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ABSTRACT 

 

 As one of the mostly studied protein in the literature, caspase-1 (ICE) attracts the 

attention of many scientists due to its crucial roles in inflammatory responses. It has other 

roles in the apoptotic path, for example, because of having more than 40 substrates. 

Increased expression of its substrates such as pro-IL-1  results in inflammatory disorders. 

Consequently, inhibition and pathway studies related to caspase-1 have gained importance. 

 Peptide based drug design for caspase-1 is performed and potent inhibitors are 

determined computationally. Bicylic (a molecule that contains two fused rings) and ketone 

structures with Asp and D-enantiomeric aminoacids are obtained as good inhibitors in 

accordance with previous experimental work. Moreover, multi-target drug determination in 

the caspase-1 pathway is made. Conformational factors in tripeptides are also taken into 

consideration with Viterbi Algorithm, which indicates whether a peptide can change its 

conformation from minimized state to bound state.  

 Knockout analysis on the ICE pathway by Gaussian Network Model (GNM) shows 

knockouts of NLRP3, ASC, caspase-1, NF- B, pro-IL-33, TLR4, TLR2, TRIF and MyD88 

are effective.  
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ÖZET 

 

 Literatürde çok çalışılan proteinlerden biri olan kaspaz-1 (ICE), inflamatuar 

tepkilerdeki önemli rolleri yüzünden birçok bilim adamının ilgisini çekmektedir. Ayrıca, 

40‟dan fazla substratı olduğu için apoptotik yoldaki fonksiyonları gibi başka rolleri vardır. 

Pro-IL-1  gibi substratlarının fazla salınımı bazı inflamatuar rahatsızlıklara yol açar. Bu 

yüzden, kaspaz-1 ile ilgili olan inhibisyon ve metabolik yol çalışmaları önem kazanmıştır. 

 Kaspaz-1 için peptit bazlı ilaç tasarımı çalışıldı ve potent inhibitörler 

hesaplamalarla belirlendi. Asp ve D-enantiomerik aminoasitlerle bisiklik (kaynaşmış olan 

iki tane halkalı yapıyı barındıran molekül) ve keton yapıların, önceki deneysel çalışmalarla 

uyumlu bir şekilde iyi inhibitörler olduğu görüldü. Bununla beraber, kaspaz-1 metabolik 

yolunda çok hedef belirlenmesi yapılmıştır. Bir peptidin konformasyonunu minimize 

durumundan bağlanmış durumuna geçerken değiştirip değiştiremeyeceğini gösteren Viterbi 

Algoritması ile de tripeptitlerdeki konformasyonel faktörüler dikkate alınmıştır.  

 Kaspaz-1 metabolik yolunda Ağ Yapı Modeli ile yapılan nakavt analizi; NLRP3, 

ASC, kaspaz-1, NF- B, pro-IL-33, TLR4, TLR2, TRIF ve MyD88 nakavtlarının etkili 

olduğunu göstermiştir. 
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Chapter 1 

 

1. INTRODUCTION 

 

Caspase-1 (Interleukin converting enzyme, ICE) is an endopeptidase that mainly 

functions in processing pro-inflammatory cytokines of IL-1, IL-18 and IL-33. Increased 

expression of pro-inflammatory cytokines can result inflammatory diseases including 

hereditary fever syndromes [1]. Consequently, inhibition of caspase-1 has been studied 

extensively for treatment of inflammatory diseases and several candidate drugs have been 

found. There are problems related to ICE inhibitors such as penetration. First, candidate 

peptide based drugs are found in this study with new approaches. After that, analyses 

related to their drug-likeliness and their potential for multi-target inhibition are performed. 

Peptides form an important subgroup of drug molecules for protein inhibition [2]. 

One distinguishing feature of peptide drugs is that unlike small, relatively stiff organic 

molecules, peptides exhibit large conformational changes at physiological temperatures. 

This confers the peptides with an unusual capability of adopting the shape of the binding 

region on the protein. However, all conformations of peptides are not equally probable, and 

the probabilities may change significantly depending on conformation. These differences in 

probability result from the hopping of the two dihedral angles,  and  over the two 

peptide backbone bonds flanking the alpha carbon. A survey of dihedral angles that are 

accessible to a peptide shows that there are more than ten distinct regions in the  

plane, or the so-called Ramachandran map. Each of these regions corresponds to a state 

with a certain probability. There are 20
3
 tripeptides as drug candidates. In each tripeptide, 
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the eight rotatable peptide bonds lead to 10
8
 different conformations or states. In solution, 

the free peptide spends most of its time in the high probability states. Upon binding, the 

peptide is forced to take a conformation that is compatible with the shape of the protein 

surface at the binding region. The accessibility and the possibility of the bound state 

depend on two thermokinetic conditions: First, the free energy difference between the 

bound state and the highly probable states of the free peptide should not be excessive. 

Secondly, the conformation obtained at the bound state should be accessible from the 

manifold of the high probability states of the free peptide. The second condition dictates 

that the pathways from the high probability states to the bound state should not pass over 

high energy barriers. The present study also deals mainly with the fulfillment of these two 

conditions as part of a peptide design process. To our knowledge, this important criterion in 

the peptide drug design has not been considered explicitly until now. The problem is 

necessarily an NP-complete problem of high complexity. One way to overcome the 

complexity is to design peptides in the absence of these two conditions using known design 

software such as Autodock, Gold, Openeye etc., and then eliminate the peptides that violate 

these criteria. This posterior-filtering strategy is adopted in the present study. The software 

mentioned are programs that order the different peptides according to their binding 

energies, and in none of them the two conditions mentioned above are taken into account. 

Upstream and downstream interactions of caspase-1 have also been considered as 

important research topics. Since recognition of pathogens takes place mainly by two 

components which are important components in the ICE pathway. These two components 

are : (i) on the cell surface and in the endosomal compartments by toll-like receptors 

(TLRs) (ii) in the cytosol by nucleotide-binding oligomerization domain (NOD)-like 

receptors (NLRs) [3]. In this study, caspase-1 pathway studies in the literature will be 

provided with considering TLRs and NLRs. Interactions between proteins and triggers will 

also be given. All interactions in the ICE pathway taken from literature data are organized 
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in a connectivity Kirchhoff matrix, , and the properties of the resulting graph are 

analyzed using the Gaussian Network Model (GNM). A knockout analysis on the caspase-1 

pathway is performed using GNM. State fluctuations between i
th
 and j

th
 proteins ( ) 

are considered in the knockout analysis. In previous studies related to GNM, residue based 

interactions in a protein were considered. However, protein level interactions through state 

fluctuations in a pathway have not been analyzed before by GNM. Knockout analysis for 

ICE pathway is done by GNM in order to identify defects in the pathway. In previous 

studies, knockout animals such as mice [4-5], genes [6] or cells [7] were used in an 

experimental manner. The present study extends the use of GNM to the search of knockout 

and defect relations in the ICE pathway. 

In Chapter 2, a detailed literature review is given for caspase-1 (its structural and 

biological properties, its pathway and diseases related to caspase-1), drug (desired features, 

peptide drug properties, ICE drugs in literature), docking (its methods, AutoDock, GOLD), 

genetic algorithm (its theory, literature applications for ligand search), pharmacophore 

analysis by LigandScout, literature applications of Viterbi Algorithm and Gaussian 

Network Model (GNM). 

In Chapter 3, methods are given. Caspase-1 PDB properties and computational 

methods for ICE drug design (AutoDock, GOLD, computational ligand analysis tools such 

as LigandScout), genetic algorithm, complete enumeration, determination of states, 

equilibrium and kinetic factors in a tripeptide, determination of a path followed by a 

tripeptide with Viterbi Algorithm and GNM (Gaussian Network Model) are given in this 

section. 

In Chapter 4, peptide-based drug design for ICE is given initially comparing with 

previously designed inhibitors for caspase-1. Furthermore, multi-target drug determination 

is performed taking into account the ICE pathway. Thus, a more detailed analysis of 
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tripeptide inhibitors is performed by conformational factors using Viterbi algorithm. In 

pathway analysis part for the ICE pathway, a knockout study is performed. 

In Chapter 5, conclusion of this study is provided with underlining important facts 

related to this study.  
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Chapter 2 

 

2. LITERATURE REVIEW 

 

2.1 Caspase-1 (Interleukin converting enzyme-ICE) 

Caspases belong to dimeric thiol proteases that have a place in cellular processes 

like apoptosis and inflammation. Caspase-1 is the first member of this family that was 

studied. It is responsible for many diseases and studies throughout the world are being 

conducted to find a cure for these disorders by inhibition of ICE [8]. 

2.1.1. The structural and biological properties 

The enzymes, which cleave peptide bonds, have higher energy barriers to overcome 

that are peptidases or proteases. These enzymes contain endopeptidases and exopeptidases. 

Most proteases force the trigonal planar peptide bond into a tetrahedral geometry which is 

certainly required for hydrolysis. There are five mechanisms for this hydrolysis but 

formation of a tetrahedral intermediate by promotion of cysteine is a promising step for 

caspases [9]. Caspases are endopeptidases which have 11 types in humans. Caspase is an 

abbreviation of cysteine-dependent aspartate-specific protease. There are two types of 

caspases according to their functions that are pro-inflammatory (e.g. caspase-1) and 

apoptotic (e.g. caspase-3) cytokines [10]. Human caspases exist in certain pH values that 

are between 6.8 and 7.2 [11].  

The caspase enzymes attract attention for drug design. The caspase family is 

composed of three subfamilies (group I, group II and group III) that are dependent on their 
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predominant functional roles and substrate specifities [12]. Caspases need an aspartic acid 

residue in the P1 position for their substrate and are grouped into three categories according 

to their substrate preferences. Caspase-1, -4 and -5 belong to group I that need a 

hydrophobic residue at P4 place. Caspase-2, -3 and -5 (group II) need an Aspartic acid 

residue in P4 position while caspase-6, -8, -9 and -10 (group III) do not prefer a specific 

amino acid in P4 position [13]. 

There are three main biological activities of caspases. A classification of these 

activities can be seen in Figure 2.1. Prediction analysis of microarray (PAM) classification 

of different caspases was also given with a cut-off of 50 aminoacids. Nematode death gene 

CED 3 resembles caspase-1 and can also be seen in Figure 2.1. The caspase family can be 

classified phylogenetically. Effector caspases like caspase-3 have no prodomain. On the 

other hand, other caspases have either a death effector domain (DED) or a caspase 

recruitment domain (CARD). Caspase-1 is one of the CARD-containing caspases. 

Moreover, all caspases have two domains: amino-terminal prodomain and a catalytic 

domain, which is composed of 20-kDa and 10-kDa units. The P4 preferences are also 

demonstrated with  for (W/Y/L) EHD,  for (I/L/V) EXD and  for DEXD. In N-

peptide parts, CARD (Caspase activation and recruitment domain) and DED (Death 

effector domain) domains are shown in the Figure 2.1 by grey and black colors, 

respectively [14-15].  
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Figure 2.1 Relationship between human caspases [14]. 

In all caspases, active site is conserved. In Figure 2.2, the catalytic residue Cys285 

is shown by a red color and the conformations of loops according to Cys285 are also 

demonstrated. The L4 loop in caspases determines the P4 specificity of substrate. For 

instance, caspase-1 has short L4 loop, which results in bulkier and hydrophobic residues 

and caspase-3 has long L4 loop that is responsible for preference of Asp residue [16]. 

                                                                

Figure 2.2 Structural comparison of caspase-1, -3, -7, -8 and -9 [16]. 
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In 1992, ICE was first purified and its DNA was cloned as well as sequenced. 

Caspase-1 is processed as a dormant 45 kDa proenzyme in cell cytoplasm. The active form 

contains two subunits: 20 kDa and 10 kDa parts. Activation of caspase-1 can happen 

autolytically or by other family members due to excision at the Asp site. [9].  

 

 

Figure 2.3 Structure of caspase-1.  

a) Wild type caspase-1 (Red, green and blue show a >100-fold, >2-fold and <2-fold 

reduction when replace with alanine). The yellow spheres represents the z-VAD-FMK 

inhibitor (PDB ID=2HBQ) [8]. b) Comparison of the surface of active-site ligand (z-VAD-

FMK), allosteric site ligand (Compound 34) and ligand-free caspases (PDB ID=1SC1) 

[17]. 

a) 

b) 
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Datta et al. (2008) studied the effect of mutation along the active site of caspase-1 

and determined that there is a line of residues which form an H-bonding network and a salt 

bridge by connecting the active and allosteric ligand sites of caspase-1. This line of 

residues was found to be crucial for wild type caspase-1 activity. In Figure 2.3, the impact 

of alanine replacement can be seen. Additionally, there is a salt bridge between Arg286-

Glu390 with connecting two active sites with allosteric site. Datta et al. (2008) also 

determined Cys285 was the active site [8]. The 20-kDa chain contains active cysteine 

residue [18]. This finding was also verified by Scheer et al. (2006) by binding the inhibitor 

(z-VAD-FMK) on a sulphur atom of Cys285. However, they also determined that Cys285 

would be blocked if Cys331 was used as docking place due to being at allosteric site as 

seen in Figure 2.3. As a result, both Cys285 and Cys331 can be used as binding sites [17]. 

Caspase-1 has a large five-stranded parallel -sheets and a single anti-parallel strand 

near the C terminus. This antiparallel strand relies on the formation of the tetramer 

complex. In the catalytic dyad, Cys285 and His237 act as a nucleophile and general base 

that takes proton from Cys, respectively. Arg-179, Gln283 and Arg341 form the prominent 

binding site that is a hole in the active site. The backbone amides of Gly238 and Cys285 

donate H-bonds to the carbonyl oxygen. Before nucleophilic attack of catalytic Cys285 on 

the carbonyl carbon, the thiol group of Cys285 donates its proton to His237. As a result, 

His237 becomes a catalytic acid and allows polarization of water molecules during 

deacylation of the enzyme as seen in Figure 2.4 [11, 14]. 
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Figure 2.4 The active site and substrate interaction in ICE [11]. 

All caspase types are produced as a single chain zymogen, which contains small and 

large subunits. Two large and two small subunits are the parts of the active hetero-tetramer. 

In the hetero-activation, that is the mechanism of a single chain caspase zymogen for 

producing an active protease, of caspase-1, Asp297 residue is the main site for activation 

because it is conserved. A schematic of processed caspase is given in Figure 2.5. Cleavage 

between small and large subunits forms the active caspase and sometimes results in a linker 

[13-14]. 

 

Figure 2.5 Processed caspase.  

Starred and circled residues demonstrate the residues in catalytic dyad and S1 subsite with 

caspase-1 numbering [13-14]. 

The inflammatory and apoptotic signaling pathway of the caspase family is also 

illustrated in Figure 2.6. The inflammatory caspases, caspase-1, -5 and -11, have a place in 

the activation of pro-IL-1  and IL-18. For caspase-1 activation, caspase-11 whose potential 
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homolog can be caspase-5 is needed. Caspase-11 activates caspase-1 after the activation of 

pro-caspase-11. When caspase-1 is activated, the cleavage, in other words, the activation of 

pro-IL-1  occurs. Moreover, caspase-4 is thought to mediate in the activation of caspase-1 

since expression of both caspases occurs at the same time [19-21].  

 

Figure 2.6 Caspase signaling pathways [13]. 

Caspases were initially determined to have a part in apoptosis by genetic analysis in 

the nematode C.elegans. The change (with deletion or mutation) in one gene (CED-3) 

resulted in the cancelation of 131 programmed cell deaths. CED-3 was found to have a 

relation with mammalian caspase-1 protein, which was also validated with other studies. 

Caspase family members were identified to have a crucial role in apoptosis in mammals by 

cleaving key proteins at the onset of apoptosis. Additionally, peptide-based and non-

peptide drugs inhibited the caspase family by preventing the apoptosis in vitro, in whole 

cells and in in vivo models. Caspases have a certain role in apoptotic processes but initial 

studies related to ICE demonstrated that caspase-1 did not have a crucial role in apoptosis 

in addition to inflammatory responses. However, recent studies show ICE involves both 
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pro- and antiapoptotic roles. Moreover, these two processes may not be linked and occur in 

inflammatory conditions. That is why inhibition of ICE has gained importance in 

overcoming many inflammatory disorders [9, 22].  

The importance of research for caspase-1 inhibition also depends on ILs. 

Proinflammatory interleukins (ILs) share a role with TNF-  in chronic and acute 

inflammation. IL-1 , IL-6 and IL-18 are proinflammatory interleukins for which 

development of antagonists or inhibitors for interleukin action has a valid place in scientific 

studies. As a consequence, drugs for IL-1  converting enzyme (ICE or caspase-1) are 

examined since caspase-1 intracellular protease for forming active IL-1 . It cleaves 

inactive 31-kDa pro-IL-1  (precursor of IL-1 ) between Asp116 and Ala117 for forming 

mature IL-1  that is in 17-kDa proinflammatory form. IL-1  levels in human macrophages 

can be decreased with inhibition of caspase-1. The Cys285 residue of caspase-1 which is 

catalytically active and the carbonyl group of Asp116 in human pro-IL-1  form a covalent 

bond. This covalent bond makes the hydrolysis of pro-IL-1  [23]. There is little knowledge 

related to initial events that regulate conversion of pro-IL-1  by caspase-1. Swaan et al. 

(2001) studied the sequential processing at ICE cut sites by combining in vitro analysis and 

molecular dynamics (MD) to investigate the molecular events in pro-IL-1  by a homology 

model with 1-antitrypsin. As determined from simulations, ICE cleaves the pro-IL-1  

from two places. Asp27-Gly28 and Asp116-Ala117 are the cut places but only cut site 2 is 

needed for generating active IL-1  [24].  

2.1.2. Caspase-1 Pathway 

 Caspase-1 can be activated by protein complexes called inflammasomes. The most 

studied inflammasomes in literature are NLRP1 (NACHT, LRR and PYD-containing 

protein 1 which is also known as NALP1, DEFCAP, NAC, CARD7, CLR17.1), NLRP2 



 

 

Chapter 2: Literature Review            13 

13 

 

(also known as NALP2, PYPAF2, NBS1, PAN1, CLR19.9.), NLRP3 (which is also known 

as CIAS1, PYPAF1, Cryopyrin, CLR1.1, NALP3), AIM2 (Absent in melanoma 2) and 

NLRC4 (CARD, LRR, and NACHT-containing protein which is also known as CARD12, 

CLAN, CLR2.1, IPAF) [25-28]. In these inflammasomes, there are other proteins such as 

PYCARD (PYD and CARD containing protein which is also known as ASC, CARD5 and 

TMS1) [25-26]. Domain based interactions of the proteins in inflammasome result caspase-

1 activation as shown in Figure 2.7.  

 

Figure 2.7 A proposed schematic of ICE interactions in inflammasomes [29-30]. 

2.1.2.1. NLRP1 inflammasome 

NLRP1 is composed of PYD (pyrin domain) - NACHT (NTPase domain) - NAD 

(Nicotinamide Adenine Dinucleotide domain) - LRR (Leucine Rich Repeats domain) – 

FIIND -CARD (Caspase Recruitment Domain) domain organization. It is a basic 
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component of NLRP1 inflammasome [25-26]. NLRP1 inflammasome also contains ASC 

which can be regulated by TP53 (Cellular tumor antigen TP53) in small quantities [31-32], 

procaspase-1 and procaspase-5 (in humans). Caspase-1 mRNA levels increase upon 

overexpression of TP53. NLRP1 has interactions with ASC [15, 21, 25, 27, 29, 33-39], 

procaspase-1 [15, 25, 27-28, 36, 38-41] and caspase-5 [15, 29, 33, 35, 37, 42-43], which is 

activated by NLRP1 [44]. An adaptor protein CARDINAL interacts with caspase-5 and 

recruits NLRP1 (CARDINAL also interacts with NLRP1) for caspase-1 activation [45]. 

Furthermore, it is determined that CARDINAL can have direct interaction with active 

caspase-1 [46]. In mice, caspase-11 is the homolog of human caspase-5 (caspase-5 is found 

to be closer to caspase-11 than caspase-4.) and associates with NLRP1, ASC and 

procaspase-1 similar to caspase-5 [15, 19, 28, 34, 47-49]. It is formed by cleavage of 

procaspase-11 [50]. LPS (lipopolysaccharide) [51-52] and lysosome damage [20, 50] can 

trigger procaspase-11 and also its human homolog caspase-5.  

The X-linked inhibitor of apoptosis protein (XIAP) is also a member of NLRP1 

inflammasome due to its interaction with NLRP1, procaspase-1 and ASC. Additionally, it 

has an interaction with caspase-11, which is thought to secrete a component for ICE 

activation [34]. ASC can be stimulated with LPS [52-54] and pore forming toxins [55-56]. 

Additionally, lysosome damage can affect procaspase-1 [50].  

NOD2 (abbreviation of nucleotide-binding oligomerization domain-containing 

protein 2 with other names NLRC2, CARD15, CD, BLAU, IBD1, PSORAS1, CLR16.3 

[26]) is also found to have interaction with NLRP1 and is thought to be one of the possible 

components of NLRP1 inflammasome [25, 57-58]. Procaspase-1 also interacts with NOD2 

[40, 59]. NOD2 can be influenced from LPS [60], Listeria which can produce Listerolysin 

O [56], anthrax lethal toxin (LT) [25] and a bacterial cofactor mutamyl dipeptide (MDP) 

which is formed from PGN (peptidoglycan) [25, 29, 33, 40, 61-64].  
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NLRP1 oligomerization can be started by ATP. This activation of ATP can be 

inhibited by Bcl-2 and Bcl-xL proteins which can directly affect NLRP1. In addition to 

ATP, microbial ligands which can activate NLRP1 are muramyl dipeptide (MDP) which is 

a component of peptidoglycan produced by Gram-positive and Gram-negative bacteria [25, 

28, 33, 65-66]. MDP results in conformational changes in NLRP1. MDP binds with LRR 

of NLRP1[66]. As a result of K
+
 flux due to ATP triggering the P2X7 receptor which binds 

with pannexin-1, NLRP1 can also be activated [34]. The P2X7 receptor of reversible 

permeable membrane can be stimulated by ATP that can tolarate hydrophilic solutes of 

molecular mass up to 900 Da [67]. Moreover, low intracellular K
+
 flux which can be 

mediated by LPC [68] is certainly needed for Bacillus anthracis which results in lethal 

toxin and activates NLRP1 complex and can be responsible for pore formation [29, 33, 45, 

53, 69-71]. Ca
+2 

flux can also affect the NLRP1 with pore formation [25]. Ca
+2 

flux can 

result from P2X7 receptor [72-74], LPC [68] and pore forming toxins [25, 75].  

Iceberg and COP are endogenous antogonists that bind the CARD domain of the 

zymogen (procaspase-1) and decreases the activation of caspase-1 [66]. POP1 also 

deactivates NLRP1, shows 64% identity to the PYD of ASC and interacts with ASC in a 

PYD dependent manner [76-77]. MEFV pyrin can also bind to several NLRPs including 

for example, NLRP1, NLRP3, with the help of its SPRY domain [77-78]. MEFV Pyrin can 

have a relation with ASC through PYD domains [79]. Furthermore, pyrin binds to PSTPIP1 

which interacts with ASC through its BBCC domain [78]. Serum amyloid A protein (SAA) 

is known to have a role in activation of the MEFV pyrin [80]. Thus, some studies claim that 

pyrin can directly bind onto caspase-1 [78, 81-82]. Chae et al. (2008) claimed that MEFV 

pyrin was cleft by caspase-1 from Asp330 [83]. Its interactions with all proteins in the ICE 

pathway demonstrate not only activation but also inhibition features [27, 39, 78-79, 82, 84-

86]. SPRY domain of pyrin can also interact with pro-IL-1  [78]. Consequently, its role in 

caspase-1 pathway is open to many questions. INCA (Caspase recruitment domain-
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containing protein 17 or CARD17) which interacts with ASC [84] and procaspase-1 [54] is 

also a decoy protein for caspase-1. For ASC, caspase-12 is another decoy protein [70]. 

