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ABSTRACT 

 

The finite-difference/front-tracking method is used to study the motion and deformation 

of a large bubble moving through a capillary tube in the presence of both insoluble and 

soluble surfactant. Effects of surfactant on the liquid film thickness between the bubble and 

the tube wall are the main subject of this study. The numerical method is designed to solve 

the evolution equations of the interfacial and bulk surfactant concentrations coupled with 

the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate 

interfacial surface tension to interfacial surfactant concentration. First, computations are 

performed to study the film thickness for the clean bubble case and results are compared 

with the semi-analytical Taylor’s Law [1]. It is found that our results are in a good 

agreement with the Taylor’s Law [1]. Following, the method is used to investigate the 

effects of insoluble and soluble surfactants on the film thickness for a wide range of 

governing non-dimensional numbers. It is found that both the insoluble and soluble 

surfactants have a thickening effect on the liquid film, which compares qualitatively well 

with both the experimental results of Krechetnikov and Homsy [2] and analytical 

predictions of Daripa and Pasa [3]. Further computations are performed to examine the 

effects of non-dimensional numbers in the insoluble and soluble surfactant cases and it is 

found that elasticity, Damkohler and Peclet numbers have significant influence on the film 

thickness.  
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ÖZET 

 

Büyük gaz kabarcıklarının kılcal borulardaki çözünebilir ve çözünemez yüzey aktif 

maddelerin varlığında hareket ve şekil değişimlerini incelemek için, sonlu-farkla/arayüz-

izleme metodu kullanıldı. Bu çalışmadaki en önemli konu yüzey aktif maddelerin, kabarcık 

ve kılcal boru arasında oluşan ince sıvı tabakası üzerindeki etkilerinin incelenmesidir. 

Sıkıştırılamaz  akış denklemleri, arayüde ve gaz kabarcığının bulunduğu çevre ortamda 

yüzey aktif madde taşınım denklemleri ile bağlı şekilde çözüldü. Yüzey gerilimini yüzey 

aktif maddenin fonksiyonu olarak tanımlamak için, doğrusal olmayan bir hal denklemi 

kullanıldı. İlk olarak temiz kabarcığın yüzeyi ile kılcal boru arasında oluşan ince tabaka 

incelendi ve küçük capillary sayılarında yarı analitik Taylor Kanunu [1] ile karşılaştırıldı. 

Sonuçların Taylor Kanunu [1] ile uyumlu olduğu gözlemlendi. Bu incelemeyi takiben, 

çözünebilir ve çözünemez yüzey aktif maddelerin çeşitli boyutsuz sayılarda ince tabaka 

üzerindeki etkisi incelendi. İncelemelerin sonucu olarak, hem çözünebilir hem de 

çözünemez yüzey aktif maddelerin ince tabakanın kalınlığını arttırdığı görüldü ki bu 

davranış hem Krechetnikov ve Homsy’nin [2] deneysel çalışmaları hem de Daripa ve 

Pasa’nın [3] analitik çalışması ile uyumludur. Bu aşamadan sonra boyutsuz sayıların hem 

çözünebilir hem de çözünemez yüzey aktif maddeli durumlarda ki etkisi araştırıldı ve 

elastisite, Damkohler ve Peclet sayılarının ince sıvı tabaka kalınlığını önemli ölçüde 

etkilediği görüldü.  
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Chapter 1 

 

INTRODUCTION 

 

The displacement of liquid by a gas bubble moving through a capillary tube is a model 

widely used to analyze a variety of complex multiphase flow problems. It thus has received 

considerable attention since the pioneering work of Bretherton [4], who investigated the 

motion of long bubbles in capillary tubes. Bretherton problem has been used as a model in 

many areas such as flow in porous media [5], water or foam flooding in enhanced oil 

recovery [6] and biomechanics [5]. To develop a simple model for porous media, bundle of 

capillary tube model is used [6]. As a model for water or foam flooding in enhanced oil 

recovery, displacement flow in capillary tubes is used [6]. Regarding biomechanics, one 

interesting example is the re-opening of collapsed pulmonary airways. The simplest model 

of this phenomenon is the motion of semi-infinite bubble in a capillary tube initially filled 

with a viscous liquid.  

An important issue in multiphase systems is the role played by surface-active agents 

(surfactants) that are present either as impurities, which are difficult to remove from the 

system, or as additives to manipulate the interfacial dynamics. It is well-known that the 
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surfactants largely affect the dynamic behavior of deforming interfaces. The presence of 

surfactants in a fluid mixture can critically alter the motion and deformation of bubbles 

moving through a continuous liquid phase [7,8]. In particular, surfactants play a critical 

role in pulmonary re-opening [9]. Surfactant molecules attach to the interface and form a 

buffer zone between the gas and liquid phases. They interact with the cohesive forces 

between the liquid molecules and reduce the surface tension and stabilize the interface [10]. 

In a static system, interfacial surfactant concentration has a saturation value, for which 

surface tension has its minimum. However, in a dynamic system, such as alveoli, interfacial 

surfactant concentration value can exceed the maximum packing value under dynamic 

conditions due to surface compression, which results in significant reduction in surface 

tension [11-13]. When surfactants are present, surface tension changes with the interfacial 

surfactant concentration and Marangoni stresses may develop when the surfactant 

concentration is not uniform on the interface.  

Pulmonary surfactant is required for normal lung functioning. Pulmonary surfactant is 

absorbed on the thin liquid film that covers the surface of the airways and the alveoli and 

reduces the surface tension on the liquid-gas interface and the work required to expand the 

lung at each breath. Due to surfactant-deficiency, surface tension on the air-liquid interface 

might get elevated and the airways might get closed since the flexible structure of the tubes 

causes unstable support for the airways. Airway closure may also occur due to Rayleigh 

instability of the liquid lining of the tubes [14]. In both ways the airway is closed as a liquid 
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plug forms preventing the passage of gas. Airway closure may occur in normal lungs when 

the lung reaches very low volumes [15]. Liquid plugs could also occur in case of diseases 

such as respiratory distress syndrome (RDS), asthma, pulmonary edema and emphysema. 

