

{0, 1, 2, ..., 100}\{91, 95, 97, 98, 99} can be written as a sum x1+x2+x3+x4+y1+y2+y3.

Note that I(25) = {0, 1, 2, ..., 100}\{91, 95, 97, 98, 99}, so only 91 is missing. We cover

that case using the 2n + 7 Construction. Take k = 3, s = 9 and z = 9 + 7 in the

2n+ 7 Construction to get 91 ∈ J(25). �

3.5 The Main Result

After proving the validity of some necessary constructions and small cases, it is time

to prove the main result.

Theorem 3.5.1 J(n) = I(n) for all n ≡ 1 or 3 (mod 6) except for n = 9, J(9) =

{0, 1, 2, 3, 4, 6, 12}.

Proof : We considered all the admissible cases up to n = 25. The next admissible case

is n = 27. Assume that n ≥ 27 and for all m such that 13 ≤ m < n, J(m) = I(m).

Since n ≡ 1 or 3 (mod 6), it is true that n ≡ 1, 3, 7 or 9 (mod 12). We examine this in
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two cases n ≡ 3 or 7 (mod 12) and n ≡ 1 or 9 (mod 12). If n ≡ 3 or 7 (mod 12), then

(n− 1)/2 ≡ 1 or 3 (mod 6) (i.e. there exists an STS((n− 1)/2)) and (n− 1)/2 ≥ 13.

Then, by our assumption on m, J((n − 1)/2) = I((n − 1)/2). By Lemma 3.3.3, we

have J(n) = I(n). If n ≡ 1 or 9 (mod 12), then (n−7)/2 ≡ 1 or 3 (mod 6) (i.e. there

exists STS((n − 7)/2)) and (n − 7)/2 ≥ 13 (remark that the conditions n ≡ 1 or 9

(mod 12) and n ≥ 27 together imply that n ≥ 33). Then, again by our assumption

on m, J((n − 7)/2) = I((n − 7)/2). By Lemma 3.3.6, we have J(n) = I(n). So, in

both cases J(n) = I(n). �
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Chapter 4

THE FLOWER INTERSECTION PROBLEM OF STEINER

TRIPLE SYSTEMS

The flower intersection problem of Steiner triple systems is a special case of the

basic intersection problem, which we investigated in the first part of this work. Given

a Steiner triple system (S, T ), the flower at an element x of S is the set of all triples

containing the element x. This time, we take two STS(n) with a common flower and

we are interested in the problem of finding the set of possible number of triples in

common (other than the ones in the common flower). The set of numbers k, for which

there exists a pair of STS(n)’s intersecting in k triples other than the triples in the

common flower will be denoted by Jf(n). This problem is completely solved by D.G.

Hoffman and C.C. Lindner [7].

Clearly, a flower in an STS(n) consists of (n − 1)/2 triples. So, the biggest

possible number in Jf(n) is n(n − 1)/6 − (n − 1)/2. We define If(n) to be the set

{0, 1, ..., tn− 6− (n− 1)/2, tn− 4− (n− 1)/2, tn− (n− 1)/2}, where tn = n(n− 1)/6.

From Lemma 3.1.2, we conclude that Jf(n) ⊆ If (n).

4.1 Small Cases

We start determining Jf (n) when n ≤ 27. It is trivial that Jf (1) = If (1) = {0} and

Jf(3) = If(3) = {0}. We move on to the next smallest case.

Lemma 4.1.1 Jf(7) = If(7) = {0, 4}.

Proof : From Lemma 3.1.1, we know that J(7) = I(7) = {0, 1, 3, 7}. So, Jf(7) ⊆

{0, 4}. Taking the same STS(7) twice, we get 4 ∈ Jf (7). And below are two STS(7)’s,

(S, T1) and (S, T2) with a common flower at 1, intersecting in no other triple:



Chapter 4: The Flower Intersection Problem of Steiner Triple Systems 34

T1 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.

T2 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}}. �

Lemma 4.1.2 Jf(9) = {0, 2, 8}, where If (9) = {0, 1, 2, 4, 8}.

Proof : Lemmas 3.1.2 and 3.1.3 together imply that Jf(9) ⊆ {0, 2, 8}. Taking the

same STS(9) twice, we get 8 ∈ Jf (9). Let

T = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {2, 4, 7}, {2, 6, 9}, {2, 8, 5}, {3, 4, 9},

{3, 6, 5}, {3, 8, 7}, {4, 6, 8}, {5, 7, 9}},

T0 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {2, 4, 9}, {2, 5, 7}, {2, 6, 8}, {3, 4, 6},

{3, 5, 8}, {3, 7, 9}, {4, 7, 8}, {5, 6, 9}},

T2 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {2, 4, 9}, {2, 6, 5}, {2, 8, 7}, {3, 4, 7},

{3, 6, 9}, {3, 8, 5}, {4, 6, 8}, {5, 7, 9}}, where T and Ti with a common flower at 1

intersect in i triples for i = 0, 2. �

Lemma 4.1.3 Let n ≥ 13 be admissible, i.e. n ≡ 1, 3 (mod 6) and r = (n− 1)/2. If

k ∈ If (n) with k ≥ 2r(r − 3)/3, then k ∈ Jf(n).

