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ABSTRACT

Inventory models have received signi�cant attention in the operations research and man-

agement literature. Because of the randomness in demand, these models include uncertainty

and this uncertainty generates risks to the managers. In inventory literature, it is mostly

assumed that the decision maker is risk-neutral and aims to maximize the expected cash

�ow. However, today it is known that most managers are risk-sensitive. In this thesis, we

consider the single-period, single-item stochastic inventory model where the decision-maker

(newsvendor) is risk-averse. Our newsvendor aims to maximize the expected utility of the

cash �ow, unlike the classical model where the newsvendor is risk-neutral. Moreover, we

suppose that there are risks associated with the uncertainty in demand as well as supply.

We consider supply randomness based on random yield, random capacity, and both random

yield and capacity. Furthermore, we assume that the randomness in demand and supply are

correlated with the �nancial markets. The inventory manager exploits this correlation and

manages his risks by investing in a portfolio of �nancial instruments. The decision problem

therefore includes not only the determination of the optimal ordering policy, but also the

selection of the optimal portfolio at the same time. We �rst use a minimum-variance ap-

proach to this problem. After �nding the optimal portfolio for a given order quantity that

minimizes the variance of the cash �ow, we determine the optimal order quantity that max-

imizes the expected utility of the hedged cash �ow with this optimal portfolio. Moreover,

we also consider the cases in which the randomness in demand and supply is correlated

with the �nancial markets. We analyze these problems in detail and provide a risk-sensitive

approach to inventory management. The analyses result in some interesting and explicit

characterizations on the structure of the optimal policy. Finally, we present numerical ex-

amples to illustrate the e¤ects of parameters on the optimal order quantity, and the e¤ects

of utility theory and �nancial hedging on variance, or risk reduction.
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ÖZETÇE

Envanter modelleri, endüstri mühendisli¼gi ve i̧sletme yönetimi literatüründe en çok ele

al¬nan konulardan biridir. Talebin zaman¬n¬n ve miktar¬n¬n bilinmiyor oluşundan dolay¬, bu

modeller rassall¬k içermektedir. Bu da do¼gal olarak, yönetici için bir risk oluşturmaktad¬r.

Envanter literatüründe ço¼gunlukla riske karş¬duyars¬z olan insanlar ele al¬nmakta ve bekle-

nen son nakit ak¬̧s¬n¬eniyileme amaçlanmaktad¬r. Ama günümüzde ço¼gu yöneticinin karar

verirken riske karş¬duyarl¬oldu¼gu bilinmektedir.

Bu tezde, tek dönem ve tek ürün içeren rassal envanter modelleri, karar vericinin riske

karş¬ duyarl¬ oldu¼gu durumda tart¬̧s¬lacakt¬r. Karar vericinin amac¬, klasik modellerde

oldu¼gu gibi beklenen nakit ak¬̧s¬n¬ eniyileme de¼gil, nakit ak¬̧s¬n¬n fayda (utility) fonksiy-

onunu eniyilemek olacakt¬r. Ayr¬ca, rassall¬¼g¬n sadece müşteri talebi ile s¬n¬rl¬ olmad¬¼g¬

arz¬n da rassal oldu¼gu, verilen sipari̧sin hepsinin teslim al¬namad¬¼g¬, modeler dikkate al¬-

nacakt¬r. Tezin ilerleyen k¬s¬mlar¬nda, rassall¬¼g¬meydana getiren müşteri talebinin ve arz¬n,

�nansal baz¬endeksler ya da varl¬klar ile korelasyonu oldu¼gu durumlar tart¬̧s¬lacakt¬r. Karar

verici, bu varl¬klar¬n vadeli i̧slemler ve türev piyasalar¬nda pozisyon alarak, bu korelasyon-

dan yararlanacak ve dönem sonu nakit ak¬̧s¬n¬n riskini azaltacakt¬r. Böylece, karar prob-

lemi sadece sipari̧s miktar¬n¬belirlemek de¼gil, ayn¬zamanda riski azaltacak en iyi portföyü

de oluşturmak olacakt¬r. Bu çok kararl¬ problemin çözümünde en az-varyans yaklaş¬m¬

benimsenecektir. Önce sabit bir sipari̧s miktar¬için dönem sonu nakit ak¬̧s¬n¬n varyans¬n¬

en aza indiren portföy bulunacakt¬r. Ard¬ndan, hesaplanan bu portföy kullan¬larak nakit

ak¬̧s¬ndan elde edilecek faydan¬n beklenen de¼gerini ençoklayan sipari̧s miktar¬belirlenecektir.

Tüm bu modeler ayr¬nt¬s¬yla incelenilecek ve envanter yönetimine riske duyarl¬bir yaklaş¬m

sergilenecektir. Tüm analizlerin sonucunda eniyi sipari̧s miktar¬ hakk¬nda ilginç ve aç¬k

sonuçlar elde edilecektir. Son olarak da, simülasyondan faydalanarak, say¬sal örneklerle

yap¬lan analizlerin sonuçlar¬de¼gerlendirilecektir.
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Chapter 1

INTRODUCTION

Managing inventory is crucial for any company dealing with physical products, including

manufacturers, wholesalers and retailers. Since inventory management plays a key role for

a successful business, many companies all around the world have been overhauling their

inventory strategies. Operations research literature contributes by providing powerful tools

for inventory management. The single-period, single-item stochastic inventory model is one

of the most important problems in the inventory management area. This model deals with

the inventory problem in which there is considerable uncertainty about future demands and

the product is perishable. The product can be carried in inventory for only a limited period

of time before it can be sold, such as periodicals, �owers, fresh fruits and vegetables, seasonal

clothing, fashion goods and reservations for a particular �ight. The decision maker needs to

choose an appropriate order quantity that balances the cost of ordering too many against

the cost of ordering too few. Since a newsvendor�s decision of choosing the daily newspaper

quantity exactly describes the problem, the model has been called the newsvendor model.

In the newsvendor literature, it is mostly assumed that the decision maker is risk-neutral

and is only concerned about the expected return. So, the expected pro�t maximization is

the common solution approach in this area. However, today most managers and decision

makers are risk-sensitive, so they are also interested in decision support tools that involve

risk perceptions.

Since the problem includes uncertainty, risk exposure is an inevitable outcome. Often,

decision makers take a conservative attitude toward risks. In other words, they are risk-

averse and want to avoid risk as much as possible. Risk-averse persons are harmed by a

dollar of loss more than they are bene�ted from a dollar of gain. To get rid of the risk of

an undesirable outcome, they may choose an order quantity that results in lower expected

pro�ts. The literature reports some methods to control the riskiness of the problem. Within

this research stream, expected utility theory, satisfaction probability function and Value-
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at-Risk (VaR) are the most commonly used methods for modelling risk-sensitivity. In the

expected utility theory framework, the aim of the risk-averse decision maker is to maximize

the expected utility of the cash �ow. In this framework, the utility function corresponds

to the satisfaction of the decision maker from the cash �ow. Alternatively, the satisfaction

probability maximization refers to the maximization of the probability of achieving a �tar-

get�level of pro�t. Finally, VaR measures the potential loss in value of a random function

over a de�ned period for a given con�dence interval. The expected utility maximization

approach is the focus of this study. As we are dealing with the risk-averse decision makers

in this thesis, concave utility functions are used.

In the literature of the newsvendor model, it is mostly assumed that the demand is

the only source of randomness. Although the major source of randomness is the demand,

supply may also be random. So, supply uncertainty should not be neglected. In recent years,

interest in supply uncertainty has increased. The randomness in the supply process may

result from several reasons. Two main components of a supply process are production and

transportation. Because of the unforeseen events during the production and transportation

processes, the quantity received may not be equal to the quantity ordered. Instead, a random

amount depending on the order quantity is received. Among many others, long machine

downtimes due to unplanned maintenance, strikes, seconds and scraps in a production run,

lack of raw material and rework are some reasons which lead to uncertainty during the

production stage. Moreover, accidents, de�ciencies in the quality of transportation and

various environmental factors cause uncertainty during the transportation stage. Due to

these problems, the quantity received may be equal to some proportion of the ordered

quantity or the capacity of the supplier may be limited by a random number. The existence

of the supply randomness increases the level of uncertainty, so does the risk of the decision

maker.

Inventory management, like other businesses, is inherently risky. Assuming the costs

are �xed, the �rm�s pro�t depends on demand and supply. Therefore, the randomness of

demand and supply increases the uncertainty of the problem. It seems obvious that risk-

averse persons bene�t from reducing uncertainty, so managers would want to reduce risk.

It is mostly assumed in the literature that the demand and supply are independent from

the �nancial market. However, in most business practices it is possible to �nd a correlation

between the demand and supply with the �nancial market. Many �nancial instruments,

such as forwards, calls and puts, are available that permit the decision maker to hedge the
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inventory risk. The impact of �nancial hedging on decision making is a critical point to

analyze. The risk-sensitive decision maker not only tries to maximize the expected utility

of the cash �ow at the end of the period, but also needs to consider decreasing the risk

or the variance of the cash �ow by investing in a portfolio of market instruments that are

correlated with his random demand and supply.

The motivation of this thesis is to analyze the risk-sensitive approach to the newsvendor

problem under random demand and supply. This thesis is divided into two main parts

based on the existence of the �nancial market. In the �rst part, the newsvendor problem is

considered using the expected utility framework without �nancial hedging. We �rst analyze

the problem when the demand is the only source of uncertainty. Then, we consider the

problem when both supply and demand are random, and they are not necessarily indepen-

dent. Random yield, random capacity and the combination of random yield and capacity

is analyzed respectively. Then, the second part of the thesis considers the risk-sensitive

newsvendor model with random demand and supply which are correlated with the �nan-

cial market. After analyzing the model with no supply randomness, random yield, random

capacity and random yield and capacity models are discussed. In each case, �rst a single

asset model and then models with multiple assets are analyzed.

The organization of this thesis is as follows. The next chapter contains a review of rele-

vant models in the literature. Chapter 3 focuses on inventory problems with random supply

without considering �nancial hedging. In Chapter 4, we characterize the optimal policy

structure for inventory problems with random supply and �nancial hedging opportunity. In

Chapter 5, we discuss the models with illustrative examples. The results and the comments

on the results are provided. Finally in Chapter 6, we give a general summary of the thesis

and provide some directions for future research.
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Chapter 2

LITERATURE REVIEW

Inventory management models, especially newsvendor models, have received signi�cant

attention in the literature. Within this literature, much has been written about the newsven-

dor who aims to maximize expected pro�t or minimize expected cost. Today, it is known

that decision makers are risk-sensitive and risk management in inventory models is quite

important. Therefore, the interest in risk-sensitive approaches has been increasing recently.

The most common risk measurement techniques used in the literature are utility maximiza-

tion, satis�cing probability maximization and Value at Risk (VaR). We discuss the related

literature with these techniques in Section 2.1. Financial hedging is another important is-

sue that considers risk-sensitivity, the literature of which is discussed in Section 2.2. Apart

from these, although the literature mostly ignores supply uncertainty, little has been writ-

ten about random supply. Lastly, in Section 2.3, we discuss the literature about supply

uncertainty.

2.1 Risk Sensitive Approaches

Although the majority of the inventory models in the literature are focused on the risk-

neutral decision makers whose objective is expected pro�t maximization, some literature

addresses risk-sensitive decision makers. The most common criteria used to model risk-

sensitivity are utility and satis�cing probability maximization in the literature. Further in

this section, VaR is explained in relation to risk-sensitive inventory management.

The discussion of utility maximization began with Lau [37]. Then, Bouakiz and So-

bel [7] examined the impact of exponential utility functions on optimal policies for both

�nite-horizon and in�nite-horizon problem. Bouakiz and Sobel [7] show that a base-stock

policy is optimal for a multi-period newsvendor problem when the objective is to maxi-

mize expected exponential utility of the present value of the net pro�t. Eeckhoudt et al.

[18] study a risk-averse newsvendor who is allowed to obtain additional orders if demand
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is higher than his initial order. The newsvendor aims to maximize the expected utility of

cash �ow. They use an argument by Pratt [46] to show how risk-aversion a¤ects optimal

order quantity. This argument states that an increase in risk aversion equals the concave

transformation of the utility function. They conclude that a risk-averse newsvendor will

order less than a risk-neutral newsvendor and a more risk-averse newsvendor orders less.

Moreover, they determine comparative statics of cost and price changes. They also analyze

two types of changes in the degree of risk: adding background wealth risk and increasing

demand risk. In our work, while considering the e¤ects of risk-aversion and parameters

we utilize their work and compare our results with theirs. Agrawal and Seshadri [1] also

consider a risk-averse newsvendor with the objective of maximizing the expected utility.

Their work di¤ers from others because the decision maker does not only decide on an or-

der quantity, but also decides on a selling price and the demand distribution is a function

of this selling price. They consider two di¤erent cases in which price a¤ects the demand.

First, price only a¤ects the scale of the demand distribution. Then, price a¤ects the lo-

cation of the demand distribution. They �nd that a risk-averse newsvendor will charge a

higher price and order less than the risk-neutral newsvendor if price a¤ects the scale of

the demand distribution. And the risk-averse newsvendor will charge a lower price if price

a¤ects the location of the distribution, but the e¤ect on the quantity ordered depends on

the demand sensitivity to selling price. Agrawal and Seshadri [2] consider the importance

of intermediaries in supply chains to reduce the �nancial risk faced by risk-averse retailers.

They show that a risk-neutral distributor can o¤er a menu of mutually bene�cial contracts

to retailers so that the supply chain ine¢ ciency can be avoided. Schweitzer and Cachon

[8] analyze managers� newsvendor decisions. First, they summarize under which prefer-

ences the managerial decisions deviate from the expected pro�t maximization order. Then

they analyze two experiments across di¤erent pro�t-margin conditions. In the �rst case,

the demand distribution is known, and in the second case the demand range is increased.

They conclude that for high-pro�t products the optimal order quantity is less than the or-

der quantity maximizing the expected pro�t, and for low-pro�t products the optimal order

quantity is more. Chen et al. [10] examine risk-aversion in a multi-period inventory model.

Two problems, one where demand does not depend on price and another where demand

depends on price, are considered. For di¤erent risk-averse utility functions, such as additive

utility functions, they obtain the optimal policy. They also extend their work to models in

which the decision maker has access to a complete or partially complete �nancial market.
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Keren and Piliskin [33] study an expected utility maximizer newsvendor who is faced with

a uniformly distributed demand. They also present a simple example when the newsvendor

has an exponential utility function. The model in Ahmed et al. [3] is an extension of a risk-

averse, singe-item, multi-period inventory model when the objective function is a coherent

risk measure. A coherent risk measure is a quanti�er for the risk of �nancial position which

satis�es stochastic dominance conditions. Wang et al. [49] analyze how selling price a¤ects

the order quantity decision of a risk-averse newsvendor. They conclude that for bounded

decreasing absolute risk aversion utility functions, a risk-averse decision maker orders less

as selling price increases if the price is higher than a threshold value. Wang and Webster

[51] consider the loss-averse newsvendor model by using a kinked piecewise-linear utility

function. A loss-averse newsvendor may order more than a risk-neutral newsvendor if the

penalty cost is negligible. Wu et al. [11] study the risk-averse newsvendor model with a

mean-variance objective function. They show the importance of the stockout cost on the

optimal order quantity. They state that the existence of the stock-out cost may change the

conclusion that the risk-averse newsvendor orders less than the risk-neutral newsvendor.

Satis�cing probability maximization refers to the probability of achieving a certain level

of pro�t. Lau [37] discusses risk-aversion by considering the satis�cing probability maxi-

mization method for a single-product model with shortage and salvage costs. This paper

considers the problem under two objectives: maximizing expected utility and maximizing

the probability of achieving a budgeted pro�t. Sankarasubramanian and Kumaraswamy [35]

also consider the one-period inventory model where it is required to determine the order

quantity which maximizes the probability of realizing a predetermined level of pro�t. Then,

Lau and Lau [36] solve the newsvendor problem with two products by using the technique

of maximizing the probability of achieving a target pro�t level. Li et al. [40] and [38] extend

Lau and Lau [36] by considering uniformly and exponentially distributed demands. A more

recent paper, Parlar and Weng [45], considers the objective of maximizing the expected

pro�t and the probability of exceeding a prespeci�ed and �xed target pro�t level together.

Instead of a �xed target pro�t level, they introduce a more �exible satis�cing objective like

the probability of exceeding the expected pro�t.

VaR is another widely used risk measure of a possible losses. Simons [48], Jorion [27],

Dowd [17] and Tapiero [50] contribute to the literature of VaR with their reviews. Gan et

al. [21] examine the inventory coordination problem between retailer and supplier by using

VaR concept to newsvendor model with a downside risk constraint. Özler et al. [29] study
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a single-period, multi-product problem by utilizing VaR as the risk measure. They derive

the exact distribution function for the two-product newsvendor problem and develop an

approximation method for the pro�t distribution of the multi-product case.

2.2 Financial Hedging

Today, �nancial markets have a wide range of products and it may be possible to �nd a

�nancial asset which is correlated with the demand of a product. Therefore, there is an

opportunity to use �nancial instruments to hedge the risk of inventory systems. The earlier

paper related to this subject is by Anvari [5] which analyzes a single-period newsvendor

model with no set-up costs by using a well-known framework, capital asset pricing model

(CAPM). The decision is how much to invest on inventory and on �nancial assets. The

paper clari�es the results by using a numerical example in which the demand is normally

distributed. The resulting optimal policy is characterized and compared with the classical

expected utility maximization structure. A more recent work is by Caldantey and Hough

[9] that considers a related problem. They present results on a non-�nancial corporation

which simultaneously chooses an optimal operating policy and an optimal trading strat-

egy in the �nancial markets. The risk-averse corporation, with a mean-variance objective,

dynamically hedges its pro�ts when the pro�ts are correlated with returns in the �nancial

markets. They discuss how di¤erent informational assumptions, regarding whether or not

the operational state variables are observable, result in di¤erent solution techniques. Chu et

al. [13] provide a continuously reviewed model to mitigate inventory risks when uncertain

demand is correlated with the �nancial market. A mean-variance criterion is used to develop

an e¤ective �nancial hedging policy for inventory managers. Gaur and Seshadri [22] present

the problem of hedging inventory risk for the newsvendor model when the demand is corre-

lated with the price of a �nancial asset. Their discussion is motivated by statistical evidence

that an inventory index (Redbook), that represents average sales, is highly correlated with

a �nancial index (SP500), that represents average asset prices. They use the SP500 index

to construct static hedging strategies using both mean-variance and utility-maximization

frameworks. They claim that the SP500 index has a high correlation with the demand as

long as the products have discretionary demand. For a single-period problem, where there

is a linear dependence between demand and the market index, they derive the hedged-cash

�ow for a perfectly-correlated arbitrage-free complete market showing that it is possible to
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make riskless pro�ts from non-�nancial operations of a �rm by using �nancial instruments.

But since perfect correlation is not completely realistic in practice, they extend their frame-

work to �t partially-correlated markets using expected utility maximization. An important

aspect they pointed out is that the risk of inventory carrying can be replicated as a �nancial

portfolio by using simple instruments like bonds, futures and options. According to their

research, a risk averse decision maker orders more inventory when hedging is applied. They

illustrate their work by an example which is also discussed in our work. Ding et al. [16]

propose a framework to combine operational and �nancial hedging. They consider a global

�rm that sells to both home and foreign markets, and so faces demand and currency ex-

change uncertainties. Therefore, they study integrated operational and �nancial hedging by

using a mean-variance utility function to model the �rm�s risk aversion in decision making

when there are multiple products and suppliers. From an operational hedging perspective,

they suggest that the �rm exploit the capacity allocation by delaying the commitment until

the demand and exchange rate uncertainties are realized. From a �nancial hedging per-

spective, they suggest that the �rm use call and put option contracts for currency exchange

rates. The �rm can improve its pro�t by using operational hedging and decrease the pro�t

variance by using �nancial hedging.

2.3 Random Supply

In many supply chain systems, demand is not the only source of uncertainty. Supply may

also be random and this randomness contributes to the uncertainty of an inventory sys-

tem. During production or transportation, the supply process may be disrupted because

of some limitations or unforeseen events. Therefore, the amount received will not necessar-

ily be equal to the amount ordered. Supply failures may be caused by natural disasters,

labour disputes, machine failures, economic conditions, accidents, wars, terrorism, supplier

equipment malfunctions and other causes (Chopra and Sodhi [12]). The work of Norrman

and Jansson [26] is motivated by such an example. In 2001, a �re accident occurred at

an Ericsson sub-supplier�s plant where radio-frequency chips were produced. That accident

interrupted the production and resulted in a loss of almost $400 million. That was the

primary reason why Ericsson decided to withdraw from the mobile phone business. As

an another example, due to �nancial problems faced by the UK chasis manufacturer UPF

Thompson in 2001, the production was disrupted at Land Rover (Juttner [28]). Moreover,
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as Kharif [34] states, Motorola failed to ship the camera phones during the holiday season

in 2003 because of component shortages. Businesses face such tragic examples everyday, so

the importance of including random supply into inventory models increases.

Karlin [30] is the earliest paper modeling the fact that the quantity received is not

necessarily equal to the quantity ordered. He argued that there is a critical level of initial

inventory below which an order should be placed if the holding and shortage cost functions

are convex increasing. Shih [47] considers the problem when some percentage of received

products are defective. It is assumed that the percentage of defectives is a random variable

with a known probability distribution. This work derives the necessary optimality condition

for any distribution of the defective percentage. Noori and Keller [32] extend Shih�s study

by providing closed form solutions for the optimal order quantity for various distributions of

the quantity received. They obtain analytical results for the amount received for uniformly

and exponentially distributed demand. Gerchak et al. [24] also deal with random yield.

They assume that there is an initial stock. They conclude that under random yield the

optimal policy is not a order-up-to type anymore. The work of Henig and Gerchak [23]

has more general assumptions about the random replenishment distribution and the cost

structure. They show that a non-order-up-to policy is optimal in this case. Parlar and Wang

[44] analyze a situation in which the newsvendor uses two suppliers, each having random

yield. They conclude that diversi�cation can provide a reduction in overall yield variability.

Yano and Lee [39] provide a detailed discussion about random supply models. Ciarallo

et al. [4] deal with the problem when randomness results from random capacity with a

known distribution. They show that a base-stock policy is optimal. Jain and Silver [25]

also consider the random capacity model when the newsvendor can assure the availability

of a given level of capacity by paying a premium ahead of time. Özekici and Parlar [43]

consider the random availability model so that the order is either fully satis�ed or remains

unful�lled. Erdem and Özekici [19] follow the work of Özekici and Parlar [43]. They also

consider that random capacity is the source of random supply. Gallego and Hu [20] assume

that the capacity of the supplier is �nite and the retailer receives a random proportion of

amount produced. Arifo¼glu and Özekici [6] extend Gallego and Hu�s work [20] by considering

that there is imperfect information and the environment is partially observed. Kazaz [31]

analyzes a production plan when yield is also random and it e¤ects the sales and purchasing

prices. He illustrates the problem by using olive oil example. In a recent paper, Rekik et al.

[15] consider the random yield models when both demand and supply error are uniformly
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or normally distributed. They also conclude that the random yield causes signi�cant losses.

Dada et al. [14] study the procurement problem of the newsvendor when it is supposed that

there are multiple suppliers with di¤erent quali�cations like less expensive or more reliable.

Yang et al. [52] also consider a similar problem. They analyze how newsvendor makes a

choice between a set of suppliers with di¤erent yields and prices.

Okyay et al. [41] summarize the random supply models in the literature under three

groups: Random yield, random capacity and random yield and capacity. Let y be the

amount ordered and Q (y) be the amount received.

� Random Yield: Only a fraction of amount ordered can enter the stockpile and

Q (y) = yU

where U represents the proportion of nondefective items received.

� Random Capacity: The supplier has some random replenishment capacity K so that

Q (y) = min fK; yg .

When an order is placed for y units, the suppliers will ship y if the total amount K of

on hand inventory that they posses is greater than y. Or else, they will send all the

inventory they posses, which is K.

� Random Yield and Capacity: This is another model that combines the previous two

so that

Q (y) = U min fK; yg .

Once y units are ordered, the supplier can ship at most K and only a proportion U is

received in good shape.

Our work is closely related to Okyay et al. [41] and [42]. In Chapter 3, we consider

the newsvendor model where there are risks associated with the uncertainty in demand as

well as supply, like Okyay et al. [41]. Then in Chapter 4, we consider the model when the

randomness in demand and supply is correlated with the �nancial markets, like Okyay et al.

[42]. However, this thesis di¤ers from their works by using the expected utility maximization

framework instead of expected cash �ow maximization.
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Chapter 3

UTILITY-BASED MODELS WITH RANDOM DEMAND AND

SUPPLY

In this chapter, we consider the newsvendor problem using a utility based approach.

In Section (3.1), we �rst discuss the results for the standard newsvendor model when the

objective is expected utility maximization. Then, we consider models with random supply.

In Section (3.2), we discuss random yield models when the amount received is a fraction

of the amount ordered. In Section (3.3), we discuss random capacity models when the

capacity of supplier is random. Last, the combination of random yield and capacity models

is analyzed in Section (3.4).

3.1 Standard Newsvendor Model

The problem of controlling the inventory of a single-item with a stochastic demand over a

single-period, called newsvendor problem, is a well-known inventory management problem

in the literature. Consider a decision maker (newsvendor) who decides how many items to

order in the beginning of the period for sale during that period. If he orders too few, he will

lose potential sales. If he orders too much, he must salvage all unsold items at a lower price.

The decision-maker aims to �nd an optimal order quantity which balances these overage

and underage costs. It is mostly assumed that the decision maker is risk-neutral and his aim

is to maximize the expected pro�t. However, in practice it is observed that most decision

makers are risk-sensitive and expected pro�t maximization is not adequate for them. They

are conservative and prefer to avoid risk as much as possible. Therefore, in order to choose a

risk-sensitive order quantity, expected utility theory framework can be used. The objective

is to maximize the expected utility of the cash �ow rather than the expected cash �ow. As

risk-averse decision makers are under consideration, concave utility functions are used in

this problem.

Eeckhoudt et al. [18] examine the newsvendor problem with a risk-averse decision maker

when the aim is to maximize the expected utility of the cash �ow. They assume that it is
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allowed to buy additional newspapers during the selling period. They examine the e¤ects

of risk aversion and other parameters on the optimal order quantity. This section of our

thesis is such a review of what they show in their paper. In the following sections, we add

supply uncertainty to their model.

In this standard model, there is a continuous stochastic demand D with a known dis-

tribution function GD (x) = P fD � xg and a density function gD. We suppose that the
newsvendor has an initial wealth z0. He buys items at a �xed unit purchase cost c and sells

at a �xed unit sale price s. Unsold items can be salvaged at a �xed unit salvage value v.

Moreover, if demand exceeds the order quantity, the newsvendor can buy additional items

and sell them at the same cost. Therefore, in our problem we use a negative �xed unit

shortage penalty p. To avoid trivial situations, s > c > v � 0 and (c � s) < p � 0. These
parameters also satisfy 0 � s + p � c and 0 � s + p � v. Our decision maker is risk-averse
and his aim is to maximize the expected utility of the cash �ow. To avoid trivial situations,

we suppose that u is not equal to a constant and it is strictly increasing so that u0 > 0.

