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ABSTRACT

The purpose of this study is to give a comprehensive treatment of big Witt vectors and
the de Rham-Witt complex.

We begin with an introduction to Witt vectors and cover both the classical p-typical
Witt vectors and the big Witt vectors. The latter associates to every ring A and every set
S of positive integers stable under division a ring Wg(A), and the former corresponds to
the case where all elements of .S are powers of a single prime p. We also give a historical
motivation for p-typical Witt vectors.

We continue with the definition of the big de Rham-Witt complex mainly focusing on
p-typical de Rham-Witt complex. De Rham-Witt complex is a projective system of differ-
ential graded algebras. In degree zero, it is the Witt vectors and the first complex in the
inverse limit is de Rham complex. It provides a complex which is explicit and computable.

We also give an explicit calculation of p-typical de Rham-Witt complex over F,[T, T1].
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OZET

Bu tezin asil amaci Witt vektérleri ve de Rham-Witt kompleks hakkinda kapsayici bir
calisma sunmaktir. Witt vektorlerine bir girig ile basglayacak olan bu calisma hem klasik p-
sel Witt vektorlerini hem de biiyiik Witt vektdrlerini kapsayacaktir. Biiyiik Witt vektorleri
her A halkasina ve dogal sayilarn bélme altinda kapali her S altkiimesine bir halka atarken
p-sel Witt vektoérleri S kiimesinin sadece bir tek p asal sayisinin kuvvetlerinden olugtugu
duruma denk gelmektedir.

Ardindan biiyitk de Rham-Witt kompleksin tammi ile devam etmektedir. Fakat asil
olarak p-sel de Rham-Witt kompleks {izerinde odaklanilmigtir. De Rham-Witt kompleks
derecelendirilmig diferansiyel cebirlerinin bir projektif sistemidir. Bu sistem sifirinci dere-
cede Witt vektorlerini verir ve bu projektif sistemdeki ilk nesne de Rham komplekstir. De
Rham-Witt kompleks bize kolay ve acik olarak hesaplanabilen bir kompleks saglar. Bu
calismada da buna bir 6rnek olarak F,[T, T~!] halkasi {izerindeki p-sel de Rham-Witt kom-

pleksin hesaplanigi acik olarak gésterilmistir.
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1 Introduction

Aim of this study is to give an explicit calculation of de Rham-Witt complex over a certain
ring. For this, first we need to describe Witt vectors and the de Rham-Witt complex. The
ring of Witt vectors over A is the direct product of copies of A’s as a set. Ring operations
are not defined componentwise. The operations are defined such that Witt polynomials

wp(2) are ring homomorphisms.
2
wo(a) = xo, wi(x) = 2 + pr1, wa(x) = af +paf + pPaa,. ..

Here one finds the Witt polynomials as mysterious. But historically, this is not the case. The
setting is that of the investigations by Helmut Hasse and his students and collaborators into
the structure of complete discrete valuation rings A with residue field k. Oswald Teichmiiller
discovered that in such a situation there is a multiplicative system of representatives, i.e.,
a multiplicative section of the natural projection A — k. Such a system is unique if k
is perfect. These are now called Teichmiiller lifts. Every element of A can be written as
a power series with coefficients from any chosen system of representatives. As they are
already multiplicative the first problem was to figure out how Teichmiiller representatives
should be added in the arithmetic of the ring. In unequal case, this is a very difficult

problem. Teicmiiller found a formula for doing this. The formula is,

where [—] denotes Teichmiiller representatives and s, = r,(a'/?",b1/?") such that

1

ro(z,9)?" +pri(z,9)P" . D r(a,y) = 2P FyP.

And here this coefficients coincide with the p-adic Witt polynomials on the left handside of
the above equation. After Witt vectors, we describe the de Rham-Witt complex which is
a projective system of diferential graded algebras that provides a complex which is explicit
and computable. In degree 0, it is the Witt vectors and the first object in the inverse limit
is the de Rham complex. Thus the de Rham-Witt complex combines the Witt vectors and

the de Rham complex.



2 Preliminaries

Throughout this study, a ring is commutative ring with unity.

2.1 Kahler Differentials

This is an algebraic generalization of differential forms on a manifold.

Let A be a ring and M be an A-module. A Derivation from A to M is a map

D:A—M

satisfying
D(a+b) = D(a) + D(b) and D(ab) = aD(b) + bD(a)

The set of derivations from A to M is denoted as Der(A, M). Let A be k-algebra and
fik— A, wesay D is a k-derivation if Do f = 0.
Note that D(1-1) = D(1) + D(1) = 2D(1) and we obtain D(1) = 0. So any derivation is a

Z-derivation. Now, assume that A is a k-algebra. Define
n:ARA— A

QY — 2y.

Then p is a surjective k-algebra homomorphism. Set I = ker(u), Qh/k = 1I/I? and B =
A @y, A/I?. Then p induces
B — A

and we have the exact sequence
0—Qyp—B—A4-—0

Define Ay : A — Bbyand \2 : A — B bya— 1®a (mod I?) and by a —
a®@1 (mod I?) respectively. Then p/(\;(a)) = a for i = 1,2.

Setd =X — X : A — Qh/k. Firstly, Qh/k has the A-module structure induced by
multiplication by a @ 1 (mod ) in A®@ A. e, a-z:= (a®1)(mod [)-zforaec A and



x € Qi‘ Ikt Note that this multiplication can also be defined by using 1 @ a instead of a® 1,

since the difference of these two element is in I. Then d is a derivation.

d(aa’) = M(a)Ai(a’) — Aa(a)Xa(a’)
= M(a)A1(a") = M(a)Xa(a’) + Ai(a) Xa(a’) — Aa(a)a(a’)
= A(@) (A1 — A2)(a)) + A2(a) (A1 — A2)(a))

—a-da' +ad -da

Now we will prove that (Qi1 I d) satisfies the following universal property : For any
A- module M and any derivation D € Dery(A, M), there exist a unique A-linear map
f:Qil/k — M such that D = fod.

Let D be in Derg(A, M) and we define

p: AR A— Ax M

ez @y) = (zy,2Dy)

where Ax M := A@® M is a k-algebra with multiplication (a,z) - (a/,¥’) = (ad’, a2’ + a'x)

for a,a’ € A and z,2' € N. Then ¢ is a homomorphism of k-algebras.

e((a@b)(a @b)) = plad’ @bb') = (ad’' bV, aa’ D(bY))
= (aa'bb’, aa'bDV + aa't/ Db)

= (ab, aDb)(a't', o' DV)
Now, let Y. z; @ y; € ker(u), then
@ (Z z; ®yi> = (Z xzyz,zﬂ%Dyz) = (QZ%D%)
and since (0, a)(0,b) = (0,0) for any a,b € M, ¢(I?) = 0. Therefore ¢ induce a map

f:QllLl/k—>M



flda) = fl@a—a®1 (mod I*) = o(1 @a) —pla® 1)

= (a,Da) — (a,aD1) = Da
SoD=fod If ¢ =32 @y; (mod I?) € Qh/k, then

f(a) = f(z az; @ y; (mod I7%)) = Zamil)yi = af(&).

So f is A-linear. Next thing to show is Qi‘ i 18 generated as an A-module by the set
{dala € A}. First we have

a@ad =(aa)(1@d —d @1) +ad @1 (2.1.1)
so that if w =) 2; @y; € I, then

w (mod I?) = Z (z;2) 1@y —yi@l)+ leyl @1 (mod I*) by equation(1.1.3)

1

Hence Qh/k is generated as an A-module by {da|a € A}.
The A-module we have just obtained is called K&hler Differentials and for a € A the element

da is called differential of a. From the definition, we see that
Der(A, M) = Hom (2} /1)

Example.

If A is generated as a k-algebra by a subset U C A, then 9114/143 is generated as an A-
module by {da| a € U}. Indeed, if a € A, then there exist a; € U and a polynomial
f(z) € k[z1,...,2,] such that a = f(ay,...,a,). We have

da =d(f(a1,...,an) = Zfi(al,...,an)dai

where f; = df/0z;. Then consider AQ%;. We take here the definition of exterior algebra



AQcY) as
AQL = (TOL) /{z @y +y@ x| 2,y € QL}

where T(2}) denotes the tensor algebra over Q.

2.2 Direct and Inverse Limits

We will give universal properties of inverse and direct limits in the ring category.

2.2.1 Direct Limit

Let us start with the definition of a directed system of rings and homomorphisms. Let
< I,< > be a partially ordered set with the property that for every ¢,j € I, there exist
keI with i <k and j < k. Then we say < [I,< > is a directed set. Let {A;| ¢ € I} be
a family of rings indexed by I and f;; : A; = A; be homomorphism for all ¢ < j with the
following properties:

(i) fi is the identity homomorphism of A;.

(i) fik = fjro fij forall i < j <k.

Then the pair < A;, fi; > is called a directed system over I. The direct limit of the

directed system < A;, fi; > denoted as

where for a; € A;, a; ~ a; if there is some k € I such that f;z(a;) = fir(a;).

2.2.2 Inverse limit

We start with the definition of an inverse (or projective) system of rings and homomor-
phisms. Let (I, <) be a directed partially ordered set. Let (A;);cr be a family of rings and
suppose we have a family of homomorphisms f;; : A; — A; for all ¢ < j with the following
properties:

(i) fi is the identity in A;,

(ii) fir = fijofk forall i < j <k.

Then the pair ((A4;)ier, ([fij)ijer) is called an inverse system of rings and morphisms over



I, and the morphisms f;; are called the transition morphisms of the system. We define the
inverse limit of the inverse system ((4;), fi;) as a particular subring of the direct product

of the A;’s:
@Al = {a € HA1| a; — fij(aj) for all ¢« < j}

el
2.3 String p-Rings
Definition 2.3.1. A ring R is strict p-ring if it is Hausdorff and complete for the topology
defined by its p-adic filtration and its residue ring A/p is perfect ring of characteristic p.

Proposition 2.3.2. Let A be a strict p- ring. Then :

(i) There exist one and only one system of representatives 7 : K — A which commutes

with pth powers : T(AP) = T(\)P for all X € K.

(i) In order that a € A belong to S = 7(K), it is necessary and sufficient that a be a p™th

power for all n > 0.

(11i) This system of representatives is multiplicative, i.e., one has T(Ap) = T(N)71(1) for

all \u € K.