2.1.2.2. NLRP2 inflammasome 

NLRP2 has a PYD-NACHT-NAD-LRR domain structure and is the main protein of 

NLRP2 inflammasome [25-26]. This inflammasome consists of ASC, CARDINAL and 

procaspase-1. NLRP2 interacts with CARDINAL and ASC directly. On the other hand, 

NLRP2 makes its procaspase-1 interaction via ASC by the CARD domain of ASC [1, 25, 

27, 33, 37, 46, 84, 87-89]. There are many unanswered questions related to this 

inflammasome in caspase-1 activation. 

NLRP2 can be triggered by LPS [27] and MDP [90]. NF- B and interferons (IFN-  

produced by IL-18 [1, 91] and IFN- ) proteins were found to have a relationship to NLRP2 

[27]. Furthermore, SGT-1 and HSP90 need to separate from the NLRP2 inflammasome. If 

this does not happen, the NLRP2 cannot be active [51]. SGT-1 and HSP90 also exist in 

NLRP3 [41, 92-96], NOD1 [33, 41, 92, 94, 97], NLRP12 (also known as NALP12, 

PYPAF7) [51], NLRC4 [41, 84, 92, 96] and NOD2 [41, 97]. SGT-1 and HSP90 should be 

separated from NLRP2, NLRP3, NOD1, NLRP12, NLRC4 and NOD2 for inflammasome 

activation. Moreover, HSP90 and SGT-1 interacts with each other since SGT-1 cannot bind 

LRR domains of NLRPs without HSP90 [41, 92-93]. HSP90 can be stimulated by LPS 

directly [98].  

2.1.2.3. NLRP3 inflammasome 

NLRP3 is the most studied inflammasome that contains NLRP3, ASC, CARDINAL 

and procaspase-1. Interactions of NLRP3-ASC through PYD domains [29, 39, 99], 

NLRP3-CARDINAL [33, 53, 84], NLRP3-procaspase-1 [41, 72, 96, 100], ASC-

CARDINAL [1, 87-88], ASC-procaspase-1 through CARD domains [1, 87-88] and 
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procaspase-1-CARDINAL [33, 46] exist. NOD2 was also found to bind NLRP3 [53]. 

NOD2 can also interact with procaspase-4 [57], which can be inhibited by COP [101].  

TNFR-II (Tumor Necrosis Factor Receptor 2) can trigger NLRP3 protein for ICE 

activation with ATP stimulation in the absence of a microbial effect. TNF-  (Tumor 

Necrosis Factor ) stimulates the TNFR-II receptor [102].Other stimulations of NLRP3 

activation are:  

 TXNIP (Thioredoxin-interacting protein) [30, 103] 

 poly(I:C) (polyinosinic:polycytidylic acid) [104] 

 dsRNA [104], ssRNA [70] 

 lipoteichoic acid, Pam3CSK4 [42] 

 imidazolequinoline compounds which are R837 and R848 [38, 70] 

 ESX-1 secretion system which is secreted by mycobacteria [25, 105] 

 bacterial RNA [33, 38, 61, 106] 

 Ca
+2 

and/or K
+
 flux [25, 28, 53, 69, 96] 

 ROS (reactive oxygen species) [96, 107-108] 

 LPS [25, 109] 

 pore forming toxins which are nigericin, mailtotoxin, aerolysin, listerolysin O 

(LLO), saponin, streptolysin and hemolysinscan [30, 55-56] 

 crystals (MSU (Monosodium urate), CPPD (Calcium Pyrophosphade Dehydrate), 

silica, asbestos, amyloid-beta, aluminum salts, skin irritant trinitrochlorobenzene, hemozoin 

crystals, cholesterol crystals ) [25, 41, 53, 84, 89, 103, 108, 110] 

 cathepsin B which is formed due to lysosome damage [25, 111] 

 MDP [61-62] 

 ATP [42, 84] 

 UVB (Ultraviolet B or medium wave) ultraviolet light [112].  
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There are many known mechanisms for activating NLRP3. One of them happens by 

lipid rafts which can trigger LPC (Lysophosphatidylcholine) and LPC results in NADPH 

oxidase activity. This activity is responsible for the ROS production which activates 

NLRP3 inflammasome [113]. ROS activation can also result from ATP [106, 111], P2X7 

receptor [25, 106], lysosome damage [108], pannexin-1 [28], MSU [25], silica [114] and 

asbestos [100]. As one of the reasons for ROS production, lysosome damage can result 

from MSU [96], amyloid- , silica, aluminum salts [25, 28, 38], cholesterol crystals [108] 

and asbestos [96]. ATP mediated ROS can also be responsible for PI3K production [106] 

and ERK1/2 activation [106], which regulates Bcl-xL and Bcl-2 activation [115]. Thus, 

MSU and CPPD are found to affect NLRP3 protein through microtubules [53]. MSU is 

associated with Gout while CPPD is linked with pseudo-gout. Moreover, Amyloid-  is 

related with Alzheimer‟s disease and cholesterol crystals are associated with 

atherosclerosis [108].  

Another mechanism that is widely studied the P2X7 receptor, which is activated by 

ATP and pannexin-1 binds to P2X7 receptor. As a result of these, the P2X7 receptor and 

pannexin-1 complex results in a decrease of K
+
 flux in the cellular environment that leads 

to NLRP3 activation [25, 34, 61-62, 116-117]. Pannexin-1 was found to be influenced from 

LPS [1, 35] and MDP [28]. Furthermore, TLR agonists like LPS and/or MDP are needed 

for activation of caspase-1 by P2X7R [52]. Pore forming toxins [25, 28, 36], crystals [25, 

93] and anthrax lethal toxin (LT) [71] are other stimulates of K
+
 flux decrease. Among pore 

forming toxins, only LLO can affect NLRP3 and ASC directly. The others use K
+
 flux 

decrease for NLRP3 activation [30, 55-56]. Biglycan can also bind onto P2X7R, TLR2 

(Toll like receptor 2) and TLR4. In other words, biglycan can induce not only NLRP3 but 

also pro-IL-1  production through NF- B production [95]. 

Iceberg and COP bind to CARDINAL [46] and procaspase-1 [46, 66, 76, 107] for 

inhibiting caspase-1 production. On the other hand, POP directly inhibits NLRP3 protein 
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[76, 84]. PYPAF3 can also inhibit procaspase-1 and pro-IL-1  [118]. Bcl-xL, which is also 

a decoy protein for caspase-1 [119], and Bcl-2 are other decoy proteins for NLRP3 [84]. 

Bcl-xL can interact with Alzheimer‟s presenilin-1 (PS1) and presenilin-2 (PS2) which 

demonstrates the relation of Alzheimer disease with apoptotic pathways [120]. PS1 can be 

cleft by caspase-11 and caspase-8 whereas PS2 can be activated by ICE and caspase-8 

[121]. MVK (Mevalonate kinase) is also associated with NLRP3, MEFV pyrin, PSTPIP-1, 

NOD2, caspase-1 and NF- B [32].  

2.1.2.4. AIM2 inflammasome and RIG-I protein 

AIM2 inflammasome consists of AIM2, ASC and procaspase-1. AIM2 interacts 

with ASC by its PYD domain [28, 33, 96, 107, 122-123] and procaspase-1 [28, 96]. 

Listeria which can produce Listerolysin O [56] and dsDNA with its oligonucleotide/ 

oligosaccharidebinding domain [56, 96, 107, 123-124] are causes of activation of this 

inflammasome.  

In addition to its role in NF- B and IFN pathways [125], RIG-I also plays a role in 

caspase-1 activation in an ASC dependent way. Moreover, it may be an independent 

inflammasome or dependent on unknown inflammasome [96]. It senses dsRNA [64, 88, 

104] and has a role in the triggering of IRF3 (Interferon regulatory factor 3), IRF7 and NF-

B [88]. IRF3, which is linked to TRIF (TIR domain-containing adapter molecule 1 and 

also known as TICAM1 PRVTIRB), and IRF7 can produce type 1 IFNs [64, 88, 126-127].  

PYPAF7 (NLRP12, NALP12, RNO) and PYPAF5 (NLRP6, AVR, NALP6) also activate 

procaspase-1 by interacting with ASC. They also participate in the activation of NF- B 

with ASC [21, 128].  
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2.1.2.5. NLRC4 inflammasome 

NLRC4 contains an N-terminal CARD, a central nucleotide-binding site (NBS), and 

LRR [129]. Unlike NLRPs, NLRC4 does not have a PYD domain. On the other hand, it 

can directly bind onto ICE by the help of its CARD domain [42]. This inflammasome 

contains NLRC4, ASC and procaspase-1 in which NLRC4 interacts with ASC [21, 25, 29, 

33, 36, 38, 53, 62, 129-130] and procaspase-1 [21, 27-28, 36, 40-41, 53, 60]. NLRC4 can 

be triggered by ATP [84], flagellin [25, 29, 33, 38, 41, 45, 70, 84, 124, 131] which is 

related with K
+ 

and Ca
+2

 flux that will result in pore formation [25, 131], pore forming 

toxins [25], T3SS (Type 3 secretion system) [25, 132-133] and T4SS (Type 4 secretion 

system) [25].  

There is no direct interaction between NLRC4 and flagellin. Despite this fact, 

NLRC4 recognizes flagellin but how the molecular mechanism flagellin is sensored by 

NLRC4 is not clear [103, 123]. Furthermore, NLRP3 and NLRC4 can be triggered at the 

same time with K
+
 flux by aerolysin [36]. NLRC4 interacts with NLRP3 [40, 56], 

AIM2[56], NOD2 [40, 59], and NOD1 [40, 59]. Thus, NF- B can be activated by 

coexpression of NLRC4 and ASC [130]. NAIP5 is a protein found in mice. It is triggered 

by flagellin and directly interacts with NLRC4 [28-29, 53, 131, 134-136]. T4SS can be 

effective on NLRC4 by triggering NAIP5 [53, 136]. In similar manner, T3SS [25, 131] and 

T4SS [53, 134] can use flagellin interaction without having a direct interaction with 

NLRC4. 

POP [76], INCA, COP and Iceberg [84] can inhibit the NLRC4 inflammasome by 

direct interaction with NLRC4. Moreover, COP was found to interact with INCA [54]. 

PYNOD (NACHT, NAD and PYD domains-containing protein 10 and also known as 

NALP10, NOD8 and NLRP10) interacts with ASC, caspase-1 and IL-1 . Consequently, it 

inhibits the functions of these proteins [137].  
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2.1.2.6. The role of NF- B in IL-1  production 

There are two steps for IL-1  production which are production of pro-IL-1  and 

cleavage of pro-IL-1  by ICE in order to become active form that is IL-1 . Caspase-1 

cleaves pro-IL-1  [138] for forming the IL-1  [1] which is the second step for IL-1  

production. The other one is the production of pro-IL-1  in nucleus by transcription, which 

is triggered by a mechanism that contains NF- B [25, 28, 53, 59, 72, 126] and p38 MAPK 

[28, 86, 126]. In addition, NF- B activation needs p38 MAPK [59, 86, 139]. The NF- B 

[21, 40, 59-61, 140-142] and p38 MAPK [44, 61] can be induced by direct interaction with 

RIP2 protein which is receptor-interacting serine/threonine-protein kinase 2 and also 

known as CARDIAK, RICK and RIPK2 [143]. p38 MAPK can also be triggered by ATP 

[106].  

RIP2 can be triggered by multiple ways. One of them is related to TRADD (Tumor 

necrosis factor receptor type 1-associated DEATH domain protein) and TRAF-2 (TRAF 

family member-associated NF-kappa-B activator) complex. When these two proteins form 

a complex because of the stimulation of TNFR-1 (Tumor necrosis factor receptor 

superfamily member 1) which is activated by TNF-  [101, 144-145], they stimulate the 

RIP2 protein [101]. TNFR-I can be turned into lipid rafts in order to form a complex. In 

this complex, TNFR-I and RIP2 are ubiquitylated by TRADD and TRAF2 complex [144]. 

NOD1 [21, 40, 60, 129, 146] and NOD2 [59, 61, 140, 142] have interaction on RIP2 for its 

activation. Triggered RIP2 can also interact with procaspase-1 for NF- B production [27, 

40, 76, 81, 101, 146-147]. As a result, adapter protein RIP2 binds not only the IKKγ 

subunit of the NF-κB-activating IKK complex, but also CARD domain of pro-caspase-1 

[40]. There is a competition between ASC and RIP2. ASC forces procaspase-1 to take 

place in NLRPs or NLRC4 inflammasome pathways whereas RIP2 forces procaspase-1 for 

becoming a part in activation of proteins such as NF- B [76, 148]. COP and Iceberg are 
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also decoy proteins for RIP2 similar to other NALP containing proteins such as NLRP3 

[54, 77, 101, 107, 141]. Caspase-8 activation is also needed for RIP2 [149]. 

PYPAF4 can deactivate NF- B [110] and NF- B can cooperate with IRF3 and 

IRF7 for secretion of type 1 IFNs [64, 88]. Besides, caspase-1 activation by the P2X7 

receptor is dependent on TLR signals and needs of the NF- B-driven protein synthesis 

[52]. Moreover, LPC [150], MEFV pyrin [83] and ASC [21, 81, 130, 132] can induce the 

NF- B production whereas CARDINAL decreases NF- B activation by its interaction with 

IKK  [142].  

NOD1 can be activated by LPS [60, 98, 146], iE-DAP (γ-D-glutamyl-meso-

diaminopimelic acid) which is formed from PGN [64, 84, 88] and Listeria which can 

produce Listerolysin O [56]. NOD1 has a role in pro-IL-1  processing through the 

interaction with procaspase-1 [146] and activation of p38 MAPK [59]. NOD1 interacts 

with several procaspases containing long prodomains such as caspase-1, caspase-2, 

caspase-4, caspase-8, and caspase-9 [151]. The active form of procaspase-4 [151], caspase-

4 (ICH-2), can cleave pro-IL-1  slower than caspase-1. Caspase-4 can also convert pro-IL-

18 (24 kDa) into IL-18 (18 kDa) [152]. In addition, NOD1 achieves its interaction with 

RIP2 and procaspase-1 by its CARD domain [146]. 

TLRs (Toll like receptors) that are separated into two subgroups with respect to 

their localization are important in NF- B production. TLR1, TLR2, TLR4, TLR5 and 

TLR6 are the extracellular TLRs due to existing at the cell surface while TLR7, TLR8 and 

TLR9 are the intracellular TLRs [124]. TLR4 is triggered by LPS with MD2 (myeloid 

differentiation protein) [124, 153] and MSU [89]. On the other hand, Listeria can be 

detected by TLR2 with lipoteichoic acid, which is secreted by Listeria [56]. TLR2 also 

detects Pam3CSK4 [25, 154-155], MSU [89] and PGN [156]. CpG dinucleotides [25, 70, 

154] and hemozoin [64] are sensored by TLR9. Additionally, TLR7 can detect 
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imidazolequinoline compounds (R837, R848) [25, 124, 154]. TLR3 sensors dsRNA [70, 

124, 153] and poly(I:C) [88].  

There are two different adaptor proteins for TLRs which are MyD88, which has an 

indirect relation with PI3K, and TRIF [124]. Flagellin is sensored by TLR5 which needs 

MyD88 and Mal adaptor proteins for NF- B and p38 MAPK production. Additionally, 

TLR5 triggers the IRF5 protein, that mediates pro-IL-1  production [124]. TRIF can take 

place in the production of IRF3 and NF- B after being stimulated with TLR4 or TLR3. It 

also forms a multiprotein complex with TRADD. Unlike the other TLRs, TLR4 needs both 

MyD88 and TRIF dependent pathways for cytokine production [38, 44, 64, 124]. On the 

other hand, TLR7, TLR9 and TLR2 need MyD88 as adaptor protein [64, 124]. TLR2 and 

TLR4 also use Mal in addition to MyD88 in order to trigger NF- B production [127, 157].  

TNFRSF1A (Tumor necrosis factor receptor superfamily member 1A) interacts with not 

only NF- B but also PARP (Poly [ADP-ribose] polymerase), caspase-10, XIAP, STAT1 

(Signal transducer and activator of transcription 1), TP53, TRADD, TRAF2, RIP2, p38 

MAPK, IL-1 , BID (BH3-interacting domain death agonist) and caspase-8 [32]. 

TNFRSF1A gene encodes the TNFR-1 [158]. 

2.1.2.7. Other important facts for ICE pathway 

Pro-IL-1  can be produced by iPLA2 (Ca independent phospholipase A2) which is 

triggered by K
+ 

efflux [117, 159]. iPLA2 is also responsible for the formation of active 

caspase-1 [74, 117]. Moreover phospholipase C, which results Ca
+2 

efflux, can be triggered 

by K
+ 

efflux. The change in Ca
+2 

efflux will result in the production of cPLA2 (Ca 

dependent phospholipase A2) [67, 74, 160] which can be cleft by caspase-1, caspase-4 as 

well as caspase-8 [161]. Both phospholipase C and cPLA2 are needed for lysosome 

damage [74] which mediate pro-IL-1  production [1]. Caspase-1 also needs 
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phosphorylation on Ser376 by Pak1 (the p21-activated kinase 1), which is activated by 

Rac1 (Ras-related C3 botulinum toxin substrate 1) and PI3K [86].  

Caspase-8 also associates with TRADD for apoptotic pathways [145] and cleaves 

procaspase-4 [162]. Furthermore, caspase-14 can cleave procaspase-1, procaspase-4, 

procaspase-8 as well as procaspase-10 [163]. Caspase-10 and caspase-8 are other caspases 

that can cleave procaspase-1 and procaspase-4 [101, 162]. These two caspases (8 and 10) 

also relate with TRADD activity [101] that can interact with each other [145].  

Inhibitors for the ICE pathway are grouped into two categories. One of them is 

exogenous inhibitors such as YopP, YopE, YopT, YopM, ESX-1, ExoU, Zmp1, mviN, 

ripA, Serp2, CrmA, B13R, M013, gp013L, p35 and NS1. These mainly inhibit caspase-1, 

ASC and NF- B. Other group is endogenous inhibitors such as serpinB9, COP and POP 

[164]. SerpinB9 (Cytoplasmic antiproteinase 3) inhibits caspase-1. In a less amount than 

caspase-1, it can also inhibit caspase-4 as well as caspase-8 [165].  

There is also importance of pathogens in ICE pathway since all pathogens do not 

follow the same path for caspase-1 activation. Each pathogen has its own path and can 

prefer affecting multiple NLRs as given in Table 2.1.  
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Table 2.1 Pathogens and their target NLRs [25, 30, 42, 55-57, 84, 88, 132-133, 154, 166].  

PATHOGEN 
VIRULENCE FACTORS, 

PAMPs 

INFLAMMASOME 

(NLRs) 

Salmonella typhimurium T3SS*, flagellin NLRC4, ASC 

Pseudomonas aeruginosa T3SS*, flagellin NLRC4, ASC 

Pseudomonas aeruginosa ExoU**  

Legionella pneumophila T4SS***, flagellin NLRC4 

Legionella pneumophila T4SS***, flagellin NAIP5 

Shigella flexneri T3SS* NLRC4, ASC 

Mycobacterium marinum ESX-1  NLRP3 

Mycobacterium bovis Zmp1**  

Francisella tularensis FPI (T6SS?)  Unknown 

Francisella tularensis FTT0748**, FTT0584**  

Bacillus anthracis Lethal toxin NLRP1, NOD2 

Streptococcus pneumonia  NOD2 

Mycobacteria  NOD2 

Staphylococcus aureus -Toxin NLRP3 

Listeria monocytogenes Listeriolysin , flagellin NLRC4 

Listeria monocytogenes Listeriolysin  NLRP3 

Listeria monocytogenes Listeriolysin  AIM2 

Listeria monocytogenes Listeriolysin  ASC 

Poxvirus M13L** Unknown 

Streptomyces hygroscopicus Nigericin NLRP3 

Aeromonas hydrophila Aerolysin NLRP3 

Marina dinoflagellates Maitotoxin NLRP3 

Bacillus brevis Gramicidin NLRP3 

Escherichia coli Toxin? NLRP3 

Escherichia coli T3SS* NLRC4 

Sendai virus ? NLRP3 

Influenza virus ? NLRP3 

Burkholderia pseudomallei T3SS* NLRC4 

Francisella tularensis  AIM2 

Anaplasma phagocytophilum  NLRC4, ASC 

Gambierdiscus toxicus Maitotoxin => K
+
 efflux NLRP3 

Streptomyces hygroscopicus Nigericin => K+ efflux NLRP3 

Neisseria gonorrhoe  NLRP3 

Candida albicans  NLRP3 

Plasmodium spp Hemozoin NLRP3 

* Type III secretion system that is a protein appendage in gram negative bacteria. **Virus 

factors that deactivate inflammasome. *** Type IV secretion system that is transporter of 

gram negative bacteria. ****  Activators of inflammasomes.  
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2.1.2.8. Roles of caspase-1  

Caspase-1 cleaves pro-IL-1 , pro-IL-18 and pro-IL-33 in order to activate forms 

which are IL-1 , IL-18 and IL-33, respectively [1]. As a consequence, ICE takes a part of 

pyroptosis activities in the cell [126]. ATP suppresses activation of IL-1  in mouse 

microglial cells using a Rho-dependent pathway, which is using prokaryotic protein in 

termination of transcription [68]. IL-1 , which also triggers the NF- B production [167], 

can inhibit SAA (Serum amyloid A protein) [168].  

ICE has also a role in the production of SREBPs (Sterol Regulatory Element 

Binding Proteins) [25, 36]. Secretion of pro-IL-1  also needs caspase-1 activity [169]. In 

addition, pro-IL-1F7 can be cleft by ICE [1, 170]. It can also be cleft by caspase-4 but in a 

less efficient way [170].  

BID (B cell lymphoma-2-interacting domain) protein, which is a pro-apoptotic 

BH3-only protein and connects the extrinsic and core intrinsic apoptotic pathways, can be 

cleft by caspase-1 [171], caspase-8 [172-173] and caspase-10 [174].  

Mal [157], ataxin-3 (ATXN-3), atrophin-1 (ATN1) [175] and E3 ubiquitin-protein 

ligase NEDD4 [176] can also be activated by ICE cleavage. ATN1 can also be activated by 

caspase-8 [175]. Calpastatin was found to be cleft from three different sites (Asp137, 

Asp203 and Asp404) by ICE [177]. Furthermore, poly(ADP-ribose) polymerase (PARP) 

can be cleft by ICE with requiring higher ICE concentrations than pro-IL-1  case. Caspase-

4 can also cleave this enzyme [178]. Thus, caspase-1 can associate with Alzheimer‟s 

disease due to cleaving the PS2 protein [121]. Caspase-1 also cleaves Huntingtin which is 

related with Huntington disease [175]  

FGF-2 (Heparin-binding growth factor 2) needs caspase-1 activity despite not being 

a caspase-1 substrate [169]. Epidermal growth factor receptor (EGFR) is determined to be 

cleft by ICE [179]. EGFR can also interact with Pak1 [180] and Huntingtin as an adaptor 
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protein for EGFR [181]. Androgen receptor (AR) is another protein that can be activated by 

ICE as well as caspase-8 [175]. Moreover, AR has an interaction with EGFR [182]. 