Moreover, the utility function is concave with u00 � 0: Our risk-sensitive decision maker

decides on the order quantity y under the random demand D. The aim of the newsvendor

is maximizing the expected utility of cash �ow by choosing an ordering quantity y, or

max
y�0

H(y) = E[u(CF (D; y))] (3.1)

where CF (D; y) is the random cash �ow and it can be written as

CF (D; y) = z0 � cy + smin fD; yg+ vmax fy �D; 0g � pmax fD � y; 0g

= z0 � (c� v) y + (s+ p� v)min fD; yg � pD: (3.2)

For further analysis, let

CF (x; y) =

(
CF�(x; y) = z0 � (c� v) y + (s� v)x x � y
CF+(x; y) = z0 + (s+ p� c) y � px x � y

:

It clearly follows that CF (y; y) = CF�(y; y) = CF+(y; y) = z0 + (s� c) y:
Note that for any random variable X with probability density function gX , we can write

E[u(CF (X; y))] =

Z y

0
u (CF�(x; y)) gX (x) dx+

Z 1

y
u (CF+(x; y)) gX (x) dx
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and we can easily show that

d

dy
E[u(CF (X; y))] = � (c� v)

Z y

0
u0 (CF�(x; y)) gX (x) dx

+(s+ p� c)
Z 1

y
u0 (CF+(x; y)) gX (x) dx

= � (c� v)E[u0(CF (X; y))1fX�yg]

+ (s+ p� c)E[u0(CF (X; y))1fX>yg]: (3.3)

Here, (3.3) follows from

E[u0(CF (X; y))1fX�yg] =

Z y

0
u0 (CF�(x; y)) gX (x) dx

and

E[u0(CF (X; y))1fX>yg] =

Z 1

y
u0 (CF+(x; y)) gX (x) dx:

We can also show that

d

dy
E[u0(CF (X; y))1fX�yg] = u0 (CF (y; y)) gX (y)

� (c� v)
Z y

0
u00 (CF�(x; y)) gX (x) dx

= u0 (CF (y; y)) gX (y)

� (c� v)E
�
u00 (CF�(X; y)) 1X�y

�
(3.4)

and

d

dy
E[u0(CF (X; y))1fX>yg] = �u0 (CF (y; y)) gX (y)

+ (s+ p� c)
Z 1

y
u00 (CF+(x; y)) gX (x) dx

= �u0 (CF (y; y)) gX (y)

+ (s+ p� c)E
�
u00 (CF+(X; y)) 1fX>yg

�
: (3.5)

In order to solve (3.1), we take the derivative of the objective function with respect to

y and set it to zero. By using (3.3) where X is D, the �rst order condition is

g (y) =
d

dy
E[u(CF (D; y))]

= � (c� v)E
�
u0 (CF (D; y)) 1fD�yg

�
+ (s+ p� c)E

�
u0 (CF (D; y)) 1fD>yg

�
= � (c� v)E

�
u0 (CF (D; y)) 1fD�yg

�
+(s+ p� c)

�
E
�
u0 (CF (D; y))

�
� E

�
u0 (CF (D; y)) 1fD�yg

��
= 0: (3.6)
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Moreover, by using (3.4) and (3.5) where X is D, the second order condition can be obtained

as

d2E[u(CF (D; y))]

dy2
= � (c� v)

�
u0 (CF (y; y)) gD (y)� (c� v)E

�
u00 (CF�(D; y)) 1D�y

��
+(s+ p� c)

 
(s+ p� c)E

�
u00 (CF+(D; y)) 1fD>yg

�
�u0 (CF (y; y)) gD (y)

!
= � (s+ p� v)u0 (CF (y; y)) gD (y)

+ (c� v)2E
�
u00 (CF�(D; y)) 1D�y

�
+(s+ p� c)2E

�
u00 (CF+(D; y)) 1fD>yg

�
� 0: (3.7)

Since the second derivative in (3.7) is negative, the objective function is concave and the

second order condition is satis�ed. This also implies that g (y) is decreasing in y.

From (3.6), we can conclude that the optimal order quantity y�satis�es

E
�
u0 (CF (D; y�)) 1fD�y�g

�
E [u0 (CF (D; y�))]

=
s+ p� c
s+ p� v = bp (3.8)

where bp denotes a critical ratio which clearly satis�es 0 � bp � 1. We will use the same

critical ratio to characterize the optimal order quantity in the rest of this thesis. (3.8) gives

the optimality condition provided that g (0) � 0 and g (1) � 0. There may be no solution
for (3.8). Since, g (y) is decreasing in y; if g (0) < 0 or g (1) > 0; there may be no solution
for the optimality condition. The optimal solution is y� = 0 if g (0) < 0; that is

g (0) = �(s+ p� v)E
�
u0 (CF (D; 0)) 1fD�0g

�
+ (s+ p� c)E

�
u0 (CF (D; 0))

�
= �(s+ p� v)u0 (z0)P fD = 0g+ (s+ p� c)E

�
u0 (CF (D; 0))

�
< 0:

Equivalently, we can conclude that if

P fD = 0g >
�
E [u0 (z0 � pD)]

u0 (z0)

� bp (3.9)

then y� = 0: Since we know that z0�pD � z0, and so u0 (z0 � pD) � u0 (z0) ; the right hand
side of (3.9) is clearly between 0 and 1: If P fD = 0g = 1, the decision maker clearly orders
nothing.

Moreover, the optimal solution is y� =1 if g (1) > 0; that is

g (1) = �(s+ p� v)E
�
u0 (CF (D;1)) 1fD<1g

�
+ (s+ p� c)E

�
u0 (CF (D;1))

�
= �(c� v)E

�
u0 (CF (D;1))

�
+ (s+ p� v)E

�
u0 (CF (D;1))

�
P fD =1g > 0:
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Equivalently, we can conclude that if

P fD =1g > c� v
s+ p� v (3.10)

then y� =1: This argument supposes that u is bounded. Since s+ p� v > c� v; the ratio
in the right hand side of (3.10) is clearly between 0 and 1: If we assume that the demand

is �nite, or P fD =1g = 0; the optimal order quantity y� is also �nite and satis�es (3.8).
Moreover, if P fD =1g = 1, we have y� =1.
As a special case, suppose that the decision maker is risk-neutral, so the utility function

is linear, that is u(x) = a + bx so that u0 (x) = b. Then, the optimality condition in (3.8)

reduces to

P fD � y�g = bp
which is the same condition as in the standard risk-neutral newsvendor problem.

Up to this point, any concave utility function and any demand distribution is considered.

We now solve a special case where the utility function is exponential and the demand is

exponentially distributed. The utility function is u (z) = K�Ce�
1
�
z where K is the additive

term, C is the multiplicative term and � represents the newsvendor�s degree of risk tolerance.

The demandD is exponentially distributed and the density function is gD (x) = �e��x where

� is the parameter of the distribution. The �rst order condition in (3.6) can be written as

d

dy
E[u(CF (D; y))] = �(c� v)

Z y

0

C

�
e
� 1
�
(z0�(c�v)y+(s�v)x)�e��xdx

+(s+ p� c)
Z 1

y

C

�
e
� 1
�
(z0+(s+p�c)y�px)�e��xdx

= 0: (3.11)

After some manipulations on (3.11), the optimal order quantity y� is obtained explicitly as

y� =
�

(s� v) + �� ln
�
(s� c+ ��) (s+ p� v)
(c� v) (�p+ ��)

�
: (3.12)

As � goes zero, the optimal order quantity goes to zero. In other words, if the newsvendor

is extremely risk-averse, he will order nothing. Moreover, as � goes in�nity, which means

that the newsvendor is not risk-averse, the optimal order quantity goes to

y� =
1

�
ln

�
(s+ p� v)
(c� v)

�
:

That is the same as the optimal order quantity for risk-neutral newsvendor when the demand

is exponentially distributed.
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The optimality condition (3.8) states that the optimal order quantity depends on many

parameters. In the following subsections, we deal with the e¤ects of these parameters on

the optimal order quantity. Each parameter is analyzed one by one.

3.1.1 The E¤ect of Risk-Aversion

In order to analyze the e¤ect of the risk-aversion on optimal order quantity, Eeckhoudt et

al. [18] used an argument by Pratt [46]. Based on this argument, an increase in risk aversion

equals to a concave transformation of the utility function. Therefore, in order to show the

e¤ect of the risk aversion, we replace u(x) with k (u(x)), where k0 > 0 and k00 < 0. To

analyze the e¤ect of risk-aversion on the order quantity, we will use the Pratt�s argument

throughout this chapter.

It can be clearly shown that the cash �ow is increasing in the demand since

CF� (x1; y
�) � CF (y�; y�) � CF+ (x2; y�)

for all x1 � y� � x2: Then, since the utility function is concave increasing,

u (CF� (x1; y
�)) � u (CF (y�; y�)) � u (CF+ (x2; y�))

and

u0 (CF� (x1; y
�)) � u0 (CF (y�; y�)) � u0 (CF+ (x2; y�)) :

for all x1 � y� � x2: And, since k is another concave function,

k0 (u (CF� (x1; y
�))) � k0 (u (CF (y�; y�))) � k0 (u (CF+ (x2; y�))) (3.13)

for all x1 � y� � x2: We will use (3.13) for further analysis.
We suppose that the objective of the more risk-averse newsvendor is

max
y�0

eH(y) = E[k (u(CF (D; y)))]
and the �rst derivative of this objective function is

eg (y) = � (c� v)E[k0 (u(CF (D; y)))u0(CF (D; y))1fD�yg]

+ (s+ p� c)E[k0 (u(CF (D; y)))u0(CF (D; y))1fD>yg]

= � (c� v)
Z y

0
k0 (u (CF�(x; y)))u

0 (CF�(x; y)) gD (x) dx

+(s+ p� c)
Z 1

y
k0 (u (CF+(x; y)))u

0 (CF+(x; y)) gD (x) dx: (3.14)
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The optimal order quantity y� satisfying the optimality condition (3.8) is plugged into

equation (3.14). By using the inequality (3.13), it can be shown that

eg (y�) =

 
� (c� v)

Z y�

0
k0 (u (CF�(x; y

�)))u0 (CF�(x; y
�)) gD (x) dx

+(s+ p� c)
Z 1

y�
k0 (u (CF+(x; y

�)))u0 (CF+(x; y
�)) gD (x) dx

�
� k0 (u (CF (y�; y�)))

 
� (c� v)

Z y�

0
u0 (CF�(x; y

�)) gD (x) dx

+(s+ p� c)
Z 1

y�
u0 (CF+(x; y

�)) gD (x) dx

�
= 0

so that eg (y�) � 0: Because eH is concave in y, the inequality implies that the optimal order

quantity for the problem with more risk aversion ey� will be less than y�. In other words, as
risk-averseness increases, the optimal order quantity decreases.

The analysis of the risk-aversion by using Pratt�s argument is a review of Eeckhoudt

et al. [18]. We further use the same argument by analyzing the e¤ect of risk-aversion

for the newsvendor problem with random supply. The following analyses are also done by

Eeckhoudt et al. [18], but we follow di¤erent methods while doing them.

3.1.2 The E¤ect of Initial Wealth

In this subsection, we want to see the e¤ect of initial wealth on order quantity. We now

rede�ne the cash �ow as

CF (D; y (z0) ; z0) = z0 � (c� v) y (z0) + (s+ p� v)min fD; y (z0)g � pD

and

CF (x; y (z0) ; z0) =

(
CF�(x; y (z0) ; z0) = z0 � (c� v) y (z0) + (s� v)x x � y (z0)
CF+(x; y (z0) ; z0) = z0 + (s+ p� c) y (z0)� px x � y (z0)

:

To analyze the e¤ect of initial wealth on the optimal order quantity, we di¤erentiate the

optimality condition in (3.8) with respect to z0. That is

d

dz0

 
E
�
u0 (CF (D; y (z0)

� ; z0)) 1fD�y(z0)�g
�

E [u0 (CF (D; y (z0)
� ; z0))]

!
=

d

dz0

�
s+ p� c
s+ p� v

�
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or(
E [u0 (CF (D; y (z0)

� ; z0))]
d
dz0

�
E
�
u0 (CF (D; y (z0)

� ; z0)) 1fD�y(z0)�g
��

�E
�
u0 (CF (D; y (z0)

� ; z0)) 1fD�y(z0)�g
�
d
dz0
(E [u0 (CF (D; y (z0)

� ; z0))])

)
(E [u0 (CF (D; y (z0)

� ; z0))])
2 = 0 (3.15)

We know that for any random variable X with a probability density function gX ;

E
�
u0 (CF )

�
= E

�
u0 (CF ) 1fX�y(z0)�g

�
+ E

�
u0 (CF ) 1fX>y(z0)�g

�
(3.16)

where CF = CF (X; y (z0)
� ; z0) : More precisely,

E
�
u0 (CF ) 1fX�y(z0)�g

�
=

Z y(z0)
�

0
u0 (CF�(x; y (z0)

� ; z0)) gX (x) dx

and

E
�
u0 (CF ) 1fX>y(z0)�g

�
=

Z 1

y(z0)
�
u0 (CF+(x; y (z0)

� ; z0)) gX (x) dx:

Then, we can easily show that

d

dz0

�
E
�
u0 (CF ) 1fX�y(z0)�g

��
= y0 (z0)

� u0 (CF (y (z0)
� ; y� (z0) ; z0)) gX (y (z0)

�)

+

Z y(z0)
�

0

�
1� (c� v) y0 (z0)�

�
u00 (CF�(x; y (z0)

� ; z0)) gX (x) dx

= y0 (z0)
� u0 (CF (y (z0)

� ; y� (z0) ; z0)) gX (y (z0)
�)

+
�
1� (c� v) y0 (z0)�

�
E
�
u00 (CF ) 1fX�y(z0)�g

�
(3.17)

and

d

dz0

�
E
�
u0 (CF ) 1fX>y(z0)�g

��
= �y0 (z0)� u0 (CF (y (z0)� ; y� (z0) ; z0)) gX (y (z0)�)

+

Z 1

y(z0)
�

�
1 + (s+ p� c) y0 (z0)�

�
u00 (CF+(x; y (z0)

� ; z0)) gX (x) dx

= �y0 (z0)� u0 (CF (y (z0)� ; y� (z0) ; z0)) gX (y (z0)�)

+
�
1 + (s+ p� c) y0 (z0)�

�
E
�
u00 (CF ) 1fX>y(z0)�g

�
: (3.18)

By using (3.16), (3.17) and (3.18), where X is D, (3.15) can be reduced to(
E
�
u0 (CF ) 1fD>y(z0)�g

�
d
dz0

�
E
�
u0 (CF ) 1fD�y(z0)�g

��
�E

�
u0 (CF ) 1fD�y(z0)�g

�
d
dz0

�
E
�
u0 (CF ) 1fD>y(z0)�g

�� )
(E [u0 (CF )])2

= 0



Chapter 3: Utility-Based Models with Random Demand and Supply

19

or, more precisely8>><>>:
y0 (z0)

� u0 (CF (y (z0)
� ; y� (z0) ; z0)) fD (y (z0)

�)E [u0 (CF )]

+ (1� (c� v) y0 (z0)�)E
�
u0 (CF ) 1fD>y(z0)�g

�
E
�
u00 (CF ) 1fD�y(z0)�g

�
� (1 + (s+ p� c) y0 (z0)�)E

�
u0 (CF ) 1fD�y(z0)�g

�
E
�
u00 (CF ) 1fD>y(z0)�g

�
9>>=>>;

(E [u0 (CF )])2
= 0:

(3.19)

From (3.19), the derivative of the optimal order quantity with respect to z0 can be obtained

as

y0 (z0)
� =

(
�E

�
u0 (CF ) 1fD>y(z0)�g

�
E
�
u00 (CF ) 1fD�y(z0)�g

�
+E

�
u0 (CF ) 1fD�y(z0)�g

�
E
�
u00 (CF ) 1fD>y(z0)�g

� )8>><>>:
u0 (CF (y (z0)

� ; y� (z0) ; z0)) fD (y (z0)
�)E [u0 (CF )]

� (c� v)E
�
u0 (CF ) 1fD>y(z0)�g

�
E
�
u00 (CF ) 1fD�y(z0)�g

�
� (s+ p� c)E

�
u0 (CF ) 1fD�y(z0)�g

�
E
�
u00 (CF ) 1fD>y(z0)�g

�
9>>=>>;
: (3.20)

In general, the sign of y0 (z0)
� shows how the order quantity is a¤ected by the change in

initial wealth. If it is negative, y� decreases as z0 increases and if it is positive, y� increases

as z0 increases. However, the sign of (3.20) cannot be clearly seen because the sign of

numerator is indeterminate.

We, therefore, analyze the e¤ect of z0 for a special case: the exponential utility function

where u (z) = K � Ce�
1
�
z
; u0 (z) = C

� e
� 1
�
z and u00 (z) = � C

�2
e
� 1
�
z. Now, the numerator of

(3.20) is 8<: �E
h
C
� e

� 1
�
(CF )

1fD>y(z0)�g

i
E
h
� C
�2
e
� 1
�
(CF )

1fD�y(z0)�g

i
+E

h
C
� e

� 1
�
(CF )

1fD�y(z0)�g

i
E
h
� C
�2
e
� 1
�
(CF )

1fD>y(z0)�g

i 9=;
which clearly equals 0. So, it can be concluded that the initial wealth has no e¤ect on order

quantity when the utility function is exponential.

Alternatively, we can also show the e¤ect of the initial wealth on the order quantity

when the utility function is exponential by writing the �rst order condition as

g (y�) = �(c� v)
Z y�

0

C

�
e
� 1
�
(z0�(c�v)y�+(s�v)x)gD (x) dx

+(s+ p� c)
Z 1

y�

C

�
e
� 1
�
(z0+(s+p�c)y��px)gD (x) dx

=
C

�
e
� 1
�
(z0)

 
(s+ p� c)

R1
y� e

� 1
�
((s+p�c)y��px)

gD (x) dx

�(c� v)
R y�
0 e

� 1
�
(�(c�v)y�+(s�v)x)

gD (x) dx

!
= 0
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and the optimal solution that satis�es g (y�) = 0 does not depend on the initial wealth z0.

3.1.3 The E¤ect of Salvage Price

This subsection deals with the e¤ect of salvage price on the optimal order quantity. Let�s

de�ne the cash �ow as

CF (D; y (v) ; v) = z0 � (c� v) y (v) + (s+ p� v)min fD; y (v)g � pD

and

CF (x; y (v) ; v) =

(
CF�(x; y (v) ; v) = z0 � (c� v) y (v) + (s� v)x x � y (v)
CF+(x; y (v) ; v) = z0 + (s+ p� c) y (v)� px x � y (v)

:

To show the e¤ect of salvage price, the derivative of the �rst order condition in (3.6) with

respect to v

d

dv
g (y (v)�) = � d

dv

�
(c� v)E[u0(CF (D; y (v)� ; v))1fD�y(v)�g]

�
+(s+ p� c) d

dv
E[u0(CF (D; y (v)� ; v))1fD>y(v)�g]

needs to be analyzed.

Note that for any random variable X with a probability density function gX , we can

write

d

dv
E[u0(CF (X; y (v)� ; v))1fX�y(v)�g]

=
d

dv

 Z y(v)�

0
u0 (CF�(x; y (v)

� ; v)) gX (x) dx

!
= y0 (v)� u0 (CF (y (v)� ; y (v)� ; v)) gX (y (v)

�)

+

Z y(v)�

0

�
� (c� v) y0 (v)�

+ y (v)� � x)u00 (CF�(x; y (v)� ; v)) gX (x) dx

= y0 (v)� u0 (CF (y (v)� ; y (v)� ; v)) gX (y (v)
�)

� (c� v) y0 (v)�E
�
u00 (CF (X; y (v)� ; v)) 1fX�y(v)�g

�
+E

�
(y (v)� �X)u00 (CF (X; y (v)� ; v)) 1fX�y(v)�g

�
(3.21)
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and

d

dv
E[u0(CF (X; y (v)� ; v))1fX>y(v)�g]

=
d

dv

 Z 1

y(v)�
u0 (CF+(x; y (v)

� ; v)) gX (x) dx

!
= �y0 (v)� u0 (CF (y (v)� ; y (v)� ; v)) gX (y (v)�)

+

Z 1

y(v)�
(s+ p� c) y0 (v)� u00 (CF+(x; y (v)� ; v)) gX (x) dx

= �y0 (v)� u0 (CF (y (v)� ; y (v)� ; v)) gX (y (v)�)

+ (s+ p� c) y0 (v)�E
�
u00 (CF (X; y (v)� ; v)) 1fX>y(v)�g

�
: (3.22)

By using (3.21) and (3.22) where X is D, the derivative of g (y (v)�) with respect to v

can be written as

d

dv
g (y (v)�) = E[u0 (CF (D; y (v)� ; v)) 1fD�yg]

� (s+ p� v) y0 (v)� u0 (CF (y (v)� ; y (v)� ; v)) gD (y (v)�)

+ (c� v)2 y0 (v)�E
�
u00 (CF (D; y (v)� ; v)) 1fD�y(v)�g

�
� (c� v)E

�
(y (v)� �D)u00 (CF (D; y (v)� ; v)) 1fD�y(v)�g

�
+(s+ p� c)2 y0 (v)�E

�
u00 (CF (D; y (v)� ; v)) 1fD>y(v)�g

�
= 0:

From this equation, we extract the derivative of optimal order quantity with respect to v as

y0 (v)� =

(
E[u0 (CF (D; y (v)� ; v)) 1fD�yg]

� (c� v)E
�
(y (v)� �D)u00 (CF (D; y (v)� ; v)) 1fD�y(v)�g

� )8>><>>:
(s+ p� v)u0[CF (y (v)� ; y (v)� ; v)]fD (y (v)�)
� (c� v)2E

�
u00 (CF (D; y (v)� ; v)) 1fD�y(v)�g

�
� (s+ p� c)2E

�
u00 (CF (D; y (v)� ; v)) 1fD>y(v)�g

�
9>>=>>;

:

As u0 > 0 and u00 < 0, both the numerator and the denominator are nonnegative. So, we

can conclude that y0 (v)� � 0 and the optimal order quantity increases as the salvage value
increases.
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3.1.4 The E¤ect of Order Cost

In this subsection, we analyze the e¤ect of order cost c on the optimal order quantity. The

cash �ow can now be written as

CF (D; y (c) ; c) = z0 � (c� v) y (c) + (s+ p� v)min fD; y (c)g � pD

and

CF (x; y (c) ; c) =

(
CF�(x; y (c) ; c) = z0 � (c� v) y (c) + (s� v)x x � y (c)
CF+(x; y (c) ; c) = z0 + (s+ p� c) y (c)� px x � y (c)

:

To show the e¤ect of the order cost, we investigate

d

dc

 
E
�
u0 (CF (D; y (c)� ; c)) 1fD�y(c)�g

�
E [u0 (CF (D; y (c)� ; c))]

!
=
d

dc

�
s+ p� c
s+ p� v

�
:

As

E
�
u0 (CF (D; y (c)� ; c))

�
= E

�
u0 (CF (D; y (c)� ; c)) 1fD�y(z0)�g

�
+E

�
u0 (CF (D; y (c)� ; c)) 1fD>y(z0)�g

�
;

it equals(
E
�
u0 (CF) 1fD>y(c)�g

�
d
dc

�
E
�
u0 (CF) 1fD�y(c)�g

��
�E

�
u0 (CF) 1fD�y(c)�g

�
d
dc

�
E
�
u0 (CF) 1fD>y(c)�g

�� )
(E [u0 (CF)])2

= � 1

s+ p� v (3.23)

where CF = CF (D; y (c)� ; c) :

For any random variable X with a probability density function gX ,

d

dc
E
�
u0 (CF (X; y (c)� ; c)) 1fX�y(c)�g

�
=

d

dc

 Z y(c)�

0
u0 (CF�(x; y (c)

� ; c)) gX (x) dx

!
= y0 (c)� u0 (CF (y (c)� ; y (c)� ; c)) gX (y (c)

�)

�
Z y(c)�

0

�
y (c)� + (c� v) y0 (c)�

�
u00 (CF�(x; y (c)

� ; c)) gX (x) dx

= y0 (c)� u0 (CF (y (c)� ; y (c)� ; c)) gX (y (c)
�)

�
�
y (c)� + (c� v) y0 (c)�

�
E
�
u00 (CF (X; y (c)� ; c)) 1fX�y(c)�g

�
(3.24)
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and

d

dc
E
�
u0 (CF (X; y (c)� ; c)) 1fX>y(c)�g

�
=

d

dc

 Z 1

y(c)�
u0 (CF+(x; y (c)

� ; c)) gX (x) dx

!
= �y0 (c)� u0 (CF (y (c)� ; y (c)� ; c)) gX (y (c)�)

+

Z 1

y(c)�

 
(s+ p� c) y0 (c)�

�y (c)�

!
u00 (CF+(x; y (c)

� ; c)) gX (x) dx

= �y0 (c)� u0 (CF (y (c)� ; y (c)� ; c)) gX (y (c)�)

+

 
(s+ p� c) y0 (c)�

�y (c)�

!
E
�
u00 (CF (X; y (c)� ; c)) 1fX>y(c)�g

�
: (3.25)

Hence, by using (3.24) and (3.25), (3.23) can be simpli�ed as8>>>>>>><>>>>>>>:

y0 (c)� u0 (CF (y (c)� ; y (c)� ; c)) gD (y (c)
�)E [u0 (CF)]

�
 

y (c)�

+(c� v) y0 (c)�

!
E
�
u0 (CF) 1fD>y(c)�g

�
E
�
u00 (CF) 1fD�y(c)�g

�
�
 
(s+ p� c) y0 (c)�

�y (c)�

!
E
�
u0 (CF) 1fD�y(c)�g

�
E
�
u00 (CF) 1fD>y(c)�g

�

9>>>>>>>=>>>>>>>;
(E [u0 (CF)])2

= � 1

s+ p� v
(3.26)

where CF = CF (D; y (c)� ; c) : From (3.26), the derivative of the optimal order quantity

with respect to c can be obtained as

y0 (c)� =

8>><>>:
� 1
(s+p�v) (E [u

0 (CF)])2

+y (c)�E
�
u0 (CF) 1fD>y(c)�g

�
E
�
u00 (CF) 1fD�y(c)�g

�
�y (c)�E

�
u0 (CF) 1fD�y(c)�g

�
E
�
u00 (CF) 1fD>y(c)�g

�
9>>=>>;8>><>>:

u0[CF (y (c)� ; y (c)� ; c)]gD (y (c)
�)E [u0 (CF)]

� (c� v)E
�
u0 (CF) 1fD>y(c)�g

�
E
�
u00 (CF) 1fD�y(c)�g

�
� (s+ p� c)E

�
u0 (CF) 1fD�y(c)�g

�
E
�
u00 (CF) 1fD>y(c)�g

�
9>>=>>;
: (3.27)

The sign of y0 (c)� in (3.27) is indeterminate because despite the nonnegativity of the

denominator, the numerator cannot be determined. So, we cannot say anything about how

the order quantity is e¤ected.

To analyze the above for special cases, the exponential utility function u (z) = K�Ce�
1
�
z
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with u0 (z) = C
� e

� 1
�
z and u00 (z) = � C

�2
e
� 1
�
z is considered. Then, the numerator of (3.27) is8>>><>>>:

� 1
s+p�v

�
E
h
C
� e

� 1
�
(CF )

i�2
+y (c)�E

h
C
� e

� 1
�
(CF )

1fD>y(c)�g

i
E
h
� C
�2
e
� 1
�
(CF )

1fD�y(c)�g

i
�y (c)�E

h
C
� e

� 1
�
(CF )

1fD�y(c)�g

i
E
h
� C
�2
e
� 1
�
(CF )

1fD>y(c)�g

i
9>>>=>>>;

or more explicitly

� 1

s+ p� v
C

�

�
E
h
e
� 1
�
CF
i�2

and so y0 (c)� � 0 for the exponential utility function. Hence, it can be concluded that as
the order cost increases, optimal order quantity decreases in this special case.