Proof. Denote K = k. Let X € k and set

Lp={xecAlz=X " (modp)}
Up = {2P"| z € L,,}

for all n > 0.

Let x € U,. By definition of U,, * = y?" for some y € L,. Then y = A*" " (mod p).
This implies = y?" = Amod p). So z € Ly and U, is contained in Lg for all n. Also
U,’s form a decreasing sequence. 27" € Uy, 1 gives 2 = 2 "' (mod p) and taking p’th
power, z? = A\?" " (mod p) and then 2P € L,, and 2" € U,. We will show U,’s form a
Cauchy filter base, but first we should give the definition of a Cauchy filter base and give

some properties.

Definition 2.3.3. Let S be a set and P(5) be the set of all subsets of S. Then B C P(S)

with the following properties



(i) Intersection of two set of B contains a set of B.
(ii) B is non-empty and empty set is not in B.

is called filter base for S.

Definition 2.3.4. In a topological ring A, a subset S of A is V-small if x —y € V for all
z,y € S where V is neighborhood of 0. A filter base is Cauchy if it contains a V-small set
for every neighborhood V' of 0. We say a filter base converges to an element = of A if for

any neighborhood V of 2, there exist § € B such that g C V.

Since {U,} satisfies above properties, it forms a Cauchy filter base. We will define
7(A) = lim U,,. But before we need to show this limit exist and it is unique.
In general, in a complete topological ring A, a Cauchy filter base converges :
Let V,, be neighborhood basis of 0. Since filter base is cauchy, for every V,,, there exist
V,-small sets I}, € B. Let

n
T, € m F,
k=1
There exist such an element since a subset of this intersection must be in B and empty set
is not in B, it is not empty. If m > n and s > n, x; and x,, lies in F,, and by definition
of Fry 2y — x5 €'V, J.e., {2}, is a Cauchy sequence in A and A is complete implies {z,,}

converges to an element x in A. Now take a neighborhood of x, namely x + V,, where V}, is

a neighborhood of 0. Then there is an N € N such that for all m > NV,

Tm €2+ V).

For any ¢ € Fy and m > N,
c=c—2pm txm—ctzeVy+V,+a

If necessary, choose N bigger than p, then ¢ € V, +x i.e Fiy C V, + 2 and B converges to
2. In addition if topology on A is Hausdorff, then limit is unique. Otherwise let 2 and y
be limits of this filter base. Then we can find two distinct neighborhoods of z and y. Their

intersection is emtpy and it must be in B, which is a contradiction.



Define 7(A) = lim U, (\). This defines a system of representatives. If A = uP, the pth power
operation in A maps U,(u) to Uy,y1()). For 27" € U,(p),

z=p’" (mod p),

r=X"" (mod p),
z € Lny1(N),
(@) € Unt1(N)-
()P = (Im Up(p))? = Im Up 11(A) = 7(A) = 7(p?).

If f is a system of representatives having this property, f(A) is p™th power for all n,
since k is perfect. Hence f(A) € U, for all n. Then for any neighborhood U of f(\), there
is some Uy, such that Uy C U. So f()) is the limit of {U,}. This shows (i) and (ii). If =
and y are p”th power, then zy is also. So 7(2)7(y) is again a representative and since it is
equivalent to 2y (mod p), it is equal to 7(zy).

O

Proposition 2.3.5. Every element a in a string p-ring A can be written uniquely as a

convergent series
[ee]

a= anwn, with s, € S.
n=0

Proof. Let a € A. By definition of S, there is an sy € S such that a = sg (mod p). If we

write a = sg + ag7 and apply the same procedure we obtain s; such that
a =S89+ $17+ a2772

Continuing this process, we obtain s,,’s for all n. The series > > s, 7" converges to a. Set
Sn =210 s;w*. For any neighborhood U of 0, there is an N such that p™ C U. Now for
all n,m > N, S, — S, € p"t1 Cp" CU. {S,}, is a Cauchy sequence in A and since A
is complete, the series > s,7™ converges to a. Since A is Hausdorff, the limit is unique.
Conversely, every series of the form > s, 7™ converges, since its general term converges to

zero and A is complete. O



3 Witt Vectors

3.1 Motivation

Let A be a strict p-ring with residue field k and denote 7(a) = [a]. Suppose

D lanlp™ + D balp” =D [salp” (3.1.1)
n=0 n=0 n=0

We will try to determine s,, in terms of a;, b;’s inductively. Before that, let us give a lemma

which will be useful later.

Lemma 3.1.1. Ifa =b (mod p), then a?" = b" (mod p™*1).

Proof. We proceed by induction on n. When n = 0, Lemma is clear. So assume the lemma
is true for n — 1. Then a = b (mod p) and by induction hypothesis " = (mod p™).

n—1 7

p—1
o = (@ = (" pa)P =0 Y (P > a®" " (pz)P = bP" (mod p™tY).
7
i=0
since (f) is divisible by p for all 1. O

We will begin with finding the sum of two Teichmiiller lifts.

Now suppose
[ee]

[ao] + [bo] = > [snlp” (3.1.2)

n=0

Then

lag] + [bo] = [so] (mod p),
ag + bg = so,

since [z] = x (mod p) for all z € k. Now we will find s; in the Equation(2.1.1) . To do this,

we should look at the Equation(2.1.2) modulo p?. So we have

lao] + [bo] = [s0] + [s1]p (mod p?),
[s1]p = [ao] + [bo] — [ao + b (mod p?),
[s1]p = [ag"1P + [bg/"1" — lag/” + b5} (mod p?).



Since [z] + [y] = [z + y| (mod p) for all 2,y € k and aé/p + bé/p — (ao + bo)"/?, we have

([2] + [y])? = [z + »]? (mod p?) by Lemma(2.1.1)

and we obtain

[s1lp = a1+ 051 = ([ag") + b5"))? (mod p?)
p—1 - )
[s1lp = — (f) lao] 7 [bo]» (mod p?)
i1
Since (f) is divisible by p,
Uty pei
fs1] = — —(?) lao) 5 [bo] (mod p)
i—1 P\
p—1 _
1/p\ &=t i
81 = —;5(2,)%” by

And the next step is to find so and to determine this coefficient, we will look at the
Equation(2.1.2) modulo p?.
[ao] + [bo] = [so] + [s1]p + [s2]p? (mod p?)

p—1 i i
[s2lp® = [ao] + [bo] — a0 + bo] — [— Z ! (p> ag” é"] P (mod  p%)

i=1

[solp? = [ag™ 17+ b5 17 = ([ag™] + (b5 ))”

p—1 p—i KR p
— (-1 (Z (D) ][652]> p (mod p?)

We used here that

la+0] = la] +[0]

[a+ b = ([a] + [b])” (mod p?) for any a,b€ k.
p?—1 2 2 . ) p—1 p—i i p
solp? = — p a le 22 _(_1)P lp a? 1P mod 3
ol == 3 ()il ol (- (Zp()[ 10 1) p (mod p°)

10



To find so, we must divide above expression by p2.

Every term other than terms with coefficients (i;) and ((%)/p)Pp is divisible by p*.

(p2> = (Q>p (mod p?) for k —1,...,p— 1.

But we have

kp P

First, we will show

()

(p2> @ -0 —p) . 0 —2p) .. (PP = (k—1)p)...(p* —kp+ 1)
kp 1-2:3...p-(p+1)...2p)...((k=1)p)...(kp—1) - (kp)

(Z) (mod p?) (3.1.3)

In above expression, in numerator the only numbers divisible by p are p? — np, for n =
1,...,(k—=1). Also in denominator, numbers divisible by p are np for n = 1,...,(k — 1).

So after doing cancellations, we have

I e-m _ (p>
gk_n " k

and remaining terms

(P’=1)...0°=(p—1) - —(p+1)...(p* = (kp—1))
123 -0t 1).. (kp—1)

= 1(mod p?)

Now, we have showed (2.1.3).

@ = @(mod ),
P P

By Fermat’s Little Theorem, we have

G — (%)p (mod p),

p

finally combining previous two raw together, we obtain

&) = (%)p(mod p)

p

11



Multiplying the last row by p, we obtain

(0= (8 e

So, if p is odd,
2_1 1 . NP
1 p p2 & i p 1 D p_t £
ool = (= 3 (% )laol 7 o 4 (X2 (%)™ 108°1) # | (snod )
i=1
Now we are in general case.

Note that s,’s are unique for ag,...a, and by,...b,. After now, we will use the nota-

tion s, (a,b) for the coefficients in the sum [a] + [b] to avoid any confuse. Let us begin with

equation
D lanlp™ +>balp™ = kalp™ (3.1.4)
n=0 n=0 n=0
a+ b= [ao] + [bo] = ao + bo (mod p)
ko = ag + bo
Looking at Equation (2.1.4) modulo p?, we have
lao] + [a1]p + [bo] + [b1]p = [ao + bo] + [k1]p (mod p?)
[so(ag, bo)| + [s1(ao, bo)lp + p[so(a1,b1)] = [ag + bo] + [k1]p (mod p?)
[s1(a0, bo)lp + plso(a1, b1)] = [k1]p (mod p?)

[k1]p = ([s1(ao, bo)] + [so(a1,b1)])p  (mod p?).

Dividing the last equation by p,

p—1 L
1/p\ &t 4
ki =a1+b1 — —° )ay” b§
1 1 1 Z D (Z> 0 0
=1
We see that finding coefficients of sum of two series is not so easy even sum of two Te-

ichmiiller lift. But there is another way that gives these coeflicients and this is discovered

12



by Ernst Witt.

Now, let X;,Y; be indeterminants. Now consider the polynomial
Wy (Xo, X1, ..., Xp) = zn:piXé’nii for all n.
i=0
We can find 5,, which satisfies the equation
wn(Xo, X1,y Xp) + wn(Yo, Y1,...,Y,) = w, (S0, S1, .- ., Sh)

for all n inductively. Since the term in the equation involving .5, is p™S,,, S,’s are polyno-
mials of Xq,...,X,, Yo,...,Y, with rational coefficients.

Call S,, = on(Xo,..., Xn;Y0,...,Yn). Next proposition gives relation with ¢,, and s, in
the Equation (2.1.1).

Proposition 3.1.2. Let A be complete DVR with perfect residue field k of characteristic

p and
b . b . b .
D ladp’ + > [bilp' =D lsilp’
i=0 i=0 i=0
Set
7 :gpi(aé/pi,...,a;/piij,...,ai;bé/pi,...,b;/pi ],...,bi), a;,b; € k
where

Wn(X07- ce 7Xn) + Wn(Y07 .. 7Yn) - Wn(SDO(XmYO)a s 73071(X07 s 7Xn;Y07Y17' ce 7Yn))

Then r; — s;.

