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ABSTRACT

There is growing interest over closed loop supply chain management according to

the cost, the legislation issues and environmental considerations. In this thesis, we

are interested in disassembly, remanufacturing and refurbishing operations of closed

loop supply chains for products with modularity properties. We develop a generic

mathematical model for commercial retail products such as computers, cell phones

etc. We use stochastic optimization and robust optimization approaches to assist in

making more accurate decisions under uncertain environment conditions.

First we present the mathematical model in detail and then we use two differ-

ent approaches which are Robust Optimization and Stochastic Optimization for the

generic model. The generic disassembly and refurbishing model has two stages to

give decisions. In the first stage we determine the number of product disassembly

and part refurbishing sites which are given strategically. In the second stage, we

determine the operational decisions such as the quantity of disassembled products,

refurbished parts etc. We give first stage decisions with Stochastic Optimization and

Robust Optimization Approaches. Stochastic Optimization minimizes the expected

cost while giving the first stage decisions for the combined problem. Robust Opti-

mization Approach which minimizes the deviation between optimum cost and robust

cost for each scenario while giving the first stage decisions for the combined problem.

The generic model has complexity because it is a large scale mixed integer problem.

In addition, it has two different uncertain factors which are the distribution of demand

and returns. Thus to give strategic decisions like opening disassembly and refurbishing

sites , we should be aware of the expected costs and what we lose under different

situations if we give the first stage decisions at the beginning of the planning horizon.

In the numerical results section, we solve different scenarios in a combined prob-
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lem and give strategic decisions at the beginning of the time horizon using Stochastic

Optimization and Robust Optimization and compare the results of these two different

approaches. The numerical results part show us which approach is appropriate under

different conditions.The variability of demand and returns affect the first stage deci-

sions directly. We conclude that variability of returns has more effects over strategic

decisions rather than variability of demand.

The second important result that we obtain is if the costs and capacities of opening

disassembly and refurbishing sites are high (inflexible environment), Stochastic Op-

timization Approach gives better solutions and if the costs and capacities of opening

disassembly and refurbishing sites are low(flexible environment), Robust Optimization

Approach gives better solutions. Finally, we conclude that determining the length of

planning horizon has a critical importance in giving strategic decisions.



ÖZETÇE

Günümüzde yasal mevzuatlar ve maliyet sorunları dolayısıyla kapalı döngülü tedarik

zinciri sistemleri üzerine gittikçe artan bir ilgi belirmektedir. Bu tezde parça modülerliğine

sahip ürünlerin kapalı döngülü tedarik zincirindeki yeniden üretim, demontaj ve ye-

nileme işlemleri ile ilgili matematiksel bir model geliştirilmiştir. Bu matematiksel

model belirgin olmayan koşullarda geçerli sonuçlar verecek yöntemler kullanılarak

çözülmüştür.

Kapalı döngü tedarik zinciri yönetimi ve bu tezde kullandığımız robust optimiza-

syon ve stokasftik optimizasyon yöntemleri ile ilgili makaleleri gözden geçirdikten

sonra tezin ikinci aşamasında geliştirdiğimiz modeli ve bu modelin robust optimiza-

syon ve stokasftik optimizasyon yöntemleri ile nasıl çözüleceği anlatılmıştır.Geliştirdiğimiz

model iki aşamalıdır. İlk aşamada ürün demontaj ve parça yenileme sahalarının sayısı

gibi stratejik kararları belirlerken ikinci aşamada bu sahalardaki operasyonel kararlar

verilmektedir. İlk aşama kararını verirken farklı senaryoların toplam maliyetini op-

timize eden stokasftik optimizasyon yöntemi veya senaryoların teker teker çözülerek

bulunan en iyi sonucu ile toplu olarak çözülen sonuçları arasındaki farkı optimize eden

robust optimizasyon yöntemi kullanılmaktadır.

Geliştirdiğimiz model büyük ölçekli bir karışık tam sayı programlama modelidir.

Senaryolar arasındaki değişik dağılımlı talep ve geri dönüşler de modelin yapısını

karmaşıklaştırmaktadır. Numerik sonuçlar bölümü bize geliştirdiğimiz modelin hangi

şartlar altında hangi yöntemler kullanılarak çözülmesi gerektiğini göstermektedir.

Çalışmanın sonucu demontaj ve yenileme sahasının büyük maliyet ve kapasiteli

olduğu durumlarda stokasftik optimizasyon yönteminin daha iyi tam tersi durumda

da robust optimizasyon yönteminin daha iyi sonuçlar verdiğini göstermektedir. Buna

ek olarak senaryolar arasındaki talep ve geri dönüş dağılımlarındaki farklılıkların ilk

vi



aşama kararlarında kritik öneme sahip olduğu ancak geri dönüşlerin talepten daha

önemli olduğu belirlenmiştir. Son olarak da stratejik kararlar verirken planlama za-

man aralığının çok kısa veya çok uzun belirlenmemesi gerektiği belirlenmiştir.
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Chapter 1

INTRODUCTION

In the past, companies thought that they were not responsible for products after

being sold since nobody regulated the recovery operations and the companies were

not aware of the value of the used products. However, in the modern era, people are

more sensitive to sustainability and environmental consciousness . Many people might

prefer recycled or remanufactured products. Besides environmental concerns, Jayara-

man et al. (2) imply that to increase profitability and survive within the competitors

companies must coordinate their activities due to the enviromontel considerations.

For instance, the cost of returned products are %2 of total sales of Hewlett-Packard

(3).In addition, municipal corporations and governments encourage these operations

to decrease the incineration activities and landfill areas. Thus, the universities and

companies want to answer society’s needs and while they are increasing sustainability,

they want to minimize their cost and perhaps increase profitability. Their interest

over the closed loop supply chain rises day after day. Nevertheless , to explain the

closed loop supply chain, we should understand what the traditional supply chain is.

In this thesis, we develop a generic closed loop supply chain mathematical opti-

mization model. We are interested in disassembly, refurbishing and remanufacturing

operations of the products with modularity properties. After used products return to

the system, the model decides the quantity of disposed and disassembled products and

refurbished parts. Since the returns and demand are uncertain, opening disassembly

and refurbishing sites are strategic decisions. Thus we use Stochastic Optimization

and Robust Optimization Approaches to handle uncertainty. We analyze the results

of these two approaches and determine which approach gives more accurate results
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under different conditions.

Beamon (4) defines the traditional supply chain that different business echelons

such as vendors,manufacturers, distributors control their processes together. The

forward flow of raw materials, half products and final products and the backward flow

of information are managed efficiently. Practitioners try to decide inventory levels,

production quantities, the locations and number of echelons under certain or uncertain

demand. However, the closed loop supply chain involves the traditional supply chain

activities. For instance, Kumar and Malegeant (5) define the Closed Loop Supply

chain as re-design of traditional supply chain. As well as the forward flow of the raw

materials and products, the backward flow of used and remanuafactured products are

considered.

Dekker et al. (6) give the detailed closed loop supply chain definition: ”The

process of planning,implementing and controlling backward flows of raw materials, in

process inventory, packaging and finished goods, from a manufacturing, distribution

or use point, to a point of recovery or point of proper disposal”.

When we compare the definition of closed loop supply chain and tradiotonal sup-

ply chain, the planning of the closed loop supply chain management is harder than

the traditional supply chain management. Difficulty of the closed loop supply chain

management comes from not only the increased number of echelons or processes but

also the complexity of the dynamics. Thus, Sarkis et al. (7) tries to explain how

reverse supply chain operations are difficult to handle. Supply chain systems are orig-

inally designed for forward channels, reverse distribution costs are higher and returns

may not be transported or handled as easy as first hand products.

Tibben-Lembke and Rogers (8) summarize the differences between traditional sup-

ply chain and the closed loop supply chain in a very proper way. The most important

closed loop supply chain characteristics which increase complexity of the supply chain

are listed as :

• Two types of uncertain variables which are returns and demand.
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• Two types of transportation modes which are distribution and collection.

• The quality and packagings are mostly not standardized.

• The pricing of the returns and demand are uncertain.

Figure 1.1: The Closed Loop Supply Chain (adopted by Thierry et al. (1))

The most well-known chart for the closed loop supply chain activities is shown by

Thierry et al. (1). Blue arrows imply the forward flows of the closed supply chain

activities and red ones imply the backward flows. In this thesis, we will focus on the

backward flows of the closed loop supply chain activities. The definitions of the main

closed loop supply chain activities should be made before we explain the structure of

Figure 1.1. We define the activities by order of complexity of activity’s output:

• Reuse The returns come to the distributors or retailers and they are sold as

the second-hand products.

• Repair: The damaged returns are harnessed by service facilities and they are

sold as the second-hand products.
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• Refurbishing: The returns are technologically improved and sold as second

hand products.

• Remanufacturing: The returns are divided into the parts or modules and

they are used to produce a new product.

• Cannibalization: Only few parts of the returns are used for new products

because of insufficient quality of the returns and remaninig parts are sent to the

disposal.

• Recycling: The parts of the returns are converted into the raw materials such

as aluminum, plastics etc.

• Land-filling: The returns are sent to the waste disposing areas and they are

buried under the soil.

• Incineration: The returns are burned under the municipal restricted areas.

As we can see in Figure 1.1, there are different types of actions in a closed loop

supply chain. If the quality of the product is sufficient, it can be reused and sold.

This is the most preferable for companies because the cost is minimum.If customers

want, the broken products may be repaired at the customer location or companies

can take the broken product and sell as second hand products after refurbishing. To

use the valuable parts, returned products may be disassembled and some of them may

be used in the remanufacturing operations after refurbishing operations and some of

them may be recycled or land-filled. Lund (9) expresses that the used products or

parts can be used as first hand products or parts after refurbishing operations.

The challenge of the closed loop supply chain activities are driven by uncertain

demand from forward flows of supply chain and uncertain returns of backward flows of

supply chain. Guide et al. (10) mentions that companies don’t have much information

related with the quality, quantity and timing of the returned products. To handle the
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uncertainty of demand and returned products, we can use different approaches such

as Stochastic Optimization(SOA) or Robust Optimization(ROA).

In SOA, briefly we integrate different scenarios into the large scale mixed integer

optimization problem and solve all scenarios for same strategic decisions. In ROA,

we try to minimize the deviation between optimum costs and expected cost while

giving the same strategic decisions for all scenarios.

In this thesis, chapter 2 reviews the closed loop supply chain management liter-

ature in detail and then evaluate the SOA and ROA practices. Chapter 3 builds a

generic disassembly and remanufacturing model which can be used in the problems

which have product modularity such as personal computers, cellphones, automobiles

etc. and present how SOA and ROA are implemented the generic model. Section

4 shows the experimental design of the problem and show the results of determinis-

tic, stochastic and robust optimization approaches. Finally, section 5 concludes our

thesis.
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Chapter 2

LITERATURE REVIEW

Since there are numerous types of research topics in closed loop supply chain

systems, we review the most important articles related to closed loop supply chain

management and we examine the most related articles with our topic in detail. Closed

loop supply chain operations are studied in different names in literature. We use green

manufacturing, closed loop supply chain management and reverse logistics key words

in our literature review and use related articles with our topic.

2.1 Reviews

Firstly, we analyze three important literature review articles and explain their classi-

fication method for literature. Fleischmann et al. (11) , one of the pioneers in reverse

logistics, mainly discuss the literature over three sections. These sections are distri-

bution planning, inventory control and production planning. Distribution planning

section analyzes the content of the collection and transportation of the used materials

articles and these articles are explained in details. Also the actors in distribution plan-

ning, the difference between forward and reverse logistics and modeling and solution

approaches are inquired. In inventory control section, authors separate literature into

two parts. Deterministic inventory management models which use Economic Order

Quantity (EOQ) models and stochastic inventory management models. Stochastic

models generally use periodic and continuous review solution approaches in this re-

view. Finally, production planning section review the articles which use Material

Resource Planning (MRP) models and shop flor controlling models.