Proof : Let (S, T1) and (S, T2) be two STS(n)’s with k+ r triples in common, where

the existence of such a pair is given by Theorem 3.5.1. The number of triples not in

common is then (2r+1)2r/6−(k+r). Assume that the systems do not have a flower in

common. If a point x ∈ S is contained in a triple of T1 \T2, then it must be contained

in at least one other such triple. Arguing in the same way for all n points, one sees that

in order not to have a common triple, (S, T1) and (S, T2) must have at least 2(2r+1)/3

triples not in common. So, if 2(2r + 1)/3 > (2r + 1)2r/6 − (k + r), equivalently if

k > (2r2 − 6r − 2)/3, then (S, T1) and (S, T2) have a common flower. From n ≡ 1, 3

(mod 6) and 2r+1 = n, it follows that r ≡ 0, 1 (mod 3). For r ≡ 0 (mod 3), k being an

integer and k > (2r2−6r−2)/3 means k >
⌈

2r2−6r−2

3

⌉

= (2r2−6r)/3. For r ≡ 1 (mod

3), k being an integer and k > (2r2−6r−2)/3 means k >
⌈

2r2−6r−2

3

⌉

= (2r2−6r−2)/3.

Moreover, k >
⌈

2r2−6r−2

3

⌉

implies k ≥ 1+
⌈

2r2−6r−2

3

⌉

= (2r2−6r+1)/3 > (2r2−6r)/3.

Combining the results for r ≡ 0 (mod 3) and r ≡ 1 (mod 3), we can state that

k ≥ 2r(r − 3)/3, then (S, T1) and (S, T2) have a common flower. �
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Lemma 4.1.4 Jf(13) = If(13).

Proof : By the preceding lemma, it is enough to show that k ∈ Jf(13) for 0 ≤ k ≤ 11.

Below we explicitly give pairs of STS(13)’s, (S, T1) and (S, T2) on the set of symbols

{x} ∪ {1, 2, ..., 12} with a common flower at x, intersecting in exactly k = 0, 1, ..., 11

other triples, respectively.

k = 0: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {6, 7, 10},

{2, 10, 11}, {5, 7, 8}, {3, 5, 6}, {6, 9, 11}, {8, 11, 12}, {3, 4, 8}, {1, 9, 12}, {4, 7, 12},

{1, 6, 8}, {3, 7, 11}, {8, 9, 10}, {2, 3, 12}, {4, 5, 9}, {1, 4, 11}, {1, 2, 5}, {1, 3, 10},

{2, 7, 9}, {5, 10, 12}, {2, 4, 6}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {3, 2, 4},

{8, 4, 6}, {7, 9, 6}, {3, 11, 8}, {7, 10, 8}, {12, 5, 8}, {5, 1, 4}, {2, 10, 1}, {3, 10, 12},

{12, 9, 4}, {11, 7, 4}, {3, 7, 5}, {9, 1, 8}, {10, 5, 6}, {11, 12, 1}, {7, 2, 12}, {11, 2, 6},

{2, 9, 5}, {3, 1, 6}, {11, 10, 9}}.

k = 1: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 11, 12},

{4, 8, 11}, {8, 9, 12}, {5, 6, 9}, {1, 4, 6}, {4, 7, 12}, {5, 10, 12}, {1, 2, 5}, {3, 7, 10},

{2, 10, 11}, {3, 4, 5}, {5, 7, 8}, {1, 9, 10}, {2, 6, 7}, {2, 3, 12}, {1, 3, 8}, {3, 6, 11},

{7, 9, 11}, {6, 8, 10}, {2, 4, 9}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 11, 12},

{8, 4, 6}, {7, 9, 6}, {3, 11, 8}, {7, 10, 8}, {12, 5, 8}, {5, 1, 4}, {2, 10, 1}, {3, 10, 12},

{12, 9, 4}, {11, 7, 4}, {3, 7, 5}, {9, 1, 8}, {10, 5, 6}, {3, 2, 4}, {7, 2, 12}, {11, 2, 6},

{2, 9, 5}, {3, 1, 6}, {11, 10, 9}}.

k = 2: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {2, 3, 4},

{7, 8, 10}, {4, 5, 12}, {7, 9, 11}, {3, 6, 11}, {1, 5, 9}, {4, 8, 9}, {6, 9, 10}, {1, 2, 6},

{3, 7, 12}, {1, 10, 12}, {1, 4, 11}, {4, 6, 7}, {2, 9, 12}, {5, 6, 8}, {2, 10, 11}, {1, 3, 8},

{2, 5, 7}, {8, 11, 12}, {3, 5, 10}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {2, 3, 4},

{7, 8, 10}, {7, 9, 6}, {3, 11, 8}, {8, 4, 6}, {12, 5, 8}, {5, 1, 4}, {2, 10, 1}, {3, 10, 12},

{12, 9, 4}, {11, 7, 4}, {3, 7, 5}, {9, 1, 8}, {10, 5, 6}, {11, 12, 1}, {7, 2, 12}, {11, 2, 6},
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{2, 9, 5}, {3, 1, 6}, {11, 10, 9}}.

k = 3: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {3, 8, 11},

{1, 3, 6}, {1, 11, 12}, {5, 6, 9}, {1, 4, 8}, {4, 7, 12}, {5, 10, 12}, {1, 2, 5}, {3, 7, 10},

{2, 10, 11}, {3, 4, 5}, {8, 9, 12}, {5, 7, 8}, {1, 9, 10}, {2, 6, 7}, {2, 3, 12}, {4, 6, 11},

{7, 9, 11}, {6, 8, 10}, {2, 4, 9}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {3, 8, 11},

{1, 3, 6}, {1, 11, 12}, {3, 2, 4}, {7, 10, 8}, {12, 5, 8}, {5, 1, 4}, {2, 10, 1}, {3, 10, 12},

{12, 9, 4}, {11, 7, 4}, {3, 7, 5}, {9, 1, 8}, {10, 5, 6}, {7, 9, 6}, {7, 2, 12}, {11, 2, 6},

{2, 9, 5}, {8, 4, 6}, {11, 10, 9}}.