The primary way to reopen the airway is through inhalation [10]. During inhalation the 

liquid plug is forced to flow until it resides on the airway walls and eventually ruptures 

allowing gas exchange [10]. Healthy adults are able to reopen the airways in this way, 

however people with respiratory diseases cannot produce enough pressure to reopen their 

airways [11]. A primary deficiency of surfactant in prematurely born neonates prevents the 

normal transition from a fluid filled to an aerated lung at birth known as RDS. In RDS, the 

airways are closed due to elevated surface tension on the air-liquid interface. Surfactant 

replacement therapy (SRT) is used for premature neonates for the treatment of RDS, in 

which a liquid plug with exogenous surfactant is instilled into the airways.   

A thin film of liquid is deposited on the walls when displacement of a large bubble in a 

viscous liquid occurs inside the capillary tube. The motion of a semi-infinite bubble in a 

capillary tube was originally studied by Fairbrother & Stubbs [16], Bretherton [4], and 

Taylor [17]. It has been later studied by many and findings have been reported in a number 

of papers [18-21]. In the absence of surfactants, studies show that the thickness of the 

liquid film left behind by the creeping motion (Re<<1) of a semi-infinite bubble depends 

solely on the Capillary number defined as Ca = µUb/σ, where Ub is the bubble velocity, µ is 

the viscosity of the liquid and σ is the surface tension on the air-liquid interface [1]. The 
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film thickness depends on both the Capillary number and Reynolds number (Re = ρUR/µ) 

in large airways due to the importance of inertial forces (Re>>1), where ρ, U and R are the 

density of the liquid, the flow velocity and the channel radius, respectively.  

More recently the influence of surfactants on the displacement of a confined gas-liquid 

interface has been analyzed analytically [3-4, 19, 22-23], experimentally [2, 17, 20-21] and 

numerically [11, 24-25]. The numerical works of Wassmuth et al. [24], Severino et al. [25], 

Ghadiali and Gaver [11] deal with the effects of soluble and insoluble surfactants. 

Wassmuth et al. [24] numerically investigated the motion of the bubble-liquid interface 

between parallel plates. Severino et al. [25] performed similar studies and aimed to identify 

the film thickness as a function of relevant dimensionless numbers in dip coating systems. 

Ghadiali and Gaver [11] reported numerical results for a semi-infinite bubble moving in a 

capillary tube filled with a surfactant solution. They found that depending upon the range 

of dimensionless parameters, i.e., Peclet number, and adsorption and desorption Stanton 

numbers, either film thickening or film thinning responses are possible. It was 

demonstrated that there is a non-monotonic behavior between Peclet number and liquid 

film thickness.  

Ratulowski and Chang [18] carried out asymptotic analysis in the case of very slow 

motions and traces of surfactant to obtain solutions for both the hydrodynamics and mass 

transfer problems. They found, for the first time, that surfactants increase the film thickness 

by a maximum factor of 4
2/3

 compared with the surfactant-free case for infinitely long 
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bubbles. Park [23] analytically investigated the effects of surfactants on the motion of a 

finite bubble in the small capillary number regime. They also performed an asymptotic 

analysis to relate interfacial surfactant concentration to adsorption-desorption kinetics. 

They also focused on the case, in which axial diffusion of the surfactant in the bulk is 

slower than adsorption and bulk convection, and adsorption is faster than surface 

convection. This flow situation was described as the convective equilibrium model. It was 

shown that under these conditions Marangoni effects could increase the thickness of the 

liquid film laid under the bubble by a maximum factor of 4
2/3

 compared to the surfactant-

free case. Stebe and Barthes-Biesel [19] suggested that the surfactant exchange between 

liquid phase and the interface is controlled by the desorption kinetics. Their analysis aims 

at revealing potential effects of surfactants on the liquid film thickness. They found that 

Marangoni stresses that result from hindered sorptive exchange caused thicker wetting 

layers. Recently, Daripa and Pasa [3] reported analytical results on the effects of surfactants 

on the motion of long bubbles in horizontal capillary tubes. They showed that the liquid 

film between the bubble and the wall was thicker in a surfactant solution compared to that 

in a clean liquid.  

Krechetnikov and Homsy [2] reported experimental results on the surfactant effects on 

the Landau-Levich problem. This problem is essentially the same as Bretherton’s problem 

as they both relate film thickness to Capillary number. Landau-Levich problem investigates 

the coating of a flat plate as it is withdrawn from a stagnant liquid bath whereas Bretherton 
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deals with the motion of long bubbles in capillary tubes. The main goal of Krechetnikov 

and Homsy [2] was to confirm the thinning effect of surfactant, which they previously 

numerically observed [26]. They suggested that Marangoni effects could lead to film 

thinning at the sorption-controlled coating regime. Schwartz et al. [21] also reported 

experimental results on the surfactant effects on the film thickness. They found that for 

sufficiently small bubbles, the film thicknesses agreed well with the predictions of 

lubrication theory. For long bubbles, e.g., Rb > Rc on the other hand, they measured a 

different ‘solution curve’, which suggests that lubrication theory is not valid. The deviation 

between the small and large bubbles becomes more pronounced at low speeds. 

Furthermore, Chen [20] measured the film thickness surrounding a bubble inside a 

capillary and found that film thickness decreases with decreasing bubble speed. 