In recent years, the number of articles related with closed loop supply chain man-

agement rapidly increased. Thus researchers need more complex reviews. Pokharel
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and Mutha (12) divide the reverse logistics review into four sections: Inputs and col-

lection, structure, processes and outputs. Reverse logistics processes and structure

are the most important section for our research. Processes section is divided into five

parts: disassembly, coordination, supply chain, inventory and repair and after-sales

service. Structure section is divided into four parts : general, inspection and con-

solidation, integrating manufacturing and remanufacturing and product modularity.

In our thesis, we use product modularity, disassembly, supply chain and inventory.

Thus, this literature review gives a helpful insight for our research.

Srivastava (13) gives us the most detailed review and it is more consistent to our

literature review structure. Srivastava (13) uses the term of green supply chain man-

agement for its review. Firstly, articles are divided into three sections: importance,

design and operations. Then, operations section is divided into three subsections: re-

manufacturing, reverse logistics and network design and waste management. We did

research for remanufacturing and reverse logistics and network design in our thesis.

Figure 2.1: Literature Review Scheme

The reason we used the literature review scheme in figure 2.1 is our mathematical

model which is explained our model in the next chapter . Mainly, we use refurbishing

and disassembly facilities for processing. Thus, we review for product recovery. We

hold inventory with holding costs and we determine the production quantities. Then,
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we review for inventory management and production planning. Although we don’t

use reverse logistics, this part is very important to us. The first reason of this is that

closed loop supply chain management can’t be understand without logistic operations.

Collecting and distributing is very important in this topic. Second reason is that the

methods which we use to handle uncertainty in our models. We use robust and

stochastic optimization methods and these methods are generally used in reverse

logistics operations.

2.2 Reverse Logistics, Network Design

Jayaraman et al. (14) and Fleischmann et al. (15) model closed loop supply chains as

reverse logistics model and try to find the locations of facilities. Jayaraman et al. (14)

define the remanufacturing as transporting the used products and converting them

into products which have new conditions. They developed a closed remanufacturing

model which takes the used products from collection zones and distribute them to

the demand zones after remanufacturing. They try to find the location of facilities

which store the used products, convert them to the remanufactured products and

store them. As a result, they concluded that in reverse production system the reverse

flow(returns) has crucial importance as well as the demand. Fleischmann et al. (15)

add a new echelon to the network design as well as the remanufacturing sites. This

new echelon is disassembly center. They solve the problem for two different cases:

Copier remanufacturing and paper recycling. In these cases, the forward flow’s effect

over total cost is more than reverse flow. However, the impact of return flows will

increase with the decreasing number of potential facility locations. Jayaraman et al.

(14) and Fleischmann et al. (15) detect that increasing the return rate decrease the

total cost for facility location models.

Jayaraman et al. (2) use the capacitated facility location model to design reverse

logistics operations. They assume that customers bring the used products to the re-

tailer points. They find the location and the number of collection and refurbishing

sites and the transshipment quantities to these sites.In this article, the reverse and
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forward flows are not integrated and authors model the system only for reverse lo-

gistics operations. Jayaraman et al. (2) explain that the capacitated facility location

model is NP-Hard and they use a heuristic which is ”heuristics concentration” to find

the near optimal solutions.

Demirel and Gokcen (16) mention that there are two classes of reverse logistics

models: independent models and integrated models. The models which consider only

reverse channels are independent models and the models which consider forward and

reverse channels are integrated models. Demirel and Gokcen (16) propose a mixed

integer mathematical model for network optimization in integrated reverse logistics.

The model finds the optimal locations of disassembly,collection and distribution cen-

ters while determining the transportation and production quantities. In the model,

transportation and production quantity variables are continuous but opening facility

variables are binary. The fractions of disassembly, recovery and disposal are de-

termined for products and the authors find the quantity of purchasing parts form

external suppliers to satisfy demand. In the experimental design, three different rate

of returns (low, medium and high) are analyzed for several number of products, man-

ufacturers, collection centers etc. It is concluded that in integrated reverse logistics

model when rate of returns are increasing, the cost is decreasing in most experiments.

Thus, Demirel and Gokcen (16) emphasize that customers should be encouraged to

return the used products.

Barros et al. (17) study over a two-level network design for a recycling sand case

study. The aim of this study was increasing the recycling construction wastes due

to the government regulations. Before reusing sand, quality should be controlled.

Thus storing and cleaning facilities are necessary and they should plan the number,

type and location of these facilities and distribute the cleaned sand. They assume

that planning horizon is one year and demand and supply of sand is known and they

create different scenarios to solve the deterministic problem. This two-level network

is modeled as capacitated multi-level location problem with capacity constraints. Be-

cause these types of problems are NP-hard, they use different solution techniques
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which are linear relaxation of the constraints due to the data sets for lower bounds of

constraints and upper bound linear relaxation for objective function.After solving the

different scenarios, they conclude that opening depots are generally more profitable

than shipping the sand over long distances and regional depots use their capacity

efficiently and cleaning facilities are opened at the demand sites or the places which

are near the sea because of transportation costs.

2.3 Production Planning

Jayaraman (18) uses a deterministic linear programming model for production plan-

ning in closed loop supply chains. Product recovery and reuse are the main oper-

ations in this model. Jayaraman (18) mentions six options in its remanufacturing

system: selling products as secondhand products(if it has a sufficient quality level),

replacement of components of the products(cleaning and repairing), refurbishing the

product(selling the product as a new product), remanufacturing the whole product,

taking some component of the product and recycling the product. The objective of

the model is minimizing the cost while using these six options. Thus objective func-

tion consists of the holding cost, disposing cost, remanufacturing cost and purchasing

costs. Products are disassembled to modules and so there are inventory balance re-

strictions. There are different quality levels for product types and each has different

processing times for remanufacturing, disassembly, disposal and testing. This model

can be used for operational level decisions and Jayaraman (18) use this model in cel-

lular telephone using at a company for two types of products,two types of modules,

two types of periods and six types of quality levels. In addition to this model, the

recovery design problem is discussed in the final part of the article.

Franke et al. (19) study generic model for remanufacturing of cellular phones.

They mention that consumer goods are started to remanufacture besides long living

goods. Cellular phone is one of them because new technology cellular phones are in-

creasing and old phones are not being used. Thus, companies want to reassemble and

use some components or update the phones if it is profitable. The aim of this article is
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doing production and capacity planning. Mixed integer mathematical model is used

to analyze the processes. The company takes the phones and after identification of

the type, it is being tested. According to its condition, some are being disassembled

and some are directly sent to the recycling. Disassembled components and new com-

ponents are being combined and remafacturing is completed. The difference of the

model from (18) that there is no disposal operation, the model is based on integer

programming and there is no time period for facility.

According to Krikke et al.(20), closed loop supply chain management operations

literature separate the product design and logistics operations. Krikke et al. (20)

solve a real life problem using MIP modeling technique and sensitivity analysis are

made considering different product designs, different network design options and en-

vironmental legislations. Authors believe that reverse supply chain operations should

decrease environmental impacts in addition to decrease costs. Thus, the complexity

of the problem will increase because lowering supply chain costs may increase the

environmental effects. In the problem, refrigerator remanufacturing operations are

analyzed. The model consists almost all of the remanufacturing operations: warehous-

ing, repairing, disassembling, rebuilding etc. The objective of the model is minimizing

cost, energy use and waste (each has different weight) subject to logical,demand and

supply constraints. This method is defined as multi criteria optimization method

with conflicted objectives. This model is one of the most complex remanufactur-

ing model in the related literature. Authors obtain the solutions for centralized and

decentralized networks for facilities. They conclude that centralized case minimize

supply chain costs but increase waste.In addition to network design, different product

types are analyzed over effects of cost, energy and waste minimization. Finally they

investigate the effect of rate of returns over the cost and energy. When rate of return

becomes more than 0.5, cost decreases dramatically and after that the movement is

stable in the refrigerator case.

Kim et al. (21) create a generic model for remanufacturing operations for products

which have different types of countable parts. They denote that many companies don’t
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want to establish a remanufacturing facility because of high operation and facility

costs and small return on investments. They propose two mathematical models for

tactical (investment) and operational (production) level decisions. In the first model

they decide the capacity of each site and in the second model they determine the

production and remanufacturing quantities. Collected products come to the system

and disassembled into the parts. Some collected products are sent to the external

supplier to disassemble products. Finally parts which come from external supplier,

subcontractor and the company sent to the manufacturer. They do planning for only

remanufacturing operations so this system is not integrated.Each product type has a

bill of materials thus each product may have different type and quantity of products.

After the refurbishment, they sell these parts as new parts to the manufacturer. Both

model want to maximize cost saving because they assume that they have to collect

products and disassemble them. When they increase the total available investment,

the cost saving increases but unlike other models we mention in this thesis , increasing

return rate causes a decrease in cost saving because remanufacturing is expensive in

the system.

Kim et al. (22) uses the second model which is shown in (21) to make sensi-

tivity analysis over collection,refurbishing and disassembly site’s capacity. When we

increase these sites’ capacity, cost saving will increase and then remain same after

specific values. Thus the manufacturing company wants to find these specific values

for sites. They recommend this model in the technlogic products markets such as

mobile phones, copiers, computers etc.

2.4 Inventory Management

Richter and Sombrutzki (23) use Wagner/Whitin method to analyze the return and

reuse of the products. They look at the production planning and inventory control

problems from the used products’ side. Authors emphasize that the Wagner/Whitin

model plans process of ordering, manufacturing and holding the product over time

periods. Authors use this model to create three different models. In the purely reverse
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model, used products are hold in the storage and remanufactured due to the demand

at each period. In the second model, used and remanufactured products are hold in

the storage. In the third model, they integrate manufacturing and remanufacturing

operations and remanufactured and manufactured products are used as new products.

These three models are solved for given demand and return values in a finite horizon.

The most important assumption in the method is that the cost of returned products

are low and they can satisfy all the demand of remanufactured products.

Sbihi and Eglese(24) introduce basic inventory management model formulation in

remanufacturing problems. Inventory management problems can be formulated using

mathematical programming or dynamic lot sizing models. The dynamic lot sizing

problem is started by Wagner (25) and the solution method is based on dynamic pro-

gramming. Sbihi and Eglese (24) show a mathematical programming formulation for

remanufacturing operations. The company holds returns inventory and serviacable

inventory and try to satisfy serviceable goods demand by using manufacturing and

remanufacturing operations. They differentiate the model by using joint and separate

set up costs for manufacturing and remanufacturing operations. They don’t use dis-

posing options in the model and they assume that serivcable inventory holding cost

is greater than returns.

Like (24), Teunter et al. (26) use the joint and separate set-up costs for manufac-

turing and remanufacturing operations. Both articles use same mathematical model

but Teunter et al. (26) use three well-known heuristics: Silver Meal, Least Unit

Cost and Part Period Balancing to solve the dynamic programming problem. These

heuristics consider zero-inventory property and ignore future costs for ordering. They

modify these methods due to the returned products. They solved many problems to

predict the effect of demand and return variabilities and quantities and most impor-

tantly they conclude that decreasing return increases the cost and a better prediction

of demand decreases the cost.
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2.5 Stochastic Optimization

The deterministic network location model(17) which is explained in section 2.2 is

studied for stochastic optimization approach in the article Listes and Rommert (27).

They try to find a solution which is proper for different scenarios. After solving the

deterministic sand case problem with an effective heuristic, authors want to solve the

problem with stochastic data because they believe that demand of sand and quality

of the sand are uncertain for different scenarios. Like the deterministic problem,

they want to find the locations of storage depots and cleaning facilities but objective

function is maximizing net revenues instead of minimizing cost in this article. The

returned sand may come to the system as clean, half-clean and polluted and there are

two types of demand for clean and half-clean sand. Hence, polluted sand is sent to

the treatment facility. In the problem, there are ten type of projects and each project

has different clean and half-clean sand demand and the location of each projects is

different. Then authors aggregate these projects and create 7 different scenarios.