Proof.
ril/pnii = gpi(aé/pn, .. .,a;/pnij,...,ag/pnii;bé/pn, ... ,b;/pnij, ... ,bg/pnii)
1 n—it 1 n 1 n—it 1 n 1 n—1
" = eulay™ [ ) ) (mod p)
P = T (g LM o P bV (mod p"~it1)

13



Multiplying by p,

n—i

Pl =i (e ], e VP o) P [P (mod pth

Evaluating ¢;’s at X; = [ai]l/pnii, Y, = [bi]l/pnii, we obtain
n. n n—1_ p_ LY n—1_ n—
lag/”" 17" + play™ P b an] + BT R P 1 b

— " (o L 10D + -+ P enllag™ ), lanl; 0, b))

[ao] + ...+ [an]p™ + [bo] + ... + [balp™ = [ro] + [r1lp + ... + [ra]p™ (mod p™*1h)

n n n n

D lailp’ + > [bilpt =) [rilp' =D [silp’ (mod pt)

=0 =0 =0 =0

We will show 7, = s, for all n by induction on n. For n = 0,

[rol = [so](mod p)

0 = So
Assume r; = s; forz <mn — 1.
[ro] + [r1lp + ... 4 [ralp™ = [so] + [s1lp + ... + [sn]p” (mod p™*™)
p"[rn] = p"[sn] (mod p”“)
Dividing by p™,
7] = [54] (mod p)
TTL - STL
Sp — Spn(al/pna ) ll/p”ﬂ’ <y O bé/p”’ ’bl}/p”*i’ abn)

14



3.2 Witt Vectors

Let N be the set of positive integers, and S be a subset of N with the property that, if
n € S, and if d is a divisor of n, then d € S. We then say that S is a truncation set. Wg(A)

is the set A% equipped with a ring structure such that the ghost map
w: Wg(A) — A

(an|n € S) — (wyp(a)n € 5),

where

wp(a) = Zdaz/d
dln

is natural transformation of functors from the category of rings to rings. Here A% is

considered to be a ring with componentwise addition and multiplication.

Lemma 3.2.1. Suppose that for every prime p, there exist a ring homomorphism
¢p : A — A with the property that ¢p(a) = aP mod pA. Then a sequence (T, )nes s in the
image of the ghost map

w: Wg(A) — A®

if and only if x,, = ¢p(2,,,,) (Mmod prM A), for every prime p, and for every n € S with

vp(n) > 1. Here vy(n) denotes the p-adic valuation.

Proof. Assume z,, = wy(a) for some a € Wg(A). Then we have

Dp(Wnp(@) = Gy Y day™) = 3" doy(aq)™ (3.2.1)
dl(n/p) dl(n/p)

since ¢p(aq) = af) (mod pA),

dpla d)n/pd = ag/d (mod prr(m)—vp(d) A)
d¢p(ad)n/pd = daz/d (mod p“r(™ A)
Z d¢p(ad)n/pd = Z daz/d (mod p“r(™ A)
d|(n/p) d|(n/p)
S dal! = ¢ (wnp(a)) (mod  p*»(™ A) (3.2.2)
d|(n/p)

15



Let d € N such that dn and d { (n/p). Write d = p*»@.d" where d’ is relatively prime to
p. Then p*»@|(n/d’) and does not divide (n/pd’). So v,(d) = vy(n/d’) = v,(rn). Now we
have

Z dan/dEO (mod  p*»(™ A),

d|n,df(n/p)
Zd nfd _ Z da n/dJr Z da n/d Z da (mod p“p(")A),
dln d|(n/p) d|n,df(n/p) d|(n/p)

Qﬁp(wn/p(a))zwn(a) (mod p“p(”)A)

by equation 2.2.2. Conversely, if (z,|n € S) € A% such that z,, = ¢,(z,,/,) (mod p?»(™ A).

n/p

We want to find an a = (a,)nes such that w,(a) = x, for all n € S. Let a; = 21, and

assume for all d/n we have chosen a4 such that wy(a) = 24.

Tp = ¢P(xn/p) = ¢p n/p Z d¢ ad n/pd — Z da n/d (mOd pvp(n) A)
d|(n/p) d|(n/p)
= Z dan/ d Z dan/ d (mod pvp(n) A)
d|(n/p) dln,d#n
Then

n = Z da (mod p“p(")A),
dln,d#n

for all p dividing n. So by Chinese remainder theorem,

Z dan/dz (mod n)
dln,d#n

Here, the important thing is that above expression is true for all p. Now, we can chose an

a, € A such that this difference is equal to na,,.

Ty = wp(a)

16



Proposition 3.2.2. There exist a unique ring structure such that ghost map
w: Wg(A) — A®

s a natural transformation of functors from rings to rings.

Proof. Assume A = Z[x,;y,|n € S]. We have the map
Gp: A= A

Ty — 2P
Yn = Uy,

For any f € A, we have ¢,(f) = f? (mod pA). Since ¢, is additive,

¢p(wn/p(x)) + ¢p(wn/p(y)) — ¢p(wn/p(x) + wn/p(y))
Then
S0 wy, () 4wy, (y) is in the image of the ghost map by Lemma 3.2.1. Repeating this argument

for multiplication, we see that there exist polynomials ¢, (z,y) and ¢,(z,y) such that

wy(2) + wn(y) = wale(z,9)),

wy(2)wn (y) = wa(d(2,Y)).

Furthermore these polynomials are unique. If w,(2) = w,(y), then wy(z) = 21 = w1(y) =

y1. Assume for all dn , 24 = y4. Then

d| d|n,d#n din

NTy, = NYn.

17



Since A is a torsion free ring, we can cancel n’s and we get

LTn = Yn

So the ghost map is injective when A is torsion free. Let A be any ring and a,, b, € A.

Let 7 be the ring homorphism |,

T:Zzpiynln € S| — A

T IZp > Qn, Yp — by

Then define addition and multiplication in Wg(A) as

(an)nes + (bn)nes = (T(en(2,Y))nes,

(an)nes(bn)nes = (T(0n(,Y) ) nes-

Ws(A) forms a commutative ring with addition and multiplication defined above. We

will only show associativity of addition. First assume A = Z[2,;Yn; 2n|n € S]. Then

(z+y)+z=p(y) +z=0plp@y),2) and 2+ (y + 2) =2+ ¢(y, 2) = (2, (y, 2)).

= wn(p(2,9)) + wn(2) = wp(p(e(2,9),2))
Wy (2) + wn(@(y, 2) = wn(e(@, 0(y,2)))
wy (p(z, ¢y, 2)))

ez, p(y, 2))

(wn(2) +wn(y)) +wn(z

wn (@) 4 (Wn(y) + wa(2)
wn(p(p(,y), 2)
ple(e,y), 2

@ty tz=2+(yt2)

)
)
)
) =

Finally, for an arbitrary ring A, 7(von(e(x,y), 2)) = 7(en(z, ¢(y, 2))). O

The set A% equiped with the ring structure given in the Lemma(3.2.2) is called big Witt

Vectors.
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3.2.1 Verschiebung, Frobenius and Teichmiiller Lift

Define
[—]: A — Wg(A)
such that
a ifn=1

[a] n —
0 otherwise.

This map is called Teichmiiller lift and we have an exact sequence of multiplicative groups.
0— A Thwg(4) 5 A4 0.
Let T C S be truncation sets. Then the forgetful map
R} : Ws(A) = Wr(A)

(a’n)nes = (an)neT

is a ring homomorphism called restriction from S to T. If n € N, and if § C N is a

truncation set, then

S/n={d e Nnd € S}

is again a truncation set. We define n’th Verschiebung map

Uy if M,
Vn((ad|d € S/n))m -
0 otherwise.

Lemma 3.2.3. The Verschiebung map V,, is additive.
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Proof. There is a commutative diagram

P

Ws(A) @ AS

where the map V¥ is given by

Ny if M,

Vi ((zald € S/n))m =
0 otherwise.

(V) (w(a)))m = nwy,m(a) if m =nd,

n

W (Va(@)) = 3 d(Va(@)a™* = 37 day/e
dlm

dlm,n|d
o m/d m/nk
= Z nka, " =n Z ka, '™ = nwpy, m(a)
d|m,d=nk klm/n

So the diagram commutes and it is easy to see that V" is additive. Then

w(Va(2) + Va(y)) = V' (w(2)) + V,* (w(y)) = V" (w(z) + w(y))

=V (w(z +y)) = wVa(z +y))

for A = Z|xy;yn|n € S]. Since A is torsion free, the ghost map is injective.

Va(z +y) = Vol2) + Valy)

If we have a ring homomorphism

f:A— B,

define



Since addition and multiplication is defined by polynomials,

Ws(f) is a ring homomorphism. For an arbitrary ring A, let
TiZ[Xp;Ynn e S| — A
be as in the proof of the Lemma 3.2.2. Then we have
Vala+0) = Vo (Ws(T)(2+y)) = Ws(r)(Va(2+y)) = Ws(7)(Va(2) +Va(y)) = Vala)+ Ve (b)
since Ws(7)(Va (2))m = 7(Va(@)m) = T (@) = Va(Ws(7)(2)) -

O

Remark 3.2.4. V,, commutes with Wg(f), where f is any ring homomorphism from A to

B. We have the commutative diagram

Weyn(f)

lvn Lvn

Ws(A) Ws(f) Ws(B)

VW (f)(@))a = (Wspn(f(@)am = flagm)
= [(Vala)g) = Ws(f)(Va(a))d-

Lemma 3.2.5. There exists a unique natural ring homomorphism
Fn : Ws(A) — WS/n(A)

such that the diagram

Wg (A) @ AS

|

where F,((xm|m € S))d = Xnd, commutes.
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Proof. Let A =Z[z,|n € S].

F(w(x))a = wng(x) and F(w(@))asp = Wenay/p(®)-

p(T (w(@))asp) = Fy (w(@))a = woalz)  (mod  p*#(@A)

by Lemma 3.2.1.