Cell division protein kinase 11A (CDK11A, CDC2L2, CDC2L3, PITSLREB) and 

cell division protein kinase 11B (CDK11B, CDC2L1, CDK11, PITSLREA, PK58) are cleft 

by caspase-1 and caspase-8 [183-184]. Pak1 can be inhibited with these PITSLRE kinases 

[185]. Caspase-1 and caspase-8 can also be related with sporadic Parkinson‟s disease since 

they can cleave parkin [186]. These two caspases can also activate microtubule-associated 

protein tau (MAPT, MAPTL, MTBT1, TAU) [187]. PS1 regulates phosphorylation of the 

MAPT and mutations related to Alzheimer‟s disease in PS1 are responsible for amyloid-  

in mice [188]. MAPT and parkin also interacts with each other [189]. 

B-cell receptor-associated protein 31 (BCAP31, BAP31, DXS1357E) has two 

caspase recognition sites. Caspase-1 and caspase-8 can achieve BCAP31 cleavage. In 

procaspase-8 production, BCAP31 can take place with Bcl-2 or Bcl-xL as a member in a 

complex of the endoplasmic reticulum [190-191]. 

Actin, aldolase, TIM (triosephosphate-isomerase), GAPDH (glyceraldehyde-3-

phosphate dehydrogenase), -enolase and pyruvate kinase can be cleft by ICE which 

indicates the role of caspase-1 in multiple cellular pathways such as glycosis [192]. Sptan-

1, TFAP2A (Transcription factor AP-2-alpha) and PPAR-  (Peroxisome proliferator-

activated receptor gamma) are other known substrates for caspase-1 [193]. Sptan-1 also 

interacts with actin [32, 194]. Caspase-1 can also be an important stimulator of TP53 

dependent apoptosis [32, 195]. Furthermore, TP53 can induce NLRC4 transcription, which 

can have an effect on TP53 dependent apoptosis [32, 196]. TP53 also interacts with Stat-1 

(signal transducer and activator of transcription 1) for DNA damage-induced apoptosis 

[197]. Stat-1 can be activated by IL-1  [32, 198] and has a relation with IL-18 [199]. 
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2.1.3. Diseases related to caspase-1  

Several autoimmune disorders, ischemia, and various cancers result from an 

increased amount of IL-1 production in which IL-1  is produced by ICE [200]. 

Furthermore, the pathogenesis of a number of peripheral inflammatory disorders is related 

to increased IL-1  production such as inflammatory bowel disease. Caspase-1 inhibitors 

can be a solution for brain damage in stroke, myocardiac ischemia, traumatic brain injury, 

sepsis, Crohn‟s disease, intestinal inflammation, MS (multiple sclerosis) and fulminant 

liver disease since IL-1  production will also be inhibited by ICE inhibition [12-13, 201-

203]. Acute life-threatening conditions such as autoimmuno-aggressive disease (for 

instance, rheumatoid arthritis) are related to caspase-1 and ICE has a role in 

proinflammatory systems during experimentally induced pancreatitis. Alzheimer‟s disease 

and Parkinson‟s disease also related with ICE. Additionally, overexpression of caspase-1 is 

found to have an effect on Huntington‟s disease with a rise in the length of disease 

progression [13, 204]. ICE can also participate in inflammation resulting from cowpox 

virus and in cell death induced by deprivation of nerve growth factor [205]. Furthermore, 

infection with Shigella, Entamoeba histolytica or Salmenolla typhimurium depends on 

caspase-1 [203].  

In order to identify the problems related to ICE and IL-1  separately, there have 

been some experimental studies especially on mice. For instance, Talanian et al. (1997) 

found caspase-1 deficient mice were determined to be deficient in IL-1  maturation as well 

as resistant to endotoxic shock [206]. In another study by Fantuzzi et al. (1999), IL-1  or 

IL-18 is not released by ICE-deficient mice. ICE-deficient mice are resistant to lethal 

endotoxemia whereas IL-1 -deficient mice are not, since ICE-deficient mice cannot also 

produce IL-18. Furthermore, ICE-deficient mice are not protected against urate-induced 

inflammation and there is a reduction of circulating IFN-  level [18]. Sifringer et al. (2007) 
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found there was a certain role of ICE in the onset of trauma-triggered apoptosis due to 

increased expression of ICE by experimental work on mice. There were also previous 

studies related to brain injury and caspase-1. ICE-deficient mice were observed to be 

resistant to hypoxia–ischemia, which occurs before brain injury. By inhibiting ICE, 

caspase-1 dependent interleukins (IL-1  and IL-18) can also be controlled which can cure 

brain problems [207]. Fink et al. (1999) also determined caspase-1 inhibition reduces post-

traumatic brain injury [208]. Tringali et al. (1999) found that depolarization and a NO-

donor stimulates IL-1  production in which caspase-1 has a role in rat hypothalamus. The 

cell permeable form of caspase-1 inhibitor was used by Tringali et al. (1999) and was not 

found effective on basal release while it was effective on induced mechanism by K
+
 and 

sodium nitroprusside [209]. Overexpression of ICE in the skin of mice was determined to 

be effective on atopic dermatitis-like lesions and excessive scratching. [210]. Hasegawa et 

al. (2009) stated that when the brain is injured, overexpression of IL-1  happens which 

leads to harmful situations for the tissue [211].  

2.2 Drugs  

2.2.1. Desired features of drugs 

There are many rules to determine a compound for its drug-likeliness. In order to 

define the suitable drug for a system, there are numerous rules that have been determined 

by scientists. Each group of a rule actually defines a filter property. The filters are mainly 

classified into filters for high drug-likeliness, filters for orally bioavailable drugs and filters 

for blood brain barrier permeable drugs. There are also other types of filters for different 

purposes.  

Ghose et al. (1999) analyzed the CMC (Comprehensive Medicinal Chemistry) 

database and found that a drug-like molecule should satisfy the following criteria: (1) an 

organic compound having a calculated log P (LOGP_ a method for measuring of 
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hydrophobicity) between -0.4 and 5.6, a molar refractivity (AMR) between 40 and 130, a 

molecular weight between 160 and 480, and the total number of atoms between 20 and 70, 

(2) containing some of the following groups: a benzene ring, a heterocyclic ring (both 

aliphatic and aromatic), an aliphatic amine (preferably tertiary), a carboxamide group, an 

alcoholic hydroxyl group, a carboxy ester, and a keto group, (3) being stable in the 

physiological buffer without a reactive functional group or structural part [212]. 

Mozziconacci et al. stated that drug likeliness constraints are having less than six rings and 

seven halogens as well as having more than one oxygen and one nitrogen [213]. There are 

other filters for analyzing high drug-likeliness. For instance, Lee et al. (2001) looked at the 

mean molecular weight and logP which were 356 and 2.1, respectively. Moreover, Oprea 

[0<Hydrogen bond donor (HDO) <2, 2< Hydrogen bond acceptor (HAC) <9 and 2<Rigid 

Bond (RB) <8] and Walters & Murcko [MW=200-500, HDO=0-5, HAC=0-10, RB=0-8, 

Number of heavy atoms=20-70, Charge=-2 to 2+] filters can also be used for analyzing 

whether a compound satisfies high drug-likeliness criteria [214-216].  

Filters for orally bio-available drugs are Lipinski, Fichert, Paln, Enhaced Palm and 

Veber. Lipinski et al. (2001) determined the „rule of 5‟ that claims poor adsorption and 

permeation of a drug happens if there are more than 5 H-bond donors  (that is the sum of 

OHs and NHs) and 10 H-bond acceptors (that is the sum of Ns and Os). Moreover, the 

molecular weight of the vaccine should not exceed 500 and LogP should be not over 5 

(MLogP_Moriguchi LogP_ is over 4.15). This rule is not valid for the compound classes 

that are substrates for biological transporters. Fichert et al. (2003) used the constraints of 

molecular weight and logD (an apparent partition coefficient for any pH value) which 

should be less than 500 and between 0 and 3, respectively. Palm filter only considers the 

polar surface area (PSA) and drugs with PSA>139 Ǻ
2
 are only 10% absorbed whereas 

drugs with 63 Ǻ
2
 are completely absorbed. Veber et al. (2002) also determined the same 

value of (140) PSA and RB of 12 maximum for a drug [217-220]. 
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Murcko et al. (1999) found that MW=200-450, logP=0-5.2, HAC= max.4, 

HDO=max.3 and RB=max.7 for blood brain permeable drugs. Van de Waterbeemd et al. 

(1998) determined molecular weight and PSA should be less than 450 and 90 Ǻ
2 

[221-222].  

2.2.2. Peptide drug properties 

Usage of peptides in vaccine development is attracting more and more attention 

because of their relatively specific mode of action which reduces the risk created by other 

small molecular drugs or larger charged molecules by using low doses. There are many 

benefits of peptide based drugs such as having no infectious material. Furthermore, these 

vaccines can be analyzed easily due to well established methods. They are also 

economically available and their storage, transport as well as distribution do not need a 

cold-chain facility due to their freeze-dried preparation. In addition, there is no risk of 

genetic integration or recombination. The peptide usage in vaccine search will lead to more 

flexible and simple ways to fight diseases. In addition, there are many companies that 

support clinical trials related to peptide based vaccines. For instance, multi-epitope 

(antigenic determinant) usage on the treatment of hepatitis C viral infections was found to 

be both succeeding and proceeding in addition to many reported peptide drugs for cancer 

cure [223-224]. Molecular features determined experimentally and theoretically such as 

hydrogen bonding potential and molecular size are commonly used for finding how 

suitable a peptide or a conventional drug is in terms of membrane permeability. Especially, 

hydrogen bonding capacity is a valid parameter for membrane permeability of peptides 

[225].  

Unal et al. (2009) studied structure-function relations of peptides due to their usage 

in blocking the activities of proteins which are responsible for some diseases. They stated 

that there is a need for the right type of sequence search in peptide design [226]. Vives et 

al. (2008) also stated that there were peptides evidenced to target specific tissues or cell 
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types. For example, TSPLNIHNGQKL targeted the tissue of the human head and neck 

solid tumours and LTVSPWY worked on breast carcinoma. In addition, there were 

tripeptides such as RGD and NGR that had tissue targets of integrin receptors and tumour 

neovasculatures, respectively. These peptides were also called cell-targeting peptides. 

Moreover, there are also cell-penetrating peptides which are efficient in delivering many 

molecules. As an example, one is known as Antennapedia peptide and marketed as 

Penetratin. However, there is some debate about the entry mechanism of the cell-

penetrating cell (CPP). There are also some problems and limitations of CPPs for drug 

delivery in vivo [227]. There are many peptide based drugs on the market and clinical trials 

are being conducted for many diseases. Some of these peptide based drugs are given in 

Table 2.2 with their names and the range of aminoacid numbers that they contain.  

Table 2.2 The peptide based drugs in market and clinical trials [228] 

Disease Peptide based drug 
Range of aminoacid 

number 

Diabetes 
GLP-1, Exenatide, Liraglutide, ZP10, 

Pramlinitide, PYY, Glucagon 
29-39 

Gastrointestinal Teduglutide, Delmitide 10-33 

Oncology 
Bortezomib, Cilengitide, Leuprorelin, 

Histelin, Goserelin, Stimuvax, GV1001 
2-25 

Cardiovascular 
Nesiritide, Eptifibatide, Bivalirudin, 

Icatibant, Rotigaptide 
6-32 

Immunotherapy Cyclosporin, MPB8298 11-17 

Acromegaly Octreotide, Lanreotide 8 

Enuresis Desmopressin, Lypressin, Terlipressin 6-9 

Antiviral Enfuvirtide, Thymalfasin 28-36 

Antibacterial 
Daptamycin, Bacitracin, Gramidicin, 

Colistin, Pexiganan, Omiganan 
10-22 

Antifungal 
Caspofungin, Micafungin, 

Anidulafungin, Histatin, Lactoferrin 
6-12 

Central Nervous System Conotoxin, Nemifitide 5-25 

There are other examples for peptide based drugs in addition in Table 2.2. For 

example, Dao et al. (2008) studied peptide drugs for myeloid leukaemias in clinical trials. 
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They determined that these early clinical results were encouraging for future research 

because peptide based vaccines induce immune responses that are connected to a clinical 

advantage [229]. In cancer treatments, usage of peptides immunotherapeutic cancer drugs 

is important but there is a certain need for research related to interactions between peptide 

and major histocompatibility complex (MHC). Since high-affinity peptides which are 

poorly immunogenic, low-affinity peptides can be an alternative way for peptide based 

cancer vaccines which will create alternative approaches [230]. There are also many 

peptide drugs related to the neuroprotection such as Gonadotropin releasing hormone 

(GnRH, LH-RH), insulin and vasopressin which are also used clinically. Moreover, such 

peptide based drugs are useful in terms of doing the same work as large protein factors. As 

a result, the delivery to the brain will be easier than using larger molecules [231]. Beck et 

al. (2007) studied peptides in three different cases by using clinical techniques. In one of 

the cases, the Respiratory Syntycial Virus (RSV) subunit vaccine studied was Peptide G20 

that had 69 amino acid residues and was found to induce pulmonary pathology in mice. 

Moreover, it was successfully synthesized in a practical manner. In addition, clinical trials 

have shown promising developments in the peptide-based melanoma vaccines and 

therapeutic monoclonal antibodies [232]. Iwai et al. (2006) studied lipopolysaccharide-

induced IL-1  production in cultured rat astrocytes and found that glucagon-like peptide-1 

was useful in terms of deactivating IL-1  production [233].  

Using L or D-forms of aminoacid can also affect the physiological properties 

considerably. For instance, Shaji et al. (2009) stated that natural vasopressin, that contains 

L-arginine, is active in the water that is injected into a rat in high doses while 

desmopressin, that contains D-arginine, is twice as active at the 75
th

 fraction of the dose 

used in vasopressin [234].  
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2.2.3. Drugs for caspase-1 in literature 

There have been a numerous studies for peptide inhibitor designs for ICE just like 

for other proteins. The initial potent inhibitors of ICE were C-terminal peptide based on the 

pro-IL-1  cleavage site [23]. According to the substrates, the significant aminoacids for 

each position of the binding site were also determined by Shen et al. (2010). The position 

schematic on binding site is given in Figure 2.8 [193]. 

 

Figure 2.8 Caspase cleavage site nomenclature [193].  

Romanowski studied the conformational changes of ligand-free and ligand-bound 

structures of caspase-1 by using both Asp based inhibitor and malonate. They also focused 

on the effect of mutation of Cys285 to Ala. Additionally, sodium malonate was determined 

to be sufficient like aspartic acid in terms of inhibiting caspase-1 [22]. However; O‟Brien et 

al. (2004) stated that a typical caspase inhibitor should be a small tetrapeptide-based 

inhibitor which is composed of three structural parts. These parts are the warhead, the P1 

aspartic acid and the P2-P4 peptidomimetic just like the caspase-3 inhibitor given in Figure 

2.9. The warhead contains an electrophile that has a reaction to the nucleophilic cysteine 

residue of the active site. It can be irreversible or reversible from which reversible ones are 

mostly selected because they do not bind to the non-target proteins for caspase-1. In the P1 

position, caspases have a strong preference for Aspartic acid residue and non-peptide 

substitutions for P2-P4 regions are suitable for developing the pharmacokinetic features of 
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molecules. Despite having some conflicts related which apoptotic caspase should be 

targeted, the inhibition of caspase-1 will be sufficient as an anti-inflammatory effect [13].  

 

Figure 2.9 Caspase-3 and its tetrapeptide inhibitor (Ac-DVAD-FMK) [13]. 

In addition, there are other studies that conducted that tetrapeptide inhibitors were 

useful. Tetrapeptidic inhibitors for caspase-1 was found to be successful in terms of 

blocking maturation, release of IL-1  in cultured cells and animals as well as inflammation 

in animal models such as  Ac-YEVD-pNA. This tetrapeptide was found better than Ac-

YVAD-pNA due to its high value of kinetic constants [206]. Ac-DEVD-CHO and Ac-

YVAD-CHO were other inhibitors for caspase-1 with Ki of 17 nM and 0.76 nM, 

respectively [9]. Rano et al. (1997) found that the optimal tetrapeptide recognition 

sequence for caspase-1 was WEHD. However, many studies showed that YVAD is the best 

tetrapeptide but Rano et al. (1997) found Ac-WEHD-CHO had Ki of 56 pM. Despite 

having an obvious difference between the sequences of human pro-IL-1  (YVHD), pro-IL-

1  was thought to have additional endogenous substrates [235].  

On the other hand, there are studies related to using less than four residues in a drug 

due to penetration problems and being nonspecific (tetrapetides can bind onto other 

caspases.) L-709049 (Ac-YVAD-H) was used as a model for improving the A-NapCO-

VPD-CH2OPh compound because it was found to be a potent caspase-1 inhibitor. L-
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709049 forms a covalent bond with Cys285 of caspase-1 and makes three hydrogen bonds. 

They found 27c as a potent inhibitor. Thus, 27c is the most hydrophilic drug with high 

potency and cell permeability whose interaction with caspase-1 is given in Figure 2.10. 

Additionally, this compound was found successful in vivo studies in mice [205]. 

Karanewsky et al. (1998) studied the caspase inhibitors by considering the four residues 

inhibitors and their modifications. Firstly, they kept the P1 position as Asp residue due to 

the specific need of ICE and they found that bicyclic structures were high potent inhibitors 

for ICE [236]. 

 

Figure 2.10 The interaction between 27c and ICE [205]. 

The tripeptide irreversible inhibitor Ac-VAD-CH2O-DCB and a reversible inhibitor 

Ac-YVAD-CHO reduce the IL-1  level in mice for rheumatoid arthritis. The treatment for 

rheumatoid arthritis can be very long owing to the long-term dosing need but the toxicity 

can be minimized by using a small molecule inhibitor. z-VAD-FMK was also determined 

to inhibit the activity of caspase-1 which had an effect on the apoptotic pathway. This 

peptide drug also affected the decrease in tissue death following spinal cord injury because 

caspase-1 stimulates the expression of IL-1  and IL-18 [13]. Hayashi et al. (2001) found 
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that the broad caspase family inhibitor (z-VAD-FMK) was good for inhibition of IL-1  

[237]. 

 

Figure 2.11 The structures in study of Wagner et al. (2006) [23]. 

Wagner et al. (2006) determined that L-709049 whose structure is given in Figure 

2.11 inhibited caspase-1 with a Ki of 0.76 nM and found responsible for low levels of IL-

1  but had poor penetration into cells on account of weak cellular activity. N-Ac-Tyr 

fragment of L-709049 was replaced with a benzyloxycarbonyl group and called WIN 

67694. This tripeptide resulted in a decrease in IL-1  levels in the in vivo mouse model. It 

was an irreversible peptide inhibitor that can covalently bond with Cys285. The 4-69 and 4-

70 tripeptides were determined to have weaker activity. Thus, researchers found that there 
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is hydrogen bonding between inhibitor and peptide existed along peptide backbone of 

inhibitor [23].  

Linton et al. (2002) showed that the Ac-DEVD-H inhibitor can be shortened to a 

potent inhibitor of dipeptide for caspases such as ICE [238]. Nedev et al. (2005) also 

focused on dipeptides instead of tetrapeptides since the known commercial tetrapeptides is 

not good in terms of penetration. Additionally, using tetrapeptides is not suitable for 

therapeutic usage. Moreover, they decided to use phenylglycine which is not a natural 

aminoacid due to potent caspase inhibition. For ICE, the benzyloxycarbonyl-phenylglycl-

aspartyl benzoyloxymethyl ketone (Z-Phg-Asp-CH2OCO-Ph) was found as a potent 

inhibitor [239]. z-Asp-CH2OC(O)-2,6-Cl2Ph contains only a single amino acid residue that 

was determined to be sufficient for caspase-1 inhibition [240]. 

In some cases, there is a need for addition of peptides to drugs. Schlosser et al. 

(2001) used Ac-AAVALLPAVLLALLAP-YVAD.CHO for caspases-1 inhibition in 

pancreatic carcinoma cells. It works in terms of inducing cell death in carcinoma cells and 

also modulates the production levels of bcl-2 family proteins.  The C-terminal YVAD.CHO 

is for specific inhibition of caspases-1. The other peptides (residues 1 to 16) are for cell 

permeability without cytotoxic effects which corresponds to hydrophobic region of signal 

peptide of the Kaposi fibroblast [241]. 

Fahr et al. (2006) studied tethering for identification of caspase potent inhibitors. 

Their initial structure contained tricyclic fragment attached to a methylene scaffold bearing 

an Asp residue. By using tethering, they studied small fragments that specifically bind in 

the S4 region of caspase-1. Firstly, they considered a hydrophobic P2 substitute and then 

focused on P4. Finally, they found the structure 11 (Figure 2.12) as a potent inhibitor due to 

its crystal structure with caspase-1 and being energetically preferable [242].  
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Figure 2.12 Crystal structure of compound 11  

(PDB ID code: 1RWW). Yellow dashed lines represent hydrogen bonds [242]. 

Many laboratories have also developed non-peptide based caspase-1 inhibitors to 

overcome the difficulties related to cellular activity and oral bioavailability [23]. There 

have been many different nonpeptide fragment based drugs studied for ICE inhibition for 

instance, nitric oxide and serine proteinase inhibitor as intracellular inhibitors inhibit 

caspase-1 [203]. Fiorucci et al. (2001) also claimed that NO-NSAIDs (Nitric-oxide 

releasing nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are caspase inhibitors. These 

drugs are formed by adding a nitroxybutyl moiety to a conventional NSAID and inhibit 

inflammation by cyclo-oxygenase (COX)-dependent and –independent effects. [243]. 

Shahripour et al. (2001) studied ICE inhibitor containing a diphenyl ether sulfonamide and 

held an X-ray crystal structure of a representative member bound to caspase-1. They aimed 

to increase favorable prime side hydrophobic interactions by using their initial model from 

their previous study [201]. Shahripour et al. (2002) also studied small nonpeptide inhibitors 

for ICE by modifying the known potent inhibitor Ac-YVAD-CO-(CH2)5-Ph (19 nM) with 

getting the Ki to better values. In the end, they determined structure 12 whose structure is 

illustrated at Figure 2.13 was the best among all trials with a Ki value of 1.6 M [244]. 
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Figure 2.13 Structure 12 [244]. 

Ross et al. (2007) found that VRT-018858 (Pralnacasan) was successful for the 

inhibition of caspase-1 and Ku et al. (2001) determined the Ki of this nonpeptide vaccine as 

1.3 nM. It was defined as neuroprotective in rats [245-246].  

The certain weak electrophiles were found to be capable of deactivating cysteine 

proteases and these inhibitors were also applied on caspase-1. The alternative leaving 

groups were developed for the inhibition of ICE. In addition, ketone inhibitors were found 

to be time-dependent inhibitors of cysteine proteases. His237 and Cys285 were found to be 

important due to taking part in the catalytic reaction and covalent bond [247]. Peptide 

(Acyloxy) methyl ketones using an appropriate peptide sequence (Ac-YVAD-CH2-

OC(O)Ar) were also found to be potent, competitive and irreversible inhibitors for ICE by 

Thornberry et al. (1994). By using Cys285 as active site, this compound was selective for 

ICE [248]. In addition, Brady et al. (1999) evaluated 619 aspartic ketones with different 

types of prime-side groups as inhibitors of caspase-1 [249].  

There are also natural inhibitors of caspase-1. For example, cowpox serpin CrmA 

which is a serpin as an antiapoptotic is a potent inhibitor with Ki lower than 20 nM and 

selective inhibitor for caspase-1 but it can affect the other Group I caspases (caspase-4 and 

caspase-5) [10, 250]. Baculoviral protein p35 also inhibits caspase-1 and serpin PI-9 was 

found successful in caspase-1-mediated cell death in vitro and in smooth muscle cells 

[251]. 
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2.3 Docking  

The binding sites show a selective recognition of ligands as found by many 

experiment techniques like X-ray crystallography. When these active sites are known, the 

explanation of binding mode and the determination of suitable ligands are useful using 

computational methods. There are some problems about usage of computational methods 

because the methods find different answers to real situations. A powerful search technique 

and a good understanding the process of binding are needed for the solution of docking 

problem [252].  