3.1.5 The E¤ect of Penalty Price

The e¤ect of the penalty price p on order quantity is analyzed in this subsection. We can

rede�ne the cash �ow as

CF (D; y (p) ; p) = z0 � (c� v) y (p) + (s+ p� v)min fD; y (p)g � pD

and

CF (x; y (p) ; p) =

(
CF�(x; y (p) ; p) = z0 � (c� v) y (p) + (s� v)x x � y (p)
CF+(x; y (p) ; p) = z0 + (s+ p� c) y (p)� px x � y (p)

:

To show the e¤ect of the penalty price, we need to investigate the derivative of the �rst

order condition in (3.6) with respect to p, or

d

dp
g (y (p)�) = � (c� v) d

dp
E[u0(CF (D; y (p)� ; p))1fD�y(p)�g]

+
d

dp

�
(s+ p� c)E[u0(CF (D; y (p)� ; p))1fD>y(p)�g]

�
: (3.28)

Note that for any random variable X with probability density function gX , we can write

that

d

dp
E[u0(CF (X; y (p)� ; p))1fX�y(p)�g]

=
d

dp

 Z y(p)�

0
u0 (CF�(x; y (p)

� ; p)) gX (x) dx

!
= y0 (p)� u0 (CF (y (p)� ; y (p)� ; p)) gX (y (p)

�)

+

Z y(p)�

0

�
� (c� v) y0 (p)�

�
u00 (CF�(x; y (p)

� ; p)) gX (x) dx
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= y0 (p)� u0 (CF (y (p)� ; y (p)� ; p)) gX (y (p)
�)

� (c� v) y0 (p)�E
�
u00(CF (X; y (p)� ; p))1fX�y(p)�g

�
(3.29)

and

d

dp
E[u0(CF (X; y (p)� ; p))1fX>y(p)�g]

=
d

dp

 Z 1

y(p)�
u0 (CF+(x; y (p)

� ; p)) gX (x) dx

!
= �y0 (p)� u0 (CF (y (p)� ; y (p)� ; p)) gX (y (p)�)

+

Z 1

y(p)�

�
y (p)� + (s+ p� c) y0 (p)� � x

�
u00 (CF+(x; y (p)

� ; p)) gX (x) dx

= �y0 (p)� u0 (CF (y (p)� ; y (p)� ; p)) gX (y (p)�)

�E
�
(X � y (p)�)u00(CF (X; y (p)� ; p))1fX>y(p)�g

�
+(s+ p� c) y0 (p)�E

�
u00(CF (X; y (p)� ; p))1fX>y(p)�g

�
: (3.30)

By using (3.29) and (3.30) where X is D, the derivative of g (y (p)�) with respect to p

in (3.28) can be written as

d

dp
g (y (p)�) = E[u0(CF)1fD>y(p)�g]

� (c� v)
�
y0 (p)� u0 (CF (y (p)� ; y (p)� ; p)) gD (y (p)

�)

� (c� v) y0 (p)�E
�
u00 (CF) 1fD�y(p)�g

��
+(s+ p� c)

�
�y0 (p)� u0 (CF (y (p)� ; y (p)� ; p)) gD (y (p)�)

� E
�
(D � y (p)�)u00 (CF) 1fD>y(p)�g

�
+ (s+ p� c) y0 (p)�E

�
u00 (CF) 1fD>y(p)�g

��
= 0

where CF = CF (D; y (p)� ; p): From this equation, we extract the derivative of optimal

order quantity with respect to p, or

y0 (p)� =

(
E[u0 (CF (D; y (p)� ; p)) 1fD>y(p)�g]

� (s+ p� c)E
�
(D � y (p)�)u00 (CF (D; y (p)� ; p)) 1fD>y(p)�g

� )8>><>>:
+(s+ p� v)u0 (CF (y (p)� ; y (p)� ; p)) gD (y (p)�)
� (c� v)2E

�
u00 (CF (D; y (p)� ; p)) 1fD�y(p)�g

�
� (s+ p� c)2E

�
u00 (CF (D; y (p)� ; p)) 1fD>y(p)�g

�
9>>=>>;
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and we can establish that y0 (p)� � 0 since u0 � 0 and u00 � 0: Hence, we can conclude that
as the penalty cost increases, the optimal order quantity increases.

All analyses done in this section review the work of Eeckhoudt et al. [18]. We use the

same argument as Eeckhoudt et al. [18] while analyzing the e¤ect of risk-aversion on the

optimal order quantity. However, while analyzing other parameters we use di¤erent methods

than Eeckhoudt et al. [18]. Analyzing the e¤ect of sale price is much more complicated.

Eeckhoudt et al. [18] conclude that as selling price increases, the optimal order quantity

increases if the utility function is decreasing partial risk aversion class and the quantity

decreases if the class of utility function is constant absolute risk aversion. Moreover, Wang

et al. [49] analyze the e¤ect of sale price and conclude that a risk-averse newsvendor orders

less than an arbitrarily small quantity as sale price increases if sale price is higher than a

threshold value.

In this section, we analyzed the optimal order quantity for expected utility maximization

problem when demand is the only source of uncertainty. As it is stated before, demand is

not necessarily the only source of uncertainty. In reality, supply uncertainty is another

signi�cant form of randomness for inventory management. Due to some unforeseen reasons,

supplier could not meet the asked order quantity. Therefore, the amount received can be

di¤erent than the amount demanded. Starting from the following section, we examine three

types of supply randomness; random yield, random capacity and random yield and capacity,

respectively. Note that, in literature, there is no such an example that discusses the utility

theory and the random supply at the same time. The analysis in the remainder of this

chapter, therefore is new.

3.2 Newsvendor Model with Random Yield

This section deals with the newsvendor problems where the supply is subject to yield ran-

domness. In these problems, it is assumed that a random proportion of the asked quantity

is received due to production, transportation or other problems on the side of the supplier.

Let the amount received from ordering y units be Uy where 0 � U � 1 represents the

proportion of non-defective items received. We suppose that U has the density function gU .

Moreover, we assume that U and D are not necessarily independent and the conditional

density function of demand given U = w is gDjw. The cash �ow in (3.2) can be updated for



Chapter 3: Utility-Based Models with Random Demand and Supply

27

the random yield model as

CF (D;U; y) = z0 + (s+ p� v)min fD;Uyg � (c� v)Uy � pD: (3.31)

The aim of the risk-averse decision maker is now

max
y�0

H(y) = E[u(CF (D;U; y))]

where the objective function is

E[u(CF (D;U; y))] = E[u(CF (D;U; y))1fD�Uyg] + E[u(CF (D;U; y))1fD>Uyg]: (3.32)

For further analysis, let

CF (x;w; y) =

(
CF�(x;wy) = z0 + (s� v)x� (c� v)wy x � wy
CF+(x;wy) = z0 + (s+ p� c)wy � px x � wy

for any x � 0; y � 0 and 1 � w � 0; and note that CF (wy;w; y) = CF�(wy;wy) =

CF+(wy;wy) = z0 + (s� c)wy:

Theorem 1 The optimal order quantity y�satis�es

E
�
Uu0 (CF (D;U; y�)) 1fD�Uy�g

�
E [Uu0 (CF (D;U; y�))]

= bp: (3.33)

Proof. Note that for any random variables X and V with probability density functions gX

and gV , we can write

E[u(CF (X;V; y))] =

Z 1

0

�Z wy

0
u (CF�(x;wy)) gXjw (x) dx

�
gV (w)dw

+

Z 1

0

�Z 1

wy
u (CF+(x;wy)) gXjw (x) dx

�
gV (w)dw

where gXjw is the conditional probability density function of X given V = w. One can show

that

d

dy
E[u(CF (X;V; y))]

= �(c� v)
Z 1

0
w

�Z wy

0
u0 (CF�(x;wy)) gXjw (x) dx

�
gV (w)dw

+(s+ p� c)
Z 1

0
w

�Z 1

wy
u0 (CF+(x;wy)) gXjw (x) dx

�
gV (w)dw

= �(c� v)E
�
V u0 (CF (X;V; y)) 1fX�V yg

�
+(s+ p� c)E

�
V u0 (CF (X;V; y)) 1fX>V yg

�
: (3.34)
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Moreover, we can also show that

d

dy
E
�
V u0 (CF (X;V; y)) 1fX�V yg

�
=

Z 1

0
w2u0 (CF (wy;w; y)) gXjw (wy) gV (w)dw

�(c� v)
Z 1

0
w2
�Z wy

0
u00 (CF�(x;wy)) gXjw (x) dx

�
gV (w)dw

= E
�
V 2u0 (CF (V y; V; y)) gXjw (V y)

�
�(c� v)E

�
V 2u00 (CF (X;V; y)) 1fX�V yg

�
(3.35)

and

d

dy
E
�
V u0 (CF (X;V; y)) 1fX>V yg

�
=

Z 1

0
w
�
�wu0 (CF (wy;w; y)) gXjw (wy)

+ (s+ p� c)w
Z 1

wy
u00 (CF+(x;wy)) gXjw (x) dx

�
gV (w)dw

= �E
�
V 2u0 (CF (V y; V; y)) gXjw (V y)

�
+(s+ p� c)E

�
V 2u00 (CF (X;V; y)) 1fX>V yg

�
: (3.36)

By using (3.34), (3.35) and (3.36) where X is D and V is D, we di¤erentiate the objective

function and set it equal to zero, so the �rst order condition is

g (y) =
d

dy
E[u(CF (D;U; y))]

= �(c� v)E
�
Uu0 (CF (D;U; y)) 1fD�Uyg

�
+(s+ p� c)E

�
Uu0 (CF (D;U; y)) 1fD>Uyg

�
= �(s+ p� v)E

�
Uu0 (CF (D;U; y)) 1fD�Uyg

�
+(s+ p� c)E

�
Uu0 (CF (D;U; y))

�
= 0: (3.37)
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Moreover, the second derivative of the objective function is

d

dy
g (y) =

d2

dy2
E[u(CF (D;U; y))]

= �(s+ p� v)E
�
U2u0 (CF (Uy;U; y)) gDjw (Uy)

�
+(c� v)2E

�
U2u00 (CF (D;U; y)) 1fD�Uyg

�
+(s+ p� c)2E

�
U2u00 (CF (D;U; y)) 1fD>Uyg

�
� 0

and the second order condition is satis�ed. This implies that g (y) is decreasing in y: The

objective function is therefore concave and the �rst order condition in (3.37) is the optimality

condition. This yields (3.33).

Provided that g (0) � 0 and g (1) � 0, (3.33) is the optimality condition and there

exists an optimal order quantity y� that satis�es (3.33). However, there may be no solution

for (3.33).

Corollary 2 The optimal order quantity is y� = 0 if

P fD = 0g >
�
E [Uu0 (z0 � pD)]
u0 (z0)E [U ]

� bp: (3.38)

Proof. As g (y) is decreasing in y; we have y� = 0 if g (0) < 0; that is

g (0) = �(s+ p� v)E
�
Uu0 (CF (D;U; 0)) 1fD�0g

�
+ (s+ p� c)E

�
Uu0 (CF (D;U; 0))

�
= �(s+ p� v)E

�
Uu0 (CF (0; U; 0)) 1fD=0g

�
+ (s+ p� c)E

�
Uu0 (CF (D;U; 0))

�
= �(s+ p� v)u0 (z0)E [U ]P fD = 0g+ (s+ p� c)E

�
Uu0 (z0 � pD)

�
< 0:

Corollary 3 The optimal order quantity is y� =1 if

P fD =1g > c� v
s+ p� v : (3.39)

If we assume that demand is �nite or P fD =1g = 0, the optimal order quantity is �nite
and satis�es (3.33). And, if the probability P fD =1g = 1; we have y� =1:
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Proof. Again, as g (y) is decreasing in y; we have y� =1 if g (1) > 0; that is

g (1) = �(s+ p� v)E
�
Uu0 (CF (D;U;1)) 1fD<1g

�
+ (s+ p� c)E

�
Uu0 (CF (D;U;1))

�
= �(s+ p� v)E

�
Uu0 (CF (D;U;1))

�
1� 1fD=1g

��
+(s+ p� c)E

�
Uu0 (CF (D;U;1))

�
= �(c� v)E

�
Uu0 (CF (D;U;1))

�
+(s+ p� v)E

�
Uu0 (CF (D;U;1))

�
P fD =1g

> 0:

This argument supposes that u is bounded.

As a special case, let the utility function be linear that is u(x) = a+bx; so that u0(x) = b.

The optimality condition in (3.33) becomes

E
�
U1fD�Uy�g

�
E [U ]

= bp
which is the same condition as Okyay et al. [41] for the newsvendor problem with random

yield. Moreover, when U = 1 that is there is no randomness in yield, the optimality

condition is
E
�
u0 (CF (D; y�)) 1fD�y�g

�
E [u0 (CF (D; y�))]

= bp
which satis�es the optimality condition in (3.8).

The optimality condition in (3.33) depends on many parameters. We analyze the e¤ects

of these parameters on the order quantity in following subsections.

3.2.1 The E¤ect of Risk-Aversion

First, we explore the e¤ect of risk aversion on the optimal order quantity. In order to analyze

the e¤ect of the risk-aversion on order quantity, we again use Pratt�s argument [46]. So, we

replace u (x) with k (u (x)) where k0 > 0 and k00 < 0.

The cash �ow is increasing in x, since

CF� (x1; wy
�) � CF (wy�; w; y�) � CF+ (x2; wy�)

for all x1 � wy� � x2. Then, since u is concave increasing,

u (CF� (x1; wy
�)) � u (CF (wy�; w; y�)) � u (CF+ (x2; wy�))
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and

u0 (CF� (x1; wy
�)) � u0 (CF (wy�; w; y�)) � u0 (CF+ (x2; wy�))

for all x1 � wy� � x2. Moreover, since k is another concave increasing function,

k0 (u (CF� (x1; wy
�))) � k0 (u (CF (wy�; w; y�))) � k0 (u (CF+ (x2; wy�))) : (3.40)

Let the objective of the more risk-averse decision maker be

max
y�0

eH (y) = E[k (u(CF (D;U; y)))]
and the �rst derivative of the objective function is

eg (y) = �(c� v)
Z 1

0
w

�Z wy

0
k0 (u (CF�))u

0 (CF�) gDjw (x) dx

�
gU (w)dw

+(s+ p� c)
Z 1

0
w

�Z 1

wy
k0 (u (CF+))u

0 (CF+) gDjw (x) dx

�
gU (w)dw

(3.41)

where CF� = CF�(x;wy) and CF+ = CF+(x;wy)

We substitute the optimal order quantity y� that satis�es (3.8) in (3.41). By using

inequality (3.40), it can be shown that

eg (y�) =

 
�(c� v)

Z 1

0
w

 Z wy�

0
k0 (u (CF�))u

0 (CF�) gDjw (x) dx

!
gU (w)dw

+ (s+ p� c)
Z 1

0
w

�Z 1

wy�
k0 (u (CF+))u

0 (CF+) gDjw (x) dx

�
gU (w)dw

�
< k0 (u (CF))

 
�(c� v)

Z 1

0
w

 Z wy�

0
u0 (CF�) fDjw (x) dx

!
fU (w)dw

+ (s+ p� c)
Z 1

0
w

�Z 1

wy�
u0 (CF+) fDjw (x) dx

�
fU (w)dw

�
= 0

where CF� = CF�(x;wy�); CF+ = CF+(x;wy
�) and CF = CF (wy�; w; y�). Therefore,eg (y�) < 0: Since eH is concave in y, the more risk-averse utility function orders less than y�.

We can conclude that as risk aversion rises the optimal order quantity diminishes.
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3.2.2 The E¤ect of Initial Wealth

In this subsection, we analyze the e¤ect of initial wealth z0 on the optimal order quantity.

We now rede�ne the cash �ow as

CF (D;U; y (z0) ; z0) = z0 + (s+ p� v)min fD;Uy (z0)g � (c� v)Uy (z0)� pD

and

CF (x;w; y (z0) ; z0) =

(
CF�(x;wy (z0) ; z0) = z0 + (s� v)x� (c� v)wy (z0) x � wy
CF+(x;wy (z0) ; z0) = z0 + (s+ p� c)wy (z0)� px x � wy

:

To analyze the e¤ect of the initial wealth, the derivative of the optimal order condition

in (3.33) with respect z0 is needed. So, we need calculate

d

dz0

 
E
�
Uu0 (CF (D;U; y (z0)

� ; z0)) 1fD�Uy(z0)�g
�

E [Uu0 (CF (D;U; y (z0)
� ; z0))]

!
=

d

dz0

�
s+ p� c
s+ p� v

�
;

or more explicitly(
E
�
Uu0 (CF) 1fD>Uy(z0)�g

�
d
dz0

�
E
�
Uu0 (CF) 1fD�Uy(z0)�g

��
�E

�
Uu0 (CF) 1fD�Uy(z0)�g

�
d
dz0

�
E
�
Uu0 (CF) 1fD>Uy(z0)�g

�� )
(E [Uu0 (CF)])2

= 0 (3.42)

where CF = CF (D;U; y (z0)
� ; z0) and

E
�
Uu0 (CF (D;U; y (z0)

�))
�
= E

�
Uu0 (CF (D;U; y (z0)

�)) 1fD�Uy(z0)�g
�

+E
�
Uu0 (CF (D;U; y (z0)

�)) 1fD>Uy(z0)�g
�
:

For any random variables X and V with probability density functions gX and gV , we

can show that

d

dz0

�
E
�
V u0 (CF ) 1fX�V y(z0)�g

��
=

d

dz0

 Z 1

0
w

 Z wy(z0)
�

0
u0 (CF�) gXjw (x) dx

!
gV (w)dw

!

=

Z 1

0
w
�
wy0 (z0)

� u0 (CF (wy (z0)
� ; w; y (z0)

� ; z0)) gXjw (wy (z0)
�)

+

 Z wy(z0)
�

0

�
1� (c� v)wy0 (z0)�

�
u00 (CF�) gXjw (x) dx

!!
gV (w)dw

= y0 (z0)
�E
�
V 2u0 (CF (V y (z0)

� ; V; y (z0)
� ; z0)) gXjw (V y (z0)

�)
�

+E
�
V u00 (CF ) 1fX�V y(z0)�g

�
� (c� v) y0 (z0)�E

�
V 2u00 (CF ) 1fX�V y(z0)�g

�
(3.43)
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where CF� = CF�(x;wy (z0)
� ; z0) and

d

dz0

�
E
�
V u0 (CF ) 1fX>V y(z0)�g

��
=

d

dz0

 Z 1

0
w

 Z 1

wy(z0)
�
u0 (CF+) gDjw (x) dx

!
gU (w)dw

!

=

Z 1

0
w
�
�wy0 (z0)� u0 (CF (wy (z0)� ; w; y (z0)� ; z0)) gDjw (wy (z0)�)

+

Z 1

wy(z0)
�

�
1 + (s+ p� c)wy0 (z0)�

�
u00 (CF+) gDjw (x) dx

!
gU (w)dw

= �y0 (z0)�E
�
V 2u0 (CF (V y (z0)

� ; V; y (z0)
� ; z0)) gDjw (V y (z0)

�)
�

+E
�
V u00 (CF ) 1fX>V y(z0)�g

�
+(s+ p� c) y0 (z0)�E

�
V 2u00 (CF ) 1fX>V y(z0)�g

�
(3.44)

where CF+ = CF+ (x;wy (z0)
� ; z0) and CF = CF (X;V; y (z0)

� ; z0).

By using (3.43) and (3.44) whereX isD and V is U , by lettingCF = CF (D;U; y (z0)
� ; z0)

the equation (3.42) can be written as8>>>>>>><>>>>>>>:

y0 (z0)
�E [Uu0 (CF )]E

�
U2u0 (CF (Uy (z0)

� ; U; y (z0)
� ; z0)) gDjw (Uy (z0)

�)
�

+E
�
Uu0 (CF ) 1fD>Uy(z0)�g

�
E
�
Uu00 (CF ) 1fD�Uy(z0)�g

�
� (c� v) y0 (z0)�E

�
Uu0 (CF ) 1fD>Uy(z0)�g

�
E
�
U2u00 (CF ) 1fD�Uy(z0)�g

�
�E

�
Uu0 (CF ) 1fD�Uy(z0)�g

�
E
�
Uu00 (CF ) 1fD>V y(z0)�g

�
� (s+ p� c) y0 (z0)�E

�
Uu0 (CF ) 1fD�Uy(z0)�g

�
E
�
U2u00 (CF ) 1fD>Uy(z0)�g

�

9>>>>>>>=>>>>>>>;
= 0:

We can then obtain the derivative of the optimal order quantity with respect to z0 as

y0 (z0)
� =

(
E
�
Uu0 (CF ) 1fD>Uy(z0)�g

�
E
�
Uu00 (CF ) 1fD�Uy(z0)�g

�
�E

�
Uu0 (CF ) 1fD�Uy(z0)�g

�
E
�
Uu00 (CF ) 1fD>V y(z0)�g

� )8>><>>:
E [Uu0 (CF )]E

�
U2u0 (CF (Uy (z0)

� ; U; y (z0)
� ; z0)) gDjw (Uy (z0)

�)
�

� (c� v)E
�
Uu0 (CF ) 1fD>Uy(z0)�g

�
E
�
U2u00 (CF ) 1fD�Uy(z0)�g

�
� (s+ p� c)E

�
Uu0 (CF ) 1fD�Uy(z0)�g

�
E
�
U2u00 (CF ) 1fD>Uy(z0)�g

�
9>>=>>;
:

(3.45)

The sign of the denominator is nonnegative, but the sign of the numerator is indeterminate.

Therefore, the e¤ect of initial wealth is unclear.

We then explore the numerator for a special utility function, the exponential utility

function, that is u (z) = K�Ce�
1
�
z
; u0 (z) = C

� e
� 1
�
z and u00 (z) = � C

�2
e
� 1
�
z. The numerator
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for the exponential utility function is8<: E
h
U C
� e

� 1
�
[CF ]

1fD>Uy(z0)�g

i
E
h
�U C

�2
e
� 1
�
[CF ]

1fD�Uy(z0)�g

i
�E

h
U C
� e

� 1
�
[CF ]

1fD�Uy(z0)�g

i
E
h
�U C

�2
e
� 1
�
[CF ]

1fD>V y(z0)�g

i 9=;
which equals zero. It can therefore be concluded that the optimal order quantity for the

exponential utility function is not a¤ected by the initial wealth.

3.2.3 The E¤ect of Salvage Price

This subsection deals with the e¤ect of the salvage price on order quantity. We rede�ne the

cash �ow as

CF (D;U; y (v) ; v) = z0 + (s+ p� v)min fD;Uy (v)g � (c� v)Uy (v)� pD

and

CF (x;w; y (v) ; v) =

(
CF�(x;wy (v) ; v) = z0 + (s� v)x� (c� v)wy (v) x � wy
CF+(x;wy (v) ; v) = z0 + (s+ p� c)wy (v)� px x � wy

:

To show the e¤ect of the salvage price, we take the derivative of the �rst order condition in

(3.37) with respect to v; that is

d

dv
g (y (v)�) = � d

dv

�
(c� v)E

�
Uu0 (CF (D;U; y (v)� ; v)) 1fD�Uy(v)�g

��
+(s+ p� c) d

dv

�
E
�
Uu0 (CF (D;U; y (v)� ; v)) 1fD>Uy(v)�g

��
= 0: (3.46)

Note that for any random variables X and V with probability density functions gX and

gV , we can write

d

dv
E
�
V u0 (CF ) 1fX�V y(v)�g

�
=

d

dv

 Z 1

0
w

 Z wy(v)�

0
u0 (CF�) gXjw (x) dx

!
gV (w)dw

!

=

Z 1

0
w
�
wy0 (v)� u0 (CF�) gXjw (wy (v)

�)

+

Z wy(v)�

0

�
�x+ wy (v)� � (c� v)wy0 (v)�

�
u00 (CF�) gXjw (x) dx

!
gV (w)dw
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= y0 (v)�E
�
V 2u0 (CF (V y (v)� ; V; y (v)� ; v)) gXjw (V y (v)

�)
�

+E
�
V (V y (v)� �X)u00 (CF ) 1fX�V y(v)�g

�
�(c� v)y0 (v)�E

�
V 2u00 (CF ) 1fX�V y(v)�g

�
(3.47)

and

d

dv
E
�
V u0 (CF ) 1fX>V y(v)�g

�
=

d

dv

 Z 1

0
w

 Z 1

wy(v)�
u0 (CF+) gXjw (x) dx

!
gV (w)dw

!

=

Z 1

0
w
�
�wy0 (v)� u0 (CF (wy (v)� ; w; y (v)� ; v)) gXjw (wy (v)�)

+

Z 1

wy(v)�

�
(s+ p� c)wy0 (v)�

�
u00 (CF+) gXjw (x) dx

!
gV (w)dw

= �y0 (v)�E
�
V 2u0 (CF (V y (v)� ; V; y (v)� ; v)) gXjw (V y (v)

�)
�

+(s+ p� c)y0 (v)�E
�
V 2u00 (CF ) 1fX>V y(v)�g

�
: (3.48)

whereCF� = CF�(x;wy (v)
� ; v);CF+ = CF+(x;wy (v)

� ; v) andCF = CF (X;V; y (v)� ; v).

By using (3.47) and (3.48) where X is D and V is U; the equation (3.46) can be written as

d

dv
g (y (v)�) = E

h
Uu0

�dCF� 1fD�Uy(v)�gi
�(c� v)

�
y0 (v)�E

h
U2u0

�dCF� gDjw (Uy (v)�)i
+ E

�
U (Uy (v)� �X)u00 (CF ) 1fD�Uy(v)�g

�
� (c� v)y0 (v)�E

�
U2u00 (CF ) 1fD�V y(v)�g

��
+(s+ p� c)

�
�y0 (v)�E

h
U2u0

�dCF� gDjw (Uy (v)�)i
+ (s+ p� c)y0 (v)�E

�
U2u00 (CF ) 1fD>Uy(v)�g

��
= 0

where dCF = CF (Uy (v)� ; U; y (v)� ; v): Then, the derivative of the optimal order quantity
with respect to v is
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y0 (v)� =

(
E
�
Uu0 (CF (Uy (v)� ; U; y (v)� ; v)) 1fD�Uy(v)�g

�
�(c� v)E

�
U (Uy (v)� �X)u00 (CF ) 1fD�Uy(v)�g

� )8>><>>:
+(s+ p� v)E

�
U2u0 (CF (Uy (v)� ; U; y (v)� ; v)) fDjw (Uy (v)

�)
�

�(c� v)2E
�
U2u00 (CF ) 1fD�V y(v)�g

�
�(s+ p� c)2E

�
U2u00 (CF ) 1fD>Uy(v)�g

�
9>>=>>;
� 0

since u0 � 0 and u00 � 0: So, as the salvage value increases, the optimal order quantity

increases.