k = 4: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {4, 8, 11},

{2, 10, 11}, {1, 3, 8}, {7, 9, 11}, {1, 4, 6}, {4, 7, 12}, {5, 10, 12}, {1, 2, 5}, {3, 7, 10},

{3, 6, 11}, {3, 4, 5}, {1, 11, 12}, {5, 7, 8}, {1, 9, 10}, {2, 6, 7}, {2, 3, 12}, {8, 9, 12},

{5, 6, 9}, {6, 8, 10}, {2, 4, 9}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {4, 8, 11},

{2, 10, 11}, {1, 3, 8}, {7, 9, 11}, {1, 4, 2}, {5, 1, 9}, {12, 7, 2}, {4, 7, 3}, {6, 5, 4},

{12, 11, 3}, {6, 3, 10}, {6, 9, 2}, {9, 4, 12}, {5, 7, 10}, {6, 8, 7}, {5, 3, 2}, {6, 1, 11},

{5, 8, 12}, {1, 12, 10}, {9, 8, 10}}.

k = 5: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 5, 9},

{7, 9, 11}, {1, 10, 12}, {2, 10, 11}, {1, 3, 8}, {2, 3, 4}, {4, 8, 9}, {6, 9, 10}, {1, 2, 6},

{7, 8, 10}, {4, 5, 12}, {1, 4, 11}, {4, 6, 7}, {2, 9, 12}, {5, 6, 8}, {3, 7, 12}, {3, 6, 11},

{2, 5, 7}, {8, 11, 12}, {3, 5, 10}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 5, 9},

{7, 9, 11}, {1, 10, 12}, {2, 10, 11}, {1, 3, 8}, {6, 7, 8}, {8, 9, 10}, {2, 7, 12}, {1, 2, 4},

{3, 4, 7}, {4, 5, 6}, {3, 11, 12}, {3, 6, 10}, {2, 6, 9}, {4, 9, 12}, {5, 7, 10}, {4, 8, 11},

{2, 3, 5}, {1, 6, 11}, {5, 8, 12}}.

k = 6: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 5, 9},

{3, 7, 12}, {3, 6, 11}, {2, 3, 4}, {4, 8, 9}, {2, 9, 12}, {4, 5, 12}, {7, 9, 11}, {6, 9, 10},

{1, 2, 6}, {7, 8, 10}, {1, 10, 12}, {1, 4, 11}, {4, 6, 7}, {5, 6, 8}, {2, 10, 11}, {1, 3, 8},
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{2, 5, 7}, {8, 11, 12}, {3, 5, 10}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 5, 9},

{3, 7, 12}, {3, 6, 11}, {2, 3, 4}, {4, 8, 9}, {2, 9, 12}, {3, 5, 8}, {1, 8, 12}, {1, 3, 10},

{9, 10, 11}, {6, 7, 9}, {1, 4, 6}, {1, 2, 11}, {7, 8, 11}, {4, 5, 7}, {6, 8, 10}, {4, 11, 12},

{2, 7, 10}, {2, 5, 6}, {5, 10, 12}}.

k = 7: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 4, 11},

{3, 5, 10}, {4, 5, 9}, {1, 5, 6}, {2, 3, 11}, {5, 8, 12}, {2, 5, 7}, {10, 11, 12}, {3, 7, 12},

{1, 2, 10}, {6, 8, 10}, {8, 9, 11}, {6, 7, 11}, {1, 3, 8}, {7, 9, 10}, {2, 6, 9}, {3, 4, 6},

{2, 4, 12}, {4, 7, 8}, {1, 9, 12}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 4, 11},

{3, 5, 10}, {4, 5, 9}, {1, 5, 6}, {2, 3, 11}, {5, 8, 12}, {2, 5, 7}, {2, 4, 6}, {6, 8, 11},

{7, 8, 9}, {1, 2, 9}, {7, 10, 11}, {1, 3, 12}, {9, 11, 12}, {3, 6, 7}, {1, 8, 10}, {2, 10, 12},

{4, 7, 12}, {3, 4, 8}, {6, 9, 10}}.

k = 8: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {7, 8, 10},

{4, 6, 8}, {1, 3, 6}, {4, 7, 11}, {3, 10, 12}, {6, 7, 9}, {3, 8, 11}, {1, 2, 10}, {1, 9, 11},

{2, 4, 9}, {1, 4, 12}, {5, 7, 12}, {3, 4, 5}, {5, 9, 10}, {6, 10, 11}, {8, 9, 12}, {1, 5, 8},

{2, 5, 6}, {2, 11, 12}, {2, 3, 7}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {7, 8, 10},

{4, 6, 8}, {1, 3, 6}, {4, 7, 11}, {3, 10, 12}, {6, 7, 9}, {3, 8, 11}, {1, 2, 10}, {2, 3, 4},

{5, 8, 12}, {1, 4, 5}, {4, 9, 12}, {3, 5, 7}, {1, 8, 9}, {5, 6, 10}, {1, 11, 12}, {2, 7, 12},

{2, 6, 11}, {2, 5, 9}, {9, 10, 11}}.

k = 9: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 5, 9},

{3, 7, 12}, {7, 9, 11}, {2, 3, 4}, {1, 2, 6}, {7, 8, 10}, {1, 4, 11}, {4, 6, 7}, {2, 5, 7},

{4, 5, 12}, {3, 6, 11}, {4, 8, 9}, {6, 9, 10}, {1, 10, 12}, {2, 9, 12}, {5, 6, 8}, {2, 10, 11},

{1, 3, 8}, {8, 11, 12}, {3, 5, 10}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {1, 5, 9},