Docking methods are the most commonly used tools for predicting of binding 

modes of compounds on the target proteins. Consequently, many drugs designed by using 

docking tools in addition to experimental work are found to be suitable for many diseases. 

That is why drug companies rely on computational works for designing new potential drugs 

[253]. Prediction of the structure of the intermolecular complex formed between ligand and 

protein can be done by molecular docking. From rigid complex to full flexibility of ligand, 

lots of docking strategies have been attempted. Additionally, accepting some parts of the 

receptor as flexible is also considered since both binding site and binding orientation can be 

affected [254]. Carlson et al. (2002) stated that designed drugs onto proteins should not be 

taken as rigid. The historic lock-and-key and induced-fit models are not valid anymore due 

to theory that states ligands can bind to a protein in any conformation. That is why an 

ensemble of conformational states happens. Anfinsen proposed “thermodynamic 

hypothesis”, which states proteins fold to a conformation in which the free energy of the 

molecule is minimized. This hypothesis is a basis for most of the methods for protein 

structure prediction [255]. Since three dimensional structure is the basic factor that 

determines the protein function. Ligand binding is a basic component of the protein 

function. Binding is the recognition of proteins to their ligands for transport, signal 

transduction or catalysis. In light of this, drug discovery is done considering the binding of 
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a ligand on protein. The determination of a functional site location from the literature or 

other methods is also crucial for computational analysis of binding [256]. Docking predicts 

the structure of complex between inhibitor and enzyme under equilibrium conditions as 

seen in Figure 2.14 [257].  

 

Figure 2.14 The binding of inhibitor Dmp323 to HIV protease  

(PDB ID=1BVE) [257]. 

The free energy of binding (ΔG) is depended on binding affinity as follows: 

AG RTlnK  (1) 

1 [ ]

[ ][ ]
A i

EI
K K

E I
 (2) 

Conformation does not affect KA whereas biological activity depends on 

conformation. Steric, electrostatic, hydrogen bonding, inhibitor strain and enzyme strain 

are crucial for [EI][257].  

There are numerous methods for docking the ligands on macromolecules such as 

molecular dynamics, Monte Carlo methods, genetic algorithms and fragment-based 

methods [258]. Docking methods are composed of two components which are a search 
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strategy and a scoring function. The features of estimated search space for a ligand with 

four rotatable bonds and six rigid-body alignment parameters will need 2,000,000 years of 

computational time with a rate of 10 configurations per second since the active site will be 

10
3
 Å

3
 with 6 x 10

14
 configurations. In order to overcome this difficulty; constraints, 

restraints and approximations are used for making the problem more practical to handle.  

Systematic search: The combinatorial explosion problem is seen in this algorithm. 

DOCK, FLOG, Hammerhead are some of the example programmes in this class. All 

docking programmes use different stepwise search algorithm for making the ligand 

incrementally grown in the active site [257].  

Random search: The random formation from using a single ligand or a population 

of ligands is done. Genetic algorithms (GA) and Monte Carlo algorithms are the most 

known methods which are applied in AutoDock, DOCK and GOLD. AutoDock 3.0, 

DIVALI and DARWIN are other programs that use GA. However, AutoDock 3.0 and 

DIVALI consider the AMBER force field whereas DARWIN uses the CHARMM-AA 

molecular mechanics force field. Tabu search algorithm is also an example which uses the 

differences of RMSD between new and old molecules such as in the case of PRO_LEADS. 

EUDOC and SYSDOC are other computer tools for systematic search [257-258].  

Simulation Methods: Molecular dynamics and Monte Carlo are examples that 

consider energy minimization in a system. DOCK and AutoDock include such methods 

[257]. Molecular dynamics (MD) simulations can be performed with AMBER or 

CHARMM by Newton‟s equations of motions. The quality of the results from a standard 

MD depends on starting configuration and that is why MD can find local minimum. Monte 

Carlo (MC) simulations contain the combination of atomistic potential energy and 

stochastic optimization methods. A major benefit of MC compared to MD as gradient 

based techniques is using a single energy function. Energy barriers can be passed with 

choice of moves. For instance, Metropolis MC chooses random Cartesian moves based on 
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Boltzmann probability. In initial versions of AutoDock, Metropolis MC simulated 

annealing was used with AMBER force field. Prodock also uses MC for binding the 

flexible ligands to a flexible binding site but performs each move after that it rejects the 

structure. Glide and DockVision also perform MC based docking [258].  

The fragment-based methods divide the ligand into separate portions initially. After 

that, the divided ligands were docked and then modified at the portions with linking of 

fragments. Due to taking decisions about which functional group of ligand is vital, a base 

fragment choice is crucial. de novo  design techniques are used. As examples of de novo 

techniques, most known tools are FlexX, ADAM, Hammerhead, BUILDER, CONCEPTS, 

CONCERTS, DLD/MCSS, Genstar, Group-Build, Grow, HOOK, DOCK, Legend, LUDI, 

MCDNLG, SMOG and SPROUT [258]. Docking ligands on receptor can also be done by 

considering points of complementary between protein and ligand. FTDOCK, LIGIN and 

SANDOCK are the examples for programs that use complementary similarity. This 

similarity is surface and shape-chemical complementary for LIGIN and SANDOCK, 

respectively. On the other hand, FTDOCK uses electrostatic interactions [258].  

As a second problem, scoring functions are considered. These functions should 

distinguish the experimental binding modes from all other modes with the minimum 

computational time and highest accuracy. Force fields like AMBER, OPLS, CHARM; 

empirical free energy scoring functions and knowledge based functions are some of the 

scoring techniques [258]. Force-field based scoring is applied that is considering all of the 

energy contributions (van der Waals, electrostatic) on the system. However, there are some 

limitations in force-field scores. Such type of scoring does not include solvation and 

entropic terms. Besides, it needs a cut-off distance definition for defining forces. Empirical 

scoring functions use experimental data of binding energies and/or conformations. The 

information is taken from X-ray structural data. Knowledge based scoring functions 

consider getting the experimental structures rather than binding energies. Additionally, 
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consensus scoring is also be used that combines different scores. However, it has limited 

usage on account of calculation errors that result from correlation of different scoring 

functions [257].  

There are more than 60 docking programmes and 30 scoring functions but only 

some of them are used commonly such as AutoDock. Each docking programme is based on 

a method for exploring the conformational space of the ligand and/or protein and a scoring 

function [253]. Taylor et al. (2002) claimed that using one docking programme is not 

enough. Different methods should be used in order to investigate the binding mode of 

ligand. However, fast and accurate docking of ligands is still a concern [258]. Dastmalchi 

et al. (2005) stated that GOLD and AutoDock were the best among all possible docking 

programmes due to having best algorithms for ligand and protein flexible docking [259-

260]. Tiwari et al. (2009) stated that AutoDock results were accordance with experimental 

data of closo- and nido-carboranyl antifolates [261].  

2.3.1. AutoDock 

AutoDock applies a grid-based technique for evaluating the binding modes of trial 

conformations. Lamarckian genetic algorithm is the primary method for docking in which a 

population of trial conformations is created and then biological evolution methods such as 

mutation, crossover are used in order to get candidates with lowest binding energy. 

Lamarckian allows passing the local minima information to the next populations. In 

addition to Lamarckian, simulated annealing search (for global minima) and a traditional 

genetic algorithm search methods also exist in AutoDock. Semiempirical free energy force 

field is used in AutoDock. Incorporation of intramolecular energies into the predicted free 

energy of binding is applied on force field. The AutoDock incorporates explicit 

conformational modeling of specified sidechains which is valuable in the analysis of 

covalent docking. However, adding flexibility can result in some problems not only in 
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AutoDock but also in the other programmes such as large conformational space and 

intensive evaluation of the receptor energy.  

AutoDock Tools satisfy the need of graphical user interface. Moreover, it formats 

the input files with defining the charges, the rotatable bonds, active site and volume of 

space searched in docking simulation. AutoDock Tools is implemented in an object-

oriented programming language Python. Python Molecular Viewer (PMV) is needed for 

this program. AutoDock Tools contains Viewer Framework (for visualization), Deja vu ( 

three dimensional viewing visualization) and MolKit (for representation of molecules) 

[262].  

Autodock 4.0 calculates free binding energy with respect to this formula: 

binding vdW elec hbond desolv torsG   G  G   G  G   G  (3) 

where  

ΔGvdW= 12-6 Lennard-Jones potential 

ΔGelec= Coulombic with Solmajer-dielectric, where Coulombic term ( ) is modified with a 

distance dependent approach, (r). r shows the distance [263]. 

ΔGhbond= 12-10 Potential with Goodford Directionality, which considers length, orientation 

and chemical nature of hydrogen bond. Goodford et al. (1989) used experimental results to 

formulate hydrogen bond interactions [264]. 

ΔGdesolv=Stouten Pairwise Atomic Solvation Parameters which are determined by solvated 

system of BPTI in water comparing with its crystal structure. Individual atomic 

contributions were assumed to be used for solvation of a protein. Thus, volumes occupied 

by atoms in a solvated system were considered [265]. 

ΔGtors=Number of rotatable bonds [262] 

AutoDock converts the binding energy into Ki. As a result; 
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iG RTlnK  (4)[266] 

There are two steps for force field evaluation. Firstly, the intramolecular energy of 

change from unbound states of ligand and protein to bound one is considered. After that, 

intramolecular energy of combination of ligand and protein is evaluated [267]. 

Cincilla et al. (1999) used AutoDock 4.0 with run number of 150, maximum 

number of energy evaluation of 2500000 and maximum number of energy generation with 

27000. They also modified AutoDock 3.0 and found that both AutoDock 4.0 and modified 

3.0 showed a similar approach [268]. Ziemys et al. (2004) used AutoDock with 0.375 Ǻ 

spacing for energy grid maps of atomic interaction and resulted in 47.25 Ǻ cubic box 

dimension that covered all protein. LGA was used as docking algorithm with setting the 

number of individuals in the population, maximum number of energy evaluation, the 

maximum number as 50, 500000, 27000 [260]. Unal et al. (2010) studied peptide design on 

HIV-1 protease, scytalidocarboxyl peptidase B, SPG-40, PDF and ConA by AutoDock. In 

AutoDock, ADT was used for addition of Gasteiger charges and polar hydrogens. Docking 

parameters were kept small (population size=150, number of runs=10, maximum number 

of energy evaluation= 250000, number of generations=27000) for fast computation time 

and the rapid rank of aminoacids/dipeptides was desired since docking part was the 

prolonged part. They used the bound conformation of protein-peptide complex, the binding 

energy and Ki (inhibition constant) value [269-270]. Yoshimori et al. (2004) developed a 

novel aminoacid positional fitness (APF) score in order to do a screening of caspase 

inhibitory peptides by AutoDock 3.0 for caspase-3, -7, -8 and -9. Additionally, Ac-DNLD-

CHO for caspase-3 inhibition was found by computational screening strategy. They used 

XXXD structure for this purpose by defining the optimized number of energy evaluation 

number with considering ΔGbind and Ki values. Firstly, they formed 8000 peptides library. 

After that, the calculation of free energies of peptides was done by randomly selection of 

peptides with AutoDock 3.0 and then APF scores were determined [271].  
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2.3.2. GOLD 

GOLD is an automated ligand docking programme. It applies genetic algorithm for 

analyzing full range of ligand conformational flexibility and partial flexibility of 

macromolecule. GOLD also considers the ligand displacement with loosely bound water 

molecule on docking [252]. GOLD consist of three main parts which are: 

1. Scoring function for ranking the different binding modes: Goldscore function is a 

molecular function with four terms. The protein-ligand hydrogen bond score, the protein-

ligand van der Waals score, the intramolecular hydrogen bonds in the ligand and 

intramolecular strain in the ligand are the four terms and summation of these will give 

GOLD Fitness score. 

2. Mechanism for placing the ligand in the binding site: GOLD adds fitting points to 

hydrogen bonding groups on protein and ligand. Acceptor points on the ligand on donor 

points in the protein are also mapped in addition to vice versa of this case. Hydrophobic 

fitting points are generated in the protein cavity.  

3. A search algorithm: Genetic algorithm is used for determination of binding modes. 

Dihedrals of ligand rotatable bonds, ligand ring geometries, dihedrals of protein OH groups 

and NH3
+
 groups and the mappings of fitting points (position of ligand in docking place) 

are modified variables with starting random choices. The key settings that affect docking in 

GOLD are the number of dockings and the number of GA operators. The required time and 

determination of global optimum are depended on the GA settings [272].  

Hartshorn et al. (2007) stated that GOLD optimizes the protein polar hydrogens 

during docking process as a beneficial feature. However, sometimes the information related 

to the polar hydrogens can be known and it will be more useful to fix the positions of 

hydrogens according the information known. A property of fixing hydrogens is not 

included in GOLD. Moreover, the addition of X-Ray water molecules within 6 Ǻ was done 

and the binding modes were estimated with a good estimation in GOLD. The authors also 
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advised the Goldscore function to be developed since there can be misleaded scores on 

account of hydrogen bonds involving charged groups for example [273].  

Löser et al. (2010) used GOLD for docking of tripeptidyl ligands on ICE with 

default docking settings. Mutations, migration and operator weights for crossover were 

used as 95, 10 and 95, respectively. 30 independent experiments that consist of 100 

structures and up to 100000 operations were applied on ligands. Docking was stopped 

when rmsd=1.5 Ǻ between the top three solutions and a maximum distance of 5 Ǻ was 

used between hydrogen donor and fitting points for allowing the poor nonbonded contacts. 

Besides, no constraints between ligand and protein were used. Manual identification of 

best-docked conformation of ligand was performed [274].  

2.4 Genetic Algorithm 

2.4.1. The theory 

Many hard computational problems were started to be solved with genetic algorithm 

(GA) in the 1970s and became popular in the late 1980s. In the 1990s, the biological 

problems were also started to be analyzed such as protein sequence prediction [255]. 

Genetic algorithm is found on the basis of “survival of fittest” derived from the theory of 

evolution defined by Charles Darwin in The Origin of Species. This algorithm contains a 

set of potential solutions in which chromosome is defined as encoding of search space. 

Chromosome is a set of string of symbols for instance aminoacid letters in a peptide, 

natural numbers or nodes of graph. Strings are used as encodings in genetic algorithms and 

the length of these strings can be changed too [275]. Holland (1992) studied on living 

organisms which were excellent problem solvers due to obeying the rules of evolution. By 

the help of these rules, they can survive and pass through the next generation. However, the 

ones that are weak for handling the problems related to evolution are failed and cannot 

continue their existence. Holland (1992) worked on the mathematical analysis of adaptation 
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and survival. He found that recombination of genes and mating were the keys of evolution. 

Genetic algorithm was written with depending on these keys of evolution by Holland and it 

gave satisfying results for any type of problems on account of combining the partial 

solutions. Initially, each member of a population is scored and ranking is done with these 

scores of members. By a random choice, two members are selected and then they were 

combined with crossover from randomly selected crossover point. In chromosomes, two 

gametes meet to produce a zygote and crossover in genetic algorithm resembles the 

chromosomes. As a third step, mutation with low rate can hinder the uniform next 

populations that is incapable of further evolution. The formed offsprings (new members) 

replace with the low-scored members of population. With this approach, genetic algorithm 

can find the target regions of solution space [276].  

 

Figure 2.15 a) Crossover and b) Mutation [260]. 

It cannot be claimed that GA will always find the optimal solution but it can find a 

possible combination of features that will survive under the specified conditions. The aim 

is to have a population of solutions whose size is maintained by placing the bad ones with 

the ones that have better survival. The survival level of each member of population is 
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understood in terms of fitness function. Possible solutions in population are demonstrated 

with strings and replication, mutation and crossover are the three genetic operators for 

diversing the population. Fitness value is evaluated for each member after starting GA with 

N random solutions. In the replication stage, the members that will be replicated are 

selected according to their fitness values. In crossover stage, the N strings are matched 

randomly in pairs for having N/2 pairs. A cut point was chosen randomly and the strings 

are swapped that position. As a result, two new strings are held. Each string can also be 

subjected to mutation at a specified rate. In Figure 2.15, the demonstration of crossover and 

mutation was done in which each column was a chromosome (an individual) or each square 

was the gene. There are many types of mutation and crossover. For example, single-point 

and n-point are the types of crossover. In the same manner, mutation can be done by 

considering one point or multiple points of chromosome [275]. These steps happen for one 

generation and many of such calculations continues until eventually some optimal point is 

held. In the end, population will contain a set of solutions with very good performance. The 

performance of algorithm is dependent on design and implementation details. However, a 

well-performanced algorithm is based on trial and error procedure [255].  

The selection of parents is a stochastic process and depends on the fitness score of 

the chromosomes in a population. Roulette wheel selection (proportionate selection) is a 

popular way for selection [275]. 

2.4.2. Usage for ligand search  

There are 20
3
 possibilities if we want to design a 3 sequenced peptide structure for 

caspase-1. It will not be possible to try each possibility with experimental or computational 

studies in other words the number of possibilities will be too high to try one by one. A 

logical and time-efficient method of determination of peptide sequence information is 
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required. For finding the correct structure with minimum time, genetic algorithm was used 

[269-270].  

Unal et al. (2010) studied peptide design NF- B protein with GA. They determined 

that the programme determined the hepta-peptide sequence without any prior knowledge 

and conservation of aminoacids at specific positions was seen. They claimed that the local 

minima problem was eliminated with high mutation rate [270, 277]. In a similar manner, 

Cincilla et al. (2009) used massive processing algorithm (MPA) that was based on genetic 

algorithm. In this algorithm, AutoDock 3.0 was used and estimated binding free energy 

was used as fitness value of each member of the population. [268]. Abe et al. (2007) 

produced the peptides by using a simple genetic algorithm. They used docking score as 

fitness function in addition to 1.0 crossover rate and single aminoacid mutation rate of 5 to 

20 % [278]. Kernytsky et al. (2009) used GA for determination of some protein features 

which will be useful in enzymatic activity definition [279]. Unger et al. (2004) also stated 

that dihedral angles and Cartesian coordinates can also be used in GA for three dimensional 

structure predictions of proteins [255]. Moreover, Yang et al. (2003) studied the prediction 

of three dimensional peptide chain structures with an improved version of genetic 

algorithm. They called their method as intergeneration projection micro genetic algorithm 

(IP- GA) and their fitness function is RMSD [280]. 

Budin et al. (2001) also used genetic algorithm on caspase-1 with 1IBC and 

removing its water and inhibitor molecules. However, in their study they directly took the 

most known four sequenced peptide of Ac-WEHD-CHO. After that they kept the D (ASP) 

residue of inhibitor constant and modified the other three residues with GA. In the end, 

they found Ac-WDTD-CHO as new peptide inhibitor [281]. 

2.5 Pharmacophore analysis 

Pharmacophore modeling of ligand-protein complex is one of the crucial tools in 

developing novel drugs or analyzing the existing drugs. When pharmacophore analysis is 
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performed, hydrogen bonding, charge transfer, electrostatic as well as hydrophobic 

interactions in ligand-protein complex can be visualized. These basic interactions are the 

keys of determining the binding mode of ligands.  

Barreca et al. (2007) used pharmacophore modeling in order to investigate the 

candidates for chemical scaffolds by LigandScout. Pharmacophore model was used in 

virtual screening for HIV-1 non-nucleoside reverse transcriptase inhibitors [282]. Thus, 

LiganScout was also applied on HIV protease, HIV reverse transcriptase, influenza virus 

neuraminidase, human rhinovirus coat protein and hepatitis C virus RNA polymerase with 

considering the PDB structures of these receptor-inhibitor complexes by Steindl et al. 

(2006). They claimed that fast virtual screening of compounds against these systems 

yielded successful activity profiling in most cases [283]. Moreover, using LigandScout was 

found to be feasible and intuitiveness by Wolber et al. (2006). They used three dimensional 

pharmacophore structure for analyzing the macromolecule-ligand interaction with aligning 

small ligands onto pharmacophore [284]. 

LigandScout uses interaction between ligand and protein for visualization of three 

dimensional pharmacophores. When the complex of ligand and macromolecule is loaded, 

LigandScout automatically shows pharmacophore model. In this model, the vectors show 

hydrogen acceptors and donors while bunch of vectors are used for positive and negative 

ionizable regions. Moreover, spheres demonstrate the lipophilic areas and excluded volume 

spheres. Excluded volume spheres are regions where any potential ligand cannot access. 

LigandScout uses steric restrictions for formation of excluded volumes automatically [282]. 

Hydrogen bond interactions are considered when covalently bound hydrogen with a 

positive partial charge interacts with another atom that has negative partial charge. The 

distance of hydrogen bonds is 3.8 Å for considering all interactions. However, some 

geometric constraints were implemented in order to increase selectivity such as using sp
2
 

and sp
3
 donor atoms. Besides, the model assumes an ideal hydrogen bond angle of 180 
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degrees and if the difference between both directions exceeds 34 degrees, the hydrogen 

bond will be accepted as broken [285]. Hydrogen bond donors are determined if functional 

groups of nonacidic hydroxyls (all OHs except sulfonic, sulfinic, carboxylic, phosphonic or 

phosphinic acids), thiols, acetylenic hydrogens, and NHs (except tetrazoles and 

trifluoromethyl sulfonamide hydrogens) are formed by hydrogen bond donors. The 

hydrophobic areas are found by scoring the atoms according to hydrophobicity and then 

tolerance radius of 1.5 Å is added. Charge transfer interactions are also visualized with 

considering positive (PI) or negative (NI) ionizable areas. Basic amines, basic secondary 

amidines, basic primary amidines, basic guanidines, and positive charges not adjacent to a 

negative charge are examples of PI whereas trifluoromethyl sulfonamide hydrogens, 

sulfonic acids, phosphonic acids, sulfinic, carboxylic or phosphinic acids, tetrazoles, 

negative charges which are not neutralized by an adjacency to a positive charge are the 

examples of NI [285].  

2.6 GNM (Gaussian Network Model) 

GNM has been used for many purposes in protein world such as dynamics of 

proteins, features of protein fluctuations, conserved structures in proteins by using the same 

logic with a single parameter for harmonic potential as Tirion did (1996). It can be even 

applied on supramolecular structures [286-287]. It is a coarse-grained model and contact 

information of the structure is used. Mode decomposition is applied for identifying the 

slowest and fastest modes in a given protein system [288]. It is firstly applied on proteins 

by Bahar et al. (1997) for determination of thermal fluctuations. Crystal structures of 

proteins were used considering C  for determination of temperature factors in GNM. 3D 

structures of proteins were adapted into an elastic network [289]. In addition, Haliloğlu et 

al. (1997) studied GNM for folded proteins [290]. HIV-1 protease domain motions as well 

as folding cores were also determined with GNM by Bahar et al. (1998). Fast and slow 

modes were found to be associated with stability and function, respectively [291].  
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Distance vector Rij demonstrates the distance between i
th

 and j
th

 residues as seen 

from Figure 2.16. Fluctuations in distance vector can be calculated by assuming isotropic 

and Gaussian as follows [286]: 

0 0 0

j j i i j i ij ij ijR R  R R   R  R  R  R R  (5) 

As a result, potential of network of N nodes (residues) will be evaluated as [286]: 

2 2 2

ij i j i j i j
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2 2

ij i j ij ij
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Γ X X Y Y Z Z
2

Γ R R Γ R
2 2

N

GNM

i j

N N

i j i j

V

 (6) 

where ΔXi, ΔYi and ΔZi are components of ΔRi. and  is force constant (Hookean pairwise 

potential used by Tirion (1996)) [287, 290, 292], which will be constant for all springs.  

is the ij
th

element of Kirchhoff (connectivity) matrix, which is an N x N symmetric matrix 

for a protein of N residues [288].  is defined as: 

ij c

ij ij c

ij

j, j i

1 if i j and R r

Γ 0 if i j and R r

Γ if i j

 (7) 

where rc is cut off distance [286]. 