So there exists unique f,’s, where

Fo(z) = (fnald € S/n) € Wg/,,(A), such that

Now in Zlz,|n € S|, F, exists and the diagram commutes. For an arbitrary ring A, define
Fa(a) = W (1) (Fa(2))
where a = (ap|n € ) = Wg(7)((2,|n € S)). Then

Y (w(a))a = wpd(a) = (wna(z)) = 7(F, (w(2))a) = 7(wa(Fa(2)))

= wa(Ws/n (1) (Fp())) = wa(Fy(a))

So the diagram again commutes.
Since F¥ is ring homomorphism, F), is ring homomorphism when A = Z[z,|n € S]. In

general, we have

Fn(a)Fo(b) = W/ (1) (Fr(2)) Wy (9) (Fa(y))

= W/ (T)(Fn(2) Fa(y)) = Wy (7)(Fa(2y)) = Fa(ab)

by definition of F,(a).
O

Regard Wg(A) as being a topological space with the direct product topology where
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each copy of A is given the discrete topology. So open sets are of the form

IV

i>0

where for only finitely many i, V; # A.

Since addition and multiplication formulas are given by polynomials in each coordinate.
Therefore addition and multiplication is continuous.

We can define this topology by neighborhoods of 0. Let us denote S(n) = {k € S|k < n}.

Then we have the restriction maps for all n,
R, : WS(A) — WS(TL) (A)a

where Ker(R,) = {(z;) € Wg(A)|z; =0 forall ¢ <mn}. For any neighborhood U of 0,
only finitely many U; will be different from A. Let us assume after first n entry, V; = A.
Then Ker(R,) C U. Then Ker(R,)’s form a neighborhood basis for 0.

The restriction maps from Wg(A) to Wg,)(A4) give the map

Ws(A) = lim Wi (4)
neS

a = (ag)pes — (Rn(a))s(n)

by universal property of projective limit. Take any sequence in @Ws(n)( 4)(A), we can

construct a witt vector a such that nth component of a is nth component of ag,y, for

n < m. We can choose here any S(m) containing n, since R?E:LTL)) (astm)) = R?EZ)) (aswy) by

the defining property of inverse limit. This shows surjectivity. Injectivity comes from the

fact that R, (a) = 0 for all » implies a = 0. So
Hm W, (A) = Ws(A)

Since Wg(A)/ker(R,) = W, (A), Ws(A) is complete.
Lemma 3.2.6. The following relations hold.

(i) a =3 hes Vallanls/m)
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(11) F,Vi(a) = na.
(11i) aVy(b) = Vi (Fy(a)b).

() Fo, Vi, = Vo Fo if (nym) = 1.

Proof. (i)
wa(Valn]) + wa(Vin[2m]) = nwasm([2n]) + mwgm([2m])
= naz@™ 4 mad/m™ — wy(a')
where

Ty, fd=m
Tg= 9w, fd=n
0 otherwise
Set Sn, = > g>nes Vi([ak]). Then by above calculations, Sy, — Sp, = 3 g5, pim Ve(lak])
is in R,,. Take any neighborhood U of 0, there exist an k such that Ry C U. So
for all m,n >k, S, — S, € U. Then {S,,} is Cauchy and since Wg(A) is complete,

Y nes Valan] = lim S, exists. Taking any R,, a — Sy, € ker(R,,) for all m > n. This

implies the limit of {S,} is a.

So for A = Z|z,|n € S], we may write any vector as sum of V,,([z,]s/,)’s when n

varies. For an arbitrary ring, we have
Ws(r) : We(Z[zp|n € S]) — Wg(A)

since V,, commuttes with Wg(7), the formula follows in general.

(ii) First assume A = Z[xy,;yp|n € 5]

wa(Fn(Va(2))) = F' (w(Va(2)))a = wna(Va(2)) =V, (0(2))nd = nwa(z) = wa(nz)
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since ghost map is injective in this case,
F,(Vp(2)) = nz

In general,

(iii)

wq(Va(Fn(2)y)) = nwgy,(Fa(2)y) = way (Fa(2))-ways (y)
= nwa(x)waym (y) = wa(z) V" (w(y))a

= wa(@)walValy)) = walaVly) i nld.
Otherwise V,,(z)q = 0.

So

for A =Z[z,;ynln € S] .

General case follows from the fact that F,,, V,, commutes with Wg(7).

wq(F Vo) = Fp(w(Vaz))d = Wind(Vaz) = V' (W(T))md = "Wy /m (2)
if n divides d, since (n,m) = 1.
wa(Va ) = Vil (w(Fn2))a = nwgn (Fpz) = 0y (w())dm = nUmd/m(2)

if n divides d.
.V, = V,, F,, for the ring Z[z,;y,|n € S]. General case follows again since Wg(7)

commutes with F,, and V,,.
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Lemma 3.2.7. Suppose that A is an Fp-algebra, and let ¢ : A — A be the Frobenius

endomorphism. Then

F, = R, 0 Ws(p)

where RS

S/p is the forgetful map from Wg(A) — Ws/p(A) takes (z4)qes to (‘rd)dGS/p‘

Proof. We will call terms of Fj(a) as fp4(a) and we know by construction of F}, that

w(Ip(a)) = Fp(w(a)).

So we have

dep,d(a)n/d _ Z dazp/d
dln

d/np
for all n € S/p. Let A = Z[z,; y,|n € S| and we shall show f,,,(2) = 25 (modpA).
For n = 1, we have

fpa(z) =28 + pz, =2y (mod p)

Assume for all d # n and dividing n,

fp7d(33)533§ (mod p).

So
Fpala)™ = pr/d (mod pUr(/dH1)
dfpa(2)! = daf? (mod  prr(/dH1+vs(d)
dep’d(x)n/d = Z dmsp/d +nfpn(@) (mod pvr(+1)
dln dln,d#£n
and also

Zd:vzp/d = Z d:vsp/dJrnxﬁJr Z d:vzp/d
d/np d|n,d#n d/np,dtn

dlpn and d t n implies v,(d) = vy(n) + 1.

Z d:vgp/d = Z d:vgp/d + nal (mod p“p(")H)
d/np dln,d#n
nfpn(z) = nak (modp“p(”)+1).
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Dividing by n, we obtain

fpm(z) = 2F (modp)

fpa(z) = 23 (modp)

for all d € S/p. If A is IF), algebra,

O

The set P = {1,p,..,p",..} is a truncation set that consist of all powers of p, where
p is a fixed prime. We call W(A) := Wp(A) ring of p-typical Witt vectors in A and
Win(A) = Wy, m-1(A) is called ring of p-typical Witt vectors of lenght n in A. We will
show that, for a Z,-algebra A, Wg(A) decompose as a product of rings of p-typical Witt

vectors.

Lemma 3.2.8. Let m be an integer and suppose that m is invertible in A. Then m is

invertible in Wg(A).

Proof. Let S be a finite truncation set. We will prove lemma by induction.
For S = {1}, Wg(A4) = A, so we are done. Then assume for any subset Sy of S, m is
invertible in Wg,(A). Let n be the maximal element in S. Let us define T':= S — {n}. By

induction hypothesis, m in Wz (A) is invertible. let a = (ag) be inverse of m in W (A).

m((ao, - .., a, 0) + V(2)) = (1,0,...,0) (3.2.3)

We want to solve the equation for z € A.

m((ag,-..,ax,0) + Vo (z)) = (1,0,...,0,y) + mV"(xz) forsomey e A

= (1,0,...,0) by the Equation (2.2.3)

Then
mV"™(x) = V*"(mz) = (0,...,0,2) = (0,...,mz)
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for some z which is a poynomial of y, ag, ..., ar. Since m is invertible in A,
we find 2 = zm™1. Then m is invertible in Wg(A). Also for any truncation set, we know
that Wg(A) is inverse limit of Wg,(A) where Sp’s are finite subtruncations of S. Since m

is invertible in all components of the projective system, it is also invertible in Wg(A). O

Proposition 3.2.9. Let p be a prime and A be a Z,-algebra. S be a truncation set,
I(S) ={k € Nlpt k} Then ring Wg(A) has a natural idempotent decomposition

Ws(A) = [ Ws(A)ex
kel(S)

where

e = H (%Vk([l]S/k:) — %Vkl([l]S/k:l))
1€1(S) 141

Moreover

Ws(A)er — Ws(A) = Wy (A) = Wgpnp(A)
s an isomorphism.

Proof. Assume S is finite as the first step.

1 ifne SNEN

1
wn(EVk([l]S/k:)) =
0 otherwise

k € I(S) implies p { k and so k is invertible in A and by the previous lemma, k is invertible
in Ws(A).

wn(Dun(Vitlsye)) = wn( DV (gD = kuwn(7) = 1 it K.

If for some [ € I(S) Kl|n, then

wnlVidltlsye)) = w5 Vil sya).

So wy(er) = 0. If wy(ex) # 0, then for any [ € 1(S), kl { n. So n does not have any divisor
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d # k with (d,p) = 1. i.e n = kp® for some s € N. Then w,,(eg) = wn(%Vk([l]s/k)) =1.

1 ifneSNkP
wn(ek) =
0 otherwise

Wy (eg)wy(er) = wy(ex) and wy(ejer) = wy(ej)wy(eg) =0 for all n € S. So eje, = 0.

It follows that ey’s are orthogonal idempotents in Wg(A).

Ws(A) = ] Ws(A)ex
kel(S)

We will show W,(A)ey, is isomorphic to Wg/pqp.
S/kNP = (SNkP)/k — SN kP is isomorphism sending ¢ to kt. t € S/kN P if and only
if kt € S and ¢t € P if and only if ¢t € SN EP/k and following diagram commutes.