{3, 7, 12}, {7, 9, 11}, {2, 3, 4}, {1, 2, 6}, {7, 8, 10}, {1, 4, 11}, {4, 6, 7}, {2, 5, 7},

{3, 5, 6}, {4, 9, 12}, {1, 8, 12}, {1, 3, 10}, {6, 10, 11}, {4, 5, 8}, {6, 8, 9}, {2, 9, 10},

{5, 10, 12}, {3, 8, 11}, {2, 11, 12}}.
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k = 10: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {3, 7, 12},

{7, 9, 11}, {2, 3, 4}, {4, 8, 9}, {1, 2, 6}, {7, 8, 10}, {4, 6, 7}, {2, 9, 12}, {2, 10, 11},

{2, 5, 7}, {1, 5, 9}, {4, 5, 12}, {3, 6, 11}, {6, 9, 10}, {1, 10, 12}, {1, 4, 11}, {5, 6, 8},

{1, 3, 8}, {8, 11, 12}, {3, 5, 10}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {3, 7, 12},

{7, 9, 11}, {2, 3, 4}, {4, 8, 9}, {1, 2, 6}, {7, 8, 10}, {4, 6, 7}, {2, 9, 12}, {2, 10, 11},

{2, 5, 7}, {1, 3, 11}, {3, 6, 10}, {4, 11, 12}, {1, 8, 12}, {1, 4, 5}, {6, 8, 11}, {5, 6, 9},

{5, 10, 12}, {3, 5, 8}, {1, 9, 10}}.

k = 11: T1 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {3, 6, 11},

{5, 6, 9}, {1, 4, 6}, {4, 7, 12}, {3, 7, 10}, {3, 4, 5}, {5, 7, 8}, {1, 9, 10}, {2, 6, 7},

{7, 9, 11}, {6, 8, 10}, {4, 8, 11}, {8, 9, 12}, {5, 10, 12}, {1, 2, 5}, {2, 10, 11}, {1, 11, 12},

{2, 3, 12}, {1, 3, 8}, {2, 4, 9}}.

T2 = {{x, 1, 7}, {x, 2, 8}, {x, 3, 9}, {x, 4, 10}, {x, 5, 11}, {x, 6, 12}, {3, 6, 11},

{5, 6, 9}, {1, 4, 6}, {4, 7, 12}, {3, 7, 10}, {3, 4, 5}, {5, 7, 8}, {1, 9, 10}, {2, 6, 7},

{7, 9, 11}, {6, 8, 10}, {2, 9, 12}, {2, 4, 11}, {2, 5, 10}, {3, 8, 12}, {10, 11, 12}, {1, 8, 11},

{1, 5, 12}, {4, 8, 9}, {1, 2, 3}}. �

Before continuing with the case n = 15, first we need a new definition. We call a

commutative latin square of order 8 on the symbols 0, 1, ... , 7 a special latin square,

whenever the 2 × 2 subsquares on the diagonal are of the form
0 1

1 0
so that the

latin square looks as follows:

Lemma 4.1.5 The set of integers k for which there exists a pair of special latin

squares (of order 8) agreeing in exactly k of the 24 cells above the 2 × 2 diagonal

boxes, contains (among others) all non-negative integers k ≤ 14.

Proof : Such an integer k can be written in the form k = x+y+z, where x, z ∈ {0, 4},

0 ≤ y ≤ 9 with y 6= 5, 7. For 0 ≤ k ≤ 4, take y = k, x = 0, z = 0; for k = 5, y = 1,

x = 4, z = 0; for k = 6, take y = 6, x = 0, z = 0; for k = 7, take y = 3, x = 4, z = 0;

for 8 ≤ k ≤ 12, take y = k − 8, x = 4, z = 4; for k = 13, take y = 9, x = 4, z = 0
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BT

CT
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Figure 4.1: A special latin square

and finally for k = 14, take y = 6, x = 4, z = 4. Furthermore, let B1 = (Q, ◦) and

B2 = (Q, ◦i) as constructed below, where Q = {4, 5, 6, 7} and i = 0, 1, 2, 3, 4, 6, 8, 9.

We remark that for each i ∈ {0, 1, 2, 3, 4, 6, 8, 9}, (Q, ◦) and (Q, ◦i) agree in exactly i

cells.

◦

4 5 6 7

5 6 7 4

6 7 4 5

7 4 5 6

◦0

7 6 5 4

6 5 4 7

5 4 7 6

4 7 6 5

◦1

4 7 5 6

7 4 6 5

5 6 7 4

6 5 4 7

◦2

4 6 7 5

7 4 5 6

5 7 6 4

6 5 4 7

◦3

4 5 7 6

5 4 6 7

7 6 5 4

6 7 4 5

◦4

4 5 6 7

7 4 5 6

5 6 7 4

6 7 4 5
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◦6

4 5 6 7

5 4 7 6

7 6 5 4

6 7 4 5

◦8

4 5 6 7

5 6 7 4

7 4 5 6

6 7 4 5

◦9

4 5 6 7

5 7 4 6

6 4 7 5

7 6 5 4

Now form pairs of special latin squares agreeing in exactly k ∈ {0, 1, ..., 14} cells

above the 2 × 2 diagonal boxes as follows. For the first special latin square, let

A1 = C1 =
2 3

3 2
. For the second special latin square, if x = 0, let A2 =

3 2

2 3

and if x = 4, let A2 = A1. If z = 0, let C2 =
3 2

2 3
and if z = 4, let C2 = C1. The

special latin square defined by A1, B1, C1 agrees in exactly k = x+ y + z cells above

the 2× 2 diagonal boxes with the special latin square defined by A2, B2, C2. �

Lemma 4.1.6 Jf(15) = If(15).