 

 

Chapter 2: Literature Review            56 

56 

 

 

Figure 2.16 Definition of fluctuations [286]. 

GNM normal modes can be found by eigenvalue decomposition of . 

Γ Λ TU U  (8) 

in which U shows eigenvectors (ui) of  and  represents eigenvalues ( i) of . Transpose 

of U equals to its inverse (U
T
=U

-1
) and the first eigenvalue of the matrix is zero due to 

translational invariance of the system. Eigenvalues are usually found in an ascending order 

(0< 2<…< n) for 1  i n. In addition, eigenvectors and eigenvalues demonstrate shapes 

and frequencies of modes [286, 293].  

Inverse of  can be found with ignoring the zero eigenvalue by [290]: 

1 1

2

Γ
n

T

k k k

k

u u  (9) 

Demirel et al. (1998) applied GNM for identification of hot residues in folded 

structures of chymotrypsin inhibitor 2, cytochrome c, and related C2 proteins [293]. In 

another study by Demirel et al. (2005), connectivity (summation of diagonal elements of ) 

is found to be proportionally related with residue number. Thus, proteins with same number 

of residues have same connectivity and total eigenvalue [294]. Furthermore, Bahar et al. 

(1999) plotted correlation map of HIV-1 RT by using the following definition [288]: 
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1

ij

3 3
Δ .Δ ( )Γ ( ) ( )T

i j k k k ij

k

kT kT
R R u u  (10) 

 is the equilibrium correlation between the fluctuations of residues i
th

 and 

j
th

. K is Bolztmann constant and T is temperature [288]. The mean-square distance 

fluctuations between i
th

 and j
th

 residues, which also demonstrate mobilities of individual 

residues, can be evaluated by [292, 295]: 

2 2 2 2Δ (Δ Δ ) Δ Δ 2Δ .Δij i j i j i jR R R R R R R  (11) 

After the start of usage in proteins, GNM studies has been continued and improved 

for proteins. Haliloglu et al. (2009) studied native proteins and applied GNM model for 

describing correlations between energy and residue fluctuations by considering HIV 

protease [296]. In another study by Tuzmen et al. (2011), a more detailed study related to 

prediction of binding sites and interaction paths in a protein was done. Several proteins 

were considered with not only unbound (no ligand) but also bound (ligand) by GNM. 

Comparisons with unbound and bound protein structures demonstrated the success of this 

method [297]. 
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Chapter 3 

 

3. METHODS 

 

3.1 Caspase-1 

 Caspase-1 with PDB ID of 2HBQ is used as target protein in this study. 2HBQ 

belongs to the crystal structure of wild type human caspase-1. Its structure is 

experimentally determined from X-Ray diffraction with a resolution of 1.8 Ǻ which is 

demonstrated in Figure 3.1 [8, 17].  

 
Figure 3.1 Caspase-1  

in flat ribbon representation. Green and blue chains are A and B chains, respectively. 

Orange atom is the sulphur atom of Cys285 (active residue) [17]. 
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3.2 Computational methods for ICE drug design 

3.2.1. Docking  

 Löser et al. (2010) studied molecular docking on 2HBQ, which is the same caspase-

1 structure in this study, without minimization of caspase-1. Moreover, they found potent 

and selective inhibitors for caspase-1 which are tripeptidly benzyl- or cyclohexylamines 

with computational docking methods. The verification with inhibition experiments for 

found ligands is also performed [274].  

3.2.1.1. AutoDock 

 A python script is written for AutoDock runs which initially convert protein and 

ligand .pdb structures into .pdbqt file format by using prepare_receptor4.py and 

prepare_ligands4.py python scripts in MGL Tools 1.5.6. By using .pdbqt files, 

prepare_gpf4.py and prepare_dpf4.py python scripts in MGL Tools make ready grid 

parameter file (.gpf) and docking parameter file (.dpf) for ligand. Genetic algorithm is 

selected in which the population size, run, maximum number of energy evaluations, 

number of generations are 150, 50, 2500000 and 27000, respectively for AutoDock runs 

(AutoDock 4.2). Spacing is taken as 0.4 Ǻ. Crossover, mutation and elitism are 0.80, 0.02 

and 1, respectively. AutoDock runs are performed on a Linux system server that has 2 CPU 

Intel Pentium 2.4 Ghz on 32 nodes with 1 GB RAM memory. Eight tripeptides are 

analyzed in 45 minutes under these parameters at the same time. Besides, all peptide 

torsion angles are made flexible with AUTOTORS utility of AutoDock. Adding gasteiger 

charges and polar hydrogen, and grid map determination are done by MGL Tools 1.5.6. 

Lamarckian Genetic Algorithm is used as docking search parameter [262].  

 In python script, autogrid4 and autodock4 are used for getting .glg and .dpf files 

from .gpf and .dpf files, respectively. Dockings are done on the sulphur atom of Cys285 
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because it is determined as the most appropriate place for binding on caspase-1 (the 

detailed information about determination of Cys285 is given in Results part). As a result of 

AutoDock runs, free binding energy of docked ligand onto protein is found in .dlg file of 

ligand that is the summation of intermolecular energy (van Der Waals energy, Hydrogen 

bonds, desolvation energy, electrostatic energy), final total internal energy, torsional free 

energy of peptide, unbound system energy and estimated inhibition constant [262]. 

Calculated free binding energies of one ligand are used in Boltzmann Distribution with its 

degenaricies (degeneracy is the frequency of a free binding energy).  

Free Energy of Binding=

   

 

i

A B

i

A B

E

N x k xT

i İ

E

N xk xT

i

g E e

g e

 (12) [298] 

where Ei (kcal/mol) is free energy binding of run, gi is degeneracy of run, kB (kcal/K) is 

Boltzmann constant, NA (1/mol) is the Avogadro‟s constant and T (K) is temperature. Final 

result from Boltzmann calculation gives the free binding energy of inhibitor designed since 

taking only the lowest score of free binding energy is not appropriate. Consideration of all 

possible conformations should be done for reaching the correct result. 

3.2.1.2. GOLD 

 GOLD 4.1.1 is also used in docking experiments. GOLD runs are performed on 2 

CPU and 1.96 GB of RAM with Windows XP Version 2002. Chemscore kinase is used as 

template and not only Goldscore but also Chemscore G values are considered.  

Initially in GOLD runs, .pdb files of ligands are converted into .mol2 files by 

Accelrys Discovery Studio 2.5 and Racoon [299-300]. On the other hand, protein is given 

with its .pdb file. Dockings are done on the sulphur atom of Cys285. Aminoacids in 

docking surface are done flexible which are Arg179, His237, Ile239, Gln283 as well as 
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Cys285 for getting more consistent results with reality. Early termination is not allowed 

due to considering all possible dockings and atoms are selected within 10Ǻ. Hydrogen 

addition is also done. Detect cavity choice is selected in order to avoid ligands to bind 

unrelated surfaces. Genetic algorithm search option is selected with population size of 100, 

number of operations of 100 000, crossover frequency of 95, mutation frequency of 95 and 

migration frequency of 10 [301]. A tripeptide is docked approximately in 5-10 minutes 

under these conditions in GOLD. At the end of docking run, all results are given in a 

gold.conf file. When this file is loaded into GOLD, all results are seen. 

3.2.2. Computational ligand analysis tools 

3.2.2.1. LigandScout 

LigandScout 2.02 is used for pharmacophore analysis. When .pdb file of a ligand-

protein complex is given to LigandScout; hydrophobic interactions (yellow spheres), a 

negative ionizable area (red bunch), a hydrogen bond donor (green arrow) and two 

hydrogen bond donors (red arrow) are seen clearly (Figure 3.2). It also gives TPSA 

(topological polar surface area) and cLogP (an estimate of a compound's overall 

lipophilicity) for ligand in the complex. .pdb file is loaded into LigandScout and necessary 

observations are done such as TPSA, cLogP, molecular weight, hydrogen acceptor and 

hydrogen donor [285].  
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Figure 3.2 A sample demonstration of a ligand in LigandScout.[285]  

3.2.2.2. iLib Diverse 

Java based software iLib Diverse 1.02 is a fast tool for formation of diversed or 

focused libraries [302]. Lipinski Rule of 5 is used as a filter [217] and many chemical 

groups are considered, which are acids, alcohols, aliphatics, alkenes and alkynes, amides 

and imides, amines, benzenes, carbocycles, esters, ethers, Fx groups, halogens, 

heterocycles, ketones and aldehydes, pharm-groups, phosphor and sulphur.  

iLib Diverse is used in peptide based drug search for ICE. First, number of 

fragments is defined and chemical groups are transported in each fragment. Lipinski Rule 

of 5 is used as filter and formation of library is performed. Except formation of D-

aminoacid part, default values are used. For getting .pdbqt file format for Autodock Vina 

and .mol2 format for GOLD, a combination of Accelrys Discovery Studio, Marvin Beans 

[303] and Racoon [299] are used. 

3.2.2.3. HyperChem 

HyperChem Release 7 is a molecular modeling and simulation programme. It is 

used for analyzing minimized energy of a ligand on caspase-1 after docking on GOLD. The 

best docking in GOLD is selected for getting .pdb file of protein-ligand complex in order to 
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perform HyperChem calculations. After loading complex .pdb structure, molecular 

mechanics optimization of complex is done and then ligand is deleted. The default values 

are used such as 0.1 kcal/ (Ǻ x mol) RMS and Polak-Ribiere algorithm (a conjugate 

gradient method). Following step is to do molecular mechanics optimization of caspase-1. 

Difference between complex and caspase-1 is evaluated. Minimized energy for a ligand 

which is close to the optimized energy (local minimum) is determined. [304-305]. 

3.2.2.4. Accelerys Discovery Studio Visualizer, LigPlot and CS ChemBio3D 

Pro 

Accelerys Discovery Studio Visualizer 2.5 is used for visualization of proteins as 

well as ligands. It is also used for analysis of hydrogen bonds (distance is 2.5 Å) and pi 

interactions between ligand and caspase-1 with default parameters. Accelerys Discovery 

Studio Visualizer is also used for minimization of procaspase-1. This is performed by 

„Clean Geometry‟ property of programme [300]. Thus, ChemBio3D Pro is used for 

sketching and minimizing ligands with its „minimize energy‟ feature in 3D [306]. Bonds 

between ligands and caspase-1 are also studied by LigPlot v.4.5.3. Structure of ligand-

caspase-1 complex, which is taken from the best conformation of AutoDock run, is given 

to LigPlot. Programme gives information related to hydrogen bonds and hydrophobic 

interactions. Default parameters are used [307].  

3.2.3. Genetic Algorithm  

Genetic algorithm is used in order to find a candidate peptide sequence for a 

tripeptide structure for ICE inhibition. Algorithm code is written in a Python code which is 

given to a Linux system server that had 2 CPU Intel Pentium 2.4 Ghz on 32 nodes with 1 

GB RAM memory. Code is mainly composed of peptide formation, docking, reading the 

.dlg files, ranking and new population formation whose flowchart is given in Figure 3.3. 
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Peptide formation is done initially with a random choice by a Python script in order 

to have 64 populated tripeptides sequences (initial population=S1) then tripeptide structures 

are given to VMD programme. In VMD, mutate command is used for converting a 

temporary tripeptide .pdb file into the desired tripeptide [277]. As a consequence, three 

dimensional structural information of tripeptides (.pdb file) is formed. AutoDock is used as 

docking programme in genetic algorithm code. Since 250,000 is used as maximum number 

of energy evaluations, eight tripeptides is docked approximately in 26 minutes at the same 

time. As a result, 64 populated list of tripeptides is finished about 4 hours. Next step is to 

read these .dlg files with the same Python code. This forms fitness value of genetic 

algorithm.  

The best five tripeptides are kept constant without no change (elitism) after ranking 

according to fitness values and the rest of 59 structures are sent to single mutation. Using 

crossover in addition to mutation would be meaningless for a tripeptide. Besides, using 

single crossover would be same as using single mutation since structures are short (3 

peptides). Consequently, only single mutation (shown by M) is considered with random 

selection of mutated peptide in the given structure. M[Pi, X] gives the mutated residue in 

which Pi is parent i and X is the number of the residue to be mutated in Pi. In other words, 

an offspring (Oj where j is the number of new peptide in new population, Sm+1 where m 

denotes the parent population number) is formed by parent (Pi). After mutation, new 

population (generation) is formed and then sent to the beginning of for loop. Until reaching 

a convergent behavior, code is kept on [270].  
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Figure 3.3 Genetic algorithm flowchart. 

3.2.4. Complete Enumeration 

 Complete enumeration of tripeptides is done by a combination of Autodock Vina, 

GOLD and Autodock. 8,000 tripeptides are all combinations of 20 aminoacids. Tripeptides 

are formed by HyperChem [304-305]. The first 500 tripeptides are determined by 

Autodock Vina and then given to GOLD twice. GOLD runs are lasted for one week and the 

ones which had negative Goldscore and/or positive Chemscore G are eliminated. Total of 

156 tripeptides is found and a second run is done on GOLD. 87 structures are finally 



 

 

Chapter 3: Methods            66 

66 

 

determined by looking at Goldscore and Chemscore values. Autodock is used for final 

elimination of 87 structures. 

3.3 Conformational Factors in the Design of Peptide Drugs 

 For a given tripeptide, the conformation of each residue is known and fixed in the 

bound state. In the unbound state, in solution, the tripeptide spends most of its time in its 

most probable conformations. In order to bind, the peptide has to go from the most 

probable state to the bound state, and in doing so has to pass over a free energy barrier. 

There may be several different highly probable states in solution, but we consider only the 

most probable state as the starting point in this study. We next proceed to calculate the 

minimum energy state of the tripeptide in the free state, and then calculate the optimum 

path over the energy landscape through which each of its residues go from the minimum 

energy conformation of the free state to the conformation in the bound state. We use the 

term optimum path to mean the path that exhibits the lowest energy barrier. The energies 

mentioned here should strictly be free energies. However, since free energy calculations 

require excessive times, we consider energies only. Decision based on energy calculations 

only safely eliminates the highly improbable paths, but the optimum path obtained in this 

manner is not necessarily the optimum free energy path. Another assumption of the model 

is that each residue of the tripeptide changes conformation irrespective of the conformation 

of its neighboring residues. This assumption is based on the Flory independent residue 

hypothesis [308], which is shown not to be strictly valid, but is still a good approximation 

[309].  

3.3.1. Determination of States 

 All combinations of  and  conformations are used for forming tripeptides by 

HyperChem Release 7 [304-305]. In other words, a tripeptide is formed in 8 (2
3 

where 2 is 
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 and  states, 3 is the number of peptides) conformations. In all tripeptides formed, Ace- 

and –Nme are used as caps. Besides, each of 8 conformations of a tripeptide is solvated in 

water box and minimized with geometry optimization tool of HyperChem. Polak-Ribiere 

algorithm is used with default values except maximum cycles. Number of maximum cycles 

is 32767 and Bio-Charmm force field is used. After minimization in water which lasts 15-

50 minutes (duration depends on conformation of the tripeptide), single-point calculation 

which lasts about 10-20 seconds is performed for only tripeptide in water (water molecules 

are not considered). The tripeptide conformation with highest single-point energy is further 

minimized with geometry optimization in a void space with OPLS force field (lasts 5-15 

minutes). Components of OPLS and Bio-Charmm force fields are bond, angle, torsion, 

non-bonded, electrostatic and hydrogen-bonded interactions. Final structure is used for the 

determination of states of three aminoacids. These states are the states taken from 

HyperChem calculations. 

Each tripeptide is docked 100 times with AutoDock. At the end of 100 dockings, 

the best conformations are written in a pdb file by MGL Tools [262]. All formed .pdb files 

are analyzed according to their aminoacid states. After determining states from 100 

AutoDock runs, the most similar states with HyperChem are taken as AutoDock states. 

While determining states, there are a total of 6 angles. 3 of them  while other 3 are 

. Each couple of  and  determines a state in Ramachandran plot. The definitions of 

torsion angles are illustrated in Figure 3.4. 

 

Figure 3.4 The definitions of torsion angles. 
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 We use information from the coil library of the Protein Data Bank to construct the 

states of the  and  angle pairs of a residue [310-311]. A given state is obtained when 

samples from the coil library cluster around a region. In the earlier work of Karplus et al. 

[312], eleven states were identified [269]. In more recent work, Unal et al identified a total 

of twenty one states, which are depicted in Table 3.1 and Figure 3.5 [313]. 
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Table 3.1 Definitions of 21 states [313].  

State Notation Definition Angles 

1 ‟ 
Mirror image of the 

extended region . 

(-180<=phi<=-60 and -180<=psi<=-150) or 

(-120<=phi<=-90 and -150<=psi<=-120) 

2  
The extended regions,  >0, 

 ~ -+180 . 

(30<=phi<=180 and -180<=psi<=-150) or 
(30<=phi<=150 and -150<=psi<=-120) or 

(60<=phi<=180 and 150<=psi<=180) or 

(90<=phi<=150 and 120<=psi<=150) 

3 R Right-handed alpha helix. (-180<=phi<=-30 and -90<=psi<=-30) 

4  Tight turn region. (60<=phi<=120 and -90<=psi<=-30) 

5 R 

The right handed bridge 

region between two  
strands. 

(-120<=phi<=-30 and -30<=psi<=0) or 

(-150<=phi<=-60 and 0<=psi<=30) 

6 L 
Mirror image of the R 

region. 
(60<=phi<=150 and -30<=psi<=30) 

7  
Region observed mostly in 
residues preceding PRO. 

(-180<=phi<=-120 and 30<=psi<=90) 

8 ‟ Inverse tight turn region. (-120<=phi<=-60 and 30<=psi<=90) 

9 L Mirror image of R. 
(30<=phi<=90 and 30<=psi<=90) or 

(30<=phi<=60 and 90<=psi<=120) 

10 S 

Extended beta sheet 

forming region. 

(-90<=phi<=-30 and 120<=psi<=150) or 

(-120<=phi<=-60 and 150<=psi<=180) 

11 P 
Region with extended 

polyproline-like helices. 

(-150<=phi<=-30 and 90<=psi<=120) or 

(-180<=phi<=-90 and 120<=psi<=150) or 

(-180<=phi<=-120 and 150<=psi<=180) 

12 δR „  
(-180<=phi<=-120 and -30<=psi<=0) or 

(-180<=phi<=-150 and 0<=psi<=30) 

13 ε‟‟  
(-180<=phi<=-120 and -150<=psi<=-90) or 

(-120<=phi<=-90 and -120<=psi<=-90) 

14 ε‟‟‟  
(-90<=phi<=-30 and -150<=psi<=-90) or 

(-60<=phi<=-30 and -180<=psi<=-150) 

15 γ‟‟  (-60<=phi<=-30 and 0<=psi<=90) 

16   (-30<=phi<=30 and -180<=psi<=180) 

17 εαL  
(30<=phi<=60 and 120<=psi<=180) or 

(60<=phi<=90 and 90<=psi<=150) 

18 αL‟  (90<=phi<=150 and 30<=psi<=120) 

19   
(180<=phi<=150 and -150<=psi<=150) or 

(120<=phi<=150 and -90<=psi<=-30) 

20 δL‟  (30<=phi<=60 and -90<=psi<=30) 

21 εγ  (20<=phi<=60 and -120<=psi<=-90) 
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Figure 3.5 The 21 states in Ramachandran map [313].  

3.3.2. Equilibrium and Kinetic Factors 

 Analysis of energy changes that a tripeptide meets is done by considering 

probabilities of bound and minimized states. The probability of a conformation in a given 

state is calculated according to the expression 

iE

i

e
P

Z  (13) [314]
 

where iE is the energy of the i'th state. 
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iE

i

Z e

 (14) [314]
 

where =1/(kT) in which k is the Boltzmann constant and T is temperature. Z is the 

partition function. EA and EB are the energies of A and B states in Figure 3.6 which are 

calculated from HyperChem. Rate of reaction between A and B states are given as rAB and 

rate of reverse of this reaction is rBA. 

( )max AE EEact

ABr fe fe  (15) [315] 

( )max BE EEact

BAr fe fe  (16) [315] 

where f is a function that is the same in both states. 

 

Figure 3.6 A schematic representation of energies. 

 When forward and inverse reactions between A and B states are divided to each 

other, the resulting ratio equals to ratio between PB and PA. 
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( )

( )

max A B

max B A

E E E

AB B

E E E

BA A

r Pfe e

r fe e P
 (17) 

PB/PA is used for finding whether a tripeptide goes from its minimized to bound state. For 

instance if the ratio of PB/PA is small, it means tripeptide has difficulty in passing to its 

bound state because energy difference between minimized and bound state is large. Energy 

met by tripeptide is too high to overcome. That is why tripeptide is not a good choice for 

inhibition of caspase-1. However, tripeptide is found to be a good inhibitor if the PB/PA 

ratio is high. Since energy difference between minimized and bound conformations is low 

enough to overcome. All in all, inhibitors for caspase-1 are chosen from tripeptides with 

high PB/PA ratio. 

3.3.3. Determination of Path Followed 

 When a residue in a tripeptide has different state in HyperChem and AutoDock, it is 

analyzed according to its energy change while passing from HyperChem to AutoDock state 

by Viterbi decoding. HyperChem (minimized conformation) and AutoDock (bound 

conformation) states are considered as start and end points, respectively..  

 A state is affected from its previous neighbor state in 1
st
 order Markov process [18]. 

System is considered as 1
st
 order Markov process with unobserved states of . The interval 

of  (between start and end points) is used with many alternatives of . Energies of points 

are evaluated by single-point calculation in HyperChem in OPLS force field [316]. A state 

is affected from its previous neighbor state [317]. Viterbi decoding is used for 

determination of the most probable path of unobserved states. In other words, each  has 

one observed  which forms path followed by minimized tripeptide conformation to reach 

its bound state. Notation given in Ewens et al. (2001) and Unal et al. (2010) is used for 

following definitions [269, 318]: 
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n: Number of  angles of path that tripeptide follows. 

t: Number of grid, 1  t  n. 

I: Number of   angle used. 

m: Index identifying the  angle, 1  m  I. 

S= {S1, S2, …. , Sn}: The torsion angle elements for  angle. 

qt= Si demonstrates the state of t
th

 grid is  angle Si. 

A={A1, A2, …., AI}: The torsion angle elements for  angle. 

at= Ai demonstrates the state of t
th

 grid is  angle Ai. 

P = (Pij) = Pr(qt+1=Sj  qt=Si) =The transition probability where energies are taken from 

HyperChem (kcal/mol). It is calculated as follows: 

( 1,  ; ,  )
exp( )

( 1,  ; ,  )
exp( )

ij
A

j

E t j t i

kTP
E t j t i

kT

 (18) [314, 318] 

b = (bij) = Pr(at+1=Aj  at=Ai) = 1: The emission probability, which is accepted as 1 since 

unobserved states of  are assumed to have equal probability. 

= ( i) = Pr(q1=Si): an initial probability vector.  

t(j) = max Pr(q1, q2, …, qt =Si and a1, a2, …, at): The maximum probability of all paths 

ending at state Si at grid t.  