First, they solve two stage stochastic optimization problem for low and high supply

case for uncertain demand and after that they solve three stage stochastic optimization

problem for uncertain demand and supply. In the result section of the article, two

stage SOA gives approximately 5% less revenue than optimum solution. In addition,

high supply case gives more revenue rather low supply case. It is noteworthy that low

supply and high supply two stage approaches and three satege approach give very

different decisions. The reason of that is the uncertain demand locations. Finally

they analyze the worst case and the expected costs are approximately 15% less than

optimum which are not very low.

Chouinard et al. (28) also propose a stochastic optimization model to reduce the

impacts of randomness in demand, supply and processing. They want to locate ware-

houses and disposal centers and distribute the recovered products. Thus they use

a type of network location model and mixed integer linear programming modeling

technique. Because the problem size is very large, they aggregate the products into

families and use bill of materials for these product families. In addition to product
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types, each product comes to the system with a different condition. These condi-

tion types are new, good,damaged,unusable and unknown. Damaged products are

disassembled and parts from these products are refurbished or cleaned before using.

Chouinard et al. (28) mention that demand and supply are normally distributed

for product types but the condition of the products are distributed according to the

Weibull or Gamma distribution. In the mathematical model, they want to minimize

fixed costs and expected variable costs with SOA and satisfy the demand of remanu-

factured and new products. The model is applied to the wheelchairs remanufacturing

case and the company decreased the total costs almost 10% in three years. To ob-

tain more appropriate solutions, authors use Sample Avarage Approximation(SAA)

technique while solving the two stage stochastic optimization problem. They find

lower and upper bound for objective function and try to find the reasonable scenario

number for the spesific type of the problem.

Listes (29) explains the stochastic optimization problems in network design such

that the location decisions are given in the first stage and then we give product flow

decisions in the second stage. He uses SOA to handle uncertainty in demand for

remanufactured products and supply for used products and creates 12 scenarios for 3

different demand rates and 4 different supply rates. In the article, computational effi-

ciency and impact of uncertainty are analyzed. Due to the problem size, author uses

a branch and cutting algorithm which is named decomposition method for stochastic

optimization problems. When problem size increases, computational time increases

dramatically because of integrality of location decisions. Moreover increasing de-

mand rate increases profit. In addition, remanufacturing operations are profitable in

the system and increasing return rate also increases the profit. Expected profit in

SOA is almost 30% than optimal profit under perfect information. This percentage

is very high and implies that the first stage decisions which are opening plants and

test centers affect the expected profit strongly and the first stage decisions for each

scenario are not similar.

Multi-period multi-echelon network design for integrated logistics problem is mod-
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eled by El-Sayed et al. (30). Their closed loop supply chain consists of suppliers,

facilities, distributors, disassemblies and disposal sites. They use stochastic program-

ming approach to analyze uncertainties in the demand for new products. The article

is diffentiated from the articles in the literature because the authors don’t determine

different ratios for each scenario. They solve the stochastic mixed integer problem

for different demand means and return rates. Like other models in the literature, the

increase in the return rate and demand mean increases the total expected profit for

integrated reverse and forward logistics. But unlike the articles in the literature, the

flows are integer and this increases the problem’s solution time and complication.

2.6 Robust Optimization

Robust optimization is another modeling technique to handle uncertain data for opti-

mization problems like stochastic optimization. In stochastic optimization approach

the objective function is maximizing expected profit or minimizing expected cost but

in robust optimization there are different types of objective functions such as mini-

mizing minimum deviation in different scenarios or minimizing the cost with penalty

functions.

Kouvelis and Yu (31) define the measure of robust deviation as: ”The performance

measure(appropriate for the single scenario decision) is applied for evaluating the

decision across all scenarios, and then the worst case performance is recorded as the

robustness indicator of the decision.”

Mulvey and Ruszczynski (32) and Mulvey and Vanderbei (33) propose three dif-

ferent approaches for robust optimization in logistics problems. In the first approach,

the authors add penalty costs to objective function for supply and demand equality

constraints and decrease the constraint numbers. In addition, they add a new non-

linear cost function to minimize the scenario cost deviation. In the second approach,

the penalty and nonlinear cost functions are used in constraints for calculation and

they are added to objective function. In the third approach, they increase the num-

ber of variables to calculate the deviations due to the sign of the differences in the
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inequalities.

Yu and Li (34) mention the importance of the uncertainty for logistics problems

are mentioned. The authors propose a new robust optimization method for generic

logistics management problem and compare the results and computational times with

the second approach which are found by (32) and (33) and introduced in the article

(34). They use the linearization theorem for absolute values in the objective function

and decrease the constraint and variable numbers in comparison to other approaches.

In the proposed model, solution time decreases 30% although they can find the op-

timal solution. Logistic problems are large scale and when we add scenerios to the

logistics problems, the problem size increases dramatically. Moreover, decreasing the

computational time is very important.

Realff et al. (35) use deterministic reverse logistics model for carpet recycling. In

this article, carpet recycling is modeled as a reverse logistics system and the model

tries to give decisions for the number of collecting and processing sites while maximiz-

ing revenue from recycled carpet products. Realff et al. (36) convert the deterministic

model to the robust optimization model. In the robust approach, authors want to

respond the future needs and they want to decide strategically on the locations of

open sites before operational decisions. In this approach, they try to find feasible

first stage decisions for different scenarios and maximize the difference between each

scenario’s optimum solution and robust solution.Thus, they determine maximum de-

viation across all scenarios. In this model, authors use 9 scenarios. They determine

these decisions due to the 3 levels of collection volume and 3 levels of end product

prices. We see that the difference between optimum solution and robust solution for

each scenario is approximately 10%. They conclude that expensive system design

and uncertain environment force people to solve the problems using stochastic-based

approaches such as robust optimization approach.

Wei et al. (37) is one of the most recent studies in the robust optimization litera-

ture. They propose a periodic review inventory control model with uncertain demand

and returns and then they convert the inventory control problem to the mathematical



Chapter 2: Literature Review 18

programming model and use robust optimization approach. (37) is deviated from the

articles which we review above in the structure of constraints. In this model, authors

change the constraints for each scenario and calculate the probability of violation of

constraints and they conclude if upper and lower bounds are known, robust optimiza-

tion model can be used to decrease the effect of uncertain returns and demand.

Prajapati (38) uses a production planning model. However, the importance of this

study for us is that robust optimization approach, stochastic optimization approach

and expected value approach are compared in this study. It seems that stochastic

optimization approach gives more accurate results than the other two approaches

and total cost is very close to the optimum cost under perfect information.
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Chapter 3

PROBLEM STATEMENT AND MODEL

Figure 3.1: The Schematic Representation of the Model

There exists different types of remanufacturing processes in closed loop supply

chain systems. In our study, we model collection, disassembly , polishing and refur-

bishing operations while we minimize operating, purchasing and holding costs. We

see the schematic representation of disassembly and refurbishing operations of the

basic computer remanufacturing case in 3.1. The red arrows denote products and the

blue arrows denote parts. In addition, arrows are used to represent the direction of

products and parts. Collected products come into the system. Since collected prod-

ucts have different damage conditons, they are segmented into different types. Then

these products are held in the collection site and there is holding cost to store these

products for each period. Some of the collected products are sent to the second hand

products site due to the second hand products’ demand. These products are polished

before they are sold as the second hand products. Since each product type has differ-

ent damage and part combination, each product type may earn different profit to the
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company. Some of collected products are sent to the disposal site. These products

are seen as waste. These products are sent to the landfill sites and landfilling a part

or product has a cost to the company. The other products which are not sent to the

disposal or sold as the second hand products are sent to the disassembly site. As we

mention above, each product type has different types of working parts and there are

operating costs to disassemble products into these parts. Some of these parts are sent

to the disposal site and some of them are sent to the refurbishing site. These parts

are refurbished in the refurbishing site and they can be used as new parts after refur-

bishing operation. There are capacity restrictions for refurbishing and disassembly

sites. Deciding the capacity of these sites are tactical level decisions for the company.

After refurbishing, parts are hold in refurbishing site or part inventory site and they

are used to satisfy assembly site’s part demand. The company can also use asupplier

to satisfy the assembly sites’ demand but there is cost to order at each time period.As

a result, assembly site can supply its demand from refurbishing site or a supplier. In

addition, if parts exceed the company’s needs , they can be sold to the supplier or

other customers and there is no fixed cost to sell these parts. Selling these parts give

a profit to the company.

There are some assumptions in this reverse supply chain system. Each product has

different types of parts but we assume that these parts can be used as new parts after

refurbishing. We should satisfy the assembly site’s demand either by remanufacturing

or buying from suppliers. Selling price of each type of part should be smaller than the

purchasing price of this part. Thus, the system sells these parts only when it doesn’t

need to satisfy the demand.

In the mathematical model, we try to minimize the cost minus revenue. Our cost

value consists of remanufacturing operations which are disassembling,refurbishing and

holding costs and site opening costs. Revenue value consists of the revenue from the

second hand sold products and sold parts to the supplier. While minimizing the cost

minus revenue, we determine the site opening decisions and the quantity of the second

hand sold, disassembled and disposed products at each period. After disassembling
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operations, we determine the quantity of diassambled, refurbished, sold and purchased

parts at each time period.

3.1 Deterministic Model

Sets:

Set of parts I; index i ∈ I

Set of products P ; index p ∈ P

Set of periods T ; index t ∈ T

Parameters

RFC: the time capacity of refurbishing site at each period

DSC: the time capacity of disassembly site at each period

PrCpt: the quantity of collected product p at time t

Dit: the demand for part i at time t

PaVi: the volume for one unit part i

PrICp: the capacity of collection site for each product p

PaIC: the volume capacity of part inventory site at each period

DSpt: the demand of second hand product p at time t

BMpi: the quantity of part i from product p

PrDCp: the disposal cost for product p

PaDCi: the disposal cost for part i

PrUp: the upper bound of disposal rate for product p

PaUi: the upper bound of disposal rate for part i

PrIp: the unit inventory holding cost for product p at collection site

PaIi: the unit inventory holding cost for part i at the part inventory

PaIRFi: the unit inventory holding cost for part i at refurbishing site

PrISp: the unit inventory holding cost for product p at 2nd hand site

ODp: the unit operating cost for product p at the disassembly site

ORFi: the unit operating cost for part i at the refurbishing site
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OPOP : the unit operating cost for product p at the polishing site

OC: the order cost from supplier

PuCi: the purchasing cost for part i

PaSei: the selling price of part i

PrSep: the selling price of second hand product p

PrTp: the time needed for disassembling one unit of product p

PaTi: the time needed for refurbishing one unit of part i

Dsec: the opening cost of disassembly site

Rfec: the opening cost of refurbishing site

Decision variables:

IPRpt: the inventory level for product p at time t at collection site

ISHpt: the inventory level for product p at time t at 2nd hand products site

IPAit: the inventory level for part i at time t at part inventory site

IRFit: the inventory level for part i at time t at refurbishing site

PrDApt: the quantity of disassembled product p at time t

PrDSpt: the quantity of product p sent to the disposal site at time t

PrPOpt: the quantity of polished product p at time t

PrSHpt: the quantity of 2nd hand product p sold at time t

PaDSit: the quantity of part i sent to the disposal site at time t

PaDAit: the quantity of part i sent to the refurbishing site at time t

PaRFit: the quantity of refurbished part i at time t

PaSUPit: the quantity of sold part i to the supplier at time t

PaBit: the quantity of purchased part i at time t from supplier

Ordrt: the binary variable for ordering fron supplier at time t

Dse: the number of disassembly site

Rfe: the number of refurbishing site

Objective Function:
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Min z = ∑
p

∑
t

PrIp ∗ IPRpt (3.1.1)

+
∑

p

∑
t

PrISp ∗ ISHpt (3.1.2)

+
∑

p

∑
t

PrPOpt ∗OPOp (3.1.3)

+
∑

p

∑
t

PrDApt ∗ODp (3.1.4)

+
∑

p

∑
t

PrDSpt ∗ PrDCp (3.1.5)

+
∑

i

∑
t

PaRFit ∗ORFi (3.1.6)

+
∑

i

∑
t

PaIi ∗ IPAit (3.1.7)

+
∑

i

∑
t

PaIRFi ∗ IRFit (3.1.8)

+
∑

i

∑
t

PaDSit ∗ PaDCi (3.1.9)

+
∑

i

∑
t

PaBit ∗ PuCi (3.1.10)

+
∑

t

Ordrt ∗OC (3.1.11)

+(Dse) ∗Dsec (3.1.12)

+(Rfe) ∗Rfec (3.1.13)

−
∑

i

∑
t

PaSUPit ∗ PaSei (3.1.14)

−
∑

p

∑
t

PrSHpt ∗ PrSep (3.1.15)

s.t.