Proof : By Lemma 4.1.3, it is sufficient to show that the statement holds for 0 ≤ k ≤

18. We write all such numbers k as a sum of the form k = x + y where x ∈ {0, 4}

and 0 ≤ y ≤ 14. Lemma 4.1.5 guarantees us the existence of a pair of special latin

squares (L1, ◦1) and (L2, ◦2) of order 8 which have exactly y cells in common above

the diagonal blocks. Next, we construct two STS(15)’s (S, T1) and (S, T2) on the set

{∞i : 1 ≤ i ≤ 7}∪{1, 2, ..., 8}. We start by defining two STS(7)’s on {∞i : 1 ≤ i ≤ 7}

with collection of triples T ∗
1 and T ∗

2 such that T ∗
1 and T ∗

2 have a common flower at

∞1 and x additional common triples. This can be done since Jf (7) = If (7) = {0, 4}

(see Lemma 4.1.1). In addition, for each pair of numbers i, j such that 1 ≤ i < j ≤ 8,

put the triple (∞i◦lj, i, j) in Tl for l = 1, 2. Please see Figure 4.2.

(S, Tl) forms an STS(15). Observe that each pair of points from the set {1, 2, ..., 8}

appears together exactly once in a triple of each of the systems (S, T1) and (S, T2) since

on a latin square, i◦l j (l = 1, 2) always has a unique solution for each pair of numbers

i and j. Also, each pair of points of the form {∞i, j}, where ({∞i : 1 ≤ i ≤ 7})
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8

i ◦l j

j1 2 8

∞1

1 8
i j

STS(7)

∞i◦lj

at ∞1 and x other common triples.

∞7

(S, T ∗

1 ) and (S, T ∗

2 ) have a common flower

cells above the diagonal boxes.

(L1, ◦1) and (L2, ◦2) have y common

Put {∞i◦lj , i, j} for 1 ≤ i < j ≤ 8.

Figure 4.2: Jf (15) Construction

and j ∈ {1, 2, ..., 8} appears together exactly once in a triple of each of the (S, Tl)’s

(l = 1, 2) , since there exists a unique solution x to the equation i = x ◦l j. Finally,

pairs of points from the set {∞i : 1 ≤ i ≤ 7} appear together exactly once in a triple

of the corresponding STS(7).

Note that by the definition of special latin squares, the positions of cells with

the label 1 are fixed, so the triples {∞1, 1, 2}, {∞1, 3, 4}, {∞1, 5, 6}, {∞1, 7, 8} are

contained in both of the systems (S, T1) and (S, T2). These four triples and the three

triples of the common flower of STS(7)’s at ∞1 constitute a common flower at ∞1

for (S, Tl)’s (l = 1, 2). In total, apart from the triples of the common flower, (S, Tl)’s

(l = 1, 2) have k = x + y triples in common, x of them coming from the STS(7)’s,

and y of them coming from the special latin squares (L1, ◦1) and (L2, ◦2). �

Lemma 4.1.7 Jf(19) = If(19).

Proof : For the proof, we will use a result by H.L. Fu [6], which tells that for n ≥ 5

there exists a pair of latin squares on the same set of n symbols agreeing in exactly k
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cells if and only if k ∈ A(n2), where A(n2) = {0, 1, ..., n2}\{n2−5, n2−3, n2−2, n2−1}.

Each k ∈ If (19) = {0, 1, ..., 42, 44, 48} can be written as a sum k = x1+x2+x3+y,

where x1, x2, x3 ∈ {0, 4} and y ∈ A(36). For 0 ≤ k ≤ 30, let y = k and xi = 0, for i =

1, 2, 3. For 31 ≤ k ≤ 48 such that k /∈ {43, 45, 46, 47}, let y = k−12 and xi = 4. Next,

construct two STS(19)’s (S, T1) and (S, T2) on the set∞∪({1, 2, ..., 6}×{1, 2, 3}). For

each i = 1, 2, 3, we define a pair of STS(7)’s with collection of triples T1(i) and T2(i)

on ∞∪ ({1, 2, ..., 6}×{i}) such that T1(i) and T2(i) have a common flower (consisting

of three triples) at ∞ and xi additional common triples since Jf(7) = If(7) = {0, 4}.

Let (L1, ◦1) and (L2, ◦2) be two latin squares of order 6 on {1, 2, ..., 6} which agree in

exactly y cells. In addition to the triples of the sets Tl(1), Tl(2), Tl(3), the collection

Tl (l = 1, 2) contains also the triples {(a, 1), (b, 2), (a ◦l b, 3)} (l = 1, 2) for each pair

1 ≤ a, b ≤ 6. Please see Figure 4.3.

a1 6

b STS(7)

STS(7)

STS(7)

∞

(S, T1(i)) and (S, T2(i)) have a common flower

at ∞ and xi common triples where i = 1, 2, 3.

1 6
a ◦l b

1 6

Figure 4.3: Jf (19) Construction

Both (S, T1) and (S, T2) are STS(19)’s. For each l = 1, 2, pairs containing the

element ∞ appear together exactly once in the corresponding STS(7), pairs of points

with the same second coordinate i, where i = 1, 2, 3, appear together exactly once in
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one of the triples from the set Tl(i) and pairs of points of different second coordinate

appear together exactly once in a triple of the form {(a, 1), (b, 2), (a ◦l b, 3)}.

Note that we constructed the two STS(19)’s so that they contain the same triples

involving ∞ in each of the Tl(i). These triples constitute a common flower at ∞ for

the STS(19)’s. In total, apart from the triples of the common flower, (S, T1) and

(S, T2) have k = x1 + x2 + x3 + y triples in common, xi (i = 1, 2, 3) of them coming

from the collections Tl(i) (l = 1, 2) and y of them coming from the latin squares

(L1, ◦1) and (L2, ◦2). �

Lemma 4.1.8 Jf(21) = If(21).