WS(A)ek: _w ASﬂkP

Wypp(A) ——— A5/

lRS/mP l

Ws/kmp(A) 2 AS/ENP

We may think as w maps Wg(A)eg to ASE

since other components are 0. when A =
Z|zy, yn|n € S, ghost map is injective implies left hand side is also isomorphism. General
case follows then since restriction and Fj, is compatible with Wg(f). Now, we need to show

the isomorphism

Ws(A) — H Wm W) /knp(A)
kel(S) S(n)

let Sy denote the set of finite subtruncation sets of S and let T" € S;. We have restriction

map

IT Wsunr(d) — TI Wrjmnp(4)
kel(s) kel (T)

(ar) = (Rgnp (ar))
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This induce a ring homomorphism

H Ws/knp(A) — lim H Wrenp(A). (3.2.4)
keI(S) TeSy ker(s)

Consider projection map

H Wrenp(A) — Wrenp(A)
keI(S)

By functoriality of inverse limit, we have

lim [T Wemnp(4) — lim Wrjinp(A)
TGSf ke[(T) TGSf

Now, inverse limit on the right hand side is isomorphic to Wg/,np for all & € I(T) and all
TeS f-

im [T Wennp(4) — 1] Wsmnp(A) (3.2.5)
TGSf ke[(T) k:eI(S)

The maps in (3.2.4) and (3.2.5) are inverses of each other. So the proof is done.
We will now consider ring of p-typical Witt vectors in more detail. The ghost map
w: Wy,(4) — A"
takes the vector (ag,at,...,a,—1) — (We, ..., Wp_1) Where
i i—1 .
w; =ay +pal ...+ D

We write

[—]: A = Wi(A)
F o Wio(A) = Wi1(A)

Vi Wi (A) = Wit (A)
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for the pth Frobenius and pth Verschiebung.
Lemma 3.2.10. If A is an Fy-algebra, then VF = FV = p.

Proof. We know by lemma 3.2.7 that F = Rg/p o Ws(y),

FV(z) = (RY” o Ws(p) 0 V)(@) = (RY” oV o Wy (9))(@) = (V 0 RGN 0 W, (2)) ()

VF(z), z € Ws/p(A)
since V is compatible with restriction map and Wg ().

A
W/ (A) —— Wig/n)/n(A)

Jvn Lvn
RS/n

Ws(A) —— Wy (A)

(RS o Va(@))a = Va(@)a = 2apm, d € 5/n, € Wep(A)

(Vo R/ ™ (@))a = Ry ™ (@)ajn = Tapa d € S/n, 2 € Wy (A)

and V' commutes with Wg(p) follows from the Remark 3.2.4.

This lemma states that for a ring A of characteristic p,

F(ag,...,an) = (af,...,al_;), in particular, Fla] = [a”]

Suppose A is a p-torsion free ring and there exist a ring homomorphism
p:A— A

such that
¢(a) =a? (mod pA), a€ A
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Consider the sequence 2 = (a, ¢(a), ¢*(a),..) € A".

Pz sp) = Plapn1) = 9(¢" " (a)) = ¢"(a) = 2y

By Lemma 3.2.1, there exist an element in W (A) whose image under the ghost map is
(a,¢(a),$*(a),..). Furthermore since A is p-torsion free, this element is unique.

So there exist a ring homomorphism s4 such that

w(ss(a)) = (a,¢(a), $*(a),..)
A2 W (A) s AP

which maps

a— (a,¢(a),$*(a), ..)

We then define
ty: A — W(A/pA)

such that t, = W(r) o s4, where
m: A= A/pA

is canonical projection of A onto A/pA.

We recall that a ring A is perfect if frobenius endomorphism ¢ : A — A is an automorphism.

Proposition 3.2.11. Let A be p-torsion free ring and ¢ : A — A be a ring homomorphism
such that ¢(a) = a? (mod pA). Suppose that A/pA is perfect F), algebra, then the map

ty induces an isomorphism
A/p"A = W,(A/pA) forall n>1
Proof. Since A/pA is perfect F, algebra,

V(W (A/pA)) = V(" (W(A/pA)))
=V "F"W(A/pA) = p"W(A/pA)
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So
A2 (A) L (A fp A)— B W (A /pA)

par— psg(a) = ptg(a) = 0

Now p"ty(a) € V(W(A/pA) and R maps it to O since R(the restriction map) restricts a
vector to its first n term and any element in V(W (A/pA) has first n term 0.
So ty factors as in the statement of the proposition.

We will prove rest by induction on n. For n = 1, Wy(A/pA) is isomorphic to A/pA. So

assume for all & <n, t4 gives isomorphism.

0 A/pA—L e A AT A Jpr LA
‘/s@”l l% 2

O A/pAY W (AJpA) L W1 (A)pA)——0

0

RoV™(ag,..an,...) = R(0,..0,a9,..) = (0,.,0), V™a)g =0 foralld>n-—1

The horizantal sequences are exact, since A is p torsion free, left-hand vertical map is
isomorphism and by induction hypothesis right-hand side vertical map is also isomorphism.

So middle vertical map is also isomorphism. O

Corollary 3.2.12.

Proof. We have W,,(F,) = Z/p"Z from the previous lemma.If we take inverse limit of two
side of the equation, we obtain the corrolary. Note that restriction maps on each side are

compatible with each other. O

In general, let k be a perfect field of char p. Since FV = p, pz = (0,28, 27,...,2%,...)
and in particular p = (0,1,...,0,...) for z € W (k). Since k is perfect,we have VW (k) =
pW (k). Let us denote the ideal VW (k) as V. Then V-adic topology on W (k) coincide

with p-adic topology. Consider the projection map

m:W(k)—k

that maps (ag,...,an,...) — ag. Kernel of this map is VW (k). So V = p is a maximal
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ideal of W (k). W (k) is inverse limit of W, (k) = W(k)/V"W (k). So it is complete with
respect to p-adic topology. We will show that W (k) is principal ideal domain with unique
prime element. Let 2z € W(k) be a unit. Then its first entry is unit and non-zero since
(xoy.--)(Yo,--.) = (zoyo,...). Conversely let z € W (k) be such that its first entry z¢ # 0.

Then write z as [zg] + V (y) where y = (1,...,Yn,...).

[zo] + V() = [ol(L + a5 ']V ()

and denote [z5'|V(y) as a. Then 1 —a +a% 4 ...+ (=1)"a" + ... is the inverse of 1 } a.
Since a™ = ([xg V()™ = [25" |V (y)" € (VW (k)" = p"W (k), this sequence is Cauchy.
The fact that W (k) is complete implies it converges to an element in W (k). So the units
in W (k) are those whose first entry are non-zero. So V' is the only maximal ideal. Let I be
a non-trivial ideal of W (k) and m be the non-zero integer such that for any z € I, z,, = 0
for n < m. Then we claim that I = V™.

Choose z € [ such that z,, # 0. Then 2 = V™(2n,Zmt1,-..) = p™u for some unit
u € W(k). So we can obtain all the elements in the ideal p”W (k) multiplying by certain
units. Then [ = p™ = (z). This shows W (k) is a pid and has a unique prime element p. So

we have proved that :

Lemma 3.2.13. Let k be a perfect field of char p. Then W(k) is a complete discrete

valuation ring with residue field k.

3.2.2 A Different Characterization of Witt Vectors

If we set S = N, we call Wy as big Witt vectors and denote it as W(A).
We write (1 +tA[[t]])* for the multiplicative group of power series over A with constant
term 1.

Proposition 3.2.14. There is a natural commutative diagram
W(A)—’l(l + tA[[t]])*

d
w tlog

AN Al
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where

~v(a,as,..) = H(1 — ant™)

n>1

E n
’7 ‘rlaan xnt

n>1

and the horizontal maps are isomorphisms of abelian groups.

Proof. Let f be any element of (1 + tA[[t]])*. Then f =1+ ajt + ast? + .... We will show
that f = [,>o(1 — bnt™) for some unique {b;}'s..

Assume f/]]" 1(1 — bit?) = 1+ y,t" + O(t" 1) where by = 0. For n = 1, it is clear. We

will prove by induction on n.
(L4 gat™ + O )1 = (=)™ ™" = (1 yat™ + O™ ) (1 =yt 4 22 — 3™ )

In this multiplication, coefficient of ¢" is y —y = 0. So setting b,, = y, using induction
hypothesis, /]2y (1 — bit') =1+ O™ +)
since O(t"*1) — 0 when n — oo , (here we give to the ring of formal power series the

topology that neighborhoods of 0 are the ideals (t™) for all n.)

f=T1a vt

i>1

and by construction these b;’s are unique. Since f is a unit, there exist an h = (1 + hqt +

hot? +...) € (1 +tA[[t]])* such that fh = 1.

f=Q gt got® + )7 = (A =bat™)™"

n>1

=T - bat™™

n>1

So « in the diagram defines a bijection. Let a € W(A).

d d
t—1 —t—1 1 — ant™)” f—t— log(1 — a,t")
" s0(@) = g os(JJ( o PO
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d —na
=ty —log(l —a,t”) = —t z
Z dt o( ant") 1— a,t”
n>1 n>1
o Z nant
a 1 —a,t®
n>1

If we set 1/(1 — ant™) = 1 + ant™ + ag,t®® + ... in the equation above, we obtain

= Z Znant"anst‘m = Z Znans+1t”(s+1)

n>1 s>0 n>1s>0
SRR P I
n>1g>1 m>1 \ n|m
=3 wla)t” =7 (w(a))
n>1

Assume A is torsion free, then the ghost map is injective. Then ~ is homomorphism. In
general, we have W(g) as in the proof of the Proposition3.2.2 and we can extend g : A — A’
to A[[t]] — A'[[t]] and then restrict g to

g (L tA[R])" — (1 + tA[[2])*

L+ ait +ast® + .= 14 gla)t + glaz)t® + ...
(@) =1 (W(g)(@) = [T (@ = g@)t™)™ = g(y(2))
n>1

Y(a +b) = v(W(g)(z +y)) = g(v(x +v) = g(v(@)7(y) = g(v(z))g(v(y))

This finishes the proof. O

4 The de Rham-Witt Complex

Definition 4.0.15. A differential graded algebra is a graded algebra with a degree —1 map
d satisfying
(i) dod =0
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(i)d(zy) = (dz)y + (=1)%9zdy (Leibniz rule)

We denote the category of differential Z-algebras by DGA.

4.1 The Category of V-Complexes

Definition 4.1.1. Let A be a ring. A V-complex over A is a contravariant functor
E:J— DGA

which transforms direct limits to inverse ones and posses the following structure : We
denote the elements of degree i in the dga F(S) by E(S)?, there is a natural transformation
of rings

A:Wg(A) = E(S),forall S € J,

and for all n € NV, natural transformation of graded Z-modules
Vot E(S/n) — E(S) for all S € J,

satisfying

()) Vi=id, Vo Vi = Vi, and Vi, 0 A = Ao V,,,  where the latter V,, is the Verchiebung
map on Wg(A).

(#3) Vi (zdy) = Vio(2)dV,(y), for all 2 € E(S/n)" and y € E(S/n)?, for all 4, 5.

(ii1) Vi (2)d\([a]) = Va(zA([a])"1)dA\V,([a]), for all 2 € E(S/n)i, a € A.