 Our aim is to find a path that tripeptide follows while passing from minimized to 

bound state using minimum energies. argmax Pr(q1, q2, …, qn  a1, a2, …, an) is used for 

achieving this. Determination of argmax Pr(q1, q2, …, qn  a1, a2, …, an) depends on two 

steps. Initially, forward tracking is used for finding max Pr(q1, q2, …, qn  a1, a2, …, an). As 

a second part of this algorithm, backtracking is applied that finds a O1, O2, …, On (where 

On is observed state that has An and Sn torsion angles) which realizes this maximum.  
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 After forming transition probability matrix, determination of t is done. t(i) arrays 

contain the maximum probabilities for each grid.  

Initialization step only consists of 1 which is 1 x I vector.  

1 1 1 1 i i 1i   Pr q  S and a  p b ( )O  (19) [318] 

where 1  i  I. 

Induction step contains t which is 1 x I vector 

t t 1 ij j t t 1j   max( i  P b (a | a ))  (20) [318] 

where 1  i, j  I, and 2  t  n.  

Backtracking shows which path is appropriate for peptide when going from one state to 

another. The initial and final states are known from minimization and binding. Only middle 

states are needed to be determined. Consequently, backtracking starts from the last state to 

previous state by choosing: 

t 1ΞΞ  t t iargmax i P  (21) [269] 

where 1 i I as shown in Figure 3.7.  
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Figure 3.7 Schematic representation of backtracking in Viterbi algorithm.  

Red arrow shows the direction of backtracking and red dots and lines show max( t(i) Pi t+1) 

values. 

 As a result, qt which is  angle is found for 1 t n. Backtracking gives minimum 

energies from passing one state to another for a residue in tripeptide. Path that is followed 

by tripeptide is determined by backtracking. Viterbi decoding is written in MATLAB 7.6 

[319]. In summary, the algorithm is based on the following steps: 

1. The  values between states A and B are divided into t steps. 

2. At each value of  , equally spaced m points are chosen for . This creates a grid of txm 

stations between points A and B.  

3. The minimum conformational energy of the residue is calculated for each of the txm 

points. The minimization is performed by allowing all degrees of freedom of the residue to 

rearrange for the given value of the  -  pair. 

4. At each of the t steps, transition probabilities, Pij (1 ≤ j ≤ m) are calculated  

5. Transition probabilities are used for maximum probability, , determination. Here, 

emission probabilities, bi, are assumed to be 1.  

a. Initialization step, where 1 is determined by initial transition probability. 



 

 

Chapter 3: Methods            76 

76 

 

b. Induction step, where t is determined (2  t  n.) by using t-1. 

6. Backtracking is done by from the last state to previous state. 

3.4 The Interaction Matrix for the Caspase-1 Pathway and Correlations 

 We assume that there are n proteins in the pathway. We denote the instantaneous 

states of the n proteins by an n-dimensional vector R  whose i‟th entry iR
 
denotes the state 

of the i‟th protein. The state is defined in its most general sense. For example the unbound 

state of a protein and the bound states are two distinct states. Similarly, a phosporylated 

protein is in a different state than an unphosphorylated one.  

 We also define the function of a protein which results from changes in its state and 

changes in the states of other proteins that directly or indirectly interacts with it. By 

function, we mean the activity of the protein that contributes to an experimentally 

observable event related to that protein. The instantaneous function of the set of n proteins 

is given by an n-dimensional vector F  whose i‟th entry iF
 
indicates the function of the i‟th 

protein.  

 All protein-protein interactions in the caspase-1 pathway are considered in a 

connectivity (Kirchhoff) matrix ( ), which is related with F  and has 107 elements. These 

107 elements are determined from literature review, and are the main proteins in the 

caspase-1 pathway.  

 Γ is the connectivity matrix of the pathway which is defined as 

ij

ij

j, j i

1 if i j and i &  j interact

Γ 0 if i j and i & j do not interact

Γ if i j

 (22)

 



 

 

Chapter 3: Methods            77 

77 

 

 The entries of the Γ matrix may be taken in other ways than that of the connectivity 

matrix. The present definition relates to an undirected graph. Thus, for example, although 

the phophorylation of protein i by protein j is effectively an unsymmetric interaction, it is 

ignored in the present notation and only the fact that whether they interact or not is 

considered.  

 The only assumption in the model is that the fluctuation of states obeys Gaussian 

distribution and that the coefficient matrix is given by Eqn.23. We assume that the large 

fluctuations from the mean being less probable. This leads to the distribution W R of 

fluctuations  

1

2

1

2

T

T

exp

W

exp d

R Γ R

R

R Γ R R

  (23) [320]

 

 The interaction of protein i and j are then obtained as the correlation of fluctuations 

of the states of these two proteins, i.e.,  

1

i j ij
R R Γ

 (24)
 

 This is interaction matrix of correlations of proteins in the Caspase-1 pathway, 

which are given in Table 3.2. This matrix conveniently allows for the study of knock-out 

experiments where removal of a given protein from the pathway leads to a new interaction 

matrix of correlations, and the difference between the two interaction matrices gives the 

importance of the contributions from the knocked-out protein. 
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Table 3.2 The list of used proteins in the ICE pathway. 

# Protein # Protein # Protein # Protein 

1 P2X7R 28 TRADD 55 cPLA2 82 Presenilin-1 

2 SGT-1 29 TRAF2 56 iPLA2 83 Presenilin-2 

3 HSP90 30 RIP2 57 RIG-I 84 Huntingtin 

4 SAA 31 Caspase-1 58 IRF3 85 EGFR 

5 Amyloid-  32 NF- B 59 IRF7 86 AR 

6 NLRP3 33 Pypaf7 60 ERK ½ 87 CDK11A 

7 CARDINAL 34 Procaspase-11 61 Interferons 88 CDK11B 

8 AIM2 35 Caspase-11 62 Rac1 89 Parkin 

9 ASC 36 p38 MAPK 63 Pak1 90 MAPT 

10 Procaspase1 37 Pro-IL-1  64 MyD88 91 BCAP31 

11 MEFV Pyrin 38 Pro-IL-33 65 MD2 92 XIAP 

12 PSTPIP-1 39 Pro-IL-18 66 TLR1 93 Pypaf3 

13 POP 40 IL-1  67 TLR3 94 Pypaf4 

14 BcL-Xl 41 IL-33 68 Bid 95 Pypaf5 

15 BcL-2 42 IL-18 69 Mal 96 TXNIP 

16 NLRP-1 43 Substrates* 70 PYNOD 97 Actin 

17 NOD2 44 NOD1 71 ATN1 98 TNFR-II 

18 Caspase-5 45 TLR4 72 Pro-caspase-4 99 Stat1 

19 Pannexin-1 46 NALP2 73 Pro-caspase-8 100 tp53 

20 Flagellin 47 TLR2 74 Caspase-4 101 Sptan-1 

21 NLRC4 48 TLR9 75 Pro-IL-1F7 102 TLR5 

22 INCA 49 TLR6 76 Caspase-8 103 IRF5 

23 COP 50 TLR7 77 SerpinB9 104 Caspase-12 

24 Iceberg 51 Biglycan 78 Caspase-14 105 MVK 

25 NAIP5 52 TRIF 79 Procaspase-10 106 TNFRSF1A 

26 TNF-  53 PI3K 80 PARP1 107 
Exogenous 

inhibitors 

27 TNFR-1 54 Phospholipase C 81 Caspase-10   

*Substrates are the proteins that only interact with caspase-1 in the ICE pathway. These are TIM, 

GADPH, Aldolase, -enolase, TFAP2A, PPAR- , pyruvate kinase, FGF-2, ATXN-3, NEDD4, 

Calpastatin, SREPBs and pro-IL-1 . 
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Chapter 4 

 

4. RESULTS & DISCUSSIONS 

 

4.1 Peptide-based drug design 

4.1.1. Determination of docking place 

 Suitable and fast methods for finding possible binding sites are generally based on 

Gaussian approaches [2]. Here, we used the GNM for determining the suitable binding 

regions [296-297, 316]. GNM assumes that two residues which are within a cutoff distance 

of each other interact with a harmonic potential. The cutoff distance is chosen as 7.0 Å. 

These inter-residue interactions lead to an interaction matrix for the protein, whose ij‟th 

entry is unity if residues i and j are within the cutoff distance. The diagonal elements of the 

interaction matrix equate to the negative sum of the row elements [290, 297]. The ij‟th 

element of the inverse of the interaction matrix indicates the extent of correlations between 

the i'th and j‟th residues. The correlation, iC , of the i'th residue with its surroundings, 

which is a measure of the energy exchange of the residue with its surroundings is given as  

1

i

j ij

C

 (25)
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 The surroundings of a residue defined in this formulation include the other residues 

of the protein as well as any ligands that it binds. Hence, a residue with high iC may be 

regarded as the one that may interact with ligands. The larger eigenvalues of the interaction 

matrix lead to significant interactions of the residues with their surroundings. The three 

largest eigenvalues of the interaction matrix are used in obtaining the inverse of the 

interaction matrix given in Eq. 25 [297]. Results of calculations on this basis are shown in 

Figure 4.1 where, four regions of binding residues are identified, spanning the ranges 160-

171, 230-247, 276-291, and 324-341. 

 

Figure 4.1 Interactions taken from GNM. 

 The residues identified in this manner are in general agreement with literature 

values. The most popular binding sites in the literature include residues of Arg179, His237, 

Gly238, Gln283, Cys285, Ser339 and Arg341 [22, 244]. There are some inhibitors 

designed for caspase-1 in PDB data bank that is docked at the sulphur atom of Cys285 
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(PDB IDs: 1BMQ, 1IBC, 1RWN, 1RWV, 1RWW, 1RWX, 2H4Y, 2H51, 2H54, 2HBR, 

2HBY, 3D6F). Taking His237 and Cys285 as the docking residues, or the hotspots, is 

reasonable since the interaction between ligand and protein is based on histidine-cysteine 

dyad of enzyme [9, 12]. Moreover, His237 and Cys285 have interaction peaks in Figure 

4.1. The allosteric site Cys331 is also found to be a possible docking site by Scheer et al. 

[17]. In our calculations, we consider all of the hotspots Arg179, His237, Gly238, Gln283, 

Cys285, Ser 339 and Arg341. The best tripeptides in each hotspot (found by GA) are 

considered with equilibrium and kinetic factors by Viterbi algorithm. Probabilities for each 

converged peptide in docking places are given in Table 4.1. 

Table 4.1 Probabilities residues having different states in tripeptides at docking place 

candidates. 

Binding 

place 

Mismatch 

Residue 
State A State B 

Minimized 

Energy* 

Bound 

Energy* 
E* PB/PA 

Arg179 

(GPS) 
P2 16 8 -76.02 -57.94 18.08 1.59 x10

-13
 

His237 
(AWG) 

A1 10 8 -39.78 -38.79 0.99 0.20 

Gly238 

(FYA) 
F1 8 10 -95.27 150583.65 150678.92 0 

Gln283 
(GAP) 

G1 18 7 -13.79 -17.04 -3.25 199.84 

 
P3 16 8 -27.8 -9.14 18.66 6.17 x10

-14
 

Cys285 
(YWG) 

G3 8 12 -24.12 -24.24 -0.12 1.22 

Cys331 

(SCP) 
S1 8 10 -19.75 -18.07 1.68 0.06 

 
P3 16 8 -23.12 -3.52 19.6 1.33 x10

-14
 

Ser339 

(VAP) 
V1 8 11 -10.21 -9.94 0.27 0.64 

 
P3 16 8 -26.87 -7.05 19.82 9.32 x10

-15
 

Arg341 

(WPA) 
P2 16 11 -67.19 -42.03 25.16 1.55 x10

-18
 

*All energies in (kcal/mol). 
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The GNM results point to eight candidate residues on the protein surface for 

binding. These are given in the first column of Table 4.1. The tripeptides obtained by GA 

are presented in column 1. A tripeptide is given for each binding location on the protein 

surface. The minimum energy of the free tripeptide is given in column 3. It is obtained by 

minimizing the energy of the tripeptide. The energy of the bound tripeptide is given in 

column 4. This energy is obtained by taking the bound conformation, removing the protein, 

and calculating the energy of the conformation of the tripeptide in the absence of the 

protein. Column 7 lists the energy difference between the bound conformation and the 

unbound one. The probabilities of the bound and unbound states are given in column 8 as 

the ratio PB/PA, where the individual probabilities are obtained by using Eqn.17. Very small 

values of the ratio points to the impossibility of the bound conformation relative to the free 

conformation. 

The configuration of the tripeptide upon binding to the protein surface is determined 

by the torsion states of the three residues. The two possibilities are that the torsion state of a 

residue in the bound configuration may be the same as the most probable state, or it may 

differ. The latter is an unfavorable contribution to binding. We refer to this residue as the 

mismatch residue. In column 2, the mismatch residues of the designed tripeptides are 

given. In columns 3 and 4, the states of the mismatch residue in the initial and bound 

configurations are given. In the first case, for example, GPS is converged at Arg179 of the 

protein and has the minimized state of 10-16-8 and the bound state of 10-8-8. Its 1
st
 and 3

rd
 

residues have the same states but its 2
nd

 residue, P2, is a mismatch residue, with state 16 in 

the most probable free conformation, and with state 8 in the bound conformation. In five of 

the tripeptides shown in Table 4.1, Proline is the mismatch residue, and changing the 

torsion angles of proline is expensive due to its ring structure. Thus the binding of the 

tripeptides GPS, GAP, SCP, VAP and WPA are unfavorable.  
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The tripeptide FYA binds to Gly238. It has one mismatch residue, F1. When Phe is 

changing the conformation of Phe from the 8
th

 state (most probable) into the 10
th
 (bound) 

results in a large positive energy change, leading to a very small probability ratio. This big 

energy difference is related to the bound state of FYA since in its bound state, phenyl ring 

of the FYA residue is started to come closer to the backbone as seen in Figure 4.2. It is 

about to form a new ring structure but it is impossible to manage a new ring. That is why, 

high energy is required by the Phe in FYA. 

 

Figure 4.2 Behavior of Phe residue in FYA in a) bound and b) minimized conformations. 

The tripeptide AWG binds to His237 of the protein, which goes from state 10-11-3 

to 8-11-3. Its 1
st
 residue has different states, 10 and 8, in minimized and bound 

conformations, respectively. The energy difference between the most probable and the 

bound state of the tripeptide is about one kcal/mol. The optimum path on the energy 

landscape is shown in Figure 4.3a, and the corresponding energy profile is shown in Figure 

4.3b. These calculations show that AWG may be a good candidate for binding to His237. 

a) b) 
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Figure 4.3 VitAL results for AWG.  

a) Path followed by Ala in AWG in Ramachandran plot. Red arrow shows the direction of 

path. b) Energy calculated by HyperChem versus each observed states by Ala in AWG. 

 YWG is the converged sequence for Cys285. Its conformation changes from 8-4-8 

to 8-4-12, the 3
rd

 residue changing its state from 8 to 12. The optimum path on the energy 

landscape is shown in Figure 4.4a, and the energies are shown in Figure 4.4b. The energy 

barrier in the transition is not high and the probability ratio for YWG is higher than that of 

AWG (His237). Consequently, Cys285 is conformationally a more appropriate choice for 

caspase-1 inhibition. 

b) a) 
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Figure 4.4 VitAL results for YWG. 

a) Path followed by Gly in YWG in Ramachandran plot. Red arrow shows the 

direction of path. b) Energy calculated by HyperChem versus each observed states by Gly 

in YWG. 

4.1.2. Previously designed inhibitors for caspase-1 

Some of the inhibitors designed for caspase-1 in literature and their docking results 

are given in Table 4.2. As seen, all drugs except minocycline have high Goldscore values. 

Besides, HyperChem score of malonate is found to be positive. Other HyperChem scores 

are found to be higher than -31.58 kcal/mol. Additionally, free binding energy of drugs are 

found between -5.98 kcal/mole and -7.85 kcal/mole from AutoDock. Minocycline has small 

Goldscore value, and malonate has positive HyperChem score. As a result, these two drugs 

have not good docking results. Moreover, inhibitor 1 and inhibitor3 are found to have 

small docking scores with respect to AutoDock and Chemscore G. On the other hand, 

inhibitor 3 has a high Goldscore value just like inhibitor 1, inhibitor 2, inhibitor 4, and z-

VAD-FMK. Inhibitor 5, inhibitor 6 and Ac-WEHD-CHO have also high scores of 

AutoDock but their Goldscore values are at intermediate level. 

a) b) 



 

 

Chapter 4: Results & Discussions            86 

86 

 

Table 4.2 Docking results of previously designed inhibitors. 

Inhibitor 

Name 
Goldscore 

Chemscore 

G 

(kJ/mole) 

HyperChem 

(kcal/mol) 

AutoDock 

(kcal/mol) 

PDB 

ID 
Reference 

Minocycline 20.65 -42.42 -30.63 -7.85 - [321] 

Inhibitor 1 70.39 -12.13 -21.06 -6.19 1RWO [322] 

Inhibitor 2 67.66 -30.65 -30.6 -7.78 1RWV [323] 

Inhibitor 3 70.17 -19.02 -23.06 -5.98 1RWW [242] 

Inhibitor 4 64.15 -13.8 -28.58 -7.07 1RWX [242] 

z-VAD-

FMK 
62.1 -43.22 -28.1 -6.20 2H4Y [8] 

Inhibitor 5 44.74 -11.57 -20.91 -6.24 1RWK [322] 

Inhibitor 6 42.8 -15.61 -22.8 -7.68 1RWM [322] 

Malonate 36.93 -19.81 3.63 -6.97 1SC3 [22] 

Ac-WEHD-

CHO 
50.8 -18.81 -31.58 -6.76 1IBC [235] 

 
* Inhibitor 1: 4-oxo- 3-(6-[4-(quinoxalin-2-ylamino)-benzoylamino]-2-thiophen-2- yl-

hexanoylamino)-pentanoic acid, Inhibitor 2:  5-[5- (1-carboxymethyl-2-oxo-propylcarbamoyl)-5-

phenyl- pentylsulfamoyl]-2-hydroxy-benzoic acid, Inhibitor 3: 4-oxo- 3-[(6-([4-(quinoxalin-2-
ylamino)-benzoylamino]-methyl)- pyridine-3-carbonyl)-amino]-butyric acid, Inhibitor 4: 4-oxo- 3-

(6-[4-(quinoxalin-2-yloxy)-benzoylamino]-2-thiophen-2-yl- hexanoylamino)-butyric acid, Inhibitor 

5: 3-(2- mercapto-acetylamino)-4-oxo-pentanoic acid, Inhibitor 6: 4-oxo- 3-[2-(5-([4-(quinoxalin-

2-ylamino)-benzoylamino]-methyl)- thiophen-2-yl)-acetylamino]-pentanoic acid 

4.1.3. Drug determination for caspase-1 inhibition 

4.1.3.1. D-amino acid based drug design 

There are two mirror-image isomers of aminoacids known as L- and D-enantiomers. 

L-formed aminoacids are common in proteins and called as natural isomers. D-forms of 

aminoacids attract attention of many scientists since there is a certain advantage of D-

enantiomeric forms. This advantage of D-forms is related to their specificity and hardly 

cross-reactive with L-forms. Consequently, it becomes hard to degrade them in body. That 
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is why they can be used for drug design purposes [324]. For instance, Bartzatt (2005) used 

D-amino acid as a drug carrier for antineoplastic nitrogen mustard groups and determined 

D-alanine N-mustard is in the level of those clinic antitumor drugs [325]. Moreover, L-

amino acids are replaced with D formed ones in order to avoid degradation in body by 

Hamamoto et al. (2002). It is found that D-amino acid substitutions in human granulysin 

are beneficial in terms of metabolic degradation [326]. On the other hand, there are no 

drugs designed for caspase-1 using D-enantiomeric residues. As a result, D-amino acid 

based drug design is considered with docking programs of GOLD and AutoDock. GOLD 

can dock many structure faster than AutoDock so firstly dockings are done with GOLD. 

Moreover, HyperChem is also used for evaluation of minimized energy of ligands docked. 

In Table 4.3, scores of best aminoacids in both forms can be seen. There is not so 

much difference between using either L- or D- form with respect to scores found for Trp, 

His and Phe.  

Table 4.3 Aminoacids GOLD score results. 

Aminoacid Type Goldscore Chemscore G (kJ/mole) HyperChem (kcal/mol)  

L-TRP 41.93 -17.94 -23.33 

D-TRP 37.56 -20.13 -27.27 

D-PHE 37.08 -23.15 -16.81 

D-HIS 36.88 -12.94 -21.11 

L-HIS 36.85 -12.55 -16.25 

L-PHE 35.82 -23.84 -22.56 

D-TYR 35.14 -16.5 -23.5 

Consideration of D-amino acid drugs is made for Trp, Phe and Tyr. Chemscore G 

and HyperChem scores of histidine are lower than tyrosine. Besides, scores from GOLD 

demonstrated using an aminoacid is favorable than minocycline, malonate and inhibitor6 

despite adding no additional chemical or biological agent. Furthermore, it is observed that 

using an aminoacid is better than drugs in Table 4.2 on account of Chemscore G values. 
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Besides, some HyperChem scores in Table 4.3 such as D-TRP are in the same with the 

ones in Table 4.2. In order to improve scores of Table 4.3, addition of chemical groups is 

done by iLib Diverse with D-Trp, D-Phe and D-Tyr. A random formation of molecules is 

done by considering all fragments in iLibDiverse. 

Table 4.4 D-aminoacid+ 1 x iLib Diverse results. 

# Structure 
Gold 

score  

Chemscore 

G (kJ/mol) 

HyperChem 

(kcal/mol) 

AutoDock 

(kcal/mol) 

MW 

(g/mol) 

1 d-tyr+ester(4) 34.07 -20.43 -22.57 -5.60 233 

2 d-tyr+ether(17) 44.01 -27.74 -29.7 -5.69 301 

3 d-tyr+ester(10) 32.9 -18.76 -32.09 -6.09 315 

4 d-tyr+ether(5) 35.22 -25.52 -29.2 -6.34 349 

5 d-trp+alcohol(12) 37.46 -22.22 -35.09 -5.55 264 

6 d-tyr+monocyclic(24) 42.69 -20.22 -29.64 -5.59 251 

7 d-tyr+bicyclic(22) 43.19 -31.17 -37.67 -6.31 359 

8 d-tyr+ether(12) 38.4 -26.29 -32.9 -5.62 301 

9 d-phe+bicyclic(4) 33.65 -22.09 -29.48 -7.16 342 

10 d-phe+bicyclic(7) 37.4 -25.16 -29.48 -6.68 309 

 

Scores in Table 4.4 show that HyperChem values are lower or in the level of 

inhibitors found previously as seen from Table 4.2. However, Goldscore values in Table 

4.4 cannot pass the values found for inhibitor 1, inhibitor 2, inhibitor 3, inhibitor 4, z-VAD-

FMK and Ac-WEHD-CHO despite having positive Goldscores that pass values of 

minocycline, inhibitor 5, inhibitor 6, and malonate. Thus, inhibitors in Table 4.4 have 

better HyperChem scores whereas their Goldscores are not so high like inhibitor 1, 

inhibitor 2, inhibitor 3, inhibitor 4, z-VAD-FMK and Ac-WEHD-CHO. Chemscore Gs in 

Table 4.4 cannot pass only minocycline and z-VAD-FMK.  