Proof : For the proof of this lemma, we will use another result by H.L. Fu [6]. It

assures us that for n ≥ 5 there exists a pair of latin squares on the same set of n

symbols with the same constant diagonal agreeing in exactly k cells off the main

diagonal if and only if k ∈ A(n2 − n).

Each k ∈ If (21) = {0, 1, ..., 54, 56, 60} can be written as a sum k = x1+x2+y+z,

where x1, x2 ∈ {0, 1, 3, 7}, y ∈ {0, 4} and z ∈ A(42). For 0 ≤ k ≤ 18, let z = k,

xi = 0 for i = 1, 2 and y = 0. For k ∈ {19, 20, ..., 54, 56, 60}, let z = k − 18, xi = 7

for i = 1, 2 and y = 4. Construct two STS(21)’s (S, T1) and (S, T2) on the set

{1, 2, ..., 7} × {1, 2, 3}. For each of i = 1, 2, we define a pair of STS(7)’s (S(i), T1(i))

and (S(i), T2(i)) with collection of triples on {1, 2, ..., 7}×{i} such that T1(i) and T2(i)

have xi triples in common, which is possible since J(7) = I(7) = {0, 1, 3, 7}. Further,

let (S(3), T1(3)) and (S(3), T2(3)) be a pair of STS(7)’s on {1, 2, ..., 7} × {3} with a

common flower at (1, 3) (consisting of three triples) and y additional common triples,

which is possible since Jf (7) = If(7) = {0, 4}. Also let (L1, ◦1) and (L2, ◦2) be two

latin squares of order 7 on {1, 2, ..., 7}, both of which have the constant main diagonal

of 1’s and agree in exactly z additional cells off the main diagonal. In addition to

the triples of the sets Tl(1), Tl(2), Tl(3), the collection Tl (l = 1, 2) contains also the

triples {(a, 1), (b, 2), (a ◦l b, 3)} for each pair of numbers 1 ≤ a, b ≤ 7. Please see

Figure 4.4.
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Put {(a, 1), (b, 2), (a ◦l b, 3)} for 1 ≤ a, b ≤ 7.

(L1, ◦1) and (L2, ◦2) have z

common cells off the main diagonal.

a ◦l ba

1

1

1

1

1

1

1

b

a common flower at (1, 3) and y common triples.

STS(7)

a
STS(7)

STS(7)

in common, (S(3), T1(3)) and (S(3), T2(3)) have

(S(i), T1(i)) and (S(i), T2(i)) have xi triples

a ◦l b

b

(S(2), Tl(2))

(S(3), Tl(3))

(S(1), Tl(1))

1 7

1

1

7

7

Figure 4.4: Jf (21) Construction

Both (S, T1) and (S, T2) constructed this way are STS(21)’s. For each l = 1, 2,

pairs of points with the same second coordinate i, where i = 1, 2, 3, appear together ex-

actly once in one of the triples from the set Tl(i) and pairs of points of different second

coordinate appear together exactly once in a triple of the form {(a, 1), (b, 2), (a◦lb, 3)}.

Note that by fixing the positions of 1’s in (L1, ◦1) and (L2, ◦2), we forced both

(S, T1) and (S, T2) to contain the triples {(1, 1), (1, 2), (1, 3)}, {(2, 1), (2, 2), (1, 3)},

{(3, 1), (3, 2), (1, 3)}, {(4, 1), (4, 2), (1, 3)}, {(5, 1), (5, 2), (1, 3)}, {(6, 1), (6, 2), (1, 3)},

{(7, 1), (7, 2), (1, 3)}. Our construction of (S(3), T1(3)) and (S(3), T2(3)) give the

other three triples of the common flower at (1, 3) of the STS(21)’s obtained by the

STS(7) defined on {1, 2, 3, 4, 5, 6, 7} × {3}. Totally, apart from the triples of the

common flower, (S, T1) and (S, T2) have k = x1 + x2 + y + z triples in common, xi

(i = 1, 2) of them coming from the collections Tl(i) (l = 1, 2), y of them from Tl(3)

(l = 1, 2) and z of them coming from the latin squares (L1, ◦1) and (L2, ◦2). �

Lemma 4.1.9 Jf(25) = If(25).

Proof : The proof of this case resembles very much that of the case where n = 19.

Here, each k ∈ If(25) = {0, 1, ..., 82, 84, 88} can be written as a sum k = x1+x2+x3+
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y, where x1, x2, x3 ∈ {0, 2, 8} and y ∈ A(64). For 0 ≤ k ≤ 24, let y = k and xi = 0, for

i = 1, 2, 3. For 25 ≤ k ≤ 88 such that k /∈ {83, 85, 86, 87}, let y = k − 24 and xi = 8.

Define two STS(25)’s (S, T1) and (S, T2) on the set ∞ ∪ ({1, 2, ..., 8} × {1, 2, 3}).

For each i = 1, 2, 3, we define a pair of STS(9)’s with collection of triples T1(i) and

T2(i) on ∞ ∪ ({1, 2, ..., 8} × {i}) such that T1(i) and T2(i) have a common flower

(consisting of four triples) at ∞ and xi additional common triples, which is possible

since Jf(9) = {0, 2, 8} (see Lemma 4.1.2). Let (L1, ◦1) and (L2, ◦2) be two latin

squares of order 8 on {1, 2, ..., 8} which agree in exactly y cells. In addition to the

triples of the sets Tl(1), Tl(2), Tl(3), the collection Tl (l = 1, 2) contains also the

triples {(a, 1), (b, 2), (a ◦l b, 3)} for each pair of numbers 1 ≤ a, b ≤ 8.