3.2.4 The E¤ect of Order Cost

This subsection deals with the e¤ect of the order cost on the optimal order quantity. The

cash �ow can now be written as

CF (D;U; y (c) ; c) = z0 + (s+ p� v)min fD;Uy (c)g � (c� v)Uy (c)� pD

and

CF (x;w; y (c) ; c) =

(
CF�(x;wy (c) ; c) = z0 + (s� v)x� (c� v)wy (c) x � wy
CF+(x;wy (c) ; c) = z0 + (s+ p� c)wy (c)� px x � wy

:

We then investigate the derivative of the optimal order condition in (3.33) with respect

c, that is

d

dc

 
E
�
Uu0 (CF (D;U; y (c)� ; c)) 1fD�Uy(c)�g

�
E [Uu0 (CF (D;U; y (c)� ; c))]

!
=
d

dc

�
s+ p� c
s+ p� v

�
;

or more explicitly(
E
�
Uu0 (CF) 1fD>Uy(c)�g

�
d
dc

�
E
�
Uu0 (CF) 1fD�Uy(c)�g

��
�E

�
Uu0 (CF) 1fD�Uy(c)�g

�
d
dc

�
E
�
Uu0 (CF) 1fD>Uy(c)�g

�� )
(E [Uu0 (CF)])2

= � 1

s+ p� v (3.49)

as

E
�
Uu0 (CF)

�
= E

�
Uu0 (CF) 1fD�Uy(c)�g

�
+ E

�
Uu0 (CF) 1fD>Uy(c)�g

�
where CF = CF (D;U; y (c)� ; c):
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For any random variables X and V with probability density functions gX and gV , we

can show that

d

dc
E
�
V u0 (CF ) 1fX�V y(c)�g

�
=

d

dc

 Z 1

0
w

 Z wy(c)�

0
u0 (CF�) gXjw (x) dx

!
gV (w)dw

!

=

Z 1

0
w
�
wy0 (c)� u0 (CF (wy (c)� ; w; y (c)� ; c)) gXjw (wy (c)

�)

+

Z wy(c)�

0

�
�wy (c)� � (c� v)wy0 (c)�

�
u00 (CF�) gXjw (x) dx

!
gV (w)dw

= y0 (c)�E
�
V 2u0 (CF (V y (c)� ; V; y (c)� ; c)) gXjw (V y (c)

�)
�

�y (c)�E
�
V 2u00 (CF ) 1fX�V y(c)�g

�
� (c� v) y0 (c)�E

�
V 2u00 (CF ) 1fX�V y(c)�g

�
(3.50)

and

d

dc
E
�
V u0 (CF ) 1fX>V y(c)�g

�
=

d

dc

 Z 1

0
w

 Z 1

wy(c)�
u0 (CF+) gXjw (x) dx

!
gV (w)dw

!

=

Z 1

0
w
�
�wy0 (c)� u0 (CF (wy (c)� ; w; y (c)� ; c)) gXjw (wy (c)�)

+

Z 1

wy(c)�

�
�wy (c)� + (s+ p� c)wy0 (c)�

�
u00 (CF+) gXjw (x) dx

!
gV (w)dw

= �y0 (c)�E
�
V 2u0 (CF (V y (c)� ; V; y (c)� ; c)) gXjw (V y (c)

�)
�

�y (c)�E
�
V 2u00 (CF ) 1fX>V y(c)�g

�
+(s+ p� c) y0 (c)�E

�
V 2u00 (CF ) 1fX>V y(c)�g

�
(3.51)

whereCF� = CF�(x;wy (c)
� ; c);CF+ = CF+(x;wy (c)

� ; c) andCF = CF (X;V; y (c)� ; c):

Then, by using (3.50) and (3.51) whereX isD and V is U , the derivative of the optimality

condition in (3.49) equals
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8>>>>>>><>>>>>>>:

y0 (c)�E [Uu0 (CF )]E
�
U2u0 (CF (V y (c)� ; V; y (c)� ; c)) gDjw (V y (c)

�)
�

�y (c)�E
�
Uu0 (CF ) 1fD>Uy(c)�g

�
E
�
U2u00 (CF ) 1fD�Uy(c)�g

�
� (c� v) y0 (c)�E

�
Uu0 (CF ) 1fD>Uy(c)�g

�
E
�
U2u00 (CF ) 1fD�Uy(c)�g

�
+y (c)�E

�
Uu0 (CF ) 1fD�Uy(c)�g

�
E
�
U2u00 (CF ) 1fD>Uy(c)�g

�
� (s+ p� c) y0 (c)�E

�
Uu0 (CF ) 1fD�Uy(c)�g

�
E
�
U2u00 (CF ) 1fD>Uy(c)�g

�

9>>>>>>>=>>>>>>>;
(E [Uu0 (CF (D;U; y (c)� ; c))])2

= � 1

s+ p� v :

Then, the derivative of the optimal order quantity with respect to c is

y0 (c)� =

8>><>>:
� 1
s+p�v (E [Uu

0 (CF )])2

+y (c)�E
�
Uu0 (CF ) 1fD>Uy(c)�g

�
E
�
U2u00 (CF ) 1fD�Uy(c)�g

�
�y (c)�E

�
Uu0 (CF ) 1fD�Uy(c)�g

�
E
�
U2u00 (CF ) 1fD>Uy(c)�g

�
9>>=>>;8>><>>:

E [Uu0 (CF )]E
�
U2u0 (CF (V y (c)� ; V; y (c)� ; c)) fDjw (V y (c)

�)
�

� (c� v)E
�
Uu0 (CF ) 1fD>Uy(c)�g

�
E
�
U2u00 (CF ) 1fD�Uy(c)�g

�
� (s+ p� c)E

�
Uu0 (CF ) 1fD�Uy(c)�g

�
E
�
U2u00 (CF ) 1fD>Uy(c)�g

�
9>>=>>;

The sign of the denominator is positive, but the sign of the numerator is indeterminate. So,

the sign of y0 (c)� is indeterminate and the e¤ect of initial wealth is unclear.

Again, we analyze the numerator for the exponential utility function, that is u (z) =

K � Ce�
1
�
z
; u0 (z) = C

� e
� 1
�
z and u00 (z) = � C

�2
e
� 1
�
z. The numerator for the exponential

utility function is8>>><>>>:
� 1
s+p�v

�
E
h
U C
� e

� 1
�
(CF )

i�2
+y (c)�E

h
U C
� e

� 1
�
(CF )

1fD>Uy(c)�g

i
E
h
�U2 C

�2
e
� 1
�
(CF )

1fD�Uy(c)�g

i
�y (c)�E

h
U C
� e

� 1
�
(CF )

1fD�Uy(c)�g

i
E
h
�U2 C

�2
e
� 1
�
(CF )

1fD>Uy(c)�g

i
9>>>=>>>; < 0

and so y0 (c)� � 0: So, it can be concluded that the optimal order quantity for the exponential
utility function decreases as c increases.

3.2.5 The E¤ect of Penalty Price

Now, we want to analyze the e¤ect of the penalty price on order quantity. We can rede�ne

the cash �ow as

CF (D;U; y (p) ; p) = z0 + (s+ p� v)min fD;Uy (p)g � (c� v)Uy (p)� pD
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and

CF (x;w; y (p) ; c) =

(
CF�(x;wy (p) ; p) = z0 + (s� v)x� (c� v)wy (p) x � wy
CF+(x;wy (p) ; p) = z0 + (s+ p� c)wy (p)� px x � wy

:

To analyze the e¤ect of penalty price p on the optimal order quantity, the derivative of the

�rst order condition in (3.37) with respect to p is determined. That is

d

dv
g (y (p)�) = �(c� v) d

dp

�
E
�
Uu0 (CF (D;U; y (p)� ; p)) 1fD�Uy(p)�g

��
+
d

dp

�
(s+ p� c)E

�
Uu0 (CF (D;U; y (p)� ; p)) 1fD>Uy(p)�g

��
= 0: (3.52)

Note that for any random variables X and V with probability density functions gX and

gV , we can write that

d

dp
E
�
V u0 (CF ) 1fX�V y(p)�g

�
=

d

dp

 Z 1

0
w

 Z wy(p)�

0
u0 (CF�(x;w; y (p)

� ; p)) gXjw (x) dx

!
gV (w)dw

!

=

Z 1

0
w
�
wy0 (p)� u0

�
CF (wy0 (p)� ; w; y (p)� ; p)

�
gXjw

�
wy0 (p)�

�
+

Z wy(p)�

0

�
� (c� v)wy0 (p)�

�
u00 (CF�(x;wy (p)

� ; p)) gXjw (x) dx

!
gV (w)dw

= y0 (p)�E
�
V 2u0

�
CF (V y0 (p)� ; V; y (p)� ; p)

�
gXjw

�
V y0 (p)�

��
� (c� v) y0 (p)�E

�
V 2u00 (CF ) 1fX�V y(p)�g

�
(3.53)

and

d

dp
E
�
V u0 (CF ) 1fX>V y(p)�g

�
=

d

dp

 Z 1

0
w

 Z 1

wy(p)�
u0 (CF+) gXjw (x) dx

!
gV (w)dw

!

=

Z 1

0
w
�
�wy0 (p)� u0 (CF (wy (p)� ; w; y (p)� ; p)) gXjw (wy (p)�)

+

Z 1

wy(p)�

�
� (x� wy (p)�) + (s+ p� c)wy0 (p)�

�
u00 (CF+) gXjw (x) dx

!
gV (w)dw

= �y0 (p)�E
�
V 2u0 (CF (V y (p)� ; V; y (p)� ; p)) gXjw (V y (p)

�)
�

�E
�
V (X � V y (p)�)u00 (CF ) 1fX>V y(p)�g

�
+(s+ p� c) y0 (p)�E

�
V 2u00 (CF ) 1fX>V y(p)�g

�
(3.54)
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where CF+ = CF+(x;wy (p)
� ; p) and CF = CF (X;V; y (p)� ; p): By using (3.53) and

(3.54), where X is D and V is U; the equation (3.52) can be written as

d

dv
g (y (p)�) = E

�
Uu0 (CF ) 1fD>Uy(p)�g

�
�(c� v)

�
y0 (p)�E

h
U2u0

�dCF� gDjw �Uy0 (p)��i
� (c� v) y0 (p)�E

�
U2u00 (CF ) 1fD�Uy(p)�g

��
+(s+ p� c)

�
�y0 (p)�E

h
U2u0

�dCF� gDjw (Uy (p)�)i
� E

�
U (D � Uy (p)�)u00 (CF ) 1fD>Uy(p)�g

�
+ (s+ p� c) y0 (p)�E

�
U2u00 (CF ) 1fD>Uy(p)�g

��
= 0

where dCF = CF (Uy0 (p)� ; U; y (p)� ; p): Then, the derivative of the optimal order quantity
with respect to p is

y0 (p)� =

(
E
�
Uu0 (CF ) 1fD>Uy(p)�g

�
�(s+ p� c)E

�
U (D � Uy (p)�)u00 (CF ) 1fD>Uy(p)�g

� )8>><>>:
+(s+ p� v)E

�
U2u0 (CF (Uy (p)� ; U; y (p)� ; p)) gDjw (Uy

0 (p)�)
�

�(c� v)2E
�
U2u00 (CF ) 1fD�Uy(p)�g

�
�(s+ p� c)2E

�
U2u00 (CF ) 1fD>Uy(p)�g

�
9>>=>>;
� 0

and so we can conclude that as the penalty price increases, the optimal order quantity

increases.

Throughout this section, we analyzed the newsvendor problem when demand is not only

source of uncertainty but yield is also uncertain. In the following section, we consider the

case where supply is uncertain because the supplier has random capacity.

3.3 Newsvendor Model with Random Capacity

This section considers the newsvendor problems where the randomness results from both

random demand and supplier�s random capacity. In this problem, supplier may not ful�ll

all asked quantity because of limited capacity. Suppose that the amount received from

ordering y units is min fK; yg where the random variable K � 0 represents the maximum
number of units that the supplier can ship. We suppose that K has the distribution function

P fK � zg = GK (z) > 0 and density function gK . Moreover, we assume that D and K
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may be dependent and then the conditional density function of demand given K = z is gDjz.

The cash �ow in (3.2) can be updated for the newsvendor problem with random capacity

as

CF (D;K; y) = z0 + (s+ p� v)min fD;K; yg � (c� v)min fK; yg � pD: (3.55)

And, the aim of the newsvendor is

max
y�0

H(y) = E[u(CF (D;K; y))]:

For further analysis, we can de�ne the cash �ow as

CF (x; z ^ y) =
(
CF�(x; z ^ y) = z0 + (s� v)x� (c� v) z ^ y x � z ^ y
CF+(x; z ^ y) = z0 + (s+ p� c) z ^ y � px x � z ^ y

where z ^ y = min fz; yg : Note that CF (y; y) = CF�(y; y) = CF+(y; y) = z0 + (s� c) y:

Theorem 4 The optimal order quantity y�satis�es

E
�
u0 (CF (D;K; y�)) 1fD�y�;K>y�g

�
E
�
u0 (CF (D;K; y�)) 1fK>y�g

� = bp: (3.56)

Proof. For any random variables X and Z with probability density functions gX and gZ ,

we can write that

E[u(CF (X;Z; y))] =

Z 1

0

�Z z^y

0
u (CF�(x; z ^ y)) gXjz (x) dx

�
gZ (z) dz

+

Z 1

0

�Z 1

z^y
u (CF+(x; z ^ y)) gXjz (x) dx

�
gZ (z) dz

=

Z y

0

�Z z

0
u (CF�(x; z)) gXjz (x) dx

+

Z 1

z
u (CF+(x; z)) gXjz (x) dx

�
gZ (z) dz

+

Z 1

y

�Z y

0
u (CF�(x; y)) gXjz (x) dx

+

Z 1

y
u (CF+(x; y)) gXjz (x) dx

�
gZ (z) dz

(3.57)
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and the derivative of (3.57) is

d

dy
E[u(CF (X;Z; y))] = � (c� v)

Z 1

y

�Z y

0
u0 (CF�(x; y)) gXjz (x) dx

�
gZ (z) dz

+(s+ p� c)
Z 1

y

�Z 1

y
u0 (CF+(x; y)) gXjz (x) dx

�
gZ (z) dz

= � (c� v)E
�
u0 (CF ) 1fX�y;Z>yg

�
+(s+ p� c)E

�
u0 (CF ) 1fX>y;Z>yg

�
(3.58)

where CF = CF (X;Z; y): By using (3.58) where X is D and Z is K, the �rst order

condition is

g (y) =
d

dy
E[u(CF (D;K; y))]

= � (c� v)E
�
u0 (CF ) 1fD�y;K>yg

�
+ (s+ p� c)E

�
u0 (CF ) 1fD>y;K>yg

�
= � (s+ p� v)E

�
u0 (CF ) 1fD�y;K>yg

�
+ (s+ p� c)E

�
u0 (CF ) 1fK>yg

�
= 0: (3.59)

This can be also written as

g (y) = E
�
u0 (CF ) 1fK>yg

� 
�(s+ p� v)

E
�
u0 (CF ) 1fD�y;K>yg

�
E
�
u0 (CF ) 1fK>yg

� + (s+ p� c)
!
= 0:

(3.60)

Noting that P fK > yg > 0 and u0 > 0 by our assumption, we observe that

E
�
u0 (CF ) 1fK>yg

�
> 0:

The equation (3.60) can be rewritten as

�(s+ p� v)h (y) + (s+ p� c) = 0:

where

h (y) =
E
�
u0 (CF (D;K; y)) 1fD�y;K>yg

�
E
�
u0 (CF (D;K; y)) 1fK>yg

� : (3.61)

In the newsvendor model with random capacity, the concavity of the objective function is not

necessarily satis�ed because g (y) in (3.60) is not necessarily decreasing. So, the existence

and uniqueness of y� satisfying (3.56) depends on the structure of h (y) and we need to put

some restrictions on it. Suppose that h (y) is strictly increasing in y. If h (0) � bp � h (1),
then there exists a unique 0 � y� � 1 that satis�es the optimality condition in (3.56).
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Corollary 5 The optimal order quantity is y� = 0 when

P fD = 0jK > 0g >
�
E [u0 (z0 � pD)]

u0 (z0)

� bp: (3.62)

Proof. We can declare that we have y� = 0 if h (0) > bp; that is
h (0) =

E
�
u0 (CF (D;K; 0)) 1fD�0;K>0g

�
E
�
u0 (CF (D;K; 0)) 1fK>0g

�
=

E
�
u0 (CF (D;K; 0)) 1fD=0;K>0g

�
E
�
u0 (CF (D;K; 0)) 1fK>0g

�
=

E
�
u0 (z0) 1fD=0;K>0g

�
E
�
u0 (z0 � pD) 1fK>0g

�
=

u0 (z0)

E [u0 (z0 � pD)]
P (D = 0jK > 0) > bp

which yields to (3.62).

Corollary 6 The optimal order quantity is y� =1 if

P fD =1jK =1g > 1� bp: (3.63)

We can conclude that if the demand is �nite, P fD =1g = 0; the optimal order quantity
is clearly �nite.

Proof. We can also argue that y� =1 if h (1) < bp; that is
h (1) =

E
�
u0 (CF (D;K;1)) 1fD<1;K=1g

�
E
�
u0 (CF (D;K;1)) 1fK=1g

�
=

E
�
u0 (CF (D;K;1)) 1fK=1g

�
� E

�
u0 (CF (D;K;1)) 1fD=1;K=1g

�
E
�
u0 (CF (D;K;1)) 1fK=1g

�
= 1�

E
�
u0 (CF (1;1;1)) 1fD=1;K=1g

�
E
�
u0 (CF (D;1;1)) 1fK=1g

�
= 1� P (D =1jK =1) < bp:

This argument supposes that the utility function u is bounded.

Moreover, as h (y) is increasing, it follows from (3.60) that the derivative g (y) is non-

negative on [0; y�) and nonpositive on [y�;1). So, we can argue that the objective function
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is in increasing on [0; y�) and decreasing on [y�;1). Therefore, we have a quasi-concave
objective function and y� satisfying (3.56) is indeed the optimal solution.

As a special case, suppose that the newsvendor is risk-neutral, that is the utility function

is linear. The utility function is u(x) = a+ bx, so that u0(x) = b. The optimality function

can be rewritten as

P fD � y�;K > y�g
P fK > y�g = P fD � y�jK > y�g = bp

which is the same optimality condition as Okyay et al. [41] for the newsvendor model with

random capacity. Moreover, suppose that there is no capacity restriction, K = 1, the
optimality condition (3.56) yields to

E
�
u0[CF (D;K; y�)]1fD�y�g

�
E [u0[CF (D;K; y�)]]

= bp
which satis�es the optimality condition of standard model (3.8).

3.3.1 The E¤ect of Risk-Aversion

This subsection clari�es the e¤ect of risk-aversion on the optimal order quantity. In order

to analyze this e¤ect, we again apply Pratt�s argument which demonstrates that the utility

function can be replaced with its concave transformation to show the increase in risk-

aversion. Suppose that we have two di¤erent decision makers with the same cash �ow but

di¤erent utility functions, the �rst one with utility function u (x) and more risk-averse one

with utility function k (u(x)), where k0 > 0 and k00 < 0.

The cash �ow is increasing in x, or

CF� (x1; z ^ y�) � CF (z ^ y�; z ^ y�) � CF+ (x2; z ^ y�)

for all x1 � min fz; y�g � x2, and then

u0 (CF� (x1; z ^ y�)) � u0 (CF (z ^ y�; z ^ y�)) � u0 (CF+ (x2; z ^ y�)) :

And, for concave increasing function k

k0 (u (CF�)) � k0 (u (CF)) � k0 (u (CF+)) (3.64)

where CF� = CF� (x1; z ^ y�) ; CF =CF (z ^ y�; z ^ y�) and CF+ = CF+ (x2; z ^ y�) :
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The objective of the newsvendor with more risk averse utility function is

max
y�0

eH(y) = E[k (u(CF (D;K; y)))]
and the �rst derivative of objective function is

eg (y) = �(c� v)
Z 1

y

�Z y

0
k0 (u (CF�(x; y)))u

0 (CF�(x; y)) gDjz (x) dx

�
gK (z) dz

+(s+ p� c)
Z 1

y

�Z 1

y
k0 (u (CF+(x; y)))u

0 (CF+(x; y)) gDjz (x) dx

�
gK (z) dz

= E
�
k0 (u (CF ))u0 (CF ) 1fK>yg

� �
�(s+ p� v)eh (y) + (s+ p� c)� (3.65)

where eh (y) = E
�
k0 (u (CF ))u0 (CF ) 1fD�y;K>yg

�
E
�
k0 (u (CF ))u0 (CF ) 1fK>yg

� : (3.66)

To compare the optimal order quantities that solve (3.56) and (3.65), we substitute the

optimal order quantity solving y� (3.56) to equation (3.65). The result is

eg (y�) =

 
�(c� v)

Z 1

y�

 Z y�

0
k0 (u (CF�))u

0 (CF�) gDjz (x) dx

!
gK (z) dz

+ (s+ p� c)
Z 1

y�

�Z 1

y�
k0 (u (CF+))u

0 (CF+) gDjz (x) dx

�
gK (z) dz

�
� k0 (u (CF))

 
�(c� v)

Z 1

y�

 Z y�

0
u0 (CF�) gDjz (x) dx

!
gK (z) dz

+ (s+ p� c)
Z 1

y�

�Z 1

y�
u0 (CF+) gDjz (x) dx

�
gK (z) dz

�
where CF� = CF�(x; y�); CF+ = CF+(x; y

�) and CF = CF (min fz; y�g ;min fz; y�g).
So, we can conclude that eg (y�) � 0: By supposing eh (y) increasing in y and eh (y) > h (y) or
E
�
k0 (u (CF (D;K; y)))u0 (CF (D;K; y)) 1fD�y;K>yg

�
E
�
k0 (u (CF (D;K; y)))u0 (CF (D;K; y)) 1fK>yg

� >
E
�
u0 (CF (D;K; y)) 1fD�y;K>yg

�
E
�
u0 (CF (D;K; y)) 1fK>yg

� ;

for any concave k, we can conclude that a more risk-averse newsvendor will order less. In

other words, as risk aversion increases, the optimal order quantity decreases.

As the concavity of the objective function cannot be obtained for inventory models with

random capacity, the e¤ects of other parameters on the optimal order quantity are not

resulted in explicit and nice characterizations. Therefore, we do not discuss them in our

thesis.
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3.4 Newsvendor Model with Random Yield and Capacity

In Section 3.2 and Section 3.3, the newsvendor model for random yield and random capacity

is analyzed separately. This section considers the case where both random capacity and

random yield exists. It is accepted that the capacity of the supplier is limited by a random

number K and the newsvendor receives a random proportion of the amount produced.

That is to say that when y is ordered, U min fK; yg is received where U and K are random

variables and represent the proportion of non-defective items received and the maximum

number of units that the supplier can ship, respectively. Suppose that D; U and K are

not necessarily independent and they have a joint distribution function, FDKU (x; z; w) =

P fD � x;K � z; U � wg. Moreover, we also assume that the conditional density functions
gKjU=w and gDjK=z;U=w all exist. Then, the cash �ow is

CF (D;K;U; y) = z0 � (c� v)U min fK; yg+ (s+ p� v)min fD;UK;Uyg � pD (3.67)

and the aim of the risk-averse newsvendor is,

max
y�0

H(y) = E[u(CF (D;K;U; y))]:

For further analysis, let

CF (x;w (z ^ y)) =

8>>>>><>>>>>:
CF�(x;w (z ^ y)) = z0 � (c� v)w (z ^ y) x � w (z ^ y)

+ (s� v)x
CF+(x;w (z ^ y)) = z0 + (s+ p� c)w (z ^ y)

�px x � w (z ^ y)

and CF (wy;wy) = CF�(wy;wy) = CF+(wy;wy) = z0 + (s� c)wy:

Theorem 7 The optimal order quantity y�satis�es

E
�
Uu0 (CF (D;K;U; y�)) 1fD�Uy�;K>y�g

�
E
�
Uu0 (CF (D;K;U; y�)) 1fK>y�g

� = bp: (3.68)

Proof. Note that for any random variables X; V and Z with the probability density functions

gX ; gV and gZ ; we can write that

E[u(CF (X;Z; V; y))]

=

Z 1

0
gV (w) dw

Z 1

0
gZjw (z) dz

 Z w(z^y)

0
u (CF�(x;w (z ^ y))) gXjzw (x) dx

+

Z 1

w(z^y)
u (CF+(x;w (z ^ y))) gXjzw (x) dx

!
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=

Z 1

0
gV (w) dw

�Z y

0
gZjw (z) dz

�Z wz

0
u (CF�(x;wz)) gXjzw (x) dx

+

Z 1

wz
u (CF+(x;wz)) gXjzw (x) dx

�
+

Z 1

y
gZjw (z) dz

�Z wy

0
u (CF�(x;wy)) gXjzw (x) dx

+

Z 1

wy
u (CF+(x;wy)) gXjzw (x) dx

��
:

And we can show that

d

dy
E[u (CF )]

=

Z 1

0
gV (w) dw

�Z 1

y
gZjw (z) dz

�
� (c� v)w

Z wy

0
u0 (CF�) gXjzw (x) dx

+ (s+ p� c)w
�Z 1

wy
u0 (CF+) gXjzw (x) dx

���
= � (c� v)E

�
V u0 (CF ) 1fX�V y;Z>yg

�
+ (s+ p� c)E

�
V u0 (CF ) 1fX>V y;Z>yg

�
(3.69)

where CF� = CF�(x;wy), CF+ = CF+(x;wy) and CF = CF (X;Z; V; y): By using

(3.69), the �rst order condition can be written as

g (y) =
d

dy
E[u(CF (D;K;U; y))]

= � (c� v)E
�
Uu0 (CF (D;K;U; y)) 1fD�Uy;K>yg

�
+(s+ p� c)E

�
Uu0 (CF (D;K;U; y)) 1fD>Uy;K>yg

�
= � (s+ p� v)E

�
Uu0 (CF (D;K;U; y)) 1fD�Uy;K>yg

�
+(s+ p� c)E

�
Uu0 (CF (D;K;U; y)) 1fK>yg

�
= 0: (3.70)

The derivative (3.70) can also be written as

g (y) = E
�
Uu0 (CF (D;K;U; y)) 1fK>yg

�
(� (s+ p� v)h (y) + (s+ p� c)) = 0 (3.71)

where

h (y) =
E
�
Uu0 (CF (D;K;U; y)) 1fD�Uy;K>yg

�
E
�
Uu0 (CF (D;K;U; y)) 1fK>yg

� : (3.72)
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Noting that P fK > yg > 0 for all y by our assumption and assuming that U > 0 and

u0 > 0, E
�
Uu0 (CF (D;K;U; y)) 1fK>yg

�
> 0, (3.71) can be also written as

� (s+ p� v)h (y) + (s+ p� c) = 0: (3.73)

The existence and uniqueness of the optimal order quantity y� depends on the structure of

h (y) in (3.72), like in the previous section. More precisely, suppose that h (y) is increasing

in y. If h (0) � bp � h (1), then the �rst order condition in (3.73) is the optimality
condition and there exists a 0 � y� � 1 that satis�es the optimality condition h (y�) = bp,
so as g (y�) = 0.

Corollary 8 The optimal order quantity is y� = 0 if

P fD = 0jK > 0g > bpE [Uu0 (z0 � pD)]
u0 (z0)E [U ]

: (3.74)

Proof. Moreover, we can also assert that we have y� = 0 if h (0) > bp; that is
h (0) =

E
�
Uu0 (CF (D;K;U; 0)) 1fD�0;K>0g

�
E
�
Uu0 (CF (D;K;U; 0)) 1fK>0g

�
=

E
�
Uu0 (CF (0;K; U; 0)) 1fD=0;K>0g

�
E
�
Uu0 (CF (D;K;U; 0)) 1fK>0g

�
=

E
�
Uu0 (z0) 1fD=0;K>0g

�
E
�
Uu0 (z0 � pD) 1fK>0g

�
=

u0 (z0)E [U ]

E [Uu0 (z0 � pD)]
P fD = 0jK > 0g > bp:

Corollary 9 We have y� =1 if

P fD =1jK =1g > 1� bp: (3.75)

We can argue that if the demand is �nite, the optimal order quantity is clearly �nite.

