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ABSTRACT

In this thesis, we study some distribution results concerning prime divisors
of arithmetical functions. More precisely, we present two functions of which
the distribution of the number of distinct primes divisors obeys a normal
law.
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ÖZET

Bu çalışmada bazı özel sayı-teoritik fonksiyonların asal bölenlerinin sayısının
dağılımı incelenmiştir. Daha kesin olarak, iki farklı aritmetik fonksiyon in-
celenmiş olup, bu fonksiyonların asal bölenlerinin sayısının normal dağıldığı
gösterilmiştir.
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LIST OF SYMBOLS/ABBREVIATIONS

d(n) The number of divisors of n.

li(x)
∫ x

2
du

log u ; the logarithmic integral.

ω(n) The number distinct prime divisors of n.
ωy(n) The number distinct prime divisors of n which are ≤ y.
Ω(n) The number distinct prime divisors of n.

counted with multiplicity.
Ωy(n) The number distinct prime divisors of n which are ≤ y,

counted with multiplicity.

φk(n) The k-fold iterate Euler φ function
Jk(n) The Jordan’s totient function
π(x) The number of primes ≤ x

π(x; q, a) The number of primes ≤ x
which are ≡ a (mod q).

Φ(a, b) The value of the integral 1√
2π

∫ b
a e
− t

2

2 dt.

Φ(z) The value of the integral 1√
2π

∫ z
−∞ e

− t
2

2 dt.

logk x k-fold iterate of log x.
f(x) = O(g(x)) |f(x)| ≤ Cg(x) where C is an

absolute constant.
f(x) = o(g(x)) lim f(x)/g(x) = 0.
f(x)� g(x) f(x) = O(g(x)).
f(x) ∼ g(x) lim f(x)/g(x) = 1.
PNT The Prime Number Theorem.

ll
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1 Introduction and Statement of Results

In 1917 Hardy and Ramanujan wrote a fundamental paper [6] on the distri-
bution of the number of distinct prime divisors of a given integer. Among
other things they showed that the number of distinct divisors of a given
integer n is about log log n. It was Turan [16] who refined Hardy’s and
Ramanujan’s result by showing that

1

x

∑
n≤x

(ω(n)− log log x)2 � log log x,

from which the result of Hardy and Ramanujan follows immediately.
Underlying ideas behind this theorem form another branch of mathematics
so called Probabilistic Number Theory. Subsequently, In 1940 Erdös and
Kac, using central limit theorem and Brun Sieve, showed that the quantity

ω(n)− log log n√
log logn

is normally distributed. More precisely they proved the following

lim
x→∞

1

x
]

{
n ≤ x | ω(n)− log logn√

log log n
< z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt.

Moreover, using probabilistic arguments elaborately, Kubilius generalized
their theorem by showing

lim
x→∞

1

x
]

{
n ≤ x | f(n)−A(x)√

B(x)
< z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt,

provided that f(n) is strongly additive and satisfies some certain conditions.
Yet another variant of the above theorem was given by Erdös and Pomerance
[3] showing that actually, one can take f(n) = ω(φ(n)).
In this thesis, we generalize their result in two different directions.
In the third chapter, we shall study the article [14], and give full detailed
proofs, which basically shows that ω(φk(n)) and ω(φk(p−1)) obey Gaussian
distribution, where φk(n) := φk−1(φ(n)).
More precisely,
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Theorem. For each fixed integer k, let ak = 1/(k+1)! and bk = 1/
√

2k + 1(k!).
Then for each real number z

lim
x→∞

1

x
]

{
n ≤ x | ω(φk(n))− ak(log log x)k+1

bk(log log x)k+1/2
< z

}
= Φ(z).

and

lim
x→∞

1

π(x)
]

{
p ≤ x | ω(φk(p− 1))− ak(log log x)k+1

bk(log log x)k+1/2
< z

}
= Φ(z).

In the fourth chapter, Inspired by the article [5], we obtain a similar
result for ω(Jk(n)).
More precisely, we shall show that;

Theorem. Let k ≥ 1 be fixed, then for any real u one has

lim
x→∞

1

x

{
n ≤ x |

ω(Jk(n))− d(k)
2 (log log n)2

d(k)(log log n)3/2
≤ z√

3

}
= Φ(z)

as x→∞.
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2 Preliminaries

This chapter includes some basic information and motivation to study dis-
tribution of additive functions via probabilistic methods.

2.1 Arithmetic Functions

Definition 1. A real -or complex-valued function defined on the positive
integers is called an arithmetic function.

We introduce some arithmetic functions which play an important role in
this thesis.

1. If n > 1 the Euler totient φ(n) is defined to be the number of positive
integers not exceeding n which are relatively prime to n; i.e.,

φ(n) =
n∑

m=1
(m,n)=1

1.

2. if k ≥ 1 the k-fold iterate Euler totient φk is defined as follows,

φk(n) = φk−1(φ(n))

3. The Jordan’s totient function Jk(n) of a positive integer n is defined
to be the number of k-tuples of positive integers all less than or equal
to n that form a co-prime (k + 1)-tuple together with n; i.e.,

Jk(n) = nk
∏
p|n

(1− 1

pk
).

4. The small omega function which counts the number of distinct prime
divisors of a given integer is defined as

ω(n) =
∑
p|n

1.

5. The big omega function which counts the number of distinct prime
divisors of a given integer with multiplicity is defined as

Ω(n) =
∑
pα|n

1.

Definition 2. An arithmetic function f is said to be additive (resp., strongly
additive) if it satisfies the following conditions. If (n,m) = 1

3



1. f(nm) = f(n) + f(m)

2. f(pα) = f(p)

for all primes p and α ∈ N.

Note that the function ω is strongly additive and the function Ω is yet
additive.

Definition 3. An arithmetic function f is said to be multiplicative (resp.,
completely multiplicative) if it satisfies the following conditions.

1. f(nm) = f(n)f(m) for all (n,m) = 1

2. f(nm) = f(n)f(m) for all n,m

2.2 Technical Preparation

In this section, we give some theorems, without proof, that are frequently
used in this thesis. The most of the proofs can be found in [2], [9] and [19].

Theorem 2.1 (The Partial Summation Formula). Let x and y be real num-
bers with 0 < y < x. Let f(n) be an arithmetic function with summatory
function F (x) defined by

F (x) =
∑
n≤x

f(n)

and g(t) be a function with a continuous derivative on [y, x]. Then,∑
y<n≤x

f(n)g(n) = F (x)g(x)− F (y)g(y)−
∫ x

y
F (t)g′(t)dt.

In particular, if x ≥ 2 and g(t) is continuously differentiable on [1, x],
then ∑

n≤x
f(n)g(n) = F (x)g(x)−

∫ x

1
F (t)g′(t)dt.

Theorem 2.2. (Mertens Prime Number Theorem) For x ≥ 2,∑
p≤x

1

p
= log log x+O(1).

Theorem 2.3. (PNT) If π(x) denotes the number of primes ≤ x, then

π(x) =
x

log x
+O

(
x

log2 x

)
.
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Although, the error term in the PNT can unconditionally be taken of
the form x exp(−(c log x)1/2) for some c > 0. However, the above form of
PNT will suffice for our purposes.

Theorem 2.4. (Prime Ideal Theorem) Denote by δf (p) the number of so-
lutions modulo p the congruence f(x) ≡ 0(mod p), where f(x) ∈ Z[x] is a
polynomial with k-irreducible components. Then∑

p≤x
δf (p) = k.lix+O(xe−c

√
log x).

Consequently, by partial summation∑
p≤x

δf (p)

p
= k log log x+O(1).

Theorem 2.5. (Siegel-Walfisz Theorem) Let A be any real number then
there is a constant C(A) > 0 such that

π(x; q, a) =
li(x)

φ(q)
+O

(
x exp

(
−C(A)(log x)

1
2

))
uniformly for all (a, q) = 1 and q ≤ (log x)A.

Theorem 2.6. (The Brun-Titchmarsh inequality) Let a and k be coprime
integers and let x be a positive real number such that k < x. then,

π(x; k, a) ≤ 2x

φ(k) log(x/k)
.

Theorem 2.7. (The Bombieri-Vinagradov Theorem) For any A > 1 there
exists B = B(A) > 0 such that∑

d≤ x1/2

(log x)B

maxy≤xmax(a,d)=1|π(y; d, a)− π(y)

φ(d)
| � x

(log x)B
.

Utilizing Siegel-Walfisz theorem as well as partial summation we have

Lemma 2.8. If 2 ≤ k ≤ x, then∑
p≥x

p≡l(mod k)

1

p
=

log log x

φ(k)
+O

(
log k

φ(k)

)
,

where the implied constant is uniform.

Lemma 2.9. Let m be a nonnegative integer and δ a real number with
0 < δ ≤ 1/2, then there is a number c depending on m but not on δ so that
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the inequality ∑
x1−δ<p≤x

pm−1π(x; p, 1)m ≤ c
(

x

log x

)m
holds for sufficiently large values of x.

We have yet another modification of the above lemma.

Lemma 2.10. Let m be a nonnegative integer, there is c such that, for
sufficiently large x we have,∑

x1/2<pq≤x

pqm−1π(x; pq, 1)m ≤ c
(

x

log x

)m
log log x.

2.3 A Quick Introduction to Probabilistic Number theory

In this section, we tackle the problem “How probabilistic arguments can be
used to treat the value distribution of arithmetical functions?”

To illustrate the problem we begin with the method of Turan. Let us
consider the average order of the function ω(n),∑

n≤x
ω(n) =

∑
n≤x

∑
p|n

=
∑
pk≤x

=
∑
p≤x

[x/p]

= x
∑
p≤x

1

p
+O(π(x))

= x log log x+O(x), (2.1)

where the last part follows by Theorem (2.2).
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We now consider the second moment of ω(n).∑
n≤x

ω2(n) =
∑
n≤x

∑
p|n
q|n

=
∑
n≤x

∑
p|n
q|n
p6=q

+
∑
n≤x

∑
p|n

=
∑
pq≤x

[x/pq] +O(x log log x)

= x
∑
pq≤x

1

pq
+O(x log log x) (2.2)

Now by means of the following elementary estimation,∑
p≤
√
x

1

p

2

≤
∑
pq≤x

1

pq
≤

∑
p≤x

1

p

2

it follows that ∑
pq≤x

1

pq
= (log log x)2 +O(log log x). (2.3)

Therefore combining (2.1), (2.2) and (2.3), we have∑
n≤x

(ω(n)− log log x)2 � x log log x, (2.4)

Using the inequality (a+ b)2 � a2 + b2 for all a and b real, one has∑
n≤x

(ω(n)− log logn)2 �
∑
n≤x

(ω(n)− log log x)2 +
∑
n≤x

(log log x− log logn)2

=x log log x+
∑
n≤
√
x

(log log x− log logn)2

+
∑

√
x<n≤x

(log log x− log log n)2

�x log log x+
√
x(log log x)2 + x

�x log log x,

from which it is clear that for fixed δ > 0, the number of integers not
satisfying the inequality

|ω(n)− log logn| < (log log x)1/2+δ (2.5)
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is at most
� x

(log log x)2δ
= o(x).

Hence for almost all n ≤ x one has

|ω(n)− log logn| < (log log x)1/2+δ. (2.6)

Without loss of generality we may suppose that
√
x < n ≤ x, then for a

fixed ε > 0, it follows from (1.6) that

(1− ε) log log n < ω(n) < (1 + ε) log log n

for almost all n ≤ x. From the text we see that, the LHS of (2.4) can be
viewed as the variance of the variable ω, and the inequality (2.6) resembles
Chebyshev’s inequality in the theory of probability.
The analogue of the inequality (2.4) for a general additive function is given
in Theorem 2.11.
It was the turn of Erdos and Kac to put all these ideas into a more precise
probabilistic language. In [3], the main purpose is to approximate the func-
tion ω as a sum of independent random variables in order to apply central
limit theorem of probability stating that sum of independent random vari-
ables tends to Gaussian distribution.
More precisely, we define

ωy(n) =
∑
p≤y

ρp(n) (2.7)

where

ρp(n) =

{
1 if p | n
0 if p - n.

Since the ρp(n) are statistically independent the function ωy(n) behaves like
a sum of independent random variables. Therefore central limit theorem
of probability can be applied. Finally using sieve methods elaborately they
approximate ω(n) by ωy(n) to deduce the desired result. The general case
for strongly additive functions is proven by Kubulius [8] in which the theory
of probability is purely served as the main tool.
Moreover, there is another approach which was first discovered by Halber-
stam [7] so called “Method of Moments“, in which he estimates sums of the
form: ∑

p≤x
(ω(f(p))− log log x)k ,

∑
n≤x

(ω(n)− log log x)k

where f(x) is an irreducible polynomial with integer coefficients. Among
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other things, he showed that

lim
x→∞

1

π(x)
]

{
p ≤ x | ω(p− 1)− log log x√

log log x
< z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt.

Finally, the last and less probabilistic method is due to Turan and Renyi
[17] in which they use Levy’s continuity theorem to reduce the problem to
an analytic object. More precisely, they estimate the sum

φx(τ) :=
1

x

∑
n≤x

exp(
iτ√

log log x
(ω(n)− log log x)),

which is so called characteristic function of the frequencies

1

x
]

{
n ≤ x | ω(n)− log log x√

log log x
< z

}
.

Using the theory of Riemann zeta function and Perron type formulas, they
deduce the following

φx(τ) ∼ e−
τ2

2 , as x→∞ .

Finally, applying Levy’s continuity theorem with Berry-Esseen inequality,
they deduce the desired result with the best possible error term.
For further details the reader may refer to the monograph of Elliot [15].

2.4 Probabilistic Lemmas

In this section, we give several lemmas which will be frequently used in
later chapters. For the sake of completeness, we give the proof of those that
can not be found in the references. Throughout this section, we keep the
notation used in Theorem 2.12.

Theorem 2.11. (Turan Kubulius inequality) Let f be a complex valued
additive function for all real numbers x > 0, set

E(x) =
∑
pk≤x

f(pk)

pk

(
1− 1

p

)
,

V (x) =

∑
pk≤x

|f(pk)|2

pk

1/2

.

9



Then we have the inequality∑
n≤x
|f(n)− E(x)|2 ≤ 32xV 2(x). (2.8)

Proof. [15] Lemma 4.1.

Theorem 2.12. (Kubilius, Shapiro) Let f be a strongly additive function
i.e., f(pα) = f(p). Set

A(x) =
∑
p≤x

f(p)

p
, (2.9)

B(x) =

∑
p≤x

f(p)2

p

1/2

. (2.10)

Assume that f satisfies the following condition

lim
x→∞

B(xy)

B(x)
= 1 for all y > 0 .

Suppose for each ε > 0, we have the following

lim
x→∞

1

B2(x)

∑
p≤x

|f(p)|>εB(x)

f(p)2

p
= 0.

Then we have

]

{
n ≤ x : α ≤ f(n)−A(x)

B(x)
≤ β

}
∼ xΦ(α, β) as x→∞.

Proof. See [15] Lemma 12.2.

Theorem 2.13. (Barban, Vinagradov, Levin) Let f(n) be a strongly addi-
tive function such that

lim
x→∞

B(xy)

B(x)
= 1 for all y > 0 ,

in order that,

lim
x→∞

1

π(x)
]

{
p ≤ x : α ≤ f(p+ 1)−A(x)

B(x)
≤ β

}
∼ Φ(α, β)

10



it is sufficient that for each ε > 0∑
p≤x

f(p)>εB(x)

f2(p)

p
= o(B2(x)).

Remark: This theorem is valid if p + 1 is replaced by p + l for some l fixed
non-zero integer.

Proof. [15] Lemma 12.4.

Lemma 2.14. Let f , g and h be arithmetical functions, and suppose that for
all n we have |f(n)−g(n)| ≤ h(n). And assume that the following condition
is satisfied ∑

n≤x
h(n) = o(xB(x)). (2.11)

Suppose that for all constants α and β(with α ≥ β) we have

]

{
n ≤ x : α ≤ f(n)−A(x)

B(x)
≤ β

}
∼ xΦ(α, β), (2.12)

as x→∞, then also

]

{
n ≤ x : α ≤ g(n)−A(x)

B(x)
≤ β

}
∼ xΦ(α, β) (2.13)

as x→∞.

Proof. Let us define the functions

Sf (x, α, β) := ]

{
n ≤ x : α ≤ f(n)−A(x)

B(x)
≤ β

}
,

Sg(x, α, β) := ]

{
n ≤ x : α ≤ g(n)−A(x)

B(x)
≤ β

}
Fix ε > 0, then by the assumption (2.11), we may suppose that h(n) ≤ εB(x)
for almost all n ≤ x. Thus,

a ≤ f(n)−A(x)

B(x)
≤ b⇒ A(x) + αB(x) ≤ f(n) ≤ A(x) + βB(x).

Together with the assumption (2.12) and g(n)−h(n) ≤ f(n) ≤ g(n) +h(n),
for almost all n ≤ x we have

α− ε ≤ g(n)−A(x)

B(x)
≤ β + ε.

11



Therefore for all α ≤ β

Sf (x, α, β) ≤ Sg(x, α− ε, β + ε) + o(x). (2.14)

In other words, replacing α by α+ ε and β by β − ε we have

Sf (x, α+ ε, β − ε) ≤ Sg(x, α, β) + o(x).

Similarly,

α ≤ g(n)−A(x)

B(x)
≤ β ⇒ A(x) + αB(x) ≤ g(n) ≤ A(x) + βB(x),

which implies for almost all n ≤ x

α− ε ≤ f(n)−A(x)

B(x)
≤ β + ε.

Then
Sg(x, α, β) ≤ Sf (x, α+ ε, β − ε) + o(x). (2.15)

Let us now consider

Φ(α, β)− Φ(α+ ε, β − ε) =
1√
2π

∫ β

α
e−

t2

2 dt− 1√
2π

∫ β−ε

α+ε
e−

t2

2 dt

=

∫ α+ε

α
..+

∫ β

β−ε
..

�ε,

which follows by Mean-value theorem for integrals. Hence by (2.14) and
(2.15) one has

xΦ(α, β) + o(εx) ≤ Sg(x, α, β) ≤ xΦ(α, β) + o(εx),

from which we deduce that

lim sup |Sg(x, α, β)

x
−G(α, β)| < ε.

Lemma 2.15. Suppose that B ⊂ N and let B(x) = |{n ∈ B, n ≤ x}|, let
f,g and h be arithmetical functions, suppose that for all n ∈ B we have
|f(n)− g(n)| � h(n), and assume that the following condition is satisfied∑

n≤x
n∈B

h(n) = o(B(x)B(x)).

12



Suppose that for all constants α and β(with α ≥ β) we have

]{n ≤ x, n ∈ B(x) : α ≤ f(n)−A(x)

B(x)
≤ β} ∼ B(x)Φ(α, β))

as x→∞, then also

]

{
n ≤ x, n ∈ B(x) : α ≤ g(n)−A(x)

B(x)
≤ β

}
∼ B(x)Φ(α, β)

as x→∞.

Proof. The proof is similar to that of previous lemma. We therefore skip
it.

Lemma 2.16. Let f be an arithmetical function, suppose that we have

lim
x→∞

B(xy)

B(x)
= 1 for all y > 0 and (2.16)

lim
x→∞

A(x)−A(xy)

B(x)
= 0 for some 0 < y < 1. (2.17)

Then,

]

{
n ≤ x : α ≤ f(n)−A(x)

B(x)
≤ β

}
∼ xΦ(α, β) as x→∞

implies

]

{
n ≤ x : α ≤ f(n)−A(n)

B(n)
≤ β

}
∼ xΦ(α, β) as x→∞ .

Proof. Define

Sf (x, α, β) := ]

{
n ≤ x : α ≤ f(n)−A(x)

B(x)
≤ β

}
,

S′f (x, α, β) := ]

{
n ≤ x : α ≤ f(n)−A(n)

B(n)
≤ β

}
.

Suppose for xy < n ≤ x and 0 < y < 1 we have

α ≤ f(n)−A(n)

B(n)
≤ β.

Let us write

f(n)−A(x)

B(x)
=
f(n)−A(n)

B(n)
+

(
B(n)

B(x)
− 1

)
f(n)−A(n)

B(n)
− A(x)−A(n)

B(x)
.

13



By the assumption (2.17) the last term on RHS tends to zero as x→∞
with xy < n ≤ x. And by the assumption (2.16), it is clear that third term
tends to zero.
Consequently,

−ε+ α ≤ f(n)−A(x)

B(x)
≤ β + ε,

which implies

S′f (x, α, β) ≤ Sf (x, α− ε, β + ε) + o(x).

Similarly
Sf (x, α, β) ≤ S′f (x, α− ε, β + ε) + o(x).

Mimicking the proof of the previous lemma the desired result follows.
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3 Erdös-Kac Theorem for φk

It was a result of Halberstam [7] that

lim
x→∞

1

π(x)
]

{
p ≤ x | ω(p− 1)− log log x√

log log x
< z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt. (3.1)

and a result of Erdös and Pomerance[3] that

lim
x→∞

1

x
]

{
n ≤ x | ω(φ(n))− 1/2(log log x)3/2

1/
√

3(log log x)2
< z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt.

(3.2)
Their results was generalized by N.L.Bassily, I.Katai & M.Wijsmuller. [14]
More precisely, they showed that

Theorem 3.1. [14] For each fixed integer k, let ak = 1/(k + 1)! and bk =
1/
√

2k + 1(k!). Then for each real number z

lim
x→∞

1

x
]

{
n ≤ x | ω(φk(n))− ak(log log x)k+1

bk(log log x)k+1/2
< z

}
= Φ(z).

Theorem 3.2. [14] For each fixed integer k ≤ x, and ak and bk as in
Theorem 3.1, then for each real number z

lim
x→∞

1

π(x)
]

{
p ≤ x | ω(φk(p− 1))− ak(log log x)k+1

bk(log log x)k+1/2
< z

}
= Φ(z).

First, in order to prove the above theorems we define the following aux-
iliary functions,

ϑ(p) = p− 1.

and extend it to the whole N as a completely multiplicative function.
And furthermore we denote by ϑk the k-fold iterate of ϑ with ϑ0(n) = n.
Finally, we define the strongly additive function τ recursively as follows

τ0(p) = 1 and τk(p) =
∑
q|p−1

τk−1(q).

15



3.1 Preliminary Lemmas

Lemma 3.3. For all k = 0, 1, 2.. we have

ω(ϑk(n)) ≤ ω(φk(n)) ≤ ω(n) + ω(ϑ1(n)) + ...ω(ϑk(n)). (3.3)

Proof. : (LHS) First, by induction on k, let us show that

a | b implies φk(a) | φk(b). (3.4)

The case k = 1 is obvious, and follows by the formula φ(pα) = pα−1(p− 1).
Suppose now,

a | b implies φk−1(a) | φk−1(b).

Since
φk(a) = φk−1(φ(a)),

by induction hypothesis, we have

a | b =⇒ φ(a) | φ(b) =⇒ φk−1(φ(a)) | φk−1(φ(b)) =⇒ φk(a) | φk(b).

What’s more, by induction on k, we will show that

ω(ϑk(p
α1
1 pα2

2 ...pαnn )) = ω(ϑk(p1p2...pn)). (3.5)

It is obvious that the case k = 1 is satisfied. Now suppose we have (3.5) for
k. Then

ω(ϑk+1(pα1
1 pα2

2 ...pαnn )) = ω(ϑk((p1 − 1)α1(p2 − 1)α2 ...(pn − 1)αn)).

Let qβii be the prime powers appearing in the factorization of pi − 1 for
i = 1, 2..n. Then, by induction hypothesis, we have

ω(ϑk+1(pα1
1 pα2

2 ...pαnn )) =ω(ϑk(q
β1
1 qβ22 ....qβll ))

=ω(ϑk(q1q2....ql))

=ω(ϑk((p1 − 1)(p2 − 1)...(pn − 1)))

=ω(ϑk+1(p1p2...pn)).

Now, the inequality (3.3) is obvious for k = 1. Suppose we have the inequal-
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ity (3.3) for k − 1. Then by (3.4), (3.5) and the induction hypothesis

ω(φk(q
α1
1 qα2

2 ...qαll )) =ω(φk−1(qβ1−1
1 (q1 − 1)qβ2−1

2 (q2 − 1)....qβl−1
l (ql − 1)))

≥ω(φk−1((q1 − 1)(q2 − 1)...(ql − 1))

≥ω(ϑk−1((q1 − 1)(q2 − 1)...(ql − 1))

=ω(ϑk(q1q2...ql))

=ω(ϑk(n))).

(RHS) We will proceed by induction on k. If we show that

p|φk(n)⇒ ϑj(n) for some j = 0, 1...k ,

then the result will follow.
It is obvious that

p|φk(n)⇒ p|φk−1(n) or p|ϑ(φk(n)).

If p | φk−1(n), then by induction hypothesis, p | ϑj(n) for some j = 0, 1...k−
1.
Suppose now, p - φk−1(n). Then there is some q dividing φk−1(n) such that
p|ϑ(q), and by induction on k, q|ϑj(n) for j = 0, 1...k−1. Therefore, since ϑ
is completely multiplicative, this implies p|ϑj(n) for some j = 0, 1...k, which
proves the lemma.

Lemma 3.4. For H ≥ 0, x ≥ 3 Let Tk(x,H) := ]{p ≤ x|τk(p) ≥ Hk}.
Then, there is an absolute constant C2 > 48 depending on k such that

Tk(x,H) ≤ Ck2x(log log x)k−1

2H
. (3.6)

Proof. It follows from the definition of τk(n) that τ1(p) = ω(p−1) and since
2ω(n) ≤ d(n), we have ∑

p≤x
2ω(p−1) ≤

∑
p≤x

d(p− 1).

The last sum well known to be ≤ cx for all x ≥ 1 (See The Titchmarsh
divisor problem, [12]). Therefore we have

T1(x,H) =
∑

τ1(p)>H
p≤x

=
∑

τ1(p)>H
p≤x

2ω(p−1)

2ω(p−1)
<
cx

2H
.

17



Thus, (3.6) is true for k = 1. Suppose we have (3.6) for k − 1. Note that
if τk(p) > Hk, and also if ω(p − 1) ≤ H and τk−1(q) ≤ Hk−1 for all primes
dividing q − 1, then

τk(p) =
∑
q|p−1

τk−1(q) ≤
∑
q|p−1

Hk−1 ≤ Hk,

which contradicts the assumption τk(p) > Hk. Therefore either ω(p−1) > H
or τk−1(q) > Hk−1 holds for some q|p− 1.
Hence it follows that

Tk(x,H) ≤
∑

τ1(p)>H
p≤x

+
∑
p≤x

τk−1(q)>Hk

q|p−1
for some q

≤ cx
2H

+
∑
p≤x

∑
q|p−1

τ(q)>Hk−1

=
cx

2H
+

∑
q≤x

τk−1(q)>Hk−1

π(x; q, 1).

Dividing the interval 2 ≤ q ≤ x into dyadic intervals with u = | log x/ log 2|−
1, using Brun Titchmarsh inequality , the trivial estimate (i.e, π(x; a, q) ≤ x

q )
as well as induction hypothesis and the inequality∑

n≤x

1

n
≤ 3 log x for x ≥ 1 ,

it follows that
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Tk(x,H) ≤ cx

2H
+

∑
x/2<q≤x

τk−1(q)>Hk−1

π(x, q, 1) +

u∑
j=1

∑
x/2j+1≤q≤x/2j
τk−1(q)>Hk−1

π(x; q, 1)

≤ cx

2H
+

∑
x/2<q≤x

τk−1(q)>Hk−1

x

q
+

u∑
j=1

∑
x/2j+1≤q≤x/2j
τk−1(q)>Hk−1

2x

q − 1 log x
q

≤ cx

2H
+

∑
x/2<q≤x

τk−1(q)>Hk−1

x

q
+

u∑
j=1

2x

jlog2

∑
x/2j+1≤q≤x/2j
τk−1(q)>Hk−1

1

q − 1

≤ cx

2H
+
Ck−1

2 x(log log x)k−2

2H
+

u∑
j=1

42j+1

jlog2

∑
x/2j+1≤q≤x/2j
τk−1(q)>Hk−1

1

q

≤ cx

2H
+
Ck−1

2 x(log log x)k−2

2H
+

u∑
j=1

42j+1

log2

∑
x/2j+1≤q≤x/2j
τk−1(q)>Hk−1

≤ cx

2H
+
Ck−1

2 x(log log x)k−2

2H
+

u∑
j=1

42j+1

log2
Tk−1(

x

2j
, H)

≤ cx

2H
+
Ck−1

2 x(log log x)k−2

2H
+

24Ck−2
2 x(log log x)k−1

2H

u∑
j=1

1

j

≤ Ck2x(log log x)k−1

2H
.

Remark 3.1. Let us observe that if ω(p − 1) = k, then it is obvious that
2k ≤ p− 1. Therefore, ω(p− 1) ≤ 2 log p and by induction on k, one has

τk(p) ≤ 2 log p. (3.7)

Furthermore, since τk is strongly additive, one has

τk(n) ≤ 2 log n.

Let us choose H ≥ 10 log log x. Then by partial summation and by (3.7) it
follows that ∑

q≤x
τk(q)>Hk

τ jk(q)

q
� (C2 log log x)k

(log x)2
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for j = 0, 1, 2, 4.

3.2 The Moments of τk

Let Sk(x) =
∑

p≤x τk(p) and Ak(x) =
∑

p≤x
τk(p)
p

Lemma 3.5. For every k=1,2.. we have

Sk(x) = li(x)Ak−1(x) +O(li(x)(C log log x)k−1). (3.8)

Proof. Let H = C log log x as in Lemma (3.4), denote by
∑′ the summation

over primes with τk(q) ≤ Hk and by
∑′′ the summation over primes with

τk(q) > Hk. Then, using the trivial estimation and Remark (3.1) one has

Sk(x) =
∑
p≤x

∑
q|p−1

τk−1(q)

=

′∑
q≤x

τk−1(q)π(x; q, 1) +

′′∑
p≤x

τk−1(q)π(x; q, 1)

=

′∑
q≤x

τk−1(q)π(x; q, 1) +O

(
x(C log log x)k−1

(log x)2

)
(3.9)

We now split the above sum in (3.9) into two parts depending on whether
q > x1/3 or q ≤ x1/3. Since τk−1(q) ≤ Hk−1, by Lemma (2.9) and Brun-
Titchmarsh inequality it follows that

′∑
q>x1/3

τk−1(q)π(x; q, 1)� (C log log x)k−1

 ∑
x1/3<q≤x1/2

π(x; q, 1) +
∑

q>x1/2

π(x; q, 1)


� (C log log x)k−1 x

log x
.

Finally, applying Bombieri-Vinagradov Theorem we have

Sk(x) =
′∑

q≤x1/3
τk−1(q)(π(x; q, 1)− li(x)

φ(q)
) + li(x)

′∑
q≤x1/3

τk−1(q)

q − 1

+O

(
x

log x
(C log log x)k−1

)
=li(x)

′∑
q≤x1/3

τk−1(q)

q
+O

(
x(C log log x)k−1

log x

)
.
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On the other hand, we have

Ak−1(x) =
∑
p≤x

τk−1(p)

q

=
′∑

p≤x

τk−1(p)

q
+
′′∑
p≤x

τk−1(p)

q

=
′∑

p≤x

τk−1(p)

p
+O

(
(C log log x)k−1

log2 x

)

=
′∑

p≤x1/3

τk−1(p)

p
+

′∑
p>x1/3

τk−1(p)

p
+O

(
(C log log x)k−1

log2 x

)

=
′∑

p≤x1/3

τk−1(p)

p
+O

(C log log x)k−1
∑

p>x1/3

1

p


=

′∑
p≤x1/3

τk−1(p)

p
+O((C log log x)k−1).

Combining last two estimates gives the desired result.

Lemma 3.6. For every k = 0, 1, 2...

Ak(x) =
1

(k + 1)!
(log log x)k+1 +O((C log log x)k) (3.10)

Proof. We proceed by induction on k. The case k = 0 is due to Mertens(lemma
(2.2)). Suppose that (3.10) is true for k−1 then by the previous Lemma we
have

Sk(x) =
x

log x

(log log x)k

k!
+O

(
x(C log log x)k−1

log x

)
.

Therefore by partial summation

Ak(x) =
Sk(x)

x
+

∫ x

x0

Sk(t)

t2
dt+O(1)

=
Sk(x)

x
+

∫ x

x0

(log log t)k

k!t log t
dt+O

(∫ x

x0

(C log log t)k−1

t log t
dt

)
=

(log log x)k+1

(k + 1)!
+O((C log log x)k)

and the proof is complete.
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Lemma 3.7. for any k = 1, 2, 3... Let

Dk(x) =
∑
p≤x

τ2
k (p)

then,

Dk(x) =
li(x)(log log x)2k

(k!)2
+O(li(x)(C log log x)2k−1/2)

Proof. First observe that, by remark (3.1) and the trivial estimation subject
to the inequality τk(p) ≤ Hk, it follows that

Dk(x) =
∑
p≤x

τk(p)≤Hk

τ2
k (p) +

∑
p≤x

τk(p)>Hk

pτ2
k (p)

p

=
∑
p≤x

τk(p)≤Hk

τ2
k (p) +

x(C log log x)k

log2 x

� (C log log x)2kli(x). (3.11)

Let

τk(p) =
∑
q|p−1

τk−1(q) =
∑
q|p−1

q≤x1/6

τk−1(q) +
∑
q|p−1

q>x1/6

τk−1(q) = f1(p) + f2(p)

and define U(x) =
∑

p≤x f
2
1 (p). Therefore

Dk(x) =U(x) +
∑
p≤x

f1(p)f2(p) +
∑
p≤x

f2
2 (p)

=U(x) +
∑

1

+
∑

2

.
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Hence we have∑
2

=
∑
q≤x

∑
q1>x1/6

q1|p−1

∑
q2>x1/6

q2|p−1

τk−1(q1)τk−1(q2)

=
∑
q≤x

∑
q>x1/6

q|p−1

τ2
k−1(q) +

∑
q≤x

∑
q1>x1/6

q1|p−1

∑
q2>x1/6

q2|p−1
q1 6=q2

τk−1(q1)τk−1(q2)

=
∑

q>x1/6

τ2
k−1(q)π(x; q, 1) +

∑
q1,q2>x1/6

q1 6=q2

τk−1(q1)τk−1(q1)π(x; q1q2, 1).

(3.12)

Splitting the first sum into two sums depending on whether τk−1(q) R Hk−1

and using remark (3.1), we have

∑
q>x1/6

τk−1(q)>Hk−1

τ2
k−1(q)π(x; q, 1) ≤ x

∑
q>x1/6

τk−1(q)>Hk−1

τ2
k (q)

q
� x(C log log x)k−1

log2 x

and that,∑
q≥x1/6

τk(q)≤Hk−1

τ2
k−1(q)π(x; q, 1) =

∑
x1/2≥q≥x1/6
τk−1(q)≤Hk−1

τ2
k−1(q)π(x; q, 1)

+
∑

q>x1/2

τk−1(q)≤Hk−1

τ2
k−1(q)π(x; q, 1)

�(C log log x)2k−2

× (
∑

x1/2≥q≥x1/6
π(x; q, 1) +

∑
q>x1/2

π(x; q, 1))

�(C log log x)2k−2

 ∑
x1/2≥q≥x1/6

x

(q − 1) log x
q

+
x

log x


�li(x)(C log log x)2k−2.

Finally, we have∑
q>x1/6

τ2
k−1(q)π(x; q, 1)� li(x)(C log log x)2k−2.
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We now treat the second sum in (3.12) by beginning with the case
τk−1(qi) > Hk−1.∑

qi≥x1/6
τk−1(qi)>H

k−1

τk−1(q1)τk−1(q2)π(x, q1q2, 1)�x
∑

qi≥x1/6
τk−1(qi)>H

k−1

τk−1(q1)τk−1(q2)

q1q2

�x

 ∑
q≥x1/6

τk−1(q)>Hk−1

τk−1(q)

q


2

�x(C log log x)2k−2

log2 x
,

and the case τk−1(qi) ≤ Hk−1∑
qi≥x1/6

τk−1(qi)≤Hk−1

τk−1(q1)τk−1(q2)π(x, q1q2, 1)� (C log log x)2k−2
∑

qi>x1/6

π(x; q1q2, 1)

therefore,∑
qi>x1/6

π(x; q1q2, 1)�
∑

q1q2>x1/6

π(x; q1q2, 1)

=
∑

q1q2>x1/2

π(x; q1q2, 1) +
∑

x1/2≥q1,q2>x1/6
π(x; q1q2, 1)

�x log log x

log x
,

where the first inequality follows by Lemma (2.9) and the second by Brun-
Titchmarsh inequality. Hence, it follows that

∑
qi≥x1/6

τk−1(qi)≤Hk−1

τk−1(q1)τk−1(q2)π(x, q1q2, 1)� x(C log log x)2k−1

log x
.
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Finally the case τk−1(q1) > Hk−1 and τk−1(q2) ≤ Hk−1,∑
qi>x

1/6

τk−1(q1)>Hk−1

τk−1(q2)≤Hk−1

τk−1(q1)τk−1(q2)π(x; q1q2, 1)� x(C log log x)k−1
∑

qi>x
1/6

τk−1(q1)>Hk−1

τk−1(q2)≤Hk−1

τk−1(q1)

q1q2

� x(C log log x)k−1
∑

q1>x1/6

τk−1(q1)>Hk−1

τk−1(q1)

q1

� x(C log log x)k−2

log2 x
,

by Cauchy-Schwarz inequality and (3.11)∑
1

= (
∑
p≤x

f2
1 (p))1/2(

∑
p≤x

f2
2 (p))1/2

� (U(x))1/2(
∑

2

)1/2

� (Dk(x))1/2(
∑

2

)1/2

� li(x)(C log log x)k−1/2.

To evaluate U(x), recall;

U(x) =
∑

qi≤x1/6
q1 6=q2

τk−1(q1)τk−1(q2)π(x, q1q2, 1) +
∑

q≤x1/6
τ2
k−1(q)π(x, q, 1)

Invoking Bombieri-Vinagradov theorem, one has

U(x) =
∑

qi≤x1/6
q1 6=q2

τk−1(q1)τk−1(q2)(π(x, q1q2, 1)− π(x)

φ(q1q2)
)

+
∑

q≤x1/6
τ2
k−1(q)(π(x, q, 1)− π(x)

φ(q)
) +

∑
qi≤x1/6
q1 6=q2

τk−1(q1)τk−1(q2)
π(x)

φ(q1q2)

+
∑

q≤x1/6
τ2
k−1(q)

π(x)

φ(q)

=li(x)A2(x1/6) +O(li(x)(log log x)2k−1)

Since Ak−1(x)−Ak−1(x1/6) = O((C log log x)k−1), Lemma (3.7) follows.
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Lemma 3.8. For every k = 0, 1, 2.. let

B2
k(x) =

∑
p≤x

τ2
k (p)

p

then

B2
k(x) =

(log log x)2k+1

(2k + 1)(k!)2
+O

(
(C log log x)2k+1/2

2k + 1/2

)
.

Proof. The desired result follows easily by partial summation and previous
Lemma.
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3.3 The Distribution of τk

In this section, we shall show that the normalization,

τk(n)−Ak(x)

Bk(x)

obeys a normal law, by using Theorem (2.12).
Recall,

B2
k(x) =

1

(2k + 1)(k!)2
(log log x)2k+1 +O

(
(C log log x)2k+1/2

2k + 1/2

)
Ak(x) =

1

(k + 1)!
(log log x)k+1 +O((C log log x)k)

Lemma 3.9. For each fixed k ≥ 1 and every real number α,

lim
x→∞

1

x
]

{
n ≤ x | τk(n)−Ak(x)

Bk(x)
< α

}
= Φ(α), (3.13)

lim
x→∞

1

π(x)
]

{
p ≤ x | τk(p− 1)−Ak(x)

Bk(x)
< α

}
= Φ(α). (3.14)

Proof. Let H = (εBk(x))1/k. And let us recall that, Remark (3.1) for
H ≥ 10 log log x yields

∑
q≤x

τk(q)>Hk

τk(q)

q
� (C2 log log x)k

(log x)2
.

It is clear that, once we fix ε, then H = (εBk(x))1/k > 10 log log x, for x
large. Therefore it follows that

∑
p≤x

τk(p)>εBk(x)

τ2
k (p)

p
�

∑
p≤x

τk(p)>(10 log log x)k

τ2
k (p)

p
= o(B2

k(x)).

Hence (3.13) and (3.14) follows by invoking Theorems (2.12) and (2.13).

We now attempt to replace τk by ω(ϑk). To accomplish this we introduce
the notion of “K-chain”.

Definition 4. A (k+ 1)−tuple of primes (q0, q1, q2...qk) is called a K-chain
if qi−1|qi − 1 for i = 0, 1, ...k. A general K-chain is denoted by Qk, a K-
chain with the property that qk|n is denoted by Qk(n) and Qk(n, q0) denotes
those K-chains where q0 is fixed and qk|n.
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Lemma 3.10. There exists a K-chain starting at q0 and ending at qk if and
only if q0|ϑk(qk).

Proof. ⇒ Suppose such a K-chain exists. Since ϑ is completely multplicative
it follows that

∃qk−1|ϑ(qk) =⇒ ∃qk−2|ϑ1(qk).... =⇒ ∃q0|ϑk(qk)

⇐ By induction on k, the assertion is obvious for k = 1.
Suppose q0|ϑk−1(qk−1) implies existence of a K − 1-chain, then q0|ϑk(qk)
implies q0|ϑk−1(qk − 1) = q0|ϑk−1(p1p2...). Therefore q0|ϑk−1(pi) for some
pi|qk−1. Thus by induction hypothesis, there exists aK-chain (q0, q1, .......pi, qk).

Lemma 3.11. Let |Qk(n, q0)| = ]Qk(n, q0). Then we have

τk(n) =
∑

q0|ϑk(n)

Qk(n, q0). (3.15)

Proof. By the definition of τk(n)

τk(n) =
∑
p|n

τk(p) =
∑
p|n

∑
p0|p−1

τk−1(p0) =
∑
p|n

∑
p0|p−1

∑
p1|p0−1

∑
p2|p1−1

...
∑

pk|pk−1−1

,

(3.16)
which obviously counts the number of K-chains ending at p with p|n, on the
other hand by Lemma (3.10) the sum on the RHS of (3.15) counts the same
K-chains. Therefore they are equal.

Let us define the following functions

L(x) :=
∑
n≤x

(τk(n)− ω(ϑk(n))) = L(1) + L(2)

R(x) :=
∑
p≤x

(τk(p− 1)− ω(ϑk(p− 1))) = R(1) +R(2),

where

L(1) =
∑
n≤x

∑
q0|ϑk(n)
q0<y

(|Qk(n, q0)| − 1)

R(1) =
∑
p≤x

∑
q0|ϑk(p−1)

q0<y

(|Qk(p− 1, q0)| − 1)

L(2) = L(x)− L(1), and R(2) = R(x)−R(1)
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Lemma 3.12. When y = (log x)2

L(1) � x(C log log x)k log log log x (3.17)

R1 � li(x)(C log log x)k log log log x (3.18)

Proof. Let

L(1) ≤
∑
n≤x

∑
q0|ϑk(n)
q0<y

|Qk(n, q0)|

=
∑
n≤x

∑
q0|ϑk(n)
q0<y

∑
qk|n
qk≤x

∑
qk−1|qk−1
qk−1≤x

...
∑

q0|q1−1
q0<y

≤ x
∑
q0<y

∑
q1≤x
q0|q1−1

∑
q2≤x
q1|q2−1

...
∑
qk≤x

qk−1|qk−1

1

qk
.

By repeated use of Lemma (2.8) we have

L(1) � x(C log log x)k log log x. (3.19)

Moreover,

R(1) ≤
∑
p≤x

∑
q0|ϑk(p−1)

q0<y

|Qk(p− 1, q0)|

≤
∑
p≤x

∑
qk|p−1
qk≤x

∑
qk−1|qk−1
qk−1≤x

...
∑

q0|q1−1
q0<y

=
∑
q0<y

∑
q1≤x
q0|q1−1

∑
q2≤x
q1|q2−1

...
∑
qk≤x

qk−1|qk−1

π(x, qk, 1)

=
∑

1

+
∑

2

+
∑

3

.

In
∑

1 we consider qk ≤ x1/2 for which Brun-Titchmarsh inequality is ap-
plicable. Therefore∑

1

� li(x)
∑
q0<y

∑
q1≤x
q0|q1−1

∑
q2≤x
q1|q2−1

...
∑
qk≤x

qk−1|qk−1

1

qk

� li(x)(C log log x)k log log log x

29



In
∑

2 we consider qk > x1/2 for which τk(qk) ≤ (C log log x)k = Hk.
We first note that the number of all K-chains ending at qk equals τk(qk).
Therefore, it follows that∑

2

�
∑
p≤x

∑
q0|ϑk(p−1)

∑
qk|p−1

qk>x
1/2

τk(qk)≤Hk

|Qk(qk, q0)|

=
∑
p≤x

∑
qk|p−1

qk>x
1/2

τk(qk)≤Hk

τk(qk)

�
∑

qk>x
1/2

τk(qk)≤Hk

τk(qk)π(x; qk, 1)

� li(x)(C log log x)k

Finally, in
∑

3 we consider qk > x1/2 for which τk(qk) > (C log log x)k = Hk.
By the same reasoning, as in the previous case, Theorem (2.10) yields∑

2

�
∑

qk>x
1/2

τk(qk)≥Hk

τk(qk)π(x; qk, 1)

�

 ∑
qk≤x

τk(qk)>Hk

τ2
k (qk)

qk


1/2 ∑

x1/2<qk≤x

qkπ(x, qk, 1)2

1/2

� (C log log x)kx

log2 x
.

Lemma 3.13. When y = (log x)2

L(2) � k2x(C log log x)2k+1

log2 x
, R(2) � k2li(x)(C log log x)2k+1

log2 x
.

Proof. Recall,

L(2) =
∑
n≤x

∑
q0|ϑk(n)
q0≤y

(|Qk(n, q0)| − 1) (3.20)

R(2) =
∑
p≤x

∑
q0|ϑk(p−1)

q0≤y

(|Qk(p− 1, q0)| − 1). (3.21)
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We first note that those pairs (n, q0) for which |Qk(n, q0)| = 1 do not make
contribution to the sum L(2). We therefore consider those pairs (n, q0) for
which |Qk(n, q0)| ≥ 2. In this case, we obviously have

|Qk(n, q0)| − 1 ≤
(
|Qk(n, q0)|

2

)
That is to say that, we obtain an upper bound for (3.20) and (3.21)(the
same argument works for this case), if we count number of distinct K-chains
starting at q0 and ending at qk with qk|n.
Let Q denote the set of distinct K-chain pairs. Define µi(n, qo) as follows
Let P1 = (q0, p1, p2...pk), P2 = (q0, p

′
1, p
′
2...p

′
k) ∈ |Qk(n, q0)|

(P1, P2) ∈ µi(n, qo)⇐⇒ pi 6= p′i and pj = p′j for j > i. (3.22)

It is obvious that µi(n, qo) ∩ µj(n, qo) = ∅, unless i = j.
Therefore, if (P1, P2) ∈ Q and P1 6= P2, then ∃i such that pi0 6= p′i0 then if,
pj = p′j for all j > i0, then (P1, P2) ∈ µi0(n, qo). If not choose smallest i1 such
that, pi1 6= p′i1 , then if pj = p′j for all for all j > i1, then (P1, P2) ∈ µi1(n, qo).
Since P1 and P2 distinct, this process may not continue to the kth step.
Therefore, there is some im such that, pj = p′j for all j > im. Consequently

(P1, P2) ∈ µim(n, qo) for some im . (3.23)

By inclusion-exclusion principle we have the following inequality

|Q| ≤
∑
i≤k

]µi(n, qo). (3.24)

Substituting (3.24) in (3.20) we have

L(2) ≤
∑
n≤x

∑
q0≥y

q0|ϑk(n)

µ1(n, qo) + µ2(n, qo)...µk(n, qo)

= M1 +M2 + ...+Mk,

where Mi =
∑

n≤x
∑

q0≥y
q0|ϑk(n)

µi(n, qo).
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We begin by evaluating Mk.
Obviously,

µk(n, qo) =
∑
qk|n

Qk(q0, qk)
∑
q′k|n
q′k 6=qk

Qk(q0, q
′
k)

Therefore,

Mk =
∑
n≤x

∑
q0≥y

q0|ϑk(n)

µk(n, qo)

=
∑
n≤x

∑
q0≥y

q0|ϑk(n)

∑
pk|n

Qk(q0, pk)
∑
q′k|n
q′k 6=qk

Qk(q0, q
′
k)

≤
∑
n≤x

∑
q0≥y

q0|ϑk(n)

∑
qkq
′
k|n

qk 6=q′k

(
∑

q′k−1|q
′
k−1

∑
q′k−2|q

′
k−1−1

...
∑

q0|q′1−1

)(
∑

qk−1|qk−1

∑
qk−2|qk−1−1

...
∑

q0|q1−1

)

≤x(C log log x)2
∑
q0≥y

∑
q0|q1−1
q0|q′1−1
q′1,q1≤x

...
∑

qk−2|qk−1−1
q′k−2|q

′
k−1−1

q′k−1,qk−1≤x

1

qk−1q
′
k−1

(3.25)

To evaluate further, we distinguish between two cases: qk−1 = q′k−1 and
qk−1 6= q′k−1. In the first case let us consider the following sum

∑
qk−1≥y

τ2
k−1(qk−1)

q2
k−1

=
∑

x≥qk−1≥y

1

q2
k−1

∑
qk−2|qk−1−1
q′k−2|qk−1−1

∑
qk−3|qk−2−1
q′k−3|q

′
k−2−1

...
∑

q0|q1−1
q′0|q′1−1

=
∑
q′0≤x
q0≤x

∑
q′1≤x
q1≤x
q0|q1−1
q′0|q′1−1

...
∑

q′k−3≤x
qk−3≤x

qk−3|qk−2−1
q′k−3|q

′
k−2−1

∑
y≤qk−1≤x
qk−2|qk−1−1
q′k−2|q

′
k−1−1

1

q2
k−1

.

In (3.25) the condition q0 ≥ y implies qk−1 ≥ y. Therefore we have

∑
p0≥y

∑
p0|p1−1
p′0|p′1−1
p′1,p1≤x

...
∑

pk−2|pk−1−1
p′k−2|p

′
k−1−1

p′k−1,pk−1≤x

1

pk−1p
′
k−1

�
∑

qk−1≥y

τ2
k−1(qk−1)

q2
k−1

�
B2
k−1(x)

y
,
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and the case qk−1 6= q′k−1 can be read∑
q0≥y

∑
q0|q1−1
q0|q′1−1
q′1,q1≤x

...
∑

qk−2|qk−1−1
q′k−2|q

′
k−1−1

q′k−1,qk−1≤x
qk−1 6=q′k−1

1

qk−1q
′
k−1

� 22(C log log x)2

×
∑
q0≥y

∑
q0|q1−1
q0|q′1−1
q′1,q1≤x

...
∑

qk−2|qk−1−1
q′k−3|q

′
k−2−1

q′k−2,qk−2≤x

1

qk−2q
′
k−2

.

Finally, we have

Mk � x(C log log x)2

×


B2
k−1(x)

y
+ 22(C log log x)2(

∑
q0≥y

∑
q0|q1−1
q0|q′1−1
q′1,q1≤x

...
∑

qk−2|qk−1−1
q′k−3|q

′
k−2−1

q′k−2,qk−2≤x

1

qk−2q
′
k−2

)

 .

Applying the same methods to the last sums, we arrive at the following
inequality

Mk � x
k∑
j=1

22j(C log log x)2jB2
k−j(x)

y

� x
(log log x)2k+1

y

k∑
j=1

C2j

(2k − 2j + 1)((k − j)!)2
.

� k
x(C log log x)2k+1

y
.
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Similarly, if j < k

Mj =
∑
n≤x

∑
q0≥y

µj(n, qo)

=x
∑
q0≥y

∑
q0|q1−1
q′0|q′1−1
q1≤x
q′1≤x

..
∑

qj−1|qj−1
q′j−1|q′j−1

qj≤x
q′j≤x
qj 6=q′j

∑
qj |qj+1−1
qj+1≤x

...
∑

qk−1|qk−1
qk≤x

1

qk

=x(C log log x)k−j
∑
q0≥y

∑
q0|q1−1
q′0|q′1−1
q1≤x
q′1≤x

..
∑

qj−1|qj−1
q′j−1|q′j−1

qj≤x
q′j≤x
qj 6=q′j

.

To evaluate further, we use the same method as evaluating Mk. Therefore
one has

Mj � x(C log log x)k−j
j∑
i=1

(C log log x)2iB2
k−i(x)

y

� j(C log log x)k+j+1

y
.

If we choose y = (log x)2 it follows that

L(2) � k2 (C log log x)2k+1

(log x)2
.

Since ∑
p≤x

∑
q0|ϑk(p−1)

(Qk(p− 1)− 1)�
∑
n≤x

∑
q0|ϑk(n)

(Qk(n)− 1).

Therefore combining Lemma 2.12 and 2.13, we conclude that for almost all
n ≤ x

τk(n)− ω(ϑk(n)) = o((log log x)k+1/2),

and that, for almost all p ≤ x

τk(p− 1)− ω(ϑk(p− 1)) = o((log log x)k+1/2).
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It is now clear that, once again by Lemma 2.14, we have the following

lim
x→∞

1

x
]

{
n ≤ x | ω(ϑk(n))−Ak(x)

Bk(x)
< α

}
= Φ(α),

lim
x→∞

1

x
]

{
p ≤ x | ω(ϑk(p− 1))−Ak(x)

Bk(x)
< α

}
= Φ(α).

And finally considering Lemma 3.3 one has

0 ≤
∑
n≤x

(ω(φk(n))− ω(ϑk(n))) ≤
∑
n≤x

(ω(n) + ω(ϑ(n)) + ...+ ω(ϑk−1(n)))

≤
∑
n≤x

τ0(n) + ...+ τk−1(n)

≤ k
∑
n≤x

τk−1(n)

≤ kx
∑
q≤x

τk−1(p)

p
+O(k

∑
p≤x

τk−1(p))

≤ kxAk−1(x) +O(k log x) = o(kxBk(x)),

and that∑
p≤x

((φk(p− 1)− ω(ϑk(p− 1))) ≤ k
∑
p≤x

τk−1(p− 1)

= k
∑
p≤x

τk(p) (by Lemma 3.5 and 3.6)

� 1

(k − 1)!
π(x)(log log x)k = o(π(x)Bk(x)).

Therefore by Lemmas 2.12 and 2.13, Theorems 3.1 and 3.2 follows.
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4 Erdös-Kac Theorem for Jk

In this chapter, we generalize a theorem of Erdös and Pomerance [5] which
states

]

{
n ≤ x | ω(φ(n))− 1/2(log logn)2

(log log n)3/2
≤ u√

3

}
∼ xΦ(u) (4.1)

as x→∞.
More precisely we will show that

Theorem 4.1. Let k ≥ 1 be fixed then for any real u one has

]

{
n ≤ x |

ω(Jk(n))− d(k)
2 (log log n)2

d(k)(log log n)3/2
≤ u√

3

}
∼ xΦ(u) (4.2)

as x→∞,
where Jk(n) denotes Jordan’s totient function defined as

Jk(n) = nk
∏
p|n

(1− 1

pk
).

Note that taking k = 1, we recover (4.1).

4.1 Preliminary Lemmas

Let A(n) = {a ∈ Z/nZ | ak − 1 ≡ 0 (mod n )}
In this section, we will give several lemmas on the arithmetical structure of
A(n).

Lemma 4.2. ]A(qα) ≤ 2k for all q.

Proof. Let us handle the case q 6= 2. We know that the group (Z/qαZ)∗ is
cyclic for q 6= 2. Let us suppose l | φ(qα) and consider the equation

xl ≡ 1 (mod qα) (4.3)

Let a be a primitive root (mod qα), then the elements of the form a
φ(qα)m

l

for m = 0, 1...l − 1 are solutions to the equation (4.3).
Conversely, suppose b (mod qα) is a solution to the equation (4.3), then
there exists ε (mod qα) such that

aε ≡ b (mod qα),

which implies
alε ≡ 1 (mod qα),
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Since a is a primitive root, it follows that φ(qα) | εl. Therefore one has

ε =
φ(qα)m

l
for some m (mod l) .

Thus, there are exactly l solutions of the equation (4.3), provided that
l|φ(qα). Now suppose l - φ(qα) consider the equation

x(l,φ(qα)) ≡ 1 (mod qα) (4.4)

If c is a solution to the equation (4.3), then so is to the equation (4.4).
Conversely, suppose c is a solution to the equation (4.4). Let (l, φ(qα)) = d.
Then, there exist integers x1 and x2 such that

d = lx1 + φ(qα)x2. (4.5)

From the equation (4.4), it follows that

clx1 ≡ 1 (mod qα).

If we can choose x1 in such way that (x1, φ(qα)) = 1, then it follows that
cl ≡ 1 (mod qα). Now the equation (4.5) is equivalent to the following
equation

1 =
l

d
x1 +

φ(qα)

d
x2,

whose solution set can be parametrized by the following formula

x = x1 +
φ(qα)

d
t (4.6)

y = x2 −
l

d
t

for all t ∈ Z. It is clear from (4.6) that (x1,
φ(qα)
d ) = 1. Therefore by Dirich-

let’s theorem there are infinitely many primes in the arithmetic progression

x = x1 +
φ(qα)

d
t.

The desired result follows choosing one that does not divide φ(qα). Therefore
by the argument given in the beginning of the proof (l, φ(qα))|φ(qα) so that
there are exactly (l, φ(qα)) ≤ l solutions to the equation (4.4). Hence The
proof is complete for the case q 6= 2.
Now let us suppose q = 2 and α = 1, 2.
In both cases the group Z/2αZ is cyclic. Thus the above argument works.
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Suppose q = 2, and α ≥ 3 and notice that for any n( mod 2α) there are

µ( mod 2)

ε( mod 2α−2),

such that
n ≡ (−1)µ5ε mod 2α. (4.7)

Thus if nk ≡ (−1)kµ5kε ≡ 1 mod 2α , then (since the expression (4.7) is
unique) one has

kµ ≡ 0 mod 2

kε ≡ 0 mod 2α−2.

Obviously, if k is odd then, there is only one solution. If k is even say
k = 2βd, where d is odd and β ≥ 1, then

2βµ ≡ 0 mod 2

2βε ≡ 0 mod 2α−2

Now, suppose β ≥ α − 2. in this case ε and µ can be chosen arbitrarily.
Consequently, there are 2α−1 choices in total. Therefore we have A(2α) ≤ 2k.
Now, suppose β < α− 2 in this case, µ is arbitrary but there are 2β choices
for ε hence there 2β+1 ≤ 2k choices in total.

Lemma 4.3. ]A(n) is a multiplicative function.

Proof. Suppose that (n,m) = 1 and define the following function

τ : A(nm) 7→ A(n)×A(m)

a 7→ (ā (mod n) , ã (mod m) ),

which is obviously well-defined and one-to-one. Now by Chinese Remainder
Theorem, let x be the unique solution (mod nm) satisfying the following
system of linear congruences.
For any a ∈ A(n) and b ∈ A(m)

x ≡ a(mod n),

x ≡ b(mod m),
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then we have

xk ≡ 1(mod n),

xk ≡ 1(mod m).

In other words, nm|xk−1 which proves that τ is onto. Hence it follows that
]A(nm) = ]A(n)]A(m).

Remark 4.1. From the theory of Cyclotomic polynomials we have

xk − 1 =
∏
d|k

Φd(x),

where Φd(x) is the d th cyclotomic polynomial which is irreducible(due to
Gauss). Therefore xk − 1 is the product of d(k) irreducible polynomials.
Moreover by Prime Ideal Theorem (2.4) it follows that∑

q≤x

]A(q)

q − 1
= d(k) log log x+O(1).

4.2 The Moments of Ω(pk − 1)

In order to prove Theorem (4.1) we will proceed almost the same as the
previous section. We first define the following auxiliary function

h(n) =
∑
p|n

Ω(pk − 1).

Obviously h is strongly additive. To find the asymptotic behavior of the
functions A(x) and B(x), we first estimate the following sums

∑
p≤x

Ωy(p
k − 1)

∑
p≤x

Ω2
y(p

k − 1),

where Ωy(n) denotes number of prime powers qα dividing n such that q ≤ y.
Furthermore, for the possible improvements which will be mentioned at the
end of the chapter, we express the dependence of k in O-terms.

Theorem 4.4. if 3 ≤ y ≤ xk, then∑
p≤x

Ωy(p
k − 1) = d(k)π(x) log log y +O(k

x

log x
). (4.8)
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Proof. ∑
p≤x

Ωy(p
k − 1) =

∑
q≤y

∑
p≤x

pk≡1(mod qα)

=
∑
q≤y

(
∑
p≤x

pk≡1(mod qα)
p≡1(mod qα)

+...+
∑
p≤x

pk≡1(mod qα)
p≡qα−1(mod qα)

)

=
∑
q≤y

∑
l∈A(qα)

∑
p≤x

p≡l(mod qα)

=
∑
q≤y

∑
l∈A(q)

∑
p≤x

p≡l(mod q)

+
∑
q≤y

∑
l∈A(qα)

∑
p≤x

p≡l(mod qα)
α≥2

=A1 +A2

We first treat A1 splitting the range of q into two parts as follows

A1 =
∑

q≤min(y,x1/3)

∑
l∈A(q)

∑
p≤x

p≡l(mod q)

+
∑

q>min(y,x1/3)

∑
l∈A(q)

∑
p≤x

p≡l(mod q

=A′1 +A′2.

Considering Remark (4.1) and Bombieri-Vinagradov theorem (2.7) it
follows that,

A′1 =
∑

q≤min(y,x1/3)

∑
l∈A(q)

π(x)

φ(q)
+

∑
q≤min(y,x1/3)

∑
l∈A(q)

(π(x; q, l)− π(x)

φ(q)
)

= π(x)
∑

q≤min(y,x1/3)

]A(q)

q − 1
+O

k ∑
q≤min(y,x1/3)

max
(l,q)=1

(π(x; q, l)− π(x)

φ(q)
)

 ,

= d(k)π(x) log log y +O(kπ(x)). (4.9)

and that

A′2 =
∑

q>min(y,x1/3)

∑
l∈A(q)

∑
p≤x

p≡l(mod q)

�
∑
p≤x

∑
q|pk−1

q>x1/3

� kπ(x). (4.10)

We now invoke Remark 4.1 and split the sum A2 into two sums,
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A2 =
∑
q≤y

qα≤x1/3
α≥2

∑
l∈A(qα)

∑
p≤x

p≡l(mod qα)

+
∑
q≤y

qα>x1/3

α≥2

∑
l∈A(qα)

∑
p≤x

p≡l(mod qα)

(4.11)

�

π(x)
∑
q≤y

qα≤x1/3
α≥2

]A(qα)

φ(qα)
+

∑
q≤y

qα>x1/3

α≥2

]A(qα)

qα


� k(π(x) + x5/6)

� kπ(x) (4.12)

In (4.11), for the first sum we used Brun-Titchmarsh inequality and for the
second sum we used the trivial estimate.
Therefore combining (4.9), (4.10) and (4.12), the desired result follows.

Theorem 4.5. if 3 ≤ y ≤ xk then,∑
p≤x

Ω2
y(p

k − 1) = d2(k)π(x)(log log y)2 +O(k2π(x) log log y)

Proof.∑
p≤x

Ω2
y(p

k − 1) =
∑
p≤x

∑
q
α1
1 |pk−1

q
α2
2 |pk−1,
q1,q2≤y

=
∑

q1,q2≤y
q1 6=q2

∑
q
α1
1 |pk−1

q
α2
2 |pk−1,
p≤x

+O(d(k)π(x) log log y)

=
∑

q1,q2≤y
q1 6=q2

∑
q1|pk−1

q2|pk−1
p≤x

+
∑

q1,q2≤y
q1 6=q2

∑
q
α1
1 |pk−1

q
α2
2 |pk−1
p≤x

α1α2>1

+O(d(k)π(x) log log y)

= β1 + β2 +O(d(k)π(x) log log y) (4.13)

as before, we split the sum β1 into two sums.

β1 =
∑

q1,q2≤min(y,x1/6)
q1 6=q2

∑
l∈A(q1q2)

∑
p≡l(mod q1q2)

p≤x

+
∑
q1,q2
q1 6=q2

∑
l∈A(q1q2)

∑
p≡l(mod q1q2)

p≤x

= β′1 + β′2
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Hence, by Bombieri-Vinagradov theorem (2.7), Prime-Ideal theorem (2.4)
and Remark (4.1) one has

β′1 =
∑

q1,q2≤min(y,x1/6)
q1 6=q2

∑
l∈A(q1q2)

(
∑

p≡l(mod q1q2)
p≤x

− π(x)

φ(q1q2)
)

+
∑

q1,q2≤min(y,x1/6)
q1 6=q2

∑
l∈A(q1q2)

π(x)

φ(q1q2)

=π(x)
∑

q1,q2≤min(y,x1/6)
q1 6=q2

]A(q1q2)

(q1 − 1)(q2 − 1)

+O

k2
∑

q1q2≤x1/3
max

(l,q1q2)=1)
(π(x, q1q2, l)−

π(x)

φ(q1q2)
)


=π(x)

 ∑
q≤min(y,x1/6)

]A(q)

q

2

+O(k2π(x))

=d2(k)π(x)(log log y)2 +O(k2π(x), d(k)π(x) log log y). (4.14)

In the sum β′2 there are 3 main cases either q1, q2 > min(y, x1/6) or
q1 > min(y, x1/6) and q2 ≤ min(y, x1/6) or q1 ≤ min(y, x1/6) and q2 >
min(y, x1/6). In the first case,∑

q1,q2>min(y,x1/6)
q1 6=q2

∑
q1q2|pk−1

p≤x

≤
∑

q1q2>x1/6

q1 6=q2

∑
q1q2|pk−1

p≤x

=
∑
p≤x

∑
q1q2|pk−1

q1,q2>x1/6

� k2π(x) (4.15)

In the second case(which is symmetric with the third),∑
q1>min(y,x1/6)

q2≤min(y,x1/6)
q1 6=q2

∑
q1q2|pk−1

p≤x

≤
∑
p≤x

∑
q1|pk−1

q1>min(y,x1/6)

∑
q2|pk−1

q2≤min(y,x1/6)

� k2π(x) log log y

The sum β2 is similarly shown to be

β2 � k2π(x). (4.16)
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Therefore combining (4.13), (4.14), (4.15) and (4.16) the desired result fol-
lows.

Theorem 4.6. if 3 ≤ y ≤ xk then,

1.
∑
p≤x

Ωy(p
k − 1)

p
=d(k)(log log x log log y − 1

2
(log log y)2)+

+O(k log k log log x),

2. ∑
p≤x

Ω2
y(p

k − 1)

p
=d2(k)(log log x(log log y)2 − 2

3
(log log y)3)

+O(k2 log k log log x log log y).

Proof. (1)

∑
p≤x

Ωy(p
k − 1)

p
=

∑
p≤x Ωy(p

k − 1)

x
+

∫ x

2

1

t2

∑
p≤t

Ωy(p
k − 1)dt

=

∑
p≤x Ωy(p

k − 1)

x
+

∫ y

2

1

t2

∑
p≤t

Ωy(p
k − 1)dt

+

∫ x

y

1

t2

∑
p≤t

Ωy(p
k − 1)dt

=
d(k) log log y

log x
+O

(
k

log x

)
+

∫ y

2

1

t2

∑
p≤t

Ωt(p
k − 1)dt

+

∫ x

y

1

t2

∑
p≤t

Ωy(p
k − 1)dt

=d(k)
1

2
(log log y)2 +O(k log k log log x)

+

∫ x

y

1

t2

∑
p≤t

Ωy(p
k − 1)dt (4.17)

In order to evaluate the last integral suppose y ≤ x then,∫ x

y

1

t2

∑
p≤t

Ωy(p
k−1)dt = d(k)(log log x log log y−(log log y)2)+O(k log log x).

(4.18)
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and if x ≤ y ≤ xk then,∫ x

y

1

t2

∑
p≤t

Ωy(p
k − 1)dt =d(k)(log log x log log y − (log log y)2)

+O(| log log x− log log y|)
=d(k)(log log x log log y − (log log y)2) +O(k log k).

(4.19)

Combining (4.17) and (4.18) and (4.19) result follows.

Proof. (2)

∑
p≤x

Ω2
y(p

k − 1)

p
=
d2(k) log log y

log x
+O

(
k2 log log y

log x

)
+

∫ x

2

1

t2

∑
p≤t

Ω2
y(p

k − 1)dt

=d(k)(log log x(log log y)2 − 2

3
(log log y)2

+O

(
log log y

∫ x

y

k2

t log t
dt

)
+O

(
k2

∫ y

2

log log t

t log t
dt

)
(4.20)

In fact the first error term is at most

log log y

∫ x

y

k2

t log t
dt� k2 log log y(| log log x− log log y|)

� k2 log k log log y log log x, (4.21)

and the second error term is at most

k2

∫ y

2

log log t

t log t
dt� k2(log log y)2 � k2 log k log log y log log x. (4.22)

Combining (4.20), (4.21) and (4.22) the desired result follows.

4.3 The Distribution of Ω(pk − 1)

In this section, we deduce the following theorem which will almost complete
the proof of Theorem (3.1)

]

{
n ≤ x |

h(n)− d(k)
2 (log log x)2

d(k)(log log x)3/2
≤ u√

3

}
∼ xΦ(u) as x→∞ . (4.23)

To accomplish this let us take y = xk in Theorems (4.4) and (4.5) then we
have,
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∑
p≤x

(Ω(pk − 1)− d(k)(log log x))2 �k π(x) log log x (4.24)

Therefore (4.23) follows, if we show that

∑
p≤x

Ω(pk−1)>εB(x)

Ω2(pk − 1)

p
= o(B2(x)). (4.25)

To do this, we define the following function:

α(p) =

{
1 if Ω(pk − 1) > εB(x)
0 otherwise.

By (4.24) we have∑
p≤x

Ω(pk−1)>εB(x)

(Ω(pk − 1)− d(k)(log log x))2 �k π(x) log log x.

For a fixed ε > 0, It follows that∑
p≤x

Ω(pk−1)>εB(x)

(εB(x)− d(k)(log log x))2 � π(x) log log x. (4.26)

Therefore we have for x ≥ x0(k, ε),∑
p≤x

α(p)� π(x)

(log log x)2
.

Lemma 4.7. The sum
∑

p≤x
α(p)
p converges.

Proof. By partial summation∑
p≤x

α(p)

p
� 1

log x(log log x)2
+

∫ x

2

1

x log x(log log x)2
dx

� 1

log x(log log x)2
− 1

log log x
|x2

≤ ∞.
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Now by Cauchy-Schwarz inequality one has

∑
p≤x

α(p)
Ω2(pk − 1)

p
≤

∑
p≤x

α(p)

p

1/2∑
p≤x

Ω4(pk − 1)

p

1/2

. (4.27)

By Lemma 3.7 the first sum on RHS converges and by similar methods one
can show that ∑

p≤x

Ω4(pk − 1)

p
� (log log x)5 = o(B4(x)).

We therefore have shown that (4.23) indeed holds. We now attempt to
replace h(n) by Ω(Jk(n)). First notice that the function defined by

F (n) = Ω(Jk(n))− h(n)

is additive. Therefore Turan-Kubilius inequality can be applied to the func-
tion F (n) with

B1(x) =
∑
pα≤x

F (pα)

pα

(
1− 1

p

)
and B2

2(x) =
∑
pα≤x

F 2(pα)

pα
.

To see that both B1(x) and B2(x) remain bounded as x→∞

B1(x)�
∑
pα≤x

Ω(pk − 1)− Ω(p(α−1)k(pk − 1)

pα

�
∑
pα≤x
α≥2

α− 1

pα

�
∑
p≤x

∑
α≥2

α− 1

pα

�
∑
p≤x

1

p2

∑
α≥2

α− 1

pα−2

�
∑
p≤x

1

p2
= O(1)
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similarly

B2(x) =
∑
pα≤x

(Ω(pk − 1)− Ω(p(α−1)k(pk − 1)))2

pα

�
∑
pα≤x
α≥2

(α− 1)2

pα

�
∑
p≤x

1

p2

∑
α≥2

(α− 1)2

pα−2
= O(1)

The last inequality follows by differentiating the following identity

z + 2z2 + 3z3 + ...+ nzn... =
z

(1− z)2
for |z| < 1 .

Therefore, one has∑
n≤x

(h(n)− Ω(Jk(n)))2 �
∑
n≤x

(h(n)− Ω(Jk(n))−B1(x))2 +
∑
n≤x

B1(x)2 � x

For a fixed ε > 0, it follows that for almost all n ≤ x we have

|h(n)− Ω(Jk(n))| < ε(log log x)3/2.

Therefore, by Theorem (2.14) we may replace h(n) by Ω(Jk(n)).
Finally, we want to replace Ω(Jk(n)) by ω(Jk(n)). To do this, once again
we will make use of Turan-Kubilius inequality (2.11). Let us take y =
(log log x)2, then the function Ωy is additive. Let us consider the following
function:

E(x) =
∑
pα≤x

Ωy(Jk(p
α))

pα

(
1− 1

p

)

=
∑
pα≤x

(α− 1)k + Ωy(p
k − 1)

pα

(
1− 1

p

)

=
∑
p≤x

Ωy(p
k − 1)

p

+O

∑
pα≤x
α≥2

k(α− 1) + Ω(pk − 1)

pα
+
∑
pα≤x

k(α− 1) + Ω(pk − 1)

pα+1


(4.28)
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Now suppose n = pr11 p
r2
2 ...p

rn
n , then

Ω(n) = r1 + r2...+ r3

On the other hand
n ≥ 2r1+r2...+rn

it follows that
r1 + r2...+ rn � log n.

Therefore, one has Ω(n) � log n, for all n ∈ N.When n = pk − 1, one has
Ω(pk − 1)� k log p.
Using the above argument and by similar methods in which Turan-Kubilius
inequality previously is applied, it follows that the error term in (4.28)� k.
And the function,

V (x) =
∑
pα≤x

Ω2
y(Jk(p

α))

pα

=
∑
p≤x

Ω2
y(p

k − 1)

p
+O

∑
pα≤x
α≥2

Ω2
y(Jk(p

α))

pα

 (4.29)

Using similar arguments it follows that the error term in (4.29) � k2.
With the choice of y = (log log x)2, we have the following inequality

∑
n≤x

(Ωy(Jk(n))− Ey(x))2 � xD2
y(x),

with

Ey(x) = d(k) log log x log log log log x+O(k log k log log x)

D2
y(x) = d(k) log log x(log log log log x)2 +O(k2 log k log x log x log log log log x).

Using the inequality (a+ b)2 � a2 + b2, we have∑
n≤x

(Ωy(Jk(n))− d(k) log log x log log log log x)2

� xd2(k) log log x(log log log log x)2.

Now let S be the set of integers satisfying

Ωy(Jk(n)) > 2d(k) log log x log log log log x,
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then the density of S is at most

1

x

∑
n≤x
n∈S

� 1

log log x
= o(x).

Therefore, for almost all n ≤ x we have

Ωy(Jk(n)) ≤ 2d(k) log log x log log log log x

and that,

Ωy(Jk(n))− ωy(Jk(n)) ≤ 2d(k) log log x log log log log x. (4.30)

Now our aim is to show that the following equality holds for almost all
integers n ≤ x

Ω(Jk(n))− Ωy(Jk(n)) = ω(Jk(n))− ωy(Jk(n)). (4.31)

First of all notice that there are two main cases

1. if q2|Jk(n) then q2|Jk(pα1
1 ) for some pα1

1 |n,

2. if q2|Jk(n) then q|Jk(pα1
1 ) and q|Jk(pα2

2 ) for some distinct pα1
1 |n and

pα2
2 |n.

Suppose that q2|Jk(pα1
1 ) which implies either q2|p(α1−1)k

1 or q2|pk1 − 1,

If q2|p(α−1)k
1 , then it follows that, q2|n

In this case the number of integers divisible by a square of a prime > y is
at most ∑

q>y

1

q2
= o(x).

If q2|pk1−1, then the number of integers having prime factor p1 such that
q2|pk1 − 1 with q > y is at most∑

q>y

∑
q2|pk−1
p≤x

x

q
�x

∑
q>y

∑
l∈A(qk)

∑
p≤x

p≡l(mod q)

1

q

�
∑
q>y

∑
l∈A(q2)

(
log log x

q(q − 1)
+O

(
log q

q2

)

�k2x log log x
∑
q>y

1

q2
+ k2x

∑
q>y

log q

q2

=O

(
k2x log log x

y log log y

)
+O

(
k2x

y

)
= o(x).
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Suppose ∃p1, p2 such that p|Jk(pα1
1 ) and p|Jk(pα2

2 ) for some distinct pα1
1 |n

and pα2
2 |n In this case,

q|p(α1−1)k
1 (pk1 − 1)

q|p(α2−1)k
2 (pk2 − 1)

If q = p1, then q2|n and q|(pk2 − 1), then the number of all such integers
is at most, ∑

q>y

1

q2
= o(x).

if q|(pk1 − 1) and q|(pk2 − 1), then the number such n ≤ x is at most

x
∑
q>y

∑
q|(pk1−1)

q|(pk2−1)
pi≤x

1

q1q2
�
∑
q>y

(
∑

q|(pk1−1)
p1≤x

1

p1p2
)2

�x
∑
q>y

(
∑
l∈A(q)

∑
p1≡l(mod q)

p1≤x

1

p1
)2

�xk2
∑
q>y

(
log log x

q
+O(

log q

q
))2

�xk2(log log x)2
∑
q>y

1

q2
+O(xk2

∑
q>y

(log p)2

p2
)

�xk2 log log x

y log log y
+ xk2 log log x

y
= o(x).

Therefore combining (4.30) and (4.31), the desired result follows.
.
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5 Concluding Remarks

1. It would be fruitful to investigate, if one can take k as an increasing
function of x in Theorem 4.1.

2. It is also probable to combine Theorems (4.1) and (3.1) to deduce that
the function ω(Jmk (n)) where Jmk (n) = Jm−1

k (Jk(n)) obeys a normal
law, if one estimates the sums of the form∑

p0≤x

∑
p0|pk1−1

∑
p1|pk2−1

∑
p2|pk3−1

...
∑

pm−1|pkm−1

.

3. Another variation of Theorem (3.1) may be given for the function
ω(ρ(n)− 1), where ρ(n) denotes the least prime divisor of n, provided
that one has a powerful analogue of the sieve of Eratosthenes. Since
it provides asymptotic formula for the number of integers having the
least prime divisor p for a poor range of p(for instance p ≤ log x). For
the present case we are capable of proving∑

n≤x
ω(ρ(n)− 1) � x(log log x)2

using the sieve of Selberg.
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