A morphism of V-complexes, f : E — E’ is a natural transformation of differential
graded algebras in degree O,that is compatible with the V,,’s and A’s.
If we denote P = {1,p,p?, ..} and we take the restricted category J,instead of .J, we call

such a functor p-typical De Rham-Witt Complex.

Proposition 4.1.2. Let A be a ring. Then there exist an initial object in the category of
V -complexes,

S — WSQA?

which we call the de Rham-Witt complex. If S is a finite truncation sel, then there is an
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epimorphism of differential graded algebras
QWS(A)/Z — WSQA

Purthermore,

W{l}QA = Q'A/Z, and ng% = Ws(A)
Proof. We begin with construction for finite truncation sets. For S = {1}, set
Wiy €y = Qy g

Now assume we have constructed Wg € for all subtrucations Sp of S,and assume they
satisfy
(a) Wg,Q% = Wy, (A), V,,’s and restriction maps coincide on each side.
(b) Vi =id, V0 Vi = Voo
(Vi (zdy) = Vi(2)dVi(y) for all 2 € W 5,04, y € W, /Y,
(d)Va(z)dla] = Va(z[a]*)d(Va([a]) , for all 2 € Wy, and a € A.
(e)We have an epimorphism 7 : Az W€y
Note that Sy = {1} satisfies (a),(b),(c),(d) and (e).
Now Ny C QWS( 4) to be the differential ideal generated by the following elements, for all
n>1,
()
> Val@)dVa(y;).-dVa (yis)

J
for all Ljy Yk S WS/nQ% = WS/n(A) with Zj :vjdylj...dyij =0in WS/nQA
(I1n)

Va(2)dla] — Vi (z[a]"~)dV;([a])

for all z € WS/HQ% = Wg/,,(A) and for all a € A.
We define
WSy = Qi ay/2/Ns
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which is again a differential graded algebra. Sy C S be a truncation set. We have such

diagram
Rgo
Ws(A) —Ws,(4)
ook
Dty — Py (a)
Since d o Rgo is a derivation from Wg(A) to Q%Ws (A).(As Ws(A) module), It decomposes
0

to give a linear map R : Q%WS(A) - Q%Ws A
0

by functoriality of A, we have a map
Arga) = Mg ()
So we have an algebra homomorphism
Ligg(a) = Qiwgy(a) > Wsolls
We may write for R instead of Rgo to make easier the notation.
xdyy...dyg — R(z)dR(y1)..dR(yx)
since in Wg(A), V,, and R commutes and R[a] is again a teichmiiller lift,
RV, (2)dVyy1..dVyayg) = RV (2)dRV,yr ... dRVyyr = Vi (R(2))dV, Ryy...dV, Ryy.

R(Vo(z)da] — Vy(adla]"")dVa([a]) = Va(R(2))dRla] — Va(R(2)dR(a])" "))

So R(Ng) =0 in Wg, 8.
We have a map of DGAs.
R:WgQdy — Wg,Qy

Now, we obtained a contravariant functor,

Js — DGA
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So — WSOQ'A

where Jg denotes set of subtruncation sets of .S. Define for each n,
Vi : WonShy — Welly

for all z,y; € Wg/,,(A). Now we have constructed WsQ, and it satisfies (a),(h),(c),(d),(e).
(a),(b) and (e) follows from the definition.

(¢)V,, is well-defined by construction. Let x = x1dzs..dzy and y = y1dys..dys. Then

Vi(zdy) = Vi(z1das..depdyidys..dys) = Vi (21)dV, (22)...dV, (yk)

= Vo (@)d(Vi (y1)dVi, (y2).-dVa (k) = Va(@)dV5(y)
(d)For a € A,
Vo(z)dla] = Vi (21)dVy (22)..dVy (2k)d]|a] = dV,(22)..dV, (21) Vi (21)d]al

= an(xQ)..an(xk)Vn(xl[a]"_l)an([a]) = Vn(x[a]"_l)dvn([a]).

Now take any S € J, we write J, g for the category of finite subtruncation sets contained in
S. Then define in DGA,

Wsy = lim W,y
SoeJf,

W€, is again a differential graded algebra since d is compatible with restriction map. We

get a functor

J — DGA
S — WSQA

Notice Jé/n = {So/n|Sy € Jé}, thus we can write

Wenfhy = lim Wg, 0y
SoeJf,
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and the map V,, for finite truncation sets induce a map of abelian groups,
Vi : WonShy — Welly

since V,, commutes with restriction map.

Thus we get a V—complex. Finally, we’ll show de Rham-Witt Complex is the initial object
in the category of V-complexes. Take a V —complex F and a finite truncation set S, then
the map X : Wg(A) — E(5)? induces a homomorphism Qiyga) = E(S),

If S = {1}, we are done. So assume for all proper subtruncations Sy of S, there is a map

WsoQyy — E(Sp). Then

Z Vi(2:)dVi(yi1)--dVi (yir)) Z AV (2:)dVo(yi1)--dVi (yir))
= Z Vu(Az:)dVi, (Myir) - dViMyie) = V”(Z (Az;)dyir ...dAyi) =0
where S, zidyi1..dyi, = 0.
A(Va(@)dla] = Va(2[a]")dVaa]) = Vi (M2))dA[a] — Vi (M) Ala]"~1)d Vo ([a])
So A maps N to 0. We have a map
AWy — F(S)
wdyy .. dyy, — MN2)dA (Y1) dMye) 2,y € Ws(A).

Now an arbitrary S is the direct limit of Sg’s where Sy € Jé and F transforms the

direct limit to inverse one and we have

A lim Wgy — lim E(So)

SoeJf, SoeJ},

since A commutes with the restriction map. Then we obtain the map

A Wedy — E(5).
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4.2 The Category of Witt Complexes

Definition 4.2.1. Let A be a ring. A Witt complex over A is a contravariant functor
E:J— DGA

which transforms direct limits to inverse ones and together with natural transformation of
graded rings
F,:E(S) — E(S/n),forall Se€J, forall néeN,

and natural transformation of graded groups
Vot E(S/n) — E(S)for all S € J, forall neN,
Furthermore there is a natural transformation of rings,
A Wg(A) = E(S)°

which commutes with F,, and V,, and satisfies

(), =Vy=id, F,o Fy, = Frm, Vo Vip = Vi
(i) F,Vp, = n and if (m,n) = 1, then F,,,V,, = V,, I},
({) Vo (Fo(2)y) = 2V, (y) for all x € E(S), y € E(S/n) and all n € N.
(iv) FrndVe, = kdFpy, 1 Vi je U 16V fed, where ged(m, n) = c and km+-In = (m,n), k,l € N.
(V) FndA([a]) = Ala])*~ dA([a])

A morphism of Witt complexes is a natural transformation of differential graded alge-
bras, compatible with the V,,’s,F},’s A’s.
Again if we take the restricted category J, instead of the category J, we call such a functor

p-typical Witt complex.

Lemma 4.2.2. Let FE be a Witt complex over a ring A. Then the following equalities hold,
foralln e N, S € J, 2,y € E(S/n) and all a € A.
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(a)F,dV, =d

(b)Va(2dy) = Vi (2)dVou (), Val@)dA([a]) = Va(zA([a]~1)dA(V2 ([a])-
(c)dF,, = nF,d, V,d =ndV,

(d) FrndVi(A([a])) = kdV,p e (M([al) ™€) + WV e (M(al) ™)V, e (Allal))
where ¢ = (m,n) and k,l € Z are arbitrary with km + In = (m,n).
Proof. (a)Fy,dV;, = kdF,, Vs /e + 1y eV ed where ¢ =n, k=0, 1 = 1.
F,dV,, =d.

(b)

Va(@)dVa(y) ™ Vi@ Fu(@Va(®))) @ Via(dy).

Vo(@)dAa] “ V(2 Fy(dAa])) © Vi (zAla] " dA[a]) = Vi (@A([a])"~")dV,(Aa])

Vi (dz) = Vo(1dz) = V(D) dVig(2) = Vin(1)dVi(2) + dVie(1)Via(@) = d(Vin(1) V()
———
Vi (2d(1))=0
AV (1.F (Vi () = d(Via(n)) = ndVip()
APy (2) @ FodVi(Fo()) = FadVi(1Fy () ) Fod(Vi(1)a) = Fu(dVi(D)a) + Fo(Viy(1)dz)

= Fu(dVa(1) B (&) + Fu V(1) () = d(1) F (@) 0 (@) = nFp(2)
0

(d)Assume (m,n) =1,
FndV,(Mal) = kdF,, Vi, (Mal]) + 1F, Vied(Ma)) = kdV, Fr(Aa]) + IV, (Fi(dA]al]))

= kdV,, Fpp(Ma]) + IV (Ma)) ™ tdMa]) = kdV,(Aa])™) + IV ((Ma))™ D dV, (Ma))
since F,, commutes with A and F},[a] = [a]™. If (m,n) = ¢,
FrpdVyy, = Frpy1e0FodVeo Vi jo = Frpy1o@Vi e = kdV,, 1e(Ma])™ 1V, 1o(Ma) ™ =1 )dV,, 1o (Aa])

O

The lemma4.2.2 (¢) shows if we forget F,,, a Witt-complex turn into a V-complex.
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So we have a forgetful functor from the category of Witt-complexes to V-complexes.

Definition 4.2.3. If we take P = {1,p, p?,..,p", ..} and the restricted category .Jp instead
of J, we call such a V-complex as p-typical V-complex. We denote F}, and V,, by F' and V/,

respectively.
So Fyn = F™ and Vpn = V™ for any n, since F,, o I, = I, and V,, 0V, = Vi,

Theorem 4.2.4. Let p be an odd prime and A be a Zp)- algebra. Then there is a map of

of projective systems of graded rings
F:WQ, - W _1Qy
which is in degree zero the Frobenius of the Witt ring over A and satisfies
FdV =d, FV =p,V(F(2)y) = 2V (y),
Jor all . € W,, y € W,,_1€2y and

Fdla] = [a]P7d[a], for alla € A

Proof.

1 F! 1
QWn(A) > Wr—1(A)

Define multiplication za := F(z)a for 2 € W,,(A) and a € Q%anl(A)' By this multiplication
we can regard Q%Wn,l(A) as W, (A) module.

do F(a+b)=do F(a)+do F(a) and
do F(ab) = d(F(a)F(b)) = d(F(a))F(b) + F(a)dF(b) = b.d o F(a) + a.d o F'(b)

for a,b € W,,(A4).