In AutoDock results, the highest value of inhibitors designed previously in Table 

4.2 is found to be -7.85 kcal/mol. Despite having no drugs in Table 4.4 that passed this 
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value, there are some candidates in Table 4.4 that can pass this value by molecule 

additions. Besides, there are some inhibitors designed in Table 4.2 that passed -5.98 

kcal/mol free energy. Consequently, d-tyr+ether(5), d-tyr+bicyclic(22), d-phe+bicyclic(4) 

and d-phe+bicyclic(7) are selected according their AutoDock results among ten structures 

determined as the top 4 drugs found from 1200 structures. Karanewsky et al. (1998) also 

stated bicyclic structures are potent inhibitors for ICE [236]. Among these 4 structures, d-

tyr+bicyclic(22) has the best Chemscore G and HyperChem values. It has also good 

Goldscore value. Since best AutoDock results belongs to d-phe+bicyclic(4) and d-

tyr+bicyclic(22), they are selected two templates for addition of molecules. Other 

unselected drugs with good AutoDock value, which are d-tyr+ether(5) and d-

phe+bicyclic(7), had similar AutoDock values with d-phe+bicyclic(4) and d-

tyr+bicyclic(22). They had also higher values of Chemscore G and HyperChem results 

compared with d-phe+bicyclic(4) and d-tyr+bicyclic(22).  

Structures of d-tyr+bicyclic(22) and d-phe+bicyclic(4) are shown in Figure 4.5. 

Images are held from best AutoDock run with considering the free energy of binding 

energy and inhibition constant, which are -7.28 kcal/mol and 4.62 M for d-

tyr+bicyclic(22) and -8.08 kcal/mol and 1.2 M for d-phe+bicyclic(4). These values are 

good since heptapeptides found by Unal et al. (2010), which are larger molecules than d-

tyr+bicyclic(22) and d-phe+bicyclic(4), had free binding energy and inhibition constant 

that are lower than -10 kcal/mole and 50 nM [270]. Analysis of interactions between 

caspase-1 and two structures found showed that d-tyr+bicyclic(22) had hydrogen bonds 

with Cys285, Gly238, Arg341 and Ser 236. Furthermore, it has pi-cation interaction with 

Arg 179 and Arg 341 as seen in Figure 4.5. For d-phe+bicyclic(4), hydrogen bonds are 

with Arg341 and Ser339 and pi-cation interactions exist between Arg179 and Arg341, 

respectively.  
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Figure 4.5 Docked structures of d-tyr+bicyclic(22) (left) and d-phe+bicyclic(4) (right). 

Ligands are in Stick representation and residues within 4Ǻ are in surface representation. 

Hydrogen bonds and pi interactions are shown with green and orange lines by Accelrys 

Discovery Studio 2.5. 

 

Figure 4.6 Pharmacophores of d-tyr+bicyclic(22) (left) and d-phe+bicyclic(4) (right).  

Pharmacophores of d-tyr+bicyclic(22) and d-phe+bicyclic(4) are also analyzed by 

using their docked conformations gained from the best AutoDock run. In Figure 4.6, the d-

tyr+bicyclic(22) has two hydrophobic interactions, a negative ionizable area, a hydrogen 

bond donor and two hydrogen bond donors. d-phe+bicyclic(4) has three hydrophobic 
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interactions with one hydrogen acceptor and donor. Moreover, it has a negative ionizable 

area.  

Table 4.5 D-aminoacid+ 2 x iLib Diverse results. 

(d-tyr+bicyclic(22) and d-phe+bicyclic(4) named as d-tyr and d-phe) 

# Structure Goldscore  

Chemscore 

G 

(kJ/mol) 

HyperChem 

(kcal/mol) 

AutoDock 

(kcal/mol) 

MW 

(g/mol) 

11 d-tyr+ester(5) 35.34 -42.34 -33.46 -6.12 417 

12 d-tyr+amine(24) 41.31 -31.34 -40.31 -6.53 444 

13 d-phe+monocyclic(26) 45.77 -36.75 -32.91 -7.04 409 

14 d-phe+ester(12) 30.66 -33.48 -35.03 -7.23 426 

15 d-phe+bicyclic(21) 28.23 -35.95 -28.0 -7.38 486 

16 d-phe+ester(10) 55.5 -27.23 -32.7 -7.24 440 

17 d-phe+monocyclic(10) 38.02 -22.75 -39.05 -7.25 423 

18 d-phe+monocyclic(27) 46 -22.51 -29.19 -7.90 439 

19 d-phe+bicyclic(18) 40.79 -55.94 -35.49 -7.46 458 

20 d-phe+monocyclic(20) 38 -35.08 -30.64 -7.04 426 

21 d-phe+monocyclic(37) 39.53 -31.05 -37.15 -6.85 409 

22 d-phe+monocyclic(38) 37.71 -35.19 -21.15 -6.46 409 

23 d-tyr+pharma(32) 18.69 -45.55 -42.73 -7.99 467 

24 d-phe+L-Pro 24.94 -22.37 -33.03 -8.86 455 

25 d-phe+L-Gly 31.73 -26.3 -45.19 -8.21 399 

26 d-tyr+L-Gly 42.63 -38.98 -25.18 -7.40 430 

Using these two determined structures as templates (d-tyr+bicyclic(22) and d-

phe+bicyclic(4) named as d-tyr and d-phe), search for new drugs are performed with 

considering the maximum molecular weight that a molecule can have for permeation and 

adsorption according to Lipinski Rule of 5 [217]. By considering this fact, a second 

addition of structures is done by iLib Diverse with the most successful compounds. These 

are esters, amines, monocyclics, bicyclics, pharmaceuticals and L-aminoacid groups. There 

are some inhibitors in Table 4.5 whose HyperChem, Chemscore G and AutoDock results 

are generally higher than the values in Table 4.2. However, Goldscore values are 
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determined to be lower than the Goldscores of inhibitor 1, inhibitor 2, inhibitor 3, inhibitor 

4, z-VAD-FMK and Ac-WEHD-CHO but other docking findings in Table 4.5 are 

determined to be generally higher than these four inhibitors. Consequently, these inhibitors 

are alternative drugs for caspase-1 inhibition.  

d-tyr-ester(5) has hydrogen bonds with Gln283, Arg341 and Ser236 and has -7.43 

kcal/mol minimum free binding energy (its free energy of binding in Boltzmann 

Distribution is -6.12 kcal/mol) with 3.56 M inhibition constant. It has a pi-pi interaction 

with Trp340 and pi-cation interaction with Arg179 and Arg341 as having the top 

Goldscore.  

d-phe-monocyclic(27) has a minimum free binding energy of -8.73 kcal/mol with 

400.45 nM. It also has hydrogen bonds with Arg179, His237, Gln283, Arg341 and Ser236. 

Moreover, it has a pi-cation interaction with Arg383 and Arg341.  

d-phe-monocyclic(20) has minimum free binding energy of -7.62 kcal/mol with 

2.58 M. It has hydrogen and pi-cation interaction with Arg341, Ser339 and Arg341, 

Arg179, respectively.  

Furthermore, d-tyr+pharma(32) has -9.59 kcal/mol free binding energy with 93.16 

nM. It has a pi interaction with Arg341 and hydrogen bonds with Arg179, Gln283, Arg341, 

Ser339 and Asp288.  

d-phe-L-Pro which has the minimum binding energy has hydrogen bonds with 

Arg179, Gln283, Arg341 and Ser236. It has a pi-sigma interaction with His237. Its 

minimum free binding energy and inhibition constant are -10.24 kcal/mol and 31.36 nM.  

As a final consideration, d-phe-L-Gly has hydrogen bonds with Arg179, Gln288, 

Arg341 and Ser339 with -9.71 kcal/mol minimum binding energy and 76.94 nM inhibition 

constant. Its only pi interaction is with Arg341. Their docking images are illustrated at 

Figure 4.7, which are taken from the best AutoDock run by considering free energy of 
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binding and inhibition constant. Using an additional L-form aminoacid is improved the 

scores considerably without passing the 500 g/mol level.  

d-Tyr-ester(5) has a hydrophobic interaction with two hydrogen bond acceptors, one 

hydrogen bond donor and one negative ionizable area. d-Phe-monocyclic(27) has two 

hydrophobic interaction with four hydrogen bond acceptors and a donor and also a negative 

ionizable area. d-Phe-monocyclic(20) has three hydrophobic interactions and one hydrogen 

bond acceptor. It also has a negative ionizable area with an aromatic ring. d-

Tyr+pharma(32) has two hydrogen bond acceptors and donors with three hydrophobic 

interactions and two negative ionizable area. d-Phe-L-Pro has four hydrophobic 

interactions with one hydrogen bond acceptor and one ionizable area. d-Phe-L-Gly has 

three hydrophobic interactions with five hydrogen bond acceptors, one hydrogen donor and 

one negative ionizable area as seen from Figure 4.8.  

The molecular structures of inhibitors found in this part are given at Appendix I. 

There are 27 d-aminoacid based drugs found for caspase-1 inhibition. In Appendix I, 

representations are given with corresponding structure number. 
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Figure 4.7 Docked structures of d-Tyr-ester(5) (top left), d-Phe-monocyclic(27) (top right), 

d-Phe-monocyclic(20) (middle left), d-Tyr+pharma(32) (middle right), d-Phe-L-Pro 

(bottom right) and d-Phe-L-Gly (bottom left).  

Ligands are in Stick representation and residues within 4Ǻ are in Surface representation. Pi 

(orange lines) and hydrogen (green lines) interactions are shown. 
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Figure 4.8 Pharmacophores of d-Tyr-ester(5) (top left), d-Phe-monocyclic(27) (top 

middle), d-Phe-monocyclic(20) (top right), d-Tyr+pharma(32) (bottom righ), d-Phe-L-Pro 

(bottom middle) and d-Phe-L-Gly (bottom right). 
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4.1.3.2. Aspartic acid and malonate based drug search 

There are many drugs for caspase-1 that contains an aspartic acid residue since 

caspase-1 cleaves IL-1  from Asp116-Ala117. Moreover, there is a certain need of Asp 

residue in caspase-1 inhibitors in the P1 position [1]. Additionally, malonate is found to be 

successful in terms of caspase-1 inhibition as a small inhibitor by Romanowski et al. [22]. 

Asp and malonate are used as templates for adding molecular structures taken from iLib 

Diverse 1.02. Fragment number is chosen as 2. One of them is Asp or malonate and the 

other fragment is taken from iLib Diverse database. Following step is to use GOLD in 

order to eliminate the structures formed fastly in an efficient manner. According to positive 

Goldscore and negative Chemscore G values, 9 structures are found good in terms of ICE 

inhibition. These structures are also docked by AutoDock with 2,500,000 number of energy 

evaluation. Energies of ligands are also minimized by using HyperChem. Docking results 

are given at Table 4.6. 

Table 4.6 Docking results of Asp/Malonate + 1 x iLib Diverse. 

# Name Goldscore 

Chemscore 

G 

(kJ/mol) 

HyperChem 

(kcal/mol) 

AutoDock 

(kcal/mol) 

27 Bicyclic-asp(13) 42.63 -20.52 -29.01 -6.51 

28 Monocylic-asp(34) 41.18 -19.09 -26.81 -6.25 

29 Monocyclic-asp(7) 40.53 -15.06 -26.8 -5.98 

30 Monocyclic-asp(17) 38.92 -20.06 -23.78 -5.62 

31 Benzene-asp(12) 38.63 -16.45 -23.64 -6.81 

32 Monocyclic-asp(6) 38.4 -17.68 -25.87 -5.69 

33 Ester-asp(7) 38.34 -14.3 -30.99 -5.92 

34 Ketone-asp(2) 37.53 -18.21 -20.87 -5.41 

35 Bicyclic-asp(4) 37.06 -6.7 -27.89 -5.65 
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There is no malonate containing inhibitors in Table 4.6 due to lower docking scores 

than Asp. As a result, using Asp is better than malonate. Bicyclic-asp(13) is found to have 

the highest scores of Goldscore and Chemscore G that are 42.63 and -20.52 kJ/mol, 

respectively. Its free energy binding energy and HyperChem score are also good with a 

value of -6.51 kcal/mol and -29.01 kcal/mol. Benzene-asp(12) has the highest free binding 

energy with a value of -6.81 kcal/mol. In order to improve the scores for reaching values in 

Table 4.2, a fragment addition onto Bicyclic-asp(13) and Benzene-asp(12) are done. 

Before that, analysis of docked structures of these two inhibitors is done. Bicyclic-

asp(13) has -7.86 kcal/mol minimum free energy binding energy with an inhibition 

constant of 1.74 M. It has hydrogen bonds with Arg179, His237, Gly238, Cys285 and 

Arg341. Benzene-asp(12) has hydrogen bonds with Arg179, Gly238, Gln283, Cys285, 

Arg341 and Ser236 with -8.18 kcal/mol minimum free binding energy and 1.01 M Ki. 

Docked structures of these compounds are shown at Figure 4.9. 

 

Figure 4.9 Docked structures of Bicyclic-asp(13) (left) and Benzene-asp(12) (right). 

Ligands are in Stick representation and residues within 4Ǻ are in Surface representation. Pi 

interactions (orange lines) and hydrogen bonds (green lines) are also demonstrated. 
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Figure 4.10 Pharmacophores of Bicyclic-asp(13) (left) and Benzene-asp(12) (right). 

Bicyclic-asp(13) has one hydrophobic area with a negative ionizable area. It also 

has five hydrogen acceptor with cLogP and TPSA values of -4.66 and 125.66, respectively. 

Its molecular weight is 277.232 g/mol. Benzene-asp(12) has two hydrophobic areas with a 

negative ionizable area. It has 276.075 g/mol molecular weight with cLogP and TPSA 

values of -2.477 and 92.29, respectively. It also has five hydrogen bond acceptors as given 

in Figure 4.10.  

Two structures are kept constant and additional molecules are used with the best 

groups for Asp, which are aminoacids, ketones, monocyclic, bicyclic, ester and benzene. 

Benzene-asp(12) has the best results after addition of molecules onto its structure. Benzene-

asp(12) is called as a1 in Table 4.7. There are some ketone based structures which are 

already found suitable candidates for ICE inhibition by Thornberry et al. (1994) and Brady 

et al. (1999) [247-248]. 

  



 

 

Chapter 4: Results & Discussions            99 

99 

 

Table 4.7 Docking results for 10 structures from 2 x iLib Diverse. 

# Name Goldscore 

Chemscore 

G 

(kJ/mol) 

HyperChem 

(kcal/mol) 

AutoDock 

(kcal/mol)  

36 L-Gly-a1(11) 28.62 -17.91 -31.59 -6.86 

37 ketone-a1(15) 21.62 -17.16 -28.96 -5.14 

38 monocyclic-a1(17) 27.4 -16.05 -32.88 -6.56 

39 L-Cys -a1(18) 18.86 -12.4 -25.81 -6.64 

40 monocyclic-a1(23) 22.42 -14.59 -29.73 -5.91 

41 monocyclic-a1(4) 27.33 -17.08 -17.94 -5 

42 L-Ala-a1(6) 18.93 -14.56 -17.57 -6.08 

43 ketone-a1(7) 23.93 -14.34 -28.95 -5.6 

44 ketone-a1(8) 24.2 -18.25 -25.33 -6.01 

45 esters-a1(9) 20.62 -14.2 -32.7 -5.21 

L-Gly-a1(11) is determined to be the best structure in Table 4.7 due to its good 

HyperChem and AutoDock results. It has three hydrophobic areas with two negative 

ionizable areas and six hydrogen acceptors. It also has one hydrogen donor with -3.36 

cLogP and 121.39 TPSA. Its molecular weight is 333.127 g/mol and minimum free binding 

energy is -8.65 kcal/mol with Ki of 454.05 nM. It also has hydrogen bonds with Arg179, 

His237, Gln283, Arg341 and Ser339. Docked conformation of this inhibitor is given at 

Figure 4.11 with its pharmacophore.  

 

Figure 4.11 Pharmacophore (left) and docked conformation (right) of L-Gly-a1(11). 
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Since L-Gly-a1(11) has low molecular weight with good docking results, an 

addition to its structure by iLib Diverse is also done but there is no candidate structure that 

improves docking. As seen from the comparison of docking scores of D-enantiomeric and 

Asp based inhibitors, using D-enantiomeric form of aminoacid can be an alternative way 

for using Asp residue. 

4.1.3.3. Tripeptide sequence prediction by Genetic Algorithm 

YWG is found to be the first member of last population of genetic algorithm which 

is the same tripeptide for the last 5 generations. Rest of peptides in Table 4.8 belongs to 

other members of the same population which is in the best peptides in population. XWG, 

where X can be any aminoacid, structure of peptide is converged as the last two peptides of 

the tripeptide. Without any priori information, GA gives a tripeptide with a 2
nd

 residue of 

Trp and a 3
rd

 residue of Gly. Trp is an aromatic polar residue whereas Gly is nonpolar. 

Both residues are neutral [327]. Thus, one of the tripeptides in is DWG whose 1
st
 residue is 

Asp. Aspartic acid was previously used many times as the 1
st
 residue in caspase-1 

inhibitors [12-13].  

Table 4.8 Docking scores of converged tripeptides. 

# Name Goldscore 
Chemscore G 

(kJ/mol) 

AutoDock 

(kcal/mol) 

MW 

(g/mol) 

46 AWG 54.69 -21.82 -7.68 368.39 

47 DWG 67.21 -24.29 -7.37 412.4 

48 GWG 61.48 -21.38 -7.66 354.37 

49 YWG 67.96 -27.64 -7.69 460.49 

*The AutoDock values are repeated at 2,500,000 number of energy evaluations. 

As fitness value in GA, AutoDock scores are used which are given in Table 4.8. 

Unal et al. (2010) also used AutoDock binding energy as fitness value for peptide based 
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drug of NF- B. A heptapeptide was found with a value of -9.37 kcal/mol fitness score 

[270]. When a comparison is made between our and Unal et al.‟s (2010) values, fitness 

values in Table 4.8 are good for a tripeptide. Additionally, Goldscore and Chemscore G 

values are determined to be good which also validate the tripeptides in Table 4.8. 

4.1.3.4. Analysis of drugs in this study for inhibition of ICE 

There are 49 structures determined for caspase-1 inhibition. Despite their 

satisfactory results, an analysis related to their drug-likeliness is done.  

The most popular set of rules is described by Lipinski et al. (2001) [217]. According 

to this set of rules, plots in Figure 4.12, Figure 4.13, Figure 4.14, Figure 4.15 and Figure 

4.16 are done in which red lines show maximum limit of an orally bio-available drug given 

by Lipinski et al. [217]. Half of literature drugs pass the 500 Da (g/mole) limit whereas 

none of found drugs in this study passes. Not only literature drugs but also found drugs in 

this study do not pass the limit for cLogP value. For hydrogen acceptor case, one of 

literature drugs pass the limit while there is no found drug passed maximum limit. 

Additionally, there is no literature and found drugs pass maximum value of hydrogen 

donor. As a result, we can claim that found drugs are more suitable than literature drugs in 

terms of Lipinski rule of 5. In addition to Lipinski, found drugs are suitable with respect to 

Ghose et al. (1999) rules of molecular weight and ClogP (they are approximately same 

range with Lipinski rule of 5) which considers high drug-likeliness of compounds [212]. 

Besides, Walters & Murcko [MW=200-500, HDO=0-5, HAC=0-10] filter demonstrates 

found drugs are suitable [216]. 

According to Palm filter that only consider the polar surface area (TPSA), some of 

found drugs with TPSA>139 Ǻ
2
 are absorbed with a 10%. On the other hand, there are 

completely absorbed drugs due to 63 Ǻ
2 

TPSA in some of the drugs found as clear from 

Figure 4.14
 
[219]. For blood brain permeable drugs analysis, Murcko et al. (1999) found 
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that MW=200-450, ClogP=0-5.2, HAC= max.4, HDO=max.3. There are also some 

candidates that fall into these rules if plots in Figure 4.12, Figure 4.13, Figure 4.14, Figure 

4.15, Figure 4.16 and the limits of Murcko filter are considered [221]. 

 

 

Figure 4.12 MW of literature (red) and found drugs (green) with Lipinski limits [217]. 

  

Figure 4.13 cLogP of literature (red) and found drugs (green) with Lipinski limits [217]. 
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Figure 4.14 TPSA of literature (red) and found drugs (green). 

  

Figure 4.15 Hydrogen acceptor of literature (red) and found drugs (green) with Lipinski 

limits [217]. 
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Figure 4.16 Hydrogen donor of literature (red) and found drugs (green) with Lipinski 

limits [217]. 

4.1.4. Multi-target drug determination considering the ICE pathway 

Pathway analysis is done for ICE in order to find drugs that can both affect ICE 

itself and its pathway proteins. In literature review part, a detailed knowledge related to 

ICE pathway is given. If found drugs for caspase-1 in this study are also found suitable for 

other proteins in the activation pathway of caspase-1, it will be easier to deactivate ICE 

function. However, any protein in this pathway cannot be considered owing to possible 

affects on unrelated systems.  

First, 3D structures of all proteins in the ICE pathway are searched from PDB data 

bank [311]. Structures of 1F2H for TRADD (Tumor necrosis factor receptor type 1-

associated DEATH domain protein), 1F3V for complex between TRADD and TRAF 

(Tumor necrosis factor receptor-associated factor), 1PN5 for pyrin domain of NRLP1, 

1UCP for pyrin domain of ASC, 2KN6 for ASC containing CARD, 2OQ0 and 3B6Y for 

AIM2, 3KAT for CARD domain of NLRP1 and 3E4C for procaspase-1 are found.  

After finding these structures, a search for each protein is done in order to identify 

any effects on unrelated systems. TRADD and TRAF form complex that can activate 
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caspase-1 but they can also activate caspase-8 which affects the apoptotic pathways [328-

329]. Consequently, inhibition of this complex is not suitable due to affecting apoptotic 

pathway. Despite being a necessary component for caspase-1 activation, NLRP1 has also 

interactions with caspase-2 and caspase-9 by forming a complex called apoptosome. 

Inhibition of NLRP1 will also affect the apoptotic pathways just like TRADD-TRAF2 

complex so it is not logical to inhibit this protein [330]. ASC has also a proapoptopic role 

by activating caspase-9 as a result it will not be useful to inhibit this protein [79]. 

Moreover, AIM2 controls cell proliferation and deactivating this protein will affect the cell 

growth [331]. AIM2 is also able to activate a wild-type PYD–caspase-9 [122].  

As seen inhibiting one protein can affect other systems, using procaspase-1 as 

inhibition target can solve this problem since it only goes to active form of caspase-1. It is 

not related to other proteins or systems. Elliot et al. (2009) studied the structure of 

procaspase-1 by mutating the Cys285 residue into Ala285 for analyzing the autoactivation 

of caspase-1 [332]. 3E4C is the PDB ID of the mutated structure of procaspase-1. In order 

to mutate back into its wild type, Ala285 is mutated into Cys285 with mutate function of 

HyperChem Release 7 software. After that, final structure is saved and then this structure is 

minimized with Accelerys Discovery Studio Visualizer 2.5. The reason of using Accelerys 

Discovery for minimization is related to number of residues in structure. Since there are too 

much residues for minimization in HyperChem, Accelerys is selected. Moreover, using 

NAMD will need too much time on account of residue number. However, Accelerys gives 

minimized structure in a short time. After that, minimized structure is also minimized two 

more times. Consequently, there are non-minimized, one time minimized and three times 

minimized structures for procaspase-1.  

All found drugs in this study are docked to these three procaspase-1s by AutoDock. 

Docking place is selected as Asp297 as the main cleavage site for procaspase-1 [332]. In all 

three structures, drugs with bad scores always found to be bad in others and vice versa for 
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the ones with good scores. After that, a detailed GOLD runs are done for three procaspase-

1s. Docking procedure is the same but docking place is taken as C atom of Asp297. 

Moreover, Lys296, Asp297 and Ser298 are made flexible without considering water 

molecules. Good valued inhibitors in three cases are selected whose docking scores are 

shown in Table 4.9. 

Table 4.9 Drugs for procaspase-1. 