Proof. Moreover, we can also argue that y� =1 if h (1) < bp; that is
h (1) =

E
�
Uu0 (CF (D;K;U;1)) 1fD<1;K=1g

�
E
�
Uu0 (CF (D;K;U;1)) 1fK=1g

�
=

E
�
Uu0 (CF (D;K;U;1)) 1fK=1g

�
� E

�
Uu0 (CF (D;K;U;1)) 1fD=1;K=1g

�
E
�
Uu0 (CF (D;K;U;1)) 1fK=1g

�
= 1� P fD =1jK =1g < bp:



Chapter 3: Utility-Based Models with Random Demand and Supply

49

Furthermore, as h (y) is increasing, it follows from (3.71) that the derivative g (y) is

nonnegative on [0; y�) and nonpositive on [y�;1). So, it can be argued that the objective
function is in increasing on [0; y�) and decreasing on [y�;1). The objective function is
quasi-concave and y� satisfying (3.68) is surely the optimal solution.

As a special case, suppose that the newsvendor is risk-neutral that is the utility function

is linear. The optimality condition then becomes

E
�
U1fD�Uy�;K>y�g

�
E
�
U1fK>y�g

� = bp
which is the same condition as Okyay et al. [41] for the newsvendor model with random

yield and capacity. Moreover, by supposing K = 1 (random yield model), the optimality

condition is
E
�
Uu0[CF (D;U; y�)]1fD�Uy�g

�
E [Uu0[CF (D;U; y�)]]

= bp
which satis�es (3.33). By supposing U = 1 (random capacity model), the optimality condi-

tion is
E
�
u0[CF (D;K; y�)]1fD�y�;K>y�g

�
E
�
u0[CF (D;K; y�)]1fK>y�g

� = bp
which satis�es (3.56). Lastly, by supposing U = 1 and K = 1 (standard model), the

optimality condition is
E
�
u0[CF (D; y�)]1fD�y�g

�
E [u0[CF (D; y�)]]

= bp
which satis�es (3.8).

3.4.1 The E¤ect of Risk-Aversion

As before, we use Pratt�s argument to analyze the e¤ect of the risk-aversion on the optimal

order quantity. Again, let k be a concave function where k0 > 0 and k00 < 0.

The cash �ow is increasing in x that is

CF� (x1; w (z ^ y�)) � CF (w (z ^ y�) ; w (z ^ y�)) � CF+ (x2; w (z ^ y�))

for all x1 � w (z ^ y�) � x2: Then,

u0 (CF�) � u0 (CF (w (z ^ y�) ; w (z ^ y�))) � u0 (CF+)

and

k0 (u (CF�)) � k0 (CF (w (z ^ y�) ; w (z ^ y�))) � k0 (u (CF+)) (3.76)
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where CF� = CF� (x1; w (z ^ y�)) and CF+ = CF+ (x2; w (z ^ y�)) :
The aim of our more risk-averse newsvendor is,

max
y�0

eH(y) = E[k (u(CF (D;K;U; y)))]
and the �rst derivative of objective function is

eg (y)
= � (c� v)

Z 1

0
wgU (w) dw

Z 1

y
gKjw (z) dz

Z wy

0
k0 (u (CF�))u

0 (CF�) gDjzw (x) dx

+(s+ p� c)
Z 1

0
wgU (w) dw

Z 1

y
gKjw (z) dz

Z 1

wy
k0 (u (CF+))u

0 (CF+) gDjzw (x) dx

= E
�
Uk0 (u (CF ))u0 (CF ) 1fK>yg

� �
� (s+ p� v)eh (y) + (s+ p� c)� (3.77)

where CF� = CF� (x;wy), CF+ = CF+(x;wy) and

eh (y) = E
�
Uk0 (u (CF (D;K;U; y)))u0 (CF (D;K;U; y)) 1fD�Uy;K>yg

�
E
�
Uk0 (u (CF (D;K;U; y)))u0 (CF (D;K;U; y)) 1fK>yg

� : (3.78)

Moreover, when we substitute the optimal order quantity for the newsvendor problem with

utility function u into the equation (3.77), we obtain

eg (y)
= � (c� v)

Z 1

0
wgU (w) dw

Z 1

y�
gKjw (z) dz

Z wy�

0
k0 (u (CF�))u

0 (CF�) gDjzw (x) dx

+(s+ p� c)
Z 1

0
wgU (w) dw

Z 1

y�
gKjw (z) dz

Z 1

wy�
k0 (u (CF+))u

0 (CF+) gDjzw (x) dx

< k0 (u (CF (w (z ^ y�) ; w (z ^ y�)))) g (y�)

where CF� = CF� (x;wy�), CF+ = CF+(x;wy�) and

g (y�) = � (c� v)
Z 1

0
wfU (w) dw

Z 1

y�
fKjw (z) dz

Z wy�

0
u0 (CF�) fDjzw (x) dx

+(s+ p� c)
Z 1

0
wfU (w) dw

Z 1

y�
fKjw (z) dz

Z 1

wy�
u0 (CF+) fDjzw (x) dx

= 0:

Therefore, we can conclude that eg (y�) < 0: By considering eh (y) increases in y and eh (y) >
h (y) that is

E
�
Uk0 (u (CF))u0 (CF) 1fD�Uy;K>yg

�
E
�
Uk0 (u (CF))u0 (CF) 1fK>yg

� >
E
�
Uu0 (CF) 1fD�Uy;K>yg

�
E
�
Uu0 (CF) 1fK>yg

�
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for any concave k where CF = CF (D;K;U; y), we can conclude that as risk-aversion

increases, the optimal order quantity decreases.

Similar to the random capacity, we do not include the discussions about the e¤ects of

other parameters on the optimal order quantity in our thesis.

Up to this point, we considered the newsvendor model where the decision maker is risk-

averse. First, we analyzed the standard model in Section 3.1 and then we investigated the

models with random supply in Sections 3.2-3.4. In the following chapter, we will consider

the case when there exists a �nancial hedging opportunity to decrease the risk further.
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Chapter 4

UTILITY-BASED MODELS WITH HEDGING

In the previous chapter, we consider the newsvendor problem where the cash �ow is

random due to the stochastic nature of demand and supply. As we assume that the decision

maker is risk-averse, we have tried to maximize the expected utility of the cash �ow. In this

chapter, we further consider the existence of a �nancial market in which there are �nancial

securities correlated with demand and supply. Therefore, the decision maker needs to decide

not only how much to order from supplier, but also how much to invest on a portfolio of

�nancial securities.

Okyay et al. [42] consider the inventory management problem with hedging and provide

a risk-sensitive solution approach to this problem by considering both the mean and the

variance of cash �ow. The �rst aim is to �nd an optimal portfolio of �nancial securities

that minimizes the variance of the hedged cash �ow for any possible order quantity. Then,

the mean of the hedged cash �ow with this optimal portfolio is maximized by choosing

an optimal order quantity. In our thesis, we use the same risk-sensitive, two-step solution

approach. Although the �rst step remains the same, as a second step we aim to maximize

the expected utility of the hedged cash �ow. To analyze the second step, we initially repeat

the �rst step of Okyay et al. [42].

We assume that the length of the period is T during which the risk-free interest rate is r.

Similar to the previous chapter, the newsvendor buys the items at c, sells them for s, returns

the unsold portion at v, and compensates the stock-outs at p which satisfy s > cerT > v � 0
and (cerT � s) < p � 0 to avoid trivial situations. All cash �ows occur at time T except

for the cash payment made at time 0 to purchase inventory. Let X denote the vector of

random variables corresponding to demand and supply uncertainties and S denote the price

of a primary asset in the market at the end of the period. The random vector X and the

�nancial variable S are correlated. Suppose that there are n � 1 derivative securities in the
market where fi (S) is the net payo¤ of the ith derivative security of the primary asset at

the end of the period. In other words, it is the payo¤ f̂i (S) received at time T minus its

investment cost fTi so that fi (S) = f̂i (S)�fTi . Let f0i denote the price of the ith derivative



Chapter 4: Utility-Based Models with Hedging

53

security at the beginning of the period when it is purchased, and we then have fTi = e
rT f0i :

If the market is complete with some risk-neutral probability measure Q; then it is well-

known that f0i = e�rTEQ[f̂i (S)] and this will lead to EQ [fi (S)] = EQ

h
f̂i (S)� fTi

i
= 0:

We do not necessarily suppose that the market is complete. However, the consequences of

such a market will be analyzed in our numerical illustrations in the last chapter. Moreover,

let �i denote the amount of security i in the portfolio. The total hedged cash �ow at time

T is given by

CF� (X; S; y) = CF (X; y) +

nX
i=1

�ifi (S) (4.1)

where CF (X; y) denotes the unhedged cash �ow. The �rst step of our solution algorithm

is to �nd the optimal portfolio � = (�1; �2; � � � ; �n) to minimize the variance of the total
cash �ow for a given order quantity y. So, the optimization problem is

min
�
V ar

 
CF (X; y) +

nX
i=1

�ifi (S)

!
(4.2)

Once the optimal solution �� (y) is determined for any order quantity y, the risk-averse

decision maker chooses the optimal order quantity by solving

max
y�0

E

"
u

 
CF (X; y) +

nX
i=1

��i (y) fi (S)

!#
: (4.3)

Note that we do not impose nonnegativity restrictions on the portfolio � implying that

shortselling is possible.

First, suppose that there is a single derivative security in the market where f (S) is the

payo¤ of that derivative security of the primary asset and let � denote the amount of that

security. Thus, the optimization problem becomes

min
�
V ar (CF (X; y) + �f (S))

where the objective function can be written as

V ar (CF� (X; S; y)) = V ar (CF (X; y) + �f (S))

= �2V ar (f (S))

+2�Cov (f (S) ; CF (X; y))

+V ar (CF (X; y)) : (4.4)
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Proposition 10 When there is a single asset, the optimal asset quantity that minimizes

the variance of cash �ow is

�� (y) = �Cov (f (S) ; CF (X; y))
V ar (f (S))

: (4.5)

Proof. The gradient of the objective function in (4.4) with respect to � is

@

@�
(V ar (CF� (X; S; y))) = 2�V ar (f (S)) + 2Cov (f (S) ; CF (X; y))

and the Hessian is

@2

@�2
(V ar (CF� (X; S; y))) = 2V ar (f (S)) � 0:

As the second order condition is satis�ed, we can conclude that the �rst order condition

gives the optimal solution.

We will use this optimal portfolio for single asset in the following sections.

Moreover, suppose that there are n derivative securities in the market. Then, the opti-

mization problem is

min
�
V ar

�
CF (X; y) +�Tf (S)

�
where � is a column vector with entries � =(�1; �2; � � � ; �n) and f (S) is another column
vector with entries f =(f1 (S) ; f2 (S) ; � � � ; fn (S)) : The objective function can be written
as

V ar [CF� (X; S; y)] = V ar

 
CF (X; y) +

nX
i=1

�ifi (S)

!

=
nX
i=1

nX
j=1

�i�jCov (fi (S) ; fj (S))

+2

nX
i=1

�iCov (fi (S) ; CF (X; y))

+V ar (CF (X; y)) :

We can rewrite the objective function in compact matrix notation as

V ar (CF� (X; S; y)) = �
TC�+ 2�T� (y) + V ar (CF (X; y)) (4.6)

where �T is the transpose of �, C is the covariance matrix of the securities with entries

Cij = Cov (fi (S) ; fj (S))
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and �(y) is a vector with entries

�i (y) = Cov (fi (S) ; CF (X; y)) :

Proposition 11 When there are multiple securities in the market, the optimal portfolio is

�� (y) = �C�1� (y) : (4.7)

Proof. By taking the gradient of the objective function (4.6) and setting it equal to zero,

the �rst order condition is obtained as

@

@�
(V ar (CF� (X; S; y))) = 2C�+ 2� (y) = 0

and the Hessian is
@2

@�2
(V ar (CF� (X; S; y))) = 2C � 0

as the covariance matrix C is always positive de�nite. So, the second order condition is

satis�ed and the �rst order condition gives the optimality condition.

We will use this optimal portfolio for multiple securities in the following sections.

In Section (4.1), we �rst consider the standard model where demand is the only source of

randomness. Then, in Sections (4.2)-(4.4), we consider the random supply models, including

random yield, random capacity, and random yield and capacity models, respectively.

4.1 Standard Newsvendor Model

Suppose that there is no randomness in the supply. Recall that the random demand D have

a cumulative distribution GD (x) = P fD � xg and a density function gD and the random
demand D and the �nancial variable S are correlated. Then, the unhedged cash �ow equals

to

CF� (X; S; y) = CF (D; y) + �f (S)

= �
�
cerT � v

�
y + (s+ p� v)min fD; yg � pD +�Tf (S) (4.8)

where X = fDg :
We analyze the problem �rst for a single security and then for multiple securities.
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4.1.1 Hedging with Only One Security

Suppose that there is a single derivative security in the market where f (S) is the payo¤ of

that derivative security of the primary asset and let � denote the amount of that security.

Thus, the optimization problem becomes

min
�
V ar (CF� (D;S; y)) :

The optimal asset quantity for a single asset in (4.5) can be updated as

�� (y) = �Cov (f (S) ; CF (D; y))
V ar (f (S))

since X = fDg. We can rewrite the optimal asset quantity as

�� (y) = � (s+ p� v)�D (y) + p�D (1) (4.9)

where

�D (y) =
Cov (f (S) ;min fD; yg)

V ar (f (S))

and

�D (1) =
Cov (f (S) ; D)

V ar (f (S))
:

Once we obtain the optimal portfolio �� (y), we can use it to maximize the expected

utility of the hedged cash �ow. So, the optimization problem is

max
y�0

E
�
u
�
CF��(y) (D;S; y)

��
(4.10)

where the hedged cash �ow at time T is given by

CF��(y) (D;S; y) = CF (D; y) + �� (y) f (S)

= �
�
cerT � v

�
y + (s+ p� v)min fD; yg � pD + �� (y) f (S) :

(4.11)

We can also write the hedged cash �ow as

CF��(y) (x; t; y) =

(
CF�(x; t; y) = �

�
cerT � v

�
y + (s� v)x+ �� (y) f (t) x � y

CF+(x; t; y) =
�
s+ p� cerT

�
y � px+ �� (y) f (t) x � y

(4.12)
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where CF�(y; t; y) = CF+(y; t; y) =
�
s� cerT

�
y+�� (y) f (t) : Then, the objective function

becomes

E
�
u
�
CF��(y) (D;S; y)

��
=

Z y

0
Ex [u (CF�(x; S; y))] gD (x) dx

+

Z 1

y
Ex [u (CF+(x; S; y))] gD (x) dx (4.13)

where Ex [Y ] = E [Y jD = x] is a conditional expectation.

We now rede�ne the critical ratio as

bp = s+ p� cerT
s+ p� v

because the cash �ow involves the compounded order cost with risk-free rate r:

Theorem 12 The optimality condition is

E
�
u0 (CF (D;S; y�)) 1fD�y�g

�
+ �0D (y

�)E [f (S)u0 (CF (D;S; y�))]

E [u0 (CF (D;S; y�))]
= bp (4.14)

where bp is the same critical ratio. The only di¤erence from bp in (3.8) is that the order cost
is discounted with the risk-free interest rate r:

Proof. By de�ning the derivative of �� (y) in (4.9) as

d

dy
�� (y) = � (s+ p� v)�0D (y) ;

one can show that the derivative of (4.13) is

d

dy
E
�
u
�
CF��(y) (D;S; y)

��
= �

�
cerT � v

� Z y

0
Ex
�
u0 (CF�(x; S; y))

�
gD (x) dx

+
�
s+ p� cerT

� Z 1

y
Ex
�
u0 (CF+(x; S; y))

�
gD (x) dx

� (s+ p� v)�0D (y)
Z 1

0
Ex
�
f (S)u0 (CF�(x; S; y))

�
gD (x) dx

= �
�
cerT � v

�
E
�
u0 (CF (D;S; y)) 1fD�yg

�
+
�
s+ p� cerT

�
E
�
u0 (CF (D;S; y)) 1fD>yg

�
� (s+ p� v)�0D (y)E

�
f (S)u0 (CF (D;S; y))

�
(4.15)

where

�0D (y) =
Cov

�
f (S) ; 1fD>yg

�
V ar (f (S))

:
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Then, the �rst order condition can be written as

g (y) = E
�
u0 (CF (D;S; y))

� ��
s+ p� cerT

�
� (s+ p� v)h (y)

�
= 0 (4.16)

where

h (y) =
E
�
u0 (CF (D;S; y)) 1fD�yg

�
+ �0D (y)E [f (S)u

0 (CF (D;S; y))]

E [u0 (CF (D;S; y))]
: (4.17)

Noting that u0 > 0 by our assumption, the �rst order condition (4.16) can be written as

E
�
u0 (CF (D;S; y)) 1fD�yg

�
+ �0D (y)E [f (S)u

0 (CF (D;S; y))]

E [u0 (CF (D;S; y))]
=
s+ p� cerT
s+ p� v : (4.18)

The existence and uniqueness of the optimal order quantity depends on the structure of

h (y). By supposing that h (y) is increasing in y and letting h (0) � bp � h (1), the �rst
order condition in (4.18) is the optimality condition.

Moreover, we can conclude that if h (0) > bp; we have y� = 0 and if h (1) < bp, we
have y� = 1. Furthermore, as h (y) is increasing, the derivative g (y) is nonnegative on
[0; y�) and nonpositive on [y�;1). So, it can be argued that the objective function is in
increasing on [0; y�) and decreasing on [y�;1). The objective function is quasi-concave and
y� satisfying (4.14) is indeed the optimal solution.

In this chapter we consider two special cases. The �rst special case supposes that there

is no hedging opportunity, or � = 0: Therefore, the optimality condition is

E
�
u0 (CF (D; y�)) 1fD�y�g

�
E [u0 (CF (D; y�))]

= bp
which satis�es (3.8). Moreover, the second special case supposes that the utility function is

linear; that is u(x) = a+ bx. The optimality condition becomes

P fD � y�g+ �0D (y�)E [f (S)] = bp
which is the same condition as Okyay et al. [42].

4.1.2 Hedging with Multiple Securities

Now, suppose that there are n derivative securities in the market. Then, the optimization

problem is

min
�
V ar (CF� (D;S; y)) :
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The optimal portfolio in (4.7) can be written as

�� (y) = �C�1� (y) (4.19)

where

Cij = Cov (fi (S) ; fj (S))

and

�i (y) = Cov (fi (S) ; CF (D; y)) :

Then, the optimal portfolio �� (y) is used to maximize the utility of the expected cash

�ow. So, the new optimization problem is

max
y
E
�
u
�
CF��(y) (D;S; y)

��
(4.20)

and the hedged cash �ow can also be represented using

CF��(y) (x; t; y) =

(
CF�(x; t; y) = �

�
cerT � v

�
y + (s� v)x� � (y)TC�1f (t) x � y

CF+(x; t; y) =
�
s+ p� cerT

�
y � px� � (y)TC�1f (t) x � y

where CF�(y; t; y) = CF+(y; t; y) =
�
s� cerT

�
y � � (y)TC�1f (t) : Then, the objective

function can be written as

E
�
u
�
CF��(y) (x; S; y)

��
=

Z y

0
Ex [u (CF�(x; S; y))] gD (x) dx

+

Z 1

y
Ex [u (CF+(x; S; y))] gD (x) dx: (4.21)

Theorem 13 The optimal order quantity y�satis�es(
E
�
u0
�
CF��(y�) (D;S; y

�)
�
1fD�y�g

�
+C�1Cov

�
f (S) ; 1fD>y�g

�
E
�
f (S)u0

�
CF��(y�) (D;S; y

�)
�� )

E
�
u0
�
CF��(y�) (D;S; y�)

�� = bp: (4.22)
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Proof. First, we take the derivative of (4.21) as

d

dy
E
�
u
�
CF��(y) (x; S; y)

��
= �

�
cerT � v

� Z y

0
Ex
�
u0 (CF�(x; S; y))

�
gD (x) dx

+
�
s+ p� cerT

� Z 1

y
Ex
�
u0 (CF+(x; S; y))

�
gD (x) dx

�� (y)TC�1
Z 1

0
Ex
�
f (S)u0 (CF�(x; S; y))

�
gD (x) dx

= �
�
cerT � v

�
E
�
u0
�
CF��(y) (D;S; y)

�
1D�y

�
+
�
s+ p� cerT

�
E
�
u0
�
CF��(y) (D;S; y)

�
1D>y

�
�� (y)TC�1f (S)E

�
u0
�
CF��(y) (D;S; y)

��
(4.23)

where the derivative of � (y) equals

�0 (y) =
d

dy
Cov (f (S) ; CF (D; y)) = (s+ p� v)Cov

�
f (S) ; 1fD>yg

�
: (4.24)

Therefore, by using (4.23) and (4.24), the �rst order condition can be written as

g (y) = E
�
u0
�
CF��(y) (D;S; y)

�� ��
s+ p� cerT

�
� (s+ p� v)h (y)

�
= 0 (4.25)

where

h (y) =

(
E
�
u0
�
CF��(y) (D;S; y)

�
1fD�yg

�
+C�1Cov

�
f (S) ; 1fD>yg

�
E
�
f (S)u0

�
CF��(y) (D;S; y)

�� )
E
�
u0
�
CF��(y) (D;S; y)

�� :

Note that by our assumption u0
�
CF��(y)(D;S; y)

�
> 0 for all y, then the �rst order condition

in (4.25) can be written as(
E
�
u0
�
CF��(y) (D;S; y)

�
1fD�yg

�
+C�1Cov

�
f (S) ; 1fD>yg

�
E
�
f (S)u0

�
CF��(y) (D;S; y)

�� )
E
�
u0
�
CF��(y) (D;S; y)

�� =
s+ p� cerT
s+ p� v : (4.26)

Again, the existence and uniqueness of the optimal order quantity depends on the structure

of h (y). Supposing that h (y) is increasing in y and h (0) � bp � h (1), the �rst order
condition in (4.26) is the optimality condition.
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Again, for the �rst special case, when �� (y) = 0, the optimality condition is

E
�
u0 (CF (D; y�)) 1fD�y�g

�
E [u0 (CF (D; y�))]

= bp:
which clearly satis�es (3.8). And, for the second special case, u(x) = a+ bx, the optimality

condition becomes

P fD � y�g+C�1Cov
�
f (S) ; 1fD>y�g

�
E [f (S)] = bp

which is the same condition as Okyay et al. [42].

In following sections, we add supply uncertainty into our model. Therefore, both demand

and supply increase the uncertainty of the problem. Moreover, the randomness in demand

and supply is correlated with the �nancial markets.

4.2 Newsvendor Model with Random Yield

This section deals with the case when the supply is subject to yield randomness and the

amount received from ordering y units is Uy where 0 � U � 1 has the density function gU
and the conditional density function of D given U = w is gDjw. Then, the unhedged cash

�ow is

CF (X; y) = �
�
cerT � v

�
Uy + (s+ p� v)min fD;Uyg � pD

where X = fD;Ug : Moreover, D and U is correlated with S:

We analyze the model with hedging on a single security or multiple securities, respec-

tively.

4.2.1 Hedging with Only One Security

Suppose that there is only one derivative security in the market where f (S) is the payo¤

of that derivative security and let � denote the amount of that security. First, we want to

solve the following optimization problem

min
�
V ar (CF� (X; S; y))

where X = fD;Ug. The optimal portfolio in (4.5) can be rewritten as

�� (y) = �Cov (f (S) ; CF (D;U; y))
V ar (f (S))
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or more explicitly

�� (y) =
�
cerT � v

�
y�U � (s+ p� v)�D;U (y) + p�D (1) (4.27)

where

�U =
Cov (f (S) ; U)

V ar (f (S))
;

�D;U (y) =
Cov (f (S) ;min fD;Uyg)

V ar (f (S))

and

�D (y) =
Cov (f (S) ;min fD; yg)

V ar (f (S))
:

We then use the optimal asset quantity �� (y) to �nd an optimal order quantity that

maximizes the expected utility of the hedged cash �ow, or

max
y�0

E
�
u
�
CF��(y) (X; S; y)

��
:

For further analysis, we can rede�ne the hedged cash �ow as

CF��(y) (x;w; t; y) =

8>>>>><>>>>>:
CF�(x;w; t; y) = �

�
cerT � v

�
wy + (s� v)x x � wy

+�� (y) f (t)

CF+(x;w; t; y) =
�
s+ p� cerT

�
wy � px x � wy

+�� (y) f (t)

where CF�(wy;w; t; y) = CF+(wy;w; t; y) =
�
s� cerT

�
wy + �� (y) f (t) : Then, the objec-

tive function can be written as

E
�
u
�
CF��(y) (X; S; y)

��
=

Z 1

0

�Z wy

0
Ex;w [u (CF�(x;w; S; y))] gDjw (x) dx

+

Z 1

wy
Ex;w [u (CF+(x;w; S; y))] gDjw (x) dx

�
gU (w)dw

(4.28)

by letting Ex;w [Y ] = E [Y jD = x;U = w] denote a conditional expectation.

Theorem 14 The optimal order quantity y�satis�es

E
�
Uu0 (CF (X; S; y�)) 1fD�Uy�g

�
E [Uu0 (CF (X; S; y�))]

+

 
�0D;U (y

�)�
�
cerT � v

�
(s+ p� v)�U

!
E [f (S)u0 (CF (X; S; y�))]

E [Uu0 (CF (X; S; y�))]
= bp: (4.29)
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Proof. We take the derivative of (4.28) as

d

dy
E
�
u
�
CF��(y) (X; S; y)

��
=

Z 1

0

�Z wy

0

�
�
�
cerT � v

�
Ex;w

�
wu0 (CF�(x;w; S; y))

�
+
d�� (y)

dy
Ex;w

�
f (S)u0 (CF�(x;w; S; y))

��
gDjw (x) dx

�
gU (w)dw

+

Z 1

0

�Z 1

wy

��
s+ p� cerT

�
Ex;w

�
wu0 (CF+(x;w; S; y))

�
+
d�� (y)

dy
Ex;w

�
f (S)u0 (CF+(x;w; S; y))

��
gDjw (x) dx

�
gU (w)dw

(4.30)

where
d�� (y)

dy
=
�
cerT � v

�
�U � (s+ p� v)�0D;U (y) :

The derivative (4.30) can be also written as

d

dy
E
�
u
�
CF��(y) (X; S; y)

��
= �

�
cerT � v

�
E
�
Uu0 (CF (X; S; y)) 1fD�Uyg

�
+
�
s+ p� cerT

�
E
�
Uu0 (CF (X; S; y)) 1fD>Uyg

�
+
��
cerT � v

�
�U

� (s+ p� v)�0D;U (y)
�
E
�
f (S)u0 (CF (X; S; y))

�
:

Then, the �rst order condition becomes

g (y) = (s+ p� v)E
�
Uu0 (CF (X; S; y))

� �s+ p� cerT �
(s+ p� v) � h (y)

!
= 0 (4.31)

where

h (y) =
E
�
Uu0 (CF (X; S; y)) 1fD�Uyg

�
E [Uu0 (CF (X; S; y))]

+

 
�0D;U (y)�

�
cerT � v

�
(s+ p� v)�U

!
E [f (S)u0 (CF (X; S; y))]

E [Uu0 (CF (X; S; y))]
:

Note that u0 > 0 by our assumption and

E
�
Uu0 (CF (X; S; y))

�
> 0:
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So, the �rst order condition in (4.31) is updated as

E
�
Uu0 (CF (X; S; y)) 1fD�Uyg

�
E [Uu0 (CF (X; S; y))]

+

 
�0D;U (y)�

�
cerT � v

�
(s+ p� v)�U

!
E [f (S)u0 (CF (X; S; y))]

E [Uu0 (CF (X; S; y))]

=

�
s+ p� cerT

�
(s+ p� v) : (4.32)

The existence and uniqueness of the optimal order quantity depends on the structure of

h (y). Again, by supposing that h (y) is increasing in y and h (0) � bp � h (1), the �rst
order condition in (4.32) is the optimality condition.