The aim of this study is to numerically investigate the effects of soluble and insoluble 

surfactants and various non-dimensional parameters on the motion of long bubbles and the 

film thickness in a capillary tube. Additionally, a range of non-dimensional parameters is 

sought, in which the insoluble surfactant assumption is valid. For this purpose, the 

incompressible Navier–Stokes equations are solved fully coupled with the evolution 

equations of the interfacial and bulk surfactant concentrations by using a finite-

difference/front-tracking method developed by Muradoglu and Tryggvason [27]. A 

nonlinear equation of state based on the Langmuir adsorption [28] is used to relate the 

surface tension coefficient to the interfacial surfactant concentration. Unsteady 
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computations are performed to examine the evolution of interfacial and bulk surfactant 

concentrations.  

The remainder of the thesis is organized as follows: In the next section, the 

mathematical formulation is presented and the numerical method is briefly reviewed. 

Problem statement is also presented in Sec.2. The results are presented and discussed in 

Sec. 3 and the conclusions are presented in Sec. 4. Grid convergence is discussed in the 

Appendix. 
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Chapter 2 

 

MATHEMATICAL FORMULATION AND NUMERICAL METHOD 

 

 

2.1 Mathematical Formulation 

 

In this section flow equations are described in the context of the finite-difference/front-

tracking method for axisymmetric problem. The incompressible Navier-Stokes equations 

are used to represent the fluid motion. Flow equations are solved for entire domain (both 

inside and outside of the bubble). Following Unverdi and Tryggvason [29], a single set of 

governing equations can be written for the entire computational domain provided that the 

jumps in the material properties such as density, viscosity and molecular diffusion 

coefficient are correctly accounted for and surface tension is included. 

In an axisymmetric coordinate system, the Navier-Stokes equations in conservative 

form are given by  

 



 
 
Chapter 2: Mathematical Formulation and Numerical Method 9 

   

  
 
 

 

     

  
 
    

  

  
  

  
 
 

  
(  

  

  
)    

 

  
(
 

 
)  

 

  
 (
  

  
 
  

  
)  

 ∫ ( )   (    )      ̂ 

 

 

 

(2.1) 

   

  
 
 

 

     

  
 
    

  

  
  

  
 
 

  
  (

  

  
 
  

  
)  

 

  
(  

  

  
)  ∫ ( )   (    )     ̂ 

 

 

 

where u and v are the velocity components in the radial and axial directions, respectively, 

and p, ρ and µ are the pressure, and the discontinuous density and viscosity fields, 

respectively. The last term on the right hand side is a body force that includes the effects of 

surface tension. In this term ζ is the surface tension that is a function of the surfactant 

concentration Γ at the interface, κ is twice the mean curvature, and n=  ̂   ̂  is a unit vector 

normal to the interface. The surface tension only acts on the interface as indicated by the 

three dimensional delta function δ, whose arguments x and xf are the point at which the 

equation is evaluated and the point at the interface, respectively. 

The Navier-Stokes equations are supplemented by the incompressibility condition, 
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We also assume that the material properties remain constant following a fluid particle, 

                                                                    
  

  
    

  

  
                                                               (   ) 

where D/Dt is the material derivative. The density and viscosity vary continuously across 

the fluid interface and are given by 

     (     )   (   (     )) 

(2.4) 

     (     )   (   (     )) 

where the subscripts b and o denote properties of the bubble and the ambient fluids, 

respectively and I(r,z,t) is the indicator function defined as 

                                                 (     )  {
                   
                            

                                        (   ) 

Concentration of surfactant on the interface Γ is defined as 

                                                                             
  
 
                                                                    (   ) 

where Ms is the adsorbed mass of surfactant and A is the surface area. Surface tension 

decreases proportional to the surfactant concentration at the interface according to the 

equation of state derived from Langmuir adsorption [28]. 

                                                                     (  
 

  
)                                                       (   ) 
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where R is the ideal gas constant, T is the absolute temperature, ζs is the surface tension of 

clean interface, and Γ∞ is the maximum packing concentration. Equation (2.7) can also be 

written as  

                                                               [       (  
 

  
)]                                                       (   ) 

where βs=RTΓs/ζs is the elasticity number. The physicochemical parameter βs is a measure 

of the sensitivity of interfacial tension to variations in surfactant concentration. Equation 

(2.8) is slightly modified to avoid negative values of the surface tension at high interfacial 

concentrations as 

                                                   {   [          (  
 

  
)]}                                                (   ) 

where εζ is taken as 0.05 in the present study. Fig. (1) shows the change in surface tension 

with respect to interfacial surfactant coverage for various elasticity numbers.  

 

Figure 1: Surface tension for various elasticity numbers. 
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The surfactant concentration Γ evolves by, 

                                                         
  

  
     (   )     

    ̇                                                (    ) 

where the gradient operator along the interface is defined as 

                                                                       (     )                                                              (    ) 

In Eq. (2.10) Us is the tangential velocity on the interface, Ds is the diffusion coefficient 

along the interface and  ̇  is the source term given by 

                                                            ̇      (    )                                                               (    ) 

where ka and kb are adsorption and desorption coefficients, respectively, and Cs is the 

surfactant concentration in fluid immediately adjacent to the interface. The bulk surfactant 

concentration C is governed by the advection-diffusion equation 

                                                          
  

  
    (  )     (     )                                               (    ) 

where the coefficient Dco is related to the molecular diffusion coefficient Dc and the 

indicator function I as 

                                                                    [   (     )]                                                          (    ) 

The source term in eq. (2.10) is related to the bulk concentration as 

                                                              ̇      (                )                                                  (    ) 
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Following Muradoglu and Tryggvason [27], the boundary condition at the interface given 

by Eq. (2.15) is first converted into a source term in a conservative manner by assuming 

that all the mass transfer between the interface and the bulk takes place in a thin adsorption 

layer adjacent to the interface (See in Fig. 2). In this method, total amount of mass 

adsorbed on the interface is distributed over the adsorption layer and added to the bulk 

concentration evolution equation as a negative source term in a conservative manner.  