Name Goldscore 

Chemscore 

G 

(kJ/mol) 

Autodock 

(kcal/mol) 
Name Goldscore 

Chemscore 

G 

(kJ/mol) 

Autodock 

(kcal/mol) 

10 55.61 -20.48 -7.11 21 62.39 -28.39 -8.02 

11 63.1 -27.53 -6.97 22 65.28 -30.33 -8.39 

12 62.01 -33.87 -8.31 23 62.27 -35.5 -6.93 

13 64.25 -26.64 -8.09 24 63.34 -26.66 -7.20 

14 63.97 -30.23 -7.70 25 69.3 -29.06 -8.37 

15 66.57 -29.8 -9.68 26 74.61 -32.62 -7.21 

16 73.4 -30.83 -8.65 3 50.65 -21.94 -6.38 

17 63.5 -26.75 -7.99 4 52.5 -25.16 -7.50 

18 62.54 -26.34 -8.42 7 70.07 -31.68 -7.16 

19 65.12 -32.3 -9.64 AWG 64.31 -22.73 -7.73 

2 54.13 -20.45 -7.37 DWG 69.79 -23.36 -7.12 

20 59.52 -27.27 -8.21 YWG 78.65 -26.13 -8.95 

* The chemical structures of numbered inhibitors are given in Appendix-I. 

There are drug candidates for both inhibiting procaspase-1 and caspase-1. By these 

inhibitors, there will be two targets (procaspase-1 and ICE) in order to deactivate caspase-1 

functions.  
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4.2 Conformational Factors in the Design of Peptide Drugs: Application to the 

Design of Caspase-1 Inhibitors.  

4.2.1. Equilibrium and Kinetic Factor Analysis of Tripeptides 

 Minimized (A) and bound (B) states are found for 4 tripeptides in Table 4.10. 

AWG, DWG, GWG and YWG have only one different state between minimized and bound 

conformations. Calculation of minimization and binding energies for AWG, DWG, GWG 

and YWG is done considering energy change in a residue having different states. 

According to states, path and energy behavior of passing from minimized to bound 

conformation are determined for 4 tripeptides specified from GA. Knowing the energies at 

states A and B, probabilities of passing state A to B are evaluated as seen in Table 4.10.  

Table 4.10 Energy change and probabilities of residues having different states. 

Peptides 
Mismatch 

Residue 
State A State B 

Minimized 

Energy* 

Bound 

Energy* 
E* PB/PA 

AWG A1 8 5 -102.48 -97.01 5.47 1.34x10
-4

 

DWG D1 3 8 -99.01 -98.75 0.26 0.655 

GWG G3 19 8 -107.15 -101.04 6.11 4.73x10
-5

 

YWG G3 8 12 -24.12 -24.24 -0.12 1.22 

*All energies in (kcal/mol). 

 As clear from E and PB/PA values in Table 4.10, YWG has the highest probability 

(PB/PA) due to low value of energy difference between A and B states. Thus, DWG can be 

an appropriate candidate because of its high probability. On the other hand, AWG and 

GWG are not suitable due to their low probabilities for passing from state A to B. 

4.2.2. Determination of Path Followed by Tripeptides 

Paths followed by tripeptides in Table 4.10 are found with considering energy 

behavior of these tripeptides by Viterbi decoding. In Figure 4.4, the results for YWG are 
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already given which indicates its suitability for changing its conformation from A to B. 

YWG is a good candidate because it has the highest probability and energy behavior, which 

does not make high energy difference. 

1
st
 residue (Asp) of DWG, which is another good peptide structure, has different 

states in its minimized (8) and bound (5) conformations. Asp changes its state by following 

the path given in Figure 4.17a. In addition, DWG makes a slight decrease and starts to rise 

after 5
th
 observed state in its energy behavior given in Figure 4.17b. After making a small 

decrease at 15
th
 and 16

th
 observed states, a sharp increase in energies of Asp. However, its 

energy does not differ while changing state as seen in Figure 4.17b. 

 

Figure 4.17 VitAL results for DWG. 

a) Path followed by Asp in DWG in Ramachandran plot. Red arrow shows the direction of 

path. b) Energy calculated by HyperChem versus each observed states by Asp in DWG. 

 1
st
 residue (Ala) of AWG, which is not a good candidate, goes from 8

th
 to 5

th
 state 

as given in Figure 4.18a. Its energy change during this path is also plotted in Figure 4.18b. 

Energies of Ala start to increase from minimized to bound states but there is a rapid 

decrease at the beginning. After 3
rd

 observed state, energy values of Ala increase steadily 

a) b) 
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up to last state. Furthermore, there seems to be a plateau after 47
th
 observed state. Its energy 

change is high as changing its state. 

 

Figure 4.18 VitAL results for AWG. 

a) Path followed by Ala in AWG in Ramachandran plot. Red arrow shows the direction of 

path. b) Energy calculated by HyperChem versus each observed states by Ala in AWG. 

 States of GWG are only different in 3
rd

 residue (Gly) because Gly goes from 19
th

 to 

8
th
 states. Its way is very different from other peptides due to passing through different 

regions which are distinct from each other as demonstrated in Figure 4.19a. It is clear that 

passing from minimized to bound conformation requires passing high activation energy for 

Gly residue as clear from Figure 4.19b. Consequently, this peptide is the worst peptide for 

ICE inhibition. 

a) b) 
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Figure 4.19 VitAL results for GWG. 

a) Path followed by Gly in GWG in Ramachandran plot. Red arrow shows the direction of 

path. b) Energy calculated by HyperChem versus each observed states by Gly. 

 In addition, tripeptides for Cys285 are also determined by complete enumeration. 

The found tripeptides from complete enumeration are AWG, DWG, DFF, SFF, AWE and 

DYF. As seen, complete enumeration and GA give AWG and DWG. On the other hand, 

there are some different tripeptides found from complete enumeration. The conformational 

factors analysis by VitAL is also performed for DFF, SFF, AWE as well as DYF. The 

results for these tripeptides given in Appendix II and indicate these tripeptides are not 

suitable for ICE inhibition. Consequently, using GA is better approach than using complete 

enumeration  

 YWG and DWG are candidate peptides for caspase-1 due to their good 

computational docking scores and probabilities of passing from minimization to binding. In 

this part, investigation of their binding properties is done. Ace- and –nme are used as caps 

for these peptides and Ace- is one of the most favorable initial cap for caspase-1 inhibitors 

[13, 333]. However, there is no specific end cap for caspase-1 inhibitors in literature.  

a) b) 



 

 

Chapter 4: Results & Discussions            111 

111 

 

Despite having the same 2
nd

 (Trp) and 3
rd

 (Gly) residues with YWG and DWG, 

AWG and GWG are not suitable. Tyr and Asp residues are polar whereas Ala and Gly are 

not [327]. This may be a reason for AWG and GWG to change their conformation during 

binding process. In addition, DWG has Asp residue in its structures which was previously 

determined experimentally as a need for caspase-1 inhibitors [13].  

YWG and DWG have hydrogen bonds with Cys285 and Asp288 while AWG and 

GWG do not. Thus, AWG has no hydrogen bond. The hydrogen bonds with Cys285 and 

Asp288 can be effective on binding process considerably since YWG and DWG, which are 

good peptides, have bonds with Cys285 and Asp288. 

4.3 Knockout Analysis on the ICE pathway 

 Knockout proteins in the ICE pathway are determined by zero perturbation value as 

given in Figure 4.20. Perturbation means perturbing a protein in the system with decreasing 

its force constant. Force constant, which is taken -1 normally when there is an interaction 

between two proteins in the ICE pathway, is taken as zero for zero perturbation. In other 

words, interactions of a protein are removed in the ICE pathway when it is perturbed with 

zero force constant. That is why it can also be called as knockout of a protein. There are 9 

knockout proteins in the ICE pathway as given in Table 4.11.  
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Figure 4.20 Knockout analysis. 
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Table 4.11 Results of Knockout Analysis. 

# Protein name 
Defected proteins 

from knockout 

The names of defected proteins from 

knockout 

6 NLRP3 96 TXNIP 

9 ASC 104 Caspase-12 

31 Caspase-1 38, 41, 43, 97, 101 pro-IL-33, IL-33, substrates, actin, sptan-1 

32 NF- B 94 PYPAF4 

38 Pro-IL-33 41 IL-33 

45 TLR4 65 MD2 

47 TLR2 49, 66 TLR1, TLR6 

52 TRIF 67 TLR3 

64 MyD88 48, 50 TLR7, TLR9 

 

1. Consequences of NLRP3 knockout:  

 The knockout of NLRP3 from the system most strongly influences TXNIP 

(Thioredoxin-interacting protein) as clear from Figure 4.20. Three signaling pathways have 

been proposed for the activation of NLRP3 by Jin et al. [334-335]. In one of the signaling 

pathways, TXNIP serves as a link between ROS (Reactive oxygen species) and 

inflammasome activation. TXNIP interacts with TRX (Thioredoxin) in the steady state and 

upon addition of inflammasome activators (MSU (monosodium urate), H2O2 and R-837), 

ROS is produced, causing TXNIP to dissociate from TRX and binds to NLRP3 as Zhou et 

al. found [336]. In other signaling pathway, potassium (K+) efflux is necessary. As a third 

pathway, uptake of crystals and particulates (alum, silica, amyloid- ) disrupts the 

phagolysosome acidic compartment and cathepsin B is released that activates NLRP3.  

 TXNIP specifically interacts with the LRR (Leucine-rich repeat protein) and 

NACHT (NTPase domain) domains of NLRP3. On the other hand, there are some debates 

about TXNIP since it is not clear whether TXNIP is a regulator or an activator as Franchi et 

al. stated [103]. Our knockout study shows that TXNIP and NLRP3 interaction is 

important. 
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2. Consequences of ASC knockout: 

 Caspase-12 is determined to be affected mostly due to the knockout of ASC as seen 

in Figure 4.20. Caspase-12 is known to interact with ASC. Besides, ASC is a member of 

inflammasome structure and interacts with caspase-1. When caspase-12 interacts with 

ASC, ASC cannot bind caspase-1. As a result of this, caspase-12 inhibits caspase-1 

activation as Zhou et al. and Miao et al. said [70, 337].  

3. Consequences of Caspase-1 knockout: 

 Caspase-1 knockout mostly affects substrates [pro-IL-1 , TIM (triosephosphate-

isomerase), GADPH (glyceraldehyde-3-phosphate dehydrogenase), aldolase, -enolase, 

TFAP2A (Transcription factor AP-2-alpha), PPAR-  (Peroxisome proliferator-activated 

receptor gamma), pyruvate kinase, FGF-2 (Heparin-binding growth factor 2), ATXN-3 

(Ataxin-3), NEDD4 (E3 ubiquitin-protein ligase NEDD4), calpastatin, SREPBs (Sterol 

Regulatory Element-Binding Proteins)], pro-IL-33, IL-33, actin and sptan-1 (Spectrin alpha 

chain, brain).  

 IL-33 is the active form of pro-IL-33 after caspase-1 cleavage as Dinerallo et al. 

stated [1]. In our analysis, pro-IL-33 and IL-33 are determined to be defected in knockout 

analysis of caspase-1. Calpastatin, NEDD4, ATXN-3, TIM, GADPH, pyruvate kinase, 

actin, aldolase, -enolase, TFAP2A, PPAR-  and sptan-1 are substrates of ICE as Wang et 

al. (1998), Harvey et al. (1998), Wellington et al. (1998), McIntire et al. (2009), Shen et al. 

(2010) said [175-177, 192-193]. The knockout analysis for ICE also shows calpastatin, 

NEDD4, ATXN-3, TIM, GADPH, pyruvate kinase, actin, aldolase, -enolase, TFAP2A, 

PPAR-  and sptan-1 are affected from caspase-1 knockout.  

 On the other hand; pro-IL-1 , FGF-2 and SREPBs are not substrates of ICE but 

their functioning depend on caspase-1 as found from knockout analysis of the ICE 

pathway. Keller et al. (2008) and Yu et al. (2008) also stated FGF-2, pro-IL-1  and 

SREPBs are dependent on caspase-1 activity [25, 169].  
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4. Consequences of NF- B knockout: 

 NF- B knockout is effective on PYPAF4 (NACHT, LRR and PYD domains-

containing protein 4) as clear from Table 4.11. Kinoshita et al. stated (2005) that PYPAF4 

deactivates NF- B activated by cytokines [118]. PYPAF4 directly interacts with IKK  

(Inhibitor of nuclear factor kappa-B kinase subunit alpha) for inhibition of NF- B. In our 

analysis, NF- B knockout defects PYPAF4, whose function depends on NF- B as 

Fiorentino et al. found [338]. 

5. Consequences of Pro-IL-33 knockout: 

 The knockout of pro-IL-33 affects its active form, IL-33 as found from Table 4.11. 

When pro-IL-33 is knocked out, IL-33 is the most affected protein in the ICE pathway. IL-

33 is simply the active form of pro-IL-33 as Dinerallo et al. said [1]. Knockout analysis 

also shows the relation between pro-IL-33 and IL-33. 

6. Consequences of TLR4 knockout: 

 MD2 (myeloid differentiation protein) is defected from the knockout of TLR4 as 

seen in Table 4.11. TLR4 requires MD2 for sensing cellular endotoxin levels, which are 

needed for inflammatory responses as Prohinar et al. reported [339]. Certain need of MD2 

is also observed from the knockout analysis for TLR4.  

 When LPS is recognized, LPS-binding protein and CD14 (Monocyte differentiation 

antigen CD14) are triggered for transporting LPS. LPS-binding protein and CD14 are 

accessory proteins that transport LPS to TLR4 and MD2. TLR4 forms a multimer complex 

with MD2 for LPS recognition as Park et al. claimed [340]. It cannot directly bind onto 

triggers, it needs MD2.  

7. Consequences of TLR2 knockout: 

 Our knockout analysis clearly demonstrates TLR2 knockout mostly affects TLR1 

and TLR6. Shenk et al. (2009) stated that TLR2 can recognize diacylated and triacylated 

protein with either attaching with TLR1 or TLR6. In other words, TLR2 can form complex 
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with TLR1 or TLR6. In both structures, TLR2-TLR6 and TLR2-TLR1, there are some 

differences. Fatty acid moieties interact with each TLR structure in the TRL2-TLR1 

complex. However; TLR2-TLR6 complex needs hydrogen bonds between glycerol and the 

peptide backbone of the ligand and the LRR11 loops of TLRs [341]. That is why two 

different complexes of TLR2 sense different ligands. For instance, human cytomegalovirus 

and modified vaccinia virus Ankara (MVA) are related with TLR2-TLR1 and TLR2-TLR6 

complexes; respectively. On the other hand, hepatitis C is mediated by both complexes 

[342].  

8. Consequences of TRIF knockout: 

 As found from Figure 4.20, knockout analysis on the ICE pathway shows TRIF 

(TIR domain-containing adapter molecule) knockout affects TLR3 most importantly.  

 Han et al. (2010) said that TLR3-mediated signaling depends on TRIF, which 

interacts TLR3 by TIR (The Toll/Interleukin-1 receptor) domains [343]. Additionally, 

Yamamoto et al. (2003) studied TRIF knockout mice. TRIF knockout was determined to 

have defects in IFN-  (Interferon beta) and IRF3 (Interferon regulatory factor 3) 

activations, which require TLR3 dependent path stimulated by dsRNA and/or poly(I:C) 

triggers [344]. Consequently, experimental result of Yamamoto et al. (2003) and our 

knockout analysis for TRIF-TLR3 relation agree with each other. 

9. Consequences of MyD88 knockout: 

 MyD88 knockout mostly affected TLR7 as well as TLR9. MyD88 is an adaptor 

protein for TLR7 and TLR9. The relation of TLR7 and TLR9 with MyD88 is also stated in 

Kawai et al.‟s study. Kawai et al. (2010) said TLR7-MyD88 complex is activated when 

ssRNA is sensed. For TLR9-MyD88 complex, bacterial DNA is a trigger. Both TLR7-

MyD88 and TLR9-MyD88 complexes have roles in NF- B and IRF7 (Interferon 

regulatory factor 7) activations. Activation of NF- B and IRF7 will produce inflammatory 

cytokines and type I IFN; respectively [124]. 
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Chapter 5 

 

5. CONCLUSION 

 The computational studies are done for caspase-1 related to peptide based drug 

design, conformational factors in its peptides and knockout analysis on its pathway. 

 Initially determination of docking place is done for caspase-1 by GNM and VitAL. 

Cys285 is determined to be suitable for docking studies as was claimed in the literature [9, 

12]. Search for peptide based drugs for caspase-1 is also performed with comparison of 

drugs from the literature. ICE exists in the cytoplasm of cell. Therefore, small molecules 

(<500 Da) have to be used to reach its target. Moreover, D-enantiomer peptides have not 

been considered for ICE. Asp residue based drugs are always considered. Bicylic and 

ketone structures, based on Asp and D-enantiomeric residues are obtained as good 

inhibitors in accordance with previous experimental works of Brady et al. and Karanewsky 

et al. [236, 249]. Besides, D-enantiomeric based drugs have better docking results than Asp 

residue. Additionally, tripeptide sequence prediction is analyzed by genetic algorithm 

(GA). The tripeptide X–Trp-Gly, where X can be any amino acid, converges in GA. What 

is more, there are found common drugs for both caspase-1 and procaspase-1. As a result, 

multi-target inhibition of caspase-1 functions can be done. 

 A more detailed analysis of tripeptides found from GA is done by conformational 

factors with VitAL. The paths followed by tripeptides in the Ramachandran Map are 

determined with energy behaviors. Consequently, Tyr-Trp-Gly is found to be the most 

appropriate tripeptide sequence in terms of conformational factors of its minimized and 
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bound structures. Asp-Trp-Gly is also found to be suitable. On the other hand, Ala-Trp-Gly 

and Gly-Trp-Gly are not suitable due to their high energy changes during changing state. 

The tripeptides determined from complete enumeration are also analyzed by VitAL. Ala-

Trp-Gly and Asp-Trp-Gly are also determined from complete enumeration. However; there 

are other found peptides which are different from the results of GA. Besides, 

conformational factors are analyzed by VitAL for these different tripeptides. VitAL 

demonstrate these different tripeptides are not suitable for ICE inhibition conformationally. 

This novel method uses VitAL and determines the ability of peptide to change its 

conformation from minimization to binding. 

 Knockout of the proteins in the ICE pathway shows affected proteins in the system. 

Knockout of NLRP3, ASC, caspase-1, NF- B, pro-IL-33, TLR4, TLR2, TRIF and MyD88 

are crucial in the ICE pathway.  
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6. APPENDIX-I 

 

 

 

 

 

Figure 6.1 The molecular structures of D-aminoacid+ 1 x iLib Diverse.  
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Figure 6.2 The molecular structures of D-aminoacid+ 2 x iLib Diverse. 
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Figure 6.3 The molecular structures of D-aminoacid+ 2 x iLib Diverse.  
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Figure 6.4 The molecular structures of 9 molecules from Asp/Malonate + 1 x iLib Diverse.  
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Figure 6.5 The molecular structures of 10 molecules from Asp/Malonate + 2 x iLib 

Diverse.  
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7. APPENDIX-II 

 

 Determination of minimized and bound energies given in Table 7.1 shows that 

AWE, DFF, DYF and SFF pass through high energies during state change. Furthermore, 

there are two residues having different states in DFF, DYF as well as SFF and these 

residues make large energy difference during state change.  

Table 7.1 Energy change and probabilities of residues having different states. 

Peptides 
Mismatch 

Residue 
State A State B 

Minimized 

Energy* 

Bound 

Energy* 
E* PB/PA 

AWE E3 11 8 -108.17 -86.11 22.06 2.42x10
-6

 

DFF D1 10 8 -86.89 -59.01 27.88 1.84x10
-20

 

 
F3 8 12 -97.21 -84.94 12.27 2.06x10

-9
 

DYF D1 11 8 -91.24 -80.18 11.06 1.48x10
-8

 

 
Y2 8 5 -45.39 -39.055 6.335 3.28E-05 

SFF S1 5 3 -50.3 -43.14 7.16 8.54x10
-6

 

 
F3 8 3 -47.33 -31.17 16.16 3.63x10

-12
 

 As one of the unfavorable peptides, AWE goes from 8-8-11 to 8-8-8. Its 3
rd

 residue 

is the only one that changes its state as seen in Figure 7.1a. Although having one aminoacid 

having different states, it encounters high energy change while going from minimization to 

binding as given in Figure 7.1b. Especially in the last observed states, a dramatic increase 

is observed for the Glu residue in AWE in spite of having a smooth exponential rise at 

initial observed states. 



 

 

Appendix-II            125 

125 

 

 

Figure 7.1 VitAL results for AWE 

a) Path followed by Glu in AWE in Ramachandran plot. Red arrow shows the direction of 

path. b) Energy calculated by HyperChem versus each observed states by Glu in AWE. 

 DFF is the worst scored peptide due to the lowest probabilities of its aminoacids. 

These low probabilities come from high energy changes. For example, its first residue Asp 

has an increasing energy behavior during state change from 10
th

 to 8
th
 states as given in 

Figure 7.2b. Its 3
rd

 residue Phe also demonstrates a sharp increase at the last three observed 

states in Figure 7.2d while going from 8 to 12. The paths followed by residues having 

different state are shown in Figure 7.2a and Figure 7.2c. 

a) b) 
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Figure 7.2 VitAL results for DFF 

a) Path followed by Asp in DFF in Ramachandran plot. Red arrow shows the direction of 

path. b) Energy calculated by HyperChem versus each observed states by Asp. c) Path 

followed by Phe in DFF in Ramachandran plot. Red arrow shows the direction of path. d) 

Energy calculated by HyperChem versus each observed states by Phe. 

a) b) 

d) c) 
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 DYF has two residues having different state. 1
st
 residue changes its state from 11

th
 

(minimized) to 8
th
 (bound) and 2

nd
 aminoacid passes from 8

th
 (minimized) to 5

th 
(bound). 1

st
 

aminoacid (Asp) makes a change while passing from 8
th

 to 11
th
 state as seen in Figure 7.3a 

and Figure 7.3c. Energy behavior of Asp makes an exponential growth up to last 

conformation Figure 7.3b. Tyr makes a sudden decrease in energy. It rises up to 22
nd

 

observed state and forms a peak. There is also a small fluctuation in energy at the last three 

observed states of Tyr as seen in Figure 7.3d. 
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Figure 7.3 VitAL results for DYF. 

a) Path followed by Asp in DYF in Ramachandran plot. Red arrow shows the direction of 

path. b) Energy calculated by HyperChem versus each observed states by Asp. c) Path 

followed by Tyr in DYF in Ramachandran plot. Red arrow shows the direction of path. d) 

Energy calculated by HyperChem versus each observed states by Tyr. 

a) 

b) d) 

c) 
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 SFF has two residues having different states (1
st
 and 3

rd
 aminoacids which go from 

5 to 3 and 8 to 3; respectively.) and the paths followed by these residues are given in Figure 

7.4a and Figure 7.4c. 1
st
 residue has an energy behavior in which a sharp increase happens 

against smooth rise at initial observed states in Figure 7.4b. What is more, its 3
rd

 residue 

also has high energy difference between minimization and binding as clear from Figure 

7.4d which demonstrates SFF is not a good choice for ICE inhibition. 
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Figure 7.4 VitAL results for SFF. 

a) Path followed by Ser in SFF in Ramachandran plot. Red arrow shows the direction of 

path. b) Energy calculated by HyperChem versus each observed states by Ser. c) Path 

followed by Phe in DFF in Ramachandran plot. Red arrow shows the direction of path. d) 

Energy calculated by HyperChem versus each observed states by Phe. 

 

a) 

 

 

 

 

 

 

 

 

 

 

 

b) 

d) c) 
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