For the �rst special case, � = 0; the �rst order condition is

E
�
Uu0 (CF (X; S; y�)) 1fD�Uy�g

�
E [Uu0 (CF (X; S; y�))]

= bp
which satis�es the optimality condition in (3.8). And for the second special case, u(x) =

a+ bx, the optimality condition is

E
�
U1fD�Uy�g

�
E [U ]

+

 
�0D;U (y

�)�
�
cerT � v

�
(s+ p� v)�U

!
E [f (S)]

E [U ]
= bp

which equals to optimality condition in Okyay et al. [42].

4.2.2 Hedging with Multiple Securities

Now, we assume that there are n �nancial securities in the market. The �rst step of our

solution technique is to solve the optimization problem,

min
�
V ar (CF� (X; S; y))

where X = fD;Ug : The optimal portfolio in (4.7) can be updated as

�� (y) = �C�1� (y) : (4.33)

where

Cij = Cov (fi (S) ; fj (S))
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and

�i (y) = Cov (fi (Si) ; CF (D;U; y)) :

In the second step of our algorithm, the optimal �� (y) is used to maximize the expected

utility of the hedged cash �ow. Then, the optimization problem is

max
y
E
�
u
�
CF��(y) (D;U; S; y)

��
where the hedged cash �ow can be de�ned as

CF��(y) (x;w; t; y) =

8>>>>><>>>>>:
CF�(x;w; t; y) = �

�
cerT � v

�
wy + (s� v)x x � wy

�� (y)TC�1f (t)
CF+(x;w; t; y) =

�
s+ p� cerT

�
wy � px x > wy

�� (y)TC�1f (t)

where CF�(wy;w; t; y) = CF+(wy;w; t; y) =
�
s� cerT

�
wy � � (y)TC�1f (t) : Then, the

objective function is

E
�
u
�
CF��(y) (X; S; y)

��
=

Z 1

0

�Z wy

0
Ex;w [u (CF�)] gDjw (x) dx

�
gU (w)dw

+

Z 1

0

�Z 1

wy
Ex;w [u (CF+)] gDjw (x) dx

�
gU (w)dw

(4.34)

where CF� = CF�(x;w; S; y) and CF+ = CF+(x;w; S; y):

Theorem 15 The optimal order quantity y�satis�es

E
�
Uu0

�
CF��(y�) (X; S; y

�)
�
1fD�wy�g

�
E
�
Uu0

�
CF��(y�) (X; S; y�)

�� +
� (y�)TC�1

(s+ p� v)
E
�
f (S)u0

�
CF��(y�) (X; S; y

�)
��

E
�
Uu0

�
CF��(y�) (X; S; y�)

�� = bp:
(4.35)
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Proof. The derivative of (4.34) is

d

dy
E
�
u
�
CF��(y) (X; S; y)

��
=

Z 1

0

�
�
�
cerT � v

��Z wy

0
Ex;w

�
wu0 (CF�)

�
gDjw (x) dx

�
+
�
s+ p� cerT

��Z 1

wy
Ex;w

�
wu0 (CF+)

�
gDjw (x) dx

�
�� (y)TC�1

�Z 1

0
Ex;w

�
f (S)u0

�
CF��(y)

��
gDjw (x) dx

��
gU (w)dw

= �
�
cerT � v

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD�wyg

�
+
�
s+ p� cerT

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD>wyg

�
�� (y)TC�1E

�
f (S)u0

�
CF��(y) (X; S; y)

��
(4.36)

where CF��(y) = CF��(y)(x;w; S; y) and

� (y) = �
�
cerT � v

�
yCov (f (S) ; U)+(s+ p� v)Cov (f (S) ;min fD;Uyg)�pCov (f (S) ; D) ;

the derivative of which is

�0 (y) = �
�
cerT � v

�
Cov (f (S) ; U) + (s+ p� v)Cov

�
f (S) ; 1fD>Uyg

�
:

Hence, the �rst order condition can be written as

g (y) = � (s+ p� v)E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD�wyg

�
+
�
s+ p� cerT

�
E
�
Uu0

�
CF��(y) (X; S; y)

��
�� (y)TC�1E

�
f (S)u0

�
CF��(y) (X; S; y)

��
= (s+ p� v)E

�
Uu0

�
CF��(y) (X; S; y)

���s+ p� cerT
s+ p� v � h (y)

�
= 0 (4.37)

where

h (y) =
E
�
Uu0 (CF (X; S; y)) 1fD�Uyg

�
E [Uu0 (CF (X; S; y))]

+
� (y)TC�1E [f (S)u0 (CF (X; S; y))]

(s+ p� v)E [Uu0 (CF (X; S; y))] :

Note that u0 > 0 by our assumption and

E
�
Uu0

�
CF��(y) (X; S; y)

��
> 0:
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Then, (4.37) can be written as

E
�
Uu0 (CF (X; S; y)) 1fD�Uyg

�
E [Uu0 (CF (X; S; y))]

+
� (y)TC�1E [f (S)u0 (CF (X; S; y))]

(s+ p� v)E [Uu0 (CF (X; S; y))]

=
s+ p� cerT
s+ p� v : (4.38)

The existence and uniqueness of y� again depends on the structure of h (y) : We suppose

that h (y) is increasing in y and if h (0) � bp � h (1), the �rst order condition in (4.38) is
the optimality condition.

If we consider the �rst special case, the optimality condition is

E
�
Uu0 (CF (X; S; y�)) 1fD�Uy�g

�
E [Uu0 (CF (X; S; y�))]

= bp
which satis�es the optimality condition in (3.8). Else if we consider the second special case,

u(x) = a+ bx, the optimality function becomes as

E
�
U1fD�Uy�g

�
E [U ]

+
� (y�)TC�1E [f (S)]

(s+ p� v)E [U ] = bp
which is the same condition as Okyay et al. [42].

4.3 Newsvendor Model with Random Capacity

In this section we analyze the newsvendor problem when the capacity of supplier is random,

so the amount received from ordering y units is min fK; yg where K is a random variable

with the density function be gK and the conditional density function of D given K = z is

gDjz. Both D and K are correlated with S: The unhedged cash �ow equals

CF (X; y) = �
�
cerT � v

�
min fK; yg+ (s+ p� v)min fD;K; yg � pD (4.39)

where X = fD;Kg :
We again analyze the single security and multiple securities cases in turn.
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4.3.1 Hedging with Only One Security

Again, we suppose that there is only one derivative security with payo¤ f (S) and amount

�. The �rst problem is to �nd the optimal � for a given order quantity y by solving

min
�
V ar (CF� (X; S; y))

where X = fD;Kg : The optimal portfolio in (4.5) can be updated as

�� (y) = �Cov (f (S) ; CF (D;K; y))
V ar (f (S))

or

�� (y) =
�
cerT � v

�
�K (y)� (s+ p� v)�D;K (y) + p�D (1) (4.40)

where

�K (y) =
Cov (f (S) ;min fK; yg)

V ar (f (S))
;

�D;K (y) =
Cov (f (S) ;min fD;K; yg)

V ar (f (S))

and

�D (y) =
Cov (f (S) ;min fD; yg)

V ar (f (S))
:

Then, the optimal �� (y) can be used to maximize the expected utility of hedged cash �ow.

Then, the optimization problem is

max
y
E
�
u
�
CF��(y) (X; S; y)

��
:

We can de�ne the hedged cash �ow as

CF��(y) (x; z; t; y) =

8>>>>>>>>>><>>>>>>>>>>:

CF�(x; z ^ y; t; y) = �
�
cerT � v

�
z ^ y x � z ^ y

+(s� v)x
+�� (y) f (t)

CF+(x; (z ^ y) ; t; y) =
�
s+ p� cerT

�
z ^ y x � z ^ y

�px
+�� (y) f (t)

where

CF�(z ^ y; z ^ y; t; y) = CF+(z ^ y; z ^ y; t; y)

=
�
s� cerT

�
z ^ y + �� (y) f (t) :
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By using this de�nition, we write the objective function as

E
�
u
�
CF��(y) (X; S; y)

��
=

Z y

0
gK(z)dz

�Z z

0
Ex;z [u (CF�(x; z; S; y))] gDjz (x) dx

+

Z 1

z
Ex;z [u (CF+(x; z; S; y))] gDjz (x) dx

�
+

Z 1

y
gK(z)dz

�Z y

0
Ex;z [u (CF�(x; y; S; y))] gDjz (x) dx

+

Z 1

y
Ex;z [u (CF+(x; y; S; y))] gDjz (x) dx

�
(4.41)

where the conditional expectation is Ex;z [Y ] = E [Y jD = x;K = z] :

Theorem 16 The optimal order quantity y�satis�es 
�0D;K (y

�)�
�
cerT � v

�
(s+ p� v)�

0
K (y

�)

!
E [f (S)u0 (CF )]

E
�
u0 (CF ) 1fK>y�g

� + E �u0 (CF ) 1fD�y�;K>y�g�
E
�
u0 (CF ) 1fK>y�g

� = bp
(4.42)

where CF = CF��(y�) (X; S; y
�).

Proof. The �rst derivative of (4.41) is

d

dy
E
�
u
�
CF��(y) (X; S; y)

��
=

d�� (y)

dy

Z 1

0
gK(z)dz

�Z 1

0
Ex;z

�
f (S)u0

�
CF��(y) (x; z; S; y)

��
gDjz (x) dx

�
�
�
cerT � v

� Z 1

y
gK(z)dz

�Z y

0
Ex;z

�
u0 (CF�(x; y; S; y))

�
gDjz (x) dx

�
+
�
s+ p� cerT

� Z 1

y
gK(z)dz

�Z 1

y
Ex;z

�
u0 (CF+(x; y; S; y))

�
gDjz (x) dx

�
=

��
cerT � v

�
�0K (y)� (s+ p� v)�0D;K (y)

�
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
�
�
cerT � v

�
E
�
u0
�
CF��(y) (X; S; y)

�
1fD�y;K>yg

�
+
�
s+ p� cerT

�
E
�
u0
�
CF��(y) (X; S; y)

�
1fD>y;K>yg

�
:

Then, the �rst order condition is

g (y) = (s+ p� v)E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

��s+ p� cerT
s+ p� v � h (y)

�
= 0: (4.43)
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where

h (y) =

 
�0D;K (y)�

�
cerT � v

�
(s+ p� v)�

0
K (y)

!
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

�
+
E
�
u0
�
CF��(y) (X; S; y)

�
1fD�y;K>yg

�
E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

� :

Noting that u0 > 0 and P fK > yg > 0 by our assumption, we observe that

E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

�
> 0

and the �rst order condition (4.43) can be written as 
�0D;K (y)�

�
cerT � v

�
(s+ p� v)�

0
K (y)

!
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

�
+
E
�
u0
�
CF��(y) (X; S; y)

�
1fD�y;K>yg

�
E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

�
=

s+ p� cerT
s+ p� v : (4.44)

Again, the existence and uniqueness of the optimal order quantity y� depends on the structure

of h (y). By supposing that h (y) is increasing in y, if h (0) � bp � h (1), the �rst order
condition in (4.44) is the optimality condition.

By considering the �rst special case, the optimality condition becomes

E
�
u0 (CF ) 1fD�y�;K>y�g

�
E
�
u0 (CF ) 1fK>y�g

� = bp
which satis�es the optimality condition in (3.8). Moreover, by considering the second special

case, the optimality condition is

P fD � y�jK > y�g+
 
�0D;K (y

�)�
�
cerT � v

�
(s+ p� v)�

0
K (y

�)

!
E [f (S)]

P fK > y�g = bp
which is the same condition as Okyay et al. [42].

4.3.2 Hedging with Multiple Securities

We further suppose that there are n derivative securities in the market. The �rst optimiza-

tion problem is to �nd the optimal � = (�1; �2; � � � ; �n) to minimize the variance of the
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total hedged cash �ow for a given order quantity y, or

min
�
V ar (CF� (X; S; y))

where X = fD;Kg : The optimal portfolio in (4.7) can be written as

�� (y) = �C�1� (y) (4.45)

where

Cij = Cov (fi (S) ; fj (S))

and

�i (y) = Cov (fi (Si) ; CF (D;K; y))

that denotes the covariance between the �nancial securities and the cash �ow.

Then, as a second step, by using the optimal portfolio �� (y) the optimization problem

is

max
y
E
�
u
�
CF��(y) (X; S; y)

��
where the hedged cash �ow can be written as

CF��(y) (x; z ^ y; t; y) =

8>>>>><>>>>>:
CF�(x; z ^ y; S; y) = �

�
cerT � v

�
z ^ y + (s� v)x x � z ^ y

�� (y)TC�1f (t)
CF+(x; z ^ y; S; y) =

�
s+ p� cerT

�
z ^ y � px x � z ^ y

�� (y)TC�1f (t)

where z^y = min fz; yg and it follows that CF�(z^y; z^y; S; y) = CF+(z^y; z^y; S; y) =�
s� cerT

�
z ^ y � � (y)TC�1f (S) : Then, the objective function can be written as

E
�
u
�
CF��(y) (X; S; y)

��
=

Z y

0
gK(z)dz

�Z z

0
Ex;z [u (CF�(x; z; S; y))] gDjz (x) dx

+

Z 1

z
Ex;z [u (CF+(x; z; S; y))] gDjz (x) dx

�
+

Z 1

y
gK(z)dz

�Z y

0
Ex;z [u (CF�(x; y; S; y))] gDjz (x) dx

+

Z 1

y
Ex;z [u (CF+(x; y; S; y))] gDjz (x) dx

�
:

(4.46)
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Theorem 17 The optimal order quantity y�satis�es

� (y�)TC�1

(s+ p� v)
E
�
f (S)u0

�
CF��(y�) (X; S; y

�)
��

E
�
u0
�
CF��(y�) (X; S; y�)

�
1fK>y�g

�
+
E
�
u0
�
CF��(y�) (X; S; y

�)
�
1fD�y�;K>y�g

�
E
�
u0
�
CF��(y�) (X; S; y�)

�
1fK>y�g

� = bp: (4.47)

Proof. The �rst derivative of (4.46) is

d

dy
E
�
u
�
CF��(y) (X; S; y)

��
= �� (y)TC�1

Z 1

0
gK(z)dz

�Z 1

0
Ex;z

�
f (S)u0

�
CF��(y) (x; z ^ y; S; y)

��
gDjz (x) dx

�
+

Z 1

y
gK(z)dz

�
�
�
cerT � v

� Z y

0
Ex;z

�
u0 (CF�(x; y; S; y))

�
gDjz (x) dx

+
�
s+ p� cerT

� Z 1

y
Ex;z

�
u0 (CF+(x; y; S; y))

�
gDjz (x) dx

�
= �� (y)TC�1E

�
f (S)u0

�
CF��(y) (X; S; y)

��
�
�
cerT � v

�
E
�
u0
�
CF��(y) (X; S; y)

�
1fD�y;K>yg

�
+
�
s+ p� cerT

�
E
�
u0
�
CF��(y) (X; S; y)

�
1fD>y;K>yg

�
:

Then, the �rst order condition is obtained as

g (y) = (s+ p� v)E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

��s+ p� cerT
s+ p� v � h (y)

�
= 0 (4.48)

where

h (y) =
� (y)TC�1

s+ p� v
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

�+E �u0 �CF��(y) (X; S; y)� 1fD�y;K>yg�
E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

� :

Noting that u0 > 0 and P fK > yg > 0 by our assumption, we observe that

E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

�
> 0:

Then, (4.48) can be written as

� (y)TC�1

s+ p� v
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

�
+
E
�
u0
�
CF��(y) (X; S; y)

�
1fD�y;K>yg

�
E
�
u0
�
CF��(y) (X; S; y)

�
1fK>yg

�
=

s+ p� cerT
s+ p� v : (4.49)
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Again, the existence and uniqueness of the optimal order quantity y� depends on the structure

of h (y). By supposing that h (y) is increasing in y and h (0) � bp � h (1) ; (4.49) gives the
optimality condition.

For the �rst special case, the optimality condition is

E
�
u0 (CF (X; S; y�)) 1fD�y�;K>y�g

�
E
�
u0 (CF (X; S; y�)) 1fK>y�g

� = bp
which satis�es the optimality condition (3.8). Moreover, for the second special case, the

optimality condition is

P fD � y�jK > y�g+ C�1�0 (y�)E [f (S)]

(s+ p� v)P fK > y�g = bp
which satis�es the condition in Okyay et al. [42].

4.4 Newsvendor Model with Random Yield and Capacity

This section deals with the newsvendor problem when supply randomness is resulted from

both yield and capacity. So, the amount received from ordering y unit is U min fK; yg
where U and K are random variables with density functions gU (w) and gK (z) : Moreover,

we suppose that D;U and K are not necessarily independent and have a joint distribution

function, GDKU (x; z; w) = P fD � x;K � z; U � wg : The conditional distribution func-
tion of D for given K = z and U = w is gDjzw and the conditional distribution function of

K for a given U = w is gKjw. We also suppose that D; U and K are correlated with S: The

unhedged cash �ow equals to

CF (X; y) = �
�
cerT � v

�
U min fK; yg+ (s+ p� v)min fD;UK;Uyg � pD (4.50)

where X = (D;U;K).

4.4.1 Hedging with Only One Security

Suppose that there is only one derivative security in the market , so the �rst optimization

problem is

min
�
V ar (CF� (X; S; y))
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where X = (D;U;K). The optimal asset quantity in (4.5) can be written as

�� (y) = �Cov (f (S) ; CF (D;U;K; y))
V ar (f (S))

or more explicitly

�� (y) =
�
cerT � v

�
�K;U (y)� (s+ p� v)�D;K;U (y) + p�D (1) (4.51)

where

�K;U (y) =
Cov (f (S) ; U min fK; yg)

V ar (f (S))
;

�D;K;U (y) =
Cov (f (S) ;min fD;UK;Uyg)

V ar (f (S))

and

�D (y) =
Cov (f (S) ;min fD; yg)

V ar (f (S))
:

Then, by using the optimal �� (y), the optimization problem is

max
y
E
�
u
�
CF��(y) (X; S; y)

��
:

The hedged cash �ow can also be represented as

CF (x;w; z ^ y; t; y) =

8>>>>>>>>>><>>>>>>>>>>:

CF� (x;w; z ^ y; t; y) = �
�
cerT � v

�
w (z ^ y) x � w (z ^ y)

+ (s� v)x
+�� (y) f (t)

CF+ (x;w; z ^ y; t; y) =
�
s+ p� cerT

�
w (z ^ y) x � w (z ^ y)

�px
+�� (y) f (t)

where

CF� (w (z ^ y) ; w; z ^ y; t; y) = CF+ (w (z ^ y) ; w; z ^ y; t; y)

=
�
s� cerT

�
w (z ^ y) + �� (y) f (t) :
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Then, the objective function is

E
�
u
�
CF��(y) (X; S; y)

��
=

Z 1

0
gU (w) dw

�Z y

0
gKjw (z) dz

�Z wz

0
Ex;z;w [u (CF� (x;w; z; S; y))] gDjzw (x) dx

+

Z 1

wz
Ex;z;w [u (CF+ (x;w; z; S; y))] gDjzw (x) dx

�
+

Z 1

y
gKjw (z) dz

�Z wy

0
Ex;z;w [u (CF� (x;w; y; S; y))] gDjzw (x) dx

+

Z 1

wy
Ex;z;w [u (CF+ (x;w; y; S; y))] gDjzw (x) dx

��
(4.52)

where Ex;z;w [Y ] = E [Y jD = x;K = z; U = w] denote a conditional expectation.

Theorem 18 The optimal order quantity y�satis�es 
�0D;K;U (y

�)�
�
cerT � v

�
(s+ p� v)�

0
K;U (y

�)

!
E
�
f (S)u0

�
CF��(y�) (X; S; y

�)
��

E
�
Uu0

�
CF��(y�) (X; S; y�)

�
1fK>y�g

�
+
E
�
Uu0

�
CF��(y�) (X; S; y

�)
�
1fD�Uy�;K>y�g

�
E
�
Uu0

�
CF��(y�) (X; S; y�)

�
1fK>y�g

�
= bp: (4.53)

Proof. The derivative of (4.52) with respect to y is

d

dy
E
�
u
�
CF��(y) (X; S; y)

��
=

d�� (y)

dy

Z 1

0
gU (w) dw

�Z 1

0
gKjw (z) dz

�Z 1

0
E1gDjzw (x) dx

��
�
�
cerT � v

� Z 1

0
gU (w) dw

�Z 1

y
gKjw (z) dz

�Z wy

0
E2gDjzw (x) dx

��
+
�
s+ p� cerT

� Z 1

0
gU (w) dw

�Z 1

y
gKjw (z) dz

�Z 1

wy
E3gDjzw (x) dx

��
=

��
cerT � v

�
�0K;U (y)� (s+ p� v)�0D;K;U (y)

�
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
�
�
cerT � v

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD�Uy;K>yg

�
+
�
s+ p� cerT

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD>Uy;K>yg

�
where

E1 = Ex;z;w
�
f (S)u0 (CF (x;w;min fz; yg ; S; y))

�
;

E2 = Ex;z;w
�
wu0 (CF� (x;w; y; S; y))

�



Chapter 4: Utility-Based Models with Hedging

76

and

E3 = Ex;z;w
�
wu0 (CF+ (x;w; y; S; y))

�
:

Then, the �rst order condition can be written as

g (y) = (s+ p� v)E
�
Uu0

�
CF��(y)

�
1fK>yg

� �s+ p� cerT �
(s+ p� v) � h (y)

!
= 0 (4.54)

where

h (y) =

 
�0D;K;U (y)�

�
cerT � v

�
(s+ p� v)�

0
K;U (y)

!
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
+
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD�Uy;K>yg

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
and CF��(y) = CF��(y) (X; S; y) : Note that u0 > 0 and P fK > yg > 0 by our assumption,
we observe that

E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
> 0:

So, the �rst order condition can be written as 
�0D;K;U (y)�

�
cerT � v

�
(s+ p� v)�

0
K;U (y)

!
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
+
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD�Uy;K>yg

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
=

�
s+ p� cerT

�
(s+ p� v) : (4.55)

Similarly, the existence and uniqueness of the optimal order quantity depends on the struc-

ture of h (y). By supposing that h (y) is increasing in y and h (0) � bp � h (1) ; (4.55) gives
the optimality condition.

The �rst special case results with an optimality condition as

E
�
Uu0

�
CF��(y�) (X; S; y

�)
�
1fD�Uy�;K>y�g

�
E
�
Uu0

�
CF��(y�) (X; S; y�)

�
1fK>y�g

� = bp
which satis�es the optimality condition in (3.8). For the second special case, u(x) = a+ bx;

the optimality function becomes as

E
�
U1fK>y�;D�Uy�g

�
E
�
U1fK>y�g

� +

 
�0D;K;U (y

�)�
�
cerT � v

�
(s+ p� v)�

0
K;U (y

�)

!
E [f (S)]

E
�
U1fK>yg

� = bp
which is the same condition as Okyay et al. [42].



Chapter 4: Utility-Based Models with Hedging

77

4.4.2 Hedging with Multiple Securities

Now, suppose that there are n derivative securities in the market. We begin with, the

optimization problem,

min
�
V ar (CF� (X; S; y))

where X = (D;U;K). The optimal asset quantity in (4.7) can be updated as

�� (y) = �C�1� (y) (4.56)

where

Cij = Cov (fi (S) ; fj (S))

and

�i (y) = Cov (fi (Si) ; CF (D;K;U; y))

that denotes the covariance between the �nancial securities and the cash �ow.

Then, the optimal �� (y) is used to maximize the utility of expected hedged cash �ow.

Then, the optimization problem is

max
y
E
�
u
�
CF��(y) (X; S; y)

��
where the hedged cash �ow is

CF��(y) (X; S; y) = �
�
cerT � v

�
U min fK; yg+ (s+ p� v)min fD;UK;Uyg

�pD +�� (y) f (S) :

We de�ne the hedged cash �ow as

CF (x; z ^ y; w; t; y) =

8>>>>>>>>>><>>>>>>>>>>:

CF� (x; z ^ y; w; t; y) = �
�
cerT � v

�
w (z ^ y) x � w (z ^ y)

+ (s� v)x
�� (y)TC�1f (t)

CF+ (x; z ^ y; w; t; y) =
�
s+ p� cerT

�
w (z ^ y) x � w (z ^ y)

�px
�� (y)TC�1f (t)

where

CF� (w (z ^ y) ; z ^ y; w; t; y) = CF+ (w (z ^ y) ; z ^ y; w; t; y)

=
�
s� cerT

�
w (z ^ y)� � (y)TC�1f (t) :
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Then, we can write the objective function as

E
�
u
�
CF��(y) (X; S; y)

��
=

Z 1

0
gU (w) dw

�Z y

0
gKjw (z) dz

�Z wz

0
Ex;z;w [u (CF� (x; z; w; S; y))] gDjzw (x) dx

+

Z 1

wz
Ex;z;w [u (CF+ (x; z; w; S; y))] gDjzw (x) dx

��
+

Z 1

0
g (w) dw

�Z 1

y
gKjw (z) dz

�Z wy

0
Ex;z;w [u (CF� (x; y; w; S; y))] gDjzw (x) dx

+

Z 1

wy
Ex;z;w [u (CF+ (x; y; w; S; y))] gDjzw (x) dx

��
:

(4.57)

Theorem 19 The optimal order quantity y�satis�es

� (y�)TC�1

(s+ p� v)
E
�
f (S)u0
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CF��(y�) (X; S; y

�)
��

E
�
Uu0

�
CF��(y�) (X; S; y�)
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Uu0
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�
1fD�Uy�;K>y�g

�
E
�
Uu0

�
CF��(y�) (X; S; y)

�
1fK>y�g

� = bp: (4.58)

Proof. The �rst derivative of (4.57) is

d

dy
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�
u
�
CF��(y) (X; S; y)

��
=

Z 1

0
gU (w) dw

�Z y
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gKjw (z) dz

�Z wz

0
E1gDjzw (x) dx+

Z 1

wz
E2gDjzw (x) dx

�
+
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�Z wy
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��
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�
CF��(y) (X; S; y)

��
�
�
cerT � v

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD�Uy;K>yg

�
+
�
s+ p� cerT

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD>Uy;K>yg

�
where

E1 = Ex;z;w

h�
�� (y)TC�1f (S)

�
u0 (CF� (x; z; w; S; y))

i
;

E2 = Ex;z;w

h�
�� (y)TC�1f (S)

�
u0 (CF+ (x; z; w; S; y))

i
;

E3 = Ex;z;w

h�
�
�
cerT � v

�
w � � (y)TC�1f (S)

�
u0 (CF� (x; z; w; S; y))

i
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and

E4 = Ex;z;w

h��
s+ p� cerT

�
w � � (y)TC�1f (S)

�
u0 (CF+ (x; z; w; S; y))

i
:

Then, the �rst order condition can be written as

g (y) = (s+ p� v)E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

��s+ p� cerT
s+ p� v � h (y)

�
(4.59)

where

h (y) =
� (y)TC�1

(s+ p� v)
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
+
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD�Uy;K>yg

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

� :

Note that u0
�
CF��(y) (X; S; y)

�
> 0 and P fK > yg > 0 by our assumption, we observe that

E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
> 0

and the �rst order condition is updated as

� (y)TC�1

(s+ p� v)
E
�
f (S)u0

�
CF��(y) (X; S; y)

��
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
+
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fD�Uy;K>yg

�
E
�
Uu0

�
CF��(y) (X; S; y)

�
1fK>yg

�
=

s+ p� cerT
s+ p� v : (4.60)

The existence and uniqueness of the optimal order quantity depends on the structure of

h (y) ; the same as before. We suppose that h (y) is increasing in y. If h (0) � bp � h (1) ;
(4.60) gives the optimality condition.