PrCpt + IPRp(t−1) = IPRpt + PrDApt + PrDSpt + PrPOpt ∀p, t (3.1.16)∑
p

BMpi ∗ PrDApt = PaDSit + PaDAit ∀i, t (3.1.17)
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∑
t

PrDSpt ≤ PrUp ∗
∑

t

PrCpt ∀p (3.1.18)

∑
t

PaDSit ≤ PaUi ∗
∑

t

(PaDSit + PaDAit) ∀i (3.1.19)

PrDSpt + PrPOpt + PrDApt ≤ PrICp ∀p, t (3.1.20)∑
p

PrTp ∗ PrDApt ≤ Dse ∗DSC ∀t (3.1.21)

∑
i

PaTi ∗ PaRFit ≤ Rfe ∗RFC ∀t (3.1.22)

IRFi(t−1) + PaDAit = IRFit + PaRFit ∀i, t (3.1.23)

ISHp(t−1) + PrPOpt = ISHpt + PrSHpt ∀p, t (3.1.24)

IPAi(t−1) + PaRFit + PaBit = Dit + PaSUPit + IPAit ∀i, t (3.1.25)∑
i

PrVi ∗ IPAit ≤ PaIC ∀t (3.1.26)

PaBit ≤ Dit ∗Ordrt ∀i, t (3.1.27)

PrSHpt ≤ DSpt ∀p, t (3.1.28)

PaSUPit ≤ Dit ∀i, t (3.1.29)

Dse ≥ 1 (3.1.30)

Rfe ≥ 1 (3.1.31)

IPRpt, ISHpt, P rDApt, P rDSpt, Dse,Rfe ∈ Z+ ∀p, t (3.1.32)

IPAit, IRFit, PaDSit, PaSUPit ∈ Z+ ∀i, t (3.1.33)

PrPOpt, P rSHpt ≥ 0 ∀p, t (3.1.34)

PaRFit, PaBit, PaDAit ≥ 0 ∀i, t (3.1.35)

Ordrt ∈ 0, 1∀t (3.1.36)

The objective of our model is minimizing total cost minus revenue. (3.1.1) and

equation (3.1.2) give holding cost for collection site and for second hand products

site,respectively. (3.1.3) and (3.1.4) are operating costs for polishing second hand

products and disassembling products to the parts, respectively. (3.1.5) indicates the
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total costs to dispose products. Operating cost for refurbishing site is shown in equa-

tion (3.1.6). Holding cost for part inventory and for refurbishing sites are calculated

in (3.1.7) and (3.1.8), respectively. Disposal cost and purchasing costs are shown in

(3.1.9) and (3.1.10). In (3.1.11) total ordering cost from supplier can be seen. (3.1.12)

and (3.1.13) are opening costs for disassembly and refurbishing sites. Finally, (3.1.14)

and (3.1.15) are revenues from selling parts to the supplier and selling second hand

products, respectively. Thus we subtract revenues from the total cost.

There are some restrictions in this disassembly and refurbishing operations. Con-

straints (3.1.16) shows the inventory balance equation at collection site for each prod-

uct and time period. At time period t = 0, a certain level of inventory for all of the

products or parts at all inventory sites is included in the model. Thus for inventory

balance equations , at time t = 0 these values are used as parameters.(3.1.17) gives the

disassembly site equalities. The quantity of each part which is sent to the refurbishing

and disposal site will be equal to the sum of parts which are disassembled from all

types of products at each period. (3.1.18) and (3.1.19) are disposal restrictions. The

sum of wasted products and parts for all time periods can not exceed the particular

proportions of the sum of the collected products for each product type and the sum of

collected parts for each part type, respectively. (3.1.20) is used to restrict collection

site’s capacity at each time period for each product type. The total products which

are sent to the second hand products site, disposal site and disassembly site should

be smaller than collection site’s capacity restriction for each product. Disassembling

one unit product and refurbishing one unit part need time and refurbishing and dis-

assembly sites have time capacities. (3.1.21) and (3.1.22) provide the expansion of

disassembly and refurbishing sites due to the each site’s time capacity and determine

the decisions on how many man or machines are used. (3.1.23), (3.1.24) and (3.1.25)

are inventory balance equalities for refurbishing site, second hand site and part in-

ventory site, respectively. The company holds parts or products at these sites. For

instance, (3.1.25) shows that incoming and outgoing parts are equal for each part at

each time period. In addition, part inventory site has a volume capacity. In (3.1.26),
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total used volume for parts can not exceed the total capacity at each time period.

(3.1.27) restricts the company’s part purchasing quantity for each part type at

each period. If the company gives an order for a type of parts, the quantity of the

order can not exceed the demand of the part at that period because we assume that

the remanufacturing facility should use the supplier only when it can not supply the

demand with remanufacturing operations at that period and we don’t want to use the

part inventory site as an outsourced part warehouse. (3.1.28) shows that each type of

second hand product are sold due to the demand of that type of second hand product

at each time period. The company might sell each type of parts. (3.1.29) restricts the

amount of sold parts to the supplier at each time period. (3.1.30) and (3.1.31) show

that there is at least one refurbishing and disassembly site and the company might

expand these sites. (3.1.32), (3.1.33), (3.1.34), (3.1.35) and (3.1.36) show the type of

variables. Although all variables except ordering decisions are integer, we can relax

some of these integrality constraints. Because of equalities in our constraints, some

variables are forced to be integer at the . Thus, even if we say that some variables

may not be integer, they will be integer resulting solution. These variables are shown

in (3.1.34) and (3.1.35).(3.1.36) shows that ordering decisions are given by binary

variables.

3.2 Two-stage Stochastic Optimizaton Approach

In optimization problems, decisions can be given in different stages due to the impor-

tance, cost or time restriction of these decisions. In our remanufacturing problem we

can divide our mathematical programming model into the two stage for long term and

short term decisions. In stochastic programming approach, we use these two stages

as strategic and operational levels. Strategic level is used as first stage decisions

and operational level is used as second stage decisions. We are using the two-stage

stochastic programming approach to handle uncertainty in demand and supply quan-

tities. Strategic level decisions should be made before the system starts. Thus, first

stage decisions should be given before we know the real demand and supply. After
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we realize the demand and supply , second stage decisions will be given due to the

optimization results.

Opening the capacity of disassembly and refurbishing sites are our first stage level

decisions in our optimization problem. The number of disassembly sites Dse and the

number of refurbishing sites Rfe are our first stage integer decision variables. We

determine different scenarios to handle uncertainty in demands and returns for parts

and products, respectively. We connote S as the set of demand-supply scenarios and

s as the specific scenario.

In order to handle uncertainty of demand and supply, we use the deterministic

model above inside the following stochastic optimization model. First stage variables

Dse and Rfe are shown as y and other variables are shown as x in two-stage stochas-

tic programming approach. Thus, variables y are used as first stage variables and

variables x are used as second stage variables. Two-stage stochastic programming

model is shown as:

Min fy + Es [Q (y, s)] (3.2.1)

s.t.

y ∈ Z+ (3.2.2)

where

Q(y, s) = min(cx) (3.2.3)

s.t.

W1x = b(s) (3.2.4)

W2x = d(s) (3.2.5)

W3x ≤ Ty (3.2.6)

x ∈ Z+ (3.2.7)

(3.2.1) is the objective function of first stage in two-stage stochastic optimization

approach. First stage y variables are determined in this stage and expectation of
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Q(y, s) over s plus fy gives the total cost of the optimization problem. We see that

y variables are fixed in the first stage and second stage decisions x are given later

according to the observed scenario. (3.2.3) shows the second stage objective functions.

Q(y, s) is the minimum objective value for a particular scenario s. Parameters b(s) and

d(s) are used for supply and demand quantities for particular scenario s, respectively.

W is used as resource matrices. (3.2.4) and (3.2.5) are used to satisfy demand and

supply restrictions. Each constraint depends on scenario s. (3.2.6) is used to show

scenario independent constraints. This two-stage stochastic optimization method

creates different set of variables for each particular scenario s. We can show them

as xs. This approach is originated by Dantzig (39). In this approach, we assign

probabilities for each scenario and we find a solution for each scenario((40),(41)). The

optimal solution for particular scenario s is not optimal for general of the problem.

Consequently, using these different variables for each scenario. The problem can be

shown as :

Min fy + Es [cxs] (3.2.8)

s.t.

W1xs = b(s) ∀s ∈ S (3.2.9)

W2xs = d(s) ∀s ∈ S (3.2.10)

W3xs ≤ Ty ∀s ∈ S (3.2.11)

y ∈ Z+ (3.2.12)

xs ∈ Z+ ∀s ∈ S (3.2.13)

With Stochastic Optimization Approach, the problem’s size increases due to the

scenario numbers and it becomes large scale integer optimization problem.

When we apply the Stochastic Optimization Approach into the our generic model,

each stochastic optimization equation is covered by our constraints. (3.1.16) covers

the (3.2.4) since returns are our main supply . (3.1.25) covers the (3.2.4) and (3.2.5)
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together since part demand is satisfied according to remanufacturing and suppliers.

(3.1.20) and (3.1.21) cover the (3.2.6) together since these constraints depend on the

first stage decisions. Other constraints that we don’t mention here are operational

constraints. They are indirectly related to supply, demand and first stage decisions.

3.3 Robust Optimization Approach

Minimizing the risk may be more preferable than minimizing expected cost in certain

situations and models. If we can not minimize the variability or prevent uncertain

conditions, we should use a different technique to handle uncertainty.Risk and vari-

ability is very related to variance of demand or supply in supply chain operations.

However in closed loop supply chain operations, both demand and returns are uncer-

tain. Thus, risk occurs according to variance of demand and returns in our model.

Robust Optimization Approach is a reliable method to solve problems like our generic

remanufacturing problem since we have different demand and return distributions for

each scenario.

Although Stochastic Optimization Approach minimizes the expected cost over

scenarios, robust optimization aims to decrease variability of scenario costs from each

scenario’s optimum cost. Robust optimization model wants to find a solution that is

close to each scenario’s optimal solution. It minimizes the difference between opti-

mum cost and robust cost for each scenario. Robust Optimization Approach is very

important since its solution is less risky than Stochastic Optimization Approach. It

minimizes the results that we don’t want to encounter.

Robust optimization model can be stated as:

Min δ (3.3.1)

s.t.

δ ≥ Rs −Q∗
s ∀s ∈ S (3.3.2)

W1xs = b(s) ∀s ∈ S (3.3.3)



Chapter 3: Problem Statement and Model 30

W2xs = d(s) ∀s ∈ S (3.3.4)

W3xs ≤ Ty ∀s ∈ S (3.3.5)

y ∈ Z+ (3.3.6)

xs ∈ Z+ ∀s ∈ S (3.3.7)

where

Q∗
s: Net cost of optimal solution for scenario s

Rs: Net cost of robust solution for scenario s

As we mention in stochastic programming approach, our aim in robust optimiza-

tion approach is determining the long term decisions first and then determining the

short term decisions to minimize total cost. We connote S as the set of demand-supply

scenarios and s as the specific scenario like in stochastic programming approach.