So do I gives a derivation. By the universal property of Q%Wn( Ay do I' decompose as in the
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above diagram.

We have W,,(A) module homomorphism
' : Q) = i,

> aide; Y Fla)dF (2:), 24,0 € Wp(A)
Now F'(d[a]) = dF|a] = d[a]” = pla]*~'d[a] and F'(dV(z)) = dFV (2) = pdz, v € W,,(A),
a€ A
F'(dz) = dF (Y _Vi([2i])) = dF[wo] + pdla] + ... + pdV " 2|z, _1]
— plao]’ " dlwo] + pd[z1] + ... + pdV "2 [z,, 4]
p([o]P~ d[zo] + d[z1] + o + AV 2[2,1])

Assume A = Z[z,; yn|n € N,

Define

F: Q%Wn(A) — Q%anl(A)
Fody v~ [yol” dlyo] + dly1] + ... + dV " [yp_1]

where y € W,,(A4).
F is well-defined module homomorphism since A is torsion free.(we cancelled p’s.)

We know that Teichmuller lift and Verchiebung map is compatible with W(7). So we can
define

F(da) = [aolP~Yd[ao] + d[a1] + ... + AV *[ap,_1]

for an arbitrary ring A and it is well defined.

We may extend F' to an algebra homomorphism such that

F: an(A) — an,l(A)
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and composing with the map 7 : an,l(A) — W,,_1824, we have the map
o B iy 4y = Wa182y

mo F:xdyy..dy, — F(2)F(dyy)...F(dyg)

So we need to check that 7o F' maps Ng, differential ideal constructed in proof of the

proposition 4.1, to 0. First we will show FdV =d.
FdV([a]) = d[a], FdV(Vi[a]) = dV[a]
So
FdV(z) = FAV (Y _ Vi([z])) =d > Vi([ai]) = da.

PV @g)dV™ (g15)dV ™ (yg)) = D FV™ (@) F(V ™ y1;)... V™ ()

7 7

=p Y VP @ )dV ™ (1) dV T ygg) = VTN 2y dysg)

So if Zj :vjdylj..dykj = 0, F(Z] Vm(x])dvm(ylj)dvm(yk])) = 0. In particular
when m = 1, we have showed F'V = p.
F(V(z)d[a] — V(z[aP~)dV[a]) = FV(z)Fd[a] — FV (z[a]P~")FdV ([a])
— px[a]p_ld[a] — px[a]p_ld[a] =0

So we have

F W, - W,_1Qy

such that
FdV =d,FV =p,

and taking the inverse limit, we have a map of projective systems of graded rings.
F:WQyy - W_1Qy
We will show F satisfies the projection formula V (F(z)y) = 2V (y) for z € W, ,,

46



y € W,_18),. First
V(@F(dy) = V(@([yol”~ dlyo] + dly1] + ... + V" *[y_1]))

= V(z[yo" 'V ([yo])) + V(2)dV [y1] + ... +dV"  yn-])
= V(@)dyo] + V(@)dV[11] + ... + AV y,_1] = V(z)dy

Inductively assume V(2 F (yody1..dyx—1)) = V(2)yody;..dyg—1. Then
V(zF(yody1.-dyg)) = V(2 F (yo) F(dy1).. F(dyx)) = V(2 F(yo) F(dy1)..dyg—1)dyx

= V(2)yody1..dyp—1dyr = V(2)y

Corollary 4.1. W (¥, is the initial object in the category of p-typical Witt complexes.

Proof. First we'll show W Q- is a Witt complex. We already know that it is V'-complex.
So we need to check

(iii) V*(F*(x)y) = 2V*(y) (in proposition we already showed.)

(iv) FedVi(a) = F*dV*(Vi=*(a)) = dVi=*(a) if (p*,p!) = p*.

Otherwise F*dVt(a) = F*~{(FtdVta) = F*~!(da).

(v)Fd[a| = |a]P~1d[a] comes from the definition.

So W €, is a p-typical Witt complex. Assume F is a p-typical Witt complex. as they are

both V-complexes, we have a morphism
AWy - E

A is compatible with F: E- is a Witt complex. So F' on E- is compatible with A in degree
0.

AFd[a] = M[aP7Yd[a]) = AaP~1]dA][a] = Fd)a]
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by definition of Witt complex.
AFdV™[a] = MV L a] = dV" 1 \a] = FdV"\a] = F(AdV"[a])
Here we used the fact that A is compatible with V™’s and d. Then
AW, — E,

is compatible with F' for all n. Since F' is a natural transformation of graded rings both on
de Rham Witt and E-, it is compatible with restriction maps. So we can take inverse limit
and A : W, — F" will also be compatible with I O

4.3 Calculation of de Rham-Witt Complex

Let A = F[T,T7']. We will give an explicit description of the de Rham-Witt complex
W<Y,. First introduce rings
B =1Z,[T, T

C=lim Q[T ", T ]
Then Q! is generated by {da|a € C'} as a C-module. Since we have
C/Qy 08

7,« . dT
A(TPY = prTP T
(7 ) =p T

any element x € Q¢ can be written as

x = Zai(T)dlogT, a;(t) e C

i

where dlog’I" denotes dTT. The polynomials a;’s are called coordinates of 2. We define z as

entire if its coordinates have coefficients from Z,. Now, we can define
E™ = {z € Qf|x and dx is entire}.

Through this section we will write shortly Qé for Qé 10y Let 2 € E™. Then dx is entire by
definition of E™ and d(dx) = 0. Therefore d(E™) C E™ and E™s form a subcomplex
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of Q.
Now we will define Frobenius and Verchiebung map on ' and Qé respectively. Define
Qp-algebra automorphism I of C,

F:C—C

T e
and define endomorphism V = pF~1.
We can extend F to Q¢! by universal property of Q¢t.

F':Ql — Qb

dT v dT? = pTPdlogT

Define

F: Z a TFAT Z a, TP TP=14T.
k k

In fact we obtained this map by dividing I by p. But we need to show this is a well-defined
map. For this, we will define a derivation and then we will use universal property of Q¢ to
obtain F.

Define Fd : ' — Q¢ as

1
Fd(aT*) = kaTP*=1dT, acQ,, kcZ[-]
p

Then Fd is a derivation of C' as via-F' module. For a,b € Q, and k,s € Z[%],
Fd(aT*bT*) = (k + 8)abTPEtPs= 4T — saTPEOTP*~YdT + kbTP*aTP*~1dT
— F(aT*YFA(bT®) + F(bT*)Fd(aT")
So Fd: C —s Q¢ decomposes to give a linear map of C-modules

F:Q(;'—>Qc.

> ai(T)dlogT + F(a;(T))dlogT (4.3.1)

i
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Then define V = pF~! again. We may define V in this way since F' gives an automorphism

of Qc.

v (Z ai(T)dlogT> —pF1 (Z ai(T)dlogT> =p Y F~'(a;(T)dlogT)

7 7

- Z V(ai(T))dlogT (4.3.2)

Lemma 4.3.1. We have the following equalities
dF = pFd, Vd=pdV, V(F(2)y)=2V(y), V(xdy)=V(2)dV(y).

Proof. Let oT* € C.
dF(aT*) = adT*™ = kpaT*dlogT = pF(aT*dlogT) = pFdaT*
This shows dF' = pFd.
Vd(aT*) = V(aT*dlogT) = paT*/PdlogT = paT*P~1dT = pdV (T*)
So Vd = pdV. Let z,y € Q}. Then

V(zF(y)) = pF ' («F(y)) = pF~H(2)y = V(2)y
V(zdy) = V(aT*dbT?) = V (sabT*T>~'dT) = V (sabT**)dlogT = psabT***/PdlogT
— V(aT*)sbT*/PdlogT = V (z)dVy
O

Proposition 4.3.2. (i) 2 € E° is of the form Y, a;, T*, where ay, € Z, for all k and pth

power in the denominator of k divides ay.
(1i) B = ano V(B)
(i) Nyso VPE® =0
(iv) BOV"EY = p"B

(vi) There is a unique Zy,-algebra homomorphism 7 : E° — W(A)
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Proof. (i) Let 2 =3, a3 T* € E°. Then x and dz is entire. This implies a;, and kay, are

(i)

in Z,. Then denominator of £ divides ay.

Let = aT* € EY. If k is inZ, then » € B. So assume v,(k) < 0 and k = ’;—i. Then
x = aTF = psa; TH/P° = V3(aT*) € V3(B) where ay € Z, and p { ky, ky € Z. Tf
e V(B), z=VUTF) = p*bT+? ¢ E°,

If 2 = >, apTF € V?(E®) for all n, p® divides ay, for all n. Then 2 must be 0.

Let = V(3 axT*) = 3, p"a,T*/?" € B. This implies ]% € Z, and ay, € Zy.
Then x € p"B. Obviously p"B C BN V*(E°).

Let us define new rings B and A as

r

B =limZ,T? 7]

—7r

A - @FP[TpirvT_p ]

Define

Then 7 is compatible with F.

77‘+1]

F(7(TP ")) = [T? — FF(T? ")

Since V = pF~1, 7 is also compatible with V and since only elements that have p™th

roots for all n are Teichmller lift of pth power of T’s, 7 is unique. 7 induces a map
7: B — W(A)

aT? " = ¢(a)[T? ']
where ¢ : Z, — W (F,) taking a = > [ai|p’ to (ag,a1,..,an,..).

r r

(VD) =p'[T7 | = VP (T7 ]) = V' (IT])

o1



So indeed 7 induce a map E® — W(A).

FpTE G VAT fors € T

Lemma 4.3.3. Forr >0, E°/VTE? — W(A))/V"(W(A) is isomorphism.

Proof. F] A means we consider A as an A-module restricting scalars to F". First we will

show that FrA — V(W (A)/V"H (W (A)) for » > 0 is isomorphism.
¢ :a— Va] (modV™H (W (A)) for a € A
is a module homomorphism. Let a,b € A. Then

¢(a) + ¢(b) = V7[a] + V7b] =V"([a] + [b]) = V([a +b] (mod V"HIW(A))

S(F"(a)b) = V' [F"(a)b] = V" (F"[al[b]) = [a]V"[b] = [a]@[b] (mod V™I (A))

¢ is injective and since any witt vector can be written as a sum of V"|a,]’s,

2 =V"(Y_ Van]) = V7 (lao]) + V(Y Volasa]) = V7 ([ag)) (mod VT (W(A)))
n2>0 520

So & = ¢(ag) and ¢ is surjective. So ¢ is isomorphism.