 

Figure 2:  Schematic illustration of the adsorption layer 
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Equation (2.13) thus becomes 

                                                         
  

  
    (  )     (     )  ̇                                          (    ) 

where  ̇  is the source term evaluated at the interface and distributed onto the adsorption 

layer in a conservative manner. With this formulation, all the mass of the bulk surfactant to 

be adsorbed by the interface has been already consumed in the adsorption layer before the 

interface. Hence, the boundary condition at the interface simplifies to be    n. C|interface=0. 

 

2.2 Numerical Method 

 

The flow equations are solved fully coupled with the evolution equations for interfacial 

concentration, Eq. (2.10), and for bulk concentration, Eq. (2.16), by the finite-

difference/front-tracking method [27]. A first-order time integration method and a second-

order centered difference approximation for the spatial derivatives are used to discretize the 

momentum and the continuity equations. The projection [30] method is used to solve the 

discretized equations on a stationary, staggered Eulerian grid. The bulk surfactant 

concentration and pressure are stored at the same location on the staggered grid. The 

evolution equation for the bulk surfactant concentration is solved fully coupled with the 

flow equations by using second-order centered differences for the spatial derivatives and a 
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first-order Euler method for the time integration. No-slip and no-flux boundary conditions 

are applied at the tube wall, while the symmetry is used at the tube centerline. 

 

Figure 3:  Schematic illustration of computational grids employed 

To track the bubble-ambient fluid interface a separate Lagrangian grid is used. The 

Lagrangian grid consists of linked marker points (the front) that move with the local flow 

velocity interpolated from the stationary Cartesian Eulerian grid as sketched in Fig 3. The 

piece of the Lagrangian grid between two marker points is called a front element.  

At each time step the indicator function defined by Eq. (2.5) is computed and is used to 

set the fluid properties inside and outside of the bubble. The indicator function is computed 
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on the Eulerian grid using the same procedure as described by Tryggvason et al. [32]. The 

method is briefly outlined here. The discontinuity is spread onto the grid points adjacent to 

the interface resulting in the gradient field 

                                                       ( )      ∫  (    )   

 

 

                                                  (    ) 

which is zero everywhere except at the interface. Note that the vector field G is also 

utilized to enforce the no mass flux boundary condition for the bulk surfactant 

concentration at the interface as will be discussed in Sec. 2.2.3. Taking the divergence of 

both sides of Eq. (2.17) yields 

                                                                                                                                                  (    ) 

which is a separable Poisson equation and can be solved efficiently in the vicinity of the 

bubble. The delta function appearing in Eq. (2.17) is approximated by Peskin’s cosine 

distribution function [31]. The same function is also used to distribute the surface tension 

forces at the center of front elements over the 16 neighboring grid points and also to 

interpolate the velocity vector from 16 Eulerian grid onto the marker points sketched in 

Fig. 4. 
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Figure 4: Sketch for interpolation scheme.  Velocity is interpolated onto the location of mth marker 

points from 16 neighboring Eulerian grid nodes. Similarly, the surface tension force computed at 

the front element centroid is distributed onto 16 neighboring Eulerian grid nodes.  

In Eq. (2.18), the divergence operator is approximated using second-order central 

differences and then the Poisson equation is solved using a fast Poisson solver [33]. The 

computed indicator function is constant in each material region but with a finite-thickness 

transition zone at the interface. Therefore the transition region approximates a two-

dimensional Heaviside function. 

The interfacial surfactant concentration equation, Eq. (2.10), is solved on the 

Lagrangian grid by using second-order centered differences for the spatial derivatives and a 

first-order Euler method for the time integration. The Lagrangian grid is also used to find 

the surface tension, which is then distributed onto Eulerian grid points near the interface by 
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using Peskin’s cosine distribution function [31], and added to the momentum equations as 

body forces as described by Tryggvason et al. [32]. 

The Lagrangian grid is restructured at every time step by deleting the front elements 

that are smaller than a prespecified lower limit and by splitting the front elements that are 

larger than a prespecified upper limit in the same way as described by Tryggvason et al. 

[32] to keep the front element size nearly uniform and comparable to the Eulerian grid size. 

Restructuring the Lagrangian grid is crucial since it avoids unresolved wiggles due to small 

elements and lack of resolution due to large elements. Note that restructuring the 

Lagrangian grid is performed such that the mass conservation is strictly satisfied for the 

surfactant at the interface. Since the finite-difference/front-tracking method has been 

described in details by Unverdi and Tryggvason [29] and by Tryggvason et al. [32] for 

surfactant-free flows, the basic flow solver is discussed only briefly here for completeness 

and emphasis is placed on the solution of the bulk and interfacial surfactant concentration 

evolution equations. 

 

2.2.1 Flow Solver 

 

The flow equations (Eqs. (2.1) and (2.2)) are solved on a stationary Eulerian grid. The 

spatial derivatives are approximated using second-order central finite-differences for all 



 
 
Chapter 2: Mathematical Formulation and Numerical Method 19 

field quantities. The time integration is achieved using a projection method. Following 

Unverdi and Tryggvason [29], Eqs. (2.1) and (2.2) are written in the form 

                                                           
             

  
                                                          (    ) 

                                                                                                                                               (    ) 

where A is the advective, diffusive and body forces terms in Eq. (2.1). Then the above 

equation is decomposed as 

                                                            
           

  
                                                                (    )  

                                                          
               

  
                                                        (    )  

where u* is a provisional velocity ignoring the effect of the pressure. Next the unprojected 

velocity field is computed from Eq. (2.21) and then the pressure field is computed as 

follows: taking the divergence of Eq. (2.22) and using the incompressibility condition 

given by Eq. (2.20), we obtain a non-separable Poisson equation for pressure in the form 

                                                                
 

    
     

 