These scenarios are deterministic values which represent the possible demand and

supply data. We don’t assign any probabilities in robust programming model be-

cause we don’t take an expectation. Firstly all scenarios are solved separately and

optimal cost value is found for each particular scenario. As we see above, Q∗
s is the

optimal cost value for scenario s. Rs is the robust solution cost for each scenario s.

(3.3.1) and (3.3.2), we see that difference between optimum cost and robust cost will

be smaller than δ. When we minimize δ, difference between robust and optimum cost

will be minimized for all scenarios. (3.3.3),(3.3.4), (3.3.5), (3.3.6), and (3.3.7) are

same as stochastic programming constraints. Thus, y variables are used for tactical

level decision variables and they are given before time periods start. After that, x

decision variables are determined as operational level decisions. This robust opti-

mization approach is developed by Kouvelis and Yu (31). As we mention above, the

basic idea is minimizing deviation between scenarios while optimizing objective value

of integer programming.

When we apply the Robust Optimization Approach into the our generic model,

each robust optimization equation is covered by our constraints. (3.1.16) covers the

(3.3.3) since returns are our main supply . (3.1.25) covers the (3.3.3) and (3.3.4)
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together since part demand is satisfied according to remanufacturing and suppliers.

(3.1.20) and (3.1.21) cover the (3.3.5) together since these constraints depend on the

first stage decisions. Other constraints that we don’t mention here are operational

constraints. They are indirectly related to supply, demand and first stage decisions.
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Chapter 4

COMPUTATIONAL RESULTS

In this chapter , we solve a sample problem and make sensitivity analysis. We

used a GAMS 23.3.3 and Cplex 12.1.0 for solving proposed models on a PC with Intel

Xeon 3.0 GHz and 4 GB of Ram. First, we explain the sample problem.

4.1 Input Parameters for the Sample Problem

We have 3 types of product and 5 types of parts and solve the problem for 20 time

periods. We assume that inventory holding costs and operation costs are dependent

to purchasing prices of parts and selling prices of products. Purchasing prices (PuC)

are $200, $150, $50, $100 and $150 for parts 1,2,3,4 and 5, respectively. We hold

parts in the refurbishing sites and part inventory site. After refurbishing, quality of

the part will increase so holding cost for part inventory site is higher than holding

cost for the refurbishing sites. The holding costs for each part part at each time

period will be 15% of the part’s purchasing cost in the refurbishing sites and 25% of

the part’s purchasing cost in part inventory site. Thus holding costs for refurbishing

sites (%PaIRF ) are $30, $22.5, $7.5, $15, $22.5 and holding costs for part inventory

sites (PAI) are $50, $37.5, $12.5, $25, $37.5 for parts 1,2,3,4 and 5, respectively. The

refurbishing cost for a part (ORF ) is 40% of purchasing cost of that part and selling

price of a part 50% of purchasing cost of that part. The volume for one unit part

i (PaV ), the disposal cost for part i (PaDC), the upper bound of disposal rate for

part i (PaU), the necessary time for refurbishing one unit of part i (PaT ), and initial

inventories for part inventory site(xIPA) and refurbishing sites (xIRF ) for each part

i are shown in table 4.1.

As we mentioned above, holding costs and operating costs for products depend
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Table 4.1: Data Set for Part Types

PaV PaDC PaU PaI PaIRF ORF PuC PaSe PaT xIPA xIRF

Pa1 1 2 0.2 50 30 80 200 100 1 0 0

Pa2 1 1.5 0.2 37.5 22.5 60 150 75 1 0 0

Pa3 1 0.5 0.2 12.5 7.5 20 50 25 1 0 0

Pa4 1 1 0.2 25 15 40 100 50 1 0 0

Pa5 1 1.5 0.2 37.5 22.5 60 150 75 1 0 0

on selling prices of second hand products (PrSe). Although we have three different

types of products, selling prices of these three types of products are equal to each

other in the sample problem. PrSe is equal to $200 for all product types. The unit

operating cost for product p at the disassembly site (OD) and polishing site (OPO)

are 10% of selling prices of that product. The unit inventory holding cost for product

p is 20% of the product’s selling price. In addition to this, the capacity of collection

site (PrIC), the disposal cost (PrDC), the upper bound of disposal rate (PrU),

the necessary time to disassemble one unit of product (PT ), initial inventories at

collection site(xIPR) and initial inventory at second hand products site(xISH) are

shown in table 4.2.

Table 4.2: Data Set for Product Types

PrIC PrDC PrU PrI PrIS OD OPO PrSe PrT xIPR xISH

Pr1 1,000 2 0.3 40 40 20 20 200 2 0 0

Pr2 1,000 2 0.3 40 40 20 20 200 2 0 0

Pr3 1,000 2 0.3 40 40 20 20 200 2 0 0

The quantity of part i from product p(BM) for each pair is shown in table 4.3.

For example type 1 product has parts of type 1, 2, and 3.

In addition to parameters for different types of products or parts, we have 6 dif-

ferent scalars. The volume capacity of part inventory site at each period (PaIC),

the ordering cost from supplier (OC), the time capacity of refurbishing site at each

period(RFC), the time capacity of disassembly site (DSC), the opening cost of dis-
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Table 4.3: The Quantity of Part i from Product p

BMp,i

Pa1 Pa2 Pa3 Pa4 Pa5

Pr1 1 1 0 1 0

Pr2 1 0 1 0 1

Pr3 0 1 1 1 0

assembly site (Dsec) and the opening cost of refurbishing site (Rfec). These scalars

are shown in table 4.4.

Table 4.4: Scalars

PaIC OC RFC DSC Dsec Rfec

400 10,000 100 100 100,000 20,000

We solve the sample problem for 9 scenarios. First, we decide the levels of demand

and return because we have stochastic demand and return. There are three levels for

demand and return for the sample problem: Low, Medium and High. These levels

give the mean of the distribution. We assume that our demand (D) and return

(PrC) come to the system according to normal distribution with mean and standard

deviation values depending on the level in the scenario. Each type of products and

parts are independent from each other. For example, in scenario 1 demand has low

level of normal distribution, N (50, 302). Thus, in scenario 1 each type of part demand

at each period come to the system due to the normal distribution and its mean is 50

and variance is 302. Like demand, return come to the system with normal distribution,

N (30, 182) in scenario 1. So, each type of product at each period come to the system

according to the normal distribution and its mean is 30 and variance is 182. We

assume there is no negative demand and return. Thus, we accept negative demand

or return as no demand or return come to the system. In addition to part demand

and product return, second hand product demand is stochastic but the distribution

is not same for different scenarios. Second hand products (DS) come to the system
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with N (20, 122). The scenarios for the sample problem are shown in table 4.5.

Table 4.5: Distributions of Scenarios

Return

Low Medium High

N (30, 182) N (120, 722) N (250, 1502)

Low

N (50, 302) Scenario 1 Scenario 4 Scenario 7

Demand Medium

N (200, 1202) Scenario 2 Scenario 5 Scenario 8

High

N (450, 2702) Scenario 3 Scenario 6 Scenario 9

4.2 Results for the Sample Problem

As we mention, the sample problem has 9 scenarios and each scenario has its own

deterministic optimum solution. We analyze the first stage decisions for the optimum

solution under different approaches which we explained in chapter 3. In table 4.6, we

see the optimal first stage decisions for each scenario. If we analyze table 4.6 with the

demand and return distributions, we see that the company doesn’t open more than 1

disassembly site(Dse) and it opens 2 refurbishing site(Rfe) when return levels are low

(We assume that the company has to open at least 1 refurbishing and 1 disassembly

site in the mathematical model). Thus, first three scenarios have the same optimum

first stage decisions. When return levels are medium or high, optimum first stage

decisions give different results. We see that different scenarios might need different

first stage decisions.

When we solve these scenarios with the approaches explained in chapter 3 for the

sample problem, each approach gives different solutions for this sample problem. We

give equal probabilities to determine decisions in SOA and to calculate expected costs

for SOA and ROA. In table 4.51, we see the first stage decisions for these different

two approaches.As we see SOA and ROA have not identical first stage decisions with

optimum decisions.
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Table 4.6: Optimum First Stage Decisions for Each Scenario

Optimum Optimum

Scenario Rfe Dse

1 2 1

2 2 1

3 2 1

4 4 3

5 7 5

6 8 5

7 5 5

8 12 9

9 20 13

Table 4.7: First Stage Decisions for ROA and SOA

Rfe Dse

SOA 9 6

ROA 10 7

In table 4.8, we can see the optimum costs for each scenario. For instance, the

cost of optimal solution for scenario 1 is 592,612. If we give the first stage decisions

due to the SOA, the cost for scenario 1 is 1,154,657. The cost for scenario 1 in the

ROA is 1,274,657. In addition to scenario costs, expected costs for optimum solutions

and other approaches can be seen in table 4.8. In the sample problem, the expected

solution for three approaches are close. Nevermore, the expected cost for SOA is

smaller because we want to minimize the expected cost with this approach. In table

4.9, the percentage differences are shown between optimum solution and our three

approaches. For instance, the percentage difference for SOA and optimum cost for

scenario 1 will be calculated as:

difference =
(SOAcostforscenario1)− (optimumcostforscenario1)

SOAcostforscenario1
(4.2.1)

For instance the optimum cost is %48.68 less than SOA cost and %53.50 less than

ROA cost . But the most important values are expected cost percentages since we
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want to minimize the expected cost in SOA. The expected optimum cost is %11.47

less than SOA cost and %11.97 less than ROA cost. Although first stage decisions

are similar, expeceted costs are very close in terms of percentage. If only expected

costs are important for the company, there is no difference to choose one of these two

approaches for these two stages.

Table 4.8: Costs for Each Scenario and Expected Costs

Scenario optimum cost SOA cost ROA cost

1 592,612 1,154,657 1,274,657

2 2,727,798 3,332,050 3,452,050

3 6,150,498 6,752,290 6,872,290

4 574,640 900,548 1,019,854

5 2,329,224 2,382,808 2,466,746

6 5,872,264 5,882,430 5,946,658

7 2,424,865 2,567,398 2,666,283

8 2,289,123 2,722,146 2,472,669

9 6,003,770 7,024,522 6,732,861

Expected Cost 3,218,310 3,635,427 3,656,007

Table 4.9: Differences from Optimum in Percents for SOA and ROA

Difference in percent Difference in percent

Scenario SOA ROA

1 0.4868 0.5351

2 0.1813 0.2098

3 0.0891 0.1050

4 0.3619 0.4365

5 0.0225 0.0558

6 0.0017 0.0125

7 0.0555 0.0905

8 0.1591 0.0742

9 0.1453 0.1083

Average 0.1147 0.1197

In addition to minimizing expected cost, we want to minimize the maximum dif-

ference between optimum cost and our solution to decrease the risks and variance

among different scenarios and use ROA for this purpose. In the table 4.10, we see
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the cost differences between optimum solutions and our approaches. For example,

if we give decision due to the SOA, the cost difference will be $562,046. If we use

ROA, the difference from optimum cost for scenario 1 is $682,046. We imply that

the purpose of ROA is minimizing the cost difference in all scenarios. Thus , in table

4.10, the most important values are maximum cost differences. It is clear that maxi-

mum difference for ROA is smaller than other approaches. The maximum difference

from optimum is approximately less than $300,000 from SOA .