FT A is also isomorhic to V"(Eg)/V™ T (Ep).
¢ FLA— V' (E) V' (Ep)

aT* — V" ([a]T%) (mod V"H(Ey))

where [a] denotes the representative of a € F, in Z,.(Remember that there is a unique

multiplicative representative system which commutes with pth power. )

Since V7 (p*TH/P*) = V7 (V*(T%)) = VI (ps~LagThor "),

V7 (aT*) mod V'Y E®) = o(aT*)
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where p-adic valuation of @ is 0. Finally 2 is - linear.
W(A)/VTW(A) — W(A)/VW(A) - @ VW (A)/V"W(A)

Z V™ay] (mod VW (A)) — ([ao], V[a1], .., V" ar_1])

r—1

EO/VTEO — Z ViEO/Vi+1EO
=0

aT* — (0,0, .., V*(agT*"), ..,0)

where aT* = agp*T*, v,(k) = —s and (ag,p) = 1. and since 7 is compatible with V, we
have induced a map betweeen W(A)/V"W(A) and E°/V"E". By the above isomorphisms

, this map is also an isomorphism. U
Then @EO/VT(EO) is isomorphic to W(A) = lim Wy (A). We have the maps
E° — E°/V"E®

we have the canonical map

E° — lim E°/V"E°

and this map is injective, since kernel is (7, V'EY — 0. So we have the injective map

EY — W(A).

4.4 Filtration on F

Define for r > 0, Fil'E* = V"E' + dV"E! and set Fil"E = @, Fil" E".
dFil"E' = d(V"E' + dV'E™Y = dV"E' C Fil' B!

and

2V (y) =V (F"(z)y) € Fil'E

xdV'y = d(2V"y) = V' (y)dx = dV"(F"(x)y) — V" (F"(dx)y) € Fil'E
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for 2,97 € E. Then Fil" E? forms a diferential graded ideal Fil"E of F. We have
Fil'E=ECFIlI'EC..CTFiI'ECTilI''E

and we can define

B, = E/FII'E' =~ F'/FiI'E’
i>0

and then we still have Verchiebung and Frobenious maps on E,. Since V(Fil"E) =
VI VAV TE ¢ VIHLE 4 pdV™H E-1 C Filr'M E? and F(Fil" T EY) = FVTHE +
FdV™H E=1 —pV"El + dV"E=! C Fil"E’. So we have induced maps

V:E, — F,

F:E. 1 — E,

and satisfy
dF =pld, Vd = pdV

2Vy=V(Fzy),z € E.y1,y € E,

V(zdy) = V(2)dV (y),z,y € F,

We will show that (E.) forms a projective system and it is in fact a V-complex over A.
Then we will prove the theorem below. But proof requires to show some preliminaries on

the structure of E..

Theorem 4.4.1. (i) The projective system (E), with operators V, and isomorphism of
E° and W,.(A) for » > 1 given by T is a V -complex.

T

(11) The arrow of V -complexes

Wy, — E

extending the same arrow T : E® — W.(A) is an isomorphism.
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4.5 Grading on I

The ring C' posseses a natural grading type Z[1/p|. Extending this grading to € such that

x € Q) is of degree k if its coordinate has degree k. Set
E=EnN kQ'C, kEi = Mg QC

Note that F' multiply the degree by p and V divides the degree by p.

Proposition 4.5.1. Let k € Z[1/p|. The Z,-module ,E° is generated by eo(k) and xE* is

generated by e1(k) where

—vp(k)k
p~P\ITE ifk ¢ Z

Tk otherwise

and

e1(k) = T*dlogT

Proof. Let v € wE°. If k ¢ Z,
z =aTF =p°agTF = agpeg (k)
where ag € Z, and s = —v,(k). Otherwise = aeg(k). If z € F!, then

z = aT*dlogT = ae (k)

Proposition 4.5.2. E is generated as Z,-dga by E°.

Proof. Since E* =0 for i > 2. We only need to deal with F'. If k € Z
e1(k) = TFdlogT = T YT = eo(k — 1)d(eg(1))
and otherwise

e1(k) = kop~*p*ky ' T*dlogT = kg td(p*T*) = ky'd(eo(k))
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where s = —v,(k) and k = kop™*(ko is unit in Zj). O
Now we calculate how e;(k) behave under the operations d, V, F' respectively.

Proposition 4.5.3.

koer(k) ifk ¢ Z, k=5 s>0
deo(k) = 4 (%) ¢ 2 (4.5.5)

kei(k)  otherwise
d€1 (k’) =0

Vieolk)) — eolk/p)  if(k/p) ¢ Z (45.6)

peg(k/p)  otherwise
V(e1(k)) = pex(k/p)

Fleothyy — {700 TREE (45.7)

eo(kp)  otherwise
F(ey(k) = ex(kp)

Proof. If k & Z, deg(k) = d(p~v»®)Tk) = kp=vrk) ThdlogT.

If k € Z, deg(k) = dT* = kT*dlogT = key (k).

Ifk¢Zand k/p ¢ Z,

Vieg(k)) = V(p~or®TkY = p=voplk) prk/p — p=veB/P)Tk/P — 0 (k). If k € Z and k/p ¢ Z,
V(eo(k)) = V(TF) = pT*/P = eg(k/p) since v,(k/p) = —1.

If k/p € Z, V(eo(k) = pT*/P = pey(k).

V(ei(k)) = V(T*dlogT) = pT*PdlogT = pei(k/p).

It k € Z, F(eo(k)) = F(T*) = T* = eo(kp).

If k ¢ Z, Feo(k)) = F(p=*®T*) — p=»®T* — peq (kp).

F(ei(k)) = F(T*dlogT) = T*dlogT = ey (kp).
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Proposition 4.5.4. Let r € N and k € Z[1/p|. Define s = s(k) = —uv,(k) and

r—s ifs>0,r>s

v(r, k) =40 ifs >0,r <s
r ifs <0
Then
WFil B =p*%) B (4.5.8)

Proof. First we will show that
p’"R)  E c FiI'E

Casel: keZ
P Rey(k) = p'TF = VI(TH) € FIVE N, B

Case2: k¢ Zand r>s.
p* TR eg(k) = p" o p T = p'TF = V'(T*") e FI'En, E
Case3: k¢ Zand s >r.
p* TR eg(k) = p*T* = V7 (p* " T*") = V" (eo(kp")) € TI'E Ny E.

Since —uvp,(kp") = s —r.

We have p?(™%)  E® ¢ ,Fil"E°. Since p“(r’k)el(k’) € V'E' CFil"E in all cases, we obtain
p'UR) LB C WFil'E

Now, we need to show p*("¥) ,F C ,Fil"E. Since Fil'E = Fil"E° ¢ Fil" B!, we will deal
with zFil"E! = Fil"Ei N ,F for i =0, 1.
write n = kp”.
Case 1: n ¢ Z,
VT (eo(n)) = V7 (p0T™) = pr eI

VT (eo(n)) = pr®TF = eg(k)
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Case2:neZand k ¢ Z,
Vi (eo(n)) = VI(T") = p' TP = prtorBpmn@ITE — pebieg (1)

Since v,(n) —r = vy(k) and r — s > 0.
Case3 : ke Z
V7 (eo(n)) = p TP = p*TPeg (k).

Cince wv,(k) > 0.
Then
WFil'E° c pvk) | EO.

By above calculations, we obtain ,V7(E°) = p*("*) E® and then
dvr(EO) N k:El _ d(pv(r,k)EO) _ pv(r,k:)dEO C pv(r,k) k:El-

and since F is generated as a dga by E°, any element of F' can be written as ady for

x,y € E°. V"(2dy) = V" (2)dV"(y) shows that
VB cp"ME

Then we have

p?CRE =, Fil'E

o(rk)+l pv(r,k:)

Since p . We have the corollary :

Corollary 4.5.5. Multiplication by p on E induce an injective homomorphism for allr > 0.
Er — Er+1

Since FiI'H'E ¢ Fil"E, we have restriction maps from F,;; — FE,.. Then take the

inverse limit and define

E =

TH.

im F,

1
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Then E has no p-torsion. Since we have the maps E — I, for all » > 0 and ), Fil"E =0,

we have an injective map

F—-F

Claim: E is a V-complex over the ring A. We have
AW (A) — E,
for all » > 0 and also A is compatible with V and the restriction maps. We already know
V(zdy) =V (2)dV (y) for z,y € F,

V(z)d(A([T*]) = V(2)dT* = V(2 F(dT*)) = V(2kT*dlogT)
— V(@T P dT*) = v (@A([THP~Y) ANV ([TH])

This proves Theorem4.4.1(i).
AW (A) — E,

induces the map

A QWT(A) — Er-

Let » = 1. We have W1Q, — QW1(A) and we are done. Assume we have map A : W, {0, —
E; for all s <r. Then we have
AWy — F,

since V(zdy) = V(2)dV(y) and V(z)d\|a] = V(zA[a]P~1d)[a]) for all 2 € E, and a € A.
(in fact we already have this map since the de Rham-Witt complex is the initial object in
the category of V-complexes.)
Define for k € Z[1/p],

[T%] ifk € Z

Jo(k) =
pIT"  ifk¢Z

f1(k) = [T*|dlog|T]
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then fi(k) € WQj . since E" is generated by e;(k) as a Z,-dga, we can define the map
i B — Wy

Define
(Fil')y W3 = V'WQ; +dV W'

Consider the projection W 24 v W24 pre- W, 4 and passing to the limit,

WQ'A ‘ﬁ; VVQ';1 — WTQ'A
The map 1 we defined above sends Fil"E to (Fil')"E and
(Fil')’E C KerWQjz — W, Q5.

So v induce a map

oo B — Wy

1, is compatible with V and d.
Jo(k) = p°[T*] = Vo [T*"] € W,(A)

for k ¢ Z and
fi(k) = [T)Fdlog[T] = kytdV*[T*"| € W,

where s = —v, (k). Then in fact image of ¢ is p-typical de Rham-Witt complex over A4, i.e.,
Y E — Wy

W€, is generated by W,.(A) as a Z,-dga and any Witt vector in W,.(A) is written as a
sum of V*[T*]’s. So f;(k)’s generates W,,. This finishes the proof of the Theorem 4.4.1.
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