For the �rst special case, the optimality condition can be written as

E
�
Uu0 (CF (X; S; y�)) 1fD�Uy�;K>y�g

�
E
�
Uu0 (CF (X; S; y�)) 1fK>y�g

� = bp
which clearly satis�es (3.8). For the second special case, the optimality function becomes

E
�
U1fD�Uy�;K>y�g

�
E
�
U1fK>y�g

� +
� (y�)TC�1E [f (S)]

(s+ p� v)E
�
U1fK>y�g

� = bp
which is the same condition as Okyay et al. [42].
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Chapter 5

NUMERICAL ILLUSTRATIONS

Up to now, we discuss the newsvendor problem within expected utility maximization

framework. In Chapter 3, we analyze the newsvendor problem when there are risks associ-

ated with the uncertainty in demand as well as supply. Then, in Chapter 4, we consider the

same problem when the randomness in demand and supply is correlated with the �nancial

markets.

In this chapter, we demonstrate our results from Chapter 3 and Chapter 4 by using

some illustrative numerical examples. The aim of this chapter is to investigate the e¤ects of

parameters on the decision variables. First, we consider a simple example to analyze how

some important parameters a¤ect the optimal order quantity. Then, we use the Monte Carlo

method to simulate our models and comment on how utility theory and hedging in�uences

the optimal decisions.

5.1 A Simple Example

In this section, to see the e¤ects of some parameters on the optimal order quantity we

consider an example similar to the one in Eeckhoudt et al. [18]. The aim of the newsvendor

is to maximize the expected utility of the cash �ow. Let�s de�ne the utility function as

u (x) = �e�
1
�
x where � represents the newsvendor�s degree of risk tolerance. Suppose that

the newsvendor has no initial wealth, so that z0 = 0. Moreover, no salvage or extra buying

options exist, so that v = 0 and p = 0. He purchases each item with purchase cost c and

sells it at sale price s. We �rst analyze the problem when there is no hedging option, and

then when there is hedging opportunity.

5.1.1 Newsvendor Model without Hedging

For this simple example, we suppose that there is no hedging option. First, we suppose that

the randomness only results from the demand. Secondly, we consider the case when the
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supply yield is also random. Thirdly, the supply capacity is random. Finally, we consider

the case when both yield and capacity are random.

Random Demand

We �rst consider the case when the randomness results only from demand. A similar

example is also discussed in Eeckhoudt et al. [18] and this part is only review of it. Let

demand take two values so that D 2 f0;Mg, where the probability that demand is zero is
p1 and the probability that demand is M is p2. The optimality condition for the standard

newsvendor model in (3.8) can be updated for our example as

h (y�) =
E
�
u0 (CF (D; y�)) 1fD�y�g

�
E [u0 (CF (D; y�))]

=
s� c
s

= bp
where the cash �ow is

CF (D; y�) = �cy� + smin fD; y�g :

More explicitly, we can write

h (y) =

8<:
p1

p1+p2e
� 1
�
sy

0 � y < M

1 y �M
:

It is obvious that h (y) is increasing in y: If h (0) < bp < h (M) ; then there exists a unique
y� that satis�es the optimality condition. However, if h (0) � bp; we have y� = 0; and if

h (M�) � bp; we have y� =M: Therefore the optimal order quantity is
y� =

8>>>><>>>>:
0 p2 � c

s
�
s ln

�
p2
p1

�
s�c
c

��
c
s < p2 <

c

c+(s�c)e�
1
�
sM

M p2 � c

c+(s�c)e�
1
�
sM

: (5.1)

This characterization of the order quantity depends on the probability of demand. If

p2 is less than or equal to c=s, the decision maker orders nothing. If p2 is larger than c=s

and less than c=
�
c+ (s� c) e�

1
�
sM
�
; the decision maker orders (�=s) ln

�
p2
p1

�
s�c
c

��
units.

If p2 is larger than or equal to c=
�
c+ (s� c) e�

1
�
sM
�
; the decision maker orders M units.

Moreover, we can also conclude that the optimal order quantity is linear in � while p2 is less

than or equal to c=
�
c+ (s� c) e�

1
�
sM
�
and greater than c=s: We observe that the optimal
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order quantity increases up to M as � increases and the decision maker orders at most M

units which is logical because the demand can be at most M .

Thereafter, we update this example for the newsvendor model with random supply,

which has not been considered before. The following analyses, therefore, are new.

Random Yield

Secondly, we suppose that beyond demand randomness, supply randomness exists in yield.

That is, when y is ordered, Uy is received. For our example, in addition to demand, U also

takes two values U 2 f0; Ng where 0 < N � 1: Moreover, U and D have a joint probability

mass function (p.m.f). The joint p.m.f is

D = 0 and U = 0 with probability p1

D = 0 and U = N with probability p2

D =M and U = 0 with probability p3

D =M and U = N with probability p4

:

For this example, the optimality condition in (3.33) becomes

h (y�) =
E
�
Uu0 (CF (D;U; y�)) 1fD�Uy�g

�
E [Uu0 (CF (D;U; y�))]

=
s� c
s

= bp
where the cash �ow can be written as

CF (D;U; y�) = �cUy� + smin fD;Uy�g :

Using the discrete probability distribution, we can write

h (y) =

8<:
p2

p2+p4e
� 1
�
sNy

0 � y < M
N

1 y � M
N

:

Again, it is obvious that h (y) is increasing in y: If h (0) < bp < h
�
M
N

�
;then there exists a

unique y� that satis�es the optimality condition. However, if h (0) � bp; we have y� = 0; and
if h

�
M
N �

�
� bp; we have y� = M

N : The optimal order quantity can be characterized as

y� =

8>>>><>>>>:
0 p4

p2+p4
� c

s
�
Ns ln

�
p4
p2

�
s�c
c

��
c
s <

p4
p2+p4

< c

c+(s�c)e�
1
�
sM

M
N

p4
p2+p4

� c

c+(s�c)e�
1
�
sM

: (5.2)
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It is clear from (5.2) that the optimal order quantity depends on probabilities p2 and p4.

If

P fD =M jU = Ng = p4
p2 + p4

� c

s

the decision maker orders nothing. Else if

P fD =M jU = Ng � c

c+ (s� c) e�
1
�
sM

he orders M=N units. In other cases, the decision maker orders (�=Ns) ln
�
p4
p2

�
s�c
c

��
units.

We observe that the optimal order quantity is linear in � while P fD =M jU = Ng is less
than c=

�
c+ (s� c) e�

1
�
sM
�
and greater than c=s: The optimal order quantity increases up

to M=N units as � increases. We also observe that the decision maker orders at most M=N

units which is again logical.

Random Capacity

Thirdly, we suppose that the capacity of the supplier is also random. In other words, when

y is ordered, min fK; yg is received. In addition to demand, we also suppose that capacity
takes two values, K 2 f0;Mg for computational simplicity. Moreover, K and D have a

joint distribution function given by

D = 0 and K = 0 with probability p1

D = 0 and K =M with probability p2

D =M and K = 0 with probability p3

D =M and K =M with probability p4

:

The optimality condition for the newsvendor problem with random capacity in (3.56)

can be written as

h (y�) =
E
�
u0 (CF (D;K; y�)) 1fD�y�;K>y�g

�
E
�
u0 (CF (D;K; y�)) 1fK>y�g

� =
s� c
s

= bp
where the cash �ow is

CF (D;K; y�) = �cmin fK; y�g+ smin fD;K; y�g :

Using the discrete probability distribution, we can write

h (y) =

8<:
p2

p2+p4e
� 1
�
sy

0 � y < M

1 y �M
:
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It is obvious that h (y) is increasing in y: If h (0) < bp < h (M) ; then there exists a unique
y� that satis�es the optimality condition. However, if h (0) � bp; we have y� = 0 and if

h (M�) � bp; we have y� =M: Therefore the optimal order quantity is
y� =

8>>>><>>>>:
0 p4

p2+p4
� c

s
�
s ln

�
p4
p2

�
s�c
c

��
c
s <

p4
p4+p2

< c

c+(s�c)e�
1
�
sM

M p4
p2+p4

� c

c+(s�c)e�
1
�
sM

: (5.3)

The characterization of the optimal order quantity depends on the probability

P fD =M jK =Mg = p4
p4 + p2

:

Moreover, the same remarks for random yield are also valid for random capacity. The only

di¤erence is that the decision maker orders at most M units.

Random Yield and Capacity

Finally, we suppose that the randomness results from random demand, random yield and

random capacity. The quantity received from ordering y unit is U min fD;Kg : All of them
take two values, D 2 f0;Mg, U 2 f0; Ng and K 2 f0;Mg. The joint discrete probability
distribution function is

D = 0; U = 0;K = 0 with probability p1

D = 0; U = 0;K =M with probability p2

D = 0; U = N;K = 0 with probability p3

D = 0; U = N;K =M with probability p4

D =M;U = 0;K = 0 with probability p5

D =M;U = 0;K =M with probability p6

D =M;U = N;K = 0 with probability p7

D =M;U = N;K =M with probability p8

:

Therefore, the optimality condition for this example is

h (y�) =
E
�
Uu0 (CF (D;K;U; y�)) 1fD�Uy�;K>y�g

�
E
�
Uu0 (CF (D;K;U; y�)) 1fK>y�g

� = bp
where

CF (D;K;U; y�) = �cU min fK; y�g+ smin fD;UK;Uy�g :
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It can be more explicitly written as

h (y) =

8<:
p4

p4+p8e
� 1
�
sNy

0 � y < M
N

1 y � M
N

:

Again, it is obvious that h (y) is increasing in y: If h (0) < bp < h �MN � ; then there exists a
unique y� that satis�es the optimality condition. However, if h (0) � bp; we have y� = 0 and
if h

�
M
N �

�
� bp; we have y� =M: Therefore the optimal order quantity can be written as

y� =

8>>>><>>>>:
0 p8

p4+p8
� c

s
�
Ns ln

�
p8
p4

�
s�c
c

��
c
s <

p8
p4+p8

< c

c+(s�c)e�
1
�
sM

M
N

p8
p4+p8

� c

c+(s�c)e�
1
�
sM

: (5.4)

We can also make the same remarks for this optimal order quantity characterization.

The optimal order quantity depends on the probability

P fD =M jU = N;K =Mg = p8
p4 + p8

and linearly increases up to M=N as � increases.

We will now discuss all of the results obtained up to this point with a numerically

illustrative example. We suppose that M is 100 and N is 0:5: Moreover, the probabilities

for a standard model, model with random yield, model with random capacity, and model

with random yield and capacity are respectively

p1 = [0:25; 0:75] ;

p2 = [0:10; 0:15; 0:35; 0:40] ;

p3 = [0:09; 0:16; 0:15; 0:60] ;

p4 = [0:01; 0:09; 0:05; 0:10; 0:10; 0:25; 0:10; 0:30] :

First we want to analyze the e¤ect of the risk-tolerance parameter. Suppose that the

decision maker sells newspapers at s = 28 TL and buys at c = 20 TL. For each problem,

we show that the optimal order quantity linearly increases up to a maximum value ymax

under some condition depending on the probabilities. Now, we rede�ne these conditions

depending on the risk tolerance values. Then, we obtain a critical value of risk tolerance b�
that de�nes the optimal order quantity as

y� =

(
C� � < b�
ymax � � b�
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where C is the slope. For the risk tolerance values greater than b�; the optimal order quantity
takes the largest value ymax that it can take. For example, when supply randomness results

from both random yield and capacity, the slope is

C =
ln
�
p8
p4

�
s�c
c

��
Ns

= 0:01302

and while the risk tolerance is less than or equal to

b� = sM

ln
�
p8
p4

�
s�c
c

�� = 15357:48
the optimal order quantity is linear. When the risk tolerance value is larger than b�; the
optimal order quantity equals

ymax =
M

N
= 200:

Table 5.1 summarizes the values of C; b� and ymax for all cases where Model 1-4 represent
Standard, Random Yield, Random Capacity and Random Yield and Capacity models, re-

spectively. Note that for all models, the order quantity increases as risk-tolerance increases.

Model 1 Model 2 Model 3 Model 4

C 0.00651 0.00461 0.01448 0.01302b� 15357.48 43384.94 6905.65 15357.48

ymax 100 200 100 200

Table 5.1: The slope, the critical risk-tolerance level, and the maximum order quantity

Secondly, we analyze the e¤ect of the sale price on the optimal order quantity. We

suppose that � = 1000 and c = 20 TL: Figure 5.1 demonstrates the optimal order quantities

for di¤erent sales price values from 20 to 100 TL. We can conclude that as the sales price

increases the optimal order quantity rapidly increases up to a level and then slowly decreases.

As we state before, the e¤ect of sale price is not monotone.

Finally, we investigate the e¤ect of c on the optimal order quantity. We suppose that

� = 1000 and s = 28 TL: For order cost values from 1 to 25 TL; Figure 5.2 depicts the

optimal order quantity values. We observe that the order quantity decreases as order cost

increases. Up to a low c value, the decision maker orders as much as he can. Moreover,

after some large value of c, the decision maker orders nothing.
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Figure 5.1: The E¤ect of Sales Price on the Optimal Order Quantity

Up to this point, we analyzed the newsvendor model without the hedging opportunity

by using a simple example. Now, we want to replicate the same example for the newsvendor

model with �nancial hedging opportunity.

5.1.2 Newsvendor Model with Financial Hedging

Now, we suppose that the randomness in demand and supply is correlated with the �nancial

markets. First, we suppose that the randomness only results from the demand. Then, we

consider the situations where the supply is also random.

Random Demand

For our example, both demand and f (S) take two values, D 2 f0;Mg and f (S) 2 f�L;Lg :
We suppose that f (S) is either �L or L for computational simplicity. They have a joint
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Figure 5.2: The E¤ect of Order Cost on the Optimal Order Quantity

distribution function

f (S) = �L; D = 0 with probability p1

f (S) = �L; D =M with probability p2

f (S) = L; D = 0 with probability p3

f (S) = L; D =M with probability p4

:

To make sure that the expected �nancial gain is zero, we suppose that

E [f (S)] = � (p1 + p2)L+ (p3 + p4)L = 0 (5.5)

so that

V ar (f (S)) = L2: (5.6)

We always assume (5.5) and (5.6) in the remainder of this section. The optimal asset

quantity for a single asset with random demand in (4.9) can be updated for this example as

�� (y) = �s�D (y)
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where

�D (y) =
Cov (f (S) ;min fD; yg)

V ar (f (S))
:

It can be easily calculated that

Cov (f (S) ;min fD; yg) = E [f (S)min fD; yg]� E [f (S)]E [min fD; yg]

= E [f (S)min fD; yg]

= p1 (�Lmin f0; yg) + p2 (�Lmin fM;yg)

+p3 (Lmin f0; yg) + p4 (Lmin fM;yg)

= (p4 � p2)Ly:

Hence, the optimal asset quantity equals

�� (y) = �s(p4 � p2)Ly
L2

= �s(p4 � p2)
L

y:

We observe that the sign of the optimal asset quantity depends on the sign of the (p4 � p2) :
We know that

Cov (f (S) ; D) = E [f (S)D]� E [f (S)]E [D]

= E [f (S)D]

= (p4 � p2)LM:

If (p4 � p2) is positive, f (S) and D are positively correlated and if (p4 � p2) is negative,
f (S) and D are negatively correlated. Therefore, we can conclude that if f (S)and D are

positively correlated, the sign of the optimal asset quantity is negative and then the optimal

decision is short-selling. If f (S)and D are negatively correlated, the sign of the optimal

asset quantity is positive and then the optimal decision is buying.

The optimality condition in (4.14) is also updated as

E
�
u0 (CF (D;S; y�)) 1fD�y�g

�
+ �0D (y

�)E [f (S)u0 (CF (D;S; y�))]

E [u0 (CF (D;S; y�))]
=
s� c
s
:

It is clear that

�0D (y) =
(p4 � p2)

L

and the cash �ow is

CF��(y) (D;S; y
�) = �cy� + smin fD; y�g+ �� (y) f (S)

= �cy� + smin fD; y�g � s(p4 � p2)
L

y�f (S) :
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As the utility function is u (x) = �e�
1
�
x, the optimality condition can be updated as

((p2 � p4) s+ c) p1
�
e
� 1
�
(p4�p2)sy�

�
+((p2 � p4 � 1) s+ c) p2

�
e
� 1
�
(p4�p2+1)sy�

�
+((p4 � p2) s+ c) p3

�
e
� 1
�
(p2�p4)sy�

�
+((p4 � p2 � 1) s+ c) p4

�
e
� 1
�
(p2�p4+1)sy�

�
= 0: (5.7)

By letting C� = y�=�; (5.7) becomes

a1e
�b1C� + a2e

�b2C� + a3e
�b3C� + a4e

�b4C� = 0 (5.8)

where a1 = ((p2 � p4) s+ c) p1; a2 = ((p2 � p4 � 1) s+ c) p2; a3 = ((p4 � p2) s+ c) p3;
a4 = ((p4 � p2 � 1) s+ c) p4; b1 = (p4 � p2) s; b2 = (p4 � p2 + 1) s; b3 = (p2 � p4) s and
b4 = (p2 � p4 + 1) s: We can easily conclude that if there exists a solution to (5.8), it is
independent of �: Then, the optimal order quantity y� is linear in �: To analyze the e¤ect

of the risk-tolerance parameter, we solve it for a speci�c example. We assume that the

newsvendor sells at s = 28 TL and buys at c = 20 TL: Moreover, the probabilities are

p = [0:15; 0:35; 0:10; 0:40] : Let M be 100; then the optimality condition (5.8) becomes

2:79e�1:4C
� � 3:29e�29:4C� + 2:14e1:4C� � 2:64e�26:6C� = 0: (5.9)

Multiplying both sides of (5.9) by e�1:4C
�
; we obtain

2:79e�2:8C
� � 3:29e�30:8C� � 2:64e�28C� + 2:14 = 0:

Moreover, by letting x = e�2:8C
�
, the optimality condition is

r (x) = 2:79x� 3:29x11 � 2:64x10 + 2:14 = 0

where r (x) is a polynomial and the problem is to �nd the root of r:

Note that

r0 (x) = 2:79� 36:19x10 � 26:4x9

and

r00 (x) = �361:9x9 � 237:6x8 � 0

for x � 0: Therefore, r is concave. Since

r (0) = 2:14 > 0
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and

r0 (0) = 2:79 > 0

there may exist only one positive root x� that satis�es r (x�) = 0: By using solve function

of Scienti�c Workplace we found x� 0:982 and so C� = 0:0066: Therefore, we observe that

the optimal order quantity equals

y� (�) = 0:0066�: (5.10)

The optimal order quantity is clearly linear in �:We can conclude that as the risk tolerance

parameter increases, the optimal order quantity increases.

Random Yield

Now, we suppose that there is supply randomness in yield. For our example, demand,

f (S) and yield all take two possible values, D 2 f0;Mg, f (S) 2 f�L;Lg and U 2 f0; Ng.
Moreover, the joint distribution is

f (S) = �L; D = 0; U = 0 with probability p1

f (S) = �L; D = 0; U = N with probability p2

f (S) = �L; D =M; U = 0 with probability p3

f (S) = �L; D =M; U = N with probability p4

f (S) = L; D = 0; U = 0 with probability p5

f (S) = L; D = 0; U = N with probability p6

f (S) = L; D =M; U = 0 with probability p7

f (S) = L; D =M; U = N with probability p8

:

The optimal asset quantity for a single asset with random demand in (4.27) can be

updated as

�� (y) = c�Uy � s�D;U (y)

where

�U =
Cov (f (S) ; U)

V ar (f (S))

and

�D;U (y) =
Cov (f (S) ;min fD;Uyg)

V ar (f (S))
:
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It is easy to show that

Cov (f (S) ; U) = E [f (S)U ]� E [f (S)]E [U ]

= E [f (S)U ]

= p2 (�L)N + p4 (�L)N + p6 (L)N + p8 (L)N

= (p6 + p8 � p2 � p4)LN

and

Cov (f (S) ;min fD;Uyg) = E [f (S)min fD;Uyg]� E [f (S)]E [min fD;Uyg]

= E [f (S)min fD;Uyg]

= (p8 � p4)LNy:

Hence, the optimal asset quantity is

�� (y) = (p6 + p8 � p2 � p4) c
�
N

L

�
y � (p8 � p4) s

�
N

L

�
y

= ((p6 + p8 � p2 � p4) c� (p8 � p4) s)
�
N

L

�
y:

The optimality condition in (4.29) can be also updated as

E
�
Uu0 (CF (X; S; y�)) 1fD�Uy�g

�
+
�
�0D;U (y

�)� c
s�U

�
E [f (S)u0 (CF (X; S; y�))]

E [Uu0 (CF (X; S; y�))]
=
s� c
s

where

�0D;U (y
�) =

(p8 � p4)N
L

and

�U =
(p6 + p8 � p2 � p4)N

L
:

Moreover, the cash �ow is

CF��(y)CF (X; S; y
�) = �cUy� + smin fD;Uy�g+ �� (y) f (S)

= �cUy� + smin fD;Uy�g

+((p6 + p8 � p2 � p4) c� (p8 � p4) s)
�
N

L

�
y�f (S) :
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As the utility function is u (x) = �e�
1
�
x
; the optimality condition can be updated as8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

 
(p4 � p8) s

+(p6 + p8 � p2 � p4) c

!
p1Ne

� 1
�
(((p2+p4�p6�p8)c+(p8�p4)s)Ny�)

+

 
(p4 � p8) s

+(p6 + p8 � p2 � p4 + 1) c

!
p2Ne

� 1
�
(((p2+p4�p6�p8�1)c+(p8�p4)s)Ny�)

+

 
(p4 � p8) s

+(p6 + p8 � p2 � p4) c

!
p3Ne

� 1
�
(((p2+p4�p6�p8)c+(p8�p4)s)Ny�)

+

 
(p4 � p8 � 1) s

+(p6 + p8 � p2 � p4 + 1) c

!
p4Ne

� 1
�
(((p2+p4�p6�p8�1)c+(p8�p4+1)s)Ny�)

+

 
(p8 � p4) s

� (p6 + p8 � p2 � p4) c

!
p5Ne

� 1
�
(((p6+p8�p2�p4)c�(p8�p4)s)Ny�)

+

 
(p8 � p4+) s

� (p6 + p8 � p2 � p4 � 1) c

!
p6Ne

� 1
�
(((p6+p8�p2�p4�1)c�(p8�p4)s)Ny�)

+

 
(p8 � p4) s

� (p6 + p8 � p2 � p4) c

!
p7Ne

� 1
�
(((p6+p8�p2�p4)c�(p8�p4)s)Ny�)

+

 
(p8 � p4 � 1) s

� (p6 + p8 � p2 � p4 � 1) c

!
p8Ne

� 1
�
(((p6+p8�p2�p4�1)c�(p8�p4�1)s)Ny�)

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

= 0:

Again, by letting C� = y�=�; this equation take the form

a1e
�b1C�+a2e

�b2C�+a3e
�b3C�+a4e

�b4C�+a5e
�b5C�+a6e

�b6C�+a7e
�b7C�+a8e

�b8C� = 0:

We can easily conclude that the solution is independent of �: Therefore, the optimal order

quantity y� is linear in �:

An explicit solution for the optimal order quantity cannot be calculated directly. So, we

solve it for a speci�c example to show the e¤ect of the risk tolerance parameter. We assume

that the newsvendor sells at s = 28 TL and buys at c = 20 TL: Moreover, we suppose that

the probabilities are p = [0:07; 0:08; 0:10; 0:25; 0:03; 0:07; 0:25; 0:15] : Let M be 100 and N

be 0:5. Therefore, the optimality condition is

0:051e(0:3)C
�
+ 0:824e(10:3)C

� � 0:925e�(3:7)C�

�0:084e�(0:3)C� + 0:679e(9:7)C� � 0:645e�(4:3)C� = 0:

By doing the same analysis before, we obtain the optimal order quantity as

y� (�) = 0:0047�: (5.11)
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We can conclude that as the risk tolerance parameter increases, the optimal order quantity

increases linearly.

Random Capacity

Now, we suppose that there is supply randomness in capacity. For our example, demand,

f (S) and capacity take two values, D 2 f0;Mg, f (S) 2 f�L;Lg and K 2 f0;Mg : The
joint distribution function is

f (S) = �L; D = 0; K = 0 with probability p1

f (S) = �L; D = 0; K =M with probability p2

f (S) = �L; D =M; K = 0 with probability p3

f (S) = �L; D =M; K =M with probability p4

f (S) = L; D = 0; K = 0 with probability p5

f (S) = L; D = 0; K =M with probability p6

f (S) = L; D =M; K = 0 with probability p7

f (S) = L; D =M; K =M with probability p8

:

The optimal asset quantity for a single asset with random demand in (4.40) can be

updated as

�� (y) = �K (y) c� �D;K (y) s

where

�K (y) =
Cov (f (S) ;min fK; yg)

V ar (f (S))

and

�D;K (y) =
Cov (f (S) ;min fD;K; yg)

V ar (f (S))
:

It follows that

Cov (f (S) ;min fK; yg) = E [f (S)min fK; yg]� E [f (S)]E [min fK; yg]

= E [f (S)min fK; yg]

= p2 (�L) y + p4 (�L) y + p6 (L) y + p8 (L) y

= (p6 + p8 � p2 � p4)Ly
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and

Cov (f (S) ;min fD;K; yg) = E [f (S)min fD;K; yg]� E [f (S)]E [min fD;K; yg]

= E [f (S)min fD;K; yg]

= (p8 � p4)Ly:

Hence, the optimal asset quantity equals is

�� (y) =
Cov (f (S) ;min fK; yg)

V ar (f (S))
c� Cov (f (S) ;min fD;K; yg)

V ar (f (S))
s

=
(p6 + p8 � p2 � p4)

L
cy � (p8 � p4)

L
sy

= ((p6 + p8 � p2 � p4) c� (p8 � p4) s)
�
1

L

�
y:

The optimality condition in (4.42) can be also updated as

E
�
u0 (CF ) 1fD�y�;K>y�g

�
+
�
�0D;K (y

�)� c
s�
0
K (y

�)
�
E [f (S)u0 (CF )]

E
�
u0 (CF ) 1fK>y�g

� =
s� c
s

where

�0D;K (y
�) =

(p8 � p4)
L

and

�0K (y
�) =

(p6 + p8 � p2 � p4)
L

:

Moreover, the cash �ow is

CF��(y)CF (X; S; y
�) = �cmin fK; y�g+ smin fD;K; y�g+ �� (y) f (S)

= �cmin fK; y�g+ smin fD;K; y�g

+((p6 + p8 � p2 � p4) c� (p8 � p4) s)
1

L
y�f (S) :

As the utility function is u (x) = �e�
1
�
x
; the optimality condition can be updated as
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

 
(p4 � p8) s

+(p6 + p8 � p2 � p4) c

!
p1e

� 1
�
((p2+p4�p6�p8)c+(p8�p4)s)y�

+

 
(p4 � p8) s

+(p6 + p8 � p2 � p4 + 1) c

!
p2e

� 1
�
((p2+p4�p6�p8�1)c+(p8�p4)s)y�

+

 
(p4 � p8) s

+(p6 + p8 � p2 � p4) c

!
p3e

� 1
�
((p2+p4�p6�p8)c+(p8�p4)s)y�

+

 
(p4 � p8 � 1) s

+(p6 + p8 � p2 � p4 + 1) c

!
p4e

� 1
�
((p2+p4�p6�p8�1)c+(p8�p4+1)s)y�

+

 
(p8 � p4) s

� (p6 + p8 � p2 � p4) c

!
p5e

� 1
�
((p6+p8�p2�p4)c�(p8�p4)s)y�

+

 
(p8 � p4) s

� (p6 + p8 � p2 � p4 � 1) c

!
p6e

� 1
�
((p6+p8�p2�p4�1)c�(p8�p4)s)y�

+

 
(p8 � p4) s

� (p6 + p8 � p2 � p4) c

!
p7e

� 1
�
((p6+p8�p2�p4)c�(p8�p4)s)y�

+

 
(p8 � p4 � 1) s

� (p6 + p8 � p2 � p4 � 1) c

!
p8e

� 1
�
((p6+p8�p2�p4�1)c�(p8�p4�1)s)y�

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

= 0:

An explicit solution for the optimal order quantity cannot be obtained. So, we solve

it for the same speci�c example. Let p = [0:07; 0:08; 0:10; 0:25; 0:02; 0:08; 0:05; 0:35] be the

probabilities. Therefore, we again set C� = y�=�; the optimality condition is

�0:136e�0:8C� + 1:536e19:2C� � 2:2e�8:8C�

+0:056e0:8C
�
+ 1:664e20:8C

� � 2:52e�7:2C� = 0:

As before, the optimal order quantity is linear and it equals

y� (�) = 0:0145� (5.12)

where ymax = 100: Moreover, as the risk tolerance parameter increases, the optimal order

quantity increases.