(S, T1) and (S, T2) defined in this way are STS(25)’s. For each l = 1, 2, pairs

containing the element ∞ and pairs of points with the same second coordinate i,

where i = 1, 2, 3, appear together exactly once in one of the triples from the set Tl(i)

and pairs of points of different second coordinate appear together exactly once in a

triple of the form {(a, 1), (b, 2), (a ◦l b, 3)}.

The way we constructed the two STS(25)’s (S, T1) and (S, T2) guarantees that they

contain the same triples involving ∞ in each of the Tl(i). These triples constitute

a common flower at ∞ for the STS(25)’s. In total, apart from the common flower,

(S, T1) and (S, T2) have k = x1 + x2 + x3 + y triples in common, xi (i = 1, 2, 3) of

them coming from the collections Tl(i) (l = 1, 2) and y of them coming from the latin

squares (L1, ◦1) and (L2, ◦2). �

Lemma 4.1.10 Jf(27) = If(27).

Proof : The proof of this case is very similar to the case where n = 21. Each

k ∈ If (21) = {0, 1, ..., 98, 100, 104} can be written as a sum k = x1+x2+y+z, where

x1, x2 ∈ {0, 1, 2, 3, 4, 6, 12}, y ∈ {0, 2, 8} and z ∈ A(72). For 0 ≤ k ≤ 32, let z = k,

xi = 0 for i = 1, 2 and y = 0. For 33 ≤ k ≤ 104 such that k /∈ {99, 101, 102, 103},

let z = k − 32, xi = 12 for i = 1, 2 and y = 8. Construct two STS(27)’s (S, T1)

and (S, T2) on the set {1, 2, ..., 9} × {1, 2, 3}. For each i = 1, 2, define a pair of

STS(9)’s (S(i), T1(i)) and (S(i), T2(i)) with collection of triples on {1, 2, ..., 9} × {i}
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such that T1(i) and T2(i) have xi triples in common, which is possible since J(9) =

{0, 1, 2, 3, 4, 6, 12} by Lemma 3.1.3. Further, let (S(3), T1(3)) and (S(3), T2(3)) be a

pair of STS(9)’s on {1, 2, ..., 9} × {3} with a common flower at (1, 3) (consisting of

four triples) and y additional common triples, which is possible since Jf(9) = {0, 2, 8}

by Lemma 4.1.2. Also let (L1, ◦1) and (L2, ◦2) be two latin squares of order 9 on

{1, 2, ..., 9}, both of which have the constant main diagonal of 1’s and agree in exactly

z additional cells off the main diagonal. In addition to the triples of the sets Tl(1),

Tl(2), Tl(3), the collection Tl (l = 1, 2) contains also the triples {(a, 1), (b, 2), (a◦lb, 3)}

for each pair of numbers 1 ≤ a, b ≤ 9.

Both (S, T1) and (S, T2) are STS(27)’s. For each l = 1, 2, pairs of points with

the same second coordinate i where i = 1, 2, 3 appear together exactly once in one of

the triples from the set Tl(i) and pairs of points of different second coordinate appear

together exactly once in a triple of the form {(a, 1), (b, 2), (a ◦l b, 3)}.

As a result of fixing the positions of 1’s in (L1, ◦1) and (L2, ◦2), we forced both

(S, T1) and (S, T2) to contain the triples {(1, 1), (1, 2), (1, 3)}, {(2, 1), (2, 2), (1, 3)},

{(3, 1), (3, 2), (1, 3)}, {(4, 1), (4, 2), (1, 3)}, {(5, 1), (5, 2), (1, 3)}, {(6, 1), (6, 2), (1, 3)},

{(7, 1), (7, 2), (1, 3)}, {(8, 1), (8, 2), (1, 3)}, {(9, 1), (9, 2), (1, 3)}. Furthermore, our

construction of (S(3), T1(3)) and (S(3), T2(3)) give the other four triples of the com-

mon flower at (1, 3) of the STS(27)’s. Totally, apart from the triples of the common

flower, (S, T1) and (S, T2) have k = x1 + x2 + y + z other triples in common, xi

(i = 1, 2) of them coming from the collections Tl(i) for l = 1, 2, y of them from Tl(3),

for l = 1, 2 and z of them coming from the latin squares (L1, ◦1) and (L2, ◦2). �

4.2 The Main Result

Lemma 4.2.1 There exists a design for each r ≡ 0, 1 (mod 3), r ≥ 15, with all blocks

of size ≡ 0, 1 (mod 3) where at least one of the blocks is of size t with 6 ≤ t < r.

Proof : It is known that for t 6= 2, 6 there exists a design of order 4t with 4 disjoint

blocks of size t and remaining blocks of size 4. (Equivalently there exists a pair of

orthogonal latin squares of order t [11].) For 0 ≤ s ≤ t we delete t − s points from
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one of the blocks of size t. What remains is a design with of order 3t + s with three

blocks of size t, one block of size s and other blocks of size 3 or 4. Denote this design

by Ds,t. When t = 2 or 6, this construction still works if s = 0, because in that case

only one latin square of order t is needed. Now we restrict s and t to be congruent to

0 or 1 (mod 3) and t ≥ 6. The designs Ds,t constructed with these restrictions cover

the case r = 18 (take t = 6, s = 0) and all the admissible cases where r ≥ 21 (take s

to be the remainder of r when divided by three and t to be equal to (r − s)/3).