  
                                                         (    ) 

which is solved on the Eulerian grid using a multigrid method as described by Tryggvason 

et al. [32]. Finally the velocity field at the new time level is computed as 

                                                                            
  

    
                                                        (    ) 
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2.2.2 Surfactant Concentration at the Interface 

 

The evolution equation of the surfactant concentration at the interface is solved on the 

Lagrangian grid. From Eqs. (2.10) and (2.11) we obtain 

                                                    
  

  
   (   )               

    ̇                                     (    ) 

On the other hand, the area of an element of the interface evolves by [34] 

                                                             
  

  
  
  

  
           (      )                                  (    ) 

Combining Eqs. (2.25) and (2.26), one obtains 

                                                                      
   

  
      

     ̇                                                (    ) 

For an axisymmetric problem, Eq. (2.27) can be written as 

                                                              
   

  
  (  

 

 

 

  
( 
  

  
)  ̇ )                                      (    ) 

where s is the arc length along the interface and r is the radial coordinate in cylindrical 

coordinates. Equation (2.28) can be expressed in compact form as 

                                                                        
   

  
   (   )                                                        (    ) 

where   is given by  

                                                              (   )    
 

 

 

  
( 
  

  
)  ̇                                           (    ) 
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2.2.3 Bulk Surfactant Concentration 

 

The bulk surfactant concentration equation is solved on the staggered Eulerian grid. The 

bulk surfactant concentration is located at the pressure nodes. The spatial derivatives are 

approximated using second-order central differences and time integration is performed 

using a first-order explicit Euler method. The source term is first computed on the interface 

and is then distributed over the adsorption layer in conservative manner. For this purpose, 

the distribution algorithm is slightly modified as follows: the source term  ̇     at grid point 

(i,j) is approximated as 

                                                                 ̇       ∑    
  ̇  

     
     

 
 

 

                                             (    ) 

where  ̇   is the source term evaluated at the center of the k
th

 element,    and     are the 

radial coordinate of the center and the arc length of the k
th

 element,      is the radial 

coordinate of the grid node (i,j),   is the grid spacing and     
  is the weight of grid point 

(i,j), respectively. The weight must satisfy the consistency condition 

                                                                          ∑∑    
     

 

 

 

                                                  (    ) 

in order to conserve the total source strength in going from the interface to the grid. The 

weight for the grid point (i,j), for smoothing from the center of the k
th

 element (  
    

 ), can 

be written as  
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 ̃   
 

∑ ∑  ̃   
 

  

                                                         (    ) 

where the non-normalized weight function is defined as 

                                                             ̃   
     (  

    )  (  
    )                                                 (    ) 

In Eq. (2.34), the distribution function    is a slightly modified version of the Peskin’s 

cosine distribution defined as 

                                 ( )   {

 

 
(     (

  

 
))                                                       

                                                                                                      (    ) 
                                                                                   

 

where   is the width of the adsorption” layer, taken as    h in the present study (h = x 

is the grid size). As can be seen in Eq. (2.35), the source term is distributed only outside of 

the bubble region, i.e.,  (r,z,t)   0.5, which is illustrated schematically in Fig. 5. 
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Figure 5: Sketch for interpolation scheme.  The bulk surfactant concentration is interpolated from 

the Eulerian grid nodes outside of the bubble onto k
th
 front element and the source term computed 

on the front element is distributed onto the same Eulerian grid nodes. 
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2.3 Problem Statement 

 

The physical problem and computational domain are sketched in Fig. 6. The 

computational domain is R in radial direction and Lz in the axial direction. The lower 

boundary is the axis of symmetry which represents the centerline of the channel and the 

flow is in the axial direction. The bubble is initially located at the channel centerline close 

to the inlet section. The bubble is much longer than the channel width and are initialized 

with an approximate shape of a straight middle portion and semi-circular front and back 

menisci. The thickness of the film between the bubble and the wall is initialized according 

to the Taylor’s Law [1]   

                                                          
  
 
  

         

                 
                                                (    ) 

 

 

Figure 6: Schematic illustration of the computational setup for a bubble moving in a horizontal 

axisymmetric channel with soluble surfactant. 

z
b
 

Lz 
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The flow is initiated instantaneously by imposing a fully-developed steady flow at the inlet 

and keeping the pressure constant at the outlet. Symmetry and no-slip boundary conditions 

are used at the centerline and at the wall of the tube, respectively.  The computational 

domain is set sufficiently long e.g., (Lz /R=100) to ensure steady state motion of bubbles. 

To study the effects of surfactant on the liquid film thickness between the wall and the 

bubble moving in an axisymmetrical channel, computations are performed for three 

different cases: soluble, insoluble and clean. In all the three cases, the same effective 

surface tension coefficient, ζeff, is utilized, which is first calculated in the soluble case as 

                                              ζeff=ζs {max [εζ,1 β
s
ln  1 

Γave

Γ∞

 ]}                                        (    ) 

where      is the average surfactant concentration obtained at the end of the simulation in 

the soluble case.  

In the soluble surfactant case, the initial bulk surfactant concentration is specified 

uniformly as C∞ which is initial bulk surfactant concentration value and the initial 

interfacial surfactant concentration, Γ0, is specified to be 80% of the interfacial equilibrium 

surfactant concentration, Γeq . In equilibrium, the adsorption equals to the desorption; hence 

we calculate Γeq by equating the source term in Eq. (2.12). In the insoluble surfactant case, 

the bulk fluid is surfactant free and the initial interfacial surfactant concentration, Γ0, is 

specified to be approximately the steady-state average interfacial surfactant concentration 

in the soluble case, i.e.,        . Finally, in the clean case, both the bulk fluid and the 
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interface are surfactant free. In both the insoluble and clean cases, ζeff is utilized in the 

computations, which is calculated according to Eq. (2.37). In all cases the relevant non-

dimensional numbers are kept the same.  