Table 4.10: Cost Differences between Optimum Solutions and SOA and ROA

Difference Difference

Scenario SOA ROA

1 562,046 682,046

2 604,253 724,253

3 601,792 721,792

4 325,909 445,215

5 53,584 137,522

6 10,166 74,394

7 142,533 241,418

8 433,024 183,547

9 1,020,752 729,091

Average 417,117 437,697

Maximum 1,020,752 729,091

To sum up, to give first stage decisions for the sample problem. The company

wants to use ROA because the expected costs for all of the approaches are similar

but the maximum difference from optimum in ROA is very small rather than SOA.

4.3 Sensitivity Analysis for the Sample Problem over Opening Costs

and Capacities

In this section, we aim to analyze the effect of opening costs and capacities over first

stage decisions and costs. As we show in table 4.4, in the sample problem opening

cost for new refurbishing site is 20, 000 and opening cost for new disassembly site

is 100, 000 and capacities are 100. We solve the sample problem due to the these

scalars. In table 4.11, we see three options for RFC, DSC, Rfec and Dsec. We
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don’t change the remaining data set. Thus option 1 actually shows the results of

the sample problem. We multiply the opening costs and capacities with 2 for option

2 and we multiply the opening costs with 3 for option 3. We analyze the effect of

flexibility over first stage decisions.

Table 4.11: Costs for Three Options

RFC DSC Rfec Dsec

Option 1 100 100 20,000 100,000

Option 2 200 200 40,000 200,000

Option 3 300 300 60,000 300,000

As we expect, the first stage decisions for option 2 and option 3 is smaller that

option 1 in table 4.12. When we decrease flexibility of the system, we push the system

to the suppliers and the company want to take more parts from them.

Table 4.12: First Stage Decisions for Three Options

Option 1 Option 2 Option 3

Rfe Dse Rfe Dse Rfe Dse

SOA 9 6 4 3 3 2

ROA 10 7 5 4 4 3

In table 4.13, we can see the expected and optimum cost values for three options.

Optimum costs and ROA costs are increasing when we decrease flexibility but SoA

doesn’t give us any path. If we use the equation 4.2.1 to calculate the difference in

percent for two approaches, we obtain the results which are shown in table 4.14. The

difference decreases by %9,25 for SOA and increases by %12,57 for ROA in option 3.

We can say that expected cost differences in percentages have a tendency to decrease

for SOA and have a tendency to increase for ROA.

In table 4.15, maximum and average cost differences from optimum are shown for

3 options. These cost values are decreasing in SOA and increasing in ROA. For

instance, the maximum difference decreases from 1, 020, 752 to 995,930 and increases
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from 729, 091 to 777, 708 when we use option 3 instead of option 1 for the sample

problem.

Table 4.13: Expected Costs for Three Options

Option 1 Option 2 Option 3

Optimum Cost 3,218,310 3,270,186 3,299,075

SOA cost 3,635,427 3,637,339 3,635,427

ROA cost 3,656,007 3,706,016 3,773,336

Table 4.14: Cost Differences in Percent for Three Options

Option 1 Option 2 Option 3

dip SOA 0.1147 0.1009 0.0925

dip ROA 0.1197 0.1176 0.1257

Table 4.15: Maximum and Average Cost Differences for Three Options

Option 1 Option 2 Option 3

Average Maximum Average Maximum Average Maximum

difference SOA 417,117 1,020,752 367,153 1,086,274 336,352 995,930

difference ROA 437,697 729,091 435,830 743,488 474,260 777,708

As a result this sensitivity analysis shows that when we decrease the flexibility,

SOA gains more advantage rather than ROA because the difference in percent for

expected values and maximum cost differences in all scenarios have a tendency to

decrease in the sample problem.
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4.4 Sensitiviy Analysis over the Product Holding Cost Rate for the

Sample Problem in the SOA

As we discuss in section 4.1, the holding cost rate for three products are equal to the

%20 of the each product for one time period. In this section, we analyze the first

stage decisions and costs when we change the holding cost rate for products at the

collection site. Table 4.16 shows that when we increase the holding cost, the number

of refurbishing and disassembly sites increase until the product holding cost is below

20%. However, as the holding cost rate becomes more than 20% the decisions are not

affected.This can be explained by the quantity of demand and returns. If system can

satisfy demand with the returns, there is no need to open more sites.

Table 4.16: First Stage Decisions over the Product Holding Cost Rate for the Sample
Problem

PrI Rfe Dse PrI Rfe Dse PrI Rfe Dse

0 3 2 0.35 9 6 0.70 9 6

0.05 5 3 0.40 9 6 0.75 9 6

0.10 6 4 0.45 9 6 0.80 9 6

0.15 7 5 0.50 9 6 0.85 9 6

0.20 9 6 0.55 9 6 0.90 9 6

0.25 9 6 0.60 9 6 0.95 9 6

0.30 9 6 0.65 9 6 1.00 9 6

In the Figure 4.1, We see the cost behaviour when we change the product holding

cost rate. It seems that after %30, the cost of the system does not increase very much.

Thus, we can say that the system doesn’t have very much inventory after satisfying

the part demand,second hand demand and sends the products to the disposal site.
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Figure 4.1: Total Expected Cost over the Holding Cost Rate for the Sample Problem
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4.5 Sensitiviy Analysis over Upper Bound of Product Disposal Rate for

the Sample Problem

(3.1.18) shows that the total quantity of products sent to the disposal site can not

exceed the total quantity of returns for each product type. This constraint prevents

the system from sending the products to the disposal site and the total holding cost

of collection site may increase due to these constraints. In this section, we analyze

the effect of changing the upper bound of disposal rate PrU over total cost and first

stage decisions. In the sample problem(section 4.2), PrU is equal to 30%.However ,

Table 4.17 shows that this level is very tight for the system. But the behaviour of the

first stage decisions is complicated. When we decrease the upper bound, the system

opens more disassembly sites and send the products to the disposal after disassembling

them into the parts. When we increase the upper bound, the products are sent to

the disposal directly.

Table 4.17: First Stage Decisions over Upper Bound of Product Disposal Rate for the
Sample Problem

PrU Rfe Dse PrU Rfe Dse PrU Rfe Dse

0 12 9 0,35 7 5 0,70 3 2

0,05 12 9 0,40 7 5 0,75 3 2

0,10 11 8 0,45 6 4 0,80 3 2

0,15 10 7 0,50 6 4 0,85 3 2

0,20 10 7 0,55 6 4 0,90 3 2

0,25 9 6 0,60 5 3 0,95 3 2

0,30 9 6 0,65 5 3 1 3 2

In Figure 4.2, the cost will decrease when we increase the upper level bacause of

the realaxion of the tight constraint.
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Figure 4.2: Total Expected Cost over Upper Bound of Product Disposal Rate for the
Sample Problem
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4.6 Results for the Sample Problem with 10,20 and 50 Time Periods

for the Planning Horizon

The Planning Horizon is fundamental for the SOA and ROA because the first stage

decisions are strategic level decisions. On the other hand, increasing the time periods

brings the complexity to the system and increases the computational time. Thus we

solve the sample problem for 10, 20 and 50 time periods and compare the results.

We can see the results of the 20 time periods in section 4.2. The iteration count

is decreasing dramatically when we decrease the time periods to 10 (table 4.18).

However iteration count is not our only criteria to determine the planning horizon.

Table 4.18: Iteration Counts for the sample problem with 10 and 20 time periods

Iteration Count(10 Time Periods) Iteration Count(20 Time Periods)

SOA 10,678 477,334

ROA 25,293 288,536

Table 4.19: Optimum First Stage Decisions for Each Scenario with 10 Time Periods

Optimum Optimum

Scenario Rfe Dse

1 2 1

2 1 1

3 1 1

4 3 2

5 6 4

6 6 4

7 4 3

8 9 6

9 12 8

In Table 4.20, we see that the first stage decisions for SOA and ROA are different

from each other. But the total cost of ROA and SOA is very close to the optimum

cost value as we see in table 4.21 and 4.22. In addition to the cost, maximum differ-

ences are very close to each other for SOA and ROA in table 4.23. Thus, solving
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the problems with 20 time periods give better results to compare SOA and ROA .

Table 4.20: First Stage Decisions for ROA and SOA with 10 Time Periods

Rfe Dse

SOA 3 2

ROA 4 3

Table 4.21: Costs for Each Scenario and Expected Costs with 10 Time Periods

Scenario optimum cost SOA cost ROA cost

1 313,236 395,214 515,214

2 1,408,098 1,524,680 1,644,680

3 3,302,346 3,417,470 3,537,430

4 449,371 449,371 466,178

5 1,409,941 1,436,410 1,412,674

6 2,970,699 3,011,381 2,983,542

7 884,518 888,926 884,518

8 1,667,487 1,852,989 1,797,821

9 3,266,908 3,535,302 3,475,715

Expected Cost 1,861,400 1,954,638 1,977,530

When time periods are 50, iteration counts increase dramatically but first stage

decisions don’t change for SOA and ROA (Tables 4.24 and 4.25). When we increase

the time periods very much, the cost effect of the first stage decisions over the planning

horizon is decreasing. For instance, difference in percent decrease from %11.4 to %7.5

for SOA (Tables 4.9 and 4.26). A planning horizon with 20 time periods give small

iteration couts for our problem and it seems that first stage decisions reach steady

state.



Chapter 4: Computational Results 47

Table 4.22: Differences from Optimum in Percents for SOA and ROA with 10 Time
Periods

Difference in percent Difference in percent

Scenario SOA ROA

1 0.2074 0.3920

2 0.0765 0.1438

3 0.0337 0.0665

4 0.0000 0.0361

5 0.0184 0.0019

6 0.0135 0.0043

7 0.0050 0.0000

8 0.1001 0.0725

9 0.0759 0.0601

Average 0.0508 0.0625

Table 4.23: Cost Differences between Optimum Solutions and SOA and ROA for 10
Time Periods

Difference Difference

Scenario SOA ROA

1 81,979 201,979

2 116,582 236,582

3 115,125 235,085

4 0 16,807

5 26,470 2,733

6 40,683 12,843

7 4,408 0

8 185,502 130,334

9 268,394 208,807

Average 93,238 116,130

Maximum 268,394 236,582

Table 4.24: Iteration Counts for the sample problem with 20 and 50 time periods

Iteration Count(20 Time Periods) Iteration Count(50 Time Periods)

SOA 477,334 30,004,432

ROA 288,536 22,199,951

Table 4.25: First Stage Decisions for ROA and SOA with 50 Time Periods

Rfe Dse

SOA 9 6

ROA 10 7
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Table 4.26: Expected Costs for the Sample Problem with 50 Time Periods

optimum cost SOA cost ROA cost

Expected 6,878,449 7,438,885 7,469,457

dip 0.0753 0.0791



Chapter 4: Computational Results 49

4.7 Results for the Sample Problem with the Continuous First Stage

Decisions

To understand how first stage decisions affect the complexity of the problem and

results, we relax integer first stage variables and compare the results with the sample

problem in section 4.2. It seems that when we relax first stage variables, the costs

will not decrease dramatically (table 4.8 and 4.27). For instance, optimum total cost

decreases to 3, 212, 215 from 3, 218, 310. If we compare the iteration counts, we can

see the results in the table 4.29. Using integer first stage variables is more accurate,

since refurbishing and disassembly operations are done by machines or workers and

using binary variables for these decisions does not increase computation time very

much.

Table 4.27: First Stage Decisions for ROA and SOA with the Continuous First Stage
Decisions

Rfe Dse

SOA 8.83 5.42

ROA 10.09 6.96

Table 4.28: Costs for Each Scenario and Expected Costs with the Continuous First
Stage Decisions

Scenario optimum cost SOA cost ROA cost

1 583,173 1,073,250 1,272,450

2 2,719,865 3,250,650 3,449,850

3 6,141,358 6,670,890 6,870,090

4 572,119 819,632 1,017,678

5 2,323,514 2,343,898 2,463,909

6 5,862,383 5,868,055 5,943,903

7 2,419,351 2,500,035 2,664,897

8 2,285,703 2,904,273 2,479,544

9 6,002,475 7,243,845 6,732,568

Expected Cost 3,212,215 3,630,503 3,654,988
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Table 4.29: Iteration Counts for the sample problem with Integer and Relaxed First
stage

Iteration Count(Continuous First stage) Iteration Count(Integer First Stage)

SOA 306,495 477,334

ROA 219,487 288,536
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4.8 Results for the Sample Problem with the Increased Opening Costs

In this section, we try to analyze disassembly and refurbishing sites’ opening costs.