The only remaining admissible cases are r = 15, 16, 19. They are constructed by

ad-hoc techniques. For r = 15 we take a set of size 7, say {1, 2, ..., 7} and we define

a symmetric latin square (L, ◦) of order 8 on the set {∞0,∞1, ...,∞7} such that the

main diagonal consists of zeroes and for i 6= j, the cells are defined by ∞i ◦ ∞j = k

for some k ∈ {1, 2, ..., 7}. We define the blocks to be {1, 2, ..., 7} and {∞i,∞j, k}.

Clearly all pairs of points, not both from the set {1, 2, ..., 7} appear together in a

block of this type. We have a design of order 15 with one block of size 7 and others

of size 3. For r = 16 we consider D0,5 and adjoin the point ∞ to the blocks of

size 5 so that the vertex set is {∞} ∪ {1, 2, 3, 4, 5} × {1, 2, 3}. For each i ∈ {1, 2, 3}

take the block {∞, (1, i), (2, i), (3, i), (4, i), (5, i)}. The remaining blocks are defined

by {(i, 1), (j, 2), (i ◦ j, 3)}, where i ◦ j is defined in the same way as in D0,5. This way

we get a design of order 16 with 3 blocks of size 6 and the remaining blocks of size

3. For r = 19 we consider D0,6 and adjoin the point ∞ to the blocks of size 6 so

that the vertex set is {∞}∪ {1, 2, 3, 4, 5, 6}× {1, 2, 3}. For each i ∈ {1, 2, 3} take the

block {∞, (1, i), (2, i), (3, i), (4, i), (5, i), (6, i)}. The remaining blocks are defined by

{(i, 1), (j, 2), (i ◦ j, 3)}, where i ◦ j is defined in the same way as in D0,6. This way we

get a design of order 19 with 3 blocks of size 7 and the remaining blocks of size 3. �

Theorem 4.2.2 For each n ≡ 1 or 3 (mod 6), Jf(n) = If(n), except that Jf(9) =

{0, 2, 8}.

Proof : Assume that the statement holds for all admissible orders less than n. Let P

be a design on the r-set as in the previous lemma, call it R. Suppose that B1, B2, ..., Bs

are the blocks of P where ri = |Bi|, 1 ≤ i ≤ s with 6 ≤ r1 < r. We construct a



Chapter 4: The Flower Intersection Problem of Steiner Triple Systems 48

pair of Steiner triple systems (S, T1), (S, T2) on the set {∞} ∪ R × {1, 2}. For each

k ∈ If(n), we can find ai’s such that ai ∈ If(2ri + 1) (ai 6= 1 or 4 whenever ri = 4)

with a1 + ... + as = k. Since ri < r, by induction hypothesis there exists a pair

of systems (S, T1(i)), (S, T2(i)) on {∞} ∪ Bi × {1, 2} with exactly ai + ri triples in

common, ri of them being the triples of the flower {{∞, (x, 1), (x, 2)} : x ∈ Bi}. For

l = 1, 2, we let Tl consist of the triples in the union of Tl(i) where 1 ≤ i ≤ s. Then

(S, T1) and (S, T2) have exactly k + r triples in common, r of which constitute the

flower {{∞, (x, 1), (x, 2)} : x ∈ R} at x. Taking the union of Tl(i)’s, for the fixed l,

l = 1, 2, we guarantee that each pair of vertices occurs together in at least one triple.

Moreover, considering any of the (S, Tl)’s, l = 1, 2, since Bi∩Bj for i 6= j, 1 ≤ i, j ≤ s

cannot contain more than one vertex, we do not see the same pair of vertices more

than once in a triple of (S, Tl(i)). �
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Chapter 5

CONCLUSION

In this thesis we gave complete solutions to the basic intersection problem and

flower intersection problem of Steiner triple systems, modifying respectively some

parts of the work of C. C. Lindner and A. Rosa published in 1975 [12], [13] and of D.

G. Hoffman and C. C. Lindner published in 1987 [7]. In 1982, C. C. Lindner and W.

D. Wallis determined for all n, the set of numbers k such that there exists a pair of

1-factorizations on the same set of size n intersecting in k edges [14]. It turned out

that their result and the work of J. Doyen on disjoint Steiner triple systems [5] can be

combined to show most of the cases of the basic intersection problem of Steiner triple

systems [14]. In [7], the authors also pointed out that the flower intersection problem

is equivalent to the intersection problem of group divisible designs with group size 2

and block size 3. This observation led to the study of intersection problems of group

divisible designs in different settings. In 1992, R. A. R. Butler and D. G. Hoffman

solved the case with block size 3 and group size g [1]. A very similar problem to

the flower intersection problem of Steiner triple systems is the disjoint intersection

problem of Steiner triple systems, where the intersecting triples are required to be

pairwise disjoint. This problem was completely solved by Y. M. Chee in 2004 [2].

Since there exists no STS(6n + 5), a pairwise balanced design of order 6n + 5 with

exactly 1 block of size 5 and the rest of size 3, denoted by PBD(5∗, 3), is the closest

object with this order to being a Steiner triple system. A natural extension of the

basic intersection problem and flower intersection problem is studied for PBD(5∗, 3)’s,

both of which were solved by S. Küçükçifçi [9]. Another interesting problem arises

when we have Steiner triple systems of different orders, say STS(u) with vertex set U

and STS(v) with vertex set V such that U ⊆ V . P. Danziger, P. Dukes, T. Griggs and



Chapter 5: Conclusion 50

E. Mendelsohn solved this problem for v − u = 2, 4 and for v ≥ 2u − 3 [3]. To sum

up, apart from the Steiner triple systems, intersection problem of different designs

are studied as well [1], [9] and these intersection problems give rise to other similar

problems [2], [3]. There is a variety of this kind of problems which are yet open, hence

it is possible to concentrate on these problems and go further in this direction.
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