The governing equations given in Sec 2.1 are solved in their dimensional forms, and the 

results are expressed in terms of relevant non-dimensional quantities. The governing non-

dimensional numbers can be summarized as 

   
     
  

          
   
  

          
   
  

       
  
  
       

  
  
       

(2.38) 

  
    
  

     
    
 
     

  
    

      
    
  

         
   
    

    

where Re, Pec, Pes, k, Bi, Da,   are the Reynolds number, the Peclet number based on bulk 

surfactant diffusivity, the Peclet number based on interface surfactant diffusivity, the 

dimensionless adsorption depth, the Biot number, the Damkohler number, and the elasticity 

number, respectively.  

We defined a base case and chose the non-dimensional parameters of this base case to 

approximately represent the physical conditions of a neonatal’s lower airways. The non-

dimensional numbers are taken as; Re = 1, Pec = 100, Pes = 1000, ρb/ρo = 1, µb/µo = 0.1, k = 

1, Bi = 0.02, Da = 0.1, βs = 0.5 and  Caeff = 0.0125.   The Re and Ca number is generally 

low, e.g., (Re   0.1) in the lower airways [35] and we have chosen a representative value 

of Re = 1  and Ca = 0.0125. Note that Aussillous and Quere [1] showed that Reynolds 
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number effects are negligible when Re<10. Pec and Pes are taken as Pec = 100 and Pes = 

1000 following Fujioka and Grotberg [35]. Adsorption and desorption coefficients for 

pulmonary surfactant are given as ka = 1.7x10
-3

 cm
3
 g

-1
 s

-1
 and kb = 1.7x10

-2
 s

-1
 [36, 37]. 

Generally the maximum equilibrium interfacial surfactant concentration for the pulmonary 

surfactant is about 10
-3

 times maximum bulk surfactant concentration which is practically 

the critical micelle bulk concentration for the pulmonary surfactant [38, 39]. Therefore we 

assume that C∞ = 10 g cm
-3

 and Γ∞ = 3.1 x 10
-2

 g cm
-2

. The non-dimensional adsorption 

depth is calculated accordingly as k = 1. Elasticity number is taken as 0.5 following 

Ghadiali and Gaver [11]. The radius of the lower generations of the lung is 0.014 cm [40]. 

Therefore the Damkohler number is accordingly calculated to be Da = 0.071 and we take 

Da = 0.1.  

We employed a uniform regular Cartesian grid and performed grid convergence study 

to ensure that the results are independent of spatial grid. These studies, as detailed in the 

Appendix, indicated that 32 grid cells in the radial direction are sufficient to keep the error 

in film thickness and interfacial surfactant concentration below 4% and 7%, respectively. 
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Chapter 3 

 

RESULTS AND DISCUSSION AND CONCLUSION 

 

 

3.1 Validation 

 

To validate the numerical method, the film thickness computed for the clean case interface 

is first compared with Taylor’s Law which is a semi-analytic expression [21] given by Eq. 

(2.36). As shown in Fig. 7 our numerical results fit well to the Taylor’s Law, indicating the 

accuracy of the numerical method. Computations are performed on grids for which the film 

region is resolved at least by 4 grid points, which is sufficient to reduce the numerical error 

below 5%.  
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Figure 7: Film thickness for the clean bubble. Solid line is Taylor's Law and symbols are the 

present results. 

 

3.2 Effects of Surfactant 

 

After the validation study of the method for the clean case, we added surfactant to our 

system and performed computations. The film thickness and interfacial surfactant 

distribution for the clean, insoluble and soluble base cases, i.e., Caeff=0.0125, are compared 

in Fig. 8.  
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(a) 

 

(b) 

Figure 8: Comparison of three cases. (a) The film thickness and (b) The interfacial surfactant 

distribution. (Caeff=0.0125) 
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It is observed in Fig. 8a that the surfactant generally thickens the liquid film and the 

film thickness of the insoluble surfactant case is larger than the film thickness of the 

soluble surfactant case. The reason of this is the distribution of the surfactant on the 

interface, which is shown in Fig. 8b. In both the soluble and the insoluble cases, surfactants 

at the leading edge of the bubble are convected to the liquid film and the trailing edge of 

the bubble. However, in the insoluble case, there is no surfactant transfer from bulk to the 

interface. Therefore, the surfactant concentration at the leading edge of the bubble in the 

insoluble case is nearly zero as seen in Fig. 8b. Surface tension at the leading edge in the 

insoluble case does not decrease due to the absence of surfactant, and hence we observe an 

expanded leading edge in the insoluble case compared to the soluble one, as shown in Fig. 

8a. This expansion in the leading edge stretches the bubble in the axial direction and results 

in an increase in the liquid film thickness.  
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Figure 9: Film thicknesses for the clean, insoluble and soluble cases. Solid line is Taylor's Law and 

circles, squares and triangles represent clean, soluble and insoluble cases, respectively. 

 

We next examine the effects of surfactant on the steady film thickness both for the 

insoluble and soluble cases. Fig. 9 shows the variation of film thickness as a function of 

Capillary number. As can be seen in this figure, surfactant generally increases the film 

thickness. It is interesting to observe that insoluble surfactant model yields consistently 

higher film thickness than the soluble model for all Capillary numbers. 
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It is observed that when surfactant is added to the system, the velocity of the bubble 

increases. The reason for this behavior is that as the surfactant thickens the liquid film, the 

bubble shifts more into the faster flowing inner core of the fluid. As expected, velocity of 

the bubble in the insoluble surfactant case is the highest of all the three cases, whereas, in 

the clean case, it is the slowest. Velocities of three cases are; (Ub/U)clean = 1.11, 

(Ub/U)insoluble = 1.15, (Ub/U)soluble = 1.13 

Surfactant concentration distribution in the bulk fluid and the interfacial surfactant 

distribution are shown in Fig. 10 at various times to demonstrate the unsteady evolution of 

these distributions. It is observed that the bulk surfactant close to the centerline on the 

leading edge is consumed.  

 

Figure 10: Evolution of surfactant concentration at the interface (left side) and in the bulk fluid 

(right side). From left to right z/L = 0.0481, 0.0962, 0.2500, 0.4423, 0.7154, 0.9231. 
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The streamlines in Fig. 11 explain this phenomenon: The circulation on the leading 

edge of the bubble brings the surfactant in the vicinity of the wall to the leading edge of the 

bubble. As it sweeps the leading edge, the surfactant is being consumed and the bulk 

concentration in the vicinity of the centerline decreases. The interfacial surfactant 

concentration assumes its minimum value at the stagnation point on the leading edge and 

increases until the other stagnation point at the trailing edge, where it makes a maximum 

(Fig. 8b) (The stagnation points are shown in Fig. 11). Along these two stagnation points, 

the bulk concentration is decreased as shown in Fig. 10. The second circulation at the 

trailing edge brings the bulk surfactant along the centerline to the trailing edge of the 

bubble  and is the reason for the maximum interfacial surfactant concentration at the 

stagnation point on the trailing edge. 
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Figure 11: Streamlines for the three cases and interfacial surfactant distribution for the insoluble 

surfactant and the soluble surfactant cases. Left is the clean case, middle is the insoluble surfactant 

case and the right is the soluble surfactant case. Red pluses represent stagnation points. 
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3.3 Effects of Non-dimensional Parameters 

3.3.1 Effects of Elasticity Number 

 

Computations are performed to examine the effect of elasticity number on the motion of 

a large bubble in a capillary tube for the soluble surfactant case. For this purpose, the 

elasticity number, βs is varied between 0.1 and 0.7 while other parameters are kept the 

same as the base case. In Fig. 12, the bubble interface is shown together with the contour 

plots of the constant surfactant concentration in the bulk fluid and the surfactant 

concentration distribution along the interface for βs = 0.1, 0.3, 0.5 and 0.7 at steady state. 

                                    

Figure 12: Effects of Elasticity number on the bulk surfactant distribution. Bulk and interface 

surfactant distributions are plotted for various βs values. (From left to right βs = 0.1, βs = 0.3, βs = 

0.5, βs = 0.7).  
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When βs increases, surface tension decreases more abruptly with increasing interfacial 

surfactant concentration (see Fig. 1), and this results in an increase in Marangoni stresses, 

which causes the mobility of the interface to decrease. Because of this, the interfacial 

surfactant on the leading meniscus cannot be advected to the trailing meniscus and 

interfacial concentration becomes relatively uniform. Conversely, as βs decreases, surface 

tension is less sensitive to interfacial surfactant concentration and this result in lower 

Marangoni stresses and higher mobility of the interface. Therefore, interfacial surfactant on 

the leading meniscus are easily advected along the interface and accumulated at the trailing 

meniscus of the bubble. Due to this accumulated mass at βs = 0.1, surface tension becomes 

very small at the back of the bubble and this causes the film thickness at this location to be 

thicker. However, at the front of the bubble, surfactant concentration is close to zero; hence 

the front of the bubble behaves like a clean bubble as shown in Fig. 13a. As βs increases, 

surfactant distribution at the interface becomes more uniform which can be seen in Fig. 

13b. Therefore, surface tension values of the interface become more uniform. This makes 

the film thickness to be same at the front and back of the bubble that is shown in Fig. 13a.  



 
 
Chapter 3: Results and Discussion  38 

 

(a) 

 

(b) 

Figure 13: Effects of Elasticity number on the (a) film thickness and (b) interfacial surfactant 

concentration. Film thickness of bubble and interfacial surfactant concentrations are plotted for 

various βs values.  
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3.3.2 Effects of Peclet Number  

 

In order to investigate the effects of surface Peclet (Pes) and bulk Peclet (Pec) numbers 

computations are carried out for Pes and Pec values in the range (10 - 10
4
) and (3 - 10

3
), 

respectively, while other parameters are kept the same as the base case. Surface and bulk 

Peclet numbers are varied together proportionally. In Fig. 14, bulk and interfacial surfactant 

concentrations are displayed for various Peclet numbers. As Pe numbers increase 

(decrease) the thickness of the mass transfer boundary layer decreases (increases), which 

was also observed by Ghadiali and Gaver [11]. As Pe numbers increase, convection 

becomes dominant over diffusion, which causes the bulk surfactant concentration to have a 

sharp gradient in the vicinity of the interface. However, the steady state interfacial 

surfactant distribution is only slightly responsive to the changes in Pe numbers as shown in 

Fig. 15b. The change in interfacial surfactant concentration with Pe numbers shows a non-

monotonic behavior, which in turn causes the film thickness to show a non-monotonic 

behavior. We have observed the maximum film thickness for about Pes = 100 as shown in 

Fig. 15a, which is qualitatively in agreement with the results of Ghadiali and Gaver [11]. 
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Figure  14: Effects of Peclet number on the bulk surfactant distribution. Bulk and interface 

surfactant distributions are plotted for various Peclet values. (From left to right (Pes = 10, Pec = 3), 

(Pes = 102, Pec = 10), (Pes = 103, Pec = 102), (Pes = 104, Pec = 103)).  
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(a) 

 

(b) 

Figure 15: Effects of Peclet number on the (a) film thickness and (b) interfacial surfactant 

concentration. Film thickness of bubble and interfacial surfactant concentrations are plotted for 

various Peclet values.  
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3.3.3 Effects of Damkohler Number  

 

In order to investigate the effects of Damkohler number, computations are performed 

for Da numbers in the range of 0.033 – 1. We also varied the dimensionless adsorption 

depth, k, proportionately, in order to keep the adsorption-desorption coefficients ratio 

constant. In this manner, we practically change only the initial bulk surfactant 

concentration C∞. All the other non-dimensionless parameters are kept the same as the base 

case. In Fig. 16, bulk and interfacial surfactant concentrations are displayed. As Da number 

increases (decreases), the thickness of the mass transfer boundary layer increases 

(decreases). This is because at low Da numbers, the initial bulk surfactant concentration is 

high, which causes the bulk surfactant only in the very vicinity of the interface suffice to 

fill up the interface. Conversely, at high Da numbers, the initial bulk surfactant 

concentration is low and bulk surfactant not only in the vicinity of the interface, but also 

distant from the interface are absorbed on it. At low Da numbers, i.e., Da = 0.033, the 

interfacial surfactant concentration is more uniform compared to the base case (Da = 0.1), 

which is because of the higher bulk surfactant concentration. The higher interfacial 

concentration leads to lower surface tension on the interface and correspondingly increased 

film thickness as shown in Fig. 17. On the other hand at higher Da numbers, e.g., Da = 0.2, 

the interfacial surfactant concentration on the leading meniscus is negligible and the 
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resulting increased surface tension makes the leading meniscus to bulge into a spherical 

shape. This leads to an increased film thickness –maximum among various Da number 

cases- in the middle portion of the bubble. Further increase in Da number pulls the close-

to-zero interfacial concentration region back and close to the trailing edge. This increases 

the size of the region that tends to grow into a spherical shape (not only the leading 

meniscus, but all the bubble except for the trailing meniscus). This tendency decreases the 

film thickness in the middle portion of the bubble (See Da = 1 case in Fig. 17a.) 

 

                                     

Figure 16: Effects of Damkohler number on the bulk surfactant distribution. Bulk and interface 

surfactant distributions are plotted for different Damkohler values. Besides Damkohler number, 

k(dimensionless adsorption depth) is changed to keep adsorption-desorption ratio constant. (From 

left to right (Da = 0.033, k = 3), (Da = 0.1, k = 1), (Da = 0.2, k = 0.5), (Da = 0.33, k = 0.3), (Da = 1, 

k = 0.1)).  
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(a) 

 

(b) 

Figure 17: Effects of Damkohler number on the (a) film thickness and (b) interfacial surfactant 

concentration. Film thickness and interfacial surfactant concentration are plotted for various 

Damkohler values. Besides Damkohler number, k (dimensionless adsorption depth) is changed to 

keep adsorption-desorption ratio constant.  



 
 
Chapter 4: Conclusion   45 

 

 

Chapter 4 

 

CONCLUSION 

 

 

The effects of soluble and insoluble surfactants on the motion and deformation of a gas 

bubble in a horizontal axisymmetric channel are computationally studied by using a finite-

difference/front-tracking method. The Navier–Stokes equations are solved fully coupled 

with the bulk and interfacial surfactant concentration evolution equations, and the surface 

tension is related to the interfacial surfactant concentration using a nonlinear equation of 

state based on the Langmuir kinetics. Computations are performed to study the effects of 

insoluble and soluble surfactants on liquid film thickness and terminal velocity of the 

bubble. It is found that the presence of surfactants increases the liquid film thickness, 

which compares qualitatively well with the experimental findings of Krechetnikov and 

Homsy [2]. It is also shown that when soluble or insoluble surfactants are added to the 

fluid, the terminal velocity of the bubble increases.  

Further computations are performed to examine the effects of the non-dimensional 

numbers in insoluble and soluble surfactant cases. It is found that βs and Da have a 
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profound influence on the bubble dynamics. Both parameters significantly change the 

surfactant concentration distribution on the interface. As βs increases, the surface mobility 

significantly decreases due to increasing Marangoni stresses and correspondingly, liquid 

film thickness becomes more uniform. Conversely, as βs decreases, surfactants accumulate 

only at the trailing meniscus, which results in a non-uniform film thickness. Also, Da has 

significant influence on the surfactant distribution at the surface. While Da increases 

(decreases), bulk surfactant concentration and the interfacial surfactant concentration 

decreases (increases). This change in the surface surfactant distribution directly affects the 

film thickness. Pe numbers effect on the film thickness is relatively weaker and is non-

monotonic.   
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APPENDIX 

 

 

Three sets of uniform regular Cartesian grids with 32, 64 and 128 grid cells in the radial 

direction are used to solve the governing equations for flow and surfactant transport. 

Comparisons are made on the converged steady-state results of interfacial surfactant 

distribution and film thickness. Fig. (24) shows the discrepancy in interfacial surfactant 

distribution along bubble arc length for these three different grid systems. The relative error  

is defined as follows:  

                                               
                             

           
                                       (A1) 

For every grid system, three different values from three different locations are collected. 

These values are plotted and a first-order spline is fitted to these values. The value as grid 

size goes to zero is assumed to be the exact value. 

The grid with 32 grid cells in radial direction was sufficient to resolve all flow features 

and to accurately calculate interfacial surfactant distribution within a relative error margin 

of 7% compared with the grid with 64 grid cells. Three different locations in Fig. 18 is 

chosen to test the accuracy of the numerical schemes employed. As can be seen in Fig. 18, 

surface surfactant distribution is second order accurate. 
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Figure 18: Grid convergence for interfacial surfactant concentration. 

 

After that film thickness is plotted against arc length for three different grid systems and 

again three different locations is taken to test accuracy of the numerical scheme as can be 

seen in Fig 19. The grid with 32 grid cells in radial direction was sufficient to resolve all 

flow features and to accurately calculate film thickness within a relative error margin of 4% 

compared with the grid with 64 grid cells. Fig. 19 shows that film thickness is first order 

accurate. Therefore, we use 32 grid points in the radial direction. 
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Figure 19: Grid convergence for film thickness. 
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