Random Yield and Capacity

Last, we suppose that there is supply randomness in both yield and capacity. For our

example, demand, f (S) ; yield and capacity take two values, D 2 f0;Mg, f (S) 2 f�L;Lg ;
U 2 f0; Ng and K 2 f0;Mg : The joint distribution function is
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f (S) = �L; D = 0; U = 0; K = 0 with probability p1

f (S) = �L; D = 0; U = 0; K =M with probability p2

f (S) = �L; D = 0; U = N; K = 0 with probability p3

f (S) = �L; D = 0; U = N; K =M with probability p4

f (S) = �L; D =M; U = 0; K = 0 with probability p5

f (S) = �L; D =M; U = 0; K =M with probability p6

f (S) = �L; D = 0; U = N; K = 0 with probability p7

f (S) = �L; D = 0; U = N; K =M with probability p8

f (S) = L; D = 0; U = 0; K = 0 with probability p9

f (S) = L; D = 0; U = 0; K =M with probability p10

f (S) = L; D = 0; U = N; K = 0 with probability p11

f (S) = L; D = 0; U = N; K =M with probability p12

f (S) = L; D =M; U = 0; K = 0 with probability p13

f (S) = L; D =M; U = 0; K =M with probability p14

f (S) = L; D =M; U = N; K = 0 with probability p15

f (S) = L; D =M; U = N; K =M with probability p16

:

The optimal asset quantity for a single asset with random demand in (4.51) can be

updated as

�� (y) = �K;U (y) c� �D;K;U (y) s

where

�K;U (y) =
Cov (f (S) ; U min fK; yg)

V ar (f (S))

and

�D;K;U (y) =
Cov (f (S) ;min fD;UK;Uyg)

V ar (f (S))
:

It follows that

Cov (f (S) ; U min fK; yg) = E [f (S)U min fK; yg]

= p4 (�L)Ny + p8 (�L)Ny + p12 (L)Ny + p16 (L)Ny

= (p12 + p16 � p4 � p8)LNy
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and

Cov (f (S) ;min fD;UK;Uyg) = E [f (S)min fD;K; yg]

= p8 (�L)Ny + p16 (L)Ny

= (p16 � p8)LNy:

Hence, the optimal asset quantity is

�� (y) =
Cov (f (S) ; U min fK; yg)

V ar (f (S))
c� Cov (f (S) ;min fD;UK;Uyg)

V ar (f (S))
s

=
(p12 + p16 � p4 � p8)

L
cNy � (p16 � p8)

L
sNy

= ((p12 + p16 � p4 � p8) c� (p16 � p8) s)
�
N

L

�
y:

The optimality condition in (4.42) can be also updated as

E
�
Uu0 (CF ) 1fD�Uy�;K>y�g

�
+
�
�0D;K;U (y

�)� c
s�
0
K;U (y

�)
�
E [f (S)u0 (CF )]

E
�
Uu0 (CF ) 1fK>y�g

� =
s� c
s

where

�0K;U (y) = (p12 + p16 � p4 � p8)
�
N

L

�
and

�0D;K;U (y) = (p16 � p8)
�
N

L

�
:

The cash �ow is

CF = �cU min fK; y�g+ smin fD;UK;Uy�g

+

�
((p12 + p16 � p4 � p8) c� (p16 � p8) s)

�
N

L

�
y�
�
f (S) :
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By doing some straightforward calculations, the optimality condition can be updated as8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

� ((p16 � p8) s� c (p12 + p16 � p4 � p8)) p1Ne�
1
�
CF1

� ((p16 � p8) s� c (p12 + p16 � p4 � p8)) p2Ne�
1
�
CF2

� ((p16 � p8) s� c (p12 + p16 � p4 � p8)) p3Ne�
1
�
CF3

� ((p16 � p8) s� c (p12 + p16 � p4 � p8 + 1)) p4Ne�
1
�
CF4

� ((p16 � p8) s� c (p12 + p16 � p4 � p8)) p5Ne�
1
�
CF5

� ((p16 � p8) s� c (p12 + p16 � p4 � p8)) p6Ne�
1
�
CF6

� ((p16 � p8) s� c (p12 + p16 � p4 � p8)) p7Ne�
1
�
CF7

� ((p16 � p8 + 1) s� c (p12 + p16 � p4 � p8 + 1)) p8Ne�
1
�
CF8

+((p16 � p8) s� c (p12 + p16 � p4 � p8)) p9Ne�
1
�
CF9

+((p16 � p8) s� c (p12 + p16 � p4 � p8)) p10Ne�
1
�
CF10

+((p16 � p8) s� c (p12 + p16 � p4 � p8)) p11Ne�
1
�
CF11

+((p16 � p8) s� c (p12 + p16 � p4 � p8 � 1)) p12Ne�
1
�
CF12

+((p16 � p8) s� c (p12 + p16 � p4 � p8)) p13Ne�
1
�
CF13

+((p16 � p8) s� c (p12 + p16 � p4 � p8)) p14Ne�
1
�
CF14

+((p16 � p8) s� c (p12 + p16 � p4 � p8)) p15Ne�
1
�
CF15

+((p16 � p8 � 1) s� c (p12 + p16 � p4 � p8 � 1)) p16Ne�
1
�
CF16

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

= 0

where
CF1 = � ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF2 = � ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF3 = � ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF4 = � ((p12 + p16 � p4 � p8 + 1) c� (p16 � p8) s)Ny�

CF5 = � ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF6 = � ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF7 = � ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF8 = � ((p12 + p16 � p4 � p8 + 1) c� (p16 � p8 + 1) s)Ny�

CF9 = ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF10 = ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF11 = ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF12 = ((p12 + p16 � p4 � p8 � 1) c� (p16 � p8) s)Ny�

CF13 = ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF14 = ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�
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CF15 = ((p12 + p16 � p4 � p8) c� (p16 � p8) s)Ny�

CF16 = ((p12 + p16 � p4 � p8 � 1) c� (p16 � p8 � 1) s)Ny�:
An explicit closed form solution for the optimal order quantity cannot be obtained. So,

we numerically solve it for the same speci�c example where the probabilities are

p = [0:03; 0:04; 0:04; 0:04; 0:07; 0:03; 0:03; 0:22; 0:01; 0:02; 0:01; 0:06; 0:04; 0:21; 0:01; 0:14] :

Let M = 100, N = 0:5; s = 28 and c = 20: So, by letting C� = y�=�; the optimality

condition is

0:1248e0:52C
�
+ 0:4208e10:52C

� � 0:7656e�3:48C�

�0:156e�0:52C� + 0:5688e9:48C� � 0:6328e�4:52C� = 0:

Similarly, the optimal order quantity is linear and it equals

y� (�) = 0:0265�: (5.13)

Moreover, as the risk tolerance parameter increases, the optimal order quantity increases

linearly.

Up to this point, we consider a simple example to analyze how the risk tolerance a¤ects

the optimal order quantity. In the next section, we use the Monte Carlo method to simulate

our models.

5.2 Simulation

In this section, we illustrate the properties of the problem by simulation. Our aim is to

quantify the e¤ects of the utility framework and �nancial hedging to compensate for demand

and supply risks. As the base scenario, we take the setting of the example in Gaur and

Seshadri [22] where the demand risk is hedged by a stock in the �nancial market. Let the

initial stock price S0 be $660 and the interest rate be r = 10% per year. Assume that

T = 6 months and that the return ST =S0 has a lognormal distribution under the risk-

neutral measure with mean
�
r � �2

2

�
T and standard deviation �

p
T where � = 20% per

year. That is,

ln

�
ST
S0

�
� N

��
r � �

2

2

�
T; �

p
T

�
= N (0:04; 0:14142) :
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We assume that the market measure is the risk-neutral measure. Let the demand be

D = b ST + � where b = 10 and � has a normal distribution with mean zero and standard

deviation ��. Therefore, random demand is correlated with the �nancial market. The

�nancial parameters are as follows: s = 1, c = 0:6; p = �0:3, and v = 0:1. Moreover, we

suppose that the utility function is u(x) = 800� 100e�
1
�
x.

We consider three types of �nancial portfolios. The �rst portfolio consists of the future

on the stock only and has the net payo¤ f1(S), the second portfolio consists of the call

option on the stock with strike price � only and has the net payo¤ f2(S). Finally, the third

portfolio uses both instruments jointly and has the net payo¤s f1(S) and f2(S). Therefore,

the payo¤ of these derivative securities are

f1 (S) = ST � erTS0

and

f2 (S) = max fST � �; 0g � erTC

where � is the strike price and C is the price of the call option at time 0: For this example,

we assume that the strike price � is y=b. We further suppose that the call price in the

market does not provide any arbitrage opportunities so that

C = E
�
e�rT max fST � �; 0g

�
and

E [f2 (S)] = 0:

We can also calculate the call price by using Black-Scholes formula. That is

C = S0N(d1)� �e�rTN(d2)

where

d1 =
ln(S0� ) + (r +

�2

2 )T

�
p
T

;

d2 = d1 � �
p
T

and N is the standard normal distribution.

We want to point out that all of our numerical calculations are done using Monte Carlo

simulations throughout the remainder of this section. We use Matlab as a simulation tool.

Cash �ows are generated by using the simulated values of S;D;K; and U whenever needed.
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We consider four di¤erent models: the random demand case and three generalizations, �rst

with random capacity, second with random yield and third with random yield and capacity.

Throughout this chapter, we will compare the following eight di¤erent scenarios:
Scenario 1: Newsvendor does not use any portfolio and aims to maximize expected

cash �ow,

Scenario 2: Newsvendor uses the �rst portfolio (future) and aims to maximize

expected cash �ow,

Scenario 3: Newsvendor uses the second portfolio (call option) and aims to maximize

expected cash �ow,

Scenario 4: Newsvendor uses the third portfolio (future and call option) and aims to

maximize expected cash �ow,

Scenario 5: Newsvendor does not use any portfolio and aims to maximize the expected

utility of the cash �ow,

Scenario 6: Newsvendor uses the �rst portfolio (future) and aims to maximize the

expected utility of the cash �ow,

Scenario 7: Newsvendor uses the second portfolio (call option) and aims to maximize

the expected utility of the cash �ow,

Scenario 8: Newsvendor uses the third portfolio (future and call option) and aims to

maximize the expected utility of the cash �ow.

5.2.1 Random Demand

First we analyze the case where demand is the only source of uncertainty. We can de�ne

the unhedged cash �ow at time T as

CF (D; y) = smin fD; yg+ vmax fy �D; 0g � pmax fD � y; 0g � cerT y

and the hedged cash �ow at time T as

CF��(y) (D;S; y) = CF (D; y) +�
� (y) f (S) :

We �rst suppose that the standard deviation of demand is �� = 600 and the risk-

tolerance parameter is � = 500: We run our simulation for di¤erent order quantity values

and generate 50; 000 instances to calculate the optimal portfolios. In each instance, we

generate the stock price and demand. Then, we calculate the optimal portfolios by using

the formulas obtained in Chapter 4. Finally, we generate another 50; 000 instances so that
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we obtain stock prices, demand quantities and pro�ts. For all scenarios, we calculate the

mean, the variance, and the coe¢ cient of variance (CV ) (the ratio of the standard deviation

to the mean) of the cash �ow for each order quantity.

Based on the mean of the cash �ows, for scenarios 1-4, and the mean of the utility of the

cash �ows, for scenarios 5-9, we obtain the optimal order quantities approximately. Table

5.2 depicts the results for each scenario. Table 5.2 shows the variance reductions in the

cash �ows that are made possible by �nancial hedging. Let consider the variance reductions

when both portfolios are used. The �nancial hedging provides variance reduction by 68.6%

when we do not use the utility theory and by 66% when we use the utility theory. Then we

analyze the e¤ect of utility theory by comparing scenario 1 and scenario 5. The risk-averse

decision maker orders less and so his expected gain is also less. However, the variance of

the expected cash �ow is reduced by 30%.

�� = 600 y� Mean Variance CV Portfolio (�)

S1 5588 2435 181260 0:1748 �

S2 5587 2435 60561 0:1011 �3:5191
S3 5583 2435 66290 0:1058 �3:5761
S4 5587 2435 56966 0:0980 �8:9780; 5:7328

S5 4657 2401:4 127480 0:1487 �

S6 5086 2422:8 42432 0:0850 �3:1950
S7 5008 2418:9 41358 0:0841 �3:1745
S8 5164 2427:0 43355 0:0858 �9:8903; 6:7478

Table 5.2: The variances of the cash �ows and the optimal investment amounts for random
demand model when the standard deviation of demand error is 600

Moreover, by using the same framework, we analyze the problem for di¤erent demand

variations. We again run our simulation by changing order quantity values when �� is 0 and

300: We follow the same structure as before. The results are summarized in Table 5.3 for a

perfect correlation between demand and the stock price, in Table 5.4 for a high degree of a

correlation between demand and the stock price.

When the standard deviation of the demand error is zero (a perfect correlation between

demand and the stock price), hedging with a portfolio of future and option eliminates the
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�� = 0 y� Mean Variance CV Portfolio (�)

S1 5804 2457 125410 0:1441 �

S2 5802 2457 7150 0:0344 �3:4823
S3 5800 2457 18470 0:0553 �3:5538
S4 5804 2457 0 0 �9:00; 6:00

S5 5235 2440:0 94726 0:1261 �

S6 5662 2455:4 4914 0:0285 �3:3467
S7 5468 2449:3 6426 0:0327 �3:2467
S8 5804 2458:1 0 0 �9:00; 6:00

Table 5.3: The variances of the cash �ows and the optimal investment amounts for random
demand model when the standard deviation of demand error is 0

variance of the cash �ow and the variance of the utility of cash �ow totally. When the

standard deviation of the demand error is small (�� = 300) indicating a high degree of cor-

relation between demand and the stock price, signi�cant variance reductions are achieved,

89% for standard model and 87% for utility model. The reductions decrease when the corre-

lation decreases since for �� = 600 the variance of the cash �ow can be lowered considerably,

68.6% for standard model and 66% for utility model.

We also analyze the e¤ect of risk-tolerance parameter � on the optimal order quantity

and the variance. We again take the same example where �� = 600: We follow the same

structure as before while simulating. The Table 5.5 depicts the optimal order quantities,

mean the cash �ows and variances of the cash �ows and the optimal portfolios. From

Table 5.5, we conclude that as risk-tolerance increases, the optimal order quantity increases.

Moreover, from the variances of the cash �ows, we can state that the hedging always reduces

the variation. The variance reductions decrease as � increases.

As for the optimal portfolio structure, it is always optimal to sell the future since demand

and stock price are positively correlated. On the other hand, in the optimal portfolio, the

call option is bought when used as the second instrument along with the future, but is sold

when it is used as the sole instrument. It is also interesting to note that using a portfolio

consisting only of the future on the stock is very e¤ective and achieves most of the variance

reduction bene�ts. On the other hand, the call option serves to �ne tune the portfolio along

with the investment in the stock but is not as e¤ective when used alone.
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�� = 300 y� Mean Variance CV Portfolio (�)

S1 5742 2451 139460 0:1523 �

S2 5740 2451 20553 0:0585 �3:4916
S3 5736 2451 29810 0:0705 �3:5601
S4 5744 2451 14855 0:0497 �8:9135; 5:8281

S5 5085 2430:1 103180 0:1322 �

S6 5513 2447:4 15294 0:0505 �3:2970
S7 5348 2441:3 15089 0:0503 �3:2273
S8 5640 2451:3 13554 0:0475 �8:9600; 5:8849

Table 5.4: The variances of the cash �ows and the optimal investment amounts for random
demand model when the standard deviation of demand error is 300

5.2.2 Random Yield

In this subsection, we brie�y present an example for the random yield model. The functional

form relating the stock price to the yield can take many forms and we take the following

plausible example where U = 1� e�(1=S0)(
+ST ). We take 
 to be normally distributed with
mean zero and standard deviation �
 . We take the same base scenario and use identical

portfolio options. In the remaining of this chapter, we only consider the e¤ect of �nancial

hedging. Therefore, we �x the order quantity to y� = 7000 and we consider only the �rst

four scenarios. We �rst �x �� to 600 and � to 500. Then, for di¤erent values of �
 (0;

200; 400), by following the same structure, we calculate the means, variations, coe¢ cient of

variations and the optimal portfolios. The result are presented in Table 5.6.

Although the variance reductions decreases when �
 increases, we can conclude, from

the variance values, that �nancial hedging provides considerable reductions in the variance

for all scenarios.

Then, by considering the same example, we vary the standard deviations, �
 and ��;

together. The Table 5.7 reports the results of this experiment. We can conclude that when

the standard deviations are smaller, the variance reduction is 94% for the standard models.

When we further increase the standard deviation, we also obtain variance reductions, 76%,

but less than before.

The same remarks for the optimal portfolios in previous subsection are also valid for this
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� y� Mean Variance Portfolio (�)

S5 250 3850 2348:8 120680 �

500 4650 2401:0 127340 �

750 4950 2417:3 135830 �

S6 250 4500 2391:2 34444 �3:0469
500 5100 2423:4 42766 �3:2010
750 5250 2428:8 46896 �3:2753

S7 250 4450 2387:7 35286 �3:0415
500 5000 2418:6 43532 �3:1712
750 5200 2426:6 47319 �3:2693

S8 250 4000 2382:9 32700 �14:2763; 11:2262
500 5150 2426:5 41017 �9:9375; 6:7979
750 5350 2432:8 43391 �9:3728; 6:1884

Table 5.5: The variances of the cash �ows and the optimal investment amounts for di¤erent
risk-tolerance values when the standard deviation of demand error is 600

subsection.

5.2.3 Random Capacity

For the base example, we use the same assumptions. In addition, we assume the following

relationship between the strike price and the capacity, K = k ST + � where k = 9 and � has

a normal distribution with mean zero and standard deviation ��. For the examples in this

subsection, we again �xed y� to 7000 and � to 500: Note that as �� and �� increase, the

correlations between the demand and the market, and the capacity and the market weaken.

At the same time, the correlation between the demand and the capacity also weakens. Table

5.8 reports the resulting variances as �� and �� are varied together. It can be observed that,

once again, signi�cant reductions in variance can be achieved by hedging. The reductions

are naturally most important when the market correlation is strong. For instance, the case

�� = �� = 300 corresponds to high correlation with the market and the variance can be

reduced by 92%. Even in the case when the correlations with the market are relatively
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�
 Scenario Mean Variance CV Portfolio(�)

0 S1 2395 135518 0:1537 �

S2 2395 32688 0:0755 �3:25703
S3 2395 88389 0:1242 �1:7302
S4 2395 32678 0:0755 �3:3122; 0:1032

200 S1 2384 143524 0:1589 �

S2 2384 37658 0:0814 �3:3048
S3 2384 95544 0:1296 �1:7458
S4 2384 37618 0:0813 �3:4185; 0:2128

400 S1 2349 173863 0:1775 �

S2 2349 58096 0:1026 �3:4558
S3 2349 122914 0:1492 �1:7990
S4 2349 57862 0:1024 �3:7315; 0:5159

Table 5.6: The variances of the cash �ows and the optimal investment amounts for di¤erent
random yield models when the standard deviation of demand error is 600 and the order
quantity is 7000

low (�� = �� = 900), the variance reduction is less but considerable, 44% for the standard

models.

Then, we �x the demand-market correlation by letting �� = 600 and vary the capacity-

market correlation by varying ��. Table 5.9 summarizes the results. As �� increases,

reduction in variances decreases.

We again do the same remarks about the optimal portfolios as in the previous sections.

5.2.4 Random Yield and Capacity

In this last subsection, we want to analyze a combination of random yield and capacity

models. The received order quantity is U min fK; yg where U and K are de�ned same as

before. We take the same base scenario and use the identical portfolio options. We �x the

standard deviations as �� = 600; �
 = 200 and �� = 300: We also �x the order quantity as

y� = 7000:Then, the resulting means, variations, coe¢ cient of variations and the optimal

portfolios are summarized in Table 5.10.
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�
 = �� Scenario Mean Variance CV Portfolio(�)

200 S1 2386 110752 0:1394 �

S2 2386 6807 0:0346 �3:2746
S3 2386 63221 0:1054 �1:7376
S4 2386 6793 0:0345 �3:3418; 0:1257

400 S1 2353 148684 0:1639 �

S2 2353 35452 0:0800 �3:4178
S3 2353 98538 0:1334 �1:7847
S4 2353 35275 0:0798 �3:6577; 0:4490

Table 5.7: The variances of the cash �ows and the optimal investment amounts when the
standard deviations of demand error and yield error vary together (y = 7000)

From Table 5.10, we can conclude that signi�cant variance reductions for �nancial hedg-

ing are achievable, 78% for the models without the utility maximization objective and 78%

for the models with the utility maximization objective

Moreover, the same remarks about optimal portfolio decisions as in the previous sub-

sections are also valid.
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�� = �� Scenario Mean Variance CV Portfolio(�)

300 S1 2500 129629 0:1440 �

S2 2500 10959 0:0419 �3:4989
S3 2500 77189 0:1111 �1:8251
S4 2500 10756 0:0415 �3:7561; 0:4814

600 S1 2459 202656 0:1831 �

S2 2459 69219 0:1070 �3:7102
S3 2459 143498 0:1541 �1:9385
S4 2459 69020 0:1068 �3:9644; 0:4757

900 S1 2403:1 339815 0:2426 �

S2 2402:7 189127 0:1810 �3:9427
S3 2402:7 272720 0:2173 �2:0644
S4 2402:8 188944 0:1809 �4:1866; 0:4564

Table 5.8: The variances of the cash �ows and the optimal investment amounts for random
capacity models when the standard deviations of demand error and capacity error vary
together (y = 7000)
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�� Scenario Mean Variance CV Portfolio(�)

0 S1 2484:7 178184 0:1699 �

S2 2484:4 54519 0:0940 �3:5718
S3 2484:3 123385 0:1414 �1:8657
S4 2484:4 54330 0:0938 �3:8192; 0:4631

300 S1 2477:2 185220 0:1737 �

S2 2476:9 59146 0:0982 �3:6064
S3 2476:8 129183 0:1451 �1:8867
S4 2476:9 58979 0:0980 �3:8392; 0:4358

900 S1 2438:5 223040 0:1937 �

S2 2438:2 79760 0:1158 �3:8446
S3 2438:1 160377 0:1642 �1:9951
S4 2438:3 79397 0:1156 �4:1882; 0:6432

Table 5.9: The variances of the cash �ows and the optimal investment amounts for di¤erent
standard deviation of capacity errors

Scenario Mean Variance CV Portfolio(�)

S1 2352:0 155739 0:1678 �

S2 2352:0 34967 0:0795 �3:5191
S3 2351:4 101383 0:1354 �1:8514
S4 2352:1 34912 0:0794 �3:6528; 0:2511

Table 5.10: The variances of the cash �ows and the optimal investment amounts for a
random yield and capacity model when the standard deviations of demand error, yield
error and capacity error are 600, 200 and 300, respectively. (y = 7000)
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Chapter 6

CONCLUSIONS

In this thesis, we discuss the single-period, single-item inventory problem when the

decision-maker (newsvendor) is risk-averse. We use the expected utility theory framework

to take a risk-sensitive position. The risks or uncertainties in our models result not only from

random demand, but also from random supply. We divide our thesis into two main parts.

In the �rst part, we consider inventory models with random supply when the objective is

to maximize the expected utility of cash �ow. In the second part, we consider the same

problem when the randomness in demand and supply are correlated with �nancial markets.

The focus point of the �rst part in this thesis is inventory management using the ex-

pected utility theory framework. In this part, we consider that the randomness is generated

by random demand as well as random supply. We analyze three di¤erent types of sup-

ply uncertainty: random yield, random capacity and random yield and capacity. In all

cases, we �nd characterizations on the optimal order quantity by using the same critical

ratio. However, these characterizations require certain properties and assumptions on the

optimality conditions and the structure of the objective function. For the random demand

and random yield cases, the objective function is concave, so we �nd simple and explicit

characterizations for the optimal order quantity. For random capacity, and random yield

and capacity cases, the concavity of the objective function is not satis�ed. For these cases,

we establish quasi-concavity of the objective function and then we �nd explicit characteri-

zations for the optimal order quantity. In these cases, the existence and the uniqueness of

the solution require certain assumptions. After reviewing the analyses for the e¤ects of the

risk aversion and other parameters on the optimal order quantity for the standard model,

we discuss these e¤ects for the model with random supply. However, for the models with

random capacity and random yield and capacity, we can only state the e¤ect of risk-aversion

on the optimal order quantity under certain properties and assumptions.

In the second part of the thesis, we focus on the inventory models where the randomness

in demand and supply is correlated with �nancial markets. We consider the opportunities of

�nancial hedging to mitigate inventory risks. We analyze two types of portfolios, consisting
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of a single asset and multiple assets, for three types of random supply. In our context, the

decision-maker needs to choose the �nancial portfolio and the order quantity. We provide a

two step solution approach to this problem. In the �rst step, for any order quantity we �nd

the optimal portfolio that minimizes the variance of the cash �ow. Then, in the second step,

by using the characterization for the optimal portfolio, we �nd the optimal order quantity

that maximizes the expected utility of the cash �ow. For all types of the problem, the

objective of the �rst step is concave, and we easily �nd the explicit characterizations of the

optimal order quantities depending on the correlation between the random variables of the

inventory model and the �nancial variable. However, the objective functions in the second

step are non-concave. For these cases, we establish quasi-concavity of the objective function

and then we �nd explicit characterizations for the optimal order quantities. However, the

existence and the uniqueness of the optimal order quantities in these cases require certain

assumptions.

Some illustrative numerical examples on these models are presented. The e¤ects of

risk-tolerance and some other parameters on the optimal order quantities are examined.

Moreover, we also analyze the e¤ect of risk-sensitivity and �nancial hedging on the variance

of the problem. We conclude that as risk-tolerance increases, the optimal order quantity also

increases. We further observe that �nancial hedging reduces the variance of the problem

signi�cantly.

This line of research can be extended in several directions by future research. The

model can involve multi-period, in�nite-period, or multi-product. Bayesian models, random

environment models, hidden Markov models, and mean-variance models are other suitable

areas for extensions.
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