As we see in the input parameters in table 4.4, opening disassembly and refurbishing

costs are 100, 000 and 20, 000, respectively. We set Dsec to 300, 000 and Rfec to

60, 000 and compare the results with the sample problem.

When we increase the opening costs, first stage decisions for ROA and SOA close

up. Opening a new site will increase expected cost for SOA and increase maximum

difference for ROA and the model tries to open few sites. As a result, first stage

decisions are the same in this section( 4.30).

Table 4.30: First Stage Decisions for ROA and SOA with the the Increased Opening
Costs

Rfe Dse

SOA 3 2

ROA 3 2

When we increase the opening costs, the total expected costs and optimum cost

increases(4.31). For instance the optimum cost in the sample problem is 3, 218, 310

increases to 3, 839, 219. On the other hand, percentage difference decreases from

0.1147 to 0.0604. Opening a new site is expensive and the model chooses to buy the

parts from suppliers and accepts the holding costs for the collection site. Thus we

can easily say that high opening costs prevent the system’s sustainability.
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Table 4.31: Costs for Each Scenario and Expected Costs with the Increased Opening
Costs

Scenario optimum cost SOA cost ROA cost

1 512,612 798,217 798,217

2 2,616,648 2,980,105 2,980,105

3 6,038,694 6,395,035 6,395,035

4 903,344 903,344 903,344

5 2,862,302 2,867,541 2,867,541

6 6,482,590 6,505,826 6,505,826

7 3,068,619 3,114,496 3,114,496

8 3,895,302 4,423,496 4,423,496

9 8,172,861 8,785,500 8,785,500

Expected Cost 3,839,219 4,085,951 4,085,951

Table 4.32: Differences from Optimum in Percents for SOA and ROA with Increased
Opening Costs

Difference in percent Difference in percent

Scenario SOA ROA

1 0.3578 0.3578

2 0.1220 0.1220

3 0.557 0.0557

4 0.0000 0.0000

5 0.0018 0.0018

6 0.0036 0.0036

7 0.0147 0.0147

8 0.1194 0.1194

9 0.0697 0.0697

Average 0.0604 0.0604
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Table 4.33: Cost Differences between Optimum Solutions and SOA and ROA with
Increased Opening Costs

Difference Difference

Scenario SOA ROA

1 285,605 285,605

2 363,458 363,458

3 356,341 356,341

4 0 0

5 5,239 5,239

6 23,236 23,236

7 45877 45,877

8 528,194 528,194

9 612,639 612,639

Average 246,732 246,732

Maximum 612,639 612,639
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4.9 Sensitivity Analysis for the Five Different Sample Problems over

Opening Costs and Capacities

To determine the effect of flexibility for refurbishing and disassembly sites more effi-

ciently, we create 5 different sample data sets for demand and return. In Table 4.11,

we can see that option 2 is less flexible than option 1 and option 3 is less flexible than

option 2 since the capacity and cost increase at the same rate in option 2 and option

3. Each sample has scenarios as in the table 4.5. In the appendix A, we can see the

cost values and first stage decisions for all of the samples with three options and we

draw charts for these cost values and differences to analyze the effect of the opening

costs and capacities.

Although samples have same demand and return distributions, first stage decisions

may change between samples at each option. This is the main idea that we solve the

problem more than 1 sample . Although each sample has same distribution, the exact

demand and return values are different according to variability. Thus, each sample

may have different first stage decisions under exactly same conditions. For instance ,

Dse for sample 1, option 3 and ROA is 4 but Dse for sample 2, option 3 and ROA

is 3.

Table 4.34: First Stage Decisions for Three Options and five Different Samples in
SOA and ROA

Option1 Option2 Option3

Dse Rfe Dse Rfe Dse Rfe

Sample1 SOA 9 6 4 3 3 2

ROA 10 7 5 4 4 3

Sample2 SOA 9 6 4 3 3 2

ROA 10 7 5 4 3 3

Sample3 SOA 9 6 4 3 3 2

ROA 8 6 5 3 3 2

Sample4 SOA 9 6 4 3 3 2

ROA 8 7 4 4 3 3

Sample5 SOA 9 6 4 3 3 2

ROA 9 6 5 3 3 2
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The first stage decisions for different samples in table 4.34 show the differences

between two approaches. In option 2 and 3, when flexibility is low , ROA and SOA

give more consistent first stage decisions rather than option 1. But the gap between

dip values of ROA and SOA is increasing if decisions are not exactly same in option

2 and 3. The gap values between ROA and SOA dip for different samples and each

option are shown in Table 4.35. For instance, for sample 1 and option 1 ROA cost

is 11.97% bigger than optimum cost and ROA cost is 11.47% bigger than optimum

cost. Thus, first value of the Table 4.35 is 0.005. If first stage decisions are not exactly

same, the gap for option 3 is always larger than the gap for option 2 and option 1.

Nevertheless we can not say we always prefer SOA in option 3 because we also use

the maximum differences and expected cost values in our analysis.

Table 4.35: Gap Values for Three Options and five Different Samples between ROA
and SOA dip values

Sample1 Sample2 Sample3 Sample4 Sample5

Option 1 0.0050 0.0039 0.0010 0.0103 0.0000

Option 2 0.0167 0.0121 0.0030 0.0270 0.0034

Option 3 0.0331 0.0383 0.0000 0.0403 0.0000

Expected costs are not always increasing when we decrease flexibility in SOA and

ROA. For instance, in table A.2 the cost of option 2 is 3, 637, 339 and decreases to

3, 521, 726 in option 3. Like expected costs, we can not say maximum cost differences

has a path when we change the flexibility as we see in figures A.3 and A.1. However

we want to decide which approach we will use to determine first stage decisions.Thus

we should look at maximum differences and expected cost differences for each option

at the same time. To analyze the effect of maximum differences over expected costs,

we calculate a parameter for each data sample and for each option. If we want to

illustrate with an example, this parameter for option 1 is calculated as:

ESOA: Expected Cost for SOA

EROA: Expected Cost for ROA

maxSOA: The maximum difference for SOA
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maxROA: The maximum difference for ROA

Φ =
EROA− ESOA

maxSOA−maxROA
(4.9.1)

When the parameter Φ is high , we should decide according to SOA and when the

parameter Φ is low, we should decide first stage decisions according to ROA. We see

the parameter Φ values for each option and sample data. Figure 4.3 and table 4.36

show that SOA is more advantageous in option 3 and option 2 rather than option

1 if first stage decisions are not similar for SOA and ROA. In a conclusion, when

flexibility is small(option 3), we should use SOA and when flexibility is high(option

1), we should use ROA because maximum difference from optimum costs among all

scenarios will be high.

Table 4.36: Φ values for Different Samples and each Option

Sample1 Sample2 Sample3 Sample4 Sample5

Option 1 0.0705 0.0517 0.1984 0.5739 0

Option 2 0.2003 0.1258 1.8018 0.7931 0.4195

Option 3 0.6319 0.4461 0 2.9768 0

Figure 4.3: Φ values for Different Samples and each Option

In Table 4.37 for SOA and table 4.38 for ROA, the average five sample costs

and difference in percent values for three options are shown. Like we explain above,
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averages of samples give similar results. Option 3 has smaller costs but difference in

percent value is higher rather than option 2.

Table 4.37: Average Optimum and SOA Costs for Five Samples

Optimum Cost SOA Cost Difference in Percent

Average of 5Samples Option1 3,003,334 3,395,000 11.54%

Average of 5Samples Option2 2,929,188 3,279,030 10.67%

Average of 5Samples Option3 2,844,478 3,155,783 9.86%

In the appendix A, all cost and difference in percent values are shown in detail

and graphically.

Table 4.38: Average Optimum and ROA Costs for Five Samples

Optimum Cost ROA Cost Difference in Percent

Average of 5Samples Option1 3,003,334 3,411,174 11.96%

Average of 5Samples Option2 2,929,188 3,328,814 12.01%

Average of 5Samples Option3 2,844,478 3,246,209 12.38%

In the next section, we want to see the effects of variability in demand and return

over first stage decisions and dip values. Our model is created to satisfy demand

while minimizing cost. The most compelling issue in the model is the stochasticity

of demand and return because we have different scenarios and each scenario has

different demand and return distributions. We will determine the cost values and first

stage decision variables if each scenario in the problem has same mean and standard

deviation for demand or return. We create two cases for only variable return and only

variable demand.



Chapter 4: Computational Results 58

4.10 Case 1: The Sample Problem for Variable Return

Table 4.39: Distributions of Scenarios in Case 1

Return

Low Medium High

N (30, 182) N (120, 722) N (250, 1502)

Medium

N (200, 1202) Scenario 1 Scenario 4 Scenario 7

Demand Medium

N (200, 1202) Scenario 2 Scenario 5 Scenario 8

Medium

N (200, 1202) Scenario 3 Scenario 6 Scenario 9

In the variable return case, we have 9 scenarios and each has same distribution

N (200, 1202) for demand. Return distributions are similar as the sample problem

which is analyzed in section 4.2. First stage decisions in table 4.40 and cost differences

in percent 4.42 are similar with the values for five different samples which are shown

in section 4.9. For instance, the first stage decisions for SOA and ROA are different

in option 1, 2 and 3 and the cost difference in percent for SOA in option 1 is 0,1428.

In addition, we can see the expected costs in table 4.41 and the maximum and average

cost differences in table 4.43.

Table 4.40: First Stage Decisions for Three Options in Case 1

Option 1 Option 2 Option 3

Rfe Dse Rfe Dse Rfe Dse

SOA 11 8 5 4 4 3

ROA 9 7 4 4 3 3
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Table 4.41: Expected Costs for Three Options in Case 1

Option 1 Option 2 Option 3

Optimum Cost 2,517,433 2,555,761 2,608,721

SOA cost 2,936,778 2,940,272 2,967,455

ROA cost 2,947,028 3,026,024 3,037,102

Table 4.42: Cost Differences in Percent for Three Options in Case 1

Option 1 Option 2 Option 3

dip SOA 0.1428 0.1308 0.1209

dip ROA 0.1458 0.1554 0.1410

Table 4.43: Maximum and Average Cost Differences for Three Options in Case 1

Option 1 Option 2 Option 3

Average Maximum Average Maximum Average Maximum

difference SOA 419,345 862,615 384,511 752,578 358,734 779,348

difference ROA 429,595 722,615 470,264 712,578 428,382 719,348
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4.11 Case 2: The Sample Problem for Variable Demand

Table 4.44: Distributions of Scenarios in Case 2

Return

Medium Medium Medium

N (120, 722) N (120, 722) N (120, 722)

Low

N (50, 302) Scenario 1 Scenario 4 Scenario 7

Demand Medium

N (200, 1202) Scenario 2 Scenario 5 Scenario 8

High

N (450, 2702) Scenario 3 Scenario 6 Scenario 9

In the variable demand case, we have 9 scenarios and each has same distribution

N (120, 722) for return. Demand distributions are similar as the sample problem which

is analyzed in section 4.2. In this case, first stage decisions in 4.45, expected costs in

4.46, the maximum and average cost differences in 4.48 are very close for SOA and

ROA and the cost differences from optimum is very small. For instance, dip value

for option 1 in SOA is % 2,35 in table 4.47.

Table 4.45: First Stage Decisions for Three Options in Case 2

Option 1 Option 2 Option 3

Rfe Dse Rfe Dse Rfe Dse

SOA 6 4 3 2 3 2

ROA 6 4 3 2 2 2

Table 4.46: Expected Costs for Three Options in Case 2

Option 1 Option 2 Option 3

Optimum Cost 2,769,680 2,800,496 2,798,359

SOA cost 2,836,370 2,836,370 2,898,866

ROA cost 2,836,370 2,836,370 2,985,885
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Table 4.47: Cost Differences in Percent for Three Options Case 2

Option 1 Option 2 Option 3

dip SOA 0.0235 0.0126 0.0347

dip ROA 0.0235 0.0126 0.0628

Table 4.48: Maximum and Average Cost Differences for Three Options in Case 2

Option 1 Option 2 Option 3

Average Maximum Average Maximum Average Maximum

difference SOA 66,690 129,049 35,874 115,367 100,507 315,719

difference ROA 66,690 129,049 35,874 115,367 187,525 255,730

The results of Case 1 and Case 2 show that our first stage variables are determined

due to the return quantity and variability. When we decrease the variability of return,

the system starts to give same first stage decisions for SOA and ROA and most

importantly, the dip values close to 0. If we know the exact distribution of the return,

we can solve the problem easily and give more consistent decisions.

4.12 Case 3: The Sample Problem for Stable Return and Stable De-

mand

Sections 4.10 and 4.11 show the effect of variability in demand and return. In this

section, we assume that each scenario has same distribution and with N (120, 722) for

returns and with N (200, 1202) for demand. The aim of this section is to analyze the

benefit of SOA and ROA under more stable conditions. In table 4.49, we see that

each scenario has same distribution.

The first stage optimum results are similar for each scenario in table 4.50 and

SOA and ROA gives exactly same first stage decisions. In addition, expected costs

for SOA and ROA are very close to the expected optimum cost. This result shows

that under stable return and demand distributions or if know the exact distributions,

making an effort to solve the problem with different approaches is not meaningful.
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Table 4.49: Distributions of Scenarios in Case 3

Return

Low Medium High

N (120, 722) N (120, 722) N (120, 722)

Low

N (200, 1202) Scenario 1 Scenario 4 Scenario 7

Demand Medium

N (200, 1202) Scenario 2 Scenario 5 Scenario 8

High

N (200, 1202) Scenario 3 Scenario 6 Scenario 9

Table 4.50: Optimum First Stage Decisions for Each Scenario in Case 3

Optimum Optimum

Scenario Rfe Dse

1 8 5

2 6 4

3 8 5

4 8 5

5 8 5

6 8 5

7 9 6

8 8 5

9 8 5

Table 4.51: First Stage Decisions for ROA and SOA in Case 3

Rfe Dse

SOA 8 5

ROA 8 5
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Table 4.52: Costs for Each Scenario and Expected Costs in Case 3

Scenario optimum cost SOA cost ROA cost

1 2,581,015 2,581,015 2,581,015

2 2,440,803 2,450,796 2,450,796

3 2,143,232 2,143,232 2,143,232

4 2,559,372 2,559,372 2,559,372

5 2,281,640 2,281,640 2,281,640

6 2,527,717 2,527,717 2,527,717

7 2,390,044 2,408,372 2,408,372

8 2,110,774 2,110,774 2,110,774

9 2,306,131 2,306,131 2,306,131

Expected Cost 2,371,192 2,374,339 2,374,339
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4.13 Case 4: The Sample Problem for Variable Return and Variable

Demand with 4 scenarios

In this section, we decrease the problem size and the scenario number is 4 instead of 9.

Although we decrease the scenario number, the variability of the problem increases.

The reason of the increasing variability is that the medium level distributions of return

and demand does not exist in this case as we see in table 4.53.

Table 4.53: Distributions of Scenarios in Case 4

Return

Low High

N (30, 182) N (250, 1502)

Low

Demand N (50, 302) Scenario 1 Scenario 3

High

N (450, 2702) Scenario 2 Scenario 4

Table 4.54: Optimum First Stage Decisions for Each Scenario in Case 4

Optimum Optimum

Scenario Rfe Dse

1 2 1

2 1 1

3 5 4

4 18 12

When we increase the variability, optimum first stage decisions recede from each

other (Table 4.54). Increasing the varibality produce two different results. First

one is the probability of different first stage decisions for SOA and ROA increases.

Secondly, the expected costs for SOA and ROA are very different than expected

optimum cost (Tables 4.55 and 4.56). Difference in percent for SOA is %11.4 in

section 4.2 but it reaches %16.2 in this case. The reason of this dramatic uptrend is

the difference of optimum cost and SOA and ROA costs for each scenario. These

results orientate us if the distribution of scenarios are unstable, giving the first stage
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decisions according to the SOA and ROA approaches is more reasonable rather than

giving the decisions according to just one scenario.

Table 4.55: First Stage Decisions for ROA and SOA in Case 4

Rfe Dse

SOA 10 7

ROA 11 7

Table 4.56: Costs for Each Scenario, Expected Costs and difference in Percents in
Case 4

Scenario optimum cost SOA cost ROA cost

1 491,629 1,200,668 1,220,668

2 5,329,585 6,064,085 6,084,085

3 1,869,755 2,123,080 2,143,057

4 5,130,531 5,919,282 5,908,621

Expected Cost 3205375 3826778 3839108

dip 16.2% 16.5%
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Chapter 5

CONCLUSIONS

In this thesis, we developed a large scale mixed integer mathematical optimization

model to solve the remanufacturing, refurbishing and disassembly operations for the

products which have product modularity in a closed loop supply chain management

system. There are two stages in our model. First one is giving the opening decisions

for product disassembly sites and part refurbishing sites, named as first stage deci-

sions. Second stage is operational decisions such as the quantity of the disassembled

products, refurbished parts, sold products as second hand etc. These two stages are

separated as operational and strategic stages.

After developing the sample problem and solving the model with deterministic

approach for different scenarios, we determined that the changes in demand and return

affects the first stage decisions dramatically. The model decides opening disassembly

and refurbishing sites due to the change in part demand and product returns.

To analyze the results of demand and returns variability, we integrate our math-

ematical model into two different approaches. First one is Stochastic Optimization

which minimizes the expected cost while giving the same first stage decisions for

all scenarios. Second one is Robust Optimization Approach which minimizes the

deviation between optimum cost and robust cost for each scenario while giving the

same first stage decisions for all scenarios. We compare these tow approaches with

deterministic optimum solutions in this thesis.

We solved the sample problem with deterministic, stochastic and robust ap-

proaches and conclude that the expected costs for SOA and ROA are close but

the cost differences for each scenario are not close and ROA gives more accurate so-

lutions for the sample problem. After that, we analyze the sample problem under less
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flexible conditions which has more expensive and more capacitated disassembly and

refurbishing sites.Under less flexible conditions, SOA gives more valuable results. We

run the model for 5 different sample problems and the results show that giving the

first stage decisions due to the SOA is more advantageous when we increase opening

diassambly and refurbishing site costs and capacities.

In this thesis, we analyze two different sensitivity analysis to see the change in

first stage decisions and expected costs for the sample problem. Increasing the holding

rate for products, increase the firs stage decisions and expected cost until the specific

point. Unlike holding rates for products, the increasing upper bound for disassembly

sites decrease the first stage decisions and total expected cost until the specific point.

In this thesis, to analyze the planning horizon’s effect over first stage decisions,

we experiment three different planning time horizons . The results of short horizon

indicate that the model opens few disassembly and refurbishing sites because holding

the products at holding sites for short horizon gives less cost. We can’t use short

horizon through strategic first stage decisions. However, it is noteworthy that Medium

and High horizon solutions give same first stage decisions but long time horizon has

two disadvantages. Firstly, run time increases dramatically and secondly the first

stage costs’ effect over total expected costs decrease.

Finally, we analyze four different cases to see first stage decisions, determinis-

tic costs, stochastic costs and robust costs under different variability conditions for

demand returns. Each case use same parameters like the sample problem.However,

the difference comes from the distribution of demand and returns and the number

of scenarios. We can make inferences through these cases. Firstly, the variability of

scenarios’ distribution change the first stage decisions and expected costs. But the

effect of return is more distinctive rather than demand. In addition, to use SOA and

ROA we should have scenarios which have different demand and return distributions.

Finally, decreasing the scenario number and diverge the distributions of scenarios in-

crease variability and different approaches are useful under these conditions.

Consequently, to solve large scale remanufaturing and disassembly problems which
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have product modularity and to give strategic decisions, SOA and ROA can be very

helpful and can give valuable insights to the decision makers if they can determine

the scenarios and the distributions of uncertain factors.
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Appendix A

NUMERICAL RESULTS FOR THE FIVE DIFFERENT

SAMPLE PROBLEMS OVER OPENING COSTS AND

CAPACITIES OPTIONS

Table A.1: Optimum Costs for Three Options and Five Different Samples

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Option 1 3,098,310 2,923,456 3,037,560 2,981,875 2,975,471

Option 2 3,030,186 2,844,237 2,956,102 2,906,748 2,908,669

Option 3 2,939,075 2,762,546 2,885,515 2,820,286 2,814,968

Table A.2: Expected Costs for Three Options and Five Different Samples in SOA

Sample1 Sample2 Sample3 Sample4 Sample5

Option 1 3,635,427 3,451,139 3,521,716 3,490,979 3,475,740

Option 2 3,637,339 3,460,762 3,637,339 3,493,736 3,477,621

Option 3 3,635,427 3,455,055 3,521,726 3,490,968 3,475,740

Table A.3: Maximum Cost Differences for Three Options and five Different Samples
between SOA and the Optimum Costs

Sample1 Sample2 Sample3 Sample4 Sample5

Option 1 1,020,752 1,038,701 610,248 798,229 613,932

Option 2 1,086,274 1,131,537 584,940 850,129 581,678

Option 3 995,930 1,061,601 523,511 774,017 596,792
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Figure A.1: Maximum Cost Differences for Three Options and Five Samples between
SOA and the Optimum Costs

Table A.4: Cost Differences in percent for Three Options and five Different Samples
between SOA and the Optimum Costs

Sample1 Sample2 Sample3 Sample4 Sample5

Option 1 0.1147 0.1181 0.1034 0.1115 0.1094

Option 2 0.1009 0.1088 0.0935 0.0993 0.0946

Option 3 0.0925 0.0962 0.0784 0.0890 0.0865

Figure A.2: Differences in Percents for Three Options and Five Samples between
SOA and the Optimum Costs

Table A.5: Expected Costs for Three Options and five Different Samples in ROA

Sample1 Sample2 Sample3 Sample4 Sample5

Option 1 3,656,007 3,466,504 3,525,685 3,531,932 3,475,740

Option 2 3,706,016 3,508,283 3,706,016 3,601,567 3,490,676

Option 3 3,773,336 3,607,597 3,521,726 3,652,648 3,475,740
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Table A.6: Maximum Cost Differences for Three Options and five Different Samples
between ROA and the Optimum Costs

Sample1 Sample2 Sample3 Sample4 Sample5

Option 1 729,091 742,013 590,248 726,880 613,932

Option 2 743,488 753,908 546,825 714,170 550,562

Option 3 777,708 719,685 523,511 719,704 596,792

Figure A.3: Maximum Cost Differences for Three Options and Five Samples between
ROAand the Optimum Costs

Table A.7: Cost Differences in percent for Three Options and Five Different Samples
between ROA and the Optimum Costs

Sample1 Sample2 Sample3 Sample4 Sample5

Option 1 0.1197 0.1220 0.1044 0.1218 0.1094

Option 2 0.1176 0.1209 0.0965 0.1263 0.0980

Option 3 0.1256 0.1345 0.0784 0.1293 0.0865
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Figure A.4: Differences in percents for Three Options and Five Samples between
ROA and the Optimum Costs

Figure A.5: Gap Values Between SOA and ROA dip for Five Different Samples and